Sample records for advanced combustion modification

  1. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  2. Environmental assessment of combustion modification controls for stationary internal combustion engines. Final report Sep 78-Jul 79

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lips, H.I.; Gotterba, J.A.; Lim, K.J.

    1981-07-01

    The report gives results of an environmental assessment of combustion modification techniques for stationary internal combustion engines, with respect to NOx control reduction effectiveness, operational impact, thermal efficiency impact, capital and annualized operating costs, and effects on emissions of pollutants other than NOx.

  3. Modifications of a Composite-Material Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Williams, Brian E.; McNeal, Shawn R.

    2005-01-01

    Two short reports discuss modifications of a small, lightweight combustion chamber that comprises a carbon/carbon composite outer shell and an iridium/ rhenium inner liner. The first report discusses chamber design modifications made as results of hot-fire tests and post-test characterization. The Books & Reports 32 NASA Tech Briefs, June 2005 modifications were intended to serve a variety of purposes, including improving fabrication, reducing thermal-expansion mismatch stresses, increasing strength-to-weight ratios of some components, and improving cooling of some components. The second report discusses (1) the origin of stress in the mismatch between the thermal expansions of the Ir/Re liner and a niobium sleeve and flange attached to the carbon/ carbon shell and (2) a modification intended to relieve the stress. The modification involves the redesign of an inlet connection to incorporate a compressible seal between the Ir/Re liner and the Nb flange. A nickel alloy was selected as the seal material on the basis of its thermal-expansion properties and its ability to withstand the anticipated stresses, including the greatest stresses caused by the high temperatures to be used in brazing during fabrication.

  4. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  5. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  6. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  7. National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests

    DOT National Transportation Integrated Search

    2017-12-31

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...

  8. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will providemore » an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.« less

  9. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  10. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  11. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  12. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Astrophysics Data System (ADS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-04-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  13. Development of an Advanced Flameless Combustion Heat Source Utilizing Methanol

    DTIC Science & Technology

    2010-07-01

    effect until the fuel can receive energy from the flameless combustion elements, either by radiant or exhaust heat. Figure 22 and Figure 23 show one...fragments of dirt and debris reducing its effectiveness . This first prototype allowed useful engineering data to be generated but lacked some of the...DEVELOPMENT OF AN ADVANCED FLAMELESS COMBUSTION HEAT SOURCE UTILIZING METHANOL by Clifford G. Welles Catalytic Devices International, LLC

  14. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  15. Combustion synthesis of ceramic-metal composite materials in microgravity

    NASA Technical Reports Server (NTRS)

    Moore, John

    1995-01-01

    Combustion synthesis, self-propagating high temperature synthesis (SHS) or reactive synthesis provides an attractive alternative to conventional methods of producing advanced materials since this technology is based on the ability of highly exothermic reactions to be self sustaining and, therefore, energetically efficient. The exothermic SHS reaction is initiated at the ignition temperature, T(sub ig), and generates heat which is manifested in a maximum or combustion temperature, T(sub c), which can exceed 3000 K . Such high combustion temperatures are capable of melting and/or volatilizing reactant and product species and, therefore, present an opportunity for producing structure and property modification and control through liquid-solid, vapor-liquid-solid, and vapor-solid transformations.

  16. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames

    DTIC Science & Technology

    2015-11-30

    Master’s Thesis 3. DATES COVERED (From - To) 01 Nov 2015 – 30 Nov 2015 4. TITLE AND SUBTITLE Advances in Turbulent Combustion Dynamics Simulations...the three main aspects of bluff-body stabilized flames: stationary combustion , lean blow-out, and thermo-acoustic instabilities. For the cases of...stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic

  17. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  18. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  19. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    DOEpatents

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  20. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    NASA Technical Reports Server (NTRS)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  1. Source term evaluation for combustion modeling

    NASA Technical Reports Server (NTRS)

    Sussman, Myles A.

    1993-01-01

    A modification is developed for application to the source terms used in combustion modeling. The modification accounts for the error of the finite difference scheme in regions where chain-branching chemical reactions produce exponential growth of species densities. The modification is first applied to a one-dimensional scalar model problem. It is then generalized to multiple chemical species, and used in quasi-one-dimensional computations of shock-induced combustion in a channel. Grid refinement studies demonstrate the improved accuracy of the method using this modification. The algorithm is applied in two spatial dimensions and used in simulations of steady and unsteady shock-induced combustion. Comparisons with ballistic range experiments give confidence in the numerical technique and the 9-species hydrogen-air chemistry model.

  2. Software modifications to the Demonstration Advanced Avionics Systems (DAAS)

    NASA Technical Reports Server (NTRS)

    Nedell, B. F.; Hardy, G. H.

    1984-01-01

    Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.

  3. Advanced Booster Liquid Engine Combustion Stability

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; Gentz, Steve; Nettles, Mindy

    2015-01-01

    Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.

  4. Molecular structure of photosynthetic microbial biofuels for improved engine combustion and emissions characteristics.

    PubMed

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.

  5. Molecular Structure of Photosynthetic Microbial Biofuels for Improved Engine Combustion and Emissions Characteristics

    PubMed Central

    Hellier, Paul; Purton, Saul; Ladommatos, Nicos

    2015-01-01

    The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673

  6. Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hwang, Stephen

    Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between

  7. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  8. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  9. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  10. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  11. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  12. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  13. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  14. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  15. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  16. Some aspects of the CI engine modification aimed at operation on LPG with the application of spark ignition

    NASA Astrophysics Data System (ADS)

    Kaparuk, J.; Luft, S.; Skrzek, T.; Wojtyniak, M.

    2016-09-01

    A lot of investigation on modification of the compression ignition engine aimed at operation on LPG with the application of spark ignition has been carried out in the Laboratory of Vehicles and Combustion Engines at Kazimierz Pulaski University of Technology and Humanities in Radom. This paper presents results of investigation on establishment of the proper ignition advance angle in the modified engine. Within the framework of this investigation it was assessed the effect of this regulation on basic engine operating parameters, exhaust emission as well as basic combustion parameters.

  17. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  18. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  19. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  20. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  1. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performancemore » to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.« less

  2. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.; Li, H.; Neill, S.

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  3. Computational Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surfacemore » and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.« less

  4. Anatomy of an upgraded pulverized coal facility: Combustion modification through flue gas scrubbing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watts, J.U.; Savichky, W.J.; O`Dea, D.T.

    1997-12-31

    Regeneration is a biological term for formation or creating anew. In the case of Milliken station, a species of steam generation (Tangentus coali) regeneration refers to refitting critical systems with the latest technological advances to reduce emissions while maintaining or improving performance. The plant has undergone a series of operations which provided anatomical changes as well as a face lift. Each of the two units were place in suspended animation (outage) to allow these changes to be made. The paper describes the project which includes retrofitting combustion systems, pulverizers, boiler liners, scrubbers, and control room. This retrofit is meant tomore » increase thermal efficiency while reducing the formation of nitrogen oxides.« less

  5. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  6. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Steven; Rapp, Robert

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zonemore » and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and

  7. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  8. 78 FR 49079 - Lease Modifications, Lease and Logical Mining Unit Diligence, Advance Royalty, Royalty Rates, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-12

    ... Management 43 CFR Parts 3000, 3400, 3430, et al. Lease Modifications, Lease and Logical Mining Unit Diligence... Lease Modifications, Lease and Logical Mining Unit Diligence, Advance Royalty, Royalty Rates, and Bonds... leases and logical mining units (LMUs). The proposed rule would implement Title IV, Subtitle D of the...

  9. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE PAGES

    Lawler, Benjamin; Splitter, Derek; Szybist, James; ...

    2017-03-01

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  10. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays

    NASA Astrophysics Data System (ADS)

    Abani, Neerav; Reitz, Rolf D.

    2010-09-01

    An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.

  11. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Benjamin; Splitter, Derek; Szybist, James

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  12. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  13. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  14. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  15. Advanced Optical Diagnostic Methods for Describing Fuel Injection and Combustion Flowfield Phenomena

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Anderson, Robert C.

    2004-01-01

    Over the past decade advanced optical diagnostic techniques have evolved and matured to a point where they are now widely applied in the interrogation of high pressure combusting flows. At NASA Glenn Research Center (GRC), imaging techniques have been used successfully in on-going work to develop the next generation of commercial aircraft gas turbine combustors. This work has centered on providing a means by which researchers and designers can obtain direct visual observation and measurements of the fuel injection/mixing/combustion processes and combustor flowfield in two- and three-dimensional views at actual operational conditions. Obtaining a thorough understanding of the chemical and physical processes at the extreme operating conditions of the next generation of combustors is critical to reducing emissions and increasing fuel efficiency. To accomplish this and other tasks, the diagnostic team at GRC has designed and constructed optically accessible, high pressurer high temperature flame tubes and sectar rigs capable of optically probing the 20-60 atm flowfields of these aero-combustors. Among the techniques employed at GRC are planar laser-induced fluorescence (PLIF) for imaging molecular species as well as liquid and gaseous fuel; planar light scattering (PLS) for imaging fuel sprays and droplets; and spontaneous Raman scattering for species and temperature measurement. Using these techniques, optical measurements never before possible have been made in the actual environments of liquid fueled gas turbines. 2-D mapping of such parameters as species (e.g. OH-, NO and kerosene-based jet fuel) distribution, injector spray angle, and fuel/air distribution are just some of the measurements that are now routinely made. Optical imaging has also provided prompt feedback to researchers regarding the effects of changes in the fuel injector configuration on both combustor performance and flowfield character. Several injector design modifications and improvements have

  16. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xingcai; Ji, Libin; Ma, Junjun

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively accordingmore » to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)« less

  17. Beryllium particle combustion

    NASA Technical Reports Server (NTRS)

    Prentice, J. L.

    1972-01-01

    A two-year study of the combustion efficiency of single beryllium droplets burning in a variety of oxidizers (primarily mixtures of oxygen/argon and oxygen/nitrogen) is summarized. An advanced laser heating technique was used to acquire systematic quantitative data on the burning of single beryllium droplets at atmospheric pressure. The research confirmed the sensitivity of beryllium droplet combustion to the chemistry of environmental species and provides experimental documentation for the nitrogen-induced droplet fragmentation of burning beryllium droplets.

  18. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  19. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Combustion Studies

    DTIC Science & Technology

    1992-11-01

    Research Zone With Combustion," Turbulent Shear Flows. VoL 5. pp. 337- and Development Center, Aero Propulsion and Power 346, Springer Verlg, New ...200 words) A long-term goal of the Air Force is to develop near-stoichiometric gas turbine combustors that will burn broad-specification fuels, and...laboratory combustors. Two novel methods for CARS slit function were developed ; these made possible precise and unambiguous measurements of flame

  20. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  1. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  2. Boiling and quenching heat transfer advancement by nanoscale surface modification.

    PubMed

    Hu, Hong; Xu, Cheng; Zhao, Yang; Ziegler, Kirk J; Chung, J N

    2017-07-21

    All power production, refrigeration, and advanced electronic systems depend on efficient heat transfer mechanisms for achieving high power density and best system efficiency. Breakthrough advancement in boiling and quenching phase-change heat transfer processes by nanoscale surface texturing can lead to higher energy transfer efficiencies, substantial energy savings, and global reduction in greenhouse gas emissions. This paper reports breakthrough advancements on both fronts of boiling and quenching. The critical heat flux (CHF) in boiling and the Leidenfrost point temperature (LPT) in quenching are the bottlenecks to the heat transfer advancements. As compared to a conventional aluminum surface, the current research reports a substantial enhancement of the CHF by 112% and an increase of the LPT by 40 K using an aluminum surface with anodized aluminum oxide (AAO) nanoporous texture finish. These heat transfer enhancements imply that the power density would increase by more than 100% and the quenching efficiency would be raised by 33%. A theory that links the nucleation potential of the surface to heat transfer rates has been developed and it successfully explains the current finding by revealing that the heat transfer modification and enhancement are mainly attributed to the superhydrophilic surface property and excessive nanoscale nucleation sites created by the nanoporous surface.

  3. National Combustion Code Parallel Performance Enhancements

    NASA Technical Reports Server (NTRS)

    Quealy, Angela; Benyo, Theresa (Technical Monitor)

    2002-01-01

    The National Combustion Code (NCC) is being developed by an industry-government team for the design and analysis of combustion systems. The unstructured grid, reacting flow code uses a distributed memory, message passing model for its parallel implementation. The focus of the present effort has been to improve the performance of the NCC code to meet combustor designer requirements for model accuracy and analysis turnaround time. Improving the performance of this code contributes significantly to the overall reduction in time and cost of the combustor design cycle. This report describes recent parallel processing modifications to NCC that have improved the parallel scalability of the code, enabling a two hour turnaround for a 1.3 million element fully reacting combustion simulation on an SGI Origin 2000.

  4. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  5. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  6. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  7. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  8. Priorities for Microgravity Combustion Research and Goals for Workshop Discussions

    NASA Technical Reports Server (NTRS)

    Faeth, Gerard M.

    1993-01-01

    Several concerns motivate fundamental research: combustion-generated pollutants are re-emerging as a major problem, new combustion technologies are needed for effective energy utilization, municipal and hazardous waste incineration are needed to replace landfills and storage, new combustion technologies are needed for advanced aircraft and spacecraft propulsion systems, and current understanding of fires and explosion hazards is limited - particularly for space-craft environments. Thus, it is of interest to determine how experimentation using microgravity facilities can advance research relevant to these problems.

  9. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.

    PubMed

    Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej

    2018-07-15

    Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Specifics of phytomass combustion in small experimental device

    NASA Astrophysics Data System (ADS)

    Lenhard, Richard; Mičieta, Jozef; Jandačka, Jozef; Gavlas, Stanislav

    2015-05-01

    A wood pellet combustion carries out with high efficiency and comfort in modern pellet boilers. These facts help to increase the amount of installed pellet boilers in households. The combustion process quality depends besides the combustion conditions also on the fuel quality. The wood pellets, which don`t contain the bark and branches represent the highest quality. Because of growing pellet demand, an herbal biomass (phytomass), which is usually an agricultural by-product becomes economically attractive for pellet production. Although the phytomass has the net calorific value relatively slightly lower than the wood biomass, it is often significantly worse in view of the combustion process and an emission production. The combustion of phytomass pellets causes various difficulties in small heat sources, mainly due to a sintering of fuel residues. We want to avoid the ash sintering by a lowering of temperature in the combustion chamber below the ash sintering temperature of phytomass via the modification of a burner design. For research of the phytomass combustion process in the small boilers is constructed the experimental combustion device. There will investigate the impact of cooling intensity of the combustion chamber on the combustion process and emissions. Arising specific requirements from the measurement will be the basis for the design of the pellet burner and for the setting of operating parameters to the trouble-free phytomass combustion was guaranteed.

  11. Modeling aerosol emissions from the combustion of composite materials

    NASA Technical Reports Server (NTRS)

    Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.

    1994-01-01

    The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.

  12. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  13. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows

  14. Assessment of the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Liu, nan-Suey; Iannetti, Anthony; Shih, Tsan-Hsing

    2007-01-01

    The advancements made during the last decade in the areas of combustion modeling, numerical simulation, and computing platform have greatly facilitated the use of CFD based tools in the development of combustion technology. Further development of verification, validation and uncertainty quantification will have profound impact on the reliability and utility of these CFD based tools. The objectives of the present effort are to establish baseline for the National Combustion Code (NCC) and experimental data, as well as to document current capabilities and identify gaps for further improvements.

  15. A Review of LOX/Kerosene Combustion Instability in American and Russian Combustion Devices in Application to Next-Generation Launch Technology

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Hulka, James R.; Dougherty, N. Sam

    2003-01-01

    The Next-Generation Launch Technology (NGLT) project was introduced with its objectives. To meet the objectives, NASA has directed aerospace industry to perform advances and risk reduction of relevant technologies, including propulsion. Originally, the propulsion industry focused on producing both LOWLH2 and LOWkerosene flight engine technology demonstrators. These flight engine technology demonstrators were briefly reviewed. NASA recently redirected this focus to Lowkerosene only. Discussion of LOWkerosene combustion devices was and is prefaced by grave concerns about combustion instability. These concerns have prompted a review of LOWkerosene combustion instability in American and Russian combustion devices. In the review of the Russian propulsion industry's experience in eliminating LOWkerosene combustion instabilities, the history of principal Russian rocket scientists and their role in the development of LOXkerosene combustion devices is presented. The innovative methods implemented by the Russians of eliminations combustion instabilities in LOXkerosene combustion devices were reviewed. The successful elimination of these combustion instabilities has resulted in two generations of Russian-produced, high-performance LOWkerosene combustion devices.

  16. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  17. An investigation of combustion and entropy noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.

  18. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  19. JANNAF 37th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 59 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 37th Combustion Subcommittee (CS) meeting held jointly with the 25th Airbreathing Propulsion Subcommittee (APS), 19th Propulsion Systems Hazards Subcommittee (PSHS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the CS meeting include: a keynote address on the Future Combat Systems, and review of a new JANNAF Modeling and Simulation Subcommittee, and technical papers on gun propellant burning rate, gun tube erosion, advanced gun propulsion concepts, ETC guns, novel gun propellants; liquid, hybrid and novel propellant combustion; solid propellant combustion kinetics, GAP, ADN and RDX combustion, sandwich combustion, metal combustion, combustion instability, and motor combustion instability.

  20. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  1. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  2. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  3. Temporal trends of time to antiretroviral treatment initiation, interruption and modification: examination of patients diagnosed with advanced HIV in Australia.

    PubMed

    Wright, Stephen T; Law, Matthew G; Cooper, David A; Keen, Phillip; McDonald, Ann; Middleton, Melanie; Woolley, Ian; Kelly, Mark; Petoumenos, Kathy

    2015-01-01

    HIV prevention strategies are moving towards reducing plasma HIV RNA viral load in all HIV-positive persons, including those undiagnosed, treatment naïve, on or off antiretroviral therapy. A proxy population for those undiagnosed are patients that present late to care with advanced HIV. The objectives of this analysis are to examine factors associated with patients presenting with advanced HIV, and establish rates of treatment interruption and modification after initiating ART. We deterministically linked records from the Australian HIV Observational Database to the Australian National HIV Registry to obtain information related to HIV diagnosis. Logistic regression was used to identify factors associated with advanced HIV diagnosis. We used survival methods to evaluate rates of ART initiation by diagnosis CD4 count strata and by calendar year of HIV diagnosis. Cox models were used to determine hazard of first ART treatment interruption (duration >30 days) and time to first major ART modification. Factors associated (p<0.05) with increased odds of advanced HIV diagnosis were sex, older age, heterosexual mode of HIV exposure, born overseas and rural-regional care setting. Earlier initiation of ART occurred at higher rates in later periods (2007-2012) in all diagnosis CD4 count groups. We found an 83% (69, 91%) reduction in the hazard of first treatment interruption comparing 2007-2012 versus 1996-2001 (p<0.001), and no difference in ART modification for patients diagnosed with advanced HIV. Recent HIV diagnoses are initiating therapy earlier in all diagnosis CD4 cell count groups, potentially lowering community viral load compared to earlier time periods. We found a marked reduction in the hazard of first treatment interruption, and found no difference in rates of major modification to ART by HIV presentation status in recent periods.

  4. Introductory lecture. Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.

    PubMed

    Wolfrum, J

    2001-01-01

    In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.

  5. Combustion Science for Cleaner Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  6. Combustion Science for Cleaner Fuels

    ScienceCinema

    Ahmed, Musahid

    2018-01-16

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  7. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  8. COMBUSTION MODIFICATION CONTROL OF NITROGEN OXIDES (EPA/600/F-95/012)

    EPA Science Inventory

    EPA's efforts in research and development of nitrogen oxide (NOx) control technologies by
    means of modifying the combustion process have played a major role in reducing stationary
    source NOx emissions by over 3 million tons (2.73 x 10^6 tonnes) annually, and have led to at<...

  9. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  10. Ignition and combustion: Low compression ratio, high output diesel

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The feasibility of converting a spark ignition aircraft engine GTSI0-520 to compression ignition without increasing the peak combustion pressure of 1100 lbs/sq.in. was determined. The final contemplated utilized intake air heating at idle and light load and a compression ratio of about 10:1 with a small amount of fumigation (the addition of about 15% fuel into the combustion air before the cylinder). The engine used was a modification of a Continental-Teledyne gasoline engine cylinder from the GTSI0-520 supercharged aircraft engine.

  11. Fuel properties to enable lifted-flame combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Eric

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  12. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion.

    PubMed

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana

    2012-03-06

    Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation.

  13. Terascale Cluster for Advanced Turbulent Combustion Simulations

    DTIC Science & Technology

    2008-07-25

    the system We have given the name CATS (for Combustion And Turbulence Simulator) to the terascale system that was obtained through this grant. CATS ...lnfiniBand interconnect. CATS includes an interactive login node and a file server, each holding in excess of 1 terabyte of file storage. The 35 active...compute nodes of CATS enable us to run up to 140-core parallel MPI batch jobs; one node is reserved to run the scheduler. CATS is operated and

  14. Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressured Oxy-combustion in Conjunction with Cryogenic Compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, Klaus; McClung, Aaron; Davis, John

    2014-03-31

    features such as blade cooling. The overall technical readiness of the supercritical oxy-combustion cycle is TRL 2, Technology Concept, due to the maturity level of the supercritical oxy-combustor for solid fuels, and several critical supporting components, as identified in the Technical Gap Analysis. The supercritical oxycombustor for solid fuels operating at pressures near 100 atm is a unique component of the supercritical oxy-combustion cycle. In addition to the low TRL supercritical oxy-combustor, secondary systems were identified that would require adaptation for use with the supercritical oxycombustion cycle. These secondary systems include the high pressure pulverized coal feed, high temperature cyclone, removal of post-combustion particulates from the high pressure cyclone underflow stream, and micro-channel heat exchangers tolerant of particulate loading. Bench scale testing was utilized to measure coal combustion properties at elevated pressures in a CO{sub 2} environment. This testing included coal slurry preparation, visualization of coal injection into a high pressure fluid, and modification of existing test equipment to facilitate the combustion properties testing. Additional bench scale testing evaluated the effectiveness of a rotary atomizer for injecting a coal-water slurry into a fluid with similar densities, as opposed to the typical application where the high density fluid is injected into a low density fluid. The swirl type supercritical oxy-combustor was developed from initial concept to an advanced design stage through numerical simulation using FLUENT and Chemkin to model the flow through the combustor and provide initial assessment of the coal combustion reactions in the flow path. This effort enabled the initial combustor mechanical layout, initial pressure vessel design, and the conceptual layout of a pilot scale test loop. A pilot scale demonstration of the supercritical oxy-combustion cycle is proposed as the next step in the technology

  15. Droplet Combustion Experiment Operates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 12, 1997, MET:11/07:00 (approximate). DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (119KB JPEG, 658 x 982 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300171.html.

  16. Potential Commercial Applications from Combustion and Fire Research in Space

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Lyons, Valerie J.

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  17. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  18. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two

  19. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  20. AST Combustion Workshop: Diagnostics Working Group Report

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.

    1996-01-01

    A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.

  1. Advanced glycation end products induce differential structural modifications and fibrillation of albumin

    NASA Astrophysics Data System (ADS)

    Awasthi, Saurabh; Sankaranarayanan, Kamatchi; Saraswathi, N. T.

    2016-06-01

    Glycation induced amyloid fibrillation is fundamental to the development of many neurodegenerative and cardiovascular complications. Excessive non-enzymatic glycation in conditions such as hyperglycaemia results in the increased accumulation of advanced glycation end products (AGEs). AGEs are highly reactive pro-oxidants, which can lead to the activation of inflammatory pathways and development of oxidative stress. Recently, the effect of non-enzymatic glycation on protein structure has been the major research area, but the role of specific AGEs in such structural alteration and induction of fibrillation remains undefined. In this study, we determined the specific AGEs mediated structural modifications in albumin mainly considering carboxymethyllysine (CML), carboxyethyllysine (CEL), and argpyrimidine (Arg-P) which are the major AGEs formed in the body. We studied the secondary structural changes based on circular dichroism (CD) and spectroscopic analysis. The AGEs induced fibrillation was determined by Congo red binding and examination of scanning and transmission electron micrographs. The amyloidogenic regions in the sequence of BSA were determined using FoldAmyloid. It was observed that CEL modification of BSA leads to the development of fibrillar structures, which was evident from both secondary structure changes and TEM analysis.

  2. Development and integration of a scalable low NOx combustion chamber for a hydrogen-fueled aerogas turbine

    NASA Astrophysics Data System (ADS)

    Boerner, S.; Funke, H. H.-W.; Hendrick, P.; Recker, E.; Elsing, R.

    2013-03-01

    The usage of alternative fuels in aircraft industry plays an important role of current aero engine research and development processes. The micromix burning principle allows a secure and low NOx combustion of gaseous hydrogen. The combustion principle is based on the fluid phenomenon of jet in cross flow and achieves a significant lowering in NOx formation by using multiple miniaturized flames. The paper highlights the development and the integration of a combustion chamber, based on the micromix combustion principle, into an Auxiliary Power Unit (APU) GTCP 36-300 with regard to the necessary modifications on the gas turbine and on the engine controller.

  3. Combustion of interacting droplet arrays in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.

    1995-01-01

    This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.

  4. Coal Combustion Science quarterly progress report, April--June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  5. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  6. Combustion Stability Analyses for J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2010-01-01

    The National Aeronautics and Space Administration (NASA) is developing a liquid oxygen/liquid hydrogen rocket engine for upper stage and trans-lunar applications of the Ares vehicles for the Constellation program. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. Development was contracted to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations. Several of these configurations have resulted in injection-coupled combustion instability of the gas generator assembly at the first longitudinal mode of the combustion chamber. In this paper, the longitudinal mode combustion instabilities observed on the workhorse test stand are discussed in detail. Aspects of this combustion instability have been modeled at the NASA Marshall Space Flight Center with several codes, including the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a new lumped-parameter MatLab model. To accurately predict the instability characteristics of all the chamber and injector geometries and test conditions, several features of the submodels in the ROCCID suite of calculations required modification. Finite-element analyses were conducted of several complicated combustion chamber geometries to determine how to model and anchor the chamber response in ROCCID. A large suite of sensitivity calculations were conducted to determine how to model and anchor the injector response in ROCCID. These modifications and their ramification for future stability analyses of this type are discussed in detail. The lumped-parameter MatLab model of the gas generator assembly was created as an alternative calculation to the ROCCID methodology. This paper also describes this model and the stability calculations.

  7. Analysis of Lean Premixed/Prevaporized Combustion with KIVA-2

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Kundu, K. P.; Darling, D. D.; Cline, M. C.; Micklow, G. J.; Harper, M. R.; Simons, T. A.

    1994-01-01

    Requirements to reduce the emissions of pollutants from gas turbines used in aircraft propulsion and ground based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concept. This paper describes some of the LPP flame tube analyses performed at the NASA Research Center with KIVA-2, a well-known multi-dimensional CFD code for problems including sprays, turbulence, and combustion. Modifications to KIVA-2's boundary condition and chemistry treatments have been made to meet the needs of the present study. The study itself focuses on two key aspects of the LPP concept, low emissions and flame stability (including flashback and lean blowoff.

  8. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  9. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  10. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  11. 78 FR 39062 - Group Lotus plc; Modification of a Temporary Exemption From an Advanced Air Bag Requirement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ...-0086] Group Lotus plc; Modification of a Temporary Exemption From an Advanced Air Bag Requirement of... temporary exemption granted to Group Lotus plc (Lotus) on March 8, 2013. The agency granted Lotus an... Lotus Plc (Lotus) a temporary exemption from the higher maximum speed (56 km/h (35 mph)) belted test...

  12. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  13. Chondrocutaneous helix rim advancement flap: two classical and two new modifications for very large defects of the ear.

    PubMed

    Valesky, E M; Kaufmann, R; Meissner, M

    2015-11-01

    The plastic reconstruction of the ear after microscopically controlled tumor surgery is a particular challenge. The chondrocutaneous helix rim advancement flap (CHRAF) is perfectly suited for the repair of different defects of the helix and even defects beyond. Here, we describe two known and two new modifications of the CHRAF that enlarge the scope of application in tumor surgery of the ear. We demonstrate the different techniques and practical application of the repair and evaluate the benefits and limitations. The CHRAF and its modifications is an excellent method for repair of various defects of the helical region of the ear. The CHRAF and its modifications proves to be an good alternative to other methods of closure by preserving the anatomical contour and mechanical and acoustic functions in a single-staged procedure with excellent aesthetic results. The two new modifications we introduced here, enlarge the known armentarium for very large defects of the upper pole and the mid-helix of the ear. © 2014 European Academy of Dermatology and Venereology.

  14. Gasoline Combustion Fundamentals DOE FY17 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics atmore » elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.« less

  15. POLLUTANT CONTROL TECHNIQUES FOR PACKAGE BOILERS: HARDWARE MODIFICATIONS AND ALTERNATE FUELS

    EPA Science Inventory

    The report gives results of investigations of four ways to control nitrogen oxide (NOx) emissions from package boilers (both field operating boilers and boiler simulators): (1) variations in combustor operating procedure; (2) combustion modification (flue gas recirculation and st...

  16. Recent Advances in Attention Bias Modification for Substance Addictions

    PubMed Central

    Zhang, Melvyn Weibin; Ying, Jiang Bo; Song, Guo; Fung, Daniel S. S.; Smith, Helen E.

    2018-01-01

    Research on attentional bias modification has increased since 2014. A recent meta-analysis demonstrates evidence for bias modification for substance disorders, including alcohol and tobacco use disorders. Several pharmacological trials have shown that pharmacological agents can attenuate and modify such attentional bias. The pharmacological trials that have appeared to date have produced mixed results, which has clinical implications. Developments in Internet and mobile technologies have transformed how attention bias modification is currently being achieved. There remains great potential for further research that examines the efficacy of technology-aided attention bias interventions. PMID:29617325

  17. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral contentmore » can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.« less

  18. Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1997-01-01

    Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.

  19. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  20. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, J.; Bohac, D.

    2014-04-01

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofitsmore » including tightening and changes to distribution and ventilation systems to proceed.« less

  1. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NO{sub x}) emissions from coal fired boilers. Second quarterly technical progress report, [April--June 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-12-31

    The primary goal of this project is the characterization of the low NO{sub x} combustion equipment through the collection and analysis of long-term emissions data. A target of achieving fifty percent NO{sub x} reduction using combustion modifications has been established for the project. The project provides a stepwise retrofit of an advanced overfire air (AOFA) system followed by low NO{sub x} burners (LNB). During each test phase of the project, diagnostic, performance, long-term and verification testing will be performed. These tests are used to quantify the NO{sub x} reductions of each technology and evaluate the effects of those reductions onmore » other combustion parameters such as particulate characteristics and boiler efficiency. Baseline, AOFA, and LNB without AOFA test segments have been completed. Analysis of the 94 days of LNB long-term data collected show the full-load NO{sub x} emission levels to be approximately 0.65 lb/MBtu with flyash LOI values of approximately 8 percent. Corresponding values for the AOFA configuration are 0.94 lb/MBtu and approximately 10 percent. For comparison, the long-term full-load, baseline NO{sub x} emission level was approximately 1.24 lb/MBtu at 5.2 percent LOI. Comprehensive testing of the LNB plus AOFA configuration began in May 1993 and is scheduled to end during August 1993. As of June 30, the diagnostic, performance, chemical emissions tests segments for this configuration have been conducted and 29 days of long-term, emissions data collected. Preliminary results from the May--June 1993 tests of the LNB plus AOFA system show that the full load NO{sub x} emissions are approximately 0.42 lb/MBtu with corresponding fly ash LOI values near 8 percent. This is a substantial improvement in both NO{sub x} emissions and LOI values when compared to the results obtained during the February--March 1992 abbreviated testing of this system.« less

  2. Droplet Combustion Experiment on STS-94

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 12, 1997, MET:11/07:00 (approximate). DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.3MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300170.html.

  3. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  4. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  5. Recent advances in the chemical modification of unsaturated polymers

    NASA Technical Reports Server (NTRS)

    Schulz, D. N.; Turner, S. R.; Golub, M. A.

    1982-01-01

    The present discussion has the objective to update the most comprehensive reviews on the considered subject and to fill in the gaps of less complete, but more modern treatments. Only simple chemical functionalization or structural modification of unsaturated polymers are covered, and the literature of diene polymer modification since 1974 is emphasized. Attention is given to hydrogenation, halogenation and hydrohalogenation, cyclization, cis-trans isomerization, epoxidation, ene and other cycloaddition reactions, sulfonation, carboxylation, phosphonylation, sulfenyl chloride addition, carbene addition, metalation, and silylation. It is pointed out that modern synthetic reagents and catalysts have been advantageously employed to improve process and/or product quality. Synthetic techniques have been refined to allow the selective modification of specific polymer microstructures or blocks.

  6. Practical internal combustion engine laser spark plug development

    NASA Astrophysics Data System (ADS)

    Myers, Michael J.; Myers, John D.; Guo, Baoping; Yang, Chengxin; Hardy, Christopher R.

    2007-09-01

    Fundamental studies on laser ignition have been performed by the US Department of Energy under ARES (Advanced Reciprocating Engines Systems) and by the California Energy Commission under ARICE (Advanced Reciprocating Internal Combustion Engine). These and other works have reported considerable increases in fuel efficiencies along with substantial reductions in green-house gas emissions when employing laser spark ignition. Practical commercial applications of this technology require low cost high peak power lasers. The lasers must be small, rugged and able to provide stable laser beam output operation under adverse mechanical and environmental conditions. New DPSS (Diode Pumped Solid State) lasers appear to meet these requirements. In this work we provide an evaluation of HESP (High Efficiency Side Pumped) DPSS laser design and performance with regard to its application as a practical laser spark plug for use in internal combustion engines.

  7. External combustion engine having a combustion expansion chamber

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    This patent application discloses an external combustion engine having a combustion expansion chamber. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel, and a cylinder for receiving the energized gas through a rotary valve to perform work on a cylinder disposed therein. A baffle plate is positioned between the combustion area and expansion area for reducing the pressure of the gas. The combustion area and expansion area are separated by a baffle plate having a flow area which is sufficiently large to eliminate the transmission of pressure pulsations from the combustion area to the expansion area while being small enough to provide for substantially complete combustion in the combustion area. The engine is particularly well suited for use in a torpedo.

  8. National Jet Fuels Combustion Program - overall program integration and analysis, Area #7.

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...

  9. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NO x ) reduction technology by combustion modification which has economic benefits as a method of controlling NO x emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NO x reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NO x in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N 2 ), carbon dioxide (CO 2 ) and steam (H 2 O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NO x concentration greatly. We investigated the influence of factors determining the nitrogen oxides (NO x ) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NO x emissions the most.

  10. Selected results from combustion research at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Jones, R. E.

    1981-01-01

    Combustion research at Lewis is organized to provide a balanced program responsive to national needs and the gas turbine industry. The results of this research is a technology base that assists the gas turbine engine manufacturers in developing new and improved combustion systems for advanced civil and military engines with significant improvements in performance, durability, fuel flexibility and control of exhaust emissions. Research efforts consist of fundamentals and modeling, and applied component and combustor research.

  11. Fiber-Supported Droplet Combustion Experiment-2

    NASA Technical Reports Server (NTRS)

    Colantonio, Renato O.

