Sample records for advanced composite systems

  1. Graphite/Polyimide Composites. [conference on Composites for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Dexter, H. B. (Editor); Davis, J. G., Jr. (Editor)

    1979-01-01

    Technology developed under the Composites for Advanced Space Transportation System Project is reported. Specific topics covered include fabrication, adhesives, test methods, structural integrity, design and analysis, advanced technology developments, high temperature polymer research, and the state of the art of graphite/polyimide composites.

  2. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial

  3. Development of Metal Matrix Composites for NASA'S Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2000-01-01

    The state-of-the-art development of several aluminum and copper based Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The presentation's goal is to provide an overview of NASA-Marshall Space Flight Center's planned and on-going activities in MMC for advanced liquid rocket engines such as the X-33 vehicle's Aerospike and X-34 Fastrac engine. The focus will be on lightweight and environmental compatibility with oxygen and hydrogen of key MMC materials, within each NASA's new propulsion application, that will provide a high payoff for NASA's reusable launch vehicle systems and space access vehicles. Advanced MMC processing techniques such as plasma spray, centrifugal casting, pressure infiltration casting will be discussed. Development of a novel 3D printing method for low cost production of composite preform, and functional gradient MMC to enhanced rocket engine's dimensional stability will be presented.

  4. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  5. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  6. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  7. Advances in the Use of Thermography to Inspect Composite Tanks for Liquid Fuel Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lansing, Matthew D.; Russell, Samuel S.; Walker, James L.; Jones, Clyde S. (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of advances in the use of thermography to inspect composite tanks for liquid fuel propulsion systems. Details are given on the thermographic inspection system, thermographic analysis method (includes scan and defect map, method of inspection, and inclusions, ply wrinkle, and delamination defects), graphite composite cryogenic feedline (including method, image map, and deep/shallow inclusions and resin rich area defects), and material degradation nondestructive evaluation.

  8. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  9. Robust Joining and Integration Technologies for Advanced Metallic, Ceramic, and Composite Systems

    NASA Technical Reports Server (NTRS)

    Singh, M.; Shpargel, Tarah; Morscher, Gregory N.; Halbig, Michael H.; Asthana, Rajiv

    2006-01-01

    Robust integration and assembly technologies are critical for the successful implementation of advanced metallic, ceramic, carbon-carbon, and ceramic matrix composite components in a wide variety of aerospace, space exploration, and ground based systems. Typically, the operating temperature of these components varies from few hundred to few thousand Kelvin with different working times (few minutes to years). The wide ranging system performance requirements necessitate the use of different integration technologies which includes adhesive bonding, low temperature soldering, active metal brazing, diffusion bonding, ARCJoinT, and ultra high temperature joining technologies. In this presentation, a number of joining examples and test results will be provided related to the adhesive bonding and active metal brazing of titanium to C/C composites, diffusion bonding of silicon carbide to silicon carbide using titanium interlayer, titanium and hastelloy brazing to silicon carbide matrix composites, and ARCJoinT joining of SiC ceramics and SiC matrix composites. Various issues in the joining of metal-ceramic systems including thermal expansion mismatch and resulting residual stresses generated during joining will be discussed. In addition, joint design and testing issues for a wide variety of joints will be presented.

  10. [Advanced Composites Technology Initiatives

    NASA Technical Reports Server (NTRS)

    Julian, Mark R.

    2002-01-01

    This final report closes out the W02 NASA Grant #NCC5-646. The FY02 grant for advanced technology initiatives through the Advanced Composites Technology Institute in Bridgeport, WV, at the Robert C. Byrd Institute (RCBI) Bridgeport Manufacturing Technology Center, is complete; all funding has been expended. RCBI continued to expand access to technology; develop and implement a workforce-training curriculum; improve material development; and provide prototyping and demonstrations of new and advanced composites technologies for West Virginia composites firms. The FY 02 efforts supported workforce development, technical training and the HST development effort of a super-lightweight composite carrier prototype and expanded the existing technical capabilities of the growing aerospace industry across West Virginia to provide additional support for NASA missions. Additionally, the Composites Technology and Training Center was awarded IS0 9001 - 2000 certification and Cleanroom Class 1000 certification during this report period.

  11. Development of Metal Matrix Composites for NASA's Advanced Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Lee, J.; Elam, S.

    2001-01-01

    The state-of-the-art development of several Metal Matrix Composites (MMC) for NASA's advanced propulsion systems will be presented. The goal is to provide an overview of NASA-Marshall Space Flight Center's on-going activities in MMC components for advanced liquid rocket engines such as the X-33 vehicle's Aerospike engine and X-34's Fastrac engine. The focus will be on lightweight, low cost, and environmental compatibility with oxygen and hydrogen of key MMC materials, within each of NASA's new propulsion application, that will provide a high payoff for NASA's Reusable Launch Vehicles and space access vehicles. In order to fabricate structures from MMC, effective joining methods must be developed to join MMC to the same or to different monolithic alloys. Therefore, a qualitative assessment of MMC's welding and joining techniques will be outlined.

  12. Advanced ceramic matrix composites for TPS

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.

    1992-01-01

    Recent advances in ceramic matrix composite (CMC) technology provide considerable opportunity for application to future aircraft thermal protection system (TPS), providing materials with higher temperature capability, lower weight, and higher strength and stiffness than traditional materials. The Thermal Protection Material Branch at NASA Ames Research Center has been making significant progress in the development, characterization, and entry simulation (arc-jet) testing of new CMC's. This protection gives a general overview of the Ames Thermal Protection Materials Branch research activities, followed by more detailed descriptions of recent advances in very-high temperature Zr and Hf based ceramics, high temperature, high strength SiC matrix composites, and some activities in polymer precursors and ceramic coating processing. The presentation closes with a brief comparison of maximum heat flux capabilities of advanced TPS materials.

  13. JTEC panel report on advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.; Grisaffe, S. J.; Hillig, W. B.; Perepezko, J. H.; Pipes, R. B.; Sheehan, J. E.

    1991-01-01

    The JTEC Panel on Advanced Composites visited Japan and surveyed the status and future directions of Japanese high performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic and carbon matrices. The panel's interests included not only what composite systems were chosen, but also how these systems were developed. A strong carbon and fiber industry makes Japan the leader in carbon fiber technology. Japan has initiated an oxidation resistant carbon/carbon composite program. The goals for this program are ambitious, and it is just starting, but its progress should be closely monitored in the United States.

  14. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 2: Project planning data

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Project planning data for a rotor and control system procurement and testing program for modifications to the XV-15 tilt-rotor research demonstrator aircraft is presented. The design, fabrication, and installation of advanced composite blades compatible with the existing hub, an advanced composite hub, and a nonmechanical control system are required.

  15. Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2015-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. This paper will emphasize advanced environmental barrier coating developments for SiCSiC turbine airfoil components, by using advanced coating compositions and processing, in conjunction with mechanical and environment testing and durability validations. The coating-CMC degradations and durability in the laboratory simulated engine fatigue-creep and complex operating environments are being addressed. The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will be discussed. The results help understand the advanced EBC-CMC system performance, aiming at the durability improvements of more robust, prime-reliant environmental barrier coatings for successful applications of the component technologies and lifing methodologies.

  16. Advanced composites for windmills

    NASA Astrophysics Data System (ADS)

    Bourquardez, G.

    A development status assessment is conducted for advanced composite construction techniques for windmill blade structures which, as in the case of composite helicopter rotors, promise greater reliability, longer service life, superior performance, and lower costs. Composites in wind turbine applications must bear aerodynamic, inertial and gravitational loads in complex interaction cycles. Attention is given to large Darrieus-type vertical axis windmills, to which composite construction methods may offer highly effective pitch-control mechanisms, especially in the 'umbrella' configuration.

  17. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion of the full scale ground test and flight test activities, the ancillary test programs, sustaining efforts, weight status, and the production status. Prior to flight testing of the advanced composites elevator, ground, flight flutter, and stability and control test plans were reviewed and approved by the FAA. Both the ground test and the flight test were conducted according to the approved plan, and were witnessed by the FAA. Three and one half shipsets have now been fabricated without any significant difficulty being encountered. Two elevator system shipsets were weighed, and results validated the 26% predicted weight reduction. The program is on schedule.

  18. Advanced technology composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  19. The Institute for Advanced Composites Manufacturing Innovation | Wind |

    Science.gov Websites

    NREL The Institute for Advanced Composites Manufacturing Innovation The Institute for Advanced Composites Manufacturing Innovation Building on its 30-year history of collaboration with major wind turbine of the Institute for Advanced Composites Manufacturing Innovation (IACMI). Photo of a crowd of people

  20. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  1. Research on the exploitation of advanced composite materials to lightly loaded structures

    NASA Technical Reports Server (NTRS)

    Mar, J. W.

    1976-01-01

    The objective was to create a sailplane which could fly in weaker thermals than present day sailplanes (by being lighter) and to fly in stronger thermals than present sailplanes (by carrying more water ballast). The research was to tackle the interaction of advanced composites and the aerodynamic performance, the interaction of fabrication procedures and the advanced composites, and the interaction of advanced composites and the design process. Many pieces of the overall system were investigated but none were carried to the resolution required for engineering application. Nonetheless, interesting and useful results were obtained and are here reported.

  2. Rewriting in Advanced Composition.

    ERIC Educational Resources Information Center

    Stone, William B.

    A college English instructor made an informal comparison of rewriting habits of students in a freshman composition course and two advanced composition courses. Notes kept on student rewriting focused on this central question: given peer and instructor response to their papers and a choice as to what and how to rewrite, what will students decide to…

  3. Advanced composites technology program

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr.

    1993-01-01

    This paper provides a brief overview of the NASA Advanced Composites Technology (ACT) Program. Critical technology issues that must be addressed and solved to develop composite primary structures for transport aircraft are delineated. The program schedule and milestones are included. Work completed in the first 3 years of the program indicates the potential for achieving composite structures that weigh less and are cost effective relative to conventional aluminum structure. Selected technical accomplishments are noted. Readers who are seeking more in-depth technical information should study the other papers included in these proceedings.

  4. Advanced Booster Composite Case/Polybenzimidazole Nitrile Butadiene Rubber Insulation Development

    NASA Technical Reports Server (NTRS)

    Gentz, Steve; Taylor, Robert; Nettles, Mindy

    2015-01-01

    The NASA Engineering and Safety Center (NESC) was requested to examine processing sensitivities (e.g., cure temperature control/variance, debonds, density variations) of polybenzimidazole nitrile butadiene rubber (PBI-NBR) insulation, case fiber, and resin systems and to evaluate nondestructive evaluation (NDE) and damage tolerance methods/models required to support human-rated composite motor cases. The proposed use of composite motor cases in Blocks IA and II was expected to increase performance capability through optimizing operating pressure and increasing propellant mass fraction. This assessment was to support the evaluation of risk reduction for large booster component development/fabrication, NDE of low mass-to-strength ratio material structures, and solid booster propellant formulation as requested in the Space Launch System NASA Research Announcement for Advanced Booster Engineering Demonstration and/or Risk Reduction. Composite case materials and high-energy propellants represent an enabling capability in the Agency's ability to provide affordable, high-performing advanced booster concepts. The NESC team was requested to provide an assessment of co- and multiple-cure processing of composite case and PBI-NBR insulation materials and evaluation of high-energy propellant formulations.

  5. Advanced composites characterization with x-ray technologies

    NASA Astrophysics Data System (ADS)

    Baaklini, George Y.

    1993-12-01

    Recognizing the critical need to advance new composites for the aeronautics and aerospace industries, we are focussing on advanced test methods that are vital to successful modeling and manufacturing of future generations of high temperature and durable composite materials. These newly developed composites are necessary to reduce propulsion cost and weight, to improve performance and reliability, and to address longer-term national strategic thrusts for sustaining global preeminence in high speed air transport and in high performance military aircraft.

  6. Microstructure Evolution and Durability of Advanced Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Evans, Laura J.; McCue, Terry R.; Harder, Bryan

    2016-01-01

    Environmental barrier coated SiC-SiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. Advanced HfO2 and rare earth silicate environmental barrier coatings (EBCs), along with multicomponent hafnium and rare earth silicide EBC bond coats have been developed. The coating degradation mechanisms in the laboratory simulated engine thermal cycling, and fatigue-creep operating environments are also being investigated. This paper will focus on the microstructural and compositional evolutions of an advanced environmental barrier coating system on a SiC-SiC CMC substrate during the high temperature simulated durability tests, by using a Field Emission Gun Scanning Electron Microscopy, Energy Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). The effects of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the degradation mechanisms of the environmental barrier coating systems will also be discussed. The detailed analysis results help understand the EBC-CMC system performance, aiming at the durability improvements to achieve more robust, prime-reliant environmental barrier coatings.

  7. Advanced composite fuselage technology

    NASA Technical Reports Server (NTRS)

    Ilcewicz, Larry B.; Smith, Peter J.; Horton, Ray E.

    1993-01-01

    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and

  8. Creep rupture behavior of unidirectional advanced composites

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  9. Advanced organic composite materials for aircraft structures: Future program

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  10. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna; Kiser, Doug; Wiesner, Valerie L.

    2016-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiCSiC Ceramic Matrix Composite (CMC) components for next generation turbine engines. The emphasis has been placed on the current design challenges of the 2700F environmental barrier coatings; coating processing and integration with SiCSiC CMCs and component systems; and performance evaluation and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements through advanced compositions and architecture designs, as shown in recent simulated engine high heat flux, combustion environment, in conjunction with mechanical creep and fatigue loading testing conditions.

  11. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  12. Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

  13. Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures

    DTIC Science & Technology

    1980-04-01

    AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite

  14. Recent advances in aerospace composite NDE

    NASA Astrophysics Data System (ADS)

    Georgeson, Gary E.

    2002-06-01

    As the aerospace industry continues to advance the design and use of composite structure, the NDE community faces the difficulties of trying to keep up. The challenges lie in manufacturing evaluation of the newest aerospace structures and materials and the in-service inspection and monitoring of damaged or aging composites. This paper provides examples of several promising NDI applications in the world of aerospace composites. Airborne (or non-contact) Ultrasonic Testing (UT) has been available for decades, but recently has generated new interest due to significant improvements in transducer design and low noise electronics. Boeing is developing inspection techniques for composite joints and core blankets using this technology. In-service inspection techniques for thick, multi-layer structures are also being advanced. One effective technique integrates the S-9 Sondicator, a traditional bond testing device, with Boeing's Mobile Automated Scanner (MAUS) platform. Composite patches have seen limited use on-aircraft, due, in part, to the difficulty of determining the quality of a bonded joint. A unique approach using Electronic Speckle Pattern Interferometry (ESPI) is showing promise as a bonded patch-inspection method. Other NDI techniques currently being developed for aerospace application are also briefly discussed.

  15. Polymer, metal and ceramic matrix composites for advanced aircraft engine applications

    NASA Technical Reports Server (NTRS)

    Mcdanels, D. L.; Serafini, T. T.; Dicarlo, J. A.

    1985-01-01

    Advanced aircraft engine research within NASA Lewis is being focused on propulsion systems for subsonic, supersonic, and hypersonic aircraft. Each of these flight regimes requires different types of engines, but all require advanced materials to meet their goals of performance, thrust-to-weight ratio, and fuel efficiency. The high strength/weight and stiffness/weight properties of resin, metal, and ceramic matrix composites will play an increasingly key role in meeting these performance requirements. At NASA Lewis, research is ongoing to apply graphite/polyimide composites to engine components and to develop polymer matrices with higher operating temperature capabilities. Metal matrix composites, using magnesium, aluminum, titanium, and superalloy matrices, are being developed for application to static and rotating engine components, as well as for space applications, over a broad temperature range. Ceramic matrix composites are also being examined to increase the toughness and reliability of ceramics for application to high-temperature engine structures and components.

  16. Advanced composites in Japan

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. Judd; Hillig, William G.; Grisaffe, Salvatore J.; Pipes, R. Byron; Perepezko, John H.; Sheehan, James E.

    1994-01-01

    The JTEC Panel on Advanced Composites surveyed the status and future directions of Japanese high-performance ceramic and carbon fibers and their composites in metal, intermetallic, ceramic, and carbon matrices. Because of a strong carbon and fiber industry, Japan is the leader in carbon fiber technology. Japan has initiated an oxidation-resistant carbon/carbon composite program. With its outstanding technical base in carbon technology, Japan should be able to match present technology in the U.S. and introduce lower-cost manufacturing methods. However, the panel did not see any innovative approaches to oxidation protection. Ceramic and especially intermetallic matrix composites were not yet receiving much attention at the time of the panel's visit. There was a high level of monolithic ceramic research and development activity. High temperature monolithic intermetallic research was just starting, but notable products in titanium aluminides had already appeared. Matrixless ceramic composites was one novel approach noted. Technologies for high temperature composites fabrication existed, but large numbers of panels or parts had not been produced. The Japanese have selected aerospace as an important future industry. Because materials are an enabling technology for a strong aerospace industry, Japan initiated an ambitious long-term program to develop high temperature composites. Although just starting, its progress should be closely monitored in the U.S.

  17. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  18. Advances in Ceramic Matrix Composite Blade Damping Characteristics for Aerospace Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Min, James B.; Harris, Donald L.; Ting, J. M.

    2011-01-01

    For advanced aerospace propulsion systems, development of ceramic matrix composite integrally-bladed turbine disk technology is attractive for a number of reasons. The high strength-to-weight ratio of ceramic composites helps to reduce engine weight and the one-piece construction of a blisk will result in fewer parts count, which should translate into reduced operational costs. One shortcoming with blisk construction, however, is that blisks may be prone to high cycle fatigue due to their structural response to high vibration environments. Use of ceramic composites is expected to provide some internal damping to reduce the vibratory stresses encountered due to unsteady flow loads through the bladed turbine regions. A goal of our research was to characterize the vibration viscous damping behavior of C/SiC composites. The vibration damping properties were measured and calculated. Damping appeared to decrease with an increase in the natural frequency. While the critical damping amount of approximately 2% is required for typical aerospace turbomachinery engines, the C/SiC damping at high frequencies was less than 0.2% from our study. The advanced high-performance aerospace propulsion systems almost certainly will require even more damping than what current vehicles require. A purpose of this paper is to review some work on C/SiC vibration damping by the authors for the NASA CMC turbine blisk development program and address an importance of the further investigation of the blade vibration damping characteristics on candidate CMC materials for the NASA s advanced aerospace turbomachinery engine systems.

  19. Characterization and development of materials for advanced textile composites

    NASA Technical Reports Server (NTRS)

    Hartness, J. Timothy; Greene, Timothy L.; Taske, Leo E.

    1993-01-01

    Work ongoing under the NASA Langley - Advanced Composite Technology (ACT) program is discussed. The primary emphasis of the work centers around the development and characterization of graphite fiber that has been impregnated with an epoxy powder. Four epoxies have been characterized in towpreg form as to their weaveability and braidability. Initial mechanical properties have been generated on each resin system. These include unidirectional as well as 8-harness satin cloth. Initial 2D and 3D weaving and braiding trials will be reported on as well as initial efforts to develop towpreg suitable for advanced tow placement.

  20. Advanced composite applications for sub-micron biologically derived microstructures

    NASA Technical Reports Server (NTRS)

    Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas

    1991-01-01

    A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.

  1. Protection of Advanced Electrical Power Systems from Atmospheric Electromagnetic Hazards.

    DTIC Science & Technology

    1981-12-01

    WORDS (Continue on reverse aide if neceeary and Identify by block number) Aircraft Induced Voltages Filters Composite Structures Lightning Transients...transients on the electrical systems of aircraft with metal or composite structures. These transients will be higher than the equipment inherent hardness... composite material in skin and structure. In addition, the advanced electrical power systems used in these aircraft will contain solid state components

  2. Modeling Creep Effects in Advanced SiC/SiC Composites

    NASA Technical Reports Server (NTRS)

    Lang, Jerry; DiCarlo, James

    2006-01-01

    Because advanced SiC/SiC composites are projected to be used for aerospace components with large thermal gradients at high temperatures, efforts are on-going at NASA Glenn to develop approaches for modeling the anticipated creep behavior of these materials and its subsequent effects on such key composite properties as internal residual stress, proportional limit stress, ultimate tensile strength, and rupture life. Based primarily on in-plane creep data for 2D panels, this presentation describes initial modeling progress at applied composite stresses below matrix cracking for some high performance SiC/SiC composite systems recently developed at NASA. Studies are described to develop creep and rupture models using empirical, mechanical analog, and mechanistic approaches, and to implement them into finite element codes for improved component design and life modeling

  3. Advanced Residual Strength Degradation Rate Modeling for Advanced Composite Structures. Volume II. Tasks II and III.

    DTIC Science & Technology

    1981-07-01

    ADVANCED COMPOSITE STRUCTURES VOLUME II - TASKS Ix AND III K. N. Lauraitis Tl J. T. Ryder ?l4 D. E. Pettit ~ Lockheed-California Company S Burbank...Strength Degradation Rate Final Report Modeling for Advanced Composite Structures 1 July 1979 to 29 May 1981 Vol II - Task II and III S. PERFORMIN ONG...identify by block namber) composites , graphite/epoxy, impact damage, damaged holes, fatigue, damage propagation, residual strength, NDI 20. ABSTRACT

  4. V-378A: A modified bismaleimide for advanced composites

    NASA Technical Reports Server (NTRS)

    Street, S. W.

    1985-01-01

    Addition polyimides cure with no evolution of gaseous by-products at relatively low temperatures and may be cured at low pressures to yield composites with excellent hot-wet strength retention. These properaties have made them excellent candidates as matrix resins for advanced composites. However, commercially available bismaleimides are solids and difficult to handle in preimpregnated form. V-378A is an addition polyimide composed of a mixture of bismaleimides and other reactive ingredients formulated to provide good prepreg properties and handling, facile cure and excellent composite mechanical properties. Several curing mechanisms are utilized to provide the characteristics exhibited by V-378A. Part of the mechanism is free radial and takes place at ambient temperature and above. Other mechanisms are principally Diels-Alder in nature. V-378A prepregs are tacky at ambient temperature, but do not have long tacky outlife similar to some epoxies. V-378A yields composites which exhibit hot-wet strength retention which is superior to that provided by epoxy resin systems.

  5. Failure Analysis in Platelet Molded Composite Systems

    NASA Astrophysics Data System (ADS)

    Kravchenko, Sergii G.

    Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.

  6. Advanced Environmental Barrier Coating and SA Tyrannohex SiC Composites Integration for Improved Thermomechanical and Environmental Durability

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Halbig, Michael; Singh, Mrityunjay

    2018-01-01

    The development of 2700 degF capable environmental barrier coating (EBC) systems, particularly, the Rare Earth "Hafnium" Silicon bond coat systems, have significantly improved the temperature capability and environmental stability of SiC/SiC Ceramic Matrix Composite Systems. We have specifically developed the advanced 2700 degF EBC systems, integrating the EBC to the high temperature SA Tyrannohex SiC fiber composites, for comprehensive performance and durability evaluations for potential turbine engine airfoil component applications. The fundamental mechanical properties, environmental stability and thermal gradient cyclic durability performance of the EBC - SA Tyrannohex composites were investigated. The paper will particularly emphasize the high pressure combustion rig recession, cyclic thermal stress resistance and thermomechanical low cycle fatigue testing of uncoated and environmental barrier coated Tyrannohex SiC SA composites in these simulated turbine engine combustion water vapor, thermal gradients, and mechanical loading conditions. We have also investigated high heat flux and flexural fatigue degradation mechanisms, determined the upper limits of operating temperature conditions for the coated SA composite material systems in thermomechanical fatigue conditions. Recent progress has also been made by using the self-healing rare earth-silicon based EBCs, thus enhancing the SA composite hexagonal fiber columns bonding for improved thermomechanical and environmental durability in turbine engine operation environments. More advanced EBC- composite systems based on the new EBC-Fiber Interphases will also be discussed.

  7. Advanced Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: NASA's Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation reviews NASA environmental barrier coating (EBC) system development programs and the coating materials evolutions for protecting the SiC/SiC Ceramic Matrix Composites in order to meet the next generation engine performance requirements. The presentation focuses on several generations of NASA EBC systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. The current EBC development emphasis is placed on advanced NASA 2700F candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance are described. The research and development opportunities for advanced turbine airfoil environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling are discussed.

  8. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1984-03-09

    Masters, J.L., "Investigation of Characteristic Damage States in Composites Laminat -s," ASME Paper No. 79-WA-AERO-4, 1978. [26] Jivinall, R.C., "Stress...AD-A144 84e CUMULATIVE DAMAGE MODEL FOR RDVRNCED COMPOSITE 1/2 MATERIRLS(U) DYNA EAST CORP PHILADELPHIA PA P C CHOU ET AL. 09 MAR 84 RFWRL-TR-84-4084...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 1963-A AFWAL-TR-84-4004 •S CUMULATIVE DAMAGE MODEL FOR ADVANCED COMPOSITE MATERIALS PHASE II 0

  9. Advanced refractory metals and composites for extraterrestrial power systems

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Grobstein, Toni L.

    1990-01-01

    Concepts for future space power systems include nuclear and focused solar heat sources coupled to static and dynamic power-conversion devices; such systems must be designed for service lives as long as 30 years, despite service temperatures of the order of 1600 K. Materials are a critical technology-development factor in such aspects of these systems as reactor fuel containment, environmental protection, power management, and thermal management. Attention is given to the prospective performance of such refractory metals as Nb, W, and Mo alloys, W fiber-reinforced Nb-matrix composites, and HfC precipitate-strengthened W-Re alloys.

  10. Advanced Manufacturing Systems in Food Processing and Packaging Industry

    NASA Astrophysics Data System (ADS)

    Shafie Sani, Mohd; Aziz, Faieza Abdul

    2013-06-01

    In this paper, several advanced manufacturing systems in food processing and packaging industry are reviewed, including: biodegradable smart packaging and Nano composites, advanced automation control system consists of fieldbus technology, distributed control system and food safety inspection features. The main purpose of current technology in food processing and packaging industry is discussed due to major concern on efficiency of the plant process, productivity, quality, as well as safety. These application were chosen because they are robust, flexible, reconfigurable, preserve the quality of the food, and efficient.

  11. Mishap risk control for advanced aerospace/composite materials

    NASA Technical Reports Server (NTRS)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  12. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  13. Composite armored vehicle advanced technology demonstator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostberg, D.T.; Dunfee, R.S.; Thomas, G.E.

    1996-12-31

    Composite structures are a key technology needed to develop future lightweight combat vehicles that are both deployable and survivable. The Composite Armored Vehicle Advanced Technology Demonstrator Program that started in fiscal year 1994 will continue through 1998 to verily that composite structures are a viable solution for ground combat vehicles. Testing thus far includes material characterization, structural component tests and full scale quarter section tests. Material and manufacturing considerations, tests, results and changes, and the status of the program will be described. The structural component tests have been completed successfully, and quarter section testing is in progress. Upon completion ofmore » the critical design review, the vehicle demonstrator will be Fabricated and undergo government testing.« less

  14. Second NASA Advanced Composites Technology Conference

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1992-01-01

    The conference papers are presented. The Advanced Composite Technology (ACT) Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. These papers will also be included in the Ninth Conference Proceedings to be published by the Federal Aviation Administration as a separate document.

  15. Fabrication and physical testing of graphite composite panels utilizing woven graphite fabric with current and advanced state-of-the-art resin systems

    NASA Technical Reports Server (NTRS)

    Lee, S. C. S.

    1979-01-01

    Three weaves were evaluated; a balanced plain weave, a balanced 8-harness satin weave, and a semiunidirectional crowfoot satin weave. The current state-of-the-art resin system selected was Fiberite's 934 Epoxy; the advanced resin systems evaluated were Phenolic, Phenolic/Novolac, Benzyl and Bismaleimide. The panels were fabricated for testing on NASA/Ames Research Center's Composites Modification Program. Room temperature mechanical tests only were performed by Hitco; the results are presented.

  16. English 341: Advanced Composition for Teachers

    ERIC Educational Resources Information Center

    Duffy, William

    2013-01-01

    English 341: Advanced Composition for Teachers is a three-credit undergraduate course for pre-service educators at Francis Marion University, a mid-size public university located in northeast South Carolina. According to the university catalog, students enrolled in English 341 "explore connections among writing, teaching, and learning as they…

  17. Metal- and intermetallic-matrix composites for aerospace propulsion and power systems

    NASA Astrophysics Data System (ADS)

    Doychak, J.

    1992-06-01

    Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.

  18. Advanced Environmental Barrier Coating Development for SiC-SiC Ceramic Matrix Composite Components

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Halbig, Michael Charles; Puleo, Bernadette J.; Costa, Gustavo; Mccue, Terry R.