    1998-01-01

    A major portion of the energy produced in the world today comes from the burning of liquid hydrocarbon fuels in the form of droplets. Understanding the fundamental physical processes involved in droplet combustion is not only important in energy production but also in propulsion, in the mitigation of combustion-generated pollution, and in the control of the fire hazards associated with handling liquid combustibles. Microgravity makes spherically symmetric combustion possible, allowing investigators to easily validate their droplet models without the complicating effects of gravity. The Fiber-Supported Droplet Combustion (FSDC-2) investigation was conducted in the Microgravity Glovebox facility of the shuttles' Spacelab during the reflight of the Microgravity Science Laboratory (MSL- 1R) on STS-94 in July 1997. FSDC-2 studied fundamental phenomena related to liquid fuel droplet combustion in air. Pure fuels and mixtures of fuels were burned as isolated single and duo droplets with and without forced air convection. FSDC-2 is sponsored by the NASA Lewis Research Center, whose researchers are working in cooperation with several investigators from industry and academia. The rate at which a droplet burns is important in many commercial applications. The classical theory of droplet burning assumes that, for an isolated, spherically symmetric, single-fuel droplet, the gas-phase combustion processes are much faster than the droplet surface regression rate and that the liquid phase is at a uniform temperature equal to the boiling point. Recent, more advanced models predict that both the liquid and gas phases are unsteady during a substantial portion of the droplet's burning history, thus affecting the instantaneous and average burning rates, and that flame radiation is a dominant mechanism that can extinguish flames in a microgravity environment. FSDC-2 has provided well-defined, symmetric droplet burning data including radiative emissions to validate these theoretical

  12. Numerical analysis of exhaust jet secondary combustion in hypersonic flow field

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Peng; Wang, Jiang-Feng; Zhao, Fa-Ming; Fan, Xiao-Feng; Wang, Yu-Han

    2018-05-01

    The interaction effect between jet and control surface in supersonic and hypersonic flow is one of the key problems for advanced flight control system. The flow properties of exhaust jet secondary combustion in a hypersonic compression ramp flow field were studied numerically by solving the Navier-Stokes equations with multi-species and combustion reaction effects. The analysis was focused on the flow field structure and the force amplification factor under different jet conditions. Numerical results show that a series of different secondary combustion makes the flow field structure change regularly, and the temperature increases rapidly near the jet exit.

  13. Regenerative combustion device

    DOEpatents

    West, Phillip B.

    2004-03-16

    A regenerative combustion device having a combustion zone, and chemicals contained within the combustion zone, such as water, having a first equilibrium state, and a second combustible state. Means for transforming the chemicals from the first equilibrium state to the second combustible state, such as electrodes, are disposed within the chemicals. An igniter, such as a spark plug or similar device, is disposed within the combustion zone for igniting combustion of the chemicals in the second combustible state. The combustion products are contained within the combustion zone, and the chemicals are selected such that the combustion products naturally chemically revert into the chemicals in the first equilibrium state following combustion. The combustion device may thus be repeatedly reused, requiring only a brief wait after each ignition to allow the regeneration of combustible gasses within the head space.

  14. Development of Advanced Coatings for Laser Modifications Through Process and Materials Simulation

    NASA Astrophysics Data System (ADS)

    Martukanitz, R. P.; Babu, S. S.

    2004-06-01

    A simulation-based system is currently being constructed to aid in the development of advanced coating systems for laser cladding and surface alloying. The system employs loosely coupled material and process models that allow rapid determination of material compatibility over a wide range of processing conditions. The primary emphasis is on the development and identification of composite coatings for improved wear and corrosion resistance. The material model utilizes computational thermodynamics and kinetic analysis to establish phase stability and extent of diffusional reactions that may result from the thermal response of the material during virtual processing. The process model is used to develop accurate thermal histories associated with the laser surface modification process and provides critical input for the non-isothermal materials simulations. These techniques were utilized to design a laser surface modification experiment that utilized the addition of stainless steel alloy 431 and TiC produced using argon and argon and nitrogen shielding. The deposits representing alloy 431 and TiC powder produced in argon resulted in microstructures retaining some TiC particles and an increase in hardness when compared to deposits produced using only the 431 powder. Laser deposits representing alloy 431 and TiC powder produced with a mixture of argon and nitrogen shielding gas resulted in microstructures retaining some TiC particles, as well as fine precipitates of Ti(CN) formed during cooling and a further increase in hardness of the deposit.

  15. Key advances in the chemical modification of nanocelluloses.

    PubMed

    Habibi, Youssef

    2014-03-07

    Nanocelluloses, including nanocrystalline cellulose, nanofibrillated cellulose and bacterial cellulose nanofibers, have become fascinating building blocks for the design of new biomaterials. Derived from the must abundant and renewable biopolymer, they are drawing a tremendous level of attention, which certainly will continue to grow in the future driven by the sustainability trend. This growing interest is related to their unsurpassed quintessential physical and chemical properties. Yet, owing to their hydrophilic nature, their utilization is restricted to applications involving hydrophilic or polar media, which limits their exploitation. With the presence of a large number of chemical functionalities within their structure, these building blocks provide a unique platform for significant surface modification through various chemistries. These chemical modifications are prerequisite, sometimes unavoidable, to adapt the interfacial properties of nanocellulose substrates or adjust their hydrophilic-hydrophobic balance. Therefore, various chemistries have been developed aiming to surface-modify these nano-sized substrates in order to confer to them specific properties, extending therefore their use to highly sophisticated applications. This review collocates current knowledge in the research and development of nanocelluloses and emphasizes more particularly on the chemical modification routes developed so far for their functionalization.

  16. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  17. NASA Engineers Test Combustion Chamber to Advance 3-D Printed Rocket Engine Design

    NASA Image and Video Library

    2016-12-08

    A series of test firings like this one in late August brought a group of engineers at NASA's Marshall Space Flight Center in Huntsville, Alabama, a big step closer to their goal of a 100-percent 3-D printed rocket engine, said Andrew Hanks, test lead for the additively manufactured demonstration engine project. The main combustion chamber, fuel turbopump, fuel injector, valves and other components used in the tests were of the team's new design, and all major engine components except the main combustion chamber were 3-D printed. (NASA/MSFC)

  18. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    NASA Astrophysics Data System (ADS)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  19. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  20. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  1. National Jet Fuels Combustion Program - Area #6 : Referee Swirl-Stabilized Combustor Evaluation/Support.

    DOT National Transportation Integrated Search

    2017-01-01

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the referee combustor (WPAFB, Bldg. 490, RC 152) selected by the ASCENT National Fuel Combustion Program. We will conduct advanced spatially resolve...

  2. A practical approach in porous medium combustion for domestic application: A review

    NASA Astrophysics Data System (ADS)

    Ismail, A. K.; Ibrahim, N. H.; Shamsuddin, K. A.; Abdullah, M. Z.; Zubair, M.

    2018-05-01

    Combustion in porous media has been widely studied. Many application involving the combustion of porous media has been reported in various way with most consider on numerical works and industrial application. Besides, recent application of porous medium combustion for domestic is the topic of interest among researchers. In this paper, a review was conducted on the combustion of porous media in term of practical application for domestic consumers. Details on the type of fuel used including bio fuel and their system have been search thoroughly. Most of the system have utilized compressed air system to provide lean combustion in domestic application. Some self-aspirating system of porous medium burner was also reported. The application of new technology such as cogeneration by using thermoelectric cells in tandem with porous medium combustion is also revised according to recent work which have already been published. Besides, the recent advances which include coating of porous material is also considered at the end of this paper.

  3. Advances in genetic modification of pluripotent stem cells.

    PubMed

    Fontes, Andrew; Lakshmipathy, Uma

    2013-11-15

    Genetically engineered stem cells aid in dissecting basic cell function and are valuable tools for drug discovery, in vivo cell tracking, and gene therapy. Gene transfer into pluripotent stem cells has been a challenge due to their intrinsic feature of growing in clusters and hence not amenable to common gene delivery methods. Several advances have been made in the rapid assembly of DNA elements, optimization of culture conditions, and DNA delivery methods. This has lead to the development of viral and non-viral methods for transient or stable modification of cells, albeit with varying efficiencies. Most methods require selection and clonal expansion that demand prolonged culture and are not suited for cells with limited proliferative potential. Choosing the right platform based on preferred length, strength, and context of transgene expression is a critical step. Random integration of the transgene into the genome can be complicated due to silencing or altered regulation of expression due to genomic effects. An alternative to this are site-specific methods that target transgenes followed by screening to identify the genomic loci that support long-term expression with stem cell proliferation and differentiation. A highly precise and accurate editing of the genome driven by homology can be achieved using traditional methods as well as the newer technologies such as zinc finger nuclease, TAL effector nucleases and CRISPR. In this review, we summarize the different genetic engineering methods that have been successfully used to create modified embryonic and induced pluripotent stem cells. © 2013. Published by Elsevier Inc. All rights reserved.

  4. Physicochemical characterization of fine particles from small-scale wood combustion

    NASA Astrophysics Data System (ADS)

    Lamberg, Heikki; Nuutinen, Kati; Tissari, Jarkko; Ruusunen, Jarno; Yli-Pirilä, Pasi; Sippula, Olli; Tapanainen, Maija; Jalava, Pasi; Makkonen, Ulla; Teinilä, Kimmo; Saarnio, Karri; Hillamo, Risto; Hirvonen, Maija-Riitta; Jokiniemi, Jorma

    2011-12-01

    Emissions from small-scale wood combustion appliances are of special interest since fine particles have been consistently associated with adverse health effects. It has been reported that the physicochemical characteristics of the emitted particles affect also their toxic properties but the mechanisms behind these phenomena and the causative role of particles from wood combustion sources are still mostly unknown. Combustion situations vary significantly in small-scale appliances, especially in batch combustion. Combustion behaviour is affected by fuel properties, appliance type and operational practice. Particle samples were collected from six appliances representing different combustion situations in small-scale combustion. These appliances were five wood log fuelled stoves, including one stove equipped with modern combustion technology, three different conventional combustion appliances and one sauna stove. In addition, a modern small-scale pellet boiler represented advanced continuous combustion technology. The aim of the study was to analyze gas composition and fine particle properties over different combustion situations. Fine particle (PM 1) emissions and their chemical constituents emerging from different combustion situations were compared and this physicochemical data was combined with the toxicological data on cellular responses induced by the same particles (see Tapanainen et al., 2011). There were significant differences in the particle emissions from different combustion situations. Overall, the efficient combustion in the pellet boiler produced the smallest emissions whereas inefficient batch combustion in a sauna stove created the largest emissions. Improved batch combustion with air-staging produced about 2.5-fold PM 1 emissions compared to the modern pellet boiler (50.7 mg MJ -1 and 19.7 mg MJ -1, respectively), but the difference in the total particulate PAH content was 750-fold (90 μg MJ -1 and 0.12 μg MJ -1, respectively). Improved batch

  5. Co-Optimization of Internal Combustion Engines and Biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCormick, Robert L.

    2016-03-08

    The development of advanced engines has significant potential advantages in reduced aftertreatment costs for air pollutant emission control, and just as importantly for efficiency improvements and associated greenhouse gas emission reductions. There are significant opportunities to leverage fuel properties to create more optimal engine designs for both advanced spark-ignition and compression-ignition combustion strategies. The fact that biofuel blendstocks offer a potentially low-carbon approach to fuel production, leads to the idea of optimizing the entire fuel production-utilization value chain as a system from the standpoint of life cycle greenhouse gas emissions. This is a difficult challenge that has yet to bemore » realized. This presentation will discuss the relationship between chemical structure and critical fuel properties for more efficient combustion, survey the properties of a range of biofuels that may be produced in the future, and describe the ongoing challenges of fuel-engine co-optimization.« less

  6. Spray combustion experiments and numerical predictions

    NASA Technical Reports Server (NTRS)

    Mularz, Edward J.; Bulzan, Daniel L.; Chen, Kuo-Huey

    1993-01-01

    The next generation of commercial aircraft will include turbofan engines with performance significantly better than those in the current fleet. Control of particulate and gaseous emissions will also be an integral part of the engine design criteria. These performance and emission requirements present a technical challenge for the combustor: control of the fuel and air mixing and control of the local stoichiometry will have to be maintained much more rigorously than with combustors in current production. A better understanding of the flow physics of liquid fuel spray combustion is necessary. This paper describes recent experiments on spray combustion where detailed measurements of the spray characteristics were made, including local drop-size distributions and velocities. Also, an advanced combustor CFD code has been under development and predictions from this code are compared with experimental results. Studies such as these will provide information to the advanced combustor designer on fuel spray quality and mixing effectiveness. Validation of new fast, robust, and efficient CFD codes will also enable the combustor designer to use them as additional design tools for optimization of combustor concepts for the next generation of aircraft engines.

  7. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

  8. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  9. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  10. Fundamental modeling of pulverized coal and coal-water slurry combustion in a gas turbine combustor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatwani, A.; Turan, A.; Hals, F.

    1988-01-01

    This work describes the essential features of a coal combustion model which is incorporated into a three-dimensional, steady-state, two-phase, turbulent, reactive flow code. The code is a modified and advanced version of INTERN code originally developed at Imperial College which has gone through many stages of development and validation. Swithenbank et al have reported spray combustion model results for an experimental can combustor. The code has since then been modified by and made public under a US Army program. A number of code modifications and improvements have been made at ARL. The earlier version of code was written for amore » small CDC machine which relied on frequent disk/memory transfer and overlay features to carry the computations resulting in loss of computational speed. These limitations have now been removed. For spray applications, the fuel droplet vaporization generates gaseous fuel of uniform composition; hence the earlier formulation relied upon the use of conserved scalar approximation to reduce the number of species equations to be solved. In applications related to coal fuel, coal pyrolysis leads to the formation of at least two different gaseous fuels and a solid fuel of different composition. The authors have therefore removed the conserved scalar formulation for the sake of generality and easy adaptability to complex fuel situations.« less

  11. Effect of Alcohol on Diesel Engine Combustion Operating with Biodiesel-Diesel Blend at Idling Conditions

    NASA Astrophysics Data System (ADS)

    Mahmudul, H. M.; Hagos, Ftwi. Y.; A, M. Mukhtar N.; Mamat, Rizalman; Abdullah, A. Adam

    2018-03-01

    Biodiesel is a promising alternative fuel to run the automotive engine. However, its blends have not been properly investigated during idling as it is the main problem to run the vehicles in a big city. The purpose of this study is to evaluate the impact of alcohol additives such as butanol and ethanol on combustion parameters under idling conditions when a single cylinder diesel engine operates with diesel, diesel-biodiesel blends, and diesel biodiesel-alcohol blends. The engine combustion parameters such as peak pressure, heat release rate and ignition delay were computed. This investigation has revealed that alcohol blends with diesel and biodiesel, BU20 blend yield higher maximum peak cylinder pressure than diesel. B5 blend was found with the lowest energy release among all. B20 was slightly lower than diesel. BU20 blend was seen with the highest peak energy release where E20 blend was found advance than diesel. Among all, the blends alcohol component revealed shorter ignition delay. B5 and B20 blends were influenced by biodiesel interference and the burning fraction were found slightly slower than conventional diesel where BU20 and E20 blends was found slightly faster than diesel So, based on the result, it can be said that among the alcohol blends butanol and ethanol can be promising alternative at idling conditions and can be used without any engine modifications.

  12. Method and apparatus for detecting combustion instability in continuous combustion systems

    DOEpatents

    Benson, Kelly J.; Thornton, Jimmy D.; Richards, George A.; Straub, Douglas L.

    2006-08-29

    An apparatus and method to sense the onset of combustion stability is presented. An electrode is positioned in a turbine combustion chamber such that the electrode is exposed to gases in the combustion chamber. A control module applies a voltage potential to the electrode and detects a combustion ionization signal and determines if there is an oscillation in the combustion ionization signal indicative of the occurrence of combustion stability or the onset of combustion instability. A second electrode held in a coplanar but spaced apart manner by an insulating member from the electrode provides a combustion ionization signal to the control module when the first electrode fails. The control module broadcasts a notice if the parameters indicate the combustion process is at the onset of combustion instability or broadcasts an alarm signal if the parameters indicate the combustion process is unstable.

  13. Reflight of the Solid Surface Combustion Experiment: Opposed-Flow Flame Spread Over Cylindrical Fuels

    NASA Technical Reports Server (NTRS)

    Bhattacharjee, Subrata; Altenkirch, Robert A.; Worley, Regis; Tang, Lin; Bundy, Matt; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The effort described here is a reflight of the Solid Surface Combustion Experiment (SSCE), with extension of the flight matrix first and then experiment modification. The objectives of the reflight are to extend the understanding of the interplay of the radiative processes that affect the flame spread mechanisms.

  14. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  15. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  16. Modern and prospective technologies for weather modification activities: A look at integrating unmanned aircraft systems

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; DeFelice, Tom P.

    2016-09-01

    Present-day weather modification technologies are scientifically based and have made controlled technological advances since the late 1990s, early 2000s. The technological advances directly related to weather modification have primarily been in the decision support and evaluation based software and modeling areas. However, there have been some technological advances in other fields that might now be advanced enough to start considering their usefulness for improving weather modification operational efficiency and evaluation accuracy. We consider the programmatic aspects underlying the development of new technologies for use in weather modification activities, identifying their potential benefits and limitations. We provide context and initial guidance for operators that might integrate unmanned aircraft systems technology in future weather modification operations.

  17. Advanced Laser-Based Techniques for Gas-Phase Diagnostics in Combustion and Aerospace Engineering.

    PubMed

    Ehn, Andreas; Zhu, Jiajian; Li, Xuesong; Kiefer, Johannes

    2017-03-01

    Gaining information of species, temperature, and velocity distributions in turbulent combustion and high-speed reactive flows is challenging, particularly for conducting measurements without influencing the experimental object itself. The use of optical and spectroscopic techniques, and in particular laser-based diagnostics, has shown outstanding abilities for performing non-intrusive in situ diagnostics. The development of instrumentation, such as robust lasers with high pulse energy, ultra-short pulse duration, and high repetition rate along with digitized cameras exhibiting high sensitivity, large dynamic range, and frame rates on the order of MHz, has opened up for temporally and spatially resolved volumetric measurements of extreme dynamics and complexities. The aim of this article is to present selected important laser-based techniques for gas-phase diagnostics focusing on their applications in combustion and aerospace engineering. Applicable laser-based techniques for investigations of turbulent flows and combustion such as planar laser-induced fluorescence, Raman and Rayleigh scattering, coherent anti-Stokes Raman scattering, laser-induced grating scattering, particle image velocimetry, laser Doppler anemometry, and tomographic imaging are reviewed and described with some background physics. In addition, demands on instrumentation are further discussed to give insight in the possibilities that are offered by laser flow diagnostics.

  18. Surface Modification of Intraocular Lenses

    PubMed Central

    Huang, Qi; Cheng, George Pak-Man; Chiu, Kin; Wang, Gui-Qin

    2016-01-01

    Objective: This paper aimed to review the current literature on the surface modification of intraocular lenses (IOLs). Data Sources: All articles about surface modification of IOLs published up to 2015 were identified through a literature search on both PubMed and ScienceDirect. Study Selection: The articles on the surface modification of IOLs were included, but those on design modification and surface coating were excluded. Results: Technology of surface modification included plasma, ion beam, layer-by-layer self-assembly, ultraviolet radiation, and ozone. The main molecules introduced into IOLs surface were poly (ethylene glycol), polyhedral oligomeric silsesquioxane, 2-methacryloyloxyethyl phosphorylcholine, TiO2, heparin, F-heparin, titanium, titanium nitride, vinyl pyrrolidone, and inhibitors of cytokines. The surface modification either resulted in a more hydrophobic lens, a more hydrophilic lens, or a lens with a hydrophilic anterior and hydrophobic posterior surface. Advances in research regarding surface modification of IOLs had led to a better biocompatibility in both in vitro and animal experiments. Conclusion: The surface modification is an efficient, convenient, economic and promising method to improve the biocompatibility of IOLs. PMID:26830993

  19. Combustion dynamics in cryogenic rocket engines: Research programme at DLR Lampoldshausen

    NASA Astrophysics Data System (ADS)

    Hardi, Justin S.; Traudt, Tobias; Bombardieri, Cristiano; Börner, Michael; Beinke, Scott K.; Armbruster, Wolfgang; Nicolas Blanco, P.; Tonti, Federica; Suslov, Dmitry; Dally, Bassam; Oschwald, Michael

    2018-06-01

    The Combustion Dynamics group in the Rocket Propulsion Department at the German Aerospace Center (DLR), Lampoldshausen, strives to advance the understanding of dynamic processes in cryogenic rocket engines. Leveraging the test facilities and experimental expertise at DLR Lampoldshausen, the group has taken a primarily experimental approach to investigating transient flows, ignition, and combustion instabilities for over one and a half decades. This article provides a summary of recent achievements, and an overview of current and planned research activities.

  20. Overview of Microgravity Combustion Research at NASA Lewis Research Center and its Potential Commercial Impact

    NASA Technical Reports Server (NTRS)

    Lyons, Valerie; Friedman, Robert

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  1. Advanced Laser Based Measurements in Porous Media Combustion

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah A.

    2009-01-01

    We present measurements using dual-pump dual-broadband coherent anti-Stokes Raman scattering spectroscopy (DP-DBB-CARS) inside a porous media burner. This work continues our previous measurements in such combustion systems. The existing setup was significantly modified with the aim of providing improved data quality and data rate, reduction of interferences and additional species information. These changes are presented and discussed in detail. The CARS technique was expanded to a dual-pump dual-broadband CARS system which in principle enables acquisition of temperatures together with relative H2/N2- and O2/N2- species concentrations. Experimental complexity was reduced by the use of a modified spectrometer enabling the detection of both signals, vibrational and rotational CARS, with only one detection system.

  2. Numerical Modeling of Turbulent Combustion

    NASA Technical Reports Server (NTRS)

    Ghoneim, A. F.; Chorin, A. J.; Oppenheim, A. K.

    1983-01-01

    The work in numerical modeling is focused on the use of the random vortex method to treat turbulent flow fields associated with combustion while flame fronts are considered as interfaces between reactants and products, propagating with the flow and at the same time advancing in the direction normal to themselves at a prescribed burning speed. The latter is associated with the generation of specific volume (the flame front acting, in effect, as the locus of volumetric sources) to account for the expansion of the flow field due to the exothermicity of the combustion process. The model was applied to the flow in a channel equipped with a rearward facing step. The results obtained revealed the mechanism of the formation of large scale turbulent structure in the wake of the step, while it showed the flame to stabilize on the outer edges of these eddies.

  3. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. Public design report (preliminary and final)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    This Public Design Report presents the design criteria of a DOE Innovative Clean Coal Technology (ICCT) project demonstrating advanced wall-fired combustion techniques for the reduction of NO{sub x} emissions from coal-fired boilers. The project is being conducted at Georgia Power Company`s Plant Hammond Unit 4 (500 MW) near Rome, Georgia. The technologies being demonstrated at this site include Foster Wheeler Energy Corporation`s advanced overfire air system and Controlled Flow/Split Flame low NO{sub x} burner. This report provides documentation on the design criteria used in the performance of this project as it pertains to the scope involved with the low NO{submore » x} burners, advanced overfire systems, and digital control system.« less

  4. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  5. Advanced optical diagnostics of multiphase combustion flow field using OH planar laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Cho, Kevin Young-jin

    High-repetition-rate (5 kHz, 10 kHz) OH planar laser induced fluorescence (PLIF) was used to investigate the combustion of liquid, gelled, and solid propellants. For the liquid monomethyl hydrazine (MMH) droplet combustion experiment in N2O/N2 using 5 kHz OH PLIF and visible imaging system, the OH profile and the droplet diameter were measured. The N2O partial pressure was varied by 20% and 40%, and the total pressure was varied by 103, 172, 276, 414, 552 kPa. The OH location indicated that the oxidation flame front is between the visible dual flame fronts. The results showed thicker flame sheet and higher burning rate for increased N2O concentration for a given pressure. The burning rate increased with increased pressure at 20% partial pressure N2O, and the burning rate decreased with increased pressure at 40% partial pressure N2O. This work provides experimental data for validating chemical kinetics models. For the gelled droplet combustion experiment using a 5 kHz OH PLIF system, speeds and locations of fuel jets emanating from the burning gelled droplets were quantified for the first time. MMH was gelled with organic gellant HPC at 3 wt.% and 6 wt.%, and burned in air at 35, 103, 172, 276, and 414 kPa. Different types of interaction of vapor jets and flame front were distinguished for the first time. For high jet speed, local extinction of the flame was observed. By analyzing the jet speed statistics, it was concluded that pressure and jet speed had an inverse relationship and gellant concentration and jet speed had a direct relationship. This work provides more fundamental insight into the physics of gelled fuel droplet combustion. A 3D OH PLIF system was assembled and demonstrated using a 10 kHz OH PLIF system and a galvanometric scanning mirror. This is the first time that a reacting flow field was imaged with a 3D optical technique using OH PLIF. A 3D scan time of 1 ms was achieved, with ten slices generated per sweep with 1000 Hz scan rate. Alternatively

  6. A Method for Large Eddy Simulation of Acoustic Combustion Instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Pierce, Charles; Moin, Parviz

    2002-11-01

    A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustic combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Both of these characteristics suggest the use of larger time steps than those allowed by an acoustic CFL condition. The turbulent combustion model used is the Combined Conserved Scalar/Level Set Flamelet model of Duchamp de Lageneste and Pitsch for partially premixed combustion. Comparison of LES results to the experiments of Besson et al will be presented.

  7. Flashback Detection Sensor for Hydrogen Augmented Natural Gas Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thornton, J.D.; Chorpening, B.T.; Sidwell, T.

    2007-05-01

    The use of hydrogen augmented fuel is being investigated by various researchers as a method to extend the lean operating limit, and potentially reduce thermal NOx formation in natural gas fired lean premixed (LPM) combustion systems. The resulting increase in flame speed during hydrogen augmentation, however, increases the propensity for flashback in LPM systems. Real-time in-situ monitoring of flashback is important for the development of control strategies for use of hydrogen augmented fuel in state-of-the-art combustion systems, and for the development of advanced hydrogen combustion systems. The National Energy Technology Laboratory (NETL) and Woodward Industrial Controls are developing a combustionmore » control and diagnostics sensor (CCADS), which has already been demonstrated as a useful sensor for in-situ monitoring of natural gas combustion, including detection of important combustion events such as flashback and lean blowoff. Since CCADS is a flame ionization sensor technique, the low ion concentration produced in pure hydrogen combustion raises concerns of whether CCADS can be used to monitor flashback in hydrogen augmented combustion. This paper discusses CCADS tests conducted at 0.2-0.6 MPa (2-6 atm), demonstrating flashback detection with fuel compositions up to 80% hydrogen (by volume) mixed with natural gas. NETL’s Simulation Validation (SimVal) combustor offers full optical access to pressurized combustion during these tests. The CCADS data and high-speed video show the reaction zone moves upstream into the nozzle as the hydrogen fuel concentration increases, as is expected with the increased flame speed of the mixture. The CCADS data and video also demonstrate the opportunity for using CCADS to provide the necessary in-situ monitor to control flashback and lean blowoff in hydrogen augmented combustion applications.« less

  8. Capturing Cyclic Variability in EGR Dilute SI Combustion using Multi-Cycle RANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarcelli, Riccardo; Sevik, James; Wallner, Thomas

    Dilute combustion is an effective approach to increase the thermal efficiency of spark-ignition (SI) internal combustion engines (ICEs). However, high dilution levels typically result in large cycle-to-cycle variations (CCV) and poor combustion stability, therefore limiting the efficiency improvement. In order to extend the dilution tolerance of SI engines, advanced ignition systems are the subject of extensive research. When simulating the effect of the ignition characteristics on CCV, providing a numerical result matching the measured average in-cylinder pressure trace does not deliver useful information regarding combustion stability. Typically Large Eddy Simulations (LES) are performed to simulate cyclic engine variations, since Reynold-Averagedmore » Navier-Stokes (RANS) modeling is expected to deliver an ensemble-averaged result. In this paper it is shown that, when using RANS, the cyclic perturbations coming from different initial conditions at each cycle are not damped out even after many simulated cycles. As a result, multi-cycle RANS results feature cyclic variability. This allows evaluating the effect of advanced ignition sources on combustion stability but requires validation against the entire cycle-resolved experimental dataset. A single-cylinder GDI research engine is simulated using RANS and the numerical results for 20 consecutive engine cycles are evaluated for several operating conditions, including stoichiometric as well as EGR dilute operation. The effect of the ignition characteristics on CCV is also evaluated. Results show not only that multi-cycle RANS simulations can capture cyclic variability and deliver similar trends as the experimental data, but more importantly that RANS might be an effective, lower-cost alternative to LES for the evaluation of ignition strategies for combustion systems that operate close to the stability limit.« less

  9. Assessing Spontaneous Combustion Instability with Nonlinear Time Series Analysis

    NASA Technical Reports Server (NTRS)

    Eberhart, C. J.; Casiano, M. J.

    2015-01-01

    Considerable interest lies in the ability to characterize the onset of spontaneous instabilities within liquid propellant rocket engine (LPRE) combustion devices. Linear techniques, such as fast Fourier transforms, various correlation parameters, and critical damping parameters, have been used at great length for over fifty years. Recently, nonlinear time series methods have been applied to deduce information pertaining to instability incipiency hidden in seemingly stochastic combustion noise. A technique commonly used in biological sciences known as the Multifractal Detrended Fluctuation Analysis has been extended to the combustion dynamics field, and is introduced here as a data analysis approach complementary to linear ones. Advancing, a modified technique is leveraged to extract artifacts of impending combustion instability that present themselves a priori growth to limit cycle amplitudes. Analysis is demonstrated on data from J-2X gas generator testing during which a distinct spontaneous instability was observed. Comparisons are made to previous work wherein the data were characterized using linear approaches. Verification of the technique is performed by examining idealized signals and comparing two separate, independently developed tools.

  10. Efficient low-temperature soot combustion by bimetallic Ag-Cu/SBA-15 catalysts.

    PubMed

    Wen, Zhaojun; Duan, Xinping; Hu, Menglin; Cao, Yanning; Ye, Linmin; Jiang, Lilong; Yuan, Youzhu

    2018-02-01

    In this study, the effects of copper (Cu) additive on the catalytic performance of Ag/SBA-15 in complete soot combustion were investigated. The soot combustion performance of bimetallic Ag-Cu/SBA-15 catalysts was higher than that of monometallic Ag and Cu catalysts. The optimum catalytic performance was acquired with the 5Ag 1 -Cu 0.1 /SBA-15 catalyst, on which the soot combustion starts at T ig =225°C with a T 50 =285°C. The temperature for 50% of soot combustion was lower than that of conventional Ag-based catalysts to more than 50°C (Aneggi et al., 2009). Physicochemical characterizations of the catalysts indicated that addition of Cu into Ag could form smaller bimetallic Ag-Cu nanolloy particles, downsizing the mean particle size from 3.7nm in monometallic catalyst to 2.6nm in bimetallic Ag-Cu catalyst. Further experiments revealed that Ag and Cu species elicited synergistic effects, subsequently increasing the content of surface active oxygen species. As a result, the structure modifications of Ag by the addition of Cu strongly intensified the catalytic performance. Copyright © 2017. Published by Elsevier B.V.

  11. Dry low combustion system with means for eliminating combustion noise

    DOEpatents

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  12. The Fluids And Combustion Facility Combustion Integrated Rack And The Multi-User Droplet Combustion Apparatus: Microgravity Combustion Science Using Modular Multi-User Hardware

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Myhre, Craig A.

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a multi-rack payload planned for the International Space Station (ISS) that will enable the study of fluid physics and combustion science in a microgravity environment. The Combustion Integrated Rack (CIR) is one of two International Standard Payload Racks of the FCF and is being designed primarily to support combustion science experiments. The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user apparatus designed to accommodate four different droplet combustion science experiments and is the first payload for CIR. The CIR will function independently until the later launch of the Fluids Integrated Rack component of the FCF. This paper provides an overview of the capabilities and the development status of the CIR and MDCA.

  13. Internal combustion engine using premixed combustion of stratified charges

    DOEpatents

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  14. Predicting the ash behavior during biomass combustion in FBC conditions by combining advanced fuel analyses with thermodynamic multicomponent equilibrium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skrifvars, B.J.; Blomquist, J.P.; Hupa, M.

    1998-12-31

    Previous work at Aabo Akademi University has focused on identification and quantification of various sintering mechanisms which are relevant for problematic ash behavior during biomass combustion in fluidized bed combustion conditions, and on multi-component multi-phase thermodynamic phase equilibrium calculations of ash chemistry in these conditions. In both areas new information has been developed and useful modeling capabilities have been created. Based on the previous work, the authors now present a novel approach of using a combination of an advanced fuel analysis method and thermodynamic phase equilibrium calculations to predict the chemical and thermal behavior of the ash when firing biomass.more » Four different fuels [coal, forest residues, wood chips, and a mixture of forest residue and wood chips] were analyzed using the chemical fractionation analysis technique. Based on the results from these analyses, the authors formed two different ash fractions, (1) one fine sized fraction consisting of those elements found in the water and weak acid leach, and (2) a coarse ash particle fraction consisting of those elements found in the strong acid leach and non-leachable rest. The small sized ash fraction was then assumed to be carried up with the flue gases and consequently formed the base for any ash related problems in the flue gas channel. This fraction was therefore analyzed on its chemical and thermal behavior using multi-component multi-phase equilibrium calculations, by which the composition and the melting behavior was estimated as a function of the temperature. The amount of melt, which has earlier been found to be strongly related to problematic ash behavior, was finally expressed as a function of the temperature for the fraction. The coarse fraction was treated separately. Here the authors estimate the composition only. The paper discusses the results and their relevance to full scale combustion.« less

  15. Recent Advances in Chemical Modification of Peptide Nucleic Acids

    PubMed Central

    Rozners, Eriks

    2012-01-01

    Peptide nucleic acid (PNA) has become an extremely powerful tool in chemistry and biology. Although PNA recognizes single-stranded nucleic acids with exceptionally high affinity and sequence selectivity, there is considerable ongoing effort to further improve properties of PNA for both fundamental science and practical applications. The present paper discusses selected recent studies that improve on cellular uptake and binding of PNA to double-stranded DNA and RNA. The focus is on chemical modifications of PNA's backbone and heterocyclic nucleobases. The paper selects representative recent studies and does not attempt to provide comprehensive coverage of the broad and vibrant field of PNA modification. PMID:22991652

  16. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  17. Performance of a flameless combustion furnace using biogas and natural gas.

    PubMed

    Colorado, A F; Herrera, B A; Amell, A A

    2010-04-01

    Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance when utilizing bio-fuels, which usually are obtained from biomass gasification and the excreta of animals in bio-digesters. The effect of using biogas on the performance of an experimental furnace equipped with a self-regenerative Flameless burner is reported in this paper. All the results were compared to the performance of the system fueled with natural gas. Results showed that temperature field and uniformity are similar for both fuels; although biogas temperatures were slightly lower due to the larger amount of inert gases (CO(2)) in its composition that cool down the reactions. Species patterns and pollutant emissions showed similar trends and values for both fuels, and the energy balance for biogas showed a minor reduction of the efficiency of the furnace; this confirms that Flameless combustion is highly flexible to burn conventional and diluted fuels. Important modifications on the burner were not necessary to run the system using biogas. Additionally, in order to highlight the advantages of the Flameless combustion regime, some comparisons of the burner performance working in Flameless mode and working in conventional mode are presented. Copyright 2009 Elsevier Ltd. All rights reserved.

  18. State of the art and future needs in S.I. engine combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maly, R.R.

    1994-12-31

    The paper reviews, in short, the state-of-the-art in SI engine combustion by addressing its main features: mixture formation, ignition, homogeneous combustion, pollutant formation, knock, and engine modeling. Necessary links between fundamental and practical work are clarified and discussed along with advanced diagnostics and simulation tools. The needs for further work are identified, the most important one being integration of all fundamental and practical resources to meet R and D requirements for future engines.

  19. High Efficiency, Clean Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donald Stanton

    2010-03-31

    numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. The HECC program successfully reduced engine fuel consumption and greenhouse gases while providing greater customer valve. The US EPA 2010 emissions standard poses a significant challenge for developing clean diesel powertrains that meet the DoE Vehicle Technologies Multi-Year Program Plan (MYPP) for fuel efficiency improvement while remaining affordable. Along with exhaust emissions, an emphasis on heavy duty vehicle fuel efficiency is being driven by increased energy costs as well as the potential regulation of greenhouse gases. An important element of the success of meeting emissions while significantly improving efficiency is leveraging Cummins component technologies such as fuel injection equipment, aftertreatment, turbomahcinery, electronic controls, and combustion systems. Innovation in component technology coupled with system integration is enabling Cummins to move forward with the development of high efficiency clean diesel products with a long term goal of reaching a 55% peak brake thermal efficiency for the engine plus aftertreatment system. The first step in developing high efficiency clean products has been supported by the DoE co-sponsored HECC program. The objectives of the HECC program are: (1) To design and develop advanced diesel engine architectures capable of achieving US EPA 2010 emission regulations while improving the brake thermal efficiency by 10% compared to the baseline (a state of the art 2007 production diesel engine). (2) To design and develop components and subsystems (fuel systems, air handling, controls, etc) to enable construction and development of multi-cylinder engines. (3) To perform an assessment of the commercial viability of the newly developed engine technology. (4) To specify fuel properties conducive to improvements in emissions, reliability, and fuel efficiency for engines using

  20. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere.

    PubMed

    Gorski, Galen; Strong, Courtenay; Good, Stephen P; Bares, Ryan; Ehleringer, James R; Bowen, Gabriel J

    2015-03-17

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.

  1. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    DTIC Science & Technology

    2016-09-07

    AFRL-AFOSR-UK-TR-2016-0021 Distributed Low Temperature Combustion 133024 Peter Lindstedt IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY & MEDICINE Final...TYPE Final 3. DATES COVERED (From - To) 01 Feb 2013 to 31 Jul 2016 4. TITLE AND SUBTITLE Distributed Low Temperature Combustion: Fundamental...identification of five separate fluid states. 15. SUBJECT TERMS EOARD, Low Temperature Combustion, Combustion Regime Transitions 16. SECURITY

  2. KINETIC MODELING OF NOX FORMATION AND DESTRUCTION AND COMBUSTIBLES BURNOUT

    EPA Science Inventory

    The report describes a model of the gas-phase chemistry involved in the combustion of simple hydrocarbon fuels and the interconversion of fixed nitrogen species. One focus of the work was on modeling the chemistry involved in reburning and other advanced NOx control strategies. A...

  3. Environmental control implications of generating electric power from coal. 1977 technology status report. Appendix D. Assessment of NO/sub x/ control technology for coal fired utility boilers. [Low-excess-air, staged combustion, flu gas recirculation and burner design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-12-01

    An NOx control technology assessment study was conducted to examine the effectiveness of low-excess-air firing, staged combustion, flue gas recirculation, and current burner/boiler designs as applied to coal-fired utility boilers. Significant variations in NOx emissions exist with boiler type, firing method, and coal type, but a relative comparison of emissions control performance, cost, and operational considerations is presented for each method. The study emphasized the numerous operational factors that are of major importance to the user in selecting and implementing a combustion modification technique. Staged combustion and low-excess-air operation were identified as the most cost-effective methods for existing units. Closemore » control of local air/fuel ratios and rigorous combustion equipment maintenance are essential to the success of both methods. Flue gas recirculation is relatively ineffective and has the added concern of tube erosion. More research is needed to resolve potential corrosion concerns with low-NOx operating modes. Low-NOx burners in conjunction with a compartmentalized windbox are capable of meeting a 0.6-lb/million Btu emission level on new units. Advanced burner designs are being developed to meet research emission goals of approximately 0.25 lb/MBtu.« less

  4. Combustion energy frontier research center (CEFRC) final report (August 1, 2009 – July 31, 2016)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Law, Chung

    The Combustion Energy Frontier Research Center (CEFRC) was established to tackle the single overarching grand challenge of energy sustainability, energy security and global warming: to develop a “validated, predictive, multi-scale, combustion modeling capability to optimize the design and operation of evolving fuels in advanced engines for transportation applications,” as identified in the DOE report on “Basic Energy Needs for Clean and Efficient Combustion of 21st Century Transportation Fuels”. The challenge is particularly daunting since energy conversion efficiencies and exhaust emissions are governed by coupled chemical and transport processes at multiple length scales ranging from electron excitation to molecular rearrangements tomore » nanoscale particulate formation to turbulent fuel/air mixing. To tackle this challenge, the CEFRC assembled a world-class team of 15 principal investigators, with the objectives to: 1) develop and test theoretical models to predict elementary reaction rates, molecule thermalization rates, chemical bond dissociation energies, and nonequilibrium transport properties using quantum chemistry calculations that account for strong electron correlation and multiple electronic potential energy surfaces; 2) develop automated kinetic mechanism generation, reduction, and error control methods for predicting alternative fuel including biofuel oxidation, fuel droplet decomposition, and NOx and particulate formation; 3) validate and improve the predictions of these models by measuring ignition delay times, species profiles, flame structures, burning limits, turbulence-kinetic coupling, and NOx and soot emissions at high-pressures and near-limit conditions, by using advanced experimental diagnostic techniques including multiple laser techniques, molecular beam sampling and synchrotron photoionization, and by conducting the measurements in high-pressure shock tubes, jet-stirred and flow reactors, flame bombs, counterflow flames, and

  5. A Method for Large Eddy Simulation of Acoustic Combustion Instabilities

    NASA Astrophysics Data System (ADS)

    Wall, Clifton; Moin, Parviz

    2003-11-01

    A method for performing Large Eddy Simulation of acoustic combustion instabilities is presented. By extending the low Mach number pressure correction method to the case of compressible flow, a numerical method is developed in which the Poisson equation for pressure is replaced by a Helmholtz equation. The method avoids the acoustic CFL condition by using implicit time advancement, leading to large efficiency gains at low Mach number. The method also avoids artificial damping of acoustic waves. The numerical method is attractive for the simulation of acoustics combustion instabilities, since these flows are typically at low Mach number, and the acoustic frequencies of interest are usually low. Additionally, new boundary conditions based on the work of Poinsot and Lele have been developed to model the acoustic effect of a long channel upstream of the computational inlet, thus avoiding the need to include such a channel in the computational domain. The turbulent combustion model used is the Level Set model of Duchamp de Lageneste and Pitsch for premixed combustion. Comparison of LES results to the reacting experiments of Besson et al. will be presented.

  6. Mercury (Hg) emissions from domestic biomass combustion for space heating.

    PubMed

    Huang, Jiaoyan; Hopke, Philip K; Choi, Hyun-Deok; Laing, James R; Cui, Huailue; Zananski, Tiffany J; Chandrasekaran, Sriraam Ramanathan; Rattigan, Oliver V; Holsen, Thomas M

    2011-09-01

    Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM(2.5))) were measured in the stack of a small scale wood combustion chamber at 400°C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM(2.5) concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. The effects of detailed chemistry and transport on microgravity droplet combustion

    NASA Technical Reports Server (NTRS)

    Marchese, A. J.; Lee, J. C.; Held, T. J.; Dryer, F. L.

    1995-01-01

    A brief overview of recent advances in the theoretical study of microgravity droplet combustion is presented. Much of this work has centered on the development and utilization of sphero-symmetric transient numerical models which consider detailed gas phase chemistry and transport as well as energy and/or species transport within a regressing condensed phase. Numerical results for microgravity combustion and vaporization of methanol, methanol/water, heptane, and heptane/hexadecane droplets are summarized along with refinements in chemical kinetics and the development of a new two-dimensional axi-symmetric model.

  8. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    NASA Astrophysics Data System (ADS)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the

  9. Gasdynamic modeling and parametric study of mesoscale internal combustion swing engine/generator systems

    NASA Astrophysics Data System (ADS)

    Gu, Yongxian

    The demand of portable power generation systems for both domestic and military applications has driven the advances of mesoscale internal combustion engine systems. This dissertation was devoted to the gasdynamic modeling and parametric study of the mesoscale internal combustion swing engine/generator systems. First, the system-level thermodynamic modeling for the swing engine/generator systems has been developed. The system performance as well as the potentials of both two- and four-stroke swing engine systems has been investigated based on this model. Then through parameterc studies, the parameters that have significant impacts on the system performance have been identified, among which, the burn time and spark advance time are the critical factors related to combustion process. It is found that the shorter burn time leads to higher system efficiency and power output and the optimal spark advance time is about half of the burn time. Secondly, the turbulent combustion modeling based on levelset method (G-equation) has been implemented into the commercial software FLUENT. Thereafter, the turbulent flame propagation in a generic mesoscale combustion chamber and realistic swing engine chambers has been studied. It is found that, in mesoscale combustion engines, the burn time is dominated by the mean turbulent kinetic energy in the chamber. It is also shown that in a generic mesoscale combustion chamber, the burn time depends on the longest distance between the initial ignition kernel to its walls and by changing the ignition and injection locations, the burn time can be reduced by a factor of two. Furthermore, the studies of turbulent flame propagation in real swing engine chambers show that the combustion can be enhanced through in-chamber turbulence augmentation and with higher engine frequency, the burn time is shorter, which indicates that the in-chamber turbulence can be induced by the motion of moving components as well as the intake gas jet flow. The burn time

  10. An Overview of Low-Emission Combustion Research

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the Nitrogen Oxides (NOx) emission reduction in aircraft propulsion will be presented. The technology advancements and their impact on aircraft emissions will be discussed in the context of NASAs Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented will show how the past and current efforts have laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  11. Combustion physics

    NASA Astrophysics Data System (ADS)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  12. On the influence of singlet oxygen molecules on characteristics of HCCI combustion: A numerical study

    NASA Astrophysics Data System (ADS)

    Starik, A. M.; Kozlov, V. E.; Titova, N. S.

    2013-08-01

    Mechanisms of homogeneous charge compression ignition (HCCI) combustion enhancement are investigated numerically when excited O2(a 1Δg) molecules are produced at different points in the compression stroke. The analysis is conducted with the use of an extended kinetic model involving the submechanism of nitric oxide formation in the presence of singlet oxygen O2(a 1Δg) or O2(b 1Σg +) molecules in the methane-air mixture. It is demonstrated that the abundance of excited O2(a 1Δg) molecules in the mixture even in a small amounts intensifies the ignition and combustion and allows one to control the ignition event in the HCCI engine. Such a method of energy supply in the HCCI engine is much more effective in advancement of combustion timing than mere heating of the mixture, because it leads to acceleration of the chain-branching mechanism. The excitation of O2 molecules to the a 1Δg electronic state makes it possible to organise the successful combustion in the cylinder at diminished initial temperature of the mixture and increase the effective energy released during HCCI combustion. The advance in the value of this energy is much higher than the energy needed for the excitation of oxygen molecules. Moreover, in this case, the output concentration of NO and CO can be reduced significantly.

  13. Tripropellant combustion process

    NASA Technical Reports Server (NTRS)

    Kmiec, T. D.; Carroll, R. G.

    1988-01-01

    The addition of small amounts of hydrogen to the combustion of LOX/hydrocarbon propellants in large rocket booster engines has the potential to enhance the system stability. Programs being conducted to evaluate the effects of hydrogen on the combustion of LOX/hydrocarbon propellants at supercritical pressures are described. Combustion instability has been a problem during the development of large hydrocarbon fueled rocket engines. At the higher combustion chamber pressures expected for the next generation of booster engines, the effect of unstable combustion could be even more destructive. The tripropellant engine cycle takes advantage of the superior cooling characteristics of hydrogen to cool the combustion chamber and a small amount of the hydrogen coolant can be used in the combustion process to enhance the system stability. Three aspects of work that will be accomplished to evaluate tripropellant combustion are described. The first is laboratory demonstration of the benefits through the evaluation of drop size, ignition delay and burning rate. The second is analytical modeling of the combustion process using the empirical relationship determined in the laboratory. The third is a subscale demonstration in which the system stability will be evaluated. The approach for each aspect is described and the analytical models that will be used are presented.

  14. Life cycle-dependent cytoskeletal modifications in Plasmodium falciparum infected erythrocytes.

    PubMed

    Shi, Hui; Liu, Zhuo; Li, Ang; Yin, Jing; Chong, Alvin G L; Tan, Kevin S W; Zhang, Yong; Lim, Chwee Teck

    2013-01-01

    Plasmodium falciparum infection of human erythrocytes is known to result in the modification of the host cell cytoskeleton by parasite-coded proteins. However, such modifications and corresponding implications in malaria pathogenesis have not been fully explored. Here, we probed the gradual modification of infected erythrocyte cytoskeleton with advancing stages of infection using atomic force microscopy (AFM). We reported a novel strategy to derive accurate and quantitative information on the knob structures and their connections with the spectrin network by performing AFM-based imaging analysis of the cytoplasmic surface of infected erythrocytes. Significant changes on the red cell cytoskeleton were observed from the expansion of spectrin network mesh size, extension of spectrin tetramers and the decrease of spectrin abundance with advancing stages of infection. The spectrin network appeared to aggregate around knobs but also appeared sparser at non-knob areas as the parasite matured. This dramatic modification of the erythrocyte skeleton during the advancing stage of malaria infection could contribute to the loss of deformability of the infected erythrocyte.

  15. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    PubMed

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  16. Progress towards an Optimization Methodology for Combustion-Driven Portable Thermoelectric Power Generation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnan, Shankar; Karri, Naveen K.; Gogna, Pawan K.

    2012-03-13

    Enormous military and commercial interests exist in developing quiet, lightweight, and compact thermoelectric (TE) power generation systems. This paper investigates design integration and analysis of an advanced TE power generation system implementing JP-8 fueled combustion and thermal recuperation. Design and development of a portable TE power system using a JP-8 combustor as a high temperature heat source and optimal process flows depend on efficient heat generation, transfer, and recovery within the system are explored. Design optimization of the system required considering the combustion system efficiency and TE conversion efficiency simultaneously. The combustor performance and TE sub-system performance were coupled directlymore » through exhaust temperatures, fuel and air mass flow rates, heat exchanger performance, subsequent hot-side temperatures, and cold-side cooling techniques and temperatures. Systematic investigation of this system relied on accurate thermodynamic modeling of complex, high-temperature combustion processes concomitantly with detailed thermoelectric converter thermal/mechanical modeling. To this end, this work reports on design integration of systemlevel process flow simulations using commercial software CHEMCADTM with in-house thermoelectric converter and module optimization, and heat exchanger analyses using COMSOLTM software. High-performance, high-temperature TE materials and segmented TE element designs are incorporated in coupled design analyses to achieve predicted TE subsystem level conversion efficiencies exceeding 10%. These TE advances are integrated with a high performance microtechnology combustion reactor based on recent advances at the Pacific Northwest National Laboratory (PNNL). Predictions from this coupled simulation established a basis for optimal selection of fuel and air flow rates, thermoelectric module design and operating conditions, and microtechnology heat-exchanger design criteria. This paper will discuss

  17. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  18. Adjustment of the flue gas path in small combustion appliances with regard to particulate matter reduction

    NASA Astrophysics Data System (ADS)

    Sulovcová, Katarína; Jandačka, Jozef; Nosek, Radovan

    2014-08-01

    Concentration of solid particles in ambient atmosphere is increasing in many countries nowadays. Particulate matter pollution in higher concentration has harmful impact on human and animal health. Source of particulate matter are not only industry and traffic. Small heat sources with biomass combustion, especially during winter heating season, are also significant producer of particulate matter emission. There is a huge importance to decrease quantities of solid particles which are getting into the atmosphere in every region of their production in order to decrease environmental pollution and improve air quality. The ability of flue gas emission elimination can influence future using of biomass combustion. Therefore effective and affordable solutions are searching for. The paper deals with the reduction of particulate matter in small heat source with biomass combustion by modification of geometric parameters in flue gas path.

  19. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Some effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. Furthermore, we show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration ofmore » water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. These findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.« less

  20. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    DOE PAGES

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; ...

    2015-03-02

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Some effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. Furthermore, we show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration ofmore » water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. These findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry.« less

  1. Vapor hydrogen and oxygen isotopes reflect water of combustion in the urban atmosphere

    PubMed Central

    Gorski, Galen; Strong, Courtenay; Good, Stephen P.; Bares, Ryan; Ehleringer, James R.; Bowen, Gabriel J.

    2015-01-01

    Anthropogenic modification of the water cycle involves a diversity of processes, many of which have been studied intensively using models and observations. Effective tools for measuring the contribution and fate of combustion-derived water vapor in the atmosphere are lacking, however, and this flux has received relatively little attention. We provide theoretical estimates and a first set of measurements demonstrating that water of combustion is characterized by a distinctive combination of H and O isotope ratios. We show that during periods of relatively low humidity and/or atmospheric stagnation, this isotopic signature can be used to quantify the concentration of water of combustion in the atmospheric boundary layer over Salt Lake City. Combustion-derived vapor concentrations vary between periods of atmospheric stratification and mixing, both on multiday and diurnal timescales, and respond over periods of hours to variations in surface emissions. Our estimates suggest that up to 13% of the boundary layer vapor during the period of study was derived from combustion sources, and both the temporal pattern and magnitude of this contribution were closely reproduced by an independent atmospheric model forced with a fossil fuel emissions data product. Our findings suggest potential for water vapor isotope ratio measurements to be used in conjunction with other tracers to refine the apportionment of urban emissions, and imply that water vapor emissions associated with combustion may be a significant component of the water budget of the urban boundary layer, with potential implications for urban climate, ecohydrology, and photochemistry. PMID:25733906

  2. Fluids and Combustion Facility-Combustion Integrated Rack

    NASA Technical Reports Server (NTRS)

    Francisco, David R.

    1998-01-01

    This paper describes in detail the concept of performing Combustion microgravity experiments in the Combustion Integrated Rack (CIR) of the Fluids and Combustion Facility (FCF) on the International Space Station (ISS). The extended duration microgravity environment of the ISS will enable microgravity research to enter into a new era of increased scientific and technological data return. The FCF is designed to increase the amount and quality of scientific and technological data and decrease the development cost of an individual experiment relative to the era of Space Shuttle experiments. This paper also describes how the FCF will cost effectively accommodate these experiments.

  3. A positivity-preserving, implicit defect-correction multigrid method for turbulent combustion

    NASA Astrophysics Data System (ADS)

    Wasserman, M.; Mor-Yossef, Y.; Greenberg, J. B.

    2016-07-01

    A novel, robust multigrid method for the simulation of turbulent and chemically reacting flows is developed. A survey of previous attempts at implementing multigrid for the problems at hand indicated extensive use of artificial stabilization to overcome numerical instability arising from non-linearity of turbulence and chemistry model source-terms, small-scale physics of combustion, and loss of positivity. These issues are addressed in the current work. The highly stiff Reynolds-averaged Navier-Stokes (RANS) equations, coupled with turbulence and finite-rate chemical kinetics models, are integrated in time using the unconditionally positive-convergent (UPC) implicit method. The scheme is successfully extended in this work for use with chemical kinetics models, in a fully-coupled multigrid (FC-MG) framework. To tackle the degraded performance of multigrid methods for chemically reacting flows, two major modifications are introduced with respect to the basic, Full Approximation Storage (FAS) approach. First, a novel prolongation operator that is based on logarithmic variables is proposed to prevent loss of positivity due to coarse-grid corrections. Together with the extended UPC implicit scheme, the positivity-preserving prolongation operator guarantees unconditional positivity of turbulence quantities and species mass fractions throughout the multigrid cycle. Second, to improve the coarse-grid-correction obtained in localized regions of high chemical activity, a modified defect correction procedure is devised, and successfully applied for the first time to simulate turbulent, combusting flows. The proposed modifications to the standard multigrid algorithm create a well-rounded and robust numerical method that provides accelerated convergence, while unconditionally preserving the positivity of model equation variables. Numerical simulations of various flows involving premixed combustion demonstrate that the proposed MG method increases the efficiency by a factor of

  4. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.

    PubMed

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-03-01

    Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  6. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of themore » collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.« less

  7. Status of the Combustion Devices Injector Technology Program at the NASA MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Gregg; Protz, Christopher; Trinh, Huu; Tucker, Kevin; Nesman, Tomas; Hulka, James

    2005-01-01

    To support the NASA Space Exploration Mission, an in-house program called Combustion Devices Injector Technology (CDIT) is being conducted at the NASA Marshall Space Flight Center (MSFC) for the fiscal year 2005. CDIT is focused on developing combustor technology and analysis tools to improve reliability and durability of upper-stage and in-space liquid propellant rocket engines. The three areas of focus include injector/chamber thermal compatibility, ignition, and combustion stability. In the compatibility and ignition areas, small-scale single- and multi-element hardware experiments will be conducted to demonstrate advanced technological concepts as well as to provide experimental data for validation of computational analysis tools. In addition, advanced analysis tools will be developed to eventually include 3-dimensional and multi- element effects and improve capability and validity to analyze heat transfer and ignition in large, multi-element injectors.

  8. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage.

    PubMed

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-29

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.

  9. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    PubMed Central

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    2017-01-01

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding. PMID:28146083

  10. Control Strategies for HCCI Mixed-Mode Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Robert M; Edwards, Kevin Dean

    2010-03-01

    , presentation, and meetings as necessary to maintain progress. Delphi provided substantial support through modeling, hardware, data exchange, and technical consultation. This CRADA was also successful at establishing important next steps to further expanding the use of an HCCI engine for improved fuel efficiency and emissions. These topics will be address in a follow-on CRADA. The objectives are: (1) Improve fundamental understanding of the development of combustion instabilities with HCCI operation through modeling and experiments; (2) Develop low-order model and feedback combustion metrics which are well suited to real-time predictive controls; and (3) Construct multi-cylinder engine system with advanced Delphi technologies and charac-terize HCCI behavior to better understand limitations and opportunities for expanded high-efficiency operation.« less

  11. Final Report - Low Temperature Combustion Chemistry And Fuel Component Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret

    Recent research into combustion chemistry has shown that reactions at “low temperatures” (700 – 1100 K) have a dramatic influence on ignition and combustion of fuels in virtually every practical combustion system. A powerful class of laboratory-scale experimental facilities that can focus on fuel chemistry in this temperature range is the rapid compression facility (RCF), which has proven to be a versatile tool to examine the details of fuel chemistry in this important regime. An RCF was used in this project to advance our understanding of low temperature chemistry of important fuel compounds. We show how factors including fuel molecularmore » structure, the presence of unsaturated C=C bonds, and the presence of alkyl ester groups influence fuel auto-ignition and produce variable amounts of negative temperature coefficient behavior of fuel ignition. We report new discoveries of synergistic ignition interactions between alkane and alcohol fuels, with both experimental and kinetic modeling studies of these complex interactions. The results of this project quantify the effects of molecular structure on combustion chemistry including carbon bond saturation, through low temperature experimental studies of esters, alkanes, alkenes, and alcohols.« less

  12. Internal combustion engines for alcohol motor fuels: a compilation of background technical information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaser, Richard

    1980-11-01

    This compilation, a draft training manual containing technical background information on internal combustion engines and alcohol motor fuel technologies, is presented in 3 parts. The first is a compilation of facts from the state of the art on internal combustion engine fuels and their characteristics and requisites and provides an overview of fuel sources, fuels technology and future projections for availability and alternatives. Part two compiles facts about alcohol chemistry, alcohol identification, production, and use, examines ethanol as spirit and as fuel, and provides an overview of modern evaluation of alcohols as motor fuels and of the characteristics of alcoholmore » fuels. The final section compiles cross references on the handling and combustion of fuels for I.C. engines, presents basic evaluations of events leading to the use of alcohols as motor fuels, reviews current applications of alcohols as motor fuels, describes the formulation of alcohol fuels for engines and engine and fuel handling hardware modifications for using alcohol fuels, and introduces the multifuel engines concept. (LCL)« less

  13. Preliminary assessment of combustion modes for internal combustion wave rotors

    NASA Technical Reports Server (NTRS)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  14. 14th congress of combustion by-products and their health effects-origin, fate, and health effects of combustion-related air pollutants in the coming era of bio-based energy sources.

    PubMed

    Weidemann, Eva; Andersson, Patrik L; Bidleman, Terry; Boman, Christoffer; Carlin, Danielle J; Collina, Elena; Cormier, Stephania A; Gouveia-Figueira, Sandra C; Gullett, Brian K; Johansson, Christer; Lucas, Donald; Lundin, Lisa; Lundstedt, Staffan; Marklund, Stellan; Nording, Malin L; Ortuño, Nuria; Sallam, Asmaa A; Schmidt, Florian M; Jansson, Stina

    2016-04-01

    The 14th International Congress on Combustion By-Products and Their Health Effects was held in Umeå, Sweden from June 14th to 17th, 2015. The Congress, mainly sponsored by the National Institute of Environmental Health Sciences Superfund Research Program and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning, focused on the "Origin, fate and health effects of combustion-related air pollutants in the coming era of bio-based energy sources". The international delegates included academic and government researchers, engineers, scientists, policymakers and representatives of industrial partners. The Congress provided a unique forum for the discussion of scientific advances in this research area since it addressed in combination the health-related issues and the environmental implications of combustion by-products. The scientific outcomes of the Congress included the consensus opinions that: (a) there is a correlation between human exposure to particulate matter and increased cardiac and respiratory morbidity and mortality; (b) because currently available data does not support the assessment of differences in health outcomes between biomass smoke and other particulates in outdoor air, the potential human health and environmental impacts of emerging air-pollution sources must be addressed. Assessment will require the development of new approaches to characterize combustion emissions through advanced sampling and analytical methods. The Congress also concluded the need for better and more sustainable e-waste management and improved policies, usage and disposal methods for materials containing flame retardants.

  15. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    DOE PAGES

    Cung, Khanh Duc; Ciatti, Stephen Anthony; Tanov, Slavey; ...

    2017-12-21

    Gasoline Compression Ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed as compared to homogeneous charge compression ignition (HCCI) which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually post injection in a multiple-injection scheme, to mitigate combustion noise. Gasoline fuels ignite more difficult than Diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tendmore » to have more resistance to auto-ignition, hence more time for fuel-air mixing. In this study, three fuels, namely, Aromatic, Alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multi-cylinder engine under GCI combustion mode. Considerations of EGR, start of injection (SOI), and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing was kept constant during the experiments to the changes in ignition and combustion process before and after 50% of the fuel mass is burned. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number (FSN) and was also most sensitive to the change in dilution. Reasonably low combustion noise (< 90 dB) and stable combustion (COVIMEP < 3%) were maintained during the experiments. The second part of this paper contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection, and also more intense at low EGR conditions. Furthermore, soot/temperature profiles indicated only the high

  16. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cung, Khanh Duc; Ciatti, Stephen Anthony; Tanov, Slavey

    Gasoline Compression Ignition (GCI) has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed as compared to homogeneous charge compression ignition (HCCI) which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually post injection in a multiple-injection scheme, to mitigate combustion noise. Gasoline fuels ignite more difficult than Diesel. The autoignition quality of gasoline can be indicated by research octane number (RON). Fuels with high octane tendmore » to have more resistance to auto-ignition, hence more time for fuel-air mixing. In this study, three fuels, namely, Aromatic, Alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multi-cylinder engine under GCI combustion mode. Considerations of EGR, start of injection (SOI), and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing was kept constant during the experiments to the changes in ignition and combustion process before and after 50% of the fuel mass is burned. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number (FSN) and was also most sensitive to the change in dilution. Reasonably low combustion noise (< 90 dB) and stable combustion (COVIMEP < 3%) were maintained during the experiments. The second part of this paper contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection, and also more intense at low EGR conditions. Furthermore, soot/temperature profiles indicated only the high

  17. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    NASA Astrophysics Data System (ADS)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  18. Meta-control of combustion performance with a data mining approach

    NASA Astrophysics Data System (ADS)

    Song, Zhe

    Large scale combustion process is complex and proposes challenges of optimizing its performance. Traditional approaches based on thermal dynamics have limitations on finding optimal operational regions due to time-shift nature of the process. Recent advances in information technology enable people collect large volumes of process data easily and continuously. The collected process data contains rich information about the process and, to some extent, represents a digital copy of the process over time. Although large volumes of data exist in industrial combustion processes, they are not fully utilized to the level where the process can be optimized. Data mining is an emerging science which finds patterns or models from large data sets. It has found many successful applications in business marketing, medical and manufacturing domains The focus of this dissertation is on applying data mining to industrial combustion processes, and ultimately optimizing the combustion performance. However the philosophy, methods and frameworks discussed in this research can also be applied to other industrial processes. Optimizing an industrial combustion process has two major challenges. One is the underlying process model changes over time and obtaining an accurate process model is nontrivial. The other is that a process model with high fidelity is usually highly nonlinear, solving the optimization problem needs efficient heuristics. This dissertation is set to solve these two major challenges. The major contribution of this 4-year research is the data-driven solution to optimize the combustion process, where process model or knowledge is identified based on the process data, then optimization is executed by evolutionary algorithms to search for optimal operating regions.

  19. Boiler using combustible fluid

    DOEpatents

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  20. Combustion synthesis of complex oxides

    NASA Astrophysics Data System (ADS)

    Ming, Qimin

    Advanced ceramic materials have numerous applications in electronic engineering, chemical engineering, and semiconductor industry. The synthesis of these materials at an economical cost is the bottleneck in the application of these materials. Self-propagating High-temperature Synthesis (SHS) is a new technique for producing these materials for exothermic systems by a combustion wave that propagates and produces high purity products. The full potential of SHS to produce advanced materials has not yet been utilized. In this study, we used SHS to prepare two types of complex oxides: La 1-xSrxCrO3, La0.89Sr0.1 MnO3, powders, used to make interconnect and cathode of solid oxide fuel cells; and chromium- and gallium-doped La1-xSr xFeO3-delta, mixed ionic and electronic conductive powders used to manufacture ceramic membranes for oxygen separation. A thermodynamic feasibility analysis shows that the oxidation of Cr is the main source of heat generation of La1-xSrxCrO 3, which maintains a stable reaction front. Replacing part of the metallic Cr in the reaction mixture by its oxides decreases the combustion temperature and front propagating velocity and modifies the product morphology. The oxygen needed for the Cr oxidation is provided by the decomposition of CrO3 , SrO2, or NaClO4. The predicted and observed combustion temperatures are in reasonable agreement. TG/DTA analyses of La1-xSrxCrO3 indicated that SHS stability was strongly affected by the transport of oxygen between the two regions, in which oxygen was generated by the decomposition of either NaClO4 or CrO3 and that in which it was consumed by the oxidation of Cr. Partial melting at the high combustion temperature during SHS of La 1-xSrxMnO3 increased product homogeneity. The electrical conductivity at 1000°C in air of SHS-produced cathode material (of 180 O-1·cm-1) matches that of the commercial product made by other processes. However, the SHS process provides much higher productivity and decreases processing

  1. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    DOE PAGES

    Osborn, David L.

    2017-03-15

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less

  2. Reaction Mechanisms on Multiwell Potential Energy Surfaces in Combustion (and Atmospheric) Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David L.

    Chemical reactions occurring on a potential energy surface with multiple wells are ubiquitous in low temperature combustion and the oxidation of volatile organic compounds in earth’s atmosphere. The rich variety of structural isomerizations that compete with collisional stabilization make characterizing such complex-forming reactions challenging. This review describes recent experimental and theoretical advances that deliver increasingly complete views of their reaction mechanisms. New methods for creating reactive intermediates coupled with multiplexed measurements provide many experimental observables simultaneously. Automated methods to explore potential energy surfaces can uncover hidden reactive pathways, while master equation methods enable a holistic treatment of both sequential andmore » well-skipping pathways. Our ability to probe and understand nonequilibrium effects and reaction sequences is increasing. These advances provide the fundamental science base for predictive models of combustion and the atmosphere that are crucial to address global challenges.« less

  3. Advanced Gas Turbine (AGT) powertrain system development for automotive applications

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Topics covered include the AGT 101 engine test; compressor design modification; cold air turbine testing; Mod 1 alloy turbine rotor fabrication; combustion aspects; regenerator development; and thermal screening tests for ceramic materials. The foil gas bearings, rotor dynamics, and AGT controls and accessories are also considered.

  4. Surface modification of a low cost bentonite for post-combustion CO2 capture

    NASA Astrophysics Data System (ADS)

    Chen, Chao; Park, Dong-Wha; Ahn, Wha-Seung

    2013-10-01

    A low cost bentonite was modified with PEI (polyethylenimine) through a physical impregnation method. Bentonite in its natural state and after amine modification were characterized by scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, N2 adsorption-desorption isotherms, and investigated for CO2 capture using a thermogravimetric analysis unit connected to a flow panel. The effect of adsorption temperature, PEI loading and CO2 partial pressure on the CO2 capture performance of the PEI-modified bentonite was examined. A cyclic CO2 adsorption-desorption test was also carried out to assess the stability of PEI-modified bentonite as a CO2 adsorbent. Bentonite in its natural state showed negligible CO2 uptake. After amine modification, the CO2 uptake increased significantly due to CO2 capture by amine species introduced via chemisorption. The PEI-modified bentonites showed high CO2 capture selectivity over N2, and exhibited excellent stability in cyclic CO2 adsorption-desorption runs.

  5. Advanced Understanding of Convection Initiation and Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification over the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Wulfmeyer, V.; Behrendt, A.; Branch, O.; Schwitalla, T.

    2016-12-01

    A prerequisite for significant precipitation amounts is the presence of convergence zones. These are due to land surface heterogeneity, orography as well as mesoscale and synoptic scale circulations. Only, if these convergence zones are strong enough and interact with an upper level instability, deep convection can be initiated. For the understanding of convection initiation (CI) and optimal cloud seeding deployment, it is essential that these convergence zones are detected before clouds are developing in order to preempt the decisive microphysical processes for liquid water and ice formation. In this presentation, a new project on Optimizing Cloud Seeding by Advanced Remote Sensing and Land Cover Modification (OCAL) is introduced, which is funded by the United Arab Emirates Rain Enhancement Program (UAEREP). This project has two research components. The first component focuses on an improved detection and forecasting of convergence zones and CI by a) operation of scanning Doppler lidar and cloud radar systems during two seasonal field campaigns in orographic terrain and over the desert in the UAE, and b) advanced forecasting of convergence zones and CI with the WRF-NOAHMP model system. Nowcasting to short-range forecasting of convection will be improved by the assimilation of Doppler lidar and the UAE radar network data. For the latter, we will apply a new model forward operator developed at our institute. Forecast uncertainties will be assessed by ensemble simulations driven by ECMWF boundaries. The second research component of OCAL will study whether artificial modifications of land surface heterogeneity are possible through plantations or changes of terrain, leading to an amplification of convergence zones. This is based on our pioneering work on high-resolution modeling of the impact of plantations on weather and climate in arid regions. A specific design of the shape and location of plantations can lead to the formation of convergence zones, which can

  6. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lei, Yaogeng; Hannoufa, Abdelali; Yu, Peiqiang

    Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved inmore » important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.« less

  7. The FCF Combustion Integrated Rack: Microgravity Combustion Science Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    OMalley, Terence F.; Weiland, Karen J.