    2017-01-01

    This presentation reviews the NASA advanced environmental barrier coating (EBC) system development for SiC-SiC Ceramic Matrix Composite (CMC) combustors particularly under the NASA Environmentally Responsible Aviation, Fundamental Aeronautics and Transformative Aeronautics Concepts Programs. The emphases have been placed on the current design challenges of the 2700-3000F capable environmental barrier coatings for low NOX emission combustors for next generation turbine engines by using advanced plasma spray based processes, and the coating processing and integration with SiC-SiC CMCs and component systems. The developments also have included candidate coating composition system designs, degradation mechanisms, performance evaluation and down-selects; the processing optimizations using TriplexPro Air Plasma Spray Low Pressure Plasma Spray (LPPS), Plasma Spray Physical Vapor Deposition and demonstration of EBC-CMC systems. This presentation also highlights the EBC-CMC system temperature capability and durability improvements under the NASA development programs, as demonstrated in the simulated engine high heat flux, combustion environments, in conjunction with high heat flux, mechanical creep and fatigue loading testing conditions.

  19. Joining and Integration of Advanced Carbon-Carbon Composites to Metallic Systems for Thermal Management Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.; Asthana, R.

    2008-01-01

    Recent research and development activities in joining and integration of carbon-carbon (C/C) composites to metals such as Ti and Cu-clad-Mo for thermal management applications are presented with focus on advanced brazing techniques. A wide variety of carbon-carbon composites with CVI and resin-derived matrices were joined to Ti and Cu-clad Mo using a number of active braze alloys. The brazed joints revealed good interfacial bonding, preferential precipitation of active elements (e.g., Ti) at the composite/braze interface. Extensive braze penetration of the inter-fiber channels in the CVI C/C composites was observed. The chemical and thermomechanical compatibility between C/C and metals at elevated temperatures is assessed. The role of residual stresses and thermal conduction in brazed C/C joints is discussed. Theoretical predictions of the effective thermal resistance suggest that composite-to-metal brazed joints may be promising for lightweight thermal management applications.

  20. Composite Fan Blade Design for Advanced Engine Concepts

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Kuguoglu, Latife H.; Chamis, Christos C.

    2004-01-01

    The aerodynamic and structural viability of composite fan blades of the revolutionary Exo-Skeletal engine are assessed for an advanced subsonic mission using the NASA EST/BEST computational simulation system. The Exo-Skeletal Engine (ESE) calls for the elimination of the shafts and disks completely from the engine center and the attachment of the rotor blades in spanwise compression to a rotating casing. The fan rotor overall adiabatic efficiency obtained from aerodynamic analysis is estimated at 91.6 percent. The flow is supersonic near the blade leading edge but quickly transitions into a subsonic flow without any turbulent boundary layer separation on the blade. The structural evaluation of the composite fan blade indicates that the blade would buckle at a rotor speed that is 3.5 times the design speed of 2000 rpm. The progressive damage analysis of the composite fan blade shows that ply damage is initiated at a speed of 4870 rpm while blade fracture takes place at 7640 rpm. This paper describes and discusses the results for the composite blade that are obtained from aerodynamic, displacement, stress, buckling, modal, and progressive damage analyses. It will be demonstrated that a computational simulation capability is readily available to evaluate new and revolutionary technology such as the ESE.

  1. Advanced Constituents and Processes for Ceramic Composite Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Bhatt, R. T.

    2004-01-01

    The successful replacement of metal alloys by ceramic matrix composites (CMC) in hot-section engine components will depend strongly on optimizing the processes and properties of the CMC microstructural constituents so that they can synergistically provide the total CMC system with improved temperature capability and with the key properties required by the components for long-term structural service. This presentation provides the results of recent activities at NASA aimed at developing advanced silicon carbide (Sic) fiber-reinforced hybrid Sic matrix composite systems that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 2400 and 2600 F, temperatures well above current metal capability. These SiC/SiC composite systems are lightweight (-30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive engine environments. It is shown that the improved temperature capability of the SiC/SiC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays high thermal stability, creep resistance, rupture resistance, and thermal conductivity, and possesses an in-situ grown BN surface layer for added environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics. Further capability is then derived by using chemical vapor infiltration (CVI) to form the initial portion of the hybrid Sic matrix. Because of its high creep resistance and thermal conductivity, the CVI Sic matrix is a required base constituent for all the high temperature SiC/SiC systems. By subsequently thermo- mechanical-treating the CMC preform, which consists of the S ylramic-iBN fibers and CVI Sic matrix, process-related defects in the matrix are removed, further improving matrix and CMC creep resistance and conductivity.

  2. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  3. Development of Advanced Environmental Barrier Coatings for SiC/SiC Composites at NASA GRC: Prime-Reliant Design and Durability Perspectives

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2017-01-01

    Environmental barrier coatings (EBCs) are considered technologically important because of the critical needs and their ability to effectively protect the turbine hot-section SiC/SiC ceramic matrix composite (CMC) components in harsh engine combustion environments. The development of NASA's advanced environmental barrier coatings have been aimed at significantly improved the coating system temperature capability, stability, erosion-impact, and CMAS resistance for SiC/SiC turbine airfoil and combustors component applications. The NASA environmental barrier coating developments have also emphasized thermo-mechanical creep and fatigue resistance in simulated engine heat flux and environments. Experimental results and models for advanced EBC systems will be presented to help establishing advanced EBC composition design methodologies, performance modeling and life predictions, for achieving prime-reliant, durable environmental coating systems for 2700-3000 F engine component applications. Major technical barriers in developing environmental barrier coating systems and the coating integration with next generation composites having further improved temperature capability, environmental stability, EBC-CMC fatigue-environment system durability will be discussed.

  4. Development of Engineering Data on Advanced Composite Materials

    DTIC Science & Technology

    1977-09-01

    O AFML-TR-77-15 1 ,* • DEVELOPMENT OF ENGINEERING DATA ON ’ ADVANCED COMPOSITE MATERIALS UNIVERSITY OF DAYTON RESEARCH INSTITUTE I - UNIVERSITY OF DA...SUMMARIZED COMPOSITE DATA 47 4.1 SP313 48 4.2 AS/3004 86 4.3 AS/4397 125 4.4 T300/F178 163 4.5 COMPARATIVE ENVIRONMENTAL BEHAVIOR 194 5 CONCLUSIONS 197...AGED INTERLAKINAR SHEAR DATA 452 vi -. -| |b. ~ - LIST OF ILLUSTRATIONS FIGURE PACE 1 Typical Cross Sections of Fabricated Composites 12 2 Heat-Up

  5. Resin transfer molding for advanced composite primary wing and fuselage structures

    NASA Technical Reports Server (NTRS)

    Markus, Alan

    1992-01-01

    The stitching and resin transfer molding (RTM) processes developed at Douglas Aircraft Co. are successfully demonstrating significant cost reductions with good damage tolerance properties. These attributes were identified as critical to application of advanced composite materials to commercial aircraft primary structures. The RTM/stitching developments, cost analyses, and test results are discussed of the NASA Advanced Composites Technology program.

  6. Advanced composite elevator for Boeing 727 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Detail design activities are reported for a program to develop an advanced composites elevator for the Boeing 727 commercial transport. Design activities include discussion and results of the ancillary test programs, sustaining efforts, weight status, manufacturing producibility studies, quality assurance development, and production status.

  7. Advanced Integrated Power and Attitude Control System (IPACS) study

    NASA Technical Reports Server (NTRS)

    Oglevie, R. E.; Eisenhaure, D. B.

    1985-01-01

    Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.

  8. Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.

    2012-01-01

    With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].

  9. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application

    NASA Technical Reports Server (NTRS)

    Kerr, James R.; Haskins, James F.

    1987-01-01

    Advanced composites will play a key role in the development of the technology for the design and fabrication of future supersonic vehicles. However, incorporating the material into vehicle usage is contingent on accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive data, laboratory replication of the flight service will provide the most rapid method to document the airworthiness of advanced composite systems. Consequently, a laboratory program was conducted to determine the time-temperature-stress capabilities of several high temperature composites. Tests included were thermal aging, environmental aging, fatigue, creep, fracture, tensile, and real-time flight simulation exposure. The program had two phases. The first included all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continued these tests up to 50,000 cumulative hours. This report presents the results of the Phase 1 baseline and 10,000-hr aging and flight simulation studies, the Phase 2 50,000-hr aging studies, and the Phase 2 flight simulation tests, some of which extended to almost 40,000 hours.

  10. Boron/aluminum graphite/resin advanced fiber composite hybrids

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  11. Displaying Composite and Archived Soundings in the Advanced Weather Interactive Processing System

    NASA Technical Reports Server (NTRS)

    Barrett, Joe H., III; Volkmer, Matthew R.; Blottman, Peter F.; Sharp, David W.

    2008-01-01

    In a previous task, the Applied Meteorology Unit (AMU) developed spatial and temporal climatologies of lightning occurrence based on eight atmospheric flow regimes. The AMU created climatological, or composite, soundings of wind speed and direction, temperature, and dew point temperature at four rawinsonde observation stations at Jacksonville, Tampa, Miami, and Cape Canaveral Air Force Station, for each of the eight flow regimes. The composite soundings were delivered to the National Weather Service (NWS) Melbourne (MLB) office for display using the National version of the Skew-T Hodograph analysis and Research Program (NSHARP) software program. The NWS MLB requested the AMU make the composite soundings available for display in the Advanced Weather Interactive Processing System (AWIPS), so they could be overlaid on current observed soundings. This will allow the forecasters to compare the current state of the atmosphere with climatology. This presentation describes how the AMU converted the composite soundings from NSHARP Archive format to Network Common Data Form (NetCDF) format, so that the soundings could be displayed in AWl PS. The NetCDF is a set of data formats, programming interfaces, and software libraries used to read and write scientific data files. In AWIPS, each meteorological data type, such as soundings or surface observations, has a unique NetCDF format. Each format is described by a NetCDF template file. Although NetCDF files are in binary format, they can be converted to a text format called network Common data form Description Language (CDL). A software utility called ncgen is used to create a NetCDF file from a CDL file, while the ncdump utility is used to create a CDL file from a NetCDF file. An AWIPS receives soundings in Binary Universal Form for the Representation of Meteorological data (BUFR) format (http://dss.ucar.edu/docs/formats/bufr/), and then decodes them into NetCDF format. Only two sounding files are generated in AWIPS per day. One

  12. Nondestructive Evaluation of Advanced Fiber Reinforced Polymer Matrix Composites: A Technology Assessment

    NASA Technical Reports Server (NTRS)

    Yolken, H. Thomas; Matzkanin, George A.

    2009-01-01

    Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.

  13. Development of Advanced Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites: Path Toward 2700 F Temperature Capability and Beyond

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Hurst, Janet B.; Good, Brian; Costa, Gustavo; Bhatt, Ramakrishna T.; Fox, Dennis S.

    2017-01-01

    Advanced environmental barrier coating systems for SiC-SiC Ceramic Matrix Composite (CMC) turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant coating development challenges is to achieve prime-reliant environmental barrier coating systems to meet the future 2700F EBC-CMC temperature stability and environmental durability requirements. This presentation will emphasize recent NASA environmental barrier coating system testing and down-selects, particularly the development path and properties towards 2700-3000F durability goals by using NASA hafnium-hafnia-rare earth-silicon-silicate composition EBC systems for the SiC-SiC CMC turbine component applications. Advanced hafnium-based compositions for enabling next generation EBC and CMCs capabilities towards ultra-high temperature ceramic coating systems will also be briefly mentioned.

  14. Advanced composite stabilizer for Boeing 737 aircraft

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Activities related to development of an advanced composites stabilizer for the Boeing 737 commercial transport are reported. Activities include discussion of criteria and objectives, design loads, the fatigue spectrum definition to be used for all spectrum fatigue testing, fatigue analysis, manufacturing producibility studies, the ancillary test program, quality assurance, and manufacturing development.

  15. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    NASA Astrophysics Data System (ADS)

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-03-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.

  16. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites.

    PubMed

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-03-02

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites.

  17. Advances in SiC/SiC Composites for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2006-01-01

    In recent years, supported by a variety of materials development programs, NASA Glenn Research Center has significantly increased the thermostructural capability of SiC/SiC composite materials for high-temperature aerospace applications. These state-of-the-art advances have occurred in every key constituent of the composite: fiber, fiber coating, matrix, and environmental barrier coating, as well as processes for forming the fiber architectures needed for complex-shaped components such as turbine vanes for gas turbine engines. This presentation will briefly elaborate on the nature of these advances in terms of performance data and underlying mechanisms. Based on a list of first-order property goals for typical high-temperature applications, key data from a variety of laboratory tests are presented which demonstrate that the NASA-developed constituent materials and processes do indeed result in SiC/SiC systems with the desired thermal and structural capabilities. Remaining process and microstructural issues for further property enhancement are discussed, as well as on-going approaches at NASA to solve these issues. NASA efforts to develop physics-based property models that can be used not only for component design and life modeling, but also for constituent material and process improvement will also be discussed.

  18. Effect of Composite Substrates on the Mechanical Behavior of Brazed Joints in Metal-Composite System

    NASA Technical Reports Server (NTRS)

    Singh, M.; Morscher, Gregory N.; Shpargel, Tarah; Asthana, Rajiv

    2006-01-01

    Advanced composite components are being considered for a wide variety of demanding applications in aerospace, space exploration, and ground based systems. A number of these applications require robust integration technologies to join dissimilar materials (metalcomposites) into complex structural components. In this study, three types of composites (C-C, C-SiC, and SiC-SiC) were vacuum brazed to commercially pure Ti using the active metal braze alloy Cusil-ABA (63Ag-35.3Cu-1.75Ti). Composite substrates with as fabricated and polished surfaces were used for brazing. The microstructure and composition of the joint, examined using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), showed sound metallurgical bonding in all systems. The butt strap tensile (BST) test was performed on bonded specimens at room and elevated temperatures. Effect of substrate composition, interlaminar properties, and surface roughness on the mechanical properties and failure behavior of joints will be discussed.

  19. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  20. Refractory metal alloys and composites for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.

  1. Titanium and advanced composite structures for a supersonic cruise arrow wing configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Hoy, J. M.

    1976-01-01

    Structural design studies were made, based on current technology and on an estimate of technology to be available in the mid 1980's, to assess the relative merits of structural concepts and materials for an advanced arrow wing configuration cruising at Mach 2.7. Preliminary studies were made to insure compliance of the configuration with general design criteria, integrate the propulsion system with the airframe, and define an efficient structural arrangement. Material and concept selection, detailed structural analysis, structural design and airplane mass analysis were completed based on current technology. Based on estimated future technology, structural sizing for strength and a preliminary assessment of the flutter of a strength designed composite structure were completed. An advanced computerized structural design system was used, in conjunction with a relatively complex finite element model, for detailed analysis and sizing of structural members.

  2. Multiply fully recyclable carbon fibre reinforced heat-resistant covalent thermosetting advanced composites

    PubMed Central

    Yuan, Yanchao; Sun, Yanxiao; Yan, Shijing; Zhao, Jianqing; Liu, Shumei; Zhang, Mingqiu; Zheng, Xiaoxing; Jia, Lei

    2017-01-01

    Nondestructive retrieval of expensive carbon fibres (CFs) from CF-reinforced thermosetting advanced composites widely applied in high-tech fields has remained inaccessible as the harsh conditions required to recycle high-performance resin matrices unavoidably damage the structure and properties of CFs. Degradable thermosetting resins with stable covalent structures offer a potential solution to this conflict. Here we design a new synthesis scheme and prepare a recyclable CF-reinforced poly(hexahydrotriazine) resin matrix advanced composite. The multiple recycling experiments and characterization data establish that this composite demonstrates performance comparable to those of its commercial counterparts, and more importantly, it realizes multiple intact recoveries of CFs and near-total recycling of the principal raw materials through gentle depolymerization in certain dilute acid solution. To our best knowledge, this study demonstrates for the first time a feasible and environment-friendly preparation-recycle-regeneration strategy for multiple CF-recycling from CF-reinforced advanced composites. PMID:28251985

  3. Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa

    2018-01-01

    The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.

  4. Preliminary design study of advanced composite blade and hub and nonmechanical control system for the tilt-rotor aircraft. Volume 1: Engineering studies

    NASA Technical Reports Server (NTRS)

    Alexander, H. R.; Smith, K. E.; Mcveigh, M. A.; Dixon, P. G.; Mcmanus, B. L.

    1979-01-01

    Composite structures technology is applied in a preliminary design study of advanced technology blades and hubs for the XV-15 tilt rotor research demonstrator aircraft. Significant improvements in XV-15 hover and cruise performance are available using blades designed for compatibility with the existing aircraft, i.e., blade installation would not require modification of the airframe, hub or upper controls. Provision of a low risk nonmechanical control system was also studied, and a development specification is given.

  5. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    NASA Technical Reports Server (NTRS)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  6. Advanced composites: Design and application. Proceedings of the meeting of the Mechanical Failures Prevention Group

    NASA Technical Reports Server (NTRS)

    Shives, T. R.; Willard, W. A.

    1979-01-01

    The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.

  7. Application of advanced material systems to composite frame elements

    NASA Technical Reports Server (NTRS)

    Llorente, Steven; Minguet, Pierre; Fay, Russell; Medwin, Steven

    1992-01-01

    A three phase program has been conducted to investigate DuPont's Long Discontinuous Fiber (LDF) composites. Additional tests were conducted to compare LDF composites against toughened thermosets and a baseline thermoset system. Results have shown that the LDF AS4/PEKK offers improved interlaminar (flange bending) strength with little reduction in mechanical properties due to the discontinuous nature of the fibers. In the third phase, a series of AS4/PEKK LDF C-section curved frames (representing a typical rotorcraft light frame) were designed, manufactured and tested. Specimen reconsolidation after 'stretch forming' and frame thickness were found to be key factors in this light frame's performance. A finite element model was constructed to correlate frame test results with expected strain levels determined from material property tests. Adequately reconsolidated frames performed well and failed at strain levels at or above baseline thermoset material test strains. Finally a cost study was conducted which has shown that the use of LDF for this frame would result in a significant cost savings, for moderate to large lot sizes compared with the hand lay-up of a thermoset frame.

  8. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  9. NASA Thermographic Inspection of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2004-01-01

    As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

  10. Composites for Advanced Space Transportation Systems (CASTS)

    NASA Technical Reports Server (NTRS)

    Davis, J. G., Jr. (Compiler)

    1979-01-01

    A summary is given of the in-house and contract work accomplished under the CASTS Project. In July 1975 the CASTS Project was initiated to develop graphite fiber/polyimide matrix (GR/PI) composite structures with 589K (600 F) operational capability for application to aerospace vehicles. Major tasks include: (1) screening composites and adhesives, (2) developing fabrication procedures and specifications, (3) developing design allowables test methods and data, and (4) design and test of structural elements and construction of an aft body flap for the Space Shuttle Orbiter Vehicle which will be ground tested. Portions of the information are from ongoing research and must be considered preliminary. The CASTS Project is scheduled to be completed in September 1983.

  11. Robust Joining and Integration of Advanced Ceramics and Composites: Challenges, Opportunities, and Realities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2006-01-01

    Advanced ceramics and fiber reinforced composites are under active consideration for use in a wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite components require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition, these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of high temperature joints in advanced ceramics and ceramic matrix composites will be presented. Silicon carbide based advanced ceramics and fiber reinforced composites in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology. In addition, some examples of metal-ceramic brazing will also be presented. Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and composites will be reported. Various joint design philosophies and design issues in joining of ceramics and composites will be discussed.

  12. Fatigue Damage Mechanisms in Advanced Hybrid Titanium Composite Laminates

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Rhymer, Donald W.; St.Clair, Terry L. (Technical Monitor)

    2000-01-01

    Hybrid Titanium Composite Laminates (HTCL) are a type of hybrid composite laminate with promise for high-speed aerospace applications, specifically designed for improved damage tolerance and strength at high-temperature (350 F, 177 C). However, in previous testing, HTCL demonstrated a propensity to excessive delamination at the titanium/PMC interface following titanium cracking. An advanced HTCL has been constructed with an emphasis on strengthening this interface, combining a PETI-5/IM7 PMC with Ti-15-3 foils prepared with an alkaline-perborate surface treatment. This paper discusses how the fatigue capabilities of the "advanced" HTCL compare to the first generation HTCL which was not modified for interface optimization, in both tension-tension (R = 0.1) and tension-compression (R=-0.2). The advanced HTCL under did not demonstrate a significant improvement in fatigue life, in either tension-tension or tension-compression loading. However, the advanced HTCL proved much more damage tolerant. The R = 0.1 tests revealed the advanced HTCL to increase the fatigue life following initial titanium ply damage up to 10X that of the initial HTCL at certain stress levels. The damage progression following the initial ply damage demonstrated the effect of the strengthened PMC/titanium interface. Acetate film replication of the advanced HTCL edges showed a propensity for some fibers in the adjacent PMC layers to fail at the point of titanium crack formation, suppressing delamination at the Ti/PMC interface. The inspection of failure surfaces validated these findings, revealing PMC fibers bonded to the majority of the titanium surfaces. Tension compression fatigue (R = -0.2) demonstrated the same trends in cycles between initial damage and failure, damage progression, and failure surfaces. Moreover, in possessing a higher resistance to delamination, the advanced HTCL did not exhibit buckling following initial titanium ply cracking under compression unlike the initial HTCL.

  13. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2010-12-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  14. Review on advanced composite materials boring mechanism and tools

    NASA Astrophysics Data System (ADS)

    Shi, Runping; Wang, Chengyong

    2011-05-01

    With the rapid development of aviation and aerospace manufacturing technology, advanced composite materials represented by carbon fibre reinforced plastics (CFRP) and super hybrid composites (fibre/metal plates) are more and more widely applied. The fibres are mainly carbon fibre, boron fibre, Aramid fiber and Sic fibre. The matrixes are resin matrix, metal matrix and ceramic matrix. Advanced composite materials have higher specific strength and higher specific modulus than glass fibre reinforced resin composites of the 1st generation. They are widely used in aviation and aerospace industry due to their high specific strength, high specific modulus, excellent ductility, anticorrosion, heat-insulation, sound-insulation, shock absorption and high&low temperature resistance. They are used for radomes, inlets, airfoils(fuel tank included), flap, aileron, vertical tail, horizontal tail, air brake, skin, baseboards and tails, etc. Its hardness is up to 62~65HRC. The holes are greatly affected by the fibre laminates direction of carbon fibre reinforced composite material due to its anisotropy when drilling in unidirectional laminates. There are burrs, splits at the exit because of stress concentration. Besides there is delamination and the hole is prone to be smaller. Burrs are caused by poor sharpness of cutting edge, delamination, tearing, splitting are caused by the great stress caused by high thrust force. Poorer sharpness of cutting edge leads to lower cutting performance and higher drilling force at the same time. The present research focuses on the interrelation between rotation speed, feed, drill's geometry, drill life, cutting mode, tools material etc. and thrust force. At the same time, holes quantity and holes making difficulty of composites have also increased. It requires high performance drills which won't bring out defects and have long tool life. It has become a trend to develop super hard material tools and tools with special geometry for drilling

  15. Synthetic biology: advancing the design of diverse genetic systems

    PubMed Central

    Wang, Yen-Hsiang; Wei, Kathy Y.; Smolke, Christina D.

    2013-01-01

    A main objective of synthetic biology is to make the process of designing genetically-encoded biological systems more systematic, predictable, robust, scalable, and efficient. The examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from a simple genetic switch to search-and-destroy systems. While significant advances in synthesis capabilities support the potential for the implementation of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Synthetic biology offers much promise in developing systems to address challenges faced in manufacturing, the environment and sustainability, and health and medicine, but the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems. PMID:23413816

  16. Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.

  17. Expert system for adhesive selection of composite material joints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.B.; Vanderveldt, H.H.

    The development of composite joining is still in its infancy and much is yet to be learned. Consequently, this field is developing rapidly and new advances occur with great regularity. The need for up-to-date information and expertise in engineering and planning of composite materials, especially in critical applications, is acute. The American Joining Institute`s (AJI) development of JOINEXCELL (an off-line intelligent planner for joining composite materials) is an intelligent engineering/planning software system that incorporates the knowledge of several experts which can be expanded as these developments occur. Phase I effort of JOINEXCELL produced an expert system for adhesive selection, JOINADSELECT,more » for composite material joints. The expert system successfully selects from over 26 different adhesive families for 44 separate material types and hundreds of application situations. Through a series of design questions the expert system selects the proper adhesive for each particular design. Performing this {open_quotes}off-line{close_quotes} engineering planning by computer allows the decision to be made with full knowledge of the latest information about materials and joining procedures. JOINADSELECT can greatly expedite the joining design process, thus yielding cost savings.« less

  18. System design analyses of a rotating advanced-technology space station for the year 2025

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.

    1988-01-01

    Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.

  19. Reduced toxicity polyester resins and microvascular pre-preg tapes for advanced composites manufacturing

    NASA Astrophysics Data System (ADS)

    Poillucci, Richard

    Advanced composites manufacturing broadly encapsulates topics ranging from matrix chemistries to automated machines that lay-up fiber-reinforced materials. Environmental regulations are stimulating research to reduce matrix resin formulation toxicity. At present, composites fabricated with polyester resins expose workers to the risk of contact with and inhalation of styrene monomer, which is a potential carcinogen, neurotoxin, and respiratory irritant. The first primary goal of this thesis is to reduce the toxicity associated with polyester resins by: (1) identification of potential monomers to replace styrene, (2) determination of monomer solubility within the polyester, and (3) investigation of approaches to rapidly screen a large resin composition parameter space. Monomers are identified based on their ability to react with polyester and their toxicity as determined by the Globally Harmonized System (GHS) and a green screen method. Solubilities were determined by the Hoftyzer -- Van Krevelen method, Hansen solubility parameter database, and experimental mixing of monomers. A combinatorial microfluidic mixing device is designed and tested to obtain distinct resin compositions from two input chemistries. The push for safer materials is complemented by a thrust for multifunctional composites. The second primary goal of this thesis is to design and implement the manufacture of sacrificial fiber materials suitable for use in automated fiber placement of microvascaular multifunctional composites. Two key advancements are required to achieve this goal: (1) development of a roll-to-roll method to place sacrificial fibers onto carbon fiber pre-preg tape; and (2) demonstration of feasible manufacture of microvascular carbon fiber plates with automated fiber placement. An automated method for placing sacrificial fibers onto carbon fiber tapes is designed and a prototype implemented. Carbon fiber tows with manual placement of sacrificial fibers is implemented within an

  20. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  1. Extension-torsion coupling behavior of advanced composite tilt-rotor blades

    NASA Technical Reports Server (NTRS)

    Kosmatka, J. B.

    1989-01-01

    An analytic model was developed to study the extension-bend-twist coupling behavior of an advanced composite helicopter or tilt-rotor blade. The outer surface of the blade is defined by rotating an arbitrary cross section about an initial twist axis. The cross section can be nonhomogeneous and composed of generally anisotropic materials. The model is developed based upon a three dimensional elasticity approach that is recast as a coupled two-dimensional boundary value problem defined in a curvilinear coordinate system. Displacement solutions are written in terms of known functions that represent extension, bending, and twisting and unknown functions for local cross section deformations. The unknown local deformation functions are determined by applying the principle of minimum potential energy to the discretized two-dimensional cross section. This is an application of the Ritz method, where the trial function family is the displacement field associated with a finite element (8-node isoparametric quadrilaterals) representation of the section. A computer program was written where the cross section is discretized into 8-node quadrilateral subregions. Initially the program was verified using previously published results (both three-dimensional elasticity and technical beam theory) for pretwisted isotropic bars with an elliptical cross section. In addition, solid and thin-wall multi-cell NACA-0012 airfoil sections were analyzed to illustrate the pronounced effects that pretwist, initial twist axis location, and spar location has on coupled behavior. Currently, a series of advanced composite airfoils are being modeled in order to assess how the use of laminated composite materials interacts with pretwist to alter the coupling behavior of the blade. These studies will investigate the use of different ply angle orientations and the use of symmetric versus unsymmetric laminates.

  2. Recent advances and issues in development of silicon carbide composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.

    2009-04-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  3. Advanced composites wing study program, volume 2

    NASA Technical Reports Server (NTRS)

    Harvey, S. T.; Michaelson, G. L.

    1978-01-01

    The study on utilization of advanced composites in commercial aircraft wing structures was conducted as a part of the NASA Aircraft Energy Efficiency Program to establish, by the mid-1980s, the technology for the design of a subsonic commercial transport aircraft leading to a 40% fuel savings. The study objective was to develop a plan to define the effort needed to support a production commitment for the extensive use of composite materials in wings of new generation aircraft that will enter service in the 1985-1990 time period. Identification and analysis of what was needed to meet the above plan requirements resulted in a program plan consisting of three key development areas: (1) technology development; (2) production capability development; and (3) integration and validation by designing, building, and testing major development hardware.

  4. An online model composition tool for system biology models

    PubMed Central

    2013-01-01

    Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914

  5. Custom Machines Advance Composite Manufacturing

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  6. Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.

  7. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  8. Advanced materials for thermal protection system

    NASA Astrophysics Data System (ADS)

    Heng, Sangvavann; Sherman, Andrew J.

    1996-03-01

    Reticulated open-cell ceramic foams (both vitreous carbon and silicon carbide) and ceramic composites (SiC-based, both monolithic and fiber-reinforced) were evaluated as candidate materials for use in a heat shield sandwich panel design as an advanced thermal protection system (TPS) for unmanned single-use hypersonic reentry vehicles. These materials were fabricated by chemical vapor deposition/infiltration (CVD/CVI) and evaluated extensively for their mechanical, thermal, and erosion/ablation performance. In the TPS, the ceramic foams were used as a structural core providing thermal insulation and mechanical load distribution, while the ceramic composites were used as facesheets providing resistance to aerodynamic, shear, and erosive forces. Tensile, compressive, and shear strength, elastic and shear modulus, fracture toughness, Poisson's ratio, and thermal conductivity were measured for the ceramic foams, while arcjet testing was conducted on the ceramic composites at heat flux levels up to 5.90 MW/m2 (520 Btu/ft2ṡsec). Two prototype test articles were fabricated and subjected to arcjet testing at heat flux levels of 1.70-3.40 MW/m2 (150-300 Btu/ft2ṡsec) under simulated reentry trajectories.

  9. Study of utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Campion, M. C.; Pei, G.

    1984-01-01

    The effort required by the transport aircraft manufacturers to support the introduction of advanced composite materials into the fuselage structure of future commercial and military transport aircraft is investigated. Technology issues, potential benefits to military life cycle costs and commercial operating costs, and development plans are examined. The most urgent technology issues defined are impact dynamics, acoustic transmission, pressure containment and damage tolerance, post-buckling, cutouts, and joints and splices. A technology demonstration program is defined and a rough cost and schedule identified. The fabrication and test of a full-scale fuselage barrel section is presented. Commercial and military benefits are identified. Fuselage structure weight savings from use of advanced composites are 16.4 percent for the commercial and 21.8 percent for the military. For the all-composite airplanes the savings are 26 percent and 29 percent, respectively. Commercial/operating costs are reduced by 5 percent for the all-composite airplane and military life cycle costs by 10 percent.

  10. Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.; Easler, T. E.

    2004-01-01

    NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at

  11. Plasma-modified graphene nanoplatelets and multiwalled carbon nanotubes as fillers for advanced rubber composites

    NASA Astrophysics Data System (ADS)

    Sicinski, M.; Gozdek, T.; Bielinski, D. M.; Szymanowski, H.; Kleczewska, J.; Piatkowska, A.

    2015-07-01

    In modern rubber industry, there still is a room for new fillers, which can improve the mechanical properties of the composites, or introduce a new function to the material. Modern fillers like carbon nanotubes or graphene nanoplatelets (GnP), are increasingly applied in advanced polymer composites technology. However, it might be hard to obtain a well dispersed system for such systems. The polymer matrix often exhibits higher surface free energy (SFE) level with the filler, which can cause problems with polymer-filler interphase adhesion. Filler particles are not wet properly by the polymer, and thus are easier to agglomerate. As a consequence, improvement in the mechanical properties is lower than expected. In this work, multi-walled carbon nanotubes (MWCNT) and GnP surface were modified with low-temperature plasma. Attempts were made to graft some functionalizing species on plasma-activated filler surface. The analysis of virgin and modified fillers’ SFE was carried out. MWCNT and GnP rubber composites were produced, and ultimately, their morphology and mechanical properties were studied.

  12. Time-temperature-stress capabilities of composite materials for advanced supersonic technology application, phase 1

    NASA Technical Reports Server (NTRS)

    Kerr, J. R.; Haskins, J. F.

    1980-01-01

    Implementation of metal and resin matrix composites into supersonic vehicle usage is contingent upon accelerating the demonstration of service capacity and design technology. Because of the added material complexity and lack of extensive service data, laboratory replication of the flight service will provide the most rapid method of documenting the airworthiness of advanced composite systems. A program in progress to determine the time temperature stress capabilities of several high temperature composite materials includes thermal aging, environmental aging, fatigue, creep, fracture, and tensile tests as well as real time flight simulation exposure. The program has two parts. The first includes all the material property determinations and aging and simulation exposures up through 10,000 hours. The second continues these tests up to 50,000 cumulative hours. Results are presented of the 10,000 hour phase, which has now been completed.

  13. Cumulative Damage Model for Advanced Composite Materials.

    DTIC Science & Technology

    1982-07-01

    STANDARS 963-A AFWAL- TR- 82-4094 CUMULATIVE DAMAGE MODEL FOR ADVANCED COMPOSITE MATERIALS GENERAL DYNAMICS FORT WORTH DIVISION P. 0. BOX 748 FORT...WORTH, TEXAS 76101 July 1982 Final Report for Period 23 February 1981 to 23 May 19k2. Approved. for public rel ts ; dA.st ? ,* -i; .c- ,. a-. LJ ( MAR 2... procurement operation, the United Scat-.s Government thereby Incurr no responsibility nor any obligation whatsoever; and the fact t.’at the government may

  14. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  15. Advances in Structures for Large Space Systems

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    2004-01-01

    The development of structural systems for scientific remote sensing and space exploration has been underway for four decades. The seminal work from 1960 to 1980 provided the basis for many of the design principles of modern space systems. From 1980- 2000 advances in active materials and structures and the maturing of composites technology led to high precision active systems such those used in the Space Interferometry Mission. Recently, thin-film membrane or gossamer structures are being investigated for use in large area space systems because of their low mass and high packaging efficiency. Various classes of Large Space Systems (LSS) are defined in order to describe the goals and system challenges in structures and materials technologies. With an appreciation of both past and current technology developments, future technology challenges are used to develop a list of technology investments that can have significant impacts on LSS development.

  16. Recent advances in nondestructive evaluation made possible by novel uses of video systems

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.; Roth, Don J.

    1990-01-01

    Complex materials are being developed for use in future advanced aerospace systems. High temperature materials have been targeted as a major area of materials development. The development of composites consisting of ceramic matrix and ceramic fibers or whiskers is currently being aggressively pursued internationally. These new advanced materials are difficult and costly to produce; however, their low density and high operating temperature range are needed for the next generation of advanced aerospace systems. These materials represent a challenge to the nondestructive evaluation community. Video imaging techniques not only enhance the nondestructive evaluation, but they are also required for proper evaluation of these advanced materials. Specific research examples are given, highlighting the impact that video systems have had on the nondestructive evaluation of ceramics. An image processing technique for computerized determination of grain and pore size distribution functions from microstructural images is discussed. The uses of video and computer systems for displaying, evaluating, and interpreting ultrasonic image data are presented.

  17. COINS: A composites information database system

    NASA Technical Reports Server (NTRS)

    Siddiqi, Shahid; Vosteen, Louis F.; Edlow, Ralph; Kwa, Teck-Seng

    1992-01-01

    An automated data abstraction form (ADAF) was developed to collect information on advanced fabrication processes and their related costs. The information will be collected for all components being fabricated as part of the ACT program and include in a COmposites INformation System (COINS) database. The aim of the COINS development effort is to provide future airframe preliminary design and fabrication teams with a tool through which production cost can become a deterministic variable in the design optimization process. The effort was initiated by the Structures Technology Program Office (STPO) of the NASA LaRC to implement the recommendations of a working group comprised of representatives from the commercial airframe companies. The principal working group recommendation was to re-institute collection of composite part fabrication data in a format similar to the DOD/NASA Structural Composites Fabrication Guide. The fabrication information collection form was automated with current user friendly computer technology. This work in progress paper describes the new automated form and features that make the form easy to use by an aircraft structural design-manufacturing team.

  18. Advanced Ceramic Armor Materials

    DTIC Science & Technology

    1990-05-11

    materials, toughened alumina, fiber -reinforced glass matrix composites, and multilayer-gradient materials for ballistic testing. Fabrication and...material systems: Multilayer advanced armor materials consisting of a hard ceramic faceplate bonded to a graphite fiber -reinforced glass matrix...toughened alumina, and fiber - applied studies of advanced reinforced ceramic matrix glass and glass -ceramic composites for ballistic testing. technologies

  19. Third NASA Advanced Composites Technology Conference, volume 1, part 1

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  20. Advanced composite aileron for L-1011 transport aircraft: Aileron manufacture

    NASA Technical Reports Server (NTRS)

    Dunning, E. G.; Cobbs, W. L.; Legg, R. L.

    1981-01-01

    The fabrication activities of the Advanced Composite Aileron (ACA) program are discussed. These activities included detail fabrication, manufacturing development, assembly, repair and quality assurance. Five ship sets of ailerons were manufactured. The detail fabrication effort of ribs, spar and covers was accomplished on male tools to a common cure cycle. Graphite epoxy tape and fabric and syntactic epoxy materials were utilized in the fabrication. The ribs and spar were net cured and required no post cure trim. Material inconsistencies resulted in manufacturing development of the front spar during the production effort. The assembly effort was accomplished in subassembly and assembly fixtures. The manual drilling system utilized a dagger type drill in a hydraulic feed control hand drill. Coupon testing for each detail was done.

  1. FIBER-TEX 1992: The Sixth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1993-01-01

    The FIBER-TEX 1992 proceedings contain the papers presented at the conference held on 27-29 Oct. 1992 at Drexel University. The conference was held to create a forum to encourage an interrelationship of the various disciplines involved in the fabrication of materials, the types of equipment, and the processes used in the production of advanced composite structures. Topics discussed were advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, and the latest requirements for the use of textiles in the production of composite materials and structures as related to global activities focused on textile structural composites.

  2. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    PubMed

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  3. Third NASA Advanced Composites Technology Conference, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1993-01-01

    This document is a compilation of papers presented at the Third NASA Advanced Composites Technology (ACT) Conference held at Long Beach, California, 8-11 June 1992. The ACT Program is a major multi-year research initiative to achieve a national goal of technology readiness before the end of the decade. Conference papers recorded results of research in the ACT Program in the specific areas of automated fiber placement, resin transfer molding, textile preforms, and stitching as these processes influence design, performance, and cost of composites in aircraft structures. Papers sponsored by the Department of Defense on the Design and Manufacturing of Low Cost Composites (DMLCC) are also included in Volume 2 of this document.

  4. Recent advances in light-responsive on-demand drug-delivery systems.

    PubMed

    Linsley, Chase S; Wu, Benjamin M

    2017-02-01

    The convergence of wearable sensors and personalized medicine enhance the ability to sense and control the drug composition and dosage, as well as location and timing of administration. To date, numerous stimuli-triggered smart drug-delivery systems have been developed to detect changes in light, pH, temperature, biomolecules, electric field, magnetic field, ultrasound and mechanical forces. This review examines the major advances within the last 5 years for the three most common light-responsive drug delivery-on-demand strategies: photochemical, photoisomerization and photothermal. Examples are highlighted to illustrate progress of each strategy in drug delivery applications, and key limitations are identified to motivate future research to advance this important field.

  5. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  6. Refractory metal alloys and composites for space power systems

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.; Petrasek, Donald W.; Titran, Robert H.

    1988-01-01

    Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary source to meet these high levels of electrical demand. One way to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites is discussed.

  7. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single cycle burst and cyclic fatigue loading. Filament wound fiber/epoxy composite vessels were made from S glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessels structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all titanium pressure vessels. Significant findings in each area are summarized.

  8. Advanced Technology Composite Fuselage-Structural Performance

    NASA Technical Reports Server (NTRS)

    Walker, T. H.; Minguet, P. J.; Flynn, B. W.; Carbery, D. J.; Swanson, G. D.; Ilcewicz, L. B.

    1997-01-01

    Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC). This report addresses the program activities related to structural performance of the selected concepts, including both the design development and subsequent detailed evaluation. Design criteria were developed to ensure compliance with regulatory requirements and typical company objectives. Accurate analysis methods were selected and/or developed where practical, and conservative approaches were used where significant approximations were necessary. Design sizing activities supported subsequent development by providing representative design configurations for structural evaluation and by identifying the critical performance issues. Significant program efforts were directed towards assessing structural performance predictive capability. The structural database collected to perform this assessment was intimately linked to the manufacturing scale-up activities to ensure inclusion of manufacturing-induced performance traits. Mechanical tests were conducted to support the development and critical evaluation of analysis methods addressing internal loads, stability, ultimate strength, attachment and splice strength, and damage tolerance. Unresolved aspects of these performance issues were identified as part of the assessments, providing direction for future development.

  9. Advanced Technology Composite Fuselage: Program Overview

    NASA Technical Reports Server (NTRS)

    Ilcewicz, L. B.; Smith, P. J.; Hanson, C. T.; Walker, T. H.; Metschan, S. L.; Mabson, G. E.; Wilden, K. S.; Flynn, B. W.; Scholz, D. B.; Polland, D. R.; hide

    1997-01-01

    The Advanced Technology Composite Aircraft Structures (ATCAS) program has studied transport fuselage structure with a large potential reduction in the total direct operating costs for wide-body commercial transports. The baseline fuselage section was divided into four 'quadrants', crown, keel, and sides, gaining the manufacturing cost advantage possible with larger panels. Key processes found to have savings potential include (1) skins laminated by automatic fiber placement, (2) braided frames using resin transfer molding, and (3) panel bond technology that minimized mechanical fastening. The cost and weight of the baseline fuselage barrel was updated to complete Phase B of the program. An assessment of the former, which included labor, material, and tooling costs, was performed with the help of design cost models. Crown, keel, and side quadrant cost distributions illustrate the importance of panel design configuration, area, and other structural details. Composite sandwich panel designs were found to have the greatest cost savings potential for most quadrants. Key technical findings are summarized as an introduction to the other contractor reports documenting Phase A and B work completed in functional areas. The current program status in resolving critical technical issues is also highlighted.

  10. Study on utilization of advanced composites in fuselage structures of large transports

    NASA Technical Reports Server (NTRS)

    Johnson, R. W.; Thomson, L. W.; Wilson, R. D.

    1985-01-01

    The potential for utilizing advanced composites in fuselage structures of large transports was assessed. Six fuselage design concepts were selected and evaluated in terms of structural performance, weight, and manufacturing development and costs. Two concepts were selected that merit further consideration for composite fuselage application. These concepts are: (1) a full depth honeycomb design with no stringers, and (2) an I section stringer stiffened laminate skin design. Weight reductions due to applying composites to the fuselages of commercial and military transports were calculated. The benefits of applying composites to a fleet of military transports were determined. Significant technology issues pertinent to composite fuselage structures were identified and evaluated. Program plans for resolving the technology issues were developed.

  11. Advancements in Binder Systems for Solid Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul (Technical Monitor)

    2002-01-01

    Paper will present recent developments in advanced material binder systems for solid freeform fabrication (SFF) technologies. The advantage of SFF is the capability to custom fabricate complex geometries directly from computer aided design data in layer- by-layer fashion, eliminated the need for traditional fixturing and tooling. Binders allow for the low temperature processing of 'green' structural materials, either metal, ceramic or composite, in traditional rapid prototyping machines. The greatest obstacle comes when green parts must then go through a sintering or burnout process to remove the binders and fully densify the parent material, without damaging or distorting the original part geometry. Critical issues and up-to-date assessments will be delivered on various material systems.

  12. NASA Advanced Exploration Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA’s Habitability Architecture Team.

  13. English 354: Advanced Composition Writing Ourselves/Communities into Public Conversations

    ERIC Educational Resources Information Center

    Goodburn, Amy; Camp, Heather

    2004-01-01

    English 354: Advanced Composition is a required course for undergraduate majors in English, broadcast journalism, criminal justice, and pre-service English education, among others, at the University of Nebraska-Lincoln, a research-one land-grant institution with a student population of about 24,000. English 354 focuses on "intensive study and…

  14. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The development of several types of graphite/polyimide (GR/PI) bonded and bolted joints is reported. The program consists of two concurrent tasks: (1) design and test of specific built up attachments; and (2) evaluation of standard advanced bonded joint concepts. A data base for the design and analysis of advanced composite joints for use at elevated temperatures (561K (550 deg F)) to design concepts for specific joining applications, and the fundamental parameters controlling the static strength characteristics of such joints are evaluated. Data for design and build GR/PI of lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Results for compression and interlaminar shear strengths of Celion 6000/PMR-15 laminates are given. Static discriminator test results for type 3 and type 4 bonded and bolted joints and final joint designs for TASK 1.4 scale up fabrication and testing are presented.

  15. Advanced Distribution Management Systems | Grid Modernization | NREL

    Science.gov Websites

    Advanced Distribution Management Systems Advanced Distribution Management Systems Electric utilities are investing in updated grid technologies such as advanced distribution management systems to management testbed for cyber security in power systems. The "advanced" elements of advanced

  16. Recent advances in light-responsive on-demand drug-delivery systems

    PubMed Central

    Linsley, Chase S; Wu, Benjamin M

    2017-01-01

    The convergence of wearable sensors and personalized medicine enhance the ability to sense and control the drug composition and dosage, as well as location and timing of administration. To date, numerous stimuli-triggered smart drug-delivery systems have been developed to detect changes in light, pH, temperature, biomolecules, electric field, magnetic field, ultrasound and mechanical forces. This review examines the major advances within the last 5 years for the three most common light-responsive drug delivery-on-demand strategies: photochemical, photoisomerization and photothermal. Examples are highlighted to illustrate progress of each strategy in drug delivery applications, and key limitations are identified to motivate future research to advance this important field. PMID:28088880

  17. Advanced Single-Polymer Nanofiber-Reinforced Composite - Towards Next Generation Ultralight Superstrong/Tough Structural Material

    DTIC Science & Technology

    2015-04-29

    AFRL-OSR-VA-TR-2015-0144 ADVANCED SINGLE-POLYMER NANOFIBER-REINFORCED COMPOSITE YURIS DZENIS UNIVERSITY OF NEBRSKA Final Report 04/29/2015... COMPOSITE - TOWARDS NEXT GENERATION ULTRALIGHT SUPERSTRONG/TOUGH STRUCTURAL MATERIAL 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-11-1-0204 5c. PROGRAM...characterize their mechanical behavior and properties; and (3) fabricate and characterize polyimide nanofiber-reinforced composites . Continuous

  18. Advanced body composition assessment: from body mass index to body composition profiling.

    PubMed

    Borga, Magnus; West, Janne; Bell, Jimmy D; Harvey, Nicholas C; Romu, Thobias; Heymsfield, Steven B; Dahlqvist Leinhard, Olof

    2018-06-01

    This paper gives a brief overview of common non-invasive techniques for body composition analysis and a more in-depth review of a body composition assessment method based on fat-referenced quantitative MRI. Earlier published studies of this method are summarized, and a previously unpublished validation study, based on 4753 subjects from the UK Biobank imaging cohort, comparing the quantitative MRI method with dual-energy X-ray absorptiometry (DXA) is presented. For whole-body measurements of adipose tissue (AT) or fat and lean tissue (LT), DXA and quantitative MRIs show excellent agreement with linear correlation of 0.99 and 0.97, and coefficient of variation (CV) of 4.5 and 4.6 per cent for fat (computed from AT) and LT, respectively, but the agreement was found significantly lower for visceral adipose tissue, with a CV of >20 per cent. The additional ability of MRI to also measure muscle volumes, muscle AT infiltration and ectopic fat, in combination with rapid scanning protocols and efficient image analysis tools, makes quantitative MRI a powerful tool for advanced body composition assessment. © American Federation for Medical Research (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Advanced Oxide Material Systems for 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal and environmental barrier coatings (TEBCs) are being developed for low-emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor-containing combustion environments. The advanced 1650 C TEBC system is required to have a better high-temperature stability, lower thermal conductivity, and more resistance to sintering and thermal stress than current coating systems under engine high-heat-flux and severe thermal cycling conditions. In this report, the thermal conductivity and water vapor stability of selected candidate hafnia-, pyrochlore- and magnetoplumbite-based TEBC materials are evaluated. The effects of dopants on the materials properties are also discussed. The test results have been used to downselect the TEBC materials and help demonstrate the feasibility of advanced 1650 C coatings with long-term thermal cycling durability.

  20. Rigid Biological Systems as Models for Synthetic Composites

    NASA Astrophysics Data System (ADS)

    Mayer, George

    2005-11-01

    Advances that have been made in understanding the mechanisms underlying the mechanical behavior of a number of biological materials (namely mollusk shells and sponge spicules) are discussed here. Attempts at biomimicry of the structure of a nacreous layer of a mollusk shell have shown reasonable success. However, they have revealed additional issues that must be addressed if new synthetic composite materials that are based on natural systems are to be constructed. Some of the important advantages and limitations of copying from nature are also described here.

  1. Gear systems for advanced turboprops

    NASA Technical Reports Server (NTRS)

    Wagner, Douglas A.

    1987-01-01

    A new generation of transport aircraft will be powered by efficient, advanced turboprop propulsion systems. Systems that develop 5,000 to 15,000 horsepower have been studied. Reduction gearing for these advanced propulsion systems is discussed. Allison Gas Turbine Division's experience with the 5,000 horsepower reduction gearing for the T56 engine is reviewed and the impact of that experience on advanced gear systems is considered. The reliability needs for component design and development are also considered. Allison's experience and their research serve as a basis on which to characterize future gear systems that emphasize low cost and high reliability.

  2. Advanced Oxide Material Systems For 1650 C Thermal/Environmental Barrier Coating Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Fox, Dennis S.; Bansal, Narottam P.; Miller, Robert A.

    2004-01-01

    Advanced thermal/environmental barrier coatings (T/EBCs) are being developed for low emission SiC/SiC ceramic matrix composite (CMC) combustor and vane applications to extend the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water-vapor containing combustion environments. The 1650 C T/EBC system is required to have better thermal stability, lower thermal conductivity, and improved sintering and thermal stress resistance than current coating systems. In this paper, the thermal conductivity, water vapor stability and cyclic durability of selected candidate zirconia-/hafnia-, pyrochlore- and magnetoplumbite-based T/EBC materials are evaluated. The test results have been used to downselect the T/EBC coating materials, and help demonstrate advanced 1650OC coatings feasibility with long-term cyclic durability.

  3. On the Mechanical Behavior of Advanced Composite Material Structures

    NASA Astrophysics Data System (ADS)

    Vinson, Jack

    During the period between 1993 and 2004, the author, as well as some colleagues and graduate students, had the honor to be supported by the Office of Naval Research to conduct research in several aspects of the behavior of structures composed of composite materials. The topics involved in this research program were numerous, but all contributed to increasing the understanding of how various structures that are useful for marine applications behaved. More specifically, the research topics focused on the reaction of structures that were made of fiber reinforced polymer matrix composites when subjected to various loads and environmental conditions. This included the behavior of beam, plate/panel and shell structures. It involved studies that are applicable to fiberglass, graphite/carbon and Kevlar fibers imbedded in epoxy, polyester and other polymeric matrices. Unidirectional, cross-ply, angle ply, and woven composites were involved, both in laminated, monocoque as well as in sandwich constructions. Mid-plane symmetric as well as asymmetric laminates were studied, the latter involving bending-stretching coupling and other couplings that only can be achieved with advanced composite materials. The composite structures studied involved static loads, dynamic loading, shock loading as well as thermal and hygrothermal environments. One major consideration was determining the mechanical properties of composite materials subjected to high strain rates because the mechanical properties vary so significantly as the strain rate increases. A considerable number of references are cited for further reading and study for those interested.

  4. FHWA study tour for advanced composites in bridges in Europe and Japan

    DOT National Transportation Integrated Search

    1997-10-01

    Under the Federal Highway Administration's (FHWA) International Technology Scanning Program, a team of 13 U.S. bridge engineers and advanced composite experts from Federal and State transportation agencies, academia, and industry conducted a 2-week s...

  5. Recent advances in lightweight, filament-wound composite pressure vessel technology

    NASA Technical Reports Server (NTRS)

    Lark, R. F.

    1977-01-01

    A review of recent advances is presented for lightweight, high-performance composite pressure vessel technology that covers the areas of design concepts, fabrication procedures, applications, and performance of vessels subjected to single-cycle burst and cyclic fatigue loading. Filament-wound fiber/epoxy composite vessels were made from S-glass, graphite, and Kevlar 49 fibers and were equipped with both structural and nonstructural liners. Pressure vessel structural efficiencies were attained which represented weight savings, using different liners, of 40 to 60 percent over all-titanium pressure vessels. Significant findings in each area are summarized including data from current NASA-Lewis Research Center contractual and in-house programs.

  6. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  7. First NASA Advanced Composites Technology Conference, Part 2

    NASA Technical Reports Server (NTRS)

    Davis, John G., Jr. (Compiler); Bohon, Herman L. (Compiler)

    1991-01-01

    Presented here is a compilation of papers presented at the first NASA Advanced Composites Technology (ACT) Conference held in Seattle, Washington, from 29 Oct. to 1 Nov. 1990. The ACT program is a major new multiyear research initiative to achieve a national goal of technology readiness before the end of the decade. Included are papers on materials development and processing, innovative design concepts, analysis development and validation, cost effective manufacturing methodology, and cost tracking and prediction procedures. Papers on major applications programs approved by the Department of Defense are also included.

  8. Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion

    NASA Technical Reports Server (NTRS)

    Hanley, David; Carella, John

    1999-01-01

    This document, submitted by AlliedSignal Engines (AE), a division of AlliedSignal Aerospace Company, presents the program final report for the Advanced High Temperature Polymer Matrix Composites for Gas Turbine Engines Program Expansion in compliance with data requirements in the statement of work, Contract No. NAS3-97003. This document includes: 1 -Technical Summary: a) Component Design, b) Manufacturing Process Selection, c) Vendor Selection, and d) Testing Validation: 2-Program Conclusion and Perspective. Also, see the Appendix at the back of this report. This report covers the program accomplishments from December 1, 1996, to August 24, 1998. The Advanced High Temperature PMC's for Gas Turbine Engines Program Expansion was a one year long, five task technical effort aimed at designing, fabricating and testing a turbine engine component using NASA's high temperature resin system AMB-21. The fiber material chosen was graphite T650-35, 3K, 8HS with UC-309 sizing. The first four tasks included component design and manufacturing, process selection, vendor selection, component fabrication and validation testing. The final task involved monthly financial and technical reports.

  9. On the Use of Accelerated Test Methods for Characterization of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    2003-01-01

    A rational approach to the problem of accelerated testing for material characterization of advanced polymer matrix composites is discussed. The experimental and analytical methods provided should be viewed as a set of tools useful in the screening of material systems for long-term engineering properties in aerospace applications. Consideration is given to long-term exposure in extreme environments that include elevated temperature, reduced temperature, moisture, oxygen, and mechanical load. Analytical formulations useful for predictive models that are based on the principles of time-based superposition are presented. The need for reproducible mechanisms, indicator properties, and real-time data are outlined as well as the methodologies for determining specific aging mechanisms.

  10. Design of an Advanced Wood Composite Rotor and Development of Wood Composite Blade Technology

    NASA Technical Reports Server (NTRS)

    Stroebel, Thomas; Dechow, Curtis; Zuteck, Michael

    1984-01-01

    In support of a program to advance wood composite wind turbine blade technology, a design was completed for a prototype, 90-foot diameter, two-bladed, one-piece rotor, with all wood/epoxy composite structure. The rotor was sized for compatibility with a generator having a maximum power rating of 4000 kilowatts. Innovative features of the rotor include: a teetering hub to minimize the effects of gust loads, untwisted blades to promote rotor power control through stall, joining of blades to the hub structure via an adhesive bonded structural joint, and a blade structural design which was simplified relative to earlier efforts. The prototype rotor was designed to allow flexibility for configuring the rotor upwind or downwind of the tower, for evaluating various types of teeter dampers and/or elastomeric stops, and with variable delta-three angle settings of the teeter shaft axis. The prototype rotor was also designed with provisions for installing pressure tap and angle of attack instrumentation in one blade. A production version rotor cost analysis was conducted. Included in the program were efforts directed at developing advanced load take-off stud designs for subsequent evaluation testing by NASA, development of aerodynamic tip brake concepts, exploratory testing of a wood/epoxy/graphite concept, and compression testing of wood/epoxy laminate, with scarf-jointed plies.

  11. Conceptual design study of advanced acoustic-composite nacelles

    NASA Technical Reports Server (NTRS)

    Nordstrom, K. E.; Marsh, A. H.; Sargisson, D. F.

    1975-01-01

    Conceptual studies were conducted to assess the impact of incorporating advanced technologies in the nacelles of a current wide-bodied transport and an advanced technology transport. The improvement possible in the areas of fuel consumption, flyover noise levels, airplane weight, manufacturing costs, and airplane operating cost were evaluated for short and long-duct nacelles. Use of composite structures for acoustic duct linings in the fan inlet and exhaust ducts was considered as well as for other nacelle components. For the wide-bodied transport, the use of a long-duct nacelle with an internal mixer nozzle in the primary exhaust showed significant improvement in installed specific fuel consumption and airplane direct operating costs compared to the current short-duct nacelle. The long-duct mixed-flow nacelle is expected to achieve significant reductions in jet noise during takeoff and in turbo-machinery noise during landing approach. Recommendations were made of the technology development needed to achieve the potential fuel conservation and noise reduction benefits.