    2002-01-01

    The Combustion Integrated Rack (CIR) is one of three facility payload racks being developed for the International Space Station (ISS) Fluids and Combustion Facility (FCF). Most microgravity combustion experiments will be performed onboard the Space Station in the Combustion Integrated Rack. Experiment-specific equipment will be installed on orbit in the CIR to customize it to perform many different scientific experiments during the ten or more years that it will operate on orbit. This paper provides an overview of the CIR, including a description of its preliminary design and planned accommodations for microgravity combustion science experiments, and descriptions of the combustion science experiments currently planned for the CIR.

  8. Combustion devices technology team - An overview and status of STME-related activities

    NASA Technical Reports Server (NTRS)

    Tucker, P. K.; Croteau-Gillespie, Margie

    1992-01-01

    The Consortium for CFD applications in propulsion technology has been formed at NASA/Marshall Space Flight Center. The combustion devices technology team is one of the three teams that constitute the Consortium. While generally aiming to advance combustion devices technology for rocket propulsion, the team's efforts for the last 1 and 1/2 years have been focused on issues relating to the Space Transportation Main Engine (STME) nozzle. The nozzle design uses hydrogen-rich turbine exhaust to cool the wall in a film/dump scheme. This method of cooling presents challenges and associated risks for the nozzle designers and the engine/vehicle integrators. Within the nozzle itself, a key concern is the ability to effectively and efficiently film cool the wall. From the National Launch System vehicle base standpoint, there are concerns with dumping combustible gases at the nozzle exit and their potential adverse effects on the base thermal environment. The Combustion Team has developed and is implementing plans to use validated CFD tools to aid in risk mitigation for both areas.

  9. Coal combustion system

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.; Tramm, Peter C.

    1988-01-01

    In a coal combustion system suitable for a gas turbine engine, pulverized coal is transported to a rich zone combustor and burned at an equivalence ratio exceeding 1 at a temperature above the slagging temperature of the coal so that combustible hot gas and molten slag issue from the rich zone combustor. A coolant screen of water stretches across a throat of a quench stage and cools the combustible gas and molten slag to below the slagging temperature of the coal so that the slag freezes and shatters into small pellets. The pelletized slag is separated from the combustible gas in a first inertia separator. Residual ash is separated from the combustible gas in a second inertia separator. The combustible gas is mixed with secondary air in a lean zone combustor and burned at an equivalence ratio of less than 1 to produce hot gas motive at temperature above the coal slagging temperature. The motive fluid is cooled in a dilution stage to an acceptable turbine inlet temperature before being transported to the turbine.

  10. Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit

    NASA Astrophysics Data System (ADS)

    Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong

    When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.

  11. The combustion behavior of diesel/CNG mixtures in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Firmansyah; Aziz, A. R. A.; Heikal, M. R.

    2015-12-01

    The stringent emissions and needs to increase fuel efficiency makes controlled auto-ignition (CAI) based combustion an attractive alternative for the new combustion system. However, the combustion control is the main obstacles in its development. Reactivity controlled compression ignition (RCCI) that employs two fuels with significantly different in reactivity proven to be able to control the combustion. The RCCI concept applied in a constant volume chamber fuelled with direct injected diesel and compressed natural gas (CNG) was tested. The mixture composition is varied from 0 - 100% diesel/CNG at lambda 1 with main data collection are pressure profile and combustion images. The results show that diesel-CNG mixture significantly shows better combustion compared to diesel only. It is found that CNG is delaying the diesel combustion and at the same time assisting in diesel distribution inside the chamber. This combination creates a multipoint ignition of diesel throughout the chamber that generate very fast heat release rate and higher maximum pressure. Furthermore, lighter yellow color of the flame indicates lower soot production in compared with diesel combustion.

  12. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Advanced Boost System Developing for High EGR Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Harold

    2012-09-30

    To support industry efforts of clean and efficient internal combustion engine development for passenger and commercial applications • This program focuses on turbocharger improvement for medium and light duty diesel applications, from complete system optimization percepective to enable commercialization of advanced diesel combustion technologies, such as HCCI/LTC. • Improve combined turbocharger efficiency up to 10% or fuel economy by 3% on FTP cycle at Tier II Bin 5 emission level.

  14. Radiation/Catalytic Augmented Combustion.

    DTIC Science & Technology

    1984-05-01

    interest to compare the experimental results for the solid bluff body with a thuoretical result. Using simple argtinieiiLs from fluid mechanics " one...responsibility through completion. Dr. A. E. Cerkanowlcz assisted in writing this final report. Experimental studies on catalytic augmented combustion...as well as with other combustion species, lead to ignition and sustained combustion via chain reactions. Simple combustion enhancement without

  15. Improving the durability of methanol oxidation reaction electro-catalysts through the modification of carbon architectures

    NASA Astrophysics Data System (ADS)

    Wood, Kevin N.

    Carbon materials represent one of the largest areas of studied research today, having integrated applications stretching from energy production and storage to medical use and far beyond. One of these many intriguing applications is fuel cells, which offers the promise of clean electricity through a direct electrochemical energy conversion process. Unfortunately, at the present time the cost per watt-hour produced by fuel cells is more expensive than conventional methods of energy production/storage (i.e. combustion engines, batteries, etc.). Under the umbrella of fuel cell systems, methanol is a promising fuel source because of its high energy density and convenience of direct liquid fuel operation. In this field, recent advancements are bringing direct methanol fuel cells (DMFCs) closer to commercial viability. However, just as in other fuel cell systems, further improvements are greatly needed, particularly in the area of catalyst durability. This need for improved durability has led to increased research activity focused on improving catalyst stability and utilization. This thesis explores one of the most promising areas of enhancing catalyst-support interactions; namely, modification of carbon support architectures. Through the use of heteroatom modifiers, such as nitrogen, fuel cell support systems can be enhanced in such a way as to improve metal nucleation and growth, catalyst durability and catalytic activity. To this end, this thesis employs advanced characterization techniques to study the changes in catalyst particle morphology before and after nitrogen modification of the support structure. These results clearly show the beneficial effects of nitrogen moieties on carbon structures and help elucidate the effects of nitrogen on the stability of supported catalytic nanoparticles systems. Similarly, the novel concept of post-modifying commercially available supported catalysts with nitrogen ion implantation gives further insight into the behavior of

  16. Coal combustion products

    USGS Publications Warehouse

    Kalyoncu, R.S.; Olson, D.W.

    2001-01-01

    Coal-burning powerplants, which supply more than half of U.S. electricity, also generate coal combustion products, which can be both a resource and a disposal problem. The U.S. Geological Survey collaborates with the American Coal Ash Association in preparing its annual report on coal combustion products. This Fact Sheet answers questions about present and potential uses of coal combustion products.

  17. Advanced general aviation engine/airframe integration study

    NASA Technical Reports Server (NTRS)

    Zmroczek, L. A.

    1982-01-01

    A comparison of the in-airframe performance and efficiency of the advanced engine concepts is presented. The results indicate that the proposed advanced engines can significantly improve the performance and economy of general aviation airplanes. The engine found to be most promising is the highly advanced version of a rotary combustion (Wankel) engine. The low weight and fuel consumption of this engine, as well as its small size, make it suited for aircraft use.

  18. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGES

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; ...

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  19. Fundamentals of Gas Turbine combustion

    NASA Technical Reports Server (NTRS)

    Gerstein, M.

    1979-01-01

    Combustion problems and research recommendations are discussed in the areas of atomization and vaporization, combustion chemistry, combustion dynamics, and combustion modelling. The recommendations considered of highest priority in these areas are presented.

  20. Combustion kinetics and emission characteristics of polycyclic aromatic hydrocarbons from polylactic acid combustion.

    PubMed

    Chien, Yi-Chi; Liang, Chenju; Liu, Shou-Heng; Yang, Shu-Hua

    2010-07-01

    This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 microg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.

  1. Radial inflow gas turbine engine with advanced transition duct

    DOEpatents

    Wiebe, David J

    2015-03-17

    A gas turbine engine (10), including: a turbine having radial inflow impellor blades (38); and an array of advanced transition combustor assemblies arranged circumferentially about the radial inflow impellor blades (38) and having inner surfaces (34) that are adjacent to combustion gases (40). The inner surfaces (34) of the array are configured to accelerate and orient, for delivery directly onto the radial inflow impellor blades (38), a plurality of discrete flows of the combustion gases (40). The array inner surfaces (34) define respective combustion gas flow axes (20). Each combustion gas flow axis (20) is straight from a point of ignition until no longer bound by the array inner surfaces (34), and each combustion gas flow axis (20) intersects a unique location on a circumference defined by a sweep of the radial inflow impellor blades (38).

  2. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  3. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  4. Induced effects of advanced oxidation processes.

    PubMed

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-07

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  5. Gravitational Effects on Combustion Synthesis of Advanced Porous Materials

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Moore, J. J.; Schowengerdt, F. D.; Thorne, K.

    2000-01-01

    Combustion Synthesis (self-Propagating high-temperature synthesis-(SHS)) of porous Ti-TiB(x), composite materials has been studied with respect to the sensitivity to the SHS reaction parameters of stoichiometry, green density, gasifying agents, ambient pressure, diluents and gravity. The main objective of this research program is to engineer the required porosity and mechanical properties into the composite materials to meet the requirements of a consumer, such as for the application of bone replacement materials. Gravity serves to restrict the gas expansion and the liquid movement during SHS reaction. As a result, gravitational forces affect the microstructure and properties of the SHS products. Reacting these SHS systems in low gravity in the KC-135 aircraft has extended the ability to form porous products. This paper will emphasize the effects of gravity (low g, 1g and 2g) on the SHS reaction process, and the microstructure and properties of the porous composite. Some of biomedical results are also discussed.

  6. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, A.K.; Maxson, J.A.; Hensinger, D.M.

    1993-12-21

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure. 24 figures.

  7. Jet plume injection and combustion system for internal combustion engines

    DOEpatents

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  8. Overview of Low Emission Combustion Research At NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  9. Path planning during combustion mode switch

    DOEpatents

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  10. Staged, High-Pressure Oxy-Combustion Technology: Development and Scale-Up

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Axelbaum, Richard; Kumfer, Benjamin; Gopan, Akshay

    The immediate need for a high efficiency, low cost carbon capture process has prompted the recent development of pressurized oxy-combustion. With a greater combustion pressure the dew point of the flue gas is increased, allowing for effective integration of the latent heat of flue gas moisture into the Rankine cycle. This increases the net plant efficiency and reduces costs. A novel, transformational process, named Staged, Pressurized Oxy-Combustion (SPOC), achieves additional step changes in efficiency and cost reduction by significantly reducing the recycle of flue gas. The research and development activities conducted under Phases I and II of this project (FE0009702)more » include: SPOC power plant cost and performance modeling, CFD-assisted design of pressurized SPOC boilers, theoretical analysis of radiant heat transfer and ash deposition, boiler materials corrosion testing, construction of a 100 kWth POC test facility, and experimental testing. The results of this project have advanced the technology readiness level (TRL) of the SPOC technology from 1 to 5.« less

  11. Expanding Robust HCCI Operation with Advanced Valve and Fuel Control Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, J. P.; Confer, K.

    2012-09-11

    Delphi Automotive Systems and ORNL established this CRADA to advance the commercialization potential of the homogeneous charge compression ignition (HCCI) advanced combustion strategy for gasoline engine platforms. HCCI combustion has been shown by others to produce high diesel-like efficiency on a gasoline engine platform while simultaneously producing low NOX and particulate matter emissions. However, the commercialization barriers that face HCCI combustion are significant, with requirements for a more active engine control system, likely with next-cycle closed-loop feedback control, and with advanced valve train technologies to enable negative valve overlap conditions. In the partnership between Delphi and ORNL, each organization broughtmore » a unique and complementary set of skills to the project. Delphi has made a number of breakthroughs with production-intent valve train technologies and controls in recent years to make a part time production-intent HCCI engine plausible. ORNL has extensive knowledge and expertise with HCCI combustion, and also has a versatile research engine with hydraulic valve actuation (HVA) that is useful for guiding production of a cam-based HCCI system. Partnering these knowledge bases and capabilities was essential towards making progress to better understand HCCI combustion and the commercialization barriers that it faces. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided guidance to ORNL regarding operational strategies to investigate on their single-cylinder research engine with HVA and data from their experimental multi-cylinder engine for modeling. ORNL provided single-cylinder engine data and modeling results.« less

  12. Microgravity Smoldering Combustion Takes Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Microgravity Smoldering Combustion (MSC) experiment lifted off aboard the Space Shuttle Endeavour in September 1995 on the STS-69 mission. This experiment is part of series of studies focused on the smolder characteristics of porous, combustible materials in a microgravity environment. Smoldering is a nonflaming form of combustion that takes place in the interior of combustible materials. Common examples of smoldering are nonflaming embers, charcoal briquettes, and cigarettes. The objective of the study is to provide a better understanding of the controlling mechanisms of smoldering, both in microgravity and Earth gravity. As with other forms of combustion, gravity affects the availability of air and the transport of heat, and therefore, the rate of combustion. Results of the microgravity experiments will be compared with identical experiments carried out in Earth's gravity. They also will be used to verify present theories of smoldering combustion and will provide new insights into the process of smoldering combustion, enhancing our fundamental understanding of this frequently encountered combustion process and guiding improvement in fire safety practices.

  13. Lump wood combustion process

    NASA Astrophysics Data System (ADS)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  14. Sound quality assessment of Diesel combustion noise using in-cylinder pressure components

    NASA Astrophysics Data System (ADS)

    Payri, F.; Broatch, A.; Margot, X.; Monelletta, L.

    2009-01-01

    The combustion process in direct injection (DI) Diesel engines is an important source of noise, and it is thus the main reason why end-users could be reluctant to drive vehicles powered with this type of engine. This means that the great potential of Diesel engines for environment preservation—due to their lower consumption and the subsequent reduction of CO2 emissions—may be lost. Moreover, the advanced combustion concepts—e.g. the HCCI (homogeneous charge compression ignition)—developed to comply with forthcoming emissions legislation, while maintaining the efficiency of current engines, are expected to be noisier because they are characterized by a higher amount of premixed combustion. For this reason many efforts have been dedicated by car manufacturers in recent years to reduce the overall level and improve the sound quality of engine noise. Evaluation procedures are required, both for noise levels and sound quality, that may be integrated in the global engine development process in a timely and cost-effective manner. In previous published work, the authors proposed a novel method for the assessment of engine noise level. A similar procedure is applied in this paper to demonstrate the suitability of combustion indicators for the evaluation of engine noise quality. These indicators, which are representative of the peak velocity of fuel burning and the resonance in the combustion chamber, are well correlated with the combustion noise mark obtained from jury testing. Quite good accuracy in the prediction of the engine noise quality has been obtained with the definition of a two-component regression, which also permits the identification of the combustion process features related to the resulting noise quality, so that corrective actions may be proposed.

  15. Numerical modeling of spray combustion with an advanced VOF method

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul

    1995-01-01

    This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.

  16. Advanced expander test bed engine

    NASA Technical Reports Server (NTRS)

    Mitchell, J. P.

    1992-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high pressure expander cycle concept, study system interactions, and conduct studies of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  17. Combustion Research aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Astrophysics Data System (ADS)

    Sutliff, T. J.; Otero, A. M.; Urban, D. L.

    2002-01-01

    The Physical Sciences Research Program of NASA has chartered a broad suite of peer-reviewed research investigating both fundamental combustion phenomena and applied combustion research topics. Fundamental research provides insights to develop accurate simulations of complex combustion processes and allows developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion (fires, explosions). The applied research benefit humans living and working in space through its fire safety program. The Combustion Science Discipline is implementing a structured flight research program utilizing the International Space Station (ISS) and two of its premier facilities, the Combustion Integrated Rack of the Fluids and Combustion Facility and the Microgravity Science Glovebox to conduct this space-based research. This paper reviews the current vision of Combustion Science research planned for International Space Station implementation from 2003 through 2012. A variety of research efforts in droplets and sprays, solid-fuels combustion, and gaseous combustion have been independently selected and critiqued through a series of peer-review processes. During this period, while both the ISS carrier and its research facilities are under development, the Combustion Science Discipline has synergistically combined research efforts into sub-topical areas. To conduct this research aboard ISS in the most cost effective and resource efficient manner, the sub-topic research areas are implemented via a multi-user hardware approach. This paper also summarizes the multi-user hardware approach and recaps the progress made in developing these research hardware systems. A balanced program content has been developed to maximize the production of fundamental and applied combustion research results within the current budgetary and ISS operational resource constraints. Decisions on utilizing the

  18. Combustion of liquid paint wastes in fluidized bed boiler as element of waste management system in the paint factory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soko, W.A.; Biaecka, B.

    1998-12-31

    In this paper the solution to waste problems in the paint industry is presented by describing their combustion in a fluidized bed boiler as a part of the waste management system in the paint factory. Based on the Cleaner Production idea and concept of integration of design process with a future exploitation of equipment, some modifications of the waste management scheme in the factory are discussed to reduce the quantity of toxic wastes. To verify this concept combustion tests of paint production wastes and cocombustion of paint wastes with coal in an adopted industrial boiler were done. Results of thesemore » tests are presented in the paper.« less

  19. View of Soviet ionospheric modification research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, L.M.; Showen, R.L.

    1990-10-01

    We have reviewed and provided a technical assessment of Soviet research of the past five to ten years in ionospheric modification by high-power radio waves. This review includes a comprehensive survey of Soviet published literature, conference proceedings, and direct discussions with the involved Soviet researchers. The current state of the art for Soviet research in this field is evaluated, identifying areas of potential breakthrough discoveries, and discussing implications of this work for emerging technologies and future applications. This assessment is divided into the categories of basic research, advanced research, and applications. Basic research is further subdivided into studies of themore » modified natural geophysical environment, nonlinear plasma physics, and polar geophysical studies. Advanced research topics include the generation of artificial ionization mirrors and high-power oblique propagation effects. A separate comparative assessment of Soviet theoretical work also is included in this analysis. Our evaluation of practical and potential applications of this research discusses the utility of ionospheric modification in creating disturbed radio wave propagation environments, and its role in current and future remote-sensing and telecommunications systems. This technical assessment does not include consideration of ionospheric modification by means other than high-power radio waves. The Soviet effort in ionospheric modification sustains theoretical and experimental research at activity levels considerably greater than that found in comparable programs in the West. Notable strengths of the Soviet program are its breadth of coverage, large numbers of scientific participation, theoretical creativity and insight, and its powerful radio wave transmitting facilities.« less

  20. Theory-based modifications of an advanced notification letter improves screening for bowel cancer in men: A randomised controlled trial.

    PubMed

    Zajac, Ian T; Duncan, Amy C; Flight, Ingrid; Wittert, Gary A; Cole, Stephen R; Young, Graeme P; Wilson, Carlene J; Turnbull, Deborah A

    2016-09-01

    Male participation in screening for bowel cancer is sub-optimal. Theory-based interventions provide a means of improving screening uptake. To test the efficacy of modifying consumer invitation material in line with continuum and stage theories of health behaviour on screening participation. N = 9216 Australian men aged 50-74 years were randomised to one of four trial arms in a 2 × 2 factorial design randomised controlled trial. Participants received either standard invitation material (control group), or combinations of modified advance-notification and invitation letters. A subsample completed baseline and endpoint behavioural surveys. Participants who received the modified advance notification letter were 12% more likely to screen than those who received the standard version (RR = 1.12, χ(2)(1) = 10.38, p = 0.001). The modified invitation letter did not impact screening uptake (RR = 0.97, χ(2)(1) = 0.63, p = 0.424). No significant changes in psychological variables due to the intervention were observed. Modifications to advance notification letters in line with health behaviour theories significantly improves screening uptake in men. Australian New Zealand Clinical Trials Registry: ACTRN12612001122842 https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=362688. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Heat regenerative external combustion engine

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1993-03-01

    It is an object of the invention to provide an external combustion expander-type engine having improved efficiency. It is another object of the invention to provide an external combustion engine in which afterburning in the exhaust channel is substantially prevented. Yet another object of the invention is to provide an external combustion engine which is less noisy than an external combustion engine of conventional design. These and other objects of the invention will become more apparent from the following description. The above objects of the invention are realized by providing a heat regenerative external combustion engine. The heat regenerative external combustion engine of the invention comprises a combustion chamber for combusting a monopropellant fuel in order to form an energized gas. The energized gas is then passed through a rotary valve to a cylinder having a reciprocating piston disposed therein. The gas is spent in moving the piston, thereby driving a drive shaft.

  2. Chemical methods for encoding and decoding of posttranslational modifications

    PubMed Central

    Chuh, Kelly N.; Batt, Anna R.; Pratt, Matthew R.

    2016-01-01

    A large array of posttranslational modifications can dramatically change the properties of proteins and influence different aspects of their biological function such as enzymatic activity, binding interactions, and proteostasis. Despite the significant knowledge that has been gained about the function of posttranslational modifications using traditional biological techniques, the analysis of the site-specific effects of a particular modification, the identification of the full compliment of modified proteins in the proteome, and the detection of new types of modifications remains challenging. Over the years, chemical methods have contributed significantly in both of these areas of research. This review highlights several posttranslational modifications where chemistry-based approaches have made significant contributions to our ability to both prepare homogeneously modified proteins and identify and characterize particular modifications in complex biological settings. As the number and chemical diversity of documented posttranslational modifications continues to rise, we believe that chemical strategies will be essential to advance the field in years to come. PMID:26933738

  3. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. A robust framework to predict mercury speciation in combustion flue gases.

    PubMed

    Ticknor, Jonathan L; Hsu-Kim, Heileen; Deshusses, Marc A

    2014-01-15

    Mercury emissions from coal combustion have become a global concern as growing energy demands have increased the consumption of coal. The effective implementation of treatment technologies requires knowledge of mercury speciation in the flue gas, namely concentrations of elemental, oxidized and particulate mercury at the exit of the boiler. A model that can accurately predict mercury species in flue gas would be very useful in that context. Here, a Bayesian regularized artificial neural network (BRANN) that uses five coal properties and combustion temperature was developed to predict mercury speciation in flue gases before treatment technology implementation. The results of the model show that up to 97 percent of the variation in mercury species concentration is captured through the use of BRANNs. The BRANN model was used to conduct a parametric sensitivity which revealed that the coal chlorine content and coal calorific value were the most sensitive parameters, followed by the combustion temperature. The coal sulfur content was the least important parameter. The results demonstrate the applicability of BRANNs for predicting mercury concentration and speciation in combustion flue gas and provide a more efficient and effective technique when compared to other advanced non-mechanistic modeling strategies. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Method and apparatus for active control of combustion rate through modulation of heat transfer from the combustion chamber wall

    DOEpatents

    Roberts, Jr., Charles E.; Chadwell, Christopher J.

    2004-09-21

    The flame propagation rate resulting from a combustion event in the combustion chamber of an internal combustion engine is controlled by modulation of the heat transfer from the combustion flame to the combustion chamber walls. In one embodiment, heat transfer from the combustion flame to the combustion chamber walls is mechanically modulated by a movable member that is inserted into, or withdrawn from, the combustion chamber thereby changing the shape of the combustion chamber and the combustion chamber wall surface area. In another embodiment, heat transfer from the combustion flame to the combustion chamber walls is modulated by cooling the surface of a portion of the combustion chamber wall that is in close proximity to the area of the combustion chamber where flame speed control is desired.

  6. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  7. Advanced research and technology program for advanced high pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  8. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Technical Reports Server (NTRS)

    Marsik, S. J.; Morea, S. F.

    1985-01-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  9. Advanced research and technology programs for advanced high-pressure oxygen-hydrogen rocket propulsion

    NASA Astrophysics Data System (ADS)

    Marsik, S. J.; Morea, S. F.

    1985-03-01

    A research and technology program for advanced high pressure, oxygen-hydrogen rocket propulsion technology is presently being pursued by the National Aeronautics and Space Administration (NASA) to establish the basic discipline technologies, develop the analytical tools, and establish the data base necessary for an orderly evolution of the staged combustion reusable rocket engine. The need for the program is based on the premise that the USA will depend on the Shuttle and its derivative versions as its principal Earth-to-orbit transportation system for the next 20 to 30 yr. The program is focused in three principal areas of enhancement: (1) life extension, (2) performance, and (3) operations and diagnosis. Within the technological disciplines the efforts include: rotordynamics, structural dynamics, fluid and gas dynamics, materials fatigue/fracture/life, turbomachinery fluid mechanics, ignition/combustion processes, manufacturing/producibility/nondestructive evaluation methods and materials development/evaluation. An overview of the Advanced High Pressure Oxygen-Hydrogen Rocket Propulsion Technology Program Structure and Working Groups objectives are presented with highlights of several significant achievements.

  10. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  11. Spectral modeling of radiation in combustion systems

    NASA Astrophysics Data System (ADS)

    Pal, Gopalendu

    involves interactions between the local particle and energy emitted by all other particles and, hence, cannot be obtained from particle ensembles directly. To close the nonlinear coupling between turbulence and absorption, i.e., "absorption TRI", an optically thin fluctuation approximation can be applied to virtually all combustion problems and obtain acceptable accuracy. In the present study a composition-PDF method is applied, in which only the temperature and the species concentrations are treated as random variables. A closely coupled hybrid finite-volume/Monte Carlo scheme is adopted, in which the Monte Carlo method is used to solve the composition-PDF for chemical reactions and the finite volume method is used to solve for the flow field and radiation. Spherical harmonics method-based finite volume solvers (P-1 and P-3) are developed using the data structures of the high fidelity open-source code flow software OpenFOAM. Spectral radiative properties of the participating medium are modeled using full-spectrum k-distribution methods. Advancements of basic k-distribution methods are performed for nongray nonhomogeneous gas- and particulate-phase (soot, fuel droplets, ash, etc.) participating media using multi-scale and multi-group based approaches. These methods achieve close-to benchmark line-by-line (LBL) accuracy in strongly inhomogeneous media at a tiny fraction of LBL's computational cost. A portable spectral module is developed, which includes all the basic to advanced k-distribution methods along with the precompiled accurate and compact k-distribution databases. The P-1 /P-3 RTE solver coupled with the spectral module is used in conjunction with the combined Reynolds-averaged Navier-Stokes (RANS) and composition-PDF-based turbulence-chemistry solver to investigate TRI in multiphase turbulent combustion systems. The combustion solvers developed in this study is employed to simulate several turbulent jet flames, such as Sandia Flame D, and artificial nonsooting

  12. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    EPA Science Inventory

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  13. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2008-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2's support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed in the early 1960s to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Exhaust system performance, including understanding the present facility capabilities, is the primary focus of this work. A variety of approaches and analytical tools are being employed to gain this understanding. This presentation discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  14. Proposed Facility Modifications to Support Propulsion Systems Testing Under Simulated Space Conditions at Plum Brook Station's Spacecraft Propulsion Research Facility (B-2)

    NASA Technical Reports Server (NTRS)

    Edwards, Daryl A.

    2007-01-01

    Preparing NASA's Plum Brook Station's Spacecraft Propulsion Research Facility (B-2) to support NASA's new generation of launch vehicles has raised many challenges for B-2 s support staff. The facility provides a unique capability to test chemical propulsion systems/vehicles while simulating space thermal and vacuum environments. Designed and constructed 4 decades ago to support upper stage cryogenic engine/vehicle system development, the Plum Brook Station B-2 facility will require modifications to support the larger, more powerful, and more advanced engine systems for the next generation of vehicles leaving earth's orbit. Engine design improvements over the years have included large area expansion ratio nozzles, greater combustion chamber pressures, and advanced materials. Consequently, it has become necessary to determine what facility changes are required and how the facility can be adapted to support varying customers and their specific test needs. Instrumental in this task is understanding the present facility capabilities and identifying what reasonable changes can be implemented. A variety of approaches and analytical tools are being employed to gain this understanding. This paper discusses some of the challenges in applying these tools to this project and expected facility configuration to support the varying customer needs.

  15. LES Modeling of Supersonic Combustion at SCRAMJET Conditions

    NASA Astrophysics Data System (ADS)

    Vane, Zachary; Lacaze, Guilhem; Oefelein, Joseph

    2016-11-01

    Results from a series of large-eddy simulations (LES) of the Hypersonic International Flight Research Experiment (HIFiRE) are examined with emphasis placed on the coupled performance of the wall and combustion models. The test case of interest corresponds to the geometry and conditions found in the ground based experiments performed in the HIFiRE Direct Connect Rig (HDCR) in dual-mode operation. In these calculations, the turbulence and mixing characteristics of the high Reynolds number turbulent boundary layer with multi-species fuel injection are analyzed using a simplified chemical model and combustion closure to predict the heat release measured experimentally. These simulations are then used to identify different flame regimes in the combustor section. Concurrently, the performance of an equilibrium wall-model is evaluated in the vicinity of the fuel injectors and in the flame-holding cavity where regions of boundary layer and thermochemical non-equilibrium are present. Support for this research was provided by the Defense Advanced Research Projects Agency (DARPA).

  16. Combustion Of Interacting Droplet Arrays In Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Struk, P. M.; Ikegami, M.; Xu, G.

    2003-01-01

    Theory and experiments involving single droplet combustion date back to 1953, with the first microgravity work appearing in 1956. The problem of a spherical droplet burning in an infinite, quiescent microgravity environment is a classical problem in combustion research with the classical solution appearing in nearly every textbook on combustion. The microgravity environment offered by ground-based facilities such as drop towers and space-based facilities is ideal for studying the problem experimentally. A recent review by Choi and Dryer shows significant advances in droplet combustion have been made by studying the problem experimentally in microgravity and comparing the results to one dimensional theoretical and numerical treatments of the problem. Studying small numbers of interacting droplets in a well-controlled geometry represents a logical step in extending single droplet investigations to more practical spray configurations. Studies of droplet interactions date back to Rex and co-workers, and were recently summarized by Annamalai and Ryan. All previous studies determined the change in the burning rate constant, k, or the flame characteristics as a result of interactions. There exists almost no information on how droplet interactions a effect extinction limits, and if the extinction limits change if the array is in the diffusive or the radiative extinction regime. Thus, this study examined experimentally the effect that droplet interactions have on the extinction process by investigating the simplest array configuration, a binary droplet array. The studies were both in normal gravity, reduced pressure ambients and microgravity facilities. The microgravity facilities were the 2.2 and 5.2 second drop towers at the NASA Glenn Research Center and the 10 second drop tower at the Japan Microgravity Center. The experimental apparatus and the data analysis techniques are discussed in detail elsewhere.

  17. Pollution reduction technology program for small jet aircraft engines, phase 1

    NASA Technical Reports Server (NTRS)

    Bruce, T. W.; Davis, F. G.; Kuhn, T. E.; Mongia, H. C.

    1977-01-01

    A series of combustor pressure rig screening tests was conducted on three combustor concepts applied to the TFE731-2 turbofan engine combustion system for the purpose of evaluating their relative emissions reduction potential consistent with prescribed performance, durability, and envelope contraints. The three concepts and their modifications represented increasing potential for reducing emission levels with the penalty of increased hardware complexity and operational risk. Concept 1 entailed advanced modifications to the present production TFE731-2 combustion system. Concept 2 was based on the incorporation of an axial air-assisted airblast fuel injection system. Concept 3 was a staged premix/prevaporizing combustion system. Significant emissions reductions were achieved in all three concepts, consistent with acceptable combustion system performance. Concepts 2 and 3 were identified as having the greatest achievable emissions reduction potential, and were selected to undergo refinement to prepare for ultimate incorporation within an engine.

  18. Recent advances in genetic modification systems for Actinobacteria.

    PubMed

    Deng, Yu; Zhang, Xi; Zhang, Xiaojuan

    2017-03-01

    Actinobacteria are extremely important to human health, agriculture, and forests. Because of the vast differences of the characteristics of Actinobacteria, a lot of genetic tools have been developed for efficiently manipulating the genetics. Although there are a lot of successful examples of engineering Actinobacteria, they are still more difficult to be genetically manipulated than other model microorganisms such as Saccharomyces cerevisiae, Escherichia coli, and Bacillus subtilis etc. due to the diverse genomics and biochemical machinery. Here, we review the methods to introduce heterologous DNA into Actinobacteria and the available genetic modification tools. The trends and problems existing in engineering Actinobacteria are also covered.

  19. A Feasibility Study for Advanced Technology Integration for General Aviation.

    DTIC Science & Technology

    1980-05-01

    154 4.5.9.4 Stratified Charge Reciprocating Engine ..... .. 155 4.5.9.5 Advanced Diesel Engine . ... 158 4.5.9.6 Liquid Cooling ... ........ 159... diesel , rotary combustion engine, advanced reciprocating engine concepts. (7) Powerplant control - integrated controls, microprocessor- based controls...Research Center Topics. (1) GATE (2) Positive displacement engines (a) Advanced reciprocating engines. (b) Alternative engine systems Diesel engines

  20. Epigenetic Modifications in Essential Hypertension

    PubMed Central

    Wise, Ingrid A.; Charchar, Fadi J.

    2016-01-01

    Essential hypertension (EH) is a complex, polygenic condition with no single causative agent. Despite advances in our understanding of the pathophysiology of EH, hypertension remains one of the world’s leading public health problems. Furthermore, there is increasing evidence that epigenetic modifications are as important as genetic predisposition in the development of EH. Indeed, a complex and interactive genetic and environmental system exists to determine an individual’s risk of EH. Epigenetics refers to all heritable changes to the regulation of gene expression as well as chromatin remodelling, without involvement of nucleotide sequence changes. Epigenetic modification is recognized as an essential process in biology, but is now being investigated for its role in the development of specific pathologic conditions, including EH. Epigenetic research will provide insights into the pathogenesis of blood pressure regulation that cannot be explained by classic Mendelian inheritance. This review concentrates on epigenetic modifications to DNA structure, including the influence of non-coding RNAs on hypertension development. PMID:27023534

  1. Equipment concept design and development plans for microgravity science and applications research on space station: Combustion tunnel, laser diagnostic system, advanced modular furnace, integrated electronics laboratory

    NASA Technical Reports Server (NTRS)

    Uhran, M. L.; Youngblood, W. W.; Georgekutty, T.; Fiske, M. R.; Wear, W. O.

    1986-01-01

    Taking advantage of the microgravity environment of space NASA has initiated the preliminary design of a permanently manned space station that will support technological advances in process science and stimulate the development of new and improved materials having applications across the commercial spectrum. Previous studies have been performed to define from the researcher's perspective, the requirements for laboratory equipment to accommodate microgravity experiments on the space station. Functional requirements for the identified experimental apparatus and support equipment were determined. From these hardware requirements, several items were selected for concept designs and subsequent formulation of development plans. This report documents the concept designs and development plans for two items of experiment apparatus - the Combustion Tunnel and the Advanced Modular Furnace, and two items of support equipment the Laser Diagnostic System and the Integrated Electronics Laboratory. For each concept design, key technology developments were identified that are required to enable or enhance the development of the respective hardware.