  12. Iron-Based Nanomaterials/Graphene Composites for Advanced Electrochemical Sensors

    PubMed Central

    Movlaee, Kaveh; Ganjali, Mohmmad Reza; Norouzi, Parviz

    2017-01-01

    Iron oxide nanostructures (IONs) in combination with graphene or its derivatives—e.g., graphene oxide and reduced graphene oxide—hold great promise toward engineering of efficient nanocomposites for enhancing the performance of advanced devices in many applicative fields. Due to the peculiar electrical and electrocatalytic properties displayed by composite structures in nanoscale dimensions, increasing efforts have been directed in recent years toward tailoring the properties of IONs-graphene based nanocomposites for developing more efficient electrochemical sensors. In the present feature paper, we first reviewed the various routes for synthesizing IONs-graphene nanostructures, highlighting advantages, disadvantages and the key synthesis parameters for each method. Then, a comprehensive discussion is presented in the case of application of IONs-graphene based composites in electrochemical sensors for the determination of various kinds of (bio)chemical substances. PMID:29168771

  13. Thermal and Environmental Barrier Coatings for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2004-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. For future high performance engines, the development of advanced ceramic barrier coating systems will allow these coatings to be used to simultaneously increase engine operating temperature and reduce cooling requirements, thereby leading to significant improvements in engine power density and efficiency. In order to meet future engine performance and reliability requirements, the coating systems must be designed with increased high temperature stability, lower thermal conductivity, and improved thermal stress and erosion resistance. In this paper, ceramic coating design and testing considerations will be described for high temperature and high-heat-flux engine applications in hot corrosion and oxidation, erosion, and combustion water vapor environments. Further coating performance and life improvements will be expected by utilizing advanced coating architecture design, composition optimization, and improved processing techniques, in conjunction with modeling and design tools.

  14. Solar System evolution from compositional mapping of the asteroid belt.

    PubMed

    DeMeo, F E; Carry, B

    2014-01-30

    Advances in the discovery and characterization of asteroids over the past decade have revealed an unanticipated underlying structure that points to a dramatic early history of the inner Solar System. The asteroids in the main asteroid belt have been discovered to be more compositionally diverse with size and distance from the Sun than had previously been known. This implies substantial mixing through processes such as planetary migration and the subsequent dynamical processes.

  15. Tough composite materials: Recent developments

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Editor); Johnston, N. J. (Editor); Teichman, L. A. (Editor); Blankenship, C. P. (Editor)

    1985-01-01

    The present volume broadly considers topics in composite fracture toughness and impact behavior characterization, composite system constituent properties and their interrelationships, and matrix systems' synthesis and characterization. Attention is given to the characterization of interlaminar crack growth in composites by means of the double cantilever beam specimen, the characterization of delamination resistance in toughened resin composites, the effect of impact damage and open holes on the compressive strength of tough resin/high strain fiber laminates, the effect of matrix and fiber properties on compression failure mechanisms and impact resistance, the relation of toughened neat resin properties to advanced composite mechanical properties, and constituent and composite properties' relationships in thermosetting matrices. Also treated are the effect of cross-link density on the toughening mechanism of elastomer-modified epoxies, the chemistry of fiber/resin interfaces, novel carbon fibers and their properties, the development of a heterogeneous laminating resin, solvent-resistant thermoplastics, NASA Lewis research in advanced composites, and opportunities for the application of composites in commercial aircraft transport structures.

  16. Real-time monitoring system of composite aircraft wings utilizing Fibre Bragg Grating sensor

    NASA Astrophysics Data System (ADS)

    Vorathin, E.; Hafizi, Z. M.; Che Ghani, S. A.; Lim, K. S.

    2016-10-01

    Embedment of Fibre Bragg Grating (FBG) sensor in composite aircraft wings leads to the advancement of structural condition monitoring. The monitored aircraft wings have the capability to give real-time response under critical loading circumstances. The main objective of this paper is to develop a real-time FBG monitoring system for composite aircraft wings to view real-time changes when the structure undergoes some static loadings and dynamic impact. The implementation of matched edge filter FBG interrogation system to convert wavelength variations to strain readings shows that the structure is able to response instantly in real-time when undergoing few loadings and dynamic impact. This smart monitoring system is capable of updating the changes instantly in real-time and shows the weight induced on the composite aircraft wings instantly without any error. It also has a good agreement with acoustic emission (AE) sensor in the dynamic test.

  17. NASA Advanced Explorations Systems: 2017 Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Schneider, Walter F.; Shull, Sarah A.

    2017-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions planned in the mid-2020s and beyond. The LSS Project is focused on four are-as-architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the International Space Station (ISS) LSS systems as a point of departure where applicable, the three-fold mission of the LSS Project is to address discrete LSS technology gaps, to improve the reliability of LSS systems, and to advance LSS systems toward integrated testing aboard the ISS. This paper is a follow on to the AES LSS development status reported in 2016 and provides additional details on the progress made since that paper was published with specific attention to the status of the Aerosol Sampler ISS Flight Experiment, the Spacecraft Atmosphere Monitor (SAM) Flight Experiment, the Brine Processor Assembly (BPA) Flight Experiment, the CO2 removal technology development tasks, and the work investigating the impacts of dormancy on LSS systems.

  18. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-03

    SUPPLEMENTARY NOTES 14. ABSTRACT The overall objective of the project is to design , build and demonstrate an underwater advanced time -domain...Description The overall objective of the project is to design , build and demonstrate an underwater advanced time - domain electromagnetic (TEM) system...Electromagnetic System Design (July, 2015), and in the Underwater Advanced Time -Domain Electromagnetic System Evaluation Plan (October, 2016). A

  19. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  20. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  1. Advanced Containment System

    DOEpatents

    Kostelnik, Kevin M.; Kawamura, Hideki; Richardson, John G.; Noda, Masaru

    2005-02-08

    An advanced containment system for containing buried waste and associated leachate. The advanced containment system comprises a plurality of casing sections with each casing section interlocked to an adjacent casing section. Each casing section includes a complementary interlocking structure that interlocks with the complementary interlocking structure on an adjacent casing section. A barrier filler substantially fills the casing sections and may substantially fill the spaces of the complementary interlocking structure to form a substantially impermeable barrier. Some of the casing sections may include sensors so that the casing sections and the zone of interest may be remotely monitored after the casing sections are emplaced in the ground.

  2. Interactive program for analysis and design problems in advanced composites technology

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Swedlow, J. L.

    1971-01-01

    During the past year an experimental program in the fracture of advanced fiber composites has been completed. The experimental program has given direction to additional experimental and theoretical work. A synthesis program for designing low weight multifastener joints in composites is proposed, based on extensive analytical background. A number of failed joints have been thoroughly analyzed to evaluate the failure hypothesis used in the synthesis procedure. Finally, a new solution is reported for isotropic and anisotropic laminates using the boundary-integral method. The solution method offers significant savings of computer core and time for important problems.

  3. Advanced composites in sailplane structures: Application and mechanical properties

    NASA Technical Reports Server (NTRS)

    Muser, D.

    1979-01-01

    Advanced Composites in sailplanes mean the use of carbon and aramid fibers in an epoxy matrix. Weight savings were in the range of 8 to 18% in comparison with glass fiber structures. The laminates will be produced by hand-layup techniques and all material tests were done with these materials. These values may be used for calculation of strength and stiffness, as well as for comparison of the materials to get a weight-optimum construction. Proposals for material-optimum construction are mentioned.

  4. Behavior of thin-walled beams made of advanced composite materials and incorporating non-classical effects

    NASA Astrophysics Data System (ADS)

    Librescu, Liviu; Song, Ohseop

    1991-11-01

    Several results concerning the refined theory of thin-walled beams of arbitrary closed cross-section incorporating nonclassical effects are presented. These effects are related both with the exotic properties characterizing the advanced composite material structures and the nonuniform torsional model. A special case of the general equations is used to study several problems of cantilevered thin-walled beams and to assess the influence of the incorporated effects. The results presented in this paper could be useful toward a more rational design of aeronautical or aerospace constructions, as well as of helicopter or tilt rotor blades constructed of advanced composite materials.

  5. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  6. Composite Technology for Exploration

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2017-01-01

    The CTE (Composite Technology for Exploration) Project will develop and demonstrate critical composites technologies with a focus on joints that utilize NASA expertise and capabilities. The project will advance composite technologies providing lightweight structures to support future NASA exploration missions. The CTE project will demonstrate weight-saving, performance-enhancing bonded joint technology for Space Launch System (SLS)-scale composite hardware.

  7. A study on the utilization of advanced composites in commercial aircraft wing structure

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composite materials in the wing structure of future production aircraft. The study accomplished the following: (1) definition of acceptance factors, (2) identification of technology issues, (3) evaluation of six candidate wing structures, (4) evaluation of five program options, (5) definition of a composite wing technology development plan, (6) identification of full-scale tests, (7) estimation of program costs for the total development plan, (8) forecast of future utilization of composites in commercial transport aircraft and (9) identification of critical technologies for timely program planning.

  8. Advanced composite vertical stabilizer for DC-10 transport aircraft

    NASA Technical Reports Server (NTRS)

    Stephens, C. O.

    1979-01-01

    Structural design, tooling, fabrication, and test activities are reported for a program to develop an advanced composite vertical stabilizer (CVS) for the DC 10 Commercial Transport Aircraft. Structural design details are described and the status of structural and weight analyses are reported. A structural weight reduction of 21.7% is currently predicted. Test results are discussed for sine wave stiffened shear webs containing representative of the CVS spar webs and for lightning current transfer and tests on a panel representative of the CVS skins.

  9. Advanced Deployable Shell-Based Composite Booms for Small Satellite Structural Applications Including Solar Sails

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.

    2017-01-01

    State of the art deployable structures are mainly being designed for medium to large size satellites. The lack of reliable deployable structural systems for low cost, small volume, rideshare-class spacecraft severely constrains the potential for using small satellite platforms for affordable deep space science and exploration precursor missions that could be realized with solar sails. There is thus a need for reliable, lightweight, high packaging efficiency deployable booms that can serve as the supporting structure for a wide range of small satellite systems including solar sails for propulsion. The National Air and Space Administration (NASA) is currently investing in the development of a new class of advanced deployable shell-based composite booms to support future deep space small satellite missions using solar sails. The concepts are being designed to: meet the unique requirements of small satellites, maximize ground testability, permit the use of low-cost manufacturing processes that will benefit scalability, be scalable for use as elements of hierarchical structures (e.g. trusses), allow long duration storage, have high deployment reliability, and have controlled deployment behavior and predictable deployed dynamics. This paper will present the various rollable boom concepts that are being developed for 5-20 m class size deployable structures that include solar sails with the so-called High Strain Composites (HSC) materials. The deployable composite booms to be presented are being developed to expand the portfolio of available rollable booms for small satellites and maximize their length for a given packaged volume. Given that solar sails are a great example of volume and mass optimization, the booms were designed to comply with nominal solar sail system requirements for 6U CubeSats, which are a good compromise between those of smaller form factors (1U, 2U and 3U CubeSats) and larger ones (12 U and 27 U future CubeSats, and ESPA-class microsatellites). Solar

  10. Joining and Assembly of Silicon Carbide-based Advanced Ceramics and Composites for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2004-01-01

    Silicon carbide based advanced ceramics and fiber reinforced composites are under active consideration for use in wide variety of high temperature applications within the aeronautics, space transportation, energy, and nuclear industries. The engineering designs of ceramic and composite component require fabrication and manufacturing of large and complex shaped parts of various thicknesses. In many instances, it is more economical to build up complex shapes by joining simple geometrical shapes. In addition these components have to be joined or assembled with metallic sub-components. Thus, joining and attachment have been recognized as enabling technologies for successful utilization of ceramic components in various demanding applications. In this presentation, various challenges and opportunities in design, fabrication, and testing o high temperature joints in ceramic matrix composites will be presented. Silicon carbide based advanced ceramics (CVD and hot pressed), and C/SiC and SiC/SiC composites, in different shapes and sizes, have been joined using an affordable, robust ceramic joining technology (ARCJoinT). Microstructure and high temperature mechanical properties of joints in silicon carbide ceramics and CVI and melt infiltrated SiC matrix composites will,be reported. Various joint design philosophies and design issues in joining of ceramics and composites well be discussed.

  11. Experimental characterization of nonlinear, rate-dependent behavior in advanced polymer matrix composites

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.

    1992-01-01

    In order to support materials selection for the next-generation supersonic civilian-passenger transport aircraft, a study has been undertaken to evaluate the material stress/strain relationships needed to describe advanced polymer matrix composites under conditions of high load and elevated temperature. As part of this effort, this paper describes the materials testing which was performed to investigate the viscoplastic behavior of graphite/thermoplastic and graphite/bismaleimide composites. Test procedures, results and data-reduction schemes which were developed for generating material constants for tension and compression loading, over a range of useful temperatures, are explained.

  12. Rapid adhesive bonding of advanced composites and titanium

    NASA Technical Reports Server (NTRS)

    Stein, B. A.; Tyeryart, J. R.; Hodgest, W. T.

    1985-01-01

    Rapid adhesive bonding (RAB) concepts utilize a toroid induction technique to heat the adhesive bond line directly. This technique was used to bond titanium overlap shear specimens with 3 advanced thermoplastic adhesives and APC-2 (graphite/PEEK) composites with PEEK film. Bond strengths equivalent to standard heated-platen press bonds were produced with large reductions in process time. RAB produced very strong bonds in APC-2 adherend specimens; the APC-2 adherends were highly resistant to delamination. Thermal cycling did not significantly affect the shear strengths of RAB titanium bonds with polyimide adhesives. A simple ultrasonic non-destructive evaluation process was found promising for evaluating bond quality.

  13. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  14. Advanced Ceramic Matrix Composites (CMCs) for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Singh, M.

    2005-01-01

    Advanced ceramic matrix composites (CMCs) are enabling materials for a number of demanding applications in aerospace, energy, and nuclear industries. In the aerospace systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, vanes, nozzle components, nose cones, leading edges of reentry vehicles, and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters, and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. In the last few years, a number of CMC components have been developed and successfully tested for various aerospace and ground based applications. However, a number of challenges still remain slowing the wide scale implementation of these materials. They include robust fabrication and manufacturing, assembly and integration, coatings, property modeling and life prediction, design codes and databases, repair and refurbishment, and cost. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, a number of examples of successful CMC component development and testing will be provided. In addition, critical need for robust manufacturing, joining and assembly technologies in successful implementation of these systems will be discussed.

  15. FIBER-TEX 1991: The Fifth Conference on Advanced Engineering Fibers and Textile Structures for Composites

    NASA Technical Reports Server (NTRS)

    Buckley, John D. (Editor)

    1992-01-01

    This document is a compilation of papers presented at a joint NASA/North Carolina State University/DoD/Clemson University/Drexel University conference on Fibers, Textile Technology, and Composites Structures held at the College of Textiles Building on Centennial Campus of North Carolina State University, Raleigh, North Carolina on October 15-17, 1991. Conference papers presented information on advanced engineering fibers, textile processes and structures, structural fabric production, mechanics and characteristics of woven composites, pultruded composites, and the latest requirements for the use of textiles in the production of composite materials and structures.

  16. Advances in SiC/SiC Composites for Aero-Propulsion

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.

    2013-01-01

    In the last decade, considerable progress has been made in the development and application of ceramic matrix composites consisting of silicon carbide (SiC) based matrices reinforced by small-diameter continuous-length SiC-based fibers. For example, these SiC/SiC composites are now in the early stages of implementation into hot-section components of civil aero-propulsion gas turbine engines, where in comparison to current metallic components they offer multiple advantages due to their lighter weight and higher temperature structural capability. For current production-ready SiC/SiC, this temperature capability for long time structural applications is 1250 degC, which is better than 1100 degC for the best metallic superalloys. Foreseeing that even higher structural reliability and temperature capability would continue to increase the advantages of SiC/SiC composites, progress in recent years has also been made at NASA toward improving the properties of SiC/SiC composites by optimizing the various constituent materials and geometries within composite microstructures. The primary objective of this chapter is to detail this latter progress, both fundamentally and practically, with particular emphasis on recent advancements in the materials and processes for the fiber, fiber coating, fiber architecture, and matrix, and in the design methods for incorporating these constituents into SiC/SiC microstructures with improved thermo-structural performance.

  17. Environmental Barrier Coating Development for SiC/SiC Ceramic Matrix Composites: Recent Advances and Future Directions

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2016-01-01

    This presentation briefly reviews the SiC/SiC major environmental and environment-fatigue degradations encountered in simulated turbine combustion environments, and thus NASA environmental barrier coating system evolution for protecting the SiC/SiC Ceramic Matrix Composites for meeting the engine performance requirements. The presentation will review several generations of NASA EBC materials systems, EBC-CMC component system technologies for SiC/SiC ceramic matrix composite combustors and turbine airfoils, highlighting the temperature capability and durability improvements in simulated engine high heat flux, high pressure, high velocity, and with mechanical creep and fatigue loading conditions. This paper will also focus on the performance requirements and design considerations of environmental barrier coatings for next generation turbine engine applications. The current development emphasis is placed on advanced NASA candidate environmental barrier coating systems for SiC/SiC CMCs, their performance benefits and design limitations in long-term operation and combustion environments. The efforts have been also directed to developing prime-reliant, self-healing 2700F EBC bond coat; and high stability, lower thermal conductivity, and durable EBC top coats. Major technical barriers in developing environmental barrier coating systems, the coating integrations with next generation CMCs having the improved environmental stability, erosion-impact resistance, and long-term fatigue-environment system durability performance will be described. The research and development opportunities for turbine engine environmental barrier coating systems by utilizing improved compositions, state-of-the-art processing methods, and simulated environment testing and durability modeling will be briefly discussed.

  18. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  19. High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar; Greene, Sandra

    2015-01-01

    NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.

  20. Advanced optical manufacturing digital integrated system

    NASA Astrophysics Data System (ADS)

    Tao, Yizheng; Li, Xinglan; Li, Wei; Tang, Dingyong

    2012-10-01

    It is necessarily to adapt development of advanced optical manufacturing technology with modern science technology development. To solved these problems which low of ration, ratio of finished product, repetition, consistent in big size and high precision in advanced optical component manufacturing. Applied business driven and method of Rational Unified Process, this paper has researched advanced optical manufacturing process flow, requirement of Advanced Optical Manufacturing integrated System, and put forward architecture and key technology of it. Designed Optical component core and Manufacturing process driven of Advanced Optical Manufacturing Digital Integrated System. the result displayed effective well, realized dynamic planning Manufacturing process, information integration improved ratio of production manufactory.

  1. Combined Thermomechanical and Environmental Durability of Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan; Bhatt, Ramakrishna

    2016-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) will play a crucial role in next generation turbine engines for hot-section component applications. The development of prime-reliant environmental barrier coatings is essential to the EBC-CMC system durability, ensuring the successful implementations of the high temperature and lightweight engine component technologies for engine applications.This paper will emphasize recent NASA environmental barrier coating and CMC developments for SiC/SiC turbine airfoil components, utilizing advanced coating compositions and processing methods. The emphasis has been particularly placed on thermomechanical and environment durability evaluations of EBC-CMC systems. We have also addressed the integration of the EBCs with advanced SiC/SiC CMCs, and studied the effects of combustion environments and Calcium-Magnesium-Alumino-Silicate (CMAS) deposits on the durability of the EBC-CMC systems under thermal gradient and mechanical loading conditions. Advanced environmental barrier coating systems, including multicomponent rare earth silicate EBCs and HfO2-Si based bond coats, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  2. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  3. The Advanced Technology Operations System: ATOS

    NASA Technical Reports Server (NTRS)

    Kaufeler, J.-F.; Laue, H. A.; Poulter, K.; Smith, H.

    1993-01-01

    Mission control systems supporting new space missions face ever-increasing requirements in terms of functionality, performance, reliability and efficiency. Modern data processing technology is providing the means to meet these requirements in new systems under development. During the past few years the European Space Operations Centre (ESOC) of the European Space Agency (ESA) has carried out a number of projects to demonstrate the feasibility of using advanced software technology, in particular, knowledge based systems, to support mission operations. A number of advances must be achieved before these techniques can be moved towards operational use in future missions, namely, integration of the applications into a single system framework and generalization of the applications so that they are mission independent. In order to achieve this goal, ESA initiated the Advanced Technology Operations System (ATOS) program, which will develop the infrastructure to support advanced software technology in mission operations, and provide applications modules to initially support: Mission Preparation, Mission Planning, Computer Assisted Operations, and Advanced Training. The first phase of the ATOS program is tasked with the goal of designing and prototyping the necessary system infrastructure to support the rest of the program. The major components of the ATOS architecture is presented. This architecture relies on the concept of a Mission Information Base (MIB) as the repository for all information and knowledge which will be used by the advanced application modules in future mission control systems. The MIB is being designed to exploit the latest in database and knowledge representation technology in an open and distributed system. In conclusion the technological and implementation challenges expected to be encountered, as well as the future plans and time scale of the project, are presented.

  4. Thermal and Environmental Barrier Coating Development for Advanced Propulsion Engine Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Fox, Dennis S.

    2008-01-01

    Ceramic thermal and environmental barrier coatings (TEBCs) are used in gas turbine engines to protect engine hot-section components in the harsh combustion environments, and extend component lifetimes. Advanced TEBCs that have significantly lower thermal conductivity, better thermal stability and higher toughness than current coatings will be beneficial for future low emission and high performance propulsion engine systems. In this paper, ceramic coating design and testing considerations will be described for turbine engine high temperature and high-heat-flux applications. Thermal barrier coatings for metallic turbine airfoils and thermal/environmental barrier coatings for SiC/SiC ceramic matrix composite (CMC) components for future supersonic aircraft propulsion engines will be emphasized. Further coating capability and durability improvements for the engine hot-section component applications can be expected by utilizing advanced modeling and design tools.

  5. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  6. Advanced Technology Composite Fuselage - Repair and Damage Assessment Supporting Maintenance

    NASA Technical Reports Server (NTRS)

    Flynn, B. W.; Bodine, J. B.; Dopker, B.; Finn, S. R.; Griess, K. H.; Hanson, C. T.; Harris, C. G.; Nelson, K. M.; Walker, T. H.; Kennedy, T. C.; hide

    1997-01-01

    Under the NASA-sponsored contracts for Advanced Technology Composite Aircraft Structures (ATCAS) and Materials Development Omnibus Contract (MDOC), Boeing is studying the technologies associated with the application of composite materials to commercial transport fuselage structure. Included in the study is the incorporation of maintainability and repairability requirements of composite primary structure into the design. This contractor report describes activities performed to address maintenance issues in composite fuselage applications. A key aspect of the study was the development of a maintenance philosophy which included consideration of maintenance issues early in the design cycle, multiple repair options, and airline participation in design trades. Fuselage design evaluations considered trade-offs between structural weight, damage resistance/tolerance (repair frequency), and inspection burdens. Analysis methods were developed to assess structural residual strength in the presence of damage, and to evaluate repair design concepts. Repair designs were created with a focus on mechanically fastened concepts for skin/stringer structure and bonded concepts for sandwich structure. Both a large crown (skintstringer) and keel (sandwich) panel were repaired. A compression test of the keel panel indicated the demonstrated repairs recovered ultimate load capability. In conjunction with the design and manufacturing developments, inspection methods were investigated for their potential to evaluate damaged structure and verify the integrity of completed repairs.

  7. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  8. Determinism Beneath Composite Quantum Systems

    NASA Astrophysics Data System (ADS)

    Blasone, Massimo; Vitiello, Giuseppe; Jizba, Petr; Scardigli, Fabio

    This paper aims at the development of 't Hooft's quantization proposal to describe composite quantum mechanical systems. In particular, we show how 't Hooft's method can be utilized to obtain from two classical Bateman oscillators a composite quantum system corresponding to a quantum isotonic oscillator. For a suitable range of parameters, the composite system can be also interpreted as a particle in an effective magnetic field interacting through a spin-orbital interaction term. In the limit of a large separation from the interaction region we can identify the irreducible subsystems with two independent quantum oscillators.

  9. Advances in Composites Technology

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Dexter, H. B.

    1985-01-01

    A significant level of research is currently focused on the development of tough resins and high strain fibers in an effort to gain improved damage tolerance. Moderate success has been achieved with the development of new resins such as PEEK and additional improvements look promising with new thermoplastic resins. Development of innovative material forms such as 2-D and 3-D woven fabrics and braided structural subelements is also expected to improve damage tolerance and durability of composite hardware. The new thrust in composites is to develop low cost manufacturing and design concepts to lower the cost of composite hardware. Processes being examined include automated material placement, filament winding, pultrusion, and thermoforming. The factory of the future will likely incorporate extensive automation in all aspects of manufacturing composite components.

  10. A Data Services Upgrade for Advanced Composition Explorer (ACE) Data

    NASA Astrophysics Data System (ADS)

    Davis, A. J.; Hamell, G.

    2008-12-01

    Since early in 1998, NASA's Advanced Composition Explorer (ACE) spacecraft has provided continuous measurements of solar wind, interplanetary magnetic field, and energetic particle activity from L1, located approximately 0.01 AU sunward of Earth. The spacecraft has enough fuel to stay in orbit about L1 until ~2024. The ACE Science Center (ASC) provides access to ACE data, and performs level 1 and browse data processing for the science instruments. Thanks to a NASA Data Services Upgrade grant, we have recently retooled our legacy web interface to ACE data, enhancing data subsetting capabilities and improving online plotting options. We have also integrated a new application programming interface (API) and we are working to ensure that it will be compatible with emerging Virtual Observatory (VO) data services standards. The new API makes extensive use of metadata created using the Space Physics Archive Search and Extract (SPASE) data model. We describe these recent improvements to the ACE Science Center data services, and our plans for integrating these services into the VO system.

  11. Review of status and potential of tungsten-wire: Superalloy composites for advanced gas turbine engine blades

    NASA Technical Reports Server (NTRS)

    Signorelli, R. A.

    1972-01-01

    The current status of development of refractory-wire-superalloy composites and the potential for their application to turbine blades in land-based power generation and advanced aircraft engines are reviewed. The data indicate that refractory-wire-superalloy composites have application as turbine blades at temperatures of 2200 F and above.

  12. The effect of advanced secondary municipal wastewater treatment on the molecular composition of dissolved organic matter.

    PubMed

    Maizel, Andrew C; Remucal, Christina K

    2017-10-01

    There is a growing interest in water reuse and in recovery of nutrients from wastewater. Because many advanced treatment processes are designed to remove organic matter, a better understanding of the composition of dissolved organic matter (DOM) in wastewater is needed. To that end, we assessed DOM in the Nine Springs Wastewater Treatment Plant in Madison, Wisconsin by UV-visible spectroscopy and Fourier transform-ion cyclotron resonance mass spectrometry. Samples were collected from the influent and effluent of two different secondary treatment processes and their respective secondary clarifiers, the UV disinfection unit, and an Ostara treatment system, which produces struvite via chemical precipitation. The optical properties reveal that DOM throughout the plant is relatively aliphatic and is low in molecular weight compared to DOM in freshwater systems. Furthermore, the DOM is rich in heteroatoms (e.g., N, S, P, and Cl) and its molecular formulas are present in the lipid-, protein-, carbohydrate-, and lignin-like regions of van Krevelen diagrams. Secondary treatment produces DOM that is more aromatic and more complex, as shown by the loss of highly saturated formulas and the increase in the number of CHO, CHON, and CHOP formulas. The two secondary treatment processes produce DOM with distinct molecular compositions, while the secondary clarifiers and UV disinfection unit result in minimal changes in DOM composition. The Ostara process decreases the molecular weight of DOM, but does not otherwise alter its composition. The optical properties agree with trends in the molecular composition of DOM within the main treatment train of the Nine Springs plant. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  14. Data management system advanced development

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine; Humphries, Terry

    1990-01-01

    The Data Management System (DMS) Advanced Development task provides for the development of concepts, new tools, DMS services, and for the testing of the Space Station DMS hardware and software. It also provides for the development of techniques capable of determining the effects of system changes/enhancements, additions of new technology, and/or hardware and software growth on system performance. This paper will address the built-in characteristics which will support network monitoring requirements in the design of the evolving DMS network implementation, functional and performance requirements for a real-time, multiprogramming, multiprocessor operating system, and the possible use of advanced development techniques such as expert systems and artificial intelligence tools in the DMS design.

  15. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  16. Experimental Investigation on Thermal Physical Properties of an Advanced Glass Fiber Composite Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan

    Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  17. Advanced Solar Power Systems

    NASA Technical Reports Server (NTRS)

    Atkinson, J. H.; Hobgood, J. M.

    1984-01-01

    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described.

  18. Structural design and stress analysis program for advanced composite filament-wound axisymmetric pressure vessels (COMTANK)

    NASA Technical Reports Server (NTRS)

    Knoell, A. C.

    1972-01-01

    Computer program has been specifically developed to handle, in an efficient and cost effective manner, planar wound pressure vessels fabricated of either boron-epoxy or graphite-epoxy advanced composite materials.

  19. Verification and Validation Process for Progressive Damage and Failure Analysis Methods in the NASA Advanced Composites Consortium

    NASA Technical Reports Server (NTRS)

    Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl

    2017-01-01

    The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.

  20. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  1. A study on the utilization of advanced composites in commercial aircraft wing structure: Executive summary

    NASA Technical Reports Server (NTRS)

    Watts, D. J.

    1978-01-01

    The overall wing study objectives are to study and plan the effort by commercial transport aircraft manufacturers to accomplish the transition from current conventional materials and practices to extensive use of advanced composites in wings of aircraft that will enter service in the 1985-1990 time period. Specific wing study objectives are to define the technology and data needed to support an aircraft manufacturer's commitment to utilize composites primary wing structure in future production aircraft and to develop plans for a composite wing technology program which will provide the needed technology and data.

  2. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  3. Virtual containment system for composite flywheels

    NASA Astrophysics Data System (ADS)

    Shiue, Fuh-Wen

    2001-07-01

    There is much interest in advanced composite flywheel systems for use on satellites mainly because of the potential for considerable weight savings associated with combined energy and momentum management. The additional weight of a containment system needed to protect the satellite in the event of a flywheel failure, however, could negate the potential savings. Therefore, the development of a condition monitoring and virtual containment system is essential to ensure the wide acceptance of flywheel batteries for spacecraft applications. A virtual containment system is a near real-time condition monitoring system, plus additional logic to adjust the operating conditions (maximum rotational speed) accordingly when a flaw or fault is detected. Flaws of primary interest in this study are those unique to composite flywheels, such as delamination and debonding of interfaces. Such flaws change the balance state of a flywheel through small, but detectable, motion of the mass center and principal axes of inertia. A proposed monitoring technique determines the existence and the extent of such flaws by a method similar to the influence-coefficient rotor balancing method. Because of the speed-dependence of the imbalance caused by elastic flaws, a normalized imbalance change, which is a direct measure of the flaw size, was defined. To account for the possibility that flaw growth could actually improve the balance state of a rotor, a new concept of accumulated imbalance change was also introduced. Laboratory tests showed the proposed method was able to detect small simulated flaws that result in as little as 2--3 microns of mass center movement. Fracture mechanics concepts were used to evaluate the severity and growth rate of the detected flaw. An interesting discovery that coincided with some experimental observations reported in the literature was the energy release rate reduction with a large crack. This finding indicates a possible stress relief and crack arrest when a

  4. Thin Film Heat Flux Sensor Development for Ceramic Matrix Composite (CMC) Systems

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Hunter, Gary W.; Zhu, Dongming; Laster, Kimala L.; Gonzalez, Jose M.; Gregory, Otto J.

    2010-01-01

    The NASA Glenn Research Center (GRC) has an on-going effort for developing high temperature thin film sensors for advanced turbine engine components. Stable, high temperature thin film ceramic thermocouples have been demonstrated in the lab, and novel methods of fabricating sensors have been developed. To fabricate thin film heat flux sensors for Ceramic Matrix Composite (CMC) systems, the rough and porous nature of the CMC system posed a significant challenge for patterning the fine features required. The status of the effort to develop thin film heat flux sensors specifically for use on silicon carbide (SiC) CMC systems with these new technologies is described.

  5. Advances in optical structure systems; Proceedings of the Meeting, Orlando, FL, Apr. 16-19, 1990

    NASA Astrophysics Data System (ADS)

    Breakwell, John; Genberg, Victor L.; Krumweide, Gary C.

    Various papers on advances in optical structure systems are presented. Individual topics addressed include: beam pathlength optimization, thermal stress in glass/metal bond with PR 1578 adhesive, structural and optical properties for typical solid mirror shapes, parametric study of spinning polygon mirror deformations, simulation of small structures-optics-controls system, spatial PSDs of optical structures due to random vibration, mountings for a four-meter glass mirror, fast-steering mirrors in optical control systems, adaptive state estimation for control of flexible structures, surface control techniques for large segmented mirrors, two-time-scale control designs for large flexible structures, closed-loop dynamic shape control of a flexible beam. Also discussed are: inertially referenced pointing for body-fixed payloads, sensor blending line-of-sight stabilization, controls/optics/structures simulation development, transfer functions for piezoelectric control of a flexible beam, active control experiments for large-optics vibration alleviation, composite structures for a large-optical test bed, graphite/epoxy composite mirror for beam-steering applications, composite structures for optical-mirror applications, thin carbon-fiber prepregs for dimensionally critical structures.

  6. Advanced information processing system

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  7. A ceramic matrix composite thermal protection system for hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Riccitiello, Salvatore R.; Love, Wendell L.; Pitts, William C.

    1993-01-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bonded to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems.

  8. Advanced Telemetry System Development.

    DTIC Science & Technology

    Progress in advanced telemetry system development is described. Discussions are included of studies leading to the specification for design...characteristics of adaptive and analytical telemetry systems in which the information efficiently utilizes the data channel capacity. Also discussed are...Progress indicates that further sophistication of existing designs in telemetry will be less advantageous than the development of new systems of

  9. Evaluation of Advanced Composite Structures Technologies for Application to NASA's Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.

    2008-01-01

    AS&M performed a broad assessment survey and study to establish the potential composite materials and structures applications and benefits to the Constellation Program Elements. Trade studies were performed on selected elements to determine the potential weight or performance payoff from use of composites. Weight predictions were made for liquid hydrogen and oxygen tanks, interstage cylindrical shell, lunar surface access module, ascent module liquid methane tank, and lunar surface manipulator. A key part of this study was the evaluation of 88 different composite technologies to establish their criticality to applications for the Constellation Program. The overall outcome of this study shows that composites are viable structural materials which offer from 20% to 40% weight savings for many of the structural components that make up the Major Elements of the Constellation Program. NASA investment in advancing composite technologies for space structural applications is an investment in America's Space Exploration Program.

  10. Study of mould design and forming process on advanced polymer-matrix composite complex structure

    NASA Astrophysics Data System (ADS)

    Li, S. J.; Zhan, L. H.; Bai, H. M.; Chen, X. P.; Zhou, Y. Q.

    2015-07-01

    Advanced carbon fibre-reinforced polymer-matrix composites are widely applied to aviation manufacturing field due to their outstanding performance. In this paper, the mould design and forming process of the complex composite structure were discussed in detail using the hat stiffened structure as an example. The key issues of the moulddesign were analyzed, and the corresponding solutions were also presented. The crucial control points of the forming process such as the determination of materials and stacking sequence, the temperature and pressure route of the co-curing process were introduced. In order to guarantee the forming quality of the composite hat stiffened structure, a mathematical model about the aperture of rubber mandrel was introduced. The study presented in this paper may provide some actual references for the design and manufacture of the important complex composite structures.

  11. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  12. Advanced composite elevator for Boeing 727 aircraft. Volume 1: Technical summary

    NASA Technical Reports Server (NTRS)

    Chovil, D. V.; Harvey, S. T.; Mccarty, J. E.; Desper, O. E.; Jamison, E. S.; Syder, H.

    1981-01-01

    The design, development, analysis, and testing activities and results that were required to produce five and one-half shipsets of advanced composite elevators for Boeing 727 aircraft are summarized. During the preliminary design period, alternative concepts were developed. After selection of the best design, detail design and basic configuration improvements were evaluated. Five and one-half shipsets were manufactured. All program goals (except competitive cost demonstration) were accomplished when our design met or exceeded all requirements, criteria, and objectives.

  13. Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring

    NASA Astrophysics Data System (ADS)

    Moncada, Albert

    Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and

  14. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  15. Applications of Advanced, Waveform Based AE Techniques for Testing Composite Materials

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been previously used to evaluate damage progression in laboratory tests of composite coupons. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite structures, the effects of wave propagation over larger distances and through structural complexities must be well characterized and understood. In this research, measurements were made of the attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels. As these materials have applications in a cryogenic environment, the effects of cryogenic insulation on the attenuation of plate mode AE signals were also documented.

  16. Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumeri, Galib; Abdi, Frank

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed

  17. Demonstration Advanced Avionics System (DAAS), Phase 1

    NASA Technical Reports Server (NTRS)

    Bailey, A. J.; Bailey, D. G.; Gaabo, R. J.; Lahn, T. G.; Larson, J. C.; Peterson, E. M.; Schuck, J. W.; Rodgers, D. L.; Wroblewski, K. A.

    1981-01-01

    Demonstration advanced anionics system (DAAS) function description, hardware description, operational evaluation, and failure mode and effects analysis (FMEA) are provided. Projected advanced avionics system (PAAS) description, reliability analysis, cost analysis, maintainability analysis, and modularity analysis are discussed.

  18. Producibility aspects of advanced composites for an L-1011 Aileron

    NASA Technical Reports Server (NTRS)

    Van Hamersveld, J.; Fogg, L. D.

    1976-01-01

    The design of advanced composite aileron suitable for long-term service on transport aircraft includes Kevlar 49 fabric skins on honeycomb sandwich covers, hybrid graphite/Kevlar 49 ribs and spars, and graphite/epoxy fittings. Weight and cost savings of 28 and 20 percent, respectively, are predicted by comparison with the production metallic aileron. The structural integrity of the design has been substantiated by analysis and static tests of subcomponents. The producibility considerations played a key role in the selection of design concepts with potential for low-cost production. Simplicity in fabrication is a major factor in achieving low cost using advanced tooling and manufacturing methods such as net molding to size, draping, forming broadgoods, and cocuring components. A broadgoods dispensing machine capable of handling unidirectional and bidirectional prepreg materials in widths ranging from 12 to 42 inches is used for rapid layup of component kits and covers. Existing large autoclaves, platen presses, and shop facilities are fully exploited.

  19. Underwater Advanced Time-Domain Electromagnetic System

    DTIC Science & Technology

    2017-03-01

    distribution statement initially submitted with AD1042986, entitled Underwater Advanced Time Domain Electromagnetic System (MR-201313), has been appealed...Advanced Time -Domain Electromagnetic System ESTCP Project MR-201313 MARCH 2017 Mr. Steve Saville CH2M Distribution Statement D: Distribution...is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

  20. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  1. Progress in composite structure and space construction systems technology

    NASA Technical Reports Server (NTRS)

    Bodle, J. B.; Jenkins, L. M.

    1981-01-01

    The development of deployable and fabricated composite trusses for large space structures by NASA and private industry is reviewed. Composite materials technology is discussed with a view toward fabrication processes and the characteristics of finished truss beams. Advances in roll-forming open section caps from graphite-composite strip material and new ultrasonic welding techniques are outlined. Vacuum- and gravity-effect test results show that the ultrasonic welding of graphite-thermoplastic materials in space is feasible. The structural characteristics of a prototype truss segment are presented. A new deployable graphite-composite truss with high packaging density for broad application to large space platforms is described.

  2. Noise impact of advanced high lift systems

    NASA Technical Reports Server (NTRS)

    Elmer, Kevin R.; Joshi, Mahendra C.

    1995-01-01

    The impact of advanced high lift systems on aircraft size, performance, direct operating cost and noise were evaluated for short-to-medium and medium-to-long range aircraft with high bypass ratio and very high bypass ratio engines. The benefit of advanced high lift systems in reducing noise was found to be less than 1 effective-perceived-noise decibel level (EPNdB) when the aircraft were sized to minimize takeoff gross weight. These aircraft did, however, have smaller wings and lower engine thrusts for the same mission than aircraft with conventional high lift systems. When the advanced high lift system was implemented without reducing wing size and simultaneously using lower flap angles that provide higher L/D at approach a cumulative noise reduction of as much as 4 EPNdB was obtained. Comparison of aircraft configurations that have similar approach speeds showed cumulative noise reduction of 2.6 EPNdB that is purely the result of incorporating advanced high lift system in the aircraft design.

  3. Review of advanced driver assistance systems (ADAS)

    NASA Astrophysics Data System (ADS)

    Ziebinski, Adam; Cupek, Rafal; Grzechca, Damian; Chruszczyk, Lukas

    2017-11-01

    New cars can be equipped with many advanced safety solutions. Airbags, seatbelts and all of the essential passive safety parts are standard equipment. Now cars are often equipped with new advanced active safety systems that can prevent accidents. The functions of the Advanced Driver Assistance Systems are still growing. A review of the most popular available technologies used in ADAS and descriptions of their application areas are discussed in this paper.

  4. Modular fabrication and characterization of complex silicon carbide composite structures Advanced Reactor Technologies (ART) Research Final Report (Feb 2015 – May 2017)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalifa, Hesham

    Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less

  5. Composite power system well-being analysis

    NASA Astrophysics Data System (ADS)

    Aboreshaid, Saleh Abdulrahman Saleh

    The evaluation of composite system reliability is extremely complex as it is necessary to include detailed modeling of both generation and transmission facilities and their auxiliary elements. The most significant quantitative indices in composite power system adequacy evaluation are those which relate to load curtailment. Many utilities have difficulty in interpreting the expected load curtailment indices as the existing models are based on adequacy analysis and in many cases do not consider realistic operating conditions in the system under study. This thesis presents a security based approach which alleviates this difficulty and provides the ability to evaluate the well-being of customer load points and the overall composite generation and transmission power system. Acceptable deterministic criteria are included in the probabilistic evaluation of the composite system reliability indices to monitor load point well-being. The degree of load point well-being is quantified in terms of the healthy and marginal state indices in addition to the traditional risk indices. The individual well-being indices of the different system load points are aggregated to produce system indices. This thesis presents new models and techniques to quantify the well-being of composite generation and, direct and alternating current transmission systems. Security constraints are basically the operating limits which must be satisfied for normal system operation. These constraints depend mainly on the purpose behind the study. The constraints which govern the practical operation of a power system are divided, in this thesis, into three sets namely, steady-state, voltage stability and transient stability constraints. The inclusion of an appropriate transient stability constraint will lead to a more accurate appraisal of the overall power system well-being. This thesis illustrates the utilization of a bisection method in the analytical evaluation of the critical clearing time which forms the

  6. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  7. Design options for advanced manned launch systems

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  8. Advanced public transportation systems benefits

    DOT National Transportation Integrated Search

    1996-03-01

    Benefits and cost savings for various Advanced Public Transportation Systems are outlined here. Operational efficiencies are given for Transit Management Systems in different locales, as well as compliant resolution and safety. Electronic Fare Paymen...

  9. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  10. Analysis of pultrusion processing for long fiber reinforced thermoplastic composite system

    NASA Technical Reports Server (NTRS)

    Tso, W.; Hou, T. H.; Tiwari, S. N.

    1993-01-01

    Pultrusion is one of the composite processing technology, commonly recognized as a simple and cost-effective means for the manufacturing of fiber-reinforced, resin matrix composite parts with different regular geometries. Previously, because the majority of the pultruded composite parts were made of thermosetting resin matrix, emphasis of the analysis on the process has been on the conservation of energy from various sources, such as heat conduction and the curing kinetics of the resin system. Analysis on the flow aspect of the process was almost absent in the literature for thermosetting process. With the increasing uses of thermoplastic materials, it is desirable to obtain the detailed velocity and pressure profiles inside the pultrusion die. Using a modified Darcy's law for flow through porous media, closed form analytical solutions for the velocity and pressure distributions inside the pultrusion die are obtained for the first time. This enables us to estimate the magnitude of viscous dissipation and it's effects on the pultruded parts. Pulling forces refined in the pultrusion processing are also analyzed. The analytical model derived in this study can be used to advance our knowledge and control of the pultrusion process for fiber reinforced thermoplastic composite parts.

  11. Advanced carbon materials/olivine LiFePO4 composites cathode for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Chunli; Xue, Zhigang; Wen, Sheng; Ye, Yunsheng; Xie, Xiaolin

    2016-06-01

    In the past two decades, LiFePO4 has undoubtly become a competitive candidate for the cathode material of the next-generation LIBs due to its abundant resources, low toxicity and excellent thermal stability, etc. However, the poor electronic conductivity as well as low lithium ion diffusion rate are the two major drawbacks for the commercial applications of LiFePO4 especially in the power energy field. The introduction of highly graphitized advanced carbon materials, which also possess high electronic conductivity, superior specific surface area and excellent structural stability, into LiFePO4 offers a better way to resolve the issue of limited rate performance caused by the two obstacles when compared with traditional carbon materials. In this review, we focus on advanced carbon materials such as one-dimensional (1D) carbon (carbon nanotubes and carbon fibers), two-dimensional (2D) carbon (graphene, graphene oxide and reduced graphene oxide) and three-dimensional (3D) carbon (carbon nanotubes array and 3D graphene skeleton), modified LiFePO4 for high power lithium ion batteries. The preparation strategies, structure, and electrochemical performance of advanced carbon/LiFePO4 composite are summarized and discussed in detail. The problems encountered in its application and the future development of this composite are also discussed.

  12. A ceramic matrix composite thermal protection system for hypersonic vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccitiello, S.R.; Love, W.L.; Pitts, W.C.

    1993-07-01

    The next generation of hypersonic vehicles (NASP, SSTO) that require reusable thermal protection systems will experience acreage surface temperatures in excess of 1100 C. More important, they will experience a more severe physical environment than the Space Shuttle due to non-pristine launching and landing conditions. As a result, maintenance, inspection, and replacement factors must be more thoroughly incorporated into the design of the TPS. To meet these requirements, an advanced thermal protection system was conceived, designated 'TOPHAT'. This system consists of a toughened outer ceramic matrix composite (CMC) attached to a rigid reusable surface insulator (RSI) which is directly bondedmore » to the surface. The objective of this effort was to evaluate this concept in an aeroconvective environment, to determine the effect of impacts to the CMC material, and to compare the results with existing thermal protection systems. 10 refs.« less

  13. Engine health monitoring: An advanced system

    NASA Technical Reports Server (NTRS)

    Dyson, R. J. E.

    1981-01-01

    The advanced propulsion monitoring system is described. The system was developed in order to fulfill a growing need for effective engine health monitoring. This need is generated by military requirements for increased performance and efficiency in more complex propulsion systems, while maintaining or improving the cost to operate. This program represents a vital technological step in the advancement of the state of the art for monitoring systems in terms of reliability, flexibility, accuracy, and provision of user oriented results. It draws heavily on the technology and control theory developed for modern, complex, electronically controlled engines and utilizes engine information which is a by-product of such a system.

  14. Advanced Aerospace Materials by Design

    NASA Technical Reports Server (NTRS)

    Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu

    2004-01-01

    The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.

  15. Acoustic emission studies of large advanced composite rocket motor cases.

    NASA Technical Reports Server (NTRS)

    Robinson, E. Y.

    1973-01-01

    Acoustic emission (AE) patterns were measured during pressure testing of advanced composite rocket motor cases made of boron/epoxy and graphite/epoxy. Both accelerometers and high frequency AE transducers were used, and both frequency spectrum and amplitude distribution were studied. The AE patterns suggest that precursor emission might be used in certain cases to anticipate failure. The technique of hold-cycle AE monitoring was also evaluated and could become a valuable decision gate for test continuation/termination. Data presented show similarity of accelerometers and AE transducer responses despite the different frequency response, and suggest that structural AE phenomena are broadband.

  16. Implementation of Fiber Optic Sensing System on Sandwich Composite Cylinder Buckling Test

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Richards, W. Lance; Parker, Allen R.; Piazza, Anthony; Schultz, Marc R.; Rudd, Michelle T.; Gardner, Nathaniel W.; Hilburger, Mark W.

    2018-01-01

    The National Aeronautics and Space Administration (NASA) Engineering and Safety Center Shell Buckling Knockdown Factor Project is a multicenter project tasked with developing new analysis-based shell buckling design guidelines and design factors (i.e., knockdown factors) through high-fidelity buckling simulations and advanced test technologies. To validate these new buckling knockdown factors for future launch vehicles, the Shell Buckling Knockdown Factor Project is carrying out structural testing on a series of large-scale metallic and composite cylindrical shells at the NASA Marshall Space Flight Center (Marshall Space Flight Center, Alabama). A fiber optic sensor system was used to measure strain on a large-scale sandwich composite cylinder that was tested under multiple axial compressive loads up to more than 850,000 lb, and equivalent bending loads over 22 million in-lb. During the structural testing of the composite cylinder, strain data were collected from optical cables containing distributed fiber Bragg gratings using a custom fiber optic sensor system interrogator developed at the NASA Armstrong Flight Research Center. A total of 16 fiber-optic strands, each containing nearly 1,000 fiber Bragg gratings, measuring strain, were installed on the inner and outer cylinder surfaces to monitor the test article global structural response through high-density real-time and post test strain measurements. The distributed sensing system provided evidence of local epoxy failure at the attachment-ring-to-barrel interface that would not have been detected with conventional instrumentation. Results from the fiber optic sensor system were used to further refine and validate structural models for buckling of the large-scale composite structures. This paper discusses the techniques employed for real-time structural monitoring of the composite cylinder for structural load introduction and distributed bending-strain measurements over a large section of the cylinder by

  17. Redox control of gas compositions in Philippine volcanic-hydrothermal systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giggenbach, W.F.

    1993-10-01

    Gas samples from five volcanic-hydrothermal systems in the Philippines were analyzed for CO{sub 2}, H{sub 2}S, NH{sub 3}, H{sub 2}, He, Ne, Ar, N{sub 2}, CH{sub 4} and CO. Even in systems with sulfate minerals as common components of alteration assemblages, indicating highly immature, oxidizing conditions at depth, the redox potential governing the concentrations of the reactive gases CO{sub 2}, H{sub 2}S, H{sub 2}, CH{sub 4} and CO approaches closely that expected for attainment of equilibrium with rock in more mature, reduced systems. The finding suggests that overall fluid compositions reflect more closely redox conditions established at the advancing frontmore » of interaction with primary rock rather than those of equilibrium with the set of secondary minerals left behind. With the exception of CO and NH{sub 3}, the close agreement in the compositions of gas samples, taken from pools and deep wells indicates that the secondary processes have only a slight effect on the vapors during their rise from drilled depths (1.8 km) to the surface and that samples from natural features may be taken to be representative of redox conditions at drilled depths.« less

  18. Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures

    NASA Technical Reports Server (NTRS)

    Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser

    2012-01-01

    Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the

  19. Overview of Advanced Turbine Systems Program

    NASA Astrophysics Data System (ADS)

    Webb, H. A.; Bajura, R. A.

    The US Department of Energy initiated a program to develop advanced gas turbine systems to serve both central power and industrial power generation markets. The Advanced Turbine Systems (ATS) Program will lead to commercial offerings by the private sector by 2002. ATS will be developed to fire natural gas but will be adaptable to coal and biomass firing. The systems will be: highly efficient (15 percent improvement over today's best systems); environmentally superior (10 percent reduction in nitrogen oxides over today's best systems); and cost competitive (10 percent reduction in cost of electricity). The ATS Program has five elements. Innovative cycle development will lead to the demonstration of systems with advanced gas turbine cycles using current gas turbine technology. High temperature development will lead to the increased firing temperatures needed to achieve ATS Program efficiency goals. Ceramic component development/demonstration will expand the current DOE/CE program to demonstrate industrial-scale turbines with ceramic components. Technology base will support the overall program by conducting research and development (R&D) on generic technology issues. Coal application studies will adapt technology developed in the ATS program to coal-fired systems being developed in other DOE programs.

  20. Exposure to nanoscale particles and fibers during machining of hybrid advanced composites containing carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Bello, Dhimiter; Wardle, Brian L.; Yamamoto, Namiko; Guzman deVilloria, Roberto; Garcia, Enrique J.; Hart, Anastasios J.; Ahn, Kwangseog; Ellenbecker, Michael J.; Hallock, Marilyn

    2009-01-01

    This study investigated airborne exposures to nanoscale particles and fibers generated during dry and wet abrasive machining of two three-phase advanced composite systems containing carbon nanotubes (CNTs), micron-diameter continuous fibers (carbon or alumina), and thermoset polymer matrices. Exposures were evaluated with a suite of complementary instruments, including real-time particle number concentration and size distribution (0.005-20 μm), electron microscopy, and integrated sampling for fibers and respirable particulate at the source and breathing zone of the operator. Wet cutting, the usual procedure for such composites, did not produce exposures significantly different than background whereas dry cutting, without any emissions controls, provided a worst-case exposure and this article focuses here. Overall particle release levels, peaks in the size distribution of the particles, and surface area of released particles (including size distribution) were not significantly different for composites with and without CNTs. The majority of released particle surface area originated from the respirable (1-10 μm) fraction, whereas the nano fraction contributed 10% of the surface area. CNTs, either individual or in bundles, were not observed in extensive electron microscopy of collected samples. The mean number concentration of peaks for dry cutting was composite dependent and varied over an order of magnitude with highest values for thicker laminates at the source being >1 × 106 particles cm-3. Concentration of respirable fibers for dry cutting at the source ranged from 2 to 4 fibers cm-3 depending on the composite type. Further investigation is required and underway to determine the effects of various exposure determinants, such as specimen and tool geometry, on particle release and effectiveness of controls.

  1. Structural Characterization of Advanced Composite Tow-Steered Shells with Large Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Gardner, Nathaniel W.; Stanford, Bret K.; Martin, Robert A.

    2015-01-01

    The structural performance of two advanced composite tow-steered shells with large cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles of the shells vary continuously around their circumference from +/- 10 degrees on the crown and keel, to +/- 45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the tow drop/add capability of the system to achieve a more uniform wall thickness. These unstiffened shells, both without and with small cutouts, were previously tested in axial compression and buckled elastically. In this study, a single unreinforced cutout, scaled to represent a cargo door on a commercial aircraft, is machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of these shells with large cutouts are also computed using linear finite element structural analyses for preliminary comparisons with test data. During testing, large displacements are observed around the large cutouts, but the shells maintain an average of 91 percent of the axial stiffness, and also carry 85 percent of the buckling loads, when compared to the pristine shells without cutouts. These relatively small reductions indicate that there is great potential for using tow steering to mitigate the adverse effects of large cutouts on the overall structural performance.

  2. I-5/Gilman advanced technology bridge project

    NASA Astrophysics Data System (ADS)

    Lanza di Scalea, Francesco; Karbhari, Vistasp M.; Seible, Frieder

    2000-04-01

    The UCSD led I-5/Gilman Advanced Technology Bridge Project will design and construct a fully functional traffic bridge of advanced composite materials across Interstate 5 in La Jolla, California. Its objective is to demonstrate the use of advanced composite technologies developed by the aerospace industry in commercial applications to increase the life expectancy of new structures and for the rehabilitation of aging infrastructure components. The structure will be a 450 ft long, 60 ft wide cable-stayed bridge supported by a 150 ft A-frame pylon with two vehicular lanes, two bicycle lanes, pedestrian walkways and utility tunnels. The longitudinal girders and pylon will be carbon fiber shells filled with concrete. The transverse deck system will consist of hollow glass/carbon hybrid tubes and a polypropylene fiber reinforced concrete deck with an arch action. Selected cables will be composite. The bridge's structural behavior will be monitored to determine how advanced composite materials perform in civil infrastructure applications. The bridge will be instrumented to obtain performance and structural health data in real time and, where possible, in a remote fashion. The sensors applied to the bridge will include electrical resistance strain gages, fiberoptic Bragg gratings and accelerometers.

  3. Advanced numerical models and material characterisation techniques for composite materials subject to impact and shock wave loading

    NASA Astrophysics Data System (ADS)

    Clegg, R. A.; White, D. M.; Hayhurst, C.; Ridel, W.; Harwick, W.; Hiermaier, S.

    2003-09-01

    The development and validation of an advanced material model for orthotropic materials, such as fibre reinforced composites, is described. The model is specifically designed to facilitate the numerical simulation of impact and shock wave propagation through orthotropic materials and the prediction of subsequent material damage. Initial development of the model concentrated on correctly representing shock wave propagation in composite materials under high and hypervelocity impact conditions [1]. This work has now been extended to further concentrate on the development of improved numerical models and material characterisation techniques for the prediction of damage, including residual strength, in fibre reinforced composite materials. The work is focussed on Kevlar-epoxy however materials such as CFRP are also being considered. The paper describes our most recent activities in relation to the implementation of advanced material modelling options in this area. These enable refined non-liner directional characteristics of composite materials to be modelled, in addition to the correct thermodynamic response under shock wave loading. The numerical work is backed by an extensive experimental programme covering a wide range of static and dynamic tests to facilitate derivation of model input data and to validate the predicted material response. Finally, the capability of the developing composite material model is discussed in relation to a hypervelocity impact problem.

  4. Self-assembled hierarchically structured organic-inorganic composite systems.

    PubMed

    Tritschler, Ulrich; Cölfen, Helmut

    2016-05-13

    Designing bio-inspired, multifunctional organic-inorganic composite materials is one of the most popular current research objectives. Due to the high complexity of biocomposite structures found in nacre and bone, for example, a one-pot scalable and versatile synthesis approach addressing structural key features of biominerals and affording bio-inspired, multifunctional organic-inorganic composites with advanced physical properties is highly challenging. This article reviews recent progress in synthesizing organic-inorganic composite materials via various self-assembly techniques and in this context highlights a recently developed bio-inspired synthesis concept for the fabrication of hierarchically structured, organic-inorganic composite materials. This one-step self-organization concept based on simultaneous liquid crystal formation of anisotropic inorganic nanoparticles and a functional liquid crystalline polymer turned out to be simple, fast, scalable and versatile, leading to various (multi-)functional composite materials, which exhibit hierarchical structuring over several length scales. Consequently, this synthesis approach is relevant for further progress and scientific breakthrough in the research field of bio-inspired and biomimetic materials.