  2. Subgrid Combustion Modeling for the Next Generation National Combustion Code

    NASA Technical Reports Server (NTRS)

    Menon, Suresh; Sankaran, Vaidyanathan; Stone, Christopher

    2003-01-01

    In the first year of this research, a subgrid turbulent mixing and combustion methodology developed earlier at Georgia Tech has been provided to researchers at NASA/GRC for incorporation into the next generation National Combustion Code (called NCCLES hereafter). A key feature of this approach is that scalar mixing and combustion processes are simulated within the LES grid using a stochastic 1D model. The subgrid simulation approach recovers locally molecular diffusion and reaction kinetics exactly without requiring closure and thus, provides an attractive feature to simulate complex, highly turbulent reacting flows of interest. Data acquisition algorithms and statistical analysis strategies and routines to analyze NCCLES results have also been provided to NASA/GRC. The overall goal of this research is to systematically develop and implement LES capability into the current NCC. For this purpose, issues regarding initialization and running LES are also addressed in the collaborative effort. In parallel to this technology transfer effort (that is continuously on going), research has also been underway at Georgia Tech to enhance the LES capability to tackle more complex flows. In particular, subgrid scalar mixing and combustion method has been evaluated in three distinctly different flow field in order to demonstrate its generality: (a) Flame-Turbulence Interactions using premixed combustion, (b) Spatially evolving supersonic mixing layers, and (c) Temporal single and two-phase mixing layers. The configurations chosen are such that they can be implemented in NCCLES and used to evaluate the ability of the new code. Future development and validation will be in spray combustion in gas turbine engine and supersonic scalar mixing.

  3. Rare Earth Ion-Doped Upconversion Nanocrystals: Synthesis and Surface Modification

    PubMed Central

    Chang, Hongjin; Xie, Juan; Zhao, Baozhou; Liu, Botong; Xu, Shuilin; Ren, Na; Xie, Xiaoji; Huang, Ling; Huang, Wei

    2014-01-01

    The unique luminescent properties exhibited by rare earth ion-doped upconversion nanocrystals (UCNPs), such as long lifetime, narrow emission line, high color purity, and high resistance to photobleaching, have made them widely used in many areas, including but not limited to high-resolution displays, new-generation information technology, optical communication, bioimaging, and therapy. However, the inherent upconversion luminescent properties of UCNPs are influenced by various parameters, including the size, shape, crystal structure, and chemical composition of the UCNPs, and even the chosen synthesis process and the surfactant molecules used. This review will provide a complete summary on the synthesis methods and the surface modification strategies of UCNPs reported so far. Firstly, we summarize the synthesis methodologies developed in the past decades, such as thermal decomposition, thermal coprecipitation, hydro/solvothermal, sol-gel, combustion, and microwave synthesis. In the second part, five main streams of surface modification strategies for converting hydrophobic UCNPs into hydrophilic ones are elaborated. Finally, we consider the likely directions of the future development and challenges of the synthesis and surface modification, such as the large-scale production and actual applications, stability, and so on, of the UCNPs. PMID:28346995

  4. Multi-Dimensional Measurements of Combustion Species in Flame Tube and Sector Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda Royce

    1996-01-01

    The higher temperature and pressure cycles of future aviation gas turbine combustors challenge designers to produce combustors that minimize their environmental impact while maintaining high operation efficiency. The development of low emissions combustors includes the reduction of unburned hydrocarbons, smoke, and particulates, as well as the reduction of oxides of nitrogen (NO(x)). In order to better understand and control the mechanisms that produce emissions, tools are needed to aid the development of combustor hardware. Current methods of measuring species within gas turbine combustors use extractive sampling of combustion gases to determine major species concentrations and to infer the bulk flame temperature. These methods cannot be used to measure unstable combustion products and have poor spatial and temporal resolution. The intrusive nature of gas sampling may also disturb the flow structure within a combustor. Planar laser-induced fluorescence (PLIF) is an optical technique for the measurement of combustion species. In addition to its non-intrusive nature, PLIF offers these advantages over gas sampling: high spatial resolution, high temporal resolution, the ability to measure unstable species, and the potential to measure combustion temperature. This thesis considers PLIF for in-situ visualization of combustion species as a tool for the design and evaluation of gas turbine combustor subcomponents. This work constitutes the first application of PLIF to the severe environment found in liquid-fueled, aviation gas turbine combustors. Technical and applied challenges are discussed. PLIF of OH was used to observe the flame structure within the post flame zone of a flame tube combustor, and within the flame zone of a sector combustor, for a variety of fuel injector configurations. OH was selected for measurement because it is a major combustion intermediate, playing a key role in the chemistry of combustion, and because its presence within the flame zone can

  5. Advanced nozzle and engine components test facility

    NASA Technical Reports Server (NTRS)

    Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben

    1992-01-01

    A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.

  6. Combustion Dynamics and Stability Modeling of a Liquid Oxygen/RP-2 Oxygen-Rich Staged Combustion Preburner and Thrust Chamber Assembly with Gas-Centered Swirl Coaxial Injector Elements

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Kenny, R. J.; Protz, C. S.; Garcia, C. P.; Simpson, S. P.; Elmore, J. L.; Fischbach, S. R.; Giacomoni, C. B.; Hulka, J. R.

    2016-01-01

    The Combustion Stability Tool Development (CSTD) project, funded by the Air Force Space and Missile Systems Center, began in March 2015 supporting a renewed interest in the development of a liquid oxygen/hydrocarbon, oxygen-rich combustion engine. The project encompasses the design, assembly, and hot-fire testing of the NASA Marshall Space Flight Center 40-klbf Integrated Test Rig (MITR). The test rig models a staged-combustion configuration by combining an oxygen-rich preburner (ORPB), to generate hot gas, with a thrust chamber assembly (TCA) using gas-centered swirl coaxial injector elements. There are five separately designed interchangeable injectors in the TCA that each contain 19- or 27- injector elements. A companion paper in this JANNAF conference describes the design characteristics, rationale, and fabrication issues for all the injectors. The data acquired from a heavily instrumented rig encompasses several injectors, several operating points, and stability bomb tests. Another companion paper in this JANNAF conference describes this test program in detail. In this paper, dynamic data from the hot-fire testing is characterized and used to identify the responses in the ORPB and TCA. A brief review of damping metrics are discussed and applied as a measure of stability margin for damped acoustic modes. Chug and longitudinal combustion stability models and predictions are described which includes new dynamic models for compressible flow through an orifice and a modification to incorporate a third feed line for inclusion of the fuel-film coolant. Flow-acoustics finite element modeling is used to investigate the anticipated TCA acoustics, the effects of injector element length on stability margin, and the potential use of an ORPB orifice trip ring for improving longitudinal stability margin.

  7. Biofuels combustion.

    PubMed

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  8. Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerle, Wayne; Rutland, Chris; Rohlfing, Eric

    This report is based on a SC/EERE Workshop to Identify Research Needs and Impacts in Predictive Simulation for Internal Combustion Engines (PreSICE), held March 3, 2011, to determine strategic focus areas that will accelerate innovation in engine design to meet national goals in transportation efficiency. The U.S. has reached a pivotal moment when pressures of energy security, climate change, and economic competitiveness converge. Oil prices remain volatile and have exceeded $100 per barrel twice in five years. At these prices, the U.S. spends $1 billion per day on imported oil to meet our energy demands. Because the transportation sector accountsmore » for two-thirds of our petroleum use, energy security is deeply entangled with our transportation needs. At the same time, transportation produces one-quarter of the nation’s carbon dioxide output. Increasing the efficiency of internal combustion engines is a technologically proven and cost-effective approach to dramatically improving the fuel economy of the nation’s fleet of vehicles in the near- to mid-term, with the corresponding benefits of reducing our dependence on foreign oil and reducing carbon emissions. Because of their relatively low cost, high performance, and ability to utilize renewable fuels, internal combustion engines—including those in hybrid vehicles—will continue to be critical to our transportation infrastructure for decades. Achievable advances in engine technology can improve the fuel economy of automobiles by over 50% and trucks by over 30%. Achieving these goals will require the transportation sector to compress its product development cycle for cleaner, more efficient engine technologies by 50% while simultaneously exploring innovative design space. Concurrently, fuels will also be evolving, adding another layer of complexity and further highlighting the need for efficient product development cycles. Current design processes, using “build and test” prototype engineering, will

  9. Low emission internal combustion engine

    DOEpatents

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  10. An Overview of Low-Emission Combustion Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.; Lee, Chi-Ming

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  11. Improvement of fire-tube boilers calculation methods by the numerical modeling of combustion processes and heat transfer in the combustion chamber

    NASA Astrophysics Data System (ADS)

    Komarov, I. I.; Rostova, D. M.; Vegera, A. N.

    2017-11-01

    This paper presents the results of study on determination of degree and nature of influence of operating conditions of burner units and flare geometric parameters on the heat transfer in a combustion chamber of the fire-tube boilers. Change in values of the outlet gas temperature, the radiant and convective specific heat flow rate with appropriate modification of an expansion angle and a flare length was determined using Ansys CFX software package. Difference between values of total heat flow and bulk temperature of gases at the flue tube outlet calculated using the known methods for thermal calculation and defined during the mathematical simulation was determined. Shortcomings of used calculation methods based on the results of a study conducted were identified and areas for their improvement were outlined.

  12. Transient flow combustion

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1984-01-01

    Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.

  13. The Effects of Gravity on Combustion and Structure Formation During Combustion Synthesis in Gasless Systems

    NASA Technical Reports Server (NTRS)

    Varma, Arvind; Mukasyan, Alexander; Pelekh, Aleksey

    1997-01-01

    There have been relatively few publications examining the role of gravity during combustion synthesis (CS), mostly involving thermite systems. The main goal of this research was to study the influence of gravity on the combustion characteristics of heterogeneous gasless systems. In addition, some aspects of microstructure formation processes which occur during gasless CS were also studied. Four directions for experimental investigation have been explored: (1) the influence of gravity force on the characteristic features of heterogeneous combustion wave propagation (average velocity, instantaneous velocities, shape of combustion front); (2) the combustion of highly porous mixtures (with porosity greater than that for loose powders), which cannot be obtained in normal gravity; (3) the effect of gravity on sample expansion during combustion, in order to produce highly porous materials under microgravity conditions; and (4) the effect of gravity on the structure formation mechanism during the combustion synthesis of poreless composite materials.

  14. Droplet evaporation and combustion in a liquid-gas multiphase system

    NASA Astrophysics Data System (ADS)

    Muradoglu, Metin; Irfan, Muhammad

    2017-11-01

    Droplet evaporation and combustion in a liquid-gas multiphase system are studied computationally using a front-tracking method. One field formulation is used to solve the flow, energy and species equations with suitable jump conditions. Both phases are assumed to be incompressible; however, the divergence-free velocity field condition is modified to account for the phase change at the interface. Both temperature and species gradient driven phase change processes are simulated. Extensive validation studies are performed using the benchmark cases: The Stefan and the sucking interface problems, d2 law and wet bulb temperature comparison with the psychrometric chart values. The phase change solver is then extended to incorporate the burning process following the evaporation as a first step towards the development of a computational framework for spray combustion. We used detailed chemistry, variable transport properties and ideal gas behaviour for a n-heptane droplet combustion; the chemical kinetics being handled by the CHEMKIN. An operator-splitting approach is used to advance temperature and species mass fraction in time. The numerical results of the droplet burning rate, flame temperature and flame standoff ratio show good agreement with the experimental and previous numeric.

  15. Investigation of the combustion kinetics and polycyclic aromatic hydrocarbon emissions from polycaprolactone combustion.

    PubMed

    Chien, Y C; Yang, S H

    2013-01-01

    Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.

  16. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  17. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1997-01-01

    Combustion is a key element of many critical technologies used by contemporary society. For example, electric power production, home heating, surface and air transportation, space propulsion, and materials synthesis all utilize combustion as a source of energy. Yet, although combustion technology is vital to our standard of living, it poses great challenges to maintaining a habitable environment. For example, pollutants, atmospheric change and global warming, unwanted fires and explosions, and the incineration of hazardous wastes are major problem areas which would benefit from improved understanding of combustion. Effects of gravitational forces impede combustion studies more than most other areas of science since combustion involves production of high-temperature gases whose low density results in buoyant motion, vastly complicating the execution and interpretation of experiments. Effects of buoyancy are so ubiquitous that their enormous negative impact on the rational development of combustion science is generally not recognized. Buoyant motion also triggers the onset of turbulence, yielding complicating unsteady effects. Finally, gravity forces cause particles and drops to settle, inhibiting deconvoluted studies of heterogeneous flames important to furnace, incineration and power generation technologies. Thus, effects of buoyancy have seriously limited our capabilities to carry out 'clean' experiments needed for fundamental understanding of flame phenomena. Combustion scientists can use microgravity to simplify the study of many combustion processes, allowing fresh insights into important problems via a deeper understanding of elemental phenomena also found in Earth-based combustion processes and to additionally provide valuable information concerning how fires behave in microgravity and how fire safety on spacecraft can be enhanced.

  18. The Multi-User Droplet Combustion Apparatus: the Development and Integration Concept for Droplet Combustion Payloads in the Fluids and Combustion Facility Combustion Integrated Rack

    NASA Astrophysics Data System (ADS)

    Myhre, C. A.

    2002-01-01

    The Multi-user Droplet Combustion Apparatus (MDCA) is a multi-user facility designed to accommodate four different droplet combustion science experiments. The MDCA will conduct experiments using the Combustion Integrated Rack (CIR) of the NASA Glenn Research Center's Fluids and Combustion Facility (FCF). The payload is planned for the International Space Station. The MDCA, in conjunction with the CIR, will allow for cost effective extended access to the microgravity environment, not possible on previous space flights. It is currently in the Engineering Model build phase with a planned flight launch with CIR in 2004. This paper provides an overview of the capabilities and development status of the MDCA. The MDCA contains the hardware and software required to conduct unique droplet combustion experiments in space. It consists of a Chamber Insert Assembly, an Avionics Package, and a multiple array of diagnostics. Its modular approach permits on-orbit changes for accommodating different fuels, fuel flow rates, soot sampling mechanisms, and varying droplet support and translation mechanisms to accommodate multiple investigations. Unique diagnostic measurement capabilities for each investigation are also provided. Additional hardware provided by the CIR facility includes the structural support, a combustion chamber, utilities for the avionics and diagnostic packages, and the fuel mixing capability for PI specific combustion chamber environments. Common diagnostics provided by the CIR will also be utilized by the MDCA. Single combustible fuel droplets of varying sizes, freely deployed or supported by a tether are planned for study using the MDCA. Such research supports how liquid-fuel-droplets ignite, spread, and extinguish under quiescent microgravity conditions. This understanding will help us develop more efficient energy production and propulsion systems on Earth and in space, deal better with combustion generated pollution, and address fire hazards associated with

  19. Recent advances on Zeolite modification for direct alcohol fuel cells (DAFCs)

    NASA Astrophysics Data System (ADS)

    Makertihartha, I. G. B. N.; Zunita, M.; Rizki, Z.; Dharmawijaya, P. T.

    2017-03-01

    The increase of energy demand and global warming issues has driven studies of alternative energy sources. The polymer electrolyte membrane fuel cell (PEMFC) can be an alternative energy source by (partially) replacing the use of fossil fuel which is in line with the green technology concept. However, the usage of hydrogen as a fuel has several disadvantages mainly transportation and storage related to its safety aspects. Recently, alcohol has gained attention as an energy source for fuel cell application, namely direct alcohol fuel cell (DAFC). Among alcohols, high-mass energy density methanol and ethanol are widely used as direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC), respectively. Currently, the performance of DMFC is still rudimentary. Furthermore, the use of ethanol gives some additional privileges such as non-toxic property, renewable, ease of production in great quantity by the fermentation of sugar-containing raw materials. Direct alcohol fuel cell (DAFC) still has weakness in the low proton conductivity and high alcohol crossover. Therefore, to increase the performance of DAFC, modification using zeolite has been performed to improve proton conductivity and decrease alcohol crossover. Zeolite also has high thermal resistance properties, thereby increasing DAFC performance. This paper will discuss briefly about modification of catalyst and membrane for DAFC using zeolite. Zeolite modification effect on fuel cell performance especially proton conductivity and alcohol crossover will be presented in detail.

  20. Small-scale, self-propagating combustion realized with on-chip porous silicon.

    PubMed

    Piekiel, Nicholas W; Morris, Christopher J

    2015-05-13

    For small-scale energy applications, energetic materials represent a high energy density source that, in certain cases, can be accessed with a very small amount of energy input. Recent advances in microprocessing techniques allow for the implementation of a porous silicon energetic material onto a crystalline silicon wafer at the microscale; however, combustion at a small length scale remains to be fully investigated, particularly with regards to the limitations of increased relative heat loss during combustion. The present study explores the critical dimensions of an on-chip porous silicon energetic material (porous silicon + sodium perchlorate (NaClO4)) required to propagate combustion. We etched ∼97 μm wide and ∼45 μm deep porous silicon channels that burned at a steady rate of 4.6 m/s, remaining steady across 90° changes in direction. In an effort to minimize the potential on-chip footprint for energetic porous silicon, we also explored the minimum spacing between porous silicon channels. We demonstrated independent burning of porous silicon channels at a spacing of <40 μm. Using this spacing, it was possible to have a flame path length of >0.5 m on a chip surface area of 1.65 cm(2). Smaller porous silicon channels of ∼28 μm wide and ∼14 μm deep were also utilized. These samples propagated combustion, but at times, did so unsteadily. This result may suggest that we are approaching a critical length scale for self-propagating combustion in a porous silicon energetic material.

  1. Biofuels combustion*

    DOE PAGES

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  2. Advances in identification and validation of protein targets of natural products without chemical modification.

    PubMed

    Chang, J; Kim, Y; Kwon, H J

    2016-05-04

    Covering: up to February 2016Identification of the target proteins of natural products is pivotal to understanding the mechanisms of action to develop natural products for use as molecular probes and potential therapeutic drugs. Affinity chromatography of immobilized natural products has been conventionally used to identify target proteins, and has yielded good results. However, this method has limitations, in that labeling or tagging for immobilization and affinity purification often result in reduced or altered activity of the natural product. New strategies have recently been developed and applied to identify the target proteins of natural products and synthetic small molecules without chemical modification of the natural product. These direct and indirect methods for target identification of label-free natural products include drug affinity responsive target stability (DARTS), stability of proteins from rates of oxidation (SPROX), cellular thermal shift assay (CETSA), thermal proteome profiling (TPP), and bioinformatics-based analysis of connectivity. This review focuses on and reports case studies of the latest advances in target protein identification methods for label-free natural products. The integration of newly developed technologies will provide new insights and highlight the value of natural products for use as biological probes and new drug candidates.

  3. Analyses of Longitudinal Mode Combustion Instability in J-2X Gas Generator Development

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Casiano, M. J.; Kenny, R. J.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) and Pratt & Whitney Rocketdyne are developing a liquid oxygen/liquid hydrogen rocket engine for future upper stage and trans-lunar applications. This engine, designated the J-2X, is a higher pressure, higher thrust variant of the Apollo-era J-2 engine. The contract for development was let to Pratt & Whitney Rocketdyne in 2006. Over the past several years, development of the gas generator for the J-2X engine has progressed through a variety of workhorse injector, chamber, and feed system configurations on the component test stand at the NASA Marshall Space Flight Center (MSFC). Several of the initial configurations resulted in combustion instability of the workhorse gas generator assembly at a frequency near the first longitudinal mode of the combustion chamber. In this paper, several aspects of these combustion instabilities are discussed, including injector, combustion chamber, feed system, and nozzle influences. To ensure elimination of the instabilities at the engine level, and to understand the stability margin, the gas generator system has been modeled at the NASA MSFC with two techniques, the Rocket Combustor Interaction Design and Analysis (ROCCID) code and a lumped-parameter MATLAB(TradeMark) model created as an alternative calculation to the ROCCID methodology. To correctly predict the instability characteristics of all the chamber and injector geometries and test conditions as a whole, several inputs to the submodels in ROCCID and the MATLAB(TradeMark) model were modified. Extensive sensitivity calculations were conducted to determine how to model and anchor a lumped-parameter injector response, and finite-element and acoustic analyses were conducted on several complicated combustion chamber geometries to determine how to model and anchor the chamber response. These modifications and their ramification for future stability analyses of this type are discussed.

  4. Comparing the greenhouse gas emissions from three alternative waste combustion concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vainikka, Pasi, E-mail: pasi.vainikka@vtt.fi; Tsupari, Eemeli; Sipilae, Kai

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Significant GHG reductions are possible by efficient WtE technologies. Black-Right-Pointing-Pointer CHP and high power-to-heat ratio provide significant GHG savings. Black-Right-Pointing-Pointer N{sub 2}O and coal mine type are important in LCA GHG emissions of FBC co-combustion. Black-Right-Pointing-Pointer Substituting coal and fuel oil by waste is beneficial in electricity and heat production. Black-Right-Pointing-Pointer Substituting natural gas by waste may not be reasonable in CHP generation. - Abstract: Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system.more » The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO{sub 2}-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not

  5. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  6. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  7. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  8. Analytical investigation of thermal barrier coatings for advanced power generation combustion turbines

    NASA Technical Reports Server (NTRS)

    Amos, D. J.

    1977-01-01

    An analytical evaluation was conducted to determine quantitatively the improvement potential in cycle efficiency and cost of electricity made possible by the introduction of thermal barrier coatings to power generation combustion turbine systems. The thermal barrier system, a metallic bond coat and yttria stabilized zirconia outer layer applied by plasma spray techniques, acts as a heat insulator to provide substantial metal temperature reductions below that of the exposed thermal barrier surface. The study results show the thermal barrier to be a potentially attractive means for improving performance and reducing cost of electricity for the simple, recuperated, and combined cycles evaluated.

  9. Bioaccumulation and effects of metals and trace elements from aquatic disposal of coal combustion residues: recent advances and recommendations for further study.

    PubMed

    Rowe, Christopher L

    2014-07-01

    Advances have been made recently in assessing accumulation and effects of coal combustion residues (CCR). I provide a brief review of recent advancements, provide a tabulated summary of results of recent work, and put forth recommendations for future studies. One advancement is that mercury accumulation has begun to receive (limited) attention, whereas it had rarely been considered in the past. Additionally, some constituents of CCR have been shown to be accumulated by adults and transferred to offspring, sometimes compromising offspring health. Studies have demonstrated that amphibians, possessing complex life cycles, may accumulate and transfer some contaminants to terrestrial systems. Some study has been given to molecular and cellular effects of CCR exposure, although these studies have been limited to invertebrates. Population models have also been applied to CCR affected systems and have shown that CCR may affect animal populations under some conditions. In light of these advancements, there are several topics that require further assessment. First, more attention to Hg and its dynamics in CCR affected systems is warranted. Hg can be highly accumulative and toxic under some conditions and may interact with other components of CCR (notably Se), perhaps altering accumulation and effects of the contaminant mixtures. Second, further investigation of maternal transfer and effects of CCR contaminants need to be conducted. These studies could benefit from incorporation of quantitative models to project impacts on populations. Finally, more attention to the organic constituents of CCR (PAHs) is required, as a focus on inorganic compounds only may restrict our knowledge of contaminant dynamics and effects as a whole. While further studies will shed light on some chemical and biological nuances of exposure and effect, information available to date from numerous study sites implicates CCR as a bulk effluent that presents risks of bioaccumulation and effects on organisms

  10. Combustion Mechanisms of Solids

    DTIC Science & Technology

    1992-02-24

    ELEMENT NO. NO NO ACCESSION NO Arlington, VA 22217-5000 11 TITLE (include Security Classification) COMBUSTION MECHANISMS OF SOLIDS 12. PERSONAL AUTHOR(S...FIELD GROUP I SUB-GROUP COMBUSTION , SOLID PROPELLANT 19 ABSTRACT (Continue on reverse if necessary and identify by block number) This report...ingredients tested (AP, AN, PBAN, NMMO and BAMO-THF). Ingredient combustion behavior was studied by the edge burning sandwich method using sandwiches

  11. A Study on the Effect of Stratified Mixture Formation on Combustion Characteristics in a Constant Volume Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Lee, Kihyung; Lee, Changhee; Jeoung, Haeyoung

    It is well known that a lean burn engine caused by stratified mixture formation has many kinds of advantages to combustion characteristics, such as higher thermal efficiency and lower CO, NOx levels than conventional homogeneous mixture combustion. Although this combustion can achieve low fuel consumption, it produces much unburned hydrocarbon and soot because of inhomogeneity of the charge mixture in the combustion chamber. Therefore, it is necessary to investigate the effect of mixture formation on combustion characteristics in order to obtain the stable lean combustion. In this paper, fundamental studies for stratified combustion were carried out using a constant volume combustion chamber. The effect of mixture formation on the combustion characteristics in the chamber was examined experimentally. In addition, the effect of turbulence on stratified charge combustion process was observed by schlieren photography. From this study, as the swirl intensity increases, (Sv)max is rapidly enhanced and the period of combustion is shortened. We also find that the stratification degree can be quantified by using burning velocity and it was controlled by induced air pressure and turbulent intensity.

  12. Tabulated Combustion Model Development For Non-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  13. The Effect of Gravity on the Combustion Synthesis of Porous Ceramics and Metal Matrix Composites

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Woodger, T. C.; Wolanski, T.; Yi, H. C.; Guigne, J. Y.

    1997-01-01

    Combustion synthesis (self propagating, high temperature synthesis-SHS) is a novel technique that is capable of producing many advanced materials. The ignition temperature (Tig) of such combustion synthesis reactions is often coincident with that of the lowest melting point reactant. The resultant liquid metal wets and spreads around the other solid reactant particles of higher melting points, thereby improving the reactant contact and kinetics, followed by formation of the required compounds. This ignition initiates a combustion propagating wave whose narrow reaction front rapidly travels through the reactants. Since this process is highly exothermic, the heat released by combustion often melts the reactant particles ahead of the combustion front and ignites the adjacent reactant layer, resulting in a self-sustaining reaction. Whenever a fluid phase (liquid or gas) is generated by the reaction system, gravity-driven phenomena can occur. Such phenomena include convective flows of fluid by conventional or unstable convection and settling of the higher density phases. A combustion process is often associated with various kinds of fluid flow. For instance, if the SHS reaction is carried out under inert or reactive gas atmospheres, or a volatile, e.g., B2O3, is deliberately introduced as a reactant, convective flows of the gas will occur due to a temperature gradient existing in the atmosphere when a combustion wave is initiated. The increased gas flow will produce a porous (or expanded) SHS product. Owing to the highly exothermic nature of many SHS reactions, liquid phase(s) can also form before, at, or after the combustion front. The huge temperature gradient at the combustion front can induce convective flows (conventional or unstable) of the liquid phase. Each of these types of convective fluid flow can change the combustion behavior of the synthesizing reaction, and, therefore, the resultant product microstructure. In addition, when two or more phases of different

  14. New perspectives for advanced automobile diesel engines

    NASA Technical Reports Server (NTRS)

    Tozzi, L.; Sekar, R.; Kamo, R.; Wood, J. C.

    1983-01-01

    Computer simulation results are presented for advanced automobile diesel engine performance. Four critical factors for performance enhancement were identified: (1) part load preheating and exhaust gas energy recovery, (2) fast heat release combustion process, (3) reduction in friction, and (4) air handling system efficiency. Four different technology levels were considered in the analysis. Simulation results are compared in terms of brake specific fuel consumption and vehicle fuel economy in km/liter (miles per gallon). Major critical performance sensitivity areas are: (1) combustion process, (2) expander and compressor efficiency, and (3) part load preheating and compound system. When compared to the state of the art direct injection, cooled, automobile diesel engine, the advanced adiabatic compound engine concept showed the unique potential of doubling the fuel economy. Other important performance criteria such as acceleration, emissions, reliability, durability and multifuel capability are comparable to or better than current passenger car diesel engines.

  15. Fluids and Combustion Facility: Combustion Integrated Rack Modal Model Correlation

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Suarez, Vicente J.; Sullivan, Timothy L.; Otten, Kim D.; Akers, James C.

    2005-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user, two-rack facility dedicated to combustion and fluids science in the US Laboratory Destiny on the International Space Station. FCF is a permanent facility that is capable of accommodating up to ten combustion and fluid science investigations per year. FCF research in combustion and fluid science supports NASA's Exploration of Space Initiative for on-orbit fire suppression, fire safety, and space system fluids management. The Combustion Integrated Rack (CIR) is one of two racks in the FCF. The CIR major structural elements include the International Standard Payload Rack (ISPR), Experiment Assembly (optics bench and combustion chamber), Air Thermal Control Unit (ATCU), Rack Door, and Lower Structure Assembly (Input/Output Processor and Electrical Power Control Unit). The load path through the rack structure is outlined. The CIR modal survey was conducted to validate the load path predicted by the CIR finite element model (FEM). The modal survey is done by experimentally measuring the CIR frequencies and mode shapes. The CIR model was test correlated by updating the model to represent the test mode shapes. The correlated CIR model delivery is required by NASA JSC at Launch-10.5 months. The test correlated CIR flight FEM is analytically integrated into the Shuttle for a coupled loads analysis of the launch configuration. The analysis frequency range of interest is 0-50 Hz. A coupled loads analysis is the analytical integration of the Shuttle with its cargo element, the Mini Payload Logistics Module (MPLM), in the Shuttle cargo bay. For each Shuttle launch configuration, a verification coupled loads analysis is performed to determine the loads in the cargo bay as part of the structural certification process.

  16. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  17. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Masters, A. I.; Mitchell, J. C.

    1991-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Chemical Transfer Propulsion Program for development and demonstration of expander cycle oxygen/hydrogen engine technology component technology for the next space engine. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced missions focused components and new health monitoring techniques. The split-expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust.

  18. NASA Microgravity Combustion Science Program

    NASA Technical Reports Server (NTRS)

    King, Merrill K.

    1999-01-01

    Combustion has been a subject of increasingly vigorous scientific research for over a century, not surprising considering that combustion accounts for approximately 85% of the world's energy production and is a key element of many critical technologies used by contemporary society. Although combustion technology is vital to our standard of living, it also poses great challenges to maintaining a habitable environment. A major goal of combustion research is production of fundamental (foundational) knowledge that can be used in developing accurate simulations of complex combustion processes, replacing current "cut-and-try" approaches and allowing developers to improve the efficiency of combustion devices, to reduce the production of harmful emissions, and to reduce the incidence of accidental uncontrolled combustion. With full understanding of the physics and chemistry involved in a given combustion process, including details of the unit processes and their interactions, physically accurate models which can then be used for parametric exploration of new combustion domains via computer simulation can be developed, with possible resultant definition of radically different approaches to accomplishment of various combustion goals. Effects of gravitational forces on earth impede combustion studies more than they impede most other areas of science. The effects of buoyancy are so ubiquitous that we often do not appreciate the enormous negative impact that they have had on the rational development of combustion science. Microgravity offers potential for major gains in combustion science understanding in that it offers unique capability to establish the flow environment rather than having it dominated by uncontrollable (under normal gravity) buoyancy effects and, through this control, to extend the range of test conditions that can be studied. It cannot be emphasized too strongly that our program is dedicated to taking advantage of microgravity to untangle complications caused

  19. Space Station Freedom combustion research

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1992-01-01

    Extended operations in microgravity, on board spacecraft like Space Station Freedom, provide both unusual opportunities and unusual challenges for combustion science. On the one hand, eliminating the intrusion of buoyancy provides a valuable new perspective for fundamental studies of combustion phenomena. On the other hand, however, the absence of buoyancy creates new hazards of fires and explosions that must be understood to assure safe manned space activities. These considerations - and the relevance of combustion science to problems of pollutants, energy utilization, waste incineration, power and propulsion systems, and fire and explosion hazards, among others - provide strong motivation for microgravity combustion research. The intrusion of buoyancy is a greater impediment to fundamental combustion studies than to most other areas of science. Combustion intrinsically heats gases with the resulting buoyant motion at normal gravity either preventing or vastly complicating measurements. Perversely, this limitation is most evident for fundamental laboratory experiments; few practical combustion phenomena are significantly affected by buoyancy. Thus, we have never observed the most fundamental combustion phenomena - laminar premixed and diffusion flames, heterogeneous flames of particles and surfaces, low-speed turbulent flames, etc. - without substantial buoyant disturbances. This precludes rational merging of theory, where buoyancy is of little interest, and experiments, that always are contaminated by buoyancy, which is the traditional path for developing most areas of science. The current microgravity combustion program seeks to rectify this deficiency using both ground-based and space-based facilities, with experiments involving space-based facilities including: laminar premixed flames, soot processes in laminar jet diffusion flames, structure of laminar and turbulent jet diffusion flames, solid surface combustion, one-dimensional smoldering, ignition and flame

  20. Flow-combustion interactions in ducted flameholder-stabilized premixed flames

    NASA Astrophysics Data System (ADS)

    Soteriou, Marios; Arienti, Marco; Erickson, Robert

    2006-11-01

    Turbulent premixed combustion is present in many power generation and propulsion systems due to its large energy conversion rate (as compared to non-premixed combustion) and its potential for reduced emissions (at the lean limit). As a result, the study of turbulent premixed flames has received substantial attention in the past through experiment, analysis and simulation. In the recent past, unsteady Computational Fluid Dynamics (CFD) based models have been increasingly leveraged towards the in depth study of the physics of turbulent premixed flames. The bulk of this effort focuses on the response of the flame to turbulence. In contrast, we focus on the opposite problem, i.e. the modification of the turbulent flowfield by the flame. This topic has also received some attention but with a strong emphasis on planar (in the mean), flames propagating normal to the flow. Instead, we focus on flameholder-stabilized ducted flames, i.e. ones in which the flame is confined and substantially inclined to the incoming flow. The fundamental mechanisms by which the flame impacts the flow, i.e. dilatation, baroclinic vorticity generation and molecular diffusion enhancement are discussed in detail and their relative impact quantified. Limitations of modeling these mechanisms in current state of the art CFD models are also addressed.

  1. HSR combustion analytical research

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee

    1992-01-01

    Increasing the pressure and temperature of the engines of a new generation of supersonic airliners increases the emissions of nitrogen oxides (NO(x)) to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of evolving and implementing low emissions combustor technologies, NASA LeRC has pursued a combustion analysis code program to guide combustor design processes, to identify potential concepts of the greatest promise, and to optimize them at low cost, with short turnaround time. The computational analyses are evaluated at actual engine operating conditions. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts were made in further improving the code capabilities for modeling the physics and the numerical methods of solution. Then test cases and measurements from experiments are used for code validation.

  2. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    PubMed Central

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  3. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing.

    PubMed

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-06-02

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species.

  4. Evaluation of advanced combustion concepts for dry NO sub x suppression with coal-derived, gaseous fuels

    NASA Technical Reports Server (NTRS)

    Beebe, K. W.; Symonds, R. A.; Notardonato, J. J.

    1982-01-01

    The emissions performance of a rich lean combustor (developed for liquid fuels) was determined for combustion of simulated coal gases ranging in heating value from 167 to 244 Btu/scf (7.0 to 10.3 MJ/NCM). The 244 Btu/scf gas is typical of the product gas from an oxygen blown gasifier, while the 167 Btu/scf gas is similar to that from an air blown gasifier. NOx performance of the rich lean combustor did not meet program goals with the 244 Btu/scf gas because of high thermal NOx, similar to levels expected from conventional lean burning combustors. The NOx emissions are attributed to inadequate fuel air mixing in the rich stage resulting from the design of the large central fuel nozzle delivering 71% of the total gas flow. NOx yield from ammonia injected into the fuel gas decreased rapidly with increasing ammonia level, and is projected to be less than 10% at NH3 levels of 0.5% or higher. NOx generation from NH3 is significant at ammonia concentrations significantly less than 0.5%. These levels may occur depending on fuel gas cleanup system design. CO emissions, combustion efficiency, smoke and other operational performance parameters were satisfactory. A test was completed with a catalytic combustor concept with petroleum distillate fuel. Reactor stage NOx emissions were low (1.4g NOx/kg fuel). CO emissions and combustion efficiency were satisfactory. Airflow split instabilities occurred which eventually led to test termination.

  5. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    PubMed

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Method for in situ combustion

    DOEpatents

    Pasini, III, Joseph; Shuck, Lowell Z.; Overbey, Jr., William K.