  5. Development of novel nano-composite membranes as introduction systems for mass spectrometers: Contrasting nano-composite membranes and conventional inlet systems

    NASA Astrophysics Data System (ADS)

    Miranda, Luis Diego

    This dissertation presents the development of novel nano-composite membranes as introduction systems for mass spectrometers. These nano-composite membranes incorporate anodic aluminum oxide (AAO) membranes as templates that can be used by themselves or modified by a variety of chemical deposition processes. Two types of nano-composite membranes are presented. The first nano-composite membrane has carbon deposited within the pores of an AAO membrane. The second nano-composite membrane is made by coating an AAO membrane with a thin polymer film. The following chapters describe the transmission properties these nano-composite membranes and compare them to conventional mass spectrometry introduction systems. The nano- composite membranes were finally coupled to the inlet system of an underwater mass spectrometer revealing their utility in field deployments.

  6. Melt Infiltrated Ceramic Matrix Composites for Shrouds and Combustor Liners of Advanced Industrial Gas Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory Corman; Krishan Luthra; Jill Jonkowski

    2011-01-07

    This report covers work performed under the Advanced Materials for Advanced Industrial Gas Turbines (AMAIGT) program by GE Global Research and its collaborators from 2000 through 2010. A first stage shroud for a 7FA-class gas turbine engine utilizing HiPerComp{reg_sign}* ceramic matrix composite (CMC) material was developed. The design, fabrication, rig testing and engine testing of this shroud system are described. Through two field engine tests, the latter of which is still in progress at a Jacksonville Electric Authority generating station, the robustness of the CMC material and the shroud system in general were demonstrated, with shrouds having accumulated nearly 7,000more » hours of field engine testing at the conclusion of the program. During the latter test the engine performance benefits from utilizing CMC shrouds were verified. Similar development of a CMC combustor liner design for a 7FA-class engine is also described. The feasibility of using the HiPerComp{reg_sign} CMC material for combustor liner applications was demonstrated in a Solar Turbines Ceramic Stationary Gas Turbine (CSGT) engine test where the liner performed without incident for 12,822 hours. The deposition processes for applying environmental barrier coatings to the CMC components were also developed, and the performance of the coatings in the rig and engine tests is described.« less

  7. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  8. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Astrophysics Data System (ADS)

    Dehne, Hans J.

    1991-05-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  9. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Technical Reports Server (NTRS)

    Dehne, Hans J.

    1991-01-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  10. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  11. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varughese, Byji; Dayananda, G. N.; Rao, M. Subba

    2008-07-29

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less

  12. Advanced Algal Systems Fact Sheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-06-01

    Research and development (R&D) on advanced algal biofuels and bioproducts presents an opportunity to sustainably expand biomass resource potential in the United States. The Bioenergy Technologies Office’s (BETO’s) Advanced Algal Systems Program is carrying out a long-term, applied R&D strategy to lower the costs of algal biofuel production by working with partners to develop revolutionary technologies and conduct crosscutting analyses to better understand the potential

  13. Advanced Grid Control Technologies Workshop Series | Energy Systems

    Science.gov Websites

    on advanced distribution management systems (ADMS) and microgrid controls. The workshops were held at . July 7, 2015: Advanced Distribution Management Systems (ADMS) Welcome and NREL Overview Dr. Murali Keynote: Next-Generation Distribution Management Systems and Distributed Resource Energy Management

  14. Composites for Exploration Upper Stage

    NASA Technical Reports Server (NTRS)

    Fikes, J. C.; Jackson, J. R.; Richardson, S. W.; Thomas, A. D.; Mann, T. O.; Miller, S. G.

    2016-01-01

    The Composites for Exploration Upper Stage (CEUS) was a 3-year, level III project within the Technology Demonstration Missions program of the NASA Space Technology Mission Directorate. Studies have shown that composites provide important programmatic enhancements, including reduced weight to increase capability and accelerated expansion of exploration and science mission objectives. The CEUS project was focused on technologies that best advanced innovation, infusion, and broad applications for the inclusion of composites on future large human-rated launch vehicles and spacecraft. The benefits included near- and far-term opportunities for infusion (NASA, industry/commercial, Department of Defense), demonstrated critical technologies and technically implementable evolvable innovations, and sustained Agency experience. The initial scope of the project was to advance technologies for large composite structures applicable to the Space Launch System (SLS) Exploration Upper Stage (EUS) by focusing on the affordability and technical performance of the EUS forward and aft skirts. The project was tasked to develop and demonstrate critical composite technologies with a focus on full-scale materials, design, manufacturing, and test using NASA in-house capabilities. This would have demonstrated a major advancement in confidence and matured the large-scale composite technology to a Technology Readiness Level 6. This project would, therefore, have bridged the gap for providing composite application to SLS upgrades, enabling future exploration missions.

  15. Learning to Control Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Subramanian, Devika

    2004-01-01

    Advanced life support systems have many interacting processes and limited resources. Controlling and optimizing advanced life support systems presents unique challenges. In particular, advanced life support systems are nonlinear coupled dynamical systems and it is difficult for humans to take all interactions into account to design an effective control strategy. In this project. we developed several reinforcement learning controllers that actively explore the space of possible control strategies, guided by rewards from a user specified long term objective function. We evaluated these controllers using a discrete event simulation of an advanced life support system. This simulation, called BioSim, designed by Nasa scientists David Kortenkamp and Scott Bell has multiple, interacting life support modules including crew, food production, air revitalization, water recovery, solid waste incineration and power. They are implemented in a consumer/producer relationship in which certain modules produce resources that are consumed by other modules. Stores hold resources between modules. Control of this simulation is via adjusting flows of resources between modules and into/out of stores. We developed adaptive algorithms that control the flow of resources in BioSim. Our learning algorithms discovered several ingenious strategies for maximizing mission length by controlling the air and water recycling systems as well as crop planting schedules. By exploiting non-linearities in the overall system dynamics, the learned controllers easily out- performed controllers written by human experts. In sum, we accomplished three goals. We (1) developed foundations for learning models of coupled dynamical systems by active exploration of the state space, (2) developed and tested algorithms that learn to efficiently control air and water recycling processes as well as crop scheduling in Biosim, and (3) developed an understanding of the role machine learning in designing control systems for

  16. Rotorcraft digital advanced avionics system (RODAAS) functional description

    NASA Technical Reports Server (NTRS)

    Peterson, E. M.; Bailey, J.; Mcmanus, T. J.

    1985-01-01

    A functional design of a rotorcraft digital advanced avionics system (RODAAS) to transfer the technology developed for general aviation in the Demonstration Advanced Avionics System (DAAS) program to rotorcraft operation was undertaken. The objective was to develop an integrated avionics system design that enhances rotorcraft single pilot IFR operations without increasing the required pilot training/experience by exploiting advanced technology in computers, busing, displays and integrated systems design. A key element of the avionics system is the functionally distributed architecture that has the potential for high reliability with low weight, power and cost. A functional description of the RODAAS hardware and software functions is presented.

  17. Advances in the Lightweight Air-Liquid Composite Heat Exchanger Development for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Shin, E. Eugene; Johnston, J. Chris; Haas, Daniel

    2011-01-01

    An advanced, lightweight composite modular Air/Liquid (A/L) Heat Exchanger (HX) Prototype for potential space exploration thermal management applications was successfully designed, manufactured, and tested. This full-scale Prototype consisting of 19 modules, based on recommendations from its predecessor Engineering Development unit (EDU) but with improved thermal characteristics and manufacturability, was 11.2 % lighter than the EDU and achieves potentially a 42.7% weight reduction from the existing state-of-the-art metallic HX demonstrator. However, its higher pressure drop (0.58 psid vs. 0.16 psid of the metal HX) has to be mitigated by foam material optimizations and design modifications including a more systematic air channel design. Scalability of the Prototype design was validated experimentally by comparing manufacturability and performance between the 2-module coupon and the 19-module Prototype. The Prototype utilized the thermally conductive open-cell carbon foam material but with lower density and adopted a novel high-efficiency cooling system with significantly increased heat transfer contact surface areas, improved fabricability and manufacturability compared to the EDU. Even though the Prototype was required to meet both the thermal and the structural specifications, accomplishing the thermal requirement was a higher priority goal for this first version. Overall, the Prototype outperformed both the EDU and the corresponding metal HX, particularly in terms of specific heat transfer, but achieved 93.4% of the target. The next generation Prototype to achieve the specification target, 3,450W would need 24 core modules based on the simple scaling factor. The scale-up Prototype will weigh about 14.7 Kg vs. 21.6 Kg for the metal counterpart. The advancement of this lightweight composite HX development from the original feasibility test coupons to EDU to Prototype is discussed in this paper.

  18. Advanced vehicle systems assessment. Volume 3: Systems assessment

    NASA Technical Reports Server (NTRS)

    Hardy, K.

    1985-01-01

    The systems analyses integrate the advanced component and vehicle characteristics into conceptual vehicles with identical performance (for a given application) and evaluates the vehicles in typical use patterns. Initial and life-cycle costs are estimated and compared to conventional reference vehicles with comparable technological advances, assuming the vehicles will be in competition in the early 1990s. Electric vans, commuter vehicles, and full-size vehicles, in addition to electric/heat-engine hybrid and fuel-cell powered vehicles, are addressed in terms of performance and economics. System and subsystem recommendations for vans and two-passenger commuter vehicles are based on the economic analyses in this volume.

  19. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  20. Advanced Distribution Management System

    NASA Astrophysics Data System (ADS)

    Avazov, Artur R.; Sobinova, Liubov A.

    2016-02-01

    This article describes the advisability of using advanced distribution management systems in the electricity distribution networks area and considers premises of implementing ADMS within the Smart Grid era. Also, it gives the big picture of ADMS and discusses the ADMS advantages and functionalities.

  1. Crazing in Polymeric and Composite Systems

    DTIC Science & Technology

    1988-04-30

    Characterization of Random Microstructural Systems , Proceedings, International Conference on Structure, Solid Mechanics and Engineering Design in Civil...AND COMPOSITE SYSTEMS 12. PERSONAL AUTHOR(S) HSIAO, C. C. 13a. TYPE OF REPORT J13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT...study of the failure of composite systems under stress is important both theoretically and practically. This program aims to develop time dependent

  2. Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Barta, Daniel J.

    2004-01-01

    This presentation is planned to be a 10-15 minute "catalytic" focused presentation to be scheduled during one of the working sessions at the TIM. This presentation will focus on Advanced Life Support technologies key to future human Space Exploration as outlined in the Vision, and will include basic requirements, assessment of the state-of-the-art and gaps, and include specific technology metrics. The presentation will be technical in character, lean heavily on data in published ALS documents (such as the Baseline Values and Assumptions Document) but not provide specific technical details or build to information on any technology mentioned (thus the presentation will be benign from an export control and a new technology perspective). The topics presented will be focused on the following elements of Advanced Life Support: air revitalization, water recovery, waste management, thermal control, habitation systems, food systems and bioregenerative life support.

  3. Partial interlaminar separation system for composites

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1980-01-01

    This inventor relates to an interlaminar separation system for composites wherein a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes to thereby permit laminate adherence through the perforations and produce a composite structure having improved physical property characteristics.

  4. US Advanced Freight and Passenger MAGLEV System

    NASA Technical Reports Server (NTRS)

    Morena, John J.; Danby, Gordon; Powell, James

    1996-01-01

    Japan and Germany will operate first generation Maglev passenger systems commercially shortly after 2000 A.D. The United States Maglev systems will require sophisticated freight and passenger carrying capability. The U.S. freight market is larger than passenger transport. A proposed advanced freight and passenger Maglev Project in Brevard County Florida is described. Present Maglev systems cost 30 million dollars or more per mile. Described is an advanced third generation Maglev system with technology improvements that will result in a cost of 10 million dollars per mile.

  5. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  6. Advanced gas turbine systems program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeh, C.M.

    1995-06-01

    The U.S. Department of Energy (DOE) is sponsoring a program to develop fuel-efficient gas turbine-based power systems with low emissions. DOE`s Office of Fossil Energy (DOE/FE) and Office of Energy Efficiency and Renewable Energy (DOE/EE) have initiated an 8-year program to develop high-efficiency, natural gas-fired advanced gas turbine power systems. The Advanced Turbine Systems (ATS) Program will support full-scale prototype demonstration of both industrial- and utility-scale systems that will provide commercial marketplace entries by the year 2000. When the program targets are met, power system emissions will be lower than from the best technology in use today. Efficiency of themore » utility-scale units will be greater than 60 percent on a lower heating value basis, and emissions of carbon dioxide will be reduced inversely with this increase. Industrial systems will also see an improvement of at least 15 percent in efficiency. Nitrogen oxides will be reduced by at least 10 percent, and carbon monoxide and hydrocarbon emissions will each be kept below 20 parts per million, for both utility and industrial systems.« less

  7. Variation in Content Coverage by Classroom Composition: An Analysis of Advanced Math Course Content

    ERIC Educational Resources Information Center

    Covay, Elizabeth

    2011-01-01

    Everyone knows that there is racial inequality in achievement returns from advanced math; however, they do not know why black students and white students taking the same level of math courses are not leaving with the same or comparable skill levels. To find out, the author examines variation in course coverage by the racial composition of the…

  8. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-the-shelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  9. Advanced Clothing System

    NASA Technical Reports Server (NTRS)

    Schlesinger, Thilini; Broyan, James; Orndoff, Evelyne

    2014-01-01

    The goal of the Advanced Clothing System (ACS) is to use advanced commercial off-theshelf fibers and antimicrobial treatments with the goal of directly reducing the mass and volume of a logistics item. The current clothing state-of-the-art on the International Space Station (ISS) is disposable, mostly cotton-based, clothing with no laundry provisions. Each clothing article has varying use periods and will become trash. The goal is to increase the length of wear of the clothing to reduce the logistical mass and volume. The initial focus has been exercise clothing since the use period is lower. Various ground studies and an ISS technology demonstration have been conducted to evaluate clothing preference and length of wear. The analysis indicates that use of ACS selected garments (e.g. wool, modacrylic, polyester) can increase the breakeven point for laundry to 300 days.

  10. Advanced Mirror System Demonstrator (AMSD) Risk Management

    NASA Technical Reports Server (NTRS)

    Byberg, Alicia; Russell, J. Kevin; Kaukler, Donna; Burdine, Robert V. (Technical Monitor)

    2002-01-01

    This paper will report risk issues associated with designing, manufacturing, and testing the Advanced Mirror System Demonstrator (AMSD). The Advanced Mirror System Demonstrator (AMSD) will be developed as a lightweight primary mirror system that can be produced at a low cost and with a short manufacturing schedule. This technology will add to the knowledge base for selection for the Next Generation Space Telescope (NGST), Space Based Laser (SBL), Research Laboratory mission (AFRL), and other government agency programs.

  11. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  12. Writing in the Professions: A Course Guide and Instructional Materials for an Advanced Composition Course.

    ERIC Educational Resources Information Center

    Goswami, Dixie; And Others

    Intended for teachers of an advanced undergraduate composition course for majors in any of the liberal arts, social sciences, humanities, or business, this manual offers an outline, instructional materials, and some suggested assignments. Emphasis is placed on the process of composing, particularly the ways students should write for different…

  13. Advanced Medical Technology and Network Systems Research.

    DTIC Science & Technology

    1999-09-01

    for image-guided therapies . Advanced technologies included in this report are impedance imaging and a palpation training system. 14. SUBJECT...Summary 1 Virtual Clinic for Patients with Chronic Illness Project Planning Document • 2 Telemedicine for Hemodialysis 21 A...imaging systems and’ surgical procedures effort is accomplished in part by establishing the technology requirements for image-guided therapies . Advanced

  14. Stress analysis of advanced attack helicopter composite main rotor blade root end lug

    NASA Technical Reports Server (NTRS)

    Baker, D. J.

    1982-01-01

    Stress analysis of the Advanced Attack Helicopter (AAH) composite main rotor blade root end lug is described. The stress concentration factor determined from a finite element analysis is compared to an empirical value used in the lug design. The analysis and test data indicate that the stress concentration is primarily a function of configuration and independent of the range of material properties typical of Kevlar-49/epoxy and glass epoxy.

  15. Degradation of TBC Systems in Environments Relevant to Advanced Gas Turbines for IGCC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gleeson, Brian

    2014-09-30

    Air plasma sprayed (APS) thermal barrier coatings (TBCs) are used to provide thermal insulation for the hottest components in gas turbines. Zirconia stabilized with 7wt% yttria (7YSZ) is the most common ceramic top coat used for turbine blades. The 7YSZ coating can be degraded from the buildup of fly-ash deposits created in the power-generation process. Fly ash from an integrated gasification combined cycle (IGCC) system can result from coal-based syngas. TBCs are also exposed to harsh gas environments containing CO 2, SO 2, and steam. Degradation from the combined effects of fly ash and harsh gas atmospheres has the potentialmore » to severely limit TBC lifetimes. The main objective of this study was to use lab-scale testing to systematically elucidate the interplay between prototypical deposit chemistries (i.e., ash and its constituents, K 2SO 4, and FeS) and environmental oxidants (i.e., O 2, H 2O and CO 2) on the degradation behavior of advanced TBC systems. Several mechanisms of early TBC failure were identified, as were the specific fly-ash constituents responsible for degradation. The reactivity of MCrAlY bondcoats used in TBC systems was also investigated. The specific roles of oxide and sulfate components were assessed, together with the complex interplay between gas composition, deposit chemistry and alloy reactivity. Bondcoat composition design strategies to mitigate corrosion were established, particularly with regard to controlling phase constitution and the amount of reactive elements the bondcoat contains in order to achieve optimal corrosion resistance.« less

  16. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1989-02-01

    The objectives of the program are to design, develop and demonstrate a natural-gas-fueled, highly recuperated, 50 kW Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Marketing studies have shown that this Advanced Energy System (AES), with its many unique and cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantages of the system that result in low cost of ownership are high electrical efficiency (30 percent, HHV), low maintenance, high reliability and long life (20 years).

  17. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  18. NASA's Space Launch System Advanced Booster Development

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Crumbly, Christopher M.; May, Todd A.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human space flight and scientific missions beyond Earth orbit. NASA is executing this development within flat budgetary guidelines by using existing engines assets and heritage technology to ready an initial 70 metric ton (t) lift capability for launch in 2017, and then employing a block upgrade approach to evolve a 130-t capability after 2021. A key component of the SLS acquisition plan is a three-phased approach for the first-stage boosters. The first phase is to expedite the 70-t configuration by completing development of the Space Shuttle heritage 5-segment solid rocket boosters (SRBs) for the initial flights of SLS. Since no existing boosters can meet the performance requirements for the 130-t class SLS, the next phases of the strategy focus on the eventual development of advanced boosters with an expected thrust class potentially double the current 5-segment solid rocket booster capability of 3.88 million pounds of thrust each. The second phase in the booster acquisition plan is the Advanced Booster Engineering Demonstration and/or Risk Reduction (ABEDRR) effort, for which contracts were awarded beginning in 2012 after a full and open competition, with a stated intent to reduce risks leading to an affordable advanced booster. NASA has awarded ABEDRR contracts to four industry teams, which are looking into new options for liquid-fuel booster engines, solid-fuel-motor propellants, and composite booster structures. Demonstrations and/or risk reduction efforts were required to be related to a proposed booster concept directly applicable to fielding an advanced booster. This paper will discuss the status of this acquisition strategy and its results toward readying both the 70 t and 130 t configurations of SLS. The third and final phase will be a full and open

  19. Advances in air quality prediction with the use of integrated systems

    NASA Astrophysics Data System (ADS)

    Dragani, R.; Benedetti, A.; Engelen, R. J.; Peuch, V. H.

    2017-12-01

    Recent years have seen the rise of global operational atmospheric composition forecasting systems for several applications including climate monitoring, provision of boundary conditions for regional air quality forecasting, energy sector applications, to mention a few. Typically, global forecasts are provided in the medium-range up to five days ahead and are initialized with an analysis based on satellite data. In this work we present the latest advances in data assimilation using the ECMWF's 4D-Var system extended to atmospheric composition which is currently operational under the Copernicus Atmosphere Monitoring Service of the European Commission. The service is based on acquisition of all relevant data available in near-real-time, the processing of these datasets in the assimilation and the subsequent dissemination of global forecasts at ECMWF. The global forecasts are used by the CAMS regional models as boundary conditions for the European forecasts based on a multi-model ensemble. The global forecasts are also used to provide boundary conditions for other parts of the world (e.g., China) and are freely available to all interested entities. Some of the regional models also perform assimilation of satellite and ground-based observations. All products are assessed, validated and made publicly available on https://atmosphere.copernicus.eu/.

  20. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    NASA Technical Reports Server (NTRS)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (< 1 mm) structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  1. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    NASA Technical Reports Server (NTRS)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  2. NASA Tropospheric Composition Program field campagins as prototypes to advance the Integrated Observing System for Air Quality

    NASA Astrophysics Data System (ADS)

    Lefer, B. L.; Crawford, J. H.; Pierce, R. B.; Berkoff, T.; Swap, R.; Janz, S. J.; Ahn, J.; Al-Saadi, J. A.

    2017-12-01

    With the launch over the virtual constellation of earth observing satellites for atmospheric composition (e.g., TROPOMI, GEMS, TEMPO, and Sentinel-4) over the next several years, we have a unique opportunity to develop an Integrated Observing System (IOS) for air quality in the northern hemisphere. Recently, NASA's Tropospheric Composition Program (TCP) has participated in several different air quality related field campaigns as an effort to explore various prototypes of the IOS for Air Quality. The IOS for air quality could be a system were space-based observations of air quality (generally, column abundances of NO2, HCHO, O3, SO2, and AOD) are given added "value" by being integrated with: a) long-term ground-based observations;b) regional and global air quality and chemical transport models; as well as c) measurements from targeted airborne field campaigns. The recent Korea-US Air Quality Study (KORUS-AQ), the Lake Michigan Ozone Study 2017 (LMOS), and the Ozone Water-Land Environmental Transition Study (OWLETS) field campaigns were held in different locations and made measurements over different scale. However, all of these provide an opportunity to learn about how a future integrated air quality observing system can be implemented to serve a variety of air quality related objectives. NASA TCP is also exploring enchancements to our routine observations to strengthen the IOS for air quality in the future.

  3. Advanced Thermal Barrier and Environmental Barrier Coating Development at NASA GRC

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Robinson, Craig

    2017-01-01

    This presentation summarizes NASA's advanced thermal barrier and environmental barrier coating systems, and the coating performance improvements that has recently been achieved and documented in laboratory simulated rig test conditions. One of the emphases has been placed on the toughness and impact resistance enhancements of the low conductivity, defect cluster thermal barrier coating systems. The advances in the next generation environmental barrier coatings for SiCSiC ceramic matrix composites have also been highlighted, particularly in the design of a new series of oxide-silicate composition systems to be integrated with next generation SiC-SiC turbine engine components for 2700F coating applications. Major technical barriers in developing the thermal and environmental barrier coating systems are also described. The performance and model validations in the rig simulated turbine combustion, heat flux, steam and calcium-magnesium-aluminosilicate (CMAS) environments have helped the current progress in improved temperature capability, environmental stability, and long-term fatigue-environment system durability of the advanced thermal and environmental barrier coating systems.

  4. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    NASA Technical Reports Server (NTRS)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  5. Acoustic emission monitoring of composite containment systems

    NASA Astrophysics Data System (ADS)

    Maguire, John R.

    2011-07-01

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  6. Study of the costs and benefits of composite materials in advanced turbofan engines

    NASA Technical Reports Server (NTRS)

    Steinhagen, C. A.; Stotler, C. L.; Neitzel, R. E.

    1974-01-01

    Composite component designs were developed for a number of applicable engine parts and functions. The cost and weight of each detail component was determined and its effect on the total engine cost to the aircraft manufacturer was ascertained. The economic benefits of engine or nacelle composite or eutectic turbine alloy substitutions was then calculated. Two time periods of engine certification were considered for this investigation, namely 1979 and 1985. Two methods of applying composites to these engines were employed. The first method just considered replacing an existing metal part with a composite part with no other change to the engine. The other method involved major engine redesign so that more efficient composite designs could be employed. Utilization of polymeric composites wherever payoffs were available indicated that a total improvement in Direct Operating Cost (DOC) of 2.82 to 4.64 percent, depending on the engine considered, could be attained. In addition, the percent fuel saving ranged from 1.91 to 3.53 percent. The advantages of using advanced materials in the turbine are more difficult to quantify but could go as high as an improvement in DOC of 2.33 percent and a fuel savings of 2.62 percent. Typically, based on a fleet of one hundred aircraft, a percent savings in DOC represents a savings of four million dollars per year and a percent of fuel savings equals 23,000 cu m (7,000,000 gallons) per year.

  7. Rotorcraft technology at Boeing Vertol: Recent advances

    NASA Technical Reports Server (NTRS)

    Shaw, John; Dadone, Leo; Wiesner, Robert

    1988-01-01

    An overview is presented of key accomplishments in the rotorcraft development at Boeing Vertol. Projects of particular significance: high speed rotor development and the Model 360 Advanced Technology Helicopter. Areas addressed in the overview are: advanced rotors with reduced noise and vibration, 3-D aerodynamic modeling, flight control and avionics, active control, automated diagnostics and prognostics, composite structures, and drive systems.

  8. Sharp Refractory Composite Leading Edges on Hypersonic Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.; Sullivan, Brian J.

    2003-01-01

    On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.

  9. Development Of Advanced Welding Control System

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Report describes development of next-generation control system for variable-polarity plasma arc (VPPA) welding. When fully developed, system expected to incorporate advanced sensors and adaptive control of position of and current in welding torch.

  10. Advanced parking information system evaluation report

    DOT National Transportation Integrated Search

    1997-01-01

    This report documents the evaluation analysis and results of the operational test. The evaluation assesses the impact/effect of the advance parking information system on the motoring public, parking facility operators, roadway system operations, and ...

  11. "ATLAS" Advanced Technology Life-cycle Analysis System

    NASA Technical Reports Server (NTRS)

    Lollar, Louis F.; Mankins, John C.; ONeil, Daniel A.

    2004-01-01

    Making good decisions concerning research and development portfolios-and concerning the best systems concepts to pursue - as early as possible in the life cycle of advanced technologies is a key goal of R&D management This goal depends upon the effective integration of information from a wide variety of sources as well as focused, high-level analyses intended to inform such decisions Life-cycle Analysis System (ATLAS) methodology and tool kit. ATLAS encompasses a wide range of methods and tools. A key foundation for ATLAS is the NASA-created Technology Readiness. The toolkit is largely spreadsheet based (as of August 2003). This product is being funded by the Human and Robotics The presentation provides a summary of the Advanced Technology Level (TRL) systems Technology Program Office, Office of Exploration Systems, NASA Headquarters, Washington D.C. and is being integrated by Dan O Neil of the Advanced Projects Office, NASA/MSFC, Huntsville, AL

  12. Installation of Computerized Procedure System and Advanced Alarm System in the Human Systems Simulation Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Blanc, Katya Lee; Spielman, Zachary Alexander; Rice, Brandon Charles

    2016-04-01

    This report describes the installation of two advanced control room technologies, an advanced alarm system and a computerized procedure system, into the Human Systems Simulation Laboratory (HSSL). Installation of these technologies enables future phases of this research by providing a platform to systematically evaluate the effect of these technologies on operator and plant performance.

  13. Composite Socio-Technical Systems: A Method for Social Energy Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; He, Fulin; Hao, Jun

    In order to model and study the interactions between social on technical systems, a systemic method, namely the composite socio-technical systems (CSTS), is proposed to incorporate social systems, technical systems and the interaction mechanism between them. A case study on University of Denver (DU) campus grid is presented in paper to demonstrate the application of the proposed method. In the case study, the social system, technical system, and the interaction mechanism are defined and modelled within the framework of CSTS. Distributed and centralized control and management schemes are investigated, respectively, and numerical results verifies the feasibility and performance of themore » proposed composite system method.« less

  14. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  15. Composite Design and Engineering

    NASA Astrophysics Data System (ADS)

    van der Woude, J. H. A.; Lawton, E. L.

    Fiberglass is a versatile and cost-effective reinforcement for composites. Many processes, resins, and forms of fiberglass facilitate this versatility. The design, engineering, manufacture, and properties of fiberglass-reinforced composite products from diverse thermoset and thermoplastic resins are described. The attributes of fiberglass-reinforced composites include its mechanical and chemical properties, lightweight, corrosion resistance, longevity, low total system cost, and Class A surface properties. Specific examples illustrate the importance of the form of the fiberglass reinforcement and of the interfacial bond between the glass fibers and the matrix resin in optimizing composite properties. In addition, recent advances are described with regard to the fabrication of fiberglass-reinforced wind turbine blades.

  16. Polyimide composites: Application histories

    NASA Technical Reports Server (NTRS)

    Poveromo, L. M.

    1985-01-01

    Advanced composite hardware exposed to thermal environments above 127 C (260 F) must be fabricated from materials having resin matrices whose thermal/moisture resistance is superior to that of conventional epoxy-matrix systems. A family of polyimide resins has evolved in the last 10 years that exhibits the thermal-oxidative stability required for high-temperature technology applications. The weight and structural benefits for organic-matrix composites can now be extended by designers and materials engineers to include structures exposed to 316 F (600 F). Polyimide composite materials are now commercially available that can replace metallic or epoxy composite structures in a wide range of aerospace applications.

  17. Advanced rocket propulsion

    NASA Technical Reports Server (NTRS)

    Obrien, Charles J.