    1977-01-01

    This invention relates to an improved in situ combustion method for the recovery of hydrocarbons from subterranean earth formations containing carbonaceous material. The method is practiced by penetrating the subterranean earth formation with a borehole projecting into the coal bed along a horizontal plane and extending along a plane disposed perpendicular to the plane of maximum permeability. The subterranean earth formation is also penetrated with a plurality of spaced-apart vertical boreholes disposed along a plane spaced from and generally parallel to that of the horizontal borehole. Fractures are then induced at each of the vertical boreholes which project from the vertical boreholes along the plane of maximum permeability and intersect the horizontal borehole. The combustion is initiated at the horizontal borehole and the products of combustion and fluids displaced from the earth formation by the combustion are removed from the subterranean earth formation via the vertical boreholes. Each of the vertical boreholes are, in turn, provided with suitable flow controls for regulating the flow of fluid from the combustion zone and the earth formation so as to control the configuration and rate of propagation of the combustion zone. The fractures provide a positive communication with the combustion zone so as to facilitate the removal of the products resulting from the combustion of the carbonaceous material.

  7. Microgravity combustion of dust suspensions

    NASA Technical Reports Server (NTRS)

    Lee, John H. S.; Peraldi, Olivier; Knystautas, Rom

    1993-01-01

    Unlike the combustion of homogeneous gas mixtures, there are practically no reliable fundamental data (i.e., laminar burning velocity, flammability limits, quenching distance, minimum ignition energy) for the combustion of heterogeneous dust suspensions. Even the equilibrium thermodynamic data such as the constant pressure volume combustion pressure and the constant pressure adiabatic flame temperature are not accurately known for dust mixtures. This is mainly due to the problem of gravity sedimentation. In normal gravity, turbulence, convective flow, electric and acoustic fields are required to maintain a dust in suspension. These external influences have a dominating effect on the combustion processes. Microgravity offers a unique environment where a quiescent dust cloud can in principle be maintained for a sufficiently long duration for almost all combustion experiments (dust suspensions are inherently unstable due to Brownian motion and particle aggregation). Thus, the microgravity duration provided by drop towers, parabolic flights, and the space shuttle, can all be exploited for different kinds of dust combustion experiments. The present paper describes some recent studies on microgravity combustion of dust suspension carried out on the KC-135 and the Caravelle aircraft. The results reported are obtained from three parabolic flight campaigns.

  8. Combustion Integration Rack (CIR) Testing

    NASA Image and Video Library

    2015-02-18

    Fluids and Combustion Facility (FCF), Combustion Integration Rack (CIR) during testing in the Structural Dynamics Laboratory (SDL). The Fluids and Combustion Facility (FCF) is a set of two International Space Station (ISS) research facilities designed to support physical and biological experiments in support of technology development and validation in space. The FCF consists of two modular, reconfigurable racks called the Combustion Integration Rack (CIR) and the Fluids Integration Rack (FIR). The CIR and FIR were developed at NASAʼs Glenn Research Center.

  9. Co-Optima Project E2.2.2: Accelerate Development of ACI/LTC Fuel Effects on RCCI Combustion.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musculus, Mark P.

    Many advanced combustion approaches have demonstrated potential for achieving diesel-like thermal efficiency but with much lower pollutant emissions of particulate matter (PM) and nitrogen oxides (NOx). RCCI is one advanced combustion concept, which makes use of in-cylinder blending of two fuels with differing reactivity for improved control of the combustion phasing and rate (Reitz et al., 2015). Previous research and development at ORNL has demonstrated successful implementation of RCCI on a light-duty multi-cylinder engine over a wide range of operating conditions (Curran et al., 2015). Several challenges were encountered when extending the research to practical applications, including limits to themore » operating range, both for high and low loads. Co-optimizing the engine and fuel aspects of the RCCI approach might allow these operating limits to be overcome. The in-cylinder mechanisms by which fuel properties interact with engine operating condition variables is not well understood, however, in part because RCCI is a new combustion concept that is still being developed, and limited data have been acquired to date, especially using in-cylinder optical/imaging diagnostics. The objective of this work is to use in-cylinder diagnostics in a heavy-duty single-cylinder optical engine at SNL to understand the interplay between fuel properties and engine hardware and operating conditions for RCCI in general, and in particular for the light-duty multi-cylinder all-metal RCCI engine experiments at ORNL.« less

  10. The 17th JANNAF Combustion Meeting, Volume 1

    NASA Technical Reports Server (NTRS)

    Eggleston, D. S. (Editor)

    1980-01-01

    The combustion of solid rocket propellants and combustion in ramjets is addressed. Subjects discussed include metal burning, steady-state combustion of composite propellants, velocity coupling and nonlinear instability, vortex shedding and flow effects on combustion instability, combustion instability in solid rocket motors, combustion diagnostics, subsonic and supersonic ramjet combustion, characterization of ramburner flowfields, and injection and combustion of ramjet fuels.

  11. Manufacturer evaluations of endograft modifications.

    PubMed

    Waninger, Matthew S; Whirley, Robert G; Smith, Louis J; Wolf, Ben S

    2013-03-01

    The motivation to modify the design of a vascular device can arise from a number of sources. Clinical experience with the unmodified device could suggest new design modifications to improve device performance or clinical outcomes. Similarly, clinical success with a device often suggests modifications that could broaden the applicability of the device to enable treatment of different or more advanced disease states. As a specific example, both of these scenarios have arisen during the last decade in the evolution of endovascular grafts for the treatment of abdominal aortic aneurysms, with modifications enabling the treatment of patients with shorter infrarenal necks, more angulated anatomy, and smaller access vessels. These modifications have been made by manufacturers and additionally by physicians who create branched and fenestrated devices. The experience to date with the use of fenestrated devices and the development of chimney, snorkel, and periscope techniques suggests that modifications to off-the-shelf devices may provide some clinical benefit. This experience provides additional motivation for manufacturers to develop devices to address the clinical needs not met with their current product lines. For manufacturers, the device development process includes an assessment of the new device design to determine the appropriate evaluation strategy to support the safety and effectiveness of the modified device. This report provides a high-level overview of the process generally followed by device manufacturers to evaluate a proposed device modification before market release, in accordance with local country regulations and recognized international standards such as the International Organization of Standardization (ISO) standards for endovascular grafts (ISO 25539 Part 1). Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  12. Advanced catalytic combustors for low pollutant emissions, phase 1

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.

    1979-01-01

    The feasibility of employing the known attractive and distinguishing features of catalytic combustion technology to reduce nitric oxide emissions from gas turbine engines during subsonic, stratospheric cruise operation was investigated. Six conceptual combustor designs employing catalytic combustion were defined and evaluated for their potential to meet specific emissions and performance goals. Based on these evaluations, two parallel-staged, fixed-geometry designs were identified as the most promising concepts. Additional design studies were conducted to produce detailed preliminary designs of these two combustors. Results indicate that cruise nitric oxide emissions can be reduced by an order of magnitude relative to current technology levels by the use of catalytic combustion. Also, these combustors have the potential for operating over the EPA landing-takeoff cycle and at cruise with a low pressure drop, high combustion efficiency and with a very low overall level of emission pollutants. The use of catalytic combustion, however, requires advanced technology generation in order to obtain the time-temperature catalytic reactor performance and durability required for practical aircraft engine combustors.

  13. Combustion Science

    NASA Image and Video Library

    2003-04-01

    This photograph depicts one of over thirty tests conducted on the Vortex Combustion Chamber Engine at Marshall Space Flight Center's (MSFC) test stand 115, a joint effort between NASA's MSFC and the U.S. Army AMCOM of Redstone Arsenal. The engine tests were conducted to evaluate an irnovative, "self-cooled", vortex combustion chamber, which relies on tangentially injected propellants from the chamber wall producing centrifugal forces that keep the relatively cold liquid propellants near the wall.

  14. Structures of ribonucleoprotein particle modification enzymes

    PubMed Central

    Liang, Bo; Li, Hong

    2016-01-01

    Small nucleolar and Cajal body ribonucleoprotein particles (RNPs) are required for the maturation of ribosomes and spliceosomes. They consist of small nucleolar RNA or Cajal body RNA combined with partner proteins and represent the most complex RNA modification enzymes. Recent advances in structure and function studies have revealed detailed information regarding ribonucleoprotein assembly and substrate binding. These enzymes form intertwined RNA–protein assemblies that facilitate reversible binding of the large ribosomal RNA or small nuclear RNA. These revelations explain the specificity among the components in enzyme assembly and substrate modification. The multiple conformations of individual components and those of complete RNPs suggest a dynamic assembly process and justify the requirement of many assembly factors in vivo. PMID:21108865

  15. 2011 Laser Diagnostics in Combustion Gordon Research Conference, (August 14-19, 2011, Waterville Valley Resort, Waterville Valley, NH)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas Settersten

    2011-08-19

    The vast majority of the world's energy needs are met by combustion of fossil fuels. Optimum utilization of limited resources and control of emissions of pollutants and greenhouse gases demand sustained improvement of combustion technology. This task can be satisfied only by detailed knowledge of the underlying physical and chemical processes. Non-intrusive laser diagnostics continuously contribute to our growing understanding of these complex and coupled multi-scale processes. The GRC on Laser Diagnostics in Combustion focuses on the most recent scientific advances and brings together scientists and engineers working at the leading edge of combustion research. Major tasks of the communitymore » are developing and applying methods for precise and accurate measurements of fluid motion and temperatures; chemical compositions; multi-phase phenomena appearing near walls, in spray and sooting combustion; improving sensitivities, precision, spatial resolution and tracking transients in their spatio-temporal development. The properties and behaviour of novel laser sources, detectors, optical systems that lead to new diagnostic capabilities are also part of the conference program.« less

  16. Advanced Earth-to-Orbit Propulsion Technology 1986, volume 2

    NASA Technical Reports Server (NTRS)

    Richmond, R. J.; Wu, S. T.

    1986-01-01

    Technology issues related to oxygen/hydrogen and oxygen/hydrocarbon propulsion are addressed. Specific topics addressed include: rotor dynamics; fatigue/fracture and life; bearings; combustion and cooling processes; and hydrogen environment embrittlement in advanced propulsion systems.

  17. Mission Success for Combustion Science

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.

    2004-01-01

    This presentation describes how mission success for combustion experiments has been obtained in previous spaceflight experiments and how it will be obtained for future International Space Station (ISS) experiments. The fluids and combustion facility is a payload planned for the ISS. It is composed of two racks: the fluids Integrated rack and the Combustion INtegrated Rack (CIR). Requirements for the CIR were obtained from a set of combustion basis experiments that served as surrogates for later experiments. The process for experiments that fly on the ISS includes proposal selection, requirements and success criteria definition, science and engineering reviews, mission operations, and postflight operations. By following this process, the microgravity combustion science program has attained success in 41 out of 42 experiments.

  18. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    NASA Astrophysics Data System (ADS)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  19. Thermal Model of the Promoted Combustion Test

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1996-01-01

    Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test

  20. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  1. NCC: A Multidisciplinary Design/Analysis Tool for Combustion Systems

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Quealy, Angela

    1999-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Lewis Research Center (LeRC), and Pratt & Whitney (P&W). This development team operates under the guidance of the NCC steering committee. The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration.

  2. Spherical combustion clouds in explosions

    NASA Astrophysics Data System (ADS)

    Kuhl, A. L.; Bell, J. B.; Beckner, V. E.; Balakrishnan, K.; Aspden, A. J.

    2013-05-01

    This study explores the properties of spherical combustion clouds in explosions. Two cases are investigated: (1) detonation of a TNT charge and combustion of its detonation products with air, and (2) shock dispersion of aluminum powder and its combustion with air. The evolution of the blast wave and ensuing combustion cloud dynamics are studied via numerical simulations with our adaptive mesh refinement combustion code. The code solves the multi-phase conservation laws for a dilute heterogeneous continuum as formulated by Nigmatulin. Single-phase combustion (e.g., TNT with air) is modeled in the fast-chemistry limit. Two-phase combustion (e.g., Al powder with air) uses an induction time model based on Arrhenius fits to Boiko's shock tube data, along with an ignition temperature criterion based on fits to Gurevich's data, and an ignition probability model that accounts for multi-particle effects on cloud ignition. Equations of state are based on polynomial fits to thermodynamic calculations with the Cheetah code, assuming frozen reactants and equilibrium products. Adaptive mesh refinement is used to resolve thin reaction zones and capture the energy-bearing scales of turbulence on the computational mesh (ILES approach). Taking advantage of the symmetry of the problem, azimuthal averaging was used to extract the mean and rms fluctuations from the numerical solution, including: thermodynamic profiles, kinematic profiles, and reaction-zone profiles across the combustion cloud. Fuel consumption was limited to ˜ 60-70 %, due to the limited amount of air a spherical combustion cloud can entrain before the turbulent velocity field decays away. Turbulent kinetic energy spectra of the solution were found to have both rotational and dilatational components, due to compressibility effects. The dilatational component was typically about 1 % of the rotational component; both seemed to preserve their spectra as they decayed. Kinetic energy of the blast wave decayed due to the

  3. Effect of the Ethanol Injection Moment During Compression Stroke on the Combustion of Ethanol - Diesel Dual Direct Injection Engine

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Zhou, Liying; Huang, Haomin; Xu, Mingfei; Guo, Mei; Chen, Xin

    2018-01-01

    A set of GDI system is installed on a F188 single-cylinder, air-cooled and direct injection diesel engine, which is used for ethanol injection, with the injection time controlled by the crank angle signal collected by AVL angle encoder. The injection of ethanol amounts to half of the thermal equivalent of an original diesel fuel. A 3D combustion model is established for the ethanol - diesel dual direct injection engine. Diesel was injected from the original fuel injection system, with a fuel supply advance angle of 20°CA. The ethanol was injected into the cylinder during compression process. Diesel injection began after the completion of ethanol injection. Ethanol injection starting point of 240°CA, 260°CA, 280°CA, 300°CA and 319.4°CA were simulated and analyzed. Due to the different timing of ethanol injection, the ignition of the ethanol mixture when diesel fires, results in non-uniform ignition distribution and flame propagation rate, since the distribution and concentration gradients of the ethanol mixture in the cylinder are different, thus affecting the combustion process. The results show that, when ethanol is injected at 319.4°CA, the combustion heat release rate and the pressure rise rate during the initial stage are the highest. Also, the maximum combustion pressure, with a relatively advance phase, is the highest. In case of later initial ethanol injection, the average temperature in the cylinder during the initial combustion period will have a faster rise. In case of initial injection at 319.4°CA, the average temperature in the cylinder is the highest, followed by 240°CA ethanol injection. In the post-combustion stage, the earlier ethanol injection will result in higher average temperature in the cylinder and more complete fuel combustion. The injection of ethanol at 319.4°CA produces earlier and highest NOX emissions.

  4. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  5. Passive Solar still: Recent advancement in design and related Performance.

    PubMed

    Awasthi, Anuradha; Kumari, Kanchan; Panchal, Hitesh; Sathyamurthy, Ravishankar

    2018-05-31

    Present review paper mainly focuses on different varieties of solar stills and highlights mostly the passive solar still with advanced modifications in the design and development of material, single and multi-effect solar still with augmentation of different materials, energy absorbing, insulators, mechanisms of heat and mass transfer to improve the loss of heat and enhance the productivity of solar still. The cost-benefit analysis along with the progressive advancement for solar stills is the major highlights of this review. To increase the output of solar still nowadays, applications of advance modifications is one of the promising tools, and it is anticipated that shortly more vigor will be added in this area with the modifications in designs of solar stills.

  6. Combustion Integrated Rack (CIR)

    NASA Image and Video Library

    2016-06-22

    NASA Glenn engineer Chris Mroczka installs a gas-jet burner in a chamber within the center’s Combustion Integrated Rack. This chamber is where scientists conduct gaseous combustion experiments in a zero gravity environment.

  7. Review of modern low emissions combustion technologies for aero gas turbine engines

    NASA Astrophysics Data System (ADS)

    Liu, Yize; Sun, Xiaoxiao; Sethi, Vishal; Nalianda, Devaiah; Li, Yi-Guang; Wang, Lu

    2017-10-01

    Pollutant emissions from aircraft in the vicinity of airports and at altitude are of great public concern due to their impact on environment and human health. The legislations aimed at limiting aircraft emissions have become more stringent over the past few decades. This has resulted in an urgent need to develop low emissions combustors in order to meet legislative requirements and reduce the impact of civil aviation on the environment. This article provides a comprehensive review of low emissions combustion technologies for modern aero gas turbines. The review considers current high Technologies Readiness Level (TRL) technologies including Rich-Burn Quick-quench Lean-burn (RQL), Double Annular Combustor (DAC), Twin Annular Premixing Swirler combustors (TAPS), Lean Direct Injection (LDI). It further reviews some of the advanced technologies at lower TRL. These include NASA multi-point LDI, Lean Premixed Prevaporised (LPP), Axially Staged Combustors (ASC) and Variable Geometry Combustors (VGC). The focus of the review is placed on working principles, a review of the key technologies (includes the key technology features, methods of realising the technology, associated technology advantages and design challenges, progress in development), technology application and emissions mitigation potential. The article concludes the technology review by providing a technology evaluation matrix based on a number of combustion performance criteria including altitude relight auto-ignition flashback, combustion stability, combustion efficiency, pressure loss, size and weight, liner life and exit temperature distribution.

  8. Advanced Seal Development for Large Industrial Gas Turbines

    NASA Technical Reports Server (NTRS)

    Chupp, Raymond E.

    2006-01-01

    Efforts are in progress to develop advanced sealing for large utility industrial gas turbine engines (combustion turbines). Such seals have been under developed for some time for aero gas turbines. It is desired to transition this technology to combustion turbines. Brush seals, film riding face and circumferential seals, and other dynamic and static sealing approaches are being incorporated into gas turbines for aero applications by several engine manufacturers. These seals replace labyrinth or other seals with significantly reduced leakage rates. For utility industrial gas turbines, leakage reduction with advanced sealing can be even greater with the enormous size of the components. Challenges to transitioning technology include: extremely long operating times between overhauls; infrequent but large radial and axial excursions; difficulty in coating larger components; and maintenance, installation, and durability requirements. Advanced sealing is part of the Advanced Turbine Systems (ATS) engine development being done under a cooperative agreement between Westinghouse and the US Department of Energy, Office of Fossil Energy. Seal development focuses on various types of seals in the 501ATS engine both at dynamic and static locations. Each development includes rig testing of candidate designs and subsequent engine validation testing of prototype seals. This presentation gives an update of the ongoing ATS sealing efforts with special emphasis on brush seals.

  9. Impact of Dental Implant Surface Modifications on Osseointegration

    PubMed Central

    Smeets, Ralf; Stadlinger, Bernd; Schwarz, Frank; Beck-Broichsitter, Benedicta; Jung, Ole; Precht, Clarissa; Kloss, Frank; Gröbe, Alexander; Heiland, Max

    2016-01-01

    Objective. The aim of this paper is to review different surface modifications of dental implants and their effect on osseointegration. Common marketed as well as experimental surface modifications are discussed. Discussion. The major challenge for contemporary dental implantologists is to provide oral rehabilitation to patients with healthy bone conditions asking for rapid loading protocols or to patients with quantitatively or qualitatively compromised bone. These charging conditions require advances in implant surface design. The elucidation of bone healing physiology has driven investigators to engineer implant surfaces that closely mimic natural bone characteristics. This paper provides a comprehensive overview of surface modifications that beneficially alter the topography, hydrophilicity, and outer coating of dental implants in order to enhance osseointegration in healthy as well as in compromised bone. In the first part, this paper discusses dental implants that have been successfully used for a number of years focusing on sandblasting, acid-etching, and hydrophilic surface textures. Hereafter, new techniques like Discrete Crystalline Deposition, laser ablation, and surface coatings with proteins, drugs, or growth factors are presented. Conclusion. Major advancements have been made in developing novel surfaces of dental implants. These innovations set the stage for rehabilitating patients with high success and predictable survival rates even in challenging conditions. PMID:27478833

  10. Modeling Combustion in Supersonic Flows

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Danehy, Paul M.; Bivolaru, Daniel; Gaffney, Richard L.; Tedder, Sarah A.; Cutler, Andrew D.

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flow-paths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  11. Supersonic Combustion Research at NASA

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Danehy, Paul M.; Gaffney, Richard L., Jr.; Tedder, Sarah A.; Cutler, Andrew D.; Bivolaru, Daniel

    2007-01-01

    This paper discusses the progress of work to model high-speed supersonic reacting flow. The purpose of the work is to improve the state of the art of CFD capabilities for predicting the flow in high-speed propulsion systems, particularly combustor flowpaths. The program has several components including the development of advanced algorithms and models for simulating engine flowpaths as well as a fundamental experimental and diagnostic development effort to support the formulation and validation of the mathematical models. The paper will provide details of current work on experiments that will provide data for the modeling efforts along with the associated nonintrusive diagnostics used to collect the data from the experimental flowfield. Simulation of a recent experiment to partially validate the accuracy of a combustion code is also described.

  12. Combustion and NOx emissions in deep-air-staging combustion of char in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Gong, Zhiqiang; Wang, Zhentong; Wang, Lei; Du, Aixun

    2017-10-01

    Combustion and NOx emissions in deep-air-staging (with higher level secondary air (SA) injection) combustion of char have been investigated in a CFB test rig. A good fluidized condition and uniform temperature distribution can be achieved with injection of higher level SA. NOx emission decreases with injection of higher level SA and the reduction effect is more obvious at higher temperature. NOx emission decreases with combustion temperature increasing for char combustion.

  13. 21 CFR 1313.53 - Waiver of modification of rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... EXPORTATION OF LIST I AND LIST II CHEMICALS Hearings § 1313.53 Waiver of modification of rules. The... in this part by notice in advance of the hearing, if he determines that no party in the hearing will...

  14. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc.more » in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control

  15. Fuel Vaporization and Its Effect on Combustion in a High-Speed Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1933-01-01

    The tests discussed in this report were conducted to determine whether or not there is appreciable vaporization of the fuel injected into a high-speed compression-ignition engine during the time available for injection and combustion. The effects of injection advance angle and fuel boiling temperature were investigated. The results show that an appreciable amount of the fuel is vaporized during injection even though the temperature and pressure conditions in the engine are not sufficient to cause ignition either during or after injection, and that when the conditions are such as to cause ignition the vaporization process affects the combustion. The results are compared with those of several other investigators in the same field.

  16. Combustion Research Aboard the ISS Utilizing the Combustion Integrated Rack and Microgravity Science Glovebox

    NASA Technical Reports Server (NTRS)

    Sutliff, Thomas J.; Otero, Angel M.; Urban, David L.

    2002-01-01

    The Physical Sciences Research Program of NASA sponsors a broad suite of peer-reviewed research investigating fundamental combustion phenomena and applied combustion research topics. This research is performed through both ground-based and on-orbit research capabilities. The International Space Station (ISS) and two facilities, the Combustion Integrated Rack and the Microgravity Science Glovebox, are key elements in the execution of microgravity combustion flight research planned for the foreseeable future. This paper reviews the Microgravity Combustion Science research planned for the International Space Station implemented from 2003 through 2012. Examples of selected research topics, expected outcomes, and potential benefits will be provided. This paper also summarizes a multi-user hardware development approach, recapping the progress made in preparing these research hardware systems. Within the description of this approach, an operational strategy is presented that illustrates how utilization of constrained ISS resources may be maximized dynamically to increase science through design decisions made during hardware development.

  17. Studies on Decomposition and Combustion Mechanism of Solid Fuel Rich Propellants

    DTIC Science & Technology

    2010-08-30

    thrust to cruise at supersonic speed. This was followed by the test of large diameter ramjet called burner test vehicle (BTV). Advanced low volume...propellant surface. Vernekar et al (43) found that in pressed AP-Al pellets , maximum burn rate is obtained at intermediate metal content. Jain et al...conjunction with high pressure window strand burner . They found that the propellant combustion was irregular and regression rate varied from 0.3 to 3

  18. Combustion and Performance Analyses of Coaxial Element Injectors with Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in a flight-qualified engine system, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented activities with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, the NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations. This paper summarizes the analyses of combustion and performance as a follow-up to a paper published in the 2008 JANNAF/LPS meeting. Combustion stability analyses are presented in a separate paper. The current paper includes test and analysis results of coaxial element injectors using liquid oxygen and liquid methane or gaseous methane propellants. Several thrust chamber configurations have been modeled, including thrust chambers with multi-element swirl coax element injectors tested at the NASA MSFC, and a uni-element chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods

  19. Research Data Acquired in World-Class, 60-atm Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Wey, Changlie

    1999-01-01

    NASA Lewis Research Center's new, world-class, 60-atmosphere (atm) combustor research facility, the Advanced Subsonic Combustion Rig (ASCR), is in operation and producing highly unique research data. Specifically, data were acquired at high pressures and temperatures representative of future subsonic engines from a fundamental flametube configuration with an advanced fuel injector. The data acquired include exhaust emissions as well as pressure and temperature distributions. Results to date represent an improved understanding of nitrous oxide (NOx) formation at high pressures and temperatures and include an NOx emissions reduction greater than 70 percent with an advanced fuel injector at operating pressures to 800 pounds per square inch absolute (psia). ASCR research is an integral part of the Advanced Subsonic Technology (AST) Propulsion Program. This program is developing critical low-emission combustion technology that will result in the next generation of gas turbine engines producing 50 to 70 percent less NOx emissions in comparison to 1996 International Civil Aviation Organization (ICAO) limits. The results to date indicate that the AST low-emission combustor goals of reducing NOx emissions by 50 to 70 percent are feasible. U.S. gas turbine manufacturers have started testing the low-emissions combustors at the ASCR. This collaborative testing will enable the industry to develop low-emission combustors at the high pressure and temperature conditions of future subsonic engines. The first stage of the flametube testing has been implemented. Four GE Aircraft Engines low-emissions fuel injector concepts, three Pratt & Whitney concepts, and two Allison concepts have been tested at Lewis ASCR facility. Subsequently, the flametube was removed from the test stand, and the sector combustor was installed. The testing of low emissions sector has begun. Low-emission combustors developed as a result of ASCR research will enable U.S. engine manufacturers to compete on a

  20. Combustion of diesel fuel from a toxicological perspective. I. Origin of incomplete combustion products.

    PubMed

    Scheepers, P T; Bos, R P

    1992-01-01

    Since the use of diesel engines is still increasing, the contribution of their incomplete combustion products to air pollution is becoming ever more important. The presence of irritating and genotoxic substances in both the gas phase and the particulate phase constituents is considered to have significant health implications. The quantity of soot particles and the particle-associated organics emitted from the tail pipe of a diesel-powered vehicle depend primarily on the engine type and combustion conditions but also on fuel properties. The quantity of soot particles in the emissions is determined by the balance between the rate of formation and subsequent oxidation. Organics are absorbed onto carbon cores in the cylinder, in the exhaust system, in the atmosphere and even on the filter during sample collection. Diesel fuel contains polycyclic aromatic hydrocarbons (PAHs) and some alkyl derivatives. Both groups of compounds may survive the combustion process. PAHs are formed by the combustion of crankcase oil or may be resuspended from engine and/or exhaust deposits. The conversion of parent PAHs to oxygenated and nitrated PAHs in the combustion chamber or in the exhaust system is related to the vast amount of excess combustion air that is supplied to the engine and the high combustion temperature. Whether the occurrence of these derivatives is characteristic for the composition of diesel engine exhaust remains to be ascertained. After the emission of the particles, their properties may change because of atmospheric processes such as aging and resuspension. The particle-associated organics may also be subject to (photo)chemical conversions or the components may change during sampling and analysis. Measurement of emissions of incomplete combustion products as determined on a chassis dynamometer provides knowledge of the chemical composition of the particle-associated organics. This knowledge is useful as a basis for a toxicological evaluation of the health hazards of

  1. Internal combustion engine

    DOEpatents

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  2. Energy Conversion and Combustion Sciences

    DTIC Science & Technology

    2012-03-08

    Rotational /Continuous Detonation • Only Single Initiation needed (Circumvent Initiation/DDT difficulty/loss in PDE ) • 10-100x cycle rate increase • Near...new fuels: 1. Rotational or Continuous Detonation (intense/concentrated combustion); 2. Flameless combustion (distributed combustion process...Steady Exit Flow *CFD Courtesy of NRL Rotational Detonation : (PI: Schauer, AFRL/RZ, working with NRL) Rotational Approach Allows Continuous

  3. Cavity Coupled Aeroramp Injector Combustion Study

    DTIC Science & Technology

    2009-08-01

    Lin 5 Taitech Inc., Beavercreek, OH, 45430 The difficulties with fueling of supersonic combustion ramjet engines with hydrocarbon based fuels...combustor to not force the pre- combustion shock train out of the isolator and, in a full engine with inlet, cause an inlet unstart and likely...metric used to quantify engine performance is the combustion efficiency. Figure 9 shows the comparison of the combustion efficiency as a function of

  4. Hypergolic Combustion Demonstration in a Reciprocating Internal Combustion Engine

    DTIC Science & Technology

    1984-05-01

    deposit problem encountered with Pearl Kerosene. Specifications and properties data for JP-7 fuel are in Table 5-2. 5.5.3. Methanol. Methanol ( CH OH...methylphenol, 0./1,000 bbls. 8.4 max. 8.4 PWA536, PPM 200-250 225 27 ’, •X TABLE 5-3. Typical Properties for Methanol(8) Formula CH 0,i Molecular weight 32.&2...46_ LIST OF REFERENCES (1) Hopple, L. 0. "Pyrophoric Combustion in Internal Combustion Engines," Eaton Technical Report No. 7845 , 1978. (2) Hoppie

  5. Selection of technology for the low calorific synthetic gas combustion in the gas turbine combustion chamber

    NASA Astrophysics Data System (ADS)

    Filippov, Prokopy; Levin, Evgeny; Ryzhkov, Alexander

    2017-10-01

    The leading gas turbines manufacturers are developing the technologies of the environmental friendly combustion of industrial and synthetic gases of low calorific values. In this case they are faced with critical problems concerning combustion stability assurance and the necessity of the gas turbines significant modernization due to the differences between the low calorific and natural gases. The numerical simulation results of the low calorific value synthetic gas combustion in the combustion chamber by means of different technologies are considered in the paper.

  6. Engine-Scale Combustor Rig Designed, Fabricated, and Tested for Combustion Instability Control Research

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.

    2000-01-01

    configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.

  7. Smoldering Combustion Experiments in Microgravity

    NASA Technical Reports Server (NTRS)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  8. 36th International Symposium on Combustion (ISOC2016)

    DTIC Science & Technology

    2016-12-01

    GREENHOUSE GASES / IC ENGINE COMBUSTION I GAS TURBINE COMBUSTION I NOVEL COMBUSTION CONCEPTS, TECHNOLOGIES AND SYSTEMS 15. SUBJECT TERMS Reaction...pollutants and greenhouse gases; IC engine combustion; Gas turbine combustion; Novel combustion concepts, technologies and systems 16. SECURITY...PLENARY LECTURE TRANSFER (15 min) am Turbulent Flames IC Engines Laminar Flames Reaction Kinetics Gas Turbines Soot Solid Fuels/Pollutants

  9. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  10. Histones and their modifications in ovarian cancer - drivers of disease and therapeutic targets.

    PubMed

    Marsh, Deborah J; Shah, Jaynish S; Cole, Alexander J

    2014-01-01

    Epithelial ovarian cancer has the highest mortality of the gynecological malignancies. High grade serous epithelial ovarian cancer (SEOC) is the most common subtype, with the majority of women presenting with advanced disease where 5-year survival is around 25%. Platinum-based chemotherapy in combination with paclitaxel remains the most effective treatment despite platinum therapies being introduced almost 40 years ago. Advances in molecular medicine are underpinning new strategies for the treatment of cancer. Major advances have been made by international initiatives to sequence cancer genomes. For SEOC, with the exception of TP53 that is mutated in virtually 100% of these tumors, there is no other gene mutated at high frequency. There is extensive copy number variation, as well as changes in methylation patterns that will influence gene expression. To date, the role of histones and their post-translational modifications in ovarian cancer is a relatively understudied field. Post-translational histone modifications play major roles in gene expression as they direct the configuration of chromatin and so access by transcription factors. Histone modifications include methylation, acetylation, and monoubiquitination, with involvement of enzymes including histone methyltransferases, histone acetyltransferases/deacetylases, and ubiquitin ligases/deubiquitinases, respectively. Complexes such as the Polycomb repressive complex also play roles in the control of histone modifications and more recently roles for long non-coding RNA and microRNAs are emerging. Epigenomic-based therapies targeting histone modifications are being developed and offer new approaches for the treatment of ovarian cancer. Here, we discuss histone modifications and their aberrant regulation in malignancy and specifically in ovarian cancer. We review current and upcoming histone-based therapies that have the potential to inform and improve treatment strategies for women with ovarian cancer.

  11. Combustion products generating and metering device

    NASA Technical Reports Server (NTRS)

    Wiberg, R. E.; Klisch, J. A. (Inventor)

    1971-01-01

    An apparatus for generating combustion products at a predetermined fixed rate, mixing the combustion products with air to achieve a given concentration, and distributing the resultant mixture to an area or device to be tested is described. The apparatus is comprised of blowers, a holder for the combustion product generating materials (which burn at a predictable and controlled rate), a mixing plenum chamber, and a means for distributing the air combustion product mixture.

  12. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’

    PubMed Central

    Kapoor, Utkarsh

    2017-01-01

    The discovery of mechanisms that alter genetic information via RNA editing or introducing covalent RNA modifications points towards a complexity in gene expression that challenges long-standing concepts. Understanding the biology of RNA modifications represents one of the next frontiers in molecular biology. To this date, over 130 different RNA modifications have been identified, and improved mass spectrometry approaches are still adding to this list. However, only recently has it been possible to map selected RNA modifications at single-nucleotide resolution, which has created a number of exciting hypotheses about the biological function of RNA modifications, culminating in the proposition of the ‘epitranscriptome’. Here, we review some of the technological advances in this rapidly developing field, identify the conceptual challenges and discuss approaches that are needed to rigorously test the biological function of specific RNA modifications. PMID:28566301

  13. Simulation of low temperature combustion mechanism of different combustion-supporting agents in close-coupled DOC and DPF system.

    PubMed

    Jiao, Penghao; Li, Zhijun; Li, Qiang; Zhang, Wen; He, Li; Wu, Yue

    2018-07-01

    In the coupled Diesel Oxidation Catalyst (DOC) and Diesel Particular Filter (DPF) system, soot cannot be completely removed by only using the passive regeneration. And DPF active regeneration is necessary. The research method in this paper is to spray different kinds of combustion-supporting agents to the DOC in the front of the DPF. Therefore, the low temperature combustion mechanism of different kinds of combustion-supporting agents in DOC was studied, in order to grasp the law of combustion in DOC, and the influence of follow-up emission on DPF removal of soot. During the study, CH 4 H 2 mixture and diesel (n-heptane + toluene) were used as combustion-supporting agents respectively. The simplified mechanisms of two kinds of gas mixtures used as the combustion-supporting agents in DPF have been constructed and testified in the paper. In this paper, the combustion and emission conditions of the two combustion-supporting agents were analyzed so as to meet the practical requirements of different working conditions. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  14. An extended supersonic combustion model for the dynamic analysis of hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Peck, R. E.; Schmidt, D. K.

    1993-01-01

    The development of an advanced dynamic model for aeroelastic hypersonic vehicles powered by air breathing engines requires an adequate engine model. This report provides a discussion of some of the more important features of supersonic combustion and their relevance to the analysis and design of supersonic ramjet engines. Of particular interest are those aspects of combustion that impact the control of the process. Furthermore, the report summarizes efforts to enhance the aeropropulsive/aeroelastic dynamic model developed at the Aerospace Research Center of Arizona State University by focusing on combustion and improved modeling of this flow. The expanded supersonic combustor model described here has the capability to model the effects of friction, area change, and mass addition, in addition to the heat addition process. A comparison is made of the results from four cases: (1) heat addition only; (2) heat addition plus friction; (3) heat addition, friction, and area reduction, and (4) heat addition, friction, area reduction, and mass addition. The relative impact of these effects on the Mach number, static temperature, and static pressure distributions within the combustor are then shown. Finally, the effects of frozen versus equilibrium flow conditions within the exhaust plume is discussed.

  15. Loop-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Slagle, Frank D.; Notestein, John E.

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  16. A Study by High-Speed Photography of Combustion and Knock in a Spark-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Miller, Cearcy D

    1942-01-01

    The study of combustion in a spark-ignition engine given in Technical Report no. 704 has been continued. The investigation was made with the NACA high-speed motion-picture camera and the NACA optical engine indicator. The camera operates at the rate of 40,000 photographs a second and makes possible the study of phenomena occurring in time intervals as short as 0.000025 second. Photographs are presented of combustion without knock and with both light and heavy knocks, the end zone of combustion being within the field of view. Time-pressure records covering the same conditions as the photographs are presented and their relations to the photographs are studied. Photographs with ignition at various advance angles are compared with a view to observing any possible relationship between pressure and flame depth. A tentative explanation of knock is suggested, which is designed to agree with the indications of the high-speed photographs and the time-pressure records.

  17. 76 FR 6555 - Loan Guaranty Revised Loan Modification Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-07

    ... due date for payments. Modifications usually adjust the terms of the loan agreement by: capitalizing delinquent interest, advances, or other amounts due; extending the repayment terms; changing the interest... guaranteed housing loans in default. Specifically, changes are made to requirements related to maximum...

  18. TECHNOLOGY DEMONSTRATION SUMMARY: THE AMERICAN COMBUSTION PYRETRON THERMAL DESTRUCTION SYSTEM AT THE U.S. EPA'S COMBUSTION FACILITY

    EPA Science Inventory

    The American Combustion Pyretron Thermal Destruction System at the U.S. EPA's Combustion Research Facility. Under the auspices of the Superfund Innovative Technology Evaluation, or SITE, program, a critical assessment was made of the American Combustion Pyretron™ oxygen enha...

  19. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  20. Lectures on combustion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A.

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  1. Distributed combustion in a cyclonic burner

    NASA Astrophysics Data System (ADS)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele

    2017-11-01

    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion

  2. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  3. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  4. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  5. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  6. 14 CFR 25.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  7. Combustion-gas recirculation system

    DOEpatents

    Baldwin, Darryl Dean

    2007-10-09

    A combustion-gas recirculation system has a mixing chamber with a mixing-chamber inlet and a mixing-chamber outlet. The combustion-gas recirculation system may further include a duct connected to the mixing-chamber inlet. Additionally, the combustion-gas recirculation system may include an open inlet channel with a solid outer wall. The open inlet channel may extend into the mixing chamber such that an end of the open inlet channel is disposed between the mixing-chamber inlet and the mixing-chamber outlet. Furthermore, air within the open inlet channel may be at a pressure near or below atmospheric pressure.

  8. Review of Combustion-acoustic Instabilities

    NASA Technical Reports Server (NTRS)

    Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan

    1995-01-01

    Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.

  9. Group Combustion Module (GCM) Installation

    NASA Image and Video Library

    2016-09-27

    ISS049e011638 (09/27/2016) --- Expedition 49 crewmember Takuya Onishi of JAXA works on the setup of the Group Combustion Module (GCM) inside the Japanese Experiment Module. The GCM will be used to house the Group Combustion experiment from the Japan Aerospace Exploration Agency (JAXA) to test a theory that fuel sprays change from partial to group combustion as flames spread across a cloud of droplets.

  10. The Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Kundu, Sampa

    2004-01-01

    Microgravity is an environment with very weak gravitational effects. The Fluids and Combustion Facility (FCF) on the International Space Station (ISS) will support the study of fluid physics and combustion science in a long-duration microgravity environment. The Fluid Combustion Facility's design will permit both independent and remote control operations from the Telescience Support Center. The crew of the International Space Station will continue to insert and remove the experiment module, store and reload removable data storage and media data tapes, and reconfigure diagnostics on either side of the optics benches. Upon completion of the Fluids Combustion Facility, about ten experiments will be conducted within a ten-year period. Several different areas of fluid physics will be studied in the Fluids Combustion Facility. These areas include complex fluids, interfacial phenomena, dynamics and instabilities, and multiphase flows and phase change. Recently, emphasis has been placed in areas that relate directly to NASA missions including life support, power, propulsion, and thermal control systems. By 2006 or 2007, a Fluids Integrated Rack (FIR) and a Combustion Integrated Rack (CIR) will be installed inside the International Space Station. The Fluids Integrated Rack will contain all the hardware and software necessary to perform experiments in fluid physics. A wide range of experiments that meet the requirements of the international space station, including research from other specialties, will be considered. Experiments will be contained in subsystems such as the international standard payload rack, the active rack isolation system, the optics bench, environmental subsystem, electrical power control unit, the gas interface subsystem, and the command and data management subsystem. In conclusion, the Fluids and Combustion Facility will allow researchers to study fluid physics and combustion science in a long-duration microgravity environment. Additional information is

  11. Directions for combustion engine aerosol measurement in the 21st century.

    PubMed

    Maricq, M Matti; Maldonado, Hector

    2010-10-01

    The Coordinating Research Council convened two Real-Time PM Measurement Workshops in December 2008 and March 2009 to take an intensive look at the current status and future directions of combustion aerosol measurement. The purpose was to examine the implications of parallel rapid developments over the past decade in ambient aerosol science, engine aftertreatment technology, and aerosol measurement methodology, which provide benefits and challenges to the stakeholders in air quality management. The workshops were organized into sessions targeting key issues in ambient and source combustion particulate matter (PM). These include (1) metrics to characterize and quantify PM, (2) the need to reconcile ambient and source measurements, (3) the role of atmospheric transformations on modeling emissions and exposures, (4) the impact of sampling conditions on PM measurement, and (5) the potential benefits of novel PM instrumentation. This paper distills the material presented by subject experts and the insights derived from the in-depth discussions that formed the core of each session. The paper's objectives are to identify areas of consensus that allow wider practical application of the past decade's advances in combustion aerosol measurement to improve emissions and air quality modeling, develop emissions reduction strategies, and to recommend directions for progress on issues in which uncertainties remain.

  12. System approach to the analysis of an integrated oxy-fuel combustion power plant

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Gładysz, Paweł

    2014-09-01

    Oxy-fuel combustion (OFC) belongs to one of the three commonly known clean coal technologies for power generation sector and other industry sectors responsible for CO2 emissions (e.g., steel or cement production). The OFC capture technology is based on using high-purity oxygen in the combustion process instead of atmospheric air. Therefore flue gases have a high concentration of CO2. Due to the limited adiabatic temperature of combustion some part of CO2 must be recycled to the boiler in order to maintain a proper flame temperature. An integrated oxy-fuel combustion power plant constitutes a system consisting of the following technological modules: boiler, steam cycle, air separation unit, cooling water and water treatment system, flue gas quality control system and CO2 processing unit. Due to the interconnections between technological modules, energy, exergy and ecological analyses require a system approach. The paper present the system approach based on the `input-output' method to the analysis of the: direct energy and material consumption, cumulative energy and exergy consumption, system (local and cumulative) exergy losses, and thermoecological cost. Other measures like cumulative degree of perfection or index of sustainable development are also proposed. The paper presents a complex example of the system analysis (from direct energy consumption to thermoecological cost) of an advanced integrated OFC power plant.

  13. Non-contact temperature measurements in support of microgravity combustion experiments

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.

    1989-01-01

    Recent conceptual advances in the understanding of combustion science fundamentals in the context of microgravity processes and phenomenology have resulted in an increased demand for diagnostic systems of greater sophistication. Owing primarily to the severe operational constraints that accompany the space flight environment, measurement systems to date remain fairly primative in nature. Qualitative pictures provided by photographic recording media comprise the majority of the existing data, the remainder consisting of the output of conventional transducers, such as thermocouples, hot wires, and pressure transducers. The absence of the rather strong influence of buoyant convection renders microgravity combustion phenomena more fragile than their 1-G counterparts. The emphasis was placed on nonperturbing optical diagnostics. Other factors such as limited supplies of expendable reactants, and periods of microgravity time of sufficient duration, coupled with more fundamental questions regarding inherent length and time scales and reproducibility have favored multipoint or multidimensional techniques. While the development of optical diagnostics for application to combustion science is an extremely active area at present, the peculiarities of space flight hardware severely restrict the feasibility of implementing the majority of techniques which are being utilized in terrestrial applications. The additional requirements for system reliability and operational simplicity have tended to promote somewhat less commonly emphasized techniques such as refractive index mapping and molecular Rayleigh scattering, which are briefly discussed.

  14. Simulation study on combustion of biomass

    NASA Astrophysics Data System (ADS)

    Zhao, M. L.; Liu, X.; Cheng, J. W.; Liu, Y.; Jin, Y. A.

    2017-01-01

    Biomass combustion is the most common energy conversion technology, offering the advantages of low cost, low risk and high efficiency. In this paper, the transformation and transfer of biomass in the process of combustion are discussed in detail. The process of furnace combustion and gas phase formation was analyzed by numerical simulation. The experimental results not only help to optimize boiler operation and realize the efficient combustion of biomass, but also provide theoretical basis for the improvement of burner technology.

  15. Combustibles sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pebler, A.R.

    1980-02-26

    A gaseous mixture of oxygen and fuel (Combustibles) is supplied to first and second electrodes disposed on opposite surfaces of an oxygen ion conductive solid electrolyte member wherein the electrodes are composed of different materials each exhibiting a different catalytic action on the gaseous mixture at a given temperature. The difference in oxygen potentials established at the respective electrodes as a result of the dissimilar catalytic action produces oxygen ion conductivity in the solid electrolyte cell which produces an electrical signal the magnitude of which is indicative of the combustible present in the mixture, I.E., methane, hydrogen, carbon monoxide, etc.

  16. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  17. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  18. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  19. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  20. 14 CFR 29.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  1. Industrial Facility Combustion Energy Use

    DOE Data Explorer

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  2. Gravity Effects on Combustion Synthesis of Glasses

    NASA Technical Reports Server (NTRS)

    Yi, H. C.; Guigne, J. Y.; Moore, J. J.; Robinson, L. A.; Manerbino, A. R.; Schowengerdt, F. D.; Gokoglu, S. (Technical Monitor)

    2000-01-01

    The Combustion Synthesis technique has been used to produce glasses based on B2O3-Al2O3-MgO and CaO-Al2O3. The combustion characteristics of these combustion synthesis reactions using both small cylindrical pellets (SCP) and large spherical pellets (LSP) are presented. Low density pellets (approx. 35% of their theoretical density) were used, which made synthesis of low exothermic combustion reactions possible. Microstructural analysis of reacted samples was carried out to identify the glass-forming compositions. The effects of gravity on the glass formation were studied aboard the KC-135 using SCP samples. Gravity seemed to have such obvious effects on the combustion characteristics that the wave velocity was lower and the Width of the combustion wave was larger under reduced gravity conditions. Samples produced under low gravity also had more enhanced vitrification than those on ground, while some systems also exhibited lower combustion temperatures. It was also found that the container significantly affects both the combustion characteristics and microstructure. Substantially more divitrification occurred at the area which was in contact with the support (container).

  3. Combustion inorganic transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, S.A.; Sweeny, P.G.; Abrahamson, H.B.

    1988-04-01

    The overall goal of the project is to develop a unified picture of the physical and chemical changes that occur in coal inorganic matter during combustion. The research is centered on two main tasks. Task 3.2A deals with the use of laser-induced fluorescence spectroscopy (LIFS) to study the release of sodium from various model compounds and coal during combustion in a flame. The vaporized or released sodium is considered to be an important factor in the formation of ash fouling deposits in full-scale utility boilers. Task 3.2B will study changes in the morphology and chemical associations of inorganic components inmore » coals during combustion in a drop-tube furnace designed to simulate the time-temperature profile of a pulverized coal-fired utility boiler. Results are described. 18 refs., 51 figs., 28 tabs.« less

  4. Hydrogen combustion in tomorrow's energy technology

    NASA Astrophysics Data System (ADS)

    Peschka, W.

    The fundamental characteristics of hydrogen combustion and the current status of hydrogen energy applications technology are reviewed, with an emphasis on research being pursued at DFVLR. Topics addressed include reaction mechanisms and pollution, steady-combustion devices (catalytic heaters, H2/air combustors, H2/O2 rocket engines, H2-fueled jet engines, and gas and steam turbine processes), unsteady combustion (in internal-combustion engines with internal or external mixture formation), and feasibility studies of hydrogen-powered automobiles. Diagrams, drawings, graphs, and photographs are provided.

  5. Overview of Current Activities in Combustion Instability

    DTIC Science & Technology

    2015-10-02

    and avoid liquid rocket engine combustion stability problems Approach:  1) Develop a  SOA  combustion stability software package  called Stable...phase II will invest in Multifidelity Tools and Methodologies – CSTD will develop a SOA combustion stability software package called Stable Combustion

  6. Internal and surface phenomena in metal combustion

    NASA Technical Reports Server (NTRS)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  7. Advanced expander test bed program

    NASA Technical Reports Server (NTRS)

    Riccardi, D. P.; Mitchell, J. C.

    1993-01-01

    The Advanced Expander Test Bed (AETB) is a key element in NASA's Space Chemical Engine Technology Program for development and demonstration of expander cycle oxygen/hydrogen engine and advanced component technologies applicable to space engines as well as launch vehicle upper stage engines. The AETB will be used to validate the high-pressure expander cycle concept, investigate system interactions, and conduct investigations of advanced mission focused components and new health monitoring techniques in an engine system environment. The split expander cycle AETB will operate at combustion chamber pressures up to 1200 psia with propellant flow rates equivalent to 20,000 lbf vacuum thrust. Contract work began 27 Apr. 1990. During 1992, a major milestone was achieved with the review of the final design of the oxidizer turbopump in Sep. 1992.

  8. Investigating co-combustion characteristics of bamboo and wood.

    PubMed

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Co-combustion of anthracite coal and wood pellets: Thermodynamic analysis, combustion efficiency, pollutant emissions and ash slagging.

    PubMed

    Guo, Feihong; Zhong, Zhaoping

    2018-08-01

    This work presents studies on the co-combustion of anthracite coal and wood pellets in fluidized bed. Prior to the fluidized bed combustion, thermogravimetric analysis are performed to investigate the thermodynamic behavior of coal and wood pellets. The results show that the thermal decomposition of blends is divided into four stages. The co-firing of coal and wood pellets can promote the combustion reaction and reduce the emission of gaseous pollutants, such as SO 2 and NO. It is important to choose the proportion of wood pellets during co-combustion due to the low combustion efficiency caused by large pellets with poor fluidization. Wood pellets can inhibit the volatilization of trace elements, especially for Cr, Ni and V. In addition, the slagging ratio of wood pellets ash is reduced by co-firing with coal. The research on combustion of coal and wood pellets is of great significance in engineering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Functional Group Analysis for Diesel-like Mixing-Controlled Compression Ignition Combustion Blendstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaspar, Daniel J.; McCormick, Robert L.; Polikarpov, Evgueni

    This report addresses the suitability of hydrocarbon and oxygenate functional groups for use as a diesel-like fuel blending component in an advanced, mixing-controlled, compression ignition combustion engine. The functional groups are chosen from those that could be derived from a biomass feedstock, and represent a full range of chemistries. This first systematic analysis of functional groups will be of value to all who are pursuing new bio-blendstocks for diesel-like fuels.

  11. Real-time combustion controls and diagnostics sensors (CCADS)

    DOEpatents

    Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas

    2005-05-03

    The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

  12. Burning Questions in Gravity-Dependent Combustion Science

    NASA Technical Reports Server (NTRS)

    Urban, David; Chiaramonte, Francis P.

    2012-01-01

    Building upon a long history of spaceflight and ground based research, NASA's Combustion Science program has accumulated a significant body of accomplishments on the ISS. Historically, NASAs low-gravity combustion research program has sought: to provide a more complete understanding of the fundamental controlling processes in combustion by identifying simpler one-dimensional systems to eliminate the complex interactions between the buoyant flow and the energy feedback to the reaction zone to provide realistic simulation of the fire risk in manned spacecraft and to enable practical simulation of the gravitational environment experienced by reacting systems in future spacecraft. Over the past two decades, low-gravity combustion research has focused primarily on increasing our understanding of fundamental combustion processes (e.g. droplet combustion, soot, flame spread, smoldering, and gas-jet flames). This research program was highly successful and was aided by synergistic programs in Europe and in Japan. Overall improvements were made in our ability to model droplet combustion in spray combustors (e.g. jet engines), predict flame spread, predict soot production, and detect and prevent spacecraft fires. These results provided a unique dataset that supports both an active research discipline and also spacecraft fire safety for current and future spacecraft. These experiments have been conducted using the Combustion Integrated Rack (CIR), the Microgravity Science Glovebox and the Express Rack. In this paper, we provide an overview of the earlier space shuttle experiments, the recent ISS combustion experiments in addition to the studies planned for the future. Experiments in combustion include topics such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes.

  13. Review of Combustion Stability Characteristics of Swirl Coaxial Element Injectors

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Casiano, M. J.

    2013-01-01

    Liquid propellant rocket engine injectors using coaxial elements where the center liquid is swirled have become more common in the United States over the past several decades, although primarily for technology or advanced development programs. Currently, only one flight engine operates with this element type in the United States (the RL10 engine), while the element type is very common in Russian (and ex-Soviet) liquid propellant rocket engines. In the United States, the understanding of combustion stability characteristics of swirl coaxial element injectors is still very limited, despite the influx of experimental and theoretical information from Russia. The empirical and theoretical understanding is much less advanced than for the other prevalent liquid propellant rocket injector element types, the shear coaxial and like-on-like paired doublet. This paper compiles, compares and explores the combustion stability characteristics of swirl coaxial element injectors tested in the United States, dating back to J-2 and RL-10 development, and extending to very recent programs at the NASA MSFC using liquid oxygen and liquid methane and kerosene propellants. Included in this study are several other relatively recent design and test programs, including the Space Transportation Main Engine (STME), COBRA, J-2X, and the Common Extensible Cryogenic Engine (CECE). A presentation of the basic data characteristics is included, followed by an evaluation by several analysis techniques, including those included in Rocket Combustor Interactive Design and Analysis Computer Program (ROCCID), and methodologies described by Hewitt and Bazarov.

  14. Engine Valve Actuation For Combustion Enhancement

    DOEpatents

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  15. Engine valve actuation for combustion enhancement

    DOEpatents

    Reitz, Rolf Deneys [Madison, WI; Rutland, Christopher J [Madison, WI; Jhavar, Rahul [Madison, WI

    2008-03-04

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-strokes combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  16. Government and technological innovation - Weather modification as a case in point.

    NASA Technical Reports Server (NTRS)

    Lambright, W. H.

    1972-01-01

    The principal technology on which all forms of intentional, local weather modification ultimately rest is that of cloud seeding. There are three primary milestones in the evolution of such a new technology including invention, development, and introduction to society on an operational basis. It is shown that government has been deeply involved in each of the first two phases of weather modification's evolution. The agencies involved include the military agencies, the Weather Bureau, the National Science Foundation, and the Bureau of Reclamation. It is pointed out that weather modification will require some unusually flexible and open administrative devices if it is to advance in the public interest.

  17. Reduced No.sub.x combustion method

    DOEpatents

    Delano, Mark A.

    1991-01-01

    A combustion method enabling reduced NO.sub.x formation wherein fuel and oxidant are separately injected into a combustion zone in a defined velocity relation, combustion gases are aspirated into the oxidant stream prior to intermixture with the fuel, and the fuel is maintained free from contact with oxygen until the intermixture.

  18. Transient processes in the combustion of nitramine propellants

    NASA Technical Reports Server (NTRS)

    Cohen, N. S.; Strand, L. D.

    1978-01-01

    A transient combustion model of nitramine propellants is combined with an isentropic compression shock formation model to determine the role of nitramine propellant combustion in DDT, excluding effects associated with propellant structural properties or mechanical behavior. The model is derived to represent the closed pipe experiment that is widely used to characterize explosives, except that the combustible material is a monolithic charge rather than compressed powder. Computations reveal that the transient combustion process cannot by itself produce DDT by this model. Compressibility of the solid at high pressure is the key factor limiting pressure buildups created by the combustion. On the other hand, combustion mechanisms which promote pressure buildups are identified and related to propellant formulation variables. Additional combustion instability data for nitramine propellants are presented. Although measured combustion response continues to be low, more data are required to distinguish HMX and active binder component contributions. A design for a closed vessel apparatus for experimental studies of high pressure combustion is discussed.

  19. Identification of an internal combustion engine model by nonlinear multi-input multi-output system identification. Ph.D. Thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luh, G.C.

    1994-01-01

    This thesis presents the application of advanced modeling techniques to construct nonlinear forward and inverse models of internal combustion engines for the detection and isolation of incipient faults. The NARMAX (Nonlinear Auto-Regressive Moving Average modeling with eXogenous inputs) technique of system identification proposed by Leontaritis and Billings was used to derive the nonlinear model of a internal combustion engine, over operating conditions corresponding to the I/M240 cycle. The I/M240 cycle is a standard proposed by the United States Environmental Protection Agency to measure tailpipe emissions in inspection and maintenance programs and consists of a driving schedule developed for the purposemore » of testing compliance with federal vehicle emission standards for carbon monoxide, unburned hydrocarbons, and nitrogen oxides. The experimental work for model identification and validation was performed on a 3.0 liter V6 engine installed in an engine test cell at the Center for Automotive Research at The Ohio State University. In this thesis, different types of model structures were proposed to obtain multi-input multi-output (MIMO) nonlinear NARX models. A modification of the algorithm proposed by He and Asada was used to estimate the robust orders of the derived MIMO nonlinear models. A methodology for the analysis of inverse NARX model was developed. Two methods were proposed to derive the inverse NARX model: (1) inversion from the forward NARX model; and (2) direct identification of inverse model from the output-input data set. In this thesis, invertibility, minimum-phase characteristic of zero dynamics, and stability analysis of NARX forward model are also discussed. Stability in the sense of Lyapunov is also investigated to check the stability of the identified forward and inverse models. This application of inverse problem leads to the estimation of unknown inputs and to actuator fault diagnosis.« less

  20. Radiation/Catalytic Augmented Combustion.

    DTIC Science & Technology

    1982-05-01

    enhanced combustion processes, utilizing pulsed and continuous VUV light- serces . Similarly, the catalytic technique has provided efficient combustion...tures we had a pl /cx LiF lens with a focal length of 200 nm, and a MgF2 window 2 nmn in thickness. Although these materials are considered to be among

  1. Final report: Prototyping a combustion corridor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rutland, Christopher J.; Leach, Joshua

    2001-12-15

    The Combustion Corridor is a concept in which researchers in combustion and thermal sciences have unimpeded access to large volumes of remote computational results. This will enable remote, collaborative analysis and visualization of state-of-the-art combustion science results. The Engine Research Center (ERC) at the University of Wisconsin - Madison partnered with Lawrence Berkeley National Laboratory, Argonne National Laboratory, Sandia National Laboratory, and several other universities to build and test the first stages of a combustion corridor. The ERC served two important functions in this partnership. First, we work extensively with combustion simulations so we were able to provide real worldmore » research data sets for testing the Corridor concepts. Second, the ERC was part of an extension of the high bandwidth based DOE National Laboratory connections to universities.« less

  2. Combustion diagnostic for active engine feedback control

    DOEpatents

    Green, Jr., Johney Boyd; Daw, Charles Stuart; Wagner, Robert Milton

    2007-10-02

    This invention detects the crank angle location where combustion switches from premixed to diffusion, referred to as the transition index, and uses that location to define integration limits that measure the portions of heat released during the combustion process that occur during the premixed and diffusion phases. Those integrated premixed and diffusion values are used to develop a metric referred to as the combustion index. The combustion index is defined as the integrated diffusion contribution divided by the integrated premixed contribution. As the EGR rate is increased enough to enter the low temperature combustion regime, PM emissions decrease because more of the combustion process is occurring over the premixed portion of the heat release rate profile and the diffusion portion has been significantly reduced. This information is used to detect when the engine is or is not operating in a low temperature combustion mode and provides that feedback to an engine control algorithm.

  3. Overview of IEA biomass combustion activities

    NASA Astrophysics Data System (ADS)

    Hustad, J. E.

    1994-07-01

    The objectives of the International Energy Agency (IEA) bioenergy program are: (1) to encourage cooperative research, development and use of energy and the increased utilization of alternatives to oil; and (2) to establish increased program and project cooperation between participants in the whole field of bioenergy. There are four Task Annexes to the Implementing Agreement during the period 1992-1994: Efficient and Environmentally Sound Biomass Production Systems; Harvesting and Supply of Woody Biomass for Energy; Biomass Utilization; and Conversion of Municipal Solid Waste Feedstock to Energy. The report describes the following biomass combustion activities during the period 1992-1994: Round robin test of a wood stove; Emissions from biomass combustion; A pilot project cofiring biomass with oil to reduce SO2 emissions; Small scale biomass chip handling; Energy from contaminated wood waste combustion; Modeling of biomass combustion; Wood chip cogeneration; Combustion of wet biomass feedstocks, ash reinjection and carbon burnout; Oxidation of wet biomass; Catalytic combustion in small wood burning appliances; Characterization of biomass fuels and ashes; Measurement techniques (FTIR).

  4. Combustion of Unconfined Droplet Clusters in Microgravity

    NASA Technical Reports Server (NTRS)

    Ruff, G. A.; Liu, S.

    2001-01-01

    Combustion experiments using arrays of droplets seek to provide a link between single droplet combustion phenomena and the behavior of complex spray combustion systems. Both single droplet and droplet array studies have been conducted in microgravity to better isolate the droplet interaction phenomena and eliminate or reduce the confounding effects of buoyancy-induced convection. In most experiments involving droplet arrays, the droplets are supported on fibers to keep them stationary and close together before the combustion event. The presence of the fiber, however, disturbs the combustion process by introducing a source of heat transfer and asymmetry into the configuration. As the number of drops in a droplet array increases, supporting the drops on fibers becomes less practical because of the cumulative effect of the fibers on the combustion process. To eliminate the effect of the fiber, several researchers have conducted microgravity experiments using unsupported droplets. Jackson and Avedisian investigated single, unsupported drops while Nomura et al. studied droplet clouds formed by a condensation technique. The overall objective of this research is to extend the study of unsupported drops by investigating the combustion of well-characterized drop clusters in a microgravity environment. Direct experimental observations and measurements of the combustion of droplet clusters would fill a large gap in our current understanding of droplet and spray combustion and provide unique experimental data for the verification and improvement of spray combustion models. In this work, the formation of drop clusters is precisely controlled using an acoustic levitation system so that dilute, as well as dense clusters can be created and stabilized before combustion in microgravity is begun. This paper describes the design and performance of the 1-g experimental apparatus, some preliminary 1-g results, and plans for testing in microgravity.

  5. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  6. Thermodynamics and combustion modeling

    NASA Technical Reports Server (NTRS)

    Zeleznik, Frank J.

    1986-01-01

    Modeling fluid phase phenomena blends the conservation equations of continuum mechanics with the property equations of thermodynamics. The thermodynamic contribution becomes especially important when the phenomena involve chemical reactions as they do in combustion systems. The successful study of combustion processes requires (1) the availability of accurate thermodynamic properties for both the reactants and the products of reaction and (2) the computational capabilities to use the properties. A discussion is given of some aspects of the problem of estimating accurate thermodynamic properties both for reactants and products of reaction. Also, some examples of the use of thermodynamic properties for modeling chemically reacting systems are presented. These examples include one-dimensional flow systems and the internal combustion engine.

  7. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less

  8. FutureGen 2.0 Oxy-combustion Large Scale Test – Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kenison, LaVesta; Flanigan, Thomas; Hagerty, Gregg

    The primary objectives of the FutureGen 2.0 CO 2 Oxy-Combustion Large Scale Test Project were to site, permit, design, construct, and commission, an oxy-combustion boiler, gas quality control system, air separation unit, and CO 2 compression and purification unit, together with the necessary supporting and interconnection utilities. The project was to demonstrate at commercial scale (168MWe gross) the capability to cleanly produce electricity through coal combustion at a retrofitted, existing coal-fired power plant; thereby, resulting in near-zeroemissions of all commonly regulated air emissions, as well as 90% CO 2 capture in steady-state operations. The project was to be fully integratedmore » in terms of project management, capacity, capabilities, technical scope, cost, and schedule with the companion FutureGen 2.0 CO 2 Pipeline and Storage Project, a separate but complementary project whose objective was to safely transport, permanently store and monitor the CO 2 captured by the Oxy-combustion Power Plant Project. The FutureGen 2.0 Oxy-Combustion Large Scale Test Project successfully achieved all technical objectives inclusive of front-end-engineering and design, and advanced design required to accurately estimate and contract for the construction, commissioning, and start-up of a commercial-scale "ready to build" power plant using oxy-combustion technology, including full integration with the companion CO 2 Pipeline and Storage project. Ultimately the project did not proceed to construction due to insufficient time to complete necessary EPC contract negotiations and commercial financing prior to expiration of federal co-funding, which triggered a DOE decision to closeout its participation in the project. Through the work that was completed, valuable technical, commercial, and programmatic lessons were learned. This project has significantly advanced the development of near-zero emission technology and will be helpful to plotting the course of, and

  9. S-Nitrosylation: Specificity, Occupancy, and Interaction with Other Post-Translational Modifications

    PubMed Central

    Kohr, Mark J.; Murphy, Elizabeth

    2013-01-01

    Abstract Significance: S-nitrosylation (SNO) has been identified throughout the body as an important signaling modification both in physiology and a variety of diseases. SNO is a multifaceted post-translational modification, in that it can either act as a signaling molecule itself or as an intermediate to other modifications. Recent Advances and Critical Issues: Through extensive SNO research, we have made progress toward understanding the importance of single cysteine-SNO sites; however, we are just beginning to explore the importance of specific SNO within the context of other SNO sites and post-translational modifications. Additionally, compartmentalization and SNO occupancy may play an important role in the consequences of the SNO modification. Future Directions: In this review, we will consider the context of SNO signaling and discuss how the transient nature of SNO, its role as an oxidative intermediate, and the pattern of SNO, should be considered when determining the impact of SNO signaling. Antioxid. Redox Signal. 19, 1209–1219. PMID:23157187

  10. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    DOEpatents

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  11. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  12. A Combustion Laboratory for Undergraduates.

    ERIC Educational Resources Information Center

    Peters, James E.

    1985-01-01

    Describes a combustion laboratory facility and experiments for a senior-level (undergraduate) course in mechanical engineering. The experiment reinforces basic thermodynamic concepts and provides many students with their first opportunity to work with a combustion system. (DH)

  13. SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.

    PubMed

    Bartlett, Nicholas W; Tolley, Michael T; Overvelde, Johannes T B; Weaver, James C; Mosadegh, Bobak; Bertoldi, Katia; Whitesides, George M; Wood, Robert J

    2015-07-10

    Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimaterial three-dimensional (3D) printing to manufacture a combustion-powered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. Copyright © 2015, American Association for the Advancement of Science.

  14. Advanced High Pressure O2/H2 Technology

    NASA Technical Reports Server (NTRS)

    Morea, S. F. (Editor); Wu, S. T. (Editor)

    1985-01-01

    Activities in the development of advanced high pressure oxygen-hydrogen stage combustion rocket engines are reported. Particular emphasis is given to the Space Shuttle main engine. The areas of engine technology discussed include fracture and fatigue in engine components, manufacturing and producibility engineering, materials, bearing technology, structure dynamics, fluid dynamics, and instrumentation technology.

  15. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    NASA Technical Reports Server (NTRS)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  16. Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips.

    PubMed

    Chen, Yun; Zhang, Luyan; Chen, Gang

    2008-05-01

    Poly(methyl methacrylate) (PMMA) is particularly useful for microfluidic chips with the features of low price, excellent optic transparency, attractive mechanical and chemical properties, ease of fabrication and modification, biocompatibility, etc. During the past decade, significant progress in the PMMA microfluidic chips has occurred. This review, which contains 120 references, summarizes the recent advances and the key strategies in the fabrication, modification, and application of PMMA microfluidic chips. It is expected that PMMA microchips should find a wide range of applications and will lead to the creation of truly disposable microfluidic devices.

  17. Combustion oscillation: Chemical control showing mechanistic link to recirculation zone purge time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gemmen, R.S.; Richards, G.A.; Yip, M.J.

    1995-12-01

    Active control mechanisms are being examined for lean premix combustion applications, such as gas turbine generators. Lean premix combustors are susceptible to large combustion oscillations, particularly when driven very lean to achieve low NOx. While past design work has been focussed on understanding the source of the oscillation and modifying the combustor to avoid such oscillations, commercial combustion designers have more recently considered applying new control elements. As part of the U.S. Department of Energy`s Advanced Gas Turbine Systems Program, the Morgantown Energy Technology Center is investigating various active control techniques. This paper presents results from experiments studying the effectmore » of pilot fuel modulation on combustor oscillation and pollutant emissions for a pilot stabilized dump swirl combustor, typical of gas turbine combustors. The results show that a significant level of attenuation can be achieved in the combustor pressure oscillation (50 to 90 percent) while only moderately affecting pollutant emissions. The control mechanism producing the attenuation is shown to be purely chemical in nature, rather than fluid mechanic. In addition, the frequency region over which control is obtained is shown to be related to the recirculation zone purge time. For this reason, control can be achieved at control frequencies much lower than the frequency of oscillation.« less

  18. Numerical Modelling of Staged Combustion Aft-Injected Hybrid Rocket Motors

    NASA Astrophysics Data System (ADS)

    Nijsse, Jeff

    The staged combustion aft-injected hybrid (SCAIH) rocket motor is a promising design for the future of hybrid rocket propulsion. Advances in computational fluid dynamics and scientific computing have made computational modelling an effective tool in hybrid rocket motor design and development. The focus of this thesis is the numerical modelling of the SCAIH rocket motor in a turbulent combustion, high-speed, reactive flow framework accounting for solid soot transport and radiative heat transfer. The SCAIH motor is modelled with a shear coaxial injector with liquid oxygen injected in the center at sub-critical conditions: 150 K and 150 m/s (Mach ≈ 0.9), and a gas-generator gas-solid mixture of one-third carbon soot by mass injected in the annual opening at 1175 K and 460 m/s (Mach ≈ 0.6). Flow conditions in the near injector region and the flame anchoring mechanism are of particular interest. Overall, the flow is shown to exhibit instabilities and the flame is shown to anchor directly on the injector faceplate with temperatures in excess of 2700 K.

  19. The effect of insulated combustion chamber surfaces on direct-injected diesel engine performance, emissions, and combustion

    NASA Technical Reports Server (NTRS)

    Dickey, Daniel W.; Vinyard, Shannon; Keribar, Rifat

    1988-01-01

    The combustion chamber of a single-cylinder, direct-injected diesel engine was insulated with ceramic coatings to determine the effect of low heat rejection (LHR) operation on engine performance, emissions, and combustion. In comparison to the baseline cooled engine, the LHR engine had lower thermal efficiency, with higher smoke, particulate, and full load carbon monoxide emissions. The unburned hydrocarbon emissions were reduced across the load range. The nitrous oxide emissions increased at some part-load conditions and were reduced slightly at full loads. The poor LHR engine performance was attributed to degraded combustion characterized by less premixed burning, lower heat release rates, and longer combustion duration compared to the baseline cooled engine.