    1993-01-01

    Existing NASA research contracts are supporting development of advanced reinforced polymer and metal matrix composites for use in liquid rocket engines of the future. Advanced rocket propulsion concepts, such as modular platelet engines, dual-fuel dual-expander engines, and variable mixture ratio engines, require advanced materials and structures to reduce overall vehicle weight as well as address specific propulsion system problems related to elevated operating temperatures, new engine components, and unique operating processes. High performance propulsion systems with improved manufacturability and maintainability are needed for single stage to orbit vehicles and other high performance mission applications. One way to satisfy these needs is to develop a small engine which can be clustered in modules to provide required levels of total thrust. This approach should reduce development schedule and cost requirements by lowering hardware lead times and permitting the use of existing test facilities. Modular engines should also reduce operational costs associated with maintenance and parts inventories.

  18. Minimum Control Requirements for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Boulange, Richard; Jones, Harry; Jones, Harry

    2002-01-01

    Advanced control technologies are not necessary for the safe, reliable and continuous operation of Advanced Life Support (ALS) systems. ALS systems can and are adequately controlled by simple, reliable, low-level methodologies and algorithms. The automation provided by advanced control technologies is claimed to decrease system mass and necessary crew time by reducing buffer size and minimizing crew involvement. In truth, these approaches increase control system complexity without clearly demonstrating an increase in reliability across the ALS system. Unless these systems are as reliable as the hardware they control, there is no savings to be had. A baseline ALS system is presented with the minimal control system required for its continuous safe reliable operation. This baseline control system uses simple algorithms and scheduling methodologies and relies on human intervention only in the event of failure of the redundant backup equipment. This ALS system architecture is designed for reliable operation, with minimal components and minimal control system complexity. The fundamental design precept followed is "If it isn't there, it can't fail".

  19. Structural materials challenges for advanced reactor systems

    NASA Astrophysics Data System (ADS)

    Yvon, P.; Carré, F.

    2009-03-01

    Key technologies for advanced nuclear systems encompass high temperature structural materials, fast neutron resistant core materials, and specific reactor and power conversion technologies (intermediate heat exchanger, turbo-machinery, high temperature electrolytic or thermo-chemical water splitting processes, etc.). The main requirements for the materials to be used in these reactor systems are dimensional stability under irradiation, whether under stress (irradiation creep or relaxation) or without stress (swelling, growth), an acceptable evolution under ageing of the mechanical properties (tensile strength, ductility, creep resistance, fracture toughness, resilience) and a good behavior in corrosive environments (reactor coolant or process fluid). Other criteria for the materials are their cost to fabricate and to assemble, and their composition could be optimized in order for instance to present low-activation (or rapid desactivation) features which facilitate maintenance and disposal. These requirements have to be met under normal operating conditions, as well as in incidental and accidental conditions. These challenging requirements imply that in most cases, the use of conventional nuclear materials is excluded, even after optimization and a new range of materials has to be developed and qualified for nuclear use. This paper gives a brief overview of various materials that are essential to establish advanced systems feasibility and performance for in pile and out of pile applications, such as ferritic/martensitic steels (9-12% Cr), nickel based alloys (Haynes 230, Inconel 617, etc.), oxide dispersion strengthened ferritic/martensitic steels, and ceramics (SiC, TiC, etc.). This article gives also an insight into the various natures of R&D needed on advanced materials, including fundamental research to investigate basic physical and chemical phenomena occurring in normal and accidental operating conditions, lab-scale tests to characterize candidate materials

  20. The NASA Advanced Space Power Systems Project

    NASA Technical Reports Server (NTRS)

    Mercer, Carolyn R.; Hoberecht, Mark A.; Bennett, William R.; Lvovich, Vadim F.; Bugga, Ratnakumar

    2015-01-01

    The goal of the NASA Advanced Space Power Systems Project is to develop advanced, game changing technologies that will provide future NASA space exploration missions with safe, reliable, light weight and compact power generation and energy storage systems. The development effort is focused on maturing the technologies from a technology readiness level of approximately 23 to approximately 56 as defined in the NASA Procedural Requirement 7123.1B. Currently, the project is working on two critical technology areas: High specific energy batteries, and regenerative fuel cell systems with passive fluid management. Examples of target applications for these technologies are: extending the duration of extravehicular activities (EVA) with high specific energy and energy density batteries; providing reliable, long-life power for rovers with passive fuel cell and regenerative fuel cell systems that enable reduced system complexity. Recent results from the high energy battery and regenerative fuel cell technology development efforts will be presented. The technical approach, the key performance parameters and the technical results achieved to date in each of these new elements will be included. The Advanced Space Power Systems Project is part of the Game Changing Development Program under NASAs Space Technology Mission Directorate.

  1. Advanced turbine blade tip seal system

    NASA Technical Reports Server (NTRS)

    Zelahy, J. W.

    1981-01-01

    An advanced blade/shroud system designed to maintain close clearance between blade tips and turbine shrouds and at the same time, be resistant to environmental effects including high temperature oxidation, hot corrosion, and thermal cycling is described. Increased efficiency and increased blade life are attained by using the advanced blade tip seal system. Features of the system include improved clearance control when blade tips preferentially wear the shrouds and a superior single crystal superalloy tip. The tip design, joint location, characterization of the single crystal tip alloy, the abrasive tip treatment, and the component and engine test are among the factors addressed. Results of wear testing, quality control plans, and the total manufacturing cycle required to fully process the blades are also discussed.

  2. Advanced Traveler Information Systems (ATIS) 2.0 Precursor System: Final Report

    DOT National Transportation Integrated Search

    2018-03-01

    Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...

  3. Advanced Methods of Nondestructive Inspection of Composite Structures Based on Limited Angle X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Bostaph, Ekaterina

    This research aimed to study the potential for breaking through object size limitations of current X-ray computed tomography (CT) systems by implementing a limited angle scanning technique. CT stands out among other industrial nondestructive inspection (NDI) methods due to its unique ability to perform 3D volumetric inspection, unmatched micro-focus resolution, and objectivity that allows for automated result interpretation. This work attempts to advance NDI technique to enable microstructural material characterization and structural diagnostics of composite structures, where object sizes often prohibit the application of full 360° CT. Even in situations where the objects can be accommodated within existing micro-CT configuration, achieving sufficient magnification along with full rotation may not be viable. An effort was therefore made to achieve high-resolution scans from projection datasets with limited angular coverage (less than 180°) by developing effective reconstruction algorithms in conjunction with robust scan acquisition procedures. Internal features of inspected objects barely distinguishable in a 2D X-ray radiograph can be enhanced by additional projections that are reconstructed to a stack of slices, dramatically improving depth perception, a technique referred to as digital tomosynthesis. Building on the success of state-of-the-art medical tomosynthesis systems, this work sought to explore the feasibility of this technique for composite structures in aerospace applications. The challenge lies in the fact that the slices generated in medical tomosynthesis are too thick for relevant industrial applications. In order to adapt this concept to composite structures, reconstruction algorithms were expanded by implementation of optimized iterative stochastic methods (capable of reducing noise and refining scan quality) which resulted in better depth perception. The optimal scan acquisition procedure paired with the improved reconstruction algorithm

  4. APTS : advanced public transportation systems program : technical assistance brief

    DOT National Transportation Integrated Search

    1993-01-01

    Advanced Public Transportation Systems, or APTS, are advanced navigation and communication technologies applied to all aspects of public transportation system operations. APTS provides the technology for transportation agencies to make timely transit...

  5. Advances in Solar Heating and Cooling Systems

    ERIC Educational Resources Information Center

    Ward, Dan S.

    1976-01-01

    Reports on technological advancements in the fields of solar collectors, thermal storage systems, and solar heating and cooling systems. Diagrams aid in the understanding of the thermodynamics of the systems. (CP)

  6. A guide to structural factors for advanced composites used on spacecraft

    NASA Technical Reports Server (NTRS)

    Vanwagenen, Robert

    1989-01-01

    The use of composite materials in spacecraft systems is constantly increasing. Although the areas of composite design and fabrication are maturing, they remain distinct from the same activities performed using conventional materials and processes. This has led to some confusion regarding the precise meaning of the term 'factor of safety' as it applies to these structures. In addition, composite engineering introduces terms such as 'knock-down factors' to further modify material properties for design purposes. This guide is intended to clarify these terms as well as their use in the design of composite structures for spacecraft. It is particularly intended to be used by the engineering community not involved in the day-to-day composites design process. An attempt is also made to explain the wide range of factors of safety encountered in composite designs as well as their relationship to the 1.4 factor of safety conventionally applied to metallic structures.

  7. Advanced spacecraft fuel cell systems

    NASA Technical Reports Server (NTRS)

    Thaller, L. H.

    1972-01-01

    The development and characteristics of advanced spacecraft fuel cell systems are discussed. The system is designed to operate on low pressure, propulsion grade hydrogen and oxygen. The specific goals are 10,000 hours of operation with refurbishment, 20 pounds per kilowatt at a sustained power of 7 KW, and 21 KW peaking capability for durations of two hours. The system rejects waste heat to the spacecraft cooling system at power levels up to 7 KW. At higher powers, the system automatically transfers to open cycle operation with overboard steam venting.

  8. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  9. Advanced Space Fission Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Borowski, Stanley K.

    2010-01-01

    Fission has been considered for in-space propulsion since the 1940s. Nuclear Thermal Propulsion (NTP) systems underwent extensive development from 1955-1973, completing 20 full power ground tests and achieving specific impulses nearly twice that of the best chemical propulsion systems. Space fission power systems (which may eventually enable Nuclear Electric Propulsion) have been flown in space by both the United States and the Former Soviet Union. Fission is the most developed and understood of the nuclear propulsion options (e.g. fission, fusion, antimatter, etc.), and fission has enjoyed tremendous terrestrial success for nearly 7 decades. Current space nuclear research and technology efforts are focused on devising and developing first generation systems that are safe, reliable and affordable. For propulsion, the focus is on nuclear thermal rockets that build on technologies and systems developed and tested under the Rover/NERVA and related programs from the Apollo era. NTP Affordability is achieved through use of previously developed fuels and materials, modern analytical techniques and test strategies, and development of a small engine for ground and flight technology demonstration. Initial NTP systems will be capable of achieving an Isp of 900 s at a relatively high thrust-to-weight ratio. The development and use of first generation space fission power and propulsion systems will provide new, game changing capabilities for NASA. In addition, development and use of these systems will provide the foundation for developing extremely advanced power and propulsion systems capable of routinely and affordably accessing any point in the solar system. The energy density of fissile fuel (8 x 10(exp 13) Joules/kg) is more than adequate for enabling extensive exploration and utilization of the solar system. For space fission propulsion systems, the key is converting the virtually unlimited energy of fission into thrust at the desired specific impulse and thrust

  10. Advanced public transportation systems : evaluation guidelines

    DOT National Transportation Integrated Search

    1994-01-01

    The Federal Transit Administration has developed the Advanced Public Transportation Systems (APTS) Program which is an integral part of the overall U.S. DOT Intelligent Vehicle Highway Systems (IVHS) effort. A major aim of the APTS Program is to prom...

  11. Conceptual design study of advanced acoustic composite nacelle. [for achieving reductions in community noise and operating expense

    NASA Technical Reports Server (NTRS)

    Goodall, R. G.; Painter, G. W.

    1975-01-01

    Conceptual nacelle designs for wide-bodied and for advanced-technology transports were studied with the objective of achieving significant reductions in community noise with minimum penalties in airplane weight, cost, and in operating expense by the application of advanced composite materials to nacelle structure and sound suppression elements. Nacelle concepts using advanced liners, annular splitters, radial splitters, translating centerbody inlets, and mixed-flow nozzles were evaluated and a preferred concept selected. A preliminary design study of the selected concept, a mixed flow nacelle with extended inlet and no splitters, was conducted and the effects on noise, direct operating cost, and return on investment determined.

  12. Development of Improved Environmental Resistant Organic-Reinforced Materials Systems

    DTIC Science & Technology

    1975-11-01

    Advanced composites , graphite and boron reinforced laminates, moisture resistance, environmental resistance, organic matrix composites . 20. ABSTRACT...in November 1975 for publication. Efforts at TOD were conducted within the Advanced Composites Engineering Departmfntrunde; L technical...weight makes^organic matrix advanced composites hardware extremely attractive for today s modern Air Force weapons systems. Accordingly, such

  13. Application of advanced technologies to small, short-haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Coussens, T. G.; Tullis, R. H.

    1980-01-01

    The performance and economic benefits available by incorporation of advanced technologies into the small, short haul air transport were assessed. Low cost structure and advanced composite material, advanced turboprop engines and new propellers, advanced high lift systems and active controls; and alternate aircraft configurations with aft mounted engines were investigated. Improvements in fuel consumed and aircraft economics (acquisition cost and direct operating cost) are available by incorporating selected advanced technologies into the small, short haul aircraft.

  14. Advanced photovoltaic power system technology for lunar base applications

    NASA Astrophysics Data System (ADS)

    Brinker, David J.; Flood, Dennis J.

    1992-09-01

    The development of an advanced photovoltaic power system that would have application for a manned lunar base is currently planned under the Surface Power element of Pathfinder. Significant mass savings over state-of-the-art photovoltaic/battery systems are possible with the use of advanced lightweight solar arrays coupled with regenerative fuel cell storage. The solar blanket, using either ultrathin GaAs or amorphous silicon solar cells, would be integrated with a reduced-g structure. Regenerative fuel cells with high-pressure gas storage in filament-wound tanks are planned for energy storage. An advanced PV/RFC power system is a leading candidate for a manned lunar base as it offers a tremendous weight advantage over state-of-the-art photovoltaic/battery systems and is comparable in mass to other advanced power generation technologies.

  15. Advanced Teleprocessing Systems

    DTIC Science & Technology

    1983-09-30

    Defenae AdTanced Research Projects Agency DAHC1S.C0368 DARPA rw M n*~ MDA 903.77.C-0272 A ^^ ^ 2490 MDA «)W3-C-0064 COMPUTER NETWORK...i -.% W-V."’ * - \\ ATV.VVV" ir*7 ADVANCED TELEPROCESSING SYSTEMS Semi-Annual Technical Report September 30, 1983 Contract Number: MDA 903-82...83 through 30 SEPT 83 6 PERFORMING ORG. REPORT NUMBER 7. AUTHORC«; Leonard Kleinrock 8 CONTRACT OR GRANT NUMBERr«; MDA 903-82-C-0064 9

  16. A survey of advanced battery systems for space applications

    NASA Technical Reports Server (NTRS)

    Attia, Alan I.

    1989-01-01

    The results of a survey on advanced secondary battery systems for space applications are presented. The objectives were: to identify advanced battery systems capable of meeting the requirements of various types of space missions, with significant advantages over currently available batteries, to obtain an accurate estimate of the anticipated improvements of these advanced systems, and to obtain a consensus for the selection of systems most likely to yield the desired improvements. Few advanced systems are likely to exceed a specific energy of 150 Wh/kg and meet the additional requirements of safety and reliability within the next 15 years. The few that have this potential are: (1) regenerative fuel cells, both alkaline and solid polymer electrolyte (SPE) types for large power systems; (2) lithium-intercalatable cathodes, particularly the metal ozides intercalatable cathodes (MnO2 or CoO2), with applications limited to small spacecrafts requiring limited cycle life and low power levels; (3) lithium molten salt systems (e.g., LiAl-FeS2); and (4) Na/beta Alumina/Sulfur or metal chlorides cells. Likely technological advances that would enhance the performance of all the above systems are also identified, in particular: improved bifunctional oxygen electrodes; improved manufacturing technology for thin film lithium electrodes in combination with polymeric electrolytes; improved seals for the lithium molten salt cells; and improved ceramics for sodium/solid electrolyte cells.

  17. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  18. Advanced uncooled infrared system electronics

    NASA Astrophysics Data System (ADS)

    Neal, Henry W.

    1998-07-01

    Over the past two decades, Raytheon Systems Company (RSC), formerly Texas Instruments Defense Systems & Electronics Group, developed a robust family of products based on a low- cost, hybrid ferroelectric (FE) uncooled focal-plane array (FPA) aimed at meeting the needs for thermal imaging products across both military and commercial markets. Over the years, RSC supplied uncooled infrared (IR) sensors for applications such as in combat vehicles, man-portable weaponry, personnel helmets, and installation security. Also, various commercial IR systems for use in automobiles, boats, law enforcement, hand-held applications, building/site security, and fire fighting have been developed. These products resulted in a high degree of success where cooled IR platforms are too bulky and costly, and other uncooled implementations are less reliable or lack significant cost advantage. Proof of this great success is found in the large price reductions, the unprecedented monthly production rates, and the wide diversity of products and customers realized in recent years. The ever- changing needs of these existing and potential customers continue to fuel the advancement of both the primary technologies and the production capabilities of uncooled IR systems at RSC. This paper will describe a development project intended to further advance the system electronics capabilities of future uncooled IR products.

  19. Advanced EVA system design requirements study

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the Space Station Advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related extravehicular activity (EVA) support equipment were defined and established. The EVA mission requirements, environments, and medical and physiological requirements, as well as opertional, procedures, and training issues were considered.

  20. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Launch was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  1. Phase Stability and Thermal Conductivity of Composite Environmental Barrier Coatings on SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Benkel, Samantha; Zhu, Dongming

    2011-01-01

    Advanced environmental barrier coatings are being developed to protect SiC/SiC ceramic matrix composites in harsh combustion environments. The current coating development emphasis has been placed on the significantly improved cyclic durability and combustion environment stability in high-heat-flux and high velocity gas turbine engine environments. Environmental barrier coating systems based on hafnia (HfO2) and ytterbium silicate, HfO2-Si nano-composite bond coat systems have been processed and their stability and thermal conductivity behavior have been evaluated in simulated turbine environments. The incorporation of Silicon Carbide Nanotubes (SiCNT) into high stability (HfO2) and/or HfO2-silicon composite bond coats, along with ZrO2, HfO2 and rare earth silicate composite top coat systems, showed promise as excellent environmental barriers to protect the SiC/SiC ceramic matrix composites.

  2. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  3. NASA Advanced Explorations Systems: Advancements in Life Support Systems

    NASA Technical Reports Server (NTRS)

    Shull, Sarah A.; Schneider, Walter F.

    2016-01-01

    The NASA Advanced Exploration Systems (AES) Life Support Systems (LSS) project strives to develop reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support systems (ECLSS) critical to enabling long duration human missions beyond low Earth orbit (LEO). Highly reliable, closed-loop life support systems are among the capabilities required for the longer duration human space exploration missions assessed by NASA's Habitability Architecture Team (HAT). The LSS project is focused on four areas: architecture and systems engineering for life support systems, environmental monitoring, air revitalization, and wastewater processing and water management. Starting with the international space station (ISS) LSS systems as a point of departure (where applicable), the mission of the LSS project is three-fold: 1. Address discrete LSS technology gaps 2. Improve the reliability of LSS systems 3. Advance LSS systems towards integrated testing on the ISS. This paper summarized the work being done in the four areas listed above to meet these objectives. Details will be given on the following focus areas: Systems Engineering and Architecture- With so many complex systems comprising life support in space, it is important to understand the overall system requirements to define life support system architectures for different space mission classes, ensure that all the components integrate well together and verify that testing is as representative of destination environments as possible. Environmental Monitoring- In an enclosed spacecraft that is constantly operating complex machinery for its own basic functionality as well as science experiments and technology demonstrations, it's possible for the environment to become compromised. While current environmental monitors aboard the ISS will alert crew members and mission control if there is an emergency, long-duration environmental monitoring cannot be done in-orbit as current methodologies

  4. Advances in mechanisms of systemic lupus erythematosus.

    PubMed

    Dema, Barbara; Charles, Nicolas

    2014-05-01

    Systemic lupus erythematosus (SLE) is a complex autoimmune disease associated with hormonal, environmental, and genetic factors and linked to the tolerance breakdown of B and T cells to self-antigens. SLE is characterized by the presence in patient serum of autoantibodies raised against nuclear components. Association of these antibodies to self-antigens, complement factors, DNA, and particular proteins will form circulating immune complexes (CIC) which can deposit in several organs, causing tissue damage and clinical manifestations. Historically, SLE is considered as an adaptive immune system disorder. Over the past decade, advances in the understanding of SLE pathogenesis placed the innate immune system as a key player in perpetuating and amplifying this systemic disease. In this review, we summarize some recent key advances in understanding the SLE immune-pathogenesis with a particular focus on newly discovered key factors from the innate immune system and how they influence the pathogenic adaptive immune system: neutrophils and neutrophil extracellular traps (NETs), plasmacytoid dendritic cells (pDCs) and type I interferons, basophils and autoreactive IgE, monocytes/macrophages and the inflammasome. Recent advances on B and T cell involvement in the SLE pathogenesis mechanisms are also discussed. Although the disease is clinically, genetically, and immunologically heterogeneous between affected individuals, the latest discoveries are offering new promising therapeutic strategies.

  5. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  6. Full-scale testing, production and cost analysis data for the advanced composite stabilizer for Boeing 737 aircraft, volume 2

    NASA Technical Reports Server (NTRS)

    Aniversario, R. B.; Harvey, S. T.; Mccarty, J. E.; Parson, J. T.; Peterson, D. C.; Pritchett, L. D.; Wilson, D. R.; Wogulis, E. R.

    1982-01-01

    The development, testing, production activities, and associated costs that were required to produce five-and-one-half advanced-composite stabilizer shipsets for Boeing 737 aircraft are defined and discussed.

  7. Benefits assessment of advanced public transportation systems (APTS)

    DOT National Transportation Integrated Search

    1996-07-01

    This report documents work performed under FTA's Advance Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techno...

  8. Advanced tow placement of composite fuselage structure

    NASA Technical Reports Server (NTRS)

    Anderson, Robert L.; Grant, Carroll G.

    1992-01-01

    The Hercules NASA ACT program was established to demonstrate and validate the low cost potential of the automated tow placement process for fabrication of aircraft primary structures. The program is currently being conducted as a cooperative program in collaboration with the Boeing ATCAS Program. The Hercules advanced tow placement process has been in development since 1982 and was developed specifically for composite aircraft structures. The second generation machine, now in operation at Hercules, is a production-ready machine that uses a low cost prepreg tow material form to produce structures with laminate properties equivalent to prepreg tape layup. Current program activities are focused on demonstration of the automated tow placement process for fabrication of subsonic transport aircraft fuselage crown quadrants. We are working with Boeing Commercial Aircraft and Douglas Aircraft during this phase of the program. The Douglas demonstration panels has co-cured skin/stringers, and the Boeing demonstration panel is an intricately bonded part with co-cured skin/stringers and co-bonded frames. Other aircraft structures that were evaluated for the automated tow placement process include engine nacelle components, fuselage pressure bulkheads, and fuselage tail cones. Because of the cylindrical shape of these structures, multiple parts can be fabricated on one two placement tool, thus reducing the cost per pound of the finished part.

  9. The Advanced National Seismic System; management and implementation

    USGS Publications Warehouse

    Benz, H.M.; Shedlock, K.M.; Buland, R.P.

    2001-01-01

    What is the Advanced National Seismic System? The Advanced National Seismic System (ANSS) is designed to organize, modernize, and standardize operations of seismic networks in the United States to improve the Nation’s ability to respond effectively to damaging earthquakes, volcanoes, and tsunamis. To achieve this, the ANSS will link more than 7,000 national, regional and urban monitoring stations in real time

  10. Design concepts for a composite door frame system for general automotive applications

    NASA Technical Reports Server (NTRS)

    Tauber, J. A.

    1976-01-01

    Conceptual design, manufacturing process, and costs are explored to determine the feasibility of replacing present steel parts in automotive door structures with various composite materials. The problems of conforming to present anti-intrusion specifications with advanced materials are examined and discussed. Modest weight reductions, at competitive costs, were identified for the utilization of specific composite materials in automotive door structures.

  11. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  12. FTIR Monitoring Of Curing Of Composites

    NASA Technical Reports Server (NTRS)

    Druy, Mark A.; Stevenson, William A.; Young, Philip R.

    1990-01-01

    Infrared-sensing optical fiber system developed to monitor principal infrared absorption bands resulting from vibrations of atoms and molecules as chemical bonds form when resin cured. System monitors resin chemistry more directly. Used to obtain Fourier transform infrared (FTIR) spectrum from graphite fiber/polyimide matrix resin prepreg. Embedded fiber optic FTIR sensor used to indicate state of cure of thermosetting composite material. Developed primarily to improve quality of advanced composites, many additional potential applications exist because principal of operation applicable to all organic materials and most inorganic gases. Includes monitoring integrities of composite materials in service, remote sensing of hazardous materials, and examination of processes in industrial reactors and furnaces.

  13. Recent advances and developments in composite dental restorative materials.

    PubMed

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  14. Recent Advances and Developments in Composite Dental Restorative Materials

    PubMed Central

    Cramer, N.B.; Stansbury, J.W.; Bowman, C.N.

    2011-01-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance. PMID:20924063

  15. Advanced Technology System Scheduling Governance Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ang, Jim; Carnes, Brian; Hoang, Thuc

    In the fall of 2005, the Advanced Simulation and Computing (ASC) Program appointed a team to formulate a governance model for allocating resources and scheduling the stockpile stewardship workload on ASC capability systems. This update to the original document takes into account the new technical challenges and roles for advanced technology (AT) systems and the new ASC Program workload categories that must be supported. The goal of this updated model is to effectively allocate and schedule AT computing resources among all three National Nuclear Security Administration (NNSA) laboratories for weapons deliverables that merit priority on this class of resource. Themore » process outlined below describes how proposed work can be evaluated and approved for resource allocations while preserving high effective utilization of the systems. This approach will provide the broadest possible benefit to the Stockpile Stewardship Program (SSP).« less

  16. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  17. Evaluation of mobility impacts of advanced information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeta, S.; Poonuru, K.; Sinha, K.

    2000-06-01

    Advanced technologies under the aegis of advanced traveler information systems and advanced traffic management systems are being employed to address the debilitating traffic congestion problem. Broadly identified under the label intelligent transportation systems (ITS), they focus on enhancing the efficiency of the existing roadway utilization. Though ITS has transitioned from the conceptual framework stage to the operational test phase that analyzes real-world feasibility, studies that systematically quantify the multidimensional real-world impacts of these technologies in terms of mobility, safety, and air quality, are lacking. This paper proposes a simulation-based framework to address the mobility impacts of these technologies through themore » provision of information to travelers. The information provision technologies are labeled as advanced information systems (AIS), and include pretrip information, en route information, variable message signs, and combinations thereof. The primary focus of the paper is to evaluate alternative AIS technologies using the heavily traveled Borman Expressway corridor in northwestern Indiana as a case study. Simulation results provide insights into the mobility impacts of AIS technologies, and contrast the effectiveness of alternative information provision sources and strategies.« less

  18. The system controlling the composition of clastic sediments

    USGS Publications Warehouse

    Johnsson, Mark J.

    1993-01-01

    The composition of clastic sediments and rocks is controlled by a complex suite of parameters operating during pedogenesis, erosion, transport, deposition, and burial. The principal first-order parameters include source rock composition, modification by chemical weathering, mechanical disaggregation and abrasion, authigenic inputs, hydrodynamic sorting, and diagenesis. Each of these first-order parameters is influenced to varying degrees by such factors as the tectonic settings of the source region, transportational system and depositional environment, climate, vegetation, relief, slope, and the nature and energy of transportational and depositional systems. These factors are not independent; rather a complicated web of interrelationships and feedback mechanisms causes many factors to be modulated by others. Accordingly, processes controlling the composition of clastic sediments are best viewed as constituting a system, and in evaluating compositional information the dynamics of the system must be considered as whole.

  19. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  20. System reliability approaches for advanced propulsion system structures

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Mahadevan, S.

    1991-01-01

    This paper identifies significant issues that pertain to the estimation and use of system reliability in the design of advanced propulsion system structures. Linkages between the reliabilities of individual components and their effect on system design issues such as performance, cost, availability, and certification are examined. The need for system reliability computation to address the continuum nature of propulsion system structures and synergistic progressive damage modes has been highlighted. Available system reliability models are observed to apply only to discrete systems. Therefore a sequential structural reanalysis procedure is formulated to rigorously compute the conditional dependencies between various failure modes. The method is developed in a manner that supports both top-down and bottom-up analyses in system reliability.

  1. Interface Reactions and Synthetic Reaction of Composite Systems

    PubMed Central

    Park, Joon Sik; Kim, Jeong Min

    2010-01-01

    Interface reactions in composite systems often determine their overall properties, since product phases usually formed at interfaces during composite fabrication processing make up a large portion of the composites. Since most composite materials represent a ternary or higher order materials system, many studies have focused on analyses of diffusion phenomena and kinetics in multicomponent systems. However, the understanding of the kinetic behavior increases the complexity, since the kinetics of each component during interdiffusion reactions need to be defined for interpreting composite behaviors. From this standpoint, it is important to clarify the interface reactions for producing compatible interfaces with desired product phases. A thermodynamic evaluation such as a chemical potential of involving components can provide an understanding of the diffusion reactions, which govern diffusion pathways and product phase formation. A strategic approach for designing compatible interfaces is discussed in terms of chemical potential diagrams and interface morphology, with some material examples.