  20. Green Propellant Test Capabilities of the Altitude Combustion Stand at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Kubiak, Jonathan M.; Arnett, Lori A.

    2016-01-01

    The NASA Glenn Research Center (GRC) is committed to providing simulated altitude rocket test capabilities to NASA programs, other government agencies, private industry partners, and academic partners. A primary facility to support those needs is the Altitude Combustion Stand (ACS). ACS provides the capability to test combustion components at a simulated altitude up to 100,000 ft. (approx.0.2 psia/10 Torr) through a nitrogen-driven ejector system. The facility is equipped with an axial thrust stand, gaseous and cryogenic liquid propellant feed systems, data acquisition system with up to 1000 Hz recording, and automated facility control system. Propellant capabilities include gaseous and liquid hydrogen, gaseous and liquid oxygen, and liquid methane. A water-cooled diffuser, exhaust spray cooling chamber, and multi-stage ejector systems can enable run times up to 180 seconds to 16 minutes. The system can accommodate engines up to 2000-lbf thrust, liquid propellant supply pressures up to 1800 psia, and test at the component level. Engines can also be fired at sea level if needed. The NASA GRC is in the process of modifying ACS capabilities to enable the testing of green propellant (GP) thrusters and components. Green propellants are actively being explored throughout government and industry as a non-toxic replacement to hydrazine monopropellants for applications such as reaction control systems or small spacecraft main propulsion systems. These propellants offer increased performance and cost savings over hydrazine. The modification of ACS is intended to enable testing of a wide range of green propellant engines for research and qualification-like testing applications. Once complete, ACS will have the capability to test green propellant engines up to 880 N in thrust, thermally condition the green propellants, provide test durations up to 60 minutes depending on thrust class, provide high speed control and data acquisition, as well as provide advanced imaging and

  1. Spray combustion modeling

    NASA Technical Reports Server (NTRS)

    Bellan, J.

    1997-01-01

    Concern over the future availability of high quality liquid fuels or use in furnaces and boilers prompted the U. S. Department of Energy (DOE) to consider alternate fuels as replacements for the high grade liquid fuels used in the 1970's and 1980's. Alternate fuels were defined to be combinations of a large percentage of viscous, low volatility fuels resulting from the low end of distillation mixed with a small percentage of relatively low viscosity, high volatility fuels yielded by the high end of distillation. The addition of high volatility fuels was meant to promote desirable characteristics to a fuel that would otherwise be difficult to atomize and burn and whose combustion would yield a high amount of pollutants. Several questions thus needed to be answered before alternate fuels became commercially viable. These questions were related to fuel atomization, evaporation, ignition, combustion and pollutant formation. This final report describes the results of the most significant studies on ignition and combustion of alternative fuels.

  2. LOX/Hydrocarbon Combustion Instability Investigation

    NASA Technical Reports Server (NTRS)

    Jensen, R. J.; Dodson, H. C.; Claflin, S. E.

    1989-01-01

    The LOX/Hydrocarbon Combustion Instability Investigation Program was structured to determine if the use of light hydrocarbon combustion fuels with liquid oxygen (LOX) produces combustion performance and stability behavior similar to the LOX/hydrogen propellant combination. In particular methane was investigated to determine if that fuel can be rated for combustion instability using the same techniques as previously used for LOX/hydrogen. These techniques included fuel temperature ramping and stability bomb tests. The hot fire program probed the combustion behavior of methane from ambient to subambient temperatures. Very interesting results were obtained from this program that have potential importance to future LOX/methane development programs. A very thorough and carefully reasoned documentation of the experimental data obtained is contained. The hot fire test logic and the associated tests are discussed. Subscale performance and stability rating testing was accomplished using 40,000 lb. thrust class hardware. Stability rating tests used both bombs and fuel temperature ramping techniques. The test program was successful in generating data for the evaluation of the methane stability characteristics relative to hydrogen and to anchor stability models. Data correlations, performance analysis, stability analyses, and key stability margin enhancement parameters are discussed.

  3. Aviation combustion toxicology: an overview.

    PubMed

    Chaturvedi, Arvind K

    2010-01-01

    Aviation combustion toxicology is a subspecialty of the field of aerospace toxicology, which is composed of aerospace and toxicology. The term aerospace, that is, the environment extending above and beyond the surface of the Earth, is also used to represent the combined fields of aeronautics and astronautics. Aviation is another term interchangeably used with aerospace and aeronautics and is explained as the science and art of operating powered aircraft. Toxicology deals with the adverse effects of substances on living organisms. Although toxicology borrows knowledge from biology, chemistry, immunology, pathology, physiology, and public health, the most closely related field to toxicology is pharmacology. Economic toxicology, environmental toxicology, and forensic toxicology, including combustion toxicology, are the three main branches of toxicology. In this overview, a literature search for the period of 1960-2007 was performed and information related to aviation combustion toxicology collected. The overview included introduction; combustion, fire, and smoke; smoke gas toxicity; aircraft material testing; fire gases and their interactive effects; result interpretation; carboxyhemoglobin and blood cyanide ion levels; pyrolytic products of aircraft engine oils, fluids, and lubricants; and references. This review is anticipated to be an informative resource for aviation combustion toxicology and fire-related casualties.

  4. Modeling complex chemical effects in turbulent nonpremixed combustion

    NASA Technical Reports Server (NTRS)

    Smith, Nigel S. A.

    1995-01-01

    Virtually all of the energy derived from the consumption of combustibles occurs in systems which utilize turbulent fluid motion. Since combustion is largely related to the mixing of fluids and mixing processes are orders of magnitude more rapid when enhanced by turbulent motion, efficiency criteria dictate that chemically powered devices necessarily involve fluid turbulence. Where combustion occurs concurrently with mixing at an interface between two reactive fluid bodies, this mode of combustion is called nonpremixed combustion. This is distinct from premixed combustion where flame-fronts propagate into a homogeneous mixture of reactants. These two modes are limiting cases in the range of temporal lag between mixing of reactants and the onset of reaction. Nonpremixed combustion occurs where this lag tends to zero, while premixed combustion occurs where this lag tends to infinity. Many combustion processes are hybrids of these two extremes with finite non-zero lag times. Turbulent nonpremixed combustion is important from a practical standpoint because it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas turbine combustors, and afterburners etc. To a large extent, past development of these practical systems involved an empirical methodology. Presently, efficiency standards and emission regulations are being further tightened (Correa 1993), and empiricism has had to give way to more fundamental research in order to understand and effectively model practical combustion processes (Pope 1991). A key element in effective modeling of turbulent combustion is making use of a sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emission such as oxides of nitrogen (NO(x)) and sulphur (SO(x)) unburned hydrocarbons, and particulates demands the use of detailed chemical mechanisms. It is essential that practical models for turbulent nonpremixed combustion are capable of handling large numbers of 'stiff' chemical species

  5. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  6. On-line measurement of heat of combustion

    NASA Technical Reports Server (NTRS)

    Chaturvedi, S. K.; Chegini, H.

    1988-01-01

    An experimental method for an on-line measurement of heat of combustion of a gaseous hydrocarbon fuel mixture of unknown composition is developed. It involves combustion of a test gas with a known quantity of air to achieve a predetermined oxygen concentration level in the combustion products. This is accomplished by a feedback controller which maintains the gas volumetric flow rate at a level consistent with the desired oxygen concentration in the products. The heat of combustion is determined from a known correlation with the gas volumetric flow rate. An on-line microcomputer accesses the gas volumetric flow data, and displays the heat of combustion values at desired time intervals.

  7. Fifth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  8. Sixth International Microgravity Combustion Workshop

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt (Compiler)

    2001-01-01

    This conference proceedings document is a compilation of papers presented orally or as poster displays to the Sixth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 22-24, 2001. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  9. Facilities for microgravity combustion research

    NASA Technical Reports Server (NTRS)

    Sacksteder, Kurt R.

    1988-01-01

    Combustion science and applications have benefited in unforeseen ways from experimental research performed in the low-gravity environment. The capability to control for the first time the influence of gravitational buoyancy has provided some insight into soot formation in droplet combustion, the nature of flammability limits in premixed gases, and the relationship between normal-gravity and low-gravity material flammability that may influence how materials are best selected for routine use in habitable spacecraft. The opportunity to learn about these complex phenomena is derived from the control of the ambient body-force field and, perhaps as importantly, the simplified boundary conditions that can be established in well designed low-gravity combustion experiments. A description of the test facilities and typical experimental apparatus are provided; and conceptual plans for a Space Station Freedom capability, the Modular Combustion Facility, are described.

  10. Misfire tolerant combustion-powered actuation

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  11. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown extracted for servicing. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  12. International Space Station - Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown opened for installation of burn specimens. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  13. International Space Station -- Combustion Rack

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The combustion chamber for the Combustion Integrated Rack section of the Fluids and Combustion Facility (FCF) is shown in its operational configuration. The FCF will be installed, in phases, in the Destiny, the U.S. Laboratory Module of the International Space Station (ISS), and will accommodate multiple users for a range of investigations. This is an engineering mockup; the flight hardware is subject to change as designs are refined. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo credit: NASA/Marshall Space Flight Center)

  14. Toxicology of Biodiesel Combustion products

    EPA Science Inventory

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  15. 38th JANNAF Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Eggleston, Debra S. (Editor); Gannaway, Mary T. (Editor)

    2002-01-01

    This volume, the first of two volumes, is a collection of 55 unclassified/unlimited-distribution papers which were presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 38th Combustion Subcommittee (CS), 26 th Airbreathing Propulsion Subcommittee (APS), 20th Propulsion Systems Hazards Subcommittee (PSHS), and 21 Modeling and Simulation Subcommittee. The meeting was held 8-12 April 2002 at the Bayside Inn at The Sandestin Golf & Beach Resort and Eglin Air Force Base, Destin, Florida. Topics cover five major technology areas including: 1) Combustion - Propellant Combustion, Ingredient Kinetics, Metal Combustion, Decomposition Processes and Material Characterization, Rocket Motor Combustion, and Liquid & Hybrid Combustion; 2) Liquid Rocket Engines - Low Cost Hydrocarbon Liquid Rocket Engines, Liquid Propulsion Turbines, Liquid Propulsion Pumps, and Staged Combustion Injector Technology; 3) Modeling & Simulation - Development of Multi- Disciplinary RBCC Modeling, Gun Modeling, and Computational Modeling for Liquid Propellant Combustion; 4) Guns Gun Propelling Charge Design, and ETC Gun Propulsion; and 5) Airbreathing - Scramjet an Ramjet- S&T Program Overviews.

  16. Effects of combustibles on internal quasi-static loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, N.R.; Hokanson, J.C.; Esparza, E.D.

    1984-08-01

    The phenomenon of quasi-static pressure enhancement produced when combustible materials are placed near HE sources has been recently discovered. The effects of placing solid and liquid combustible materials near detonating explosives on internal blast loading was measured during tests conducted in a one-eighth scale model of a containment structure. In many cases, dramatic increases in gas pressures resulted. Principal conclusions of this study are: combustible materials near explosives can markedly increase gas pressures in enclosed structures; there is a lack of data on HE-combustible combinations; quasi-static loading calculations should include estimates of contributions from the burning of combustible materials whenevermore » such materials are expected to be in intimate contact with HE sources; and effects of combustibles should be investigated further to determine methods for prediction. Variations in charge to combustible mass, charge type, structure volume, degree of venting and degree of contact between HE and combustible sbould be studied.« less

  17. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, NOX CONTROL TECHNOLOGIES, CATALYTICA COMBUSTION SYSTEMS, INC., XONON FLAMELESS COMBUSTION SYSTEM

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Xonon Cool Combustion System manufactured by Catalytica Energy Systems, Inc., formerly Catalytica Combustion Systems, Inc., to control NOx emissions from gas turbines that operate wit...

  18. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Selective Modification of Chitin and Chitosan: En Route to Tailored Oligosaccharides.

    PubMed

    Carvalho, Luísa C R; Queda, Fausto; Santos, Cátia V Almeida; Marques, M Manuel B

    2016-12-19

    Chitin and chitosan are attractive biopolymers with enormous structural possibilities for chemical modification, creating platforms for new chemical entities with a broad scope of applications, ranging from material science to medicine. During the last few years, incredible efforts have been dedicated to the regioselective modification of these biopolymers paving the way for improved properties and tailored activities. Herein, the most recent advances in chitin/chitosan regioselective modification, reaction conditions, selectivity, and the impact on its applications are highlighted. Moreover, the recent focus on chitooligosaccharides, their regioselective and chemoselective functionalization, as well as their role in biological studies, including molecular recognition with several biological targets are also covered. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Pulse enhanced fluidized bed combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mueller, B.

    1996-12-31

    Information is outlined on pulse enhanced fluidized bed combustion. The following topics are discussed: what is pulse enhanced fluidized bed combustion?; pulse combustors; pulsed atmospheric fluidized bed combustor (PAFBC); advantages of PAFBC; performance advantages; PAFBC facts; and PAFBC contact points.

  1. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  2. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  3. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  4. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  5. 14 CFR 23.859 - Combustion heater fire protection.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  6. Liquid rocket engine combustion stabilization devices

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Combustion instability, which results from a coupling of the combustion process and the fluid dynamics of the engine system, was investigated. The design of devices which reduce coupling (combustion chamber baffles) and devices which increase damping (acoustic absorbers) are described. Included in the discussion are design criteria and recommended practices, structural and mechanical design, thermal control, baffle geometry, baffle/engine interactions, acoustic damping analysis, and absorber configurations.

  7. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  8. Chiral reagents in glycosylation and modification of carbohydrates.

    PubMed

    Wang, Hao-Yuan; Blaszczyk, Stephanie A; Xiao, Guozhi; Tang, Weiping

    2018-02-05

    Carbohydrates play a significant role in numerous biological events, and the chemical synthesis of carbohydrates is vital for further studies to understand their various biological functions. Due to the structural complexity of carbohydrates, the stereoselective formation of glycosidic linkages and the site-selective modification of hydroxyl groups are very challenging and at the same time extremely important. In recent years, the rapid development of chiral reagents including both chiral auxiliaries and chiral catalysts has significantly improved the stereoselectivity for glycosylation reactions and the site-selectivity for the modification of carbohydrates. These new tools will greatly facilitate the efficient synthesis of oligosaccharides, polysaccharides, and glycoconjugates. In this tutorial review, we will summarize these advances and highlight the most recent examples.

  9. JANNAF 36th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 47 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 36th Combustion Subcommittee held jointly with the 24th Airbreathing Propulsion Subcommittee and 18th Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Solid phase propellant combustion topics covered in this volume include cookoff phenomena in the pre- and post-ignition phases, solid rocket motor and gun propellant combustion, aluminized composite propellant combustion, combustion modeling and combustion instability and instability measurement techniques.

  10. Calculation of Supersonic Combustion Using Implicit Schemes

    NASA Technical Reports Server (NTRS)

    Yoon, Seokkwan; Kwak, Dochan (Technical Monitor)

    2003-01-01

    One of the technology goals of NASA for advanced space transportation is to develop highly efficient propulsion systems to reduce the cost of payload for space missions. Developments of rockets for the second generation Reusable Launch Vehicle (RLV) in the past several years have been focused on low-cost versions of conventional engines. However, recent changes in the Integrated Space Transportation Program to build a crew transportation vehicle to extend the life of the Space Shuttle fleet might suggest that air-breathing rockets could reemerge as a possible propulsion system for the third generation RLV to replace the Space Shuttle after 2015. The weight of the oxygen tank exceeds thirty percent of the total weight of the Space Shuttle at launch while the payload is only one percent of the total weight. The air-breathing rocket propulsion systems, which consume oxygen in the air, offer clear advantages by making vehicles lighter and more efficient. Experience in the National Aerospace Plane Program in the late 1980s indicates that scramjet engines can achieve high specific impulse for low hypersonic vehicle speeds. Whether taking a form of Rocket Based Combined Cycle (RBCC) or Turbine Based Combined Cycle (TBCC), the scramjet is an essential mode of operation for air-breathing rockets. It is well known that fuel-air mixing and rapid combustion are of crucial importance for the success of scramjet engines since the spreading rate of the supersonic mixing layer decreases as the Mach number increases. A factored form of the Gauss-Seidel relaxation method has been widely used in hypersonic flow research since its first application to non-equilibrium flows. However, difficulties in stability and convergence have been encountered when there is strong interaction between fluid motion and chemical reaction, such as multiple fuel injection problems. The present paper reports the results from investigation of the effect of modifications to the original algorithm on the

  11. Low emission U-fired boiler combustion system

    DOEpatents

    Ake, Terence; Beittel, Roderick; Lisauskas, Robert A.; Reicker, Eric

    2000-01-01

    At least one main combustion chamber contains at least one pulverized coal burner. Each pulverized coal burner is operatively arranged for minimizing NO.sub.X production and for maintaining a predetermined operating temperature to liquefy ash within the combustion chamber. The combustion chamber includes a slag drain for removing slag from the combustion chamber. A slag screen is positioned in a generally U-shaped furnace flow pattern. The slag screen is positioned between the combustion chamber and a radiant furnace. The radiant furnace includes a reburning zone for in-furnace No.sub.X reduction. The reburning zone extends between a reburning fuel injection source and at least one overfire air injection port for injecting air.

  12. Combustion Limits and Efficiency of Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Barnett, H. C.; Jonash, E. R.

    1956-01-01

    Combustion must be maintained in the turbojet-engine combustor over a wide range of operating conditions resulting from variations in required engine thrust, flight altitude, and flight speed. Furthermore, combustion must be efficient in order to provide the maximum aircraft range. Thus, two major performance criteria of the turbojet-engine combustor are (1) operatable range, or combustion limits, and (2) combustion efficiency. Several fundamental requirements for efficient, high-speed combustion are evident from the discussions presented in chapters III to V. The fuel-air ratio and pressure in the burning zone must lie within specific limits of flammability (fig. 111-16(b)) in order to have the mixture ignite and burn satisfactorily. Increases in mixture temperature will favor the flammability characteristics (ch. III). A second requirement in maintaining a stable flame -is that low local flow velocities exist in the combustion zone (ch. VI). Finally, even with these requirements satisfied, a flame needs a certain minimum space in which to release a desired amount of heat, the necessary space increasing with a decrease in pressure (ref. 1). It is apparent, then, that combustor design and operation must provide for (1) proper control of vapor fuel-air ratios in the combustion zone at or near stoichiometric, (2) mixture pressures above the minimum flammability pressures, (3) low flow velocities in the combustion zone, and (4) adequate space for the flame.

  13. Combustion of liquid fuels in a flowing combustion gas environment at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1975-01-01

    The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

  14. 21 CFR 1316.44 - Waiver or modification of rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Waiver or modification of rules. 1316.44 Section 1316.44 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE ADMINISTRATIVE FUNCTIONS... in this subpart by notice in advance of the hearing, if he determines that no party in the hearing...

  15. Lean premixed/prevaporized combustion

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H. (Editor)

    1977-01-01

    Recommendations were formulated on the status and application of lean premixed/prevaporized combustion to the aircraft gas turbine for the reduction of pollutant emissions. The approach taken by the NASA Stratospheric Cruise Emission Reduction Program (SCERP) in pursuing the lean premixed/prevaporized combustion technique was also discussed. The proceedings contains an overview of the SCERP program, the discussions and recommendations of the participants, and an overall summary.

  16. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  17. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  18. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  19. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  20. 14 CFR 25.833 - Combustion heating systems.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Combustion heating systems. 25.833 Section 25.833 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  1. APTI Course 427, Combustion Evaluation. Student Workbook.

    ERIC Educational Resources Information Center

    Beard, J. Taylor; And Others

    Presented are exercises intended to supplement course work in air pollution control, specifically as they relate to combustion. Chapters offered in this workbook include: (1) Combustion Calculations, (2) Combustion System Design Problems, (3) Emission Calculations I, (4) Emission Calculations II, (5) Afterburner Design Problems, and (6) Cumbustion…

  2. Iridium-Coated Rhenium Combustion Chamber

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.; Tuffias, Robert H.; Rosenberg, Sanders D.

    1994-01-01

    Iridium-coated rhenium combustion chamber withstands operating temperatures up to 2,200 degrees C. Chamber designed to replace older silicide-coated combustion chamber in small rocket engine. Modified versions of newer chamber could be designed for use on Earth in gas turbines, ramjets, and scramjets.

  3. An Assessment of Combustion Dynamics in a Low-Nox, Second-Generation Swirl-Venturi Lean Direct Injection Combustion Concept

    NASA Technical Reports Server (NTRS)

    Tacina, K. M.; Chang, C. T.; Lee, P.; Mongia, H.; Podboy, D. P.; Dam, B.

    2015-01-01

    Dynamic pressure measurements were taken during flame-tube emissions testing of three second-generation swirl-venturi lean direct injection (SV-LDI) combustor configurations. These measurements show that combustion dynamics were typically small. However, a small number of points showed high combustion dynamics, with peak-to-peak dynamic pressure fluctuations above 0.5 psi. High combustion dynamics occurred at low inlet temperatures in all three SV-LDI configurations, so combustion dynamics were explored further at low temperature conditions. A point with greater than 1.5 psi peak-to-peak dynamic pressure fluctuations was identified at an inlet temperature of 450!F, a pressure of 100 psia, an air pressure drop of 3%, and an overall equivalence ratio of 0.35. This is an off design condition: the temperature and pressure are typical of 7% power conditions, but the equivalence ratio is high. At this condition, the combustion dynamics depended strongly on the fuel staging. Combustion dynamics could be reduced significantly without changing the overall equivalence ratio by shifting the fuel distribution between stages. Shifting the fuel distribution also decreased NOx emissions.

  4. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-II

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    1990-01-01

    Two-dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  5. Evaluation of a hybrid kinetics/mixing-controlled combustion model for turbulent premixed and diffusion combustion using KIVA-2

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee; Wey, Ming-Jyh

    1990-01-01

    Two dimensional calculations were made of spark ignited premixed-charge combustion and direct injection stratified-charge combustion in gasoline fueled piston engines. Results are obtained using kinetic-controlled combustion submodel governed by a four-step global chemical reaction or a hybrid laminar kinetics/mixing-controlled combustion submodel that accounts for laminar kinetics and turbulent mixing effects. The numerical solutions are obtained by using KIVA-2 computer code which uses a kinetic-controlled combustion submodel governed by a four-step global chemical reaction (i.e., it assumes that the mixing time is smaller than the chemistry). A hybrid laminar/mixing-controlled combustion submodel was implemented into KIVA-2. In this model, chemical species approach their thermodynamics equilibrium with a rate that is a combination of the turbulent-mixing time and the chemical-kinetics time. The combination is formed in such a way that the longer of the two times has more influence on the conversion rate and the energy release. An additional element of the model is that the laminar-flame kinetics strongly influence the early flame development following ignition.

  6. In-water gas combustion for thrust production

    NASA Astrophysics Data System (ADS)

    Teslenko, V. S.; Drozhzhin, A. P.; Medvedev, R. N.

    2017-07-01

    The paper presents the results of experimental study for hydrodynamic processes occurring during combustion of a stoichiometric mixture propane-oxygen in combustion chambers with different configurations and submerged into water. The pulses of force acting upon a thrust wall were measured for different geometries: cylindrical, conic, hemispherical, including the case of gas combustion near a flat thrust wall. After a single charge of stoichiometric mixture propane-oxygen is burnt near the thrust wall, the process of cyclic generation of force pulses develops. The first pulse is generated due to pressure growth during gas combustion, and the following pulses are the result of hydrodynamic pulsations of the gaseous cavity. Experiments demonstrated that efficient generation of thrust occurs if all bubble pulsations are used during combustion of a single gas combustion. In the series of experiments, the specific impulse on the thrust wall was in the range 104-105 s (105-106 m/s) with account for positive and negative components of impulse.

  7. Performance and Stability Analyses of Rocket Combustion Devices Using Liquid Oxygen/Liquid Methane Propellants

    NASA Technical Reports Server (NTRS)

    Hulka, James R.; Jones, G. W.

    2010-01-01

    Liquid rocket engines using oxygen and methane propellants are being considered by the National Aeronautics and Space Administration (NASA) for in-space vehicles. This propellant combination has not been previously used in flight-qualified engine systems, so limited test data and analysis results are available at this stage of early development. NASA has funded several hardware-oriented programs with oxygen and methane propellants over the past several years with the Propulsion and Cryogenic Advanced Development (PCAD) project, under the Exploration Technology Development Program. As part of this effort, NASA Marshall Space Flight Center has conducted combustion, performance, and combustion stability analyses of several of the configurations on these programs. This paper summarizes these analyses. Test and analysis results of impinging and coaxial element injectors using liquid oxygen and liquid methane propellants are included. Several cases with gaseous methane are included for reference. Several different thrust chamber configurations have been modeled, including thrust chambers with multi-element like-on-like and swirl coax element injectors tested at NASA MSFC, and a unielement chamber with shear and swirl coax injectors tested at The Pennsylvania State University. Configurations were modeled with two one-dimensional liquid rocket combustion analysis codes, the Rocket Combustor Interaction Design and Analysis (ROCCID), and the Coaxial Injector Combustion Model (CICM). Significant effort was applied to show how these codes can be used to model combustion and performance with oxygen/methane propellants a priori, and what anchoring or calibrating features need to be applied or developed in the future. This paper describes the test hardware configurations, presents the results of all the analyses, and compares the results from the two analytical methods.

  8. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, L.I. Jr.; Daw, C.S.; Feldkamp, L.A.; Hoard, J.W.; Yuan, F.; Connolly, F.T.

    1999-07-13

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling. 27 figs.

  9. Method of controlling cyclic variation in engine combustion

    DOEpatents

    Davis, Jr., Leighton Ira; Daw, Charles Stuart; Feldkamp, Lee Albert; Hoard, John William; Yuan, Fumin; Connolly, Francis Thomas

    1999-01-01

    Cyclic variation in combustion of a lean burning engine is reduced by detecting an engine combustion event output such as torsional acceleration in a cylinder (i) at a combustion event (k), using the detected acceleration to predict a target acceleration for the cylinder at the next combustion event (k+1), modifying the target output by a correction term that is inversely proportional to the average phase of the combustion event output of cylinder (i) and calculating a control output such as fuel pulse width or spark timing necessary to achieve the target acceleration for cylinder (i) at combustion event (k+1) based on anti-correlation with the detected acceleration and spill-over effects from fueling.

  10. EMISSIONS OF TRACE PRODUCTS OF INCOMPLETE COMBUSTION FROM A PILOT-SCALE INCINERATOR SECONDARY COMBUSTION CHAMBER

    EPA Science Inventory

    Experiments were performed on a 73 kW rotary kiln incinerator simulator equipped with a 73 kW secondary combustion chamber (SCC) to examine emissions of products of incomplete combustion (PICs) resulting from incineration of carbon tetrachloride (CCl4) and dichlorometh...

  11. Review of problems in application of supersonic combustion

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1977-01-01

    The problem of air-breathing engines capable of flying at very high Mach numbers is described briefly. Possible performance of supersonic combustion ramjets is outlined briefly and the supersonic combustion process is described. Two mechanisms of combustion are outlined: one is supersonic combustion controlled by convection process, and the second is controlled by diffusion. The parameters related to the combustion process are discussed in detail. Data and analyses of reaction rates and mixing phenomena are represented; the flame mechanism is discussed, and experimental results are presented.

  12. Gas-phase measurements of combustion interaction with materials for radiation-cooled chambers

    NASA Technical Reports Server (NTRS)

    Barlow, R. S.; Lucht, R. P.; Jassowski, D. M.; Rosenberg, S. D.

    1991-01-01

    Foil samples of Ir and Pt are exposed to combustion products in a controlled premixed environment at atmospheric pressure. Electrical heating of the foil samples is used to control the surface temperature and to elevate it above the radiative equilibrium temperature within the test apparatus. Profiles of temperature and OH concentration in the boundary layer adjacent to the specimen surface are measured by laser-induced fluorescence. Measured OH concentrations are significantly higher than equilibrium concentrations calculated for the known mixture ratio and the measured temperature profiles. This result indicates that superequilibrium concentrations of H-atoms and O-atoms are also present in the boundary layer, due to partial equilibrium of the rapid binary reactions of the H2/O2 chemical kinetic system. These experiments are conducted as part of a research program to investigate fundamental aspects of the interaction of combustion gases with advanced high-temperature materials for radiation-cooled thrusters.

  13. Review of Membrane Oxygen Enrichment for Efficient Combustion

    NASA Astrophysics Data System (ADS)

    Ariono, Danu; Kusuma Wardani, Anita

    2017-07-01

    Oxygen enrichment from air is a simple way of increasing the efficiency of combustion process, as in oxy-combustion. Oxy-combustion has become one of the most attracting combustion technologies because of its potential to address both pollutant reduction and CO2 capture. In oxy-combustion, the fuel and recycled flue gas are combusted with oxygen enriched air (OEA). By using OEA, many benefits can be obtained, such as increasing available heat, improving ignition characteristics, flue gas reduction, increasing productivity, energy efficiency, turndown ratio, and flame stability. Membrane-based gas separation for OEA production becomes an attractive technology over the conventional technology due to the some advantages, including low capital cost, low energy consumption, compact size, and modularity. A single pass through membrane usually can enrich O2 concentration in the air up to 35% and a 50% concentration can be achieved with a double pass of membrane. The use of OEA in the combustion process eliminates the presence of nitrogen in the flue gas. Hence, the flue gas is mainly composed of CO2 and condensable water that can be easily separated. This paper gives an overview of oxy-combustion with membrane technology for oxygen enrichment process. Special attention is given to OEA production and the effect of OEA to the efficiency of combustion.

  14. Simulation and experiment for oxygen-enriched combustion engine using liquid oxygen to solidify CO2

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Jia, Xiaoshe; Pei, Pucheng; Lu, Yong; Yi, Li; Shi, Yan

    2016-01-01

    For capturing and recycling of CO2 in the internal combustion engine, Rankle cycle engine can reduce the exhaust pollutants effectively under the condition of ensuring the engine thermal efficiency by using the techniques of spraying water in the cylinder and optimizing the ignition advance angle. However, due to the water spray nozzle need to be installed on the cylinder, which increases the cylinder head design difficulty and makes the combustion conditions become more complicated. In this paper, a new method is presented to carry out the closing inlet and exhaust system for internal combustion engines. The proposed new method uses liquid oxygen to solidify part of cooled CO2 from exhaust system into dry ice and the liquid oxygen turns into gas oxygen which is sent to inlet system. The other part of CO2 is sent to inlet system and mixed with oxygen, which can reduce the oxygen-enriched combustion detonation tendency and make combustion stable. Computing grid of the IP52FMI single-cylinder four-stroke gasoline-engine is established according to the actual shape of the combustion chamber using KIVA-3V program. The effects of exhaust gas recirculation (EGR) rate are analyzed on the temperatures, the pressures and the instantaneous heat release rates when the EGR rate is more than 8%. The possibility of enclosing intake and exhaust system for engine is verified. The carbon dioxide trapping device is designed and the IP52FMI engine is transformed and the CO2 capture experiment is carried out. The experimental results show that when the EGR rate is 36% for the optimum EGR rate. When the liquid oxygen of 35.80-437.40 g is imported into the device and last 1-20 min, respectively, 21.50-701.30 g dry ice is obtained. This research proposes a new design method which can capture CO2 for vehicular internal combustion engine.

  15. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    PubMed

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  17. Hydrodynamic Instability and Thermal Coupling in a Dynamic Model of Liquid-Propellant Combustion

    NASA Technical Reports Server (NTRS)

    Margolis, S. B.

    1999-01-01

    For liquid-propellant combustion, the Landau/Levich hydrodynamic models have been combined and extended to account for a dynamic dependence of the burning rate on the local pressure and temperature fields. Analysis of these extended models is greatly facilitated by exploiting the realistic smallness of the gas-to-liquid density ratio rho. Neglecting thermal coupling effects, an asymptotic expression was then derived for the cellular stability boundary A(sub p)(k) where A(sub p) is the pressure sensitivity of the burning rate and k is the disturbance wavenumber. The results explicitly indicate the stabilizing effects of gravity on long-wave disturbances, and those of viscosity and surface tension on short-wave perturbations, and the instability associated with intermediate wavenumbers for critical negative values of A(sub p). In the limit of weak gravity, hydrodynamic instability in liquid-propellant combustion becomes a long-wave, instability phenomenon, whereas at normal gravity, this instability is first manifested through O(1) wavenumbers. In addition, surface tension and viscosity (both liquid and gas) each produce comparable effects in the large-wavenumber regime, thereby providing important modifications to the previous analyses in which one or more of these effects was neglected. For A(sub p)= O, the Landau/Levich results are recovered in appropriate limiting cases, although this typically corresponds to a hydrodynamically unstable parameter regime for p << 1. In addition to the classical cellular form of hydrodynamic stability, there exists a pulsating form corresponding to the loss of stability of steady, planar burning to time-dependent perturbations. This occurs for negative values of the parameter A(sub p), and is thus absent from the original Landau/Levich models. In the extended model, however, there exists a stable band of negative pressure sensitivities bounded above by the Landau type of instability, and below by this pulsating form of hydrodynamic

  18. Combustion: Structural interaction in a viscoelastic material

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Chang, J. P.; Kumar, M.; Kuo, K. K.

    1980-01-01

    The effect of interaction between combustion processes and structural deformation of solid propellant was considered. The combustion analysis was performed on the basis of deformed crack geometry, which was determined from the structural analysis. On the other hand, input data for the structural analysis, such as pressure distribution along the crack boundary and ablation velocity of the crack, were determined from the combustion analysis. The interaction analysis was conducted by combining two computer codes, a combustion analysis code and a general purpose finite element structural analysis code.

  19. Hot fire test results of subscale tubular combustion chambers

    NASA Technical Reports Server (NTRS)

    Kazaroff, John M.; Jankovsky, Robert S.; Pavli, Albert J.

    1992-01-01

    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life.

  20. Experimental and theoretical study of combustion jet ignition

    NASA Technical Reports Server (NTRS)

    Chen, D. Y.; Ghoniem, A. F.; Oppenheim, A. K.

    1983-01-01

    A combustion jet ignition system was developed to generate turbulent jets of combustion products containing free radicals and to discharge them as ignition sources into a combustible medium. In order to understand the ignition and the inflammation processes caused by combustion jets, the studies of the fluid mechanical properties of turbulent jets with and without combustion were conducted theoretically and experimentally. Experiments using a specially designed igniter, with a prechamber to build up and control the stagnation pressure upstream of the orifice, were conducted to investigate the formation processes of turbulent jets of combustion products. The penetration speed of combustion jets has been found to be constant initially and then decreases monotonically as turbulent jets of combustion products travel closer to the wall. This initial penetration speed to combustion jets is proportional to the initial stagnation pressure upstream of the orifice for the same stoichiometric mixture. Computer simulations by Chorin's Random Vortex Method implemented with the flame propagation algorithm for the theoretical model of turbulent jets with and without combustion were performed to study the turbulent jet flow field. In the formation processes of the turbulent jets, the large-scale eddy structure of turbulence, the so-called coherent structure, dominates the entrainment and mixing processes. The large-scale eddy structure of turbulent jets in this study is constructed by a series of vortex pairs, which are organized in the form of a staggered array of vortex clouds generating local recirculation flow patterns.