  2. A Multi-Objective Advanced Design Methodology of Composite Beam-to-Column Joints Subjected to Seismic and Fire Loads

    NASA Astrophysics Data System (ADS)

    Pucinotti, Raffaele; Ferrario, Fabio; Bursi, Oreste S.

    2008-07-01

    A multi-objective advanced design methodology dealing with seismic actions followed by fire on steel-concrete composite full strength joints with concrete filled tubes is proposed in this paper. The specimens were designed in detail in order to exhibit a suitable fire behaviour after a severe earthquake. The major aspects of the cyclic behaviour of composite joints are presented and commented upon. The data obtained from monotonic and cyclic experimental tests have been used to calibrate a model of the joint in order to perform seismic simulations on several moment resisting frames. A hysteretic law was used to take into account the seismic degradation of the joints. Finally, fire tests were conducted with the objective to evaluate fire resistance of the connection already damaged by an earthquake. The experimental activity together with FE simulation demonstrated the adequacy of the advanced design methodology.

  3. Advanced Active Thermal Control Systems Architecture Study

    NASA Technical Reports Server (NTRS)

    Hanford, Anthony J.; Ewert, Michael K.

    1996-01-01

    The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.

  4. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  5. Advanced tracking systems design and analysis

    NASA Technical Reports Server (NTRS)

    Potash, R.; Floyd, L.; Jacobsen, A.; Cunningham, K.; Kapoor, A.; Kwadrat, C.; Radel, J.; Mccarthy, J.

    1989-01-01

    The results of an assessment of several types of high-accuracy tracking systems proposed to track the spacecraft in the National Aeronautics and Space Administration (NASA) Advanced Tracking and Data Relay Satellite System (ATDRSS) are summarized. Tracking systems based on the use of interferometry and ranging are investigated. For each system, the top-level system design and operations concept are provided. A comparative system assessment is presented in terms of orbit determination performance, ATDRSS impacts, life-cycle cost, and technological risk.

  6. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  7. Advanced composite structural concepts and materials technologies for primary aircraft structures: Advanced material concepts

    NASA Technical Reports Server (NTRS)

    Lau, Kreisler S. Y.; Landis, Abraham L.; Chow, Andrea W.; Hamlin, Richard D.

    1993-01-01

    To achieve acceptable performance and long-term durability at elevated temperatures (350 to 600 F) for high-speed transport systems, further improvements of the high-performance matrix materials will be necessary to achieve very long-term (60,000-120,000 service hours) retention of mechanical properties and damage tolerance. This report emphasizes isoimide modification as a complementary technique to semi-interpenetrating polymer networks (SIPN's) to achieve greater processibility, better curing dynamics, and possibly enhanced thermo-mechanical properties in composites. A key result is the demonstration of enhanced processibility of isoimide-modified linear and thermo-setting polyimide systems.

  8. Advanced Autonomous Systems for Space Operations

    NASA Astrophysics Data System (ADS)

    Gross, A. R.; Smith, B. D.; Muscettola, N.; Barrett, A.; Mjolssness, E.; Clancy, D. J.

    2002-01-01

    New missions of exploration and space operations will require unprecedented levels of autonomy to successfully accomplish their objectives. Inherently high levels of complexity, cost, and communication distances will preclude the degree of human involvement common to current and previous space flight missions. With exponentially increasing capabilities of computer hardware and software, including networks and communication systems, a new balance of work is being developed between humans and machines. This new balance holds the promise of not only meeting the greatly increased space exploration requirements, but simultaneously dramatically reducing the design, development, test, and operating costs. New information technologies, which take advantage of knowledge-based software, model-based reasoning, and high performance computer systems, will enable the development of a new generation of design and development tools, schedulers, and vehicle and system health management capabilities. Such tools will provide a degree of machine intelligence and associated autonomy that has previously been unavailable. These capabilities are critical to the future of advanced space operations, since the science and operational requirements specified by such missions, as well as the budgetary constraints will limit the current practice of monitoring and controlling missions by a standing army of ground-based controllers. System autonomy capabilities have made great strides in recent years, for both ground and space flight applications. Autonomous systems have flown on advanced spacecraft, providing new levels of spacecraft capability and mission safety. Such on-board systems operate by utilizing model-based reasoning that provides the capability to work from high-level mission goals, while deriving the detailed system commands internally, rather than having to have such commands transmitted from Earth. This enables missions of such complexity and communication` distances as are not

  9. Study on utilization of advanced composites in commercial aircraft wing structures. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Ostrom, R. B.; Cardinale, S. V.

    1978-01-01

    The effort required by commercial transport manufacturers to accomplish the transition from current construction materials and practices to extensive use of composites in aircraft wings was investigated. The engineering and manufacturing disciplines which normally participate in the design, development, and production of an aircraft were employed to ensure that all of the factors that would enter a decision to commit to production of a composite wing structure were addressed. A conceptual design of an advanced technology reduced energy aircraft provided the framework for identifying and investigating unique design aspects. A plan development effort defined the essential technology needs and formulated approaches for effecting the required wing development. The wing development program plans, resource needs, and recommendations are summarized.

  10. Comparison of two-step versus four-step composite finishing/polishing disc systems: evaluation of a new two-step composite polishing disc system.

    PubMed

    da Costa, Juliana B; Goncalves, Flavia; Ferracane, Jack L

    2011-01-01

    The purpose of this study was to evaluate surface finish and gloss of a two-step composite finishing/polishing (F/P) disc system compared with two multistep systems on five composites. Seventy-five disc-shaped composite specimens (D=10.0 mm, 2 mm thick, n=15 per composite) were made of microfill (Durafill-D), nanofill (Filtek Supreme-FS), nanohybrid (Premise-PR), and microhybrids (Filtek Z250-FZ, Esthet-EX). One side of each specimen was initially finished with a carbide bur. Five specimens of each resin composite were randomly assigned to receive full F/P by each of the disc systems: two-step (Enhance Flex NST-EF) and four-step (Sof-Lex-SL, Super-Snap-SS). Surface gloss was measured with a glossmeter and surface roughness was measured with a profilometer. Results were analyzed by two-way analysis of variance (ANOVA)/Tukey's (α<0.05). No difference in gloss was noted among the three F/P systems when used with D and EX; no difference between SL and EF when used with any composite, except for FS; and no difference between SL and SS when used with any composite. SL and EF showed similar surface roughness when used on all composites, except for EX. EF and SS showed similar surface roughness on PR. SL and SS showed similar surface roughness values on every composite, except for FZ. EF was capable of providing similar gloss and surface roughness to SL on four composites evaluated but was not able to produce as glossy or as smooth a surface as SS for three of the five composites.

  11. Advanced 3D Ni(OH)2/CNT Gel Composite Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Hanlin; Duong, Hai Minh

    2015-03-01

    In order to enhance the performance of supercapacitors, advanced 3D Porous CNT/Ni(OH)2 gel composite electrodes are developed in this work. Compared with previously reported graphene gel supercapacitors, our electrodes using 1D CNTs have smaller diffusion resistance due to a shorter ion transport path. The developed 3D xerogel composite electrodes demonstrate the success of a careful engineered guest/host materials interface. Initially, the CNT gels are coated on the nickel foam to form a 3D scaffold, which serves as a microscopic electrical conductive network. Then Ni(OH)2 are incorporated using a traditional electrodeposition method. In this work, two types of the 3D CNT-coated nickel foams are investigated. The gels can be used directly as hydrogels or dried in air to form xerogels. Both hydrogels and xerogels present 3D tangled CNT networks. It shows that the hydrogel composite electrodes with unbundled CNTs, though presenting high capacitances of 1400 F/g at low discharge rate, possess lower capacitances at higher discharge rate and a poor cycling performance of less than 23% retention. In contrast, the xerogel composite electrodes can overcome these limitations in terms of a satisfied discharge performance of 1200 F/g and a good cycling retention more than 85% due to a stronger Ni(OH)2/CNT interface. The CNT bundles in the xerogel electrodes formed during the drying process can give a flat surface with small curvature, which facilitate the Ni(OH)2 nucleation and growth. Thanks for the support from the A star R-265-000-424-305.

  12. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis

  13. Development of advanced fuel cell system, phase 2

    NASA Technical Reports Server (NTRS)

    Handley, L. M.; Meyer, A. P.; Bell, W. F.

    1973-01-01

    A multiple task research and development program was performed to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. Development and characterization of a very stable gold alloy catalyst was continued from Phase I of the program. A polymer material for fabrication of cell structural components was identified and its long term compatibility with the fuel cell environment was demonstrated in cell tests. Full scale partial cell stacks, with advanced design closed cycle evaporative coolers, were tested. The characteristics demonstrated in these tests verified the feasibility of developing the engineering model system concept into an advanced lightweight long life powerplant.

  14. Spectroradiometric considerations for advanced land observing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1986-01-01

    Research aimed at improving the inflight absolute radiometric calibration of advanced land observing systems was initiated. Emphasis was on the satellite sensor calibration program at White Sands. Topics addressed include: absolute radiometric calibration of advanced remote sensing; atmospheric effects on reflected radiation; inflight radiometric calibration; field radiometric methods for reflectance and atmospheric measurement; and calibration of field relectance radiometers.

  15. System architecture for an advanced Canadian communications satellite demonstration mission

    NASA Astrophysics Data System (ADS)

    Takats, P.; Irani, S.

    1992-03-01

    An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.

  16. Systems study of transport aircraft incorporating advanced aluminum alloys

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.

    1982-01-01

    A study was performed to quantify the potential benefits of utilizing advanced aluminum alloys in commercial transport aircraft and to define the effort necessary to develop fully the alloys to a viable commercial production capability. The comprehensive investigation (1) established realistic advanced aluminum alloy property goals to maximize aircraft systems effectiveness (2) identified performance and economic benefits of incorporating the advanced alloy in future advanced technology commercial aircraft designs (3) provided a recommended plan for development and integration of the alloys into commercial aircraft production (4) provided an indication of the timing and investigation required by the metal producing industry to support the projected market and (5) evaluate application of advanced aluminum alloys to other aerospace and transit systems as a secondary objective. The results of the investigation provided a roadmap and identified key issues requiring attention in an advanced aluminum alloy and applications technology development program.

  17. Advanced Atmospheric Water Vapor DIAL Detection System

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Elsayed-Ali, Hani E.; DeYoung, Russell J. (Technical Monitor)

    2000-01-01

    Measurement of atmospheric water vapor is very important for understanding the Earth's climate and water cycle. The remote sensing Differential Absorption Lidar (DIAL) technique is a powerful method to perform such measurement from aircraft and space. This thesis describes a new advanced detection system, which incorporates major improvements regarding sensitivity and size. These improvements include a low noise advanced avalanche photodiode detector, a custom analog circuit, a 14-bit digitizer, a microcontroller for on board averaging and finally a fast computer interface. This thesis describes the design and validation of this new water vapor DIAL detection system which was integrated onto a small Printed Circuit Board (PCB) with minimal weight and power consumption. Comparing its measurements to an existing DIAL system for aerosol and water vapor profiling validated the detection system.

  18. The Irony and the Ecstasy: How Holden Caulfield Helped My Advanced Composition Students Find Their Voices.

    ERIC Educational Resources Information Center

    Huff, Linda

    An instructor of an advanced composition course (adapted from one taught by James Seitz at the University of Pittsburgh) at the University of California Riverside took her students through a series of reading and writing assignments that asked them to "engage in a wide variety of prose styles and...consider what style suggests about language,…

  19. Advanced stitching technology

    NASA Technical Reports Server (NTRS)

    Scardino, Frank L.

    1992-01-01

    In the design of textile composites, the selection of materials and constructional techniques must be matched with product performance, productivity, and cost requirements. Constructional techniques vary. A classification of various textile composite systems is given. In general, the chopped fiber system is not suitable for structural composite applications because of fiber discontinuity, uncontrolled fiber orientation and a lack of fiber integration or entanglement. Linear filament yarn systems are acceptable for structural components which are exposed to simple tension in their applications. To qualify for more general use as structural components, filament yarn systems must be multi-directionally positioned. With the most sophisticated filament winding and laying techniques, however, the Type 2 systems have limited potential for general load-bearing applications because of a lack of filament integration or entanglement, which means vulnerability to splitting and delamination among filament layers. The laminar systems (Type 3) represented by a variety of simple fabrics (woven, knitted, braided and nonwoven) are especially suitable for load-bearing panels in flat form and for beams in a roled up to wound form. The totally integrated, advanced fabric system (Type 4) are thought to be the most reliable for general load-bearing applications because of fiber continuity and because of controlled multiaxial fiber orientation and entanglement. Consequently, the risk of splitting and delamination is minimized and practically omitted. Type 4 systems can be woven, knitted, braided or stitched through with very special equipment. Multiaxial fabric technologies are discussed.

  20. Deploying advanced public transportation systems in Birmingham

    DOT National Transportation Integrated Search

    2003-08-01

    Advanced Public Transportation Systems (APTS) technologies have been deployed by many urban transit systems in order to improve efficiency, reduce operating costs, and improve service quality. The majority of : these deployments, however, have been i...

  1. Advanced systemic mastocytosis: from molecular and genetic progress to clinical practice.

    PubMed

    Ustun, Celalettin; Arock, Michel; Kluin-Nelemans, Hanneke C; Reiter, Andreas; Sperr, Wolfgang R; George, Tracy; Horny, Hans-Peter; Hartmann, Karin; Sotlar, Karl; Damaj, Gandhi; Hermine, Olivier; Verstovsek, Srdan; Metcalfe, Dean D; Gotlib, Jason; Akin, Cem; Valent, Peter

    2016-10-01

    Systemic mastocytosis is a heterogeneous disease characterized by the accumulation of neoplastic mast cells in the bone marrow and other organ organs/tissues. Mutations in KIT, most frequently KIT D816V, are detected in over 80% of all systemic mastocytosis patients. While most systemic mastocytosis patients suffer from an indolent disease variant, some present with more aggressive variants, collectively called "advanced systemic mastocytosis", which include aggressive systemic mastocytosis, systemic mastocytosis with an associated hematologic, clonal non mast cell-lineage disease, and mast cell leukemia. Whereas patients with indolent systemic mastocytosis have a near normal life expectancy, patients with advanced systemic mastocytosis have a reduced life expectancy. Although cladribine and interferon-alpha are of benefit in a group of patients with advanced systemic mastocytosis, no curative therapy is available for these patients except possible allogeneic hematopoietic stem cell transplantation. Recent studies have also revealed additional somatic defects (apart from mutations in KIT) in a majority of patients with advanced systemic mastocytosis. These include TET2, SRSF2, ASXL1, RUNX1, JAK2, and/or RAS mutations, which may adversely impact prognosis and survival in particular systemic mastocytosis with an associated hematological neoplasm. In addition, several additional signaling molecules involved in the abnormal proliferation of mast cells in systemic mastocytosis have been identified. These advances have led to a better understanding of the biology of advanced systemic mastocytosis and to the development of new targeted treatment concepts. Herein, we review the biology and pathogenesis of advanced systemic mastocytosis, with a special focus on novel molecular findings as well as current and evolving therapeutic options. Copyright© Ferrata Storti Foundation.

  2. Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiCSiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Harder, Bryan

    2016-01-01

    Environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft turbine engine systems, because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. This paper presents current NASA EBC-CMC development emphases including: the coating composition and processing improvements, laser high heat flux-thermal gradient thermo-mechanical fatigue - environmental testing methodology development, and property evaluations for next generation EBC-CMC systems. EBCs processed with various deposition techniques including Plasma Spray, Electron Beam - Physical Vapor Deposition, and Plasma Spray Physical Vapor Deposition (PS-PVD) will be particularly discussed. The testing results and demonstrations of advanced EBCs-CMCs in complex simulated engine thermal gradient cyclic fatigue, oxidizing-steam and CMAS environments will help provide insights into the coating development strategies to meet long-term engine component durability goals.

  3. Intelligent Engine Systems: Thermal Management and Advanced Cooling

    NASA Technical Reports Server (NTRS)

    Bergholz, Robert

    2008-01-01

    The objective of the Advanced Turbine Cooling and Thermal Management program is to develop intelligent control and distribution methods for turbine cooling, while achieving a reduction in total cooling flow and assuring acceptable turbine component safety and reliability. The program also will develop embedded sensor technologies and cooling system models for real-time engine diagnostics and health management. Both active and passive control strategies will be investigated that include the capability of intelligent modulation of flow quantities, pressures, and temperatures both within the supply system and at the turbine component level. Thermal management system concepts were studied, with a goal of reducing HPT blade cooling air supply temperature. An assessment will be made of the use of this air by the active clearance control system as well. Turbine component cooling designs incorporating advanced, high-effectiveness cooling features, will be evaluated. Turbine cooling flow control concepts will be studied at the cooling system level and the component level. Specific cooling features or sub-elements of an advanced HPT blade cooling design will be downselected for core fabrication and casting demonstrations.

  4. Hybrid and Electric Advanced Vehicle Systems Simulation

    NASA Technical Reports Server (NTRS)

    Beach, R. F.; Hammond, R. A.; Mcgehee, R. K.

    1985-01-01

    Predefined components connected to represent wide variety of propulsion systems. Hybrid and Electric Advanced Vehicle System (HEAVY) computer program is flexible tool for evaluating performance and cost of electric and hybrid vehicle propulsion systems. Allows designer to quickly, conveniently, and economically predict performance of proposed drive train.

  5. Advanced information processing system: Local system services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Alger, Linda; Whittredge, Roy; Stasiowski, Peter

    1989-01-01

    The Advanced Information Processing System (AIPS) is a multi-computer architecture composed of hardware and software building blocks that can be configured to meet a broad range of application requirements. The hardware building blocks are fault-tolerant, general-purpose computers, fault-and damage-tolerant networks (both computer and input/output), and interfaces between the networks and the computers. The software building blocks are the major software functions: local system services, input/output, system services, inter-computer system services, and the system manager. The foundation of the local system services is an operating system with the functions required for a traditional real-time multi-tasking computer, such as task scheduling, inter-task communication, memory management, interrupt handling, and time maintenance. Resting on this foundation are the redundancy management functions necessary in a redundant computer and the status reporting functions required for an operator interface. The functional requirements, functional design and detailed specifications for all the local system services are documented.

  6. Dynamic Seals for Advanced Hydraulic Systems

    DTIC Science & Technology

    1981-08-01

    AFWAL-TR-81-.2066 t DYNAMIC SEALS FOR ADVANCED HYDRAULIC SYSTEMS cb- Robert S. Olsen I Vought Corporation P.O. Box 225907 Dallas, Texas 75265 August...Aeronautical Laboratories Air Force Systems Command 41 Wright-Patterson Air Force Base, Ohio 45433 82 Q L * a G ’ - -"o OW NOTICE When Government...and is approved for Publication. BRUC&- PBELL • •RICHARD D. FRANKLIN, MAJOR, USAF I Power Systems Branch -Chief, Power Systems Branch Aerospace Power

  7. A next generation advanced traveler information precursor system (ATIS 2.0 precursor system) system requirements.

    DOT National Transportation Integrated Search

    2016-12-01

    Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...

  8. Highlights of NASA's Role in Developing State-of-the-Art Nondestructive Evaluation for Composites

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Since the 1970's, when the promise of composites was being pursued for aeronautics applications, NASA has had programs that addressed the development of NDE methods for composites. These efforts included both microscopic and macroscopic NDE. At the microscopic level, NDE investigations interrogated composites at the submicron to micron level to understand a composite's microstructure. A novel microfocus CT system was developed as well as the science underlying applications of acoustic microscopy to a composite's component material properties. On the macroscopic scale NDE techniques were developed that advanced the capabilities to be faster and more quantitative. Techniques such as stiffness imaging, ultrasonic arrays, laser based ultrasound, advanced acoustic emission, thermography, and novel health monitoring systems were researched. Underlying these methods has been a strong modeling capability that has aided in method development.

  9. Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites

    PubMed Central

    Yoon, Howon; Yamashita, Motoi; Ata, Seisuke; Futaba, Don N.; Yamada, Takeo; Hata, Kenji

    2014-01-01

    We propose an approach to disperse long single-wall carbon nanotubes (SWCNTs) in a manner that is most suitable for the fabrication of high-performance composites. We compare three general classes of dispersion mechanisms, which encompass 11 different dispersion methods, and we have dispersed long SWCNTs, short multi-wall carbon nanotubes, and short SWCNTs in order to understand the most appropriate dispersion methods for the different types of CNTs. From this study, we have found that the turbulent flow methods, as represented by the Nanomizer and high-pressure jet mill methods, produced unique and superior dispersibility of long SWCNTs, which was advantageous for the fabrication of highly conductive composites. The results were interpreted to imply that the biaxial shearing force caused an exfoliation effect to disperse the long SWCNTs homogeneously while suppressing damage. A conceptual model was developed to explain this dispersion mechanism, which is important for future work on advanced CNT composites. PMID:24469607

  10. Composite Laser Ceramics by Advanced Bonding Technology

    PubMed Central

    Kamimura, Tomosumi; Honda, Sawao

    2018-01-01

    Composites obtained by bonding materials with the same crystal structure and different chemical compositions can create new functions that do not exist in conventional concepts. We have succeeded in bonding polycrystalline YAG and Nd:YAG ceramics without any interstices at the bonding interface, and the bonding state of this composite was at the atomic level, similar to the grain boundary structure in ceramics. The mechanical strength of the bonded composite reached 278 MPa, which was not less than the strength of each host material (269 and 255 MPa). Thermal conductivity of the composite was 12.3 W/mK (theoretical value) which is intermediate between the thermal conductivities of YAG and Nd:YAG (14.1 and 10.2 W/mK, respectively). Light scattering cannot be detected at the bonding interface of the ceramic composite by laser tomography. Since the scattering coefficients of the monolithic material and the composite material formed by bonding up to 15 layers of the same materials were both 0.10%/cm, there was no occurrence of light scattering due to the bonding. In addition, it was not detected that the optical distortion and non-uniformity of the refractive index variation were caused by the bonding. An excitation light source (LD = 808 nm) was collimated to 200 μm and irradiated into a commercial 1% Nd:YAG single crystal, but fracture damage occurred at a low damage threshold of 80 kW/cm2. On the other hand, the same test was conducted on the bonded interface of 1% Nd:YAG-YAG composite ceramics fabricated in this study, but it was not damaged until the excitation density reached 127 kW/cm2. 0.6% Nd:YAG-YAG composite ceramics showed high damage resistance (up to 223 kW/cm2). It was concluded that composites formed by bonding polycrystalline ceramics are ideal in terms of thermo-mechanical and optical properties. PMID:29425152

  11. An Advanced Commanding and Telemetry System

    NASA Astrophysics Data System (ADS)

    Hill, Maxwell G. G.

    The Loral Instrumentation System 500 configured as an Advanced Commanding and Telemetry System (ACTS) supports the acquisition of multiple telemetry downlink streams, and simultaneously supports multiple uplink command streams for today's satellite vehicles. By using industry and federal standards, the system is able to support, without relying on a host computer, a true distributed dataflow architecture that is complemented by state-of-the-art RISC-based workstations and file servers.

  12. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  13. Trapped rubber processing for advanced composites

    NASA Technical Reports Server (NTRS)

    Marra, P. J.

    1976-01-01

    Trapped rubber processing is a molding technique for composites in which precast silicone rubber is placed within a closed cavity where it thermally expands against the composite's surface supported by the vessel walls. The method has been applied by the Douglas Aircraft Company, under contract to NASA-Langley, to the design and fabrication of 10 DC-10 graphite/epoxy upper aft rudder assemblies. A three-bay development tool form mold die has been designed and manufactured, and tooling parameters have been established. Fabrication procedures include graphite layup, assembly of details in the tool, and a cure cycle. The technique has made it possible for the cocured fabrication of complex primary box structures otherwise impracticable via standard composite material processes.

  14. Anodic composite deposition of RuO₂/reduced graphene oxide/carbon nanotube for advanced supercapacitors.

    PubMed

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-07-10

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 xH2O nanoparticles (NPs), revealed by the high total specific capacitance (C(S,T) = 808 F g(-1)) of RGC without annealing. The contact resistance among RuO2 xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 xH2O to achieve 1200 F g(-1). The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high C(S,T) of 973 F g(-1) at 25 mV s(-1) (much higher than 435 F g(-1) of an annealed RuO2 xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s(-1)), revealing an advanced electrode material for high-performance supercapacitors.

  15. An Advanced Battery Management System for Lithium Ion Batteries

    DTIC Science & Technology

    2011-08-01

    MINI-SYMPOSIUM AUGUST 9-11 DEARBORN, MICHIGAN AN ADVANCED BATTERY MANAGEMENT SYSTEM FOR LITHIUM ION BATTERIES Bruce Pilvelait, Ph.D...COVERED - 4. TITLE AND SUBTITLE An Advanced Battery Management System for Lithium Ion Batteries 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Management System for Lithium Ion Batteries Page 2 of 7 Figure 1: BMS architecture for a 24 VDC lithium-ion Silent Watch battery pack

  16. Advances in hydrogel delivery systems for tissue regeneration.

    PubMed

    Toh, Wei Seong; Loh, Xian Jun

    2014-12-01

    Hydrogels are natural or synthetic polymer networks that have high water-absorbing capacity and closely mimic native extracellular matrices. As hydrogel-based cell delivery systems are being increasingly employed in regenerative medicine, several advances have been made in the hydrogel chemistry and modification for enhanced control of cell fate and functions, and modulation of cell and tissue responses against oxidative stress and inflammation in the tissue environment. This review aims to provide the state-of-the-art overview of the recent advances in field, discusses new perspectives and challenges in the regeneration of specific tissues, and highlights some of the limitations of current systems for possible future advancements. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  18. The Advanced Composition Explorer spacecraft lifts off from Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Photographers and other onlookers watch as a Boeing Delta II expendable launch vehicle lifts off with NASA's Advanced Composition Explorer (ACE) observatory at 10:39 a.m. EDT, on Aug. 25, 1997, from Launch Complex 17A, Cape Canaveral Air Station. This is the second Delta launch under the Boeing name and the first from Cape Canaveral. Liftoff had been scheduled for Aug. 24, but was scrubbed one day by Air Force range safety personnel because two commercial fishing vessels were within the Delta's launch danger area. The ACE spacecraft will study low-energy particles of solar origin and high-energy galactic particles on its one-million-mile journey. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA. Study of these energetic particles may contribute to our understanding of the formation and evolution of the solar system. ACE has a two-year minimum mission lifetime and a goal of five years of service. ACE was built for NASA by the Johns Hopkins Applied Physics Laboratory and is managed by the Explorer Project Office at NASA's Goddard Space Flight Center. The lead scientific institution is the California Institute of Technology (Caltech) in Pasadena, Calif.

  19. The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project

    NASA Technical Reports Server (NTRS)

    Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.; hide

    2015-01-01

    The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.

  20. Freight advanced traveler information system : functional requirements.

    DOT National Transportation Integrated Search

    2012-08-01

    This report describes the System Requirement Specifications (SyRS) for a Freight Advanced Traveler Information System (FRATIS). The SyRS is based on user needs described in the FRATIS Concept of Operations (ConOps), which cover the essential function...

  1. Development of advanced fuel cell system

    NASA Technical Reports Server (NTRS)

    Gitlow, B.; Meyer, A. P.; Bell, W. F.; Martin, R. E.

    1978-01-01

    An experimental program was conducted continuing the development effort to improve the weight, life, and performance characteristics of hydrogen-oxygen alkaline fuel cells for advanced power systems. These advanced technology cells operate with passive water removal which contributes to a lower system weight and extended operating life. Endurance evaluation of two single cells and two, two-cell plaques was continued. Three new test articles were fabricated and tested. A single cell completed 7038 hours of endurance testing. This cell incorporated a Fybex matrix, hybrid-frame, PPF anode, and a 90 Au/10 Pt cathode. This configuration was developed to extend cell life. Two cell plaques with dedicated flow fields and manifolds for all fluids did not exhibit the cell-to-cell electrolyte transfer that limited the operating life of earlier multicell plaques.

  2. Fabrication technologies and sensing applications of graphene-based composite films: Advances and challenges.

    PubMed

    Yu, Xiaoqing; Zhang, Wensi; Zhang, Panpan; Su, Zhiqiang

    2017-03-15

    Graphene (G)-based composite materials have been widely explored for the sensing applications ascribing to their atom-thick two-dimensional conjugated structures, high conductivity, large specific surface areas and controlled modification. With the enormous advantages of film structure, G-based composite films (GCFs), prepared by combining G with different functional nanomaterials (noble metals, metal compounds, carbon materials, polymer materials, etc.), show unique optical, mechanical, electrical, chemical, and catalytic properties. Therefore, great quantities of sensors with high sensitivity, selectivity, and stability have been created in recent years. In this review, we focus on the recent advances in the fabrication technologies of GCFs and their specific sensing applications. In addition, the relationship between the properties of GCFs and sensing performance is concentrated on. Finally, the personal perspectives and key challenges of GCFs are mentioned in the hope to shed a light on their potential future research directions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Badhwar-O'Neil 2007 Galactic Cosmic Ray (GCR) Model Using Advanced Composition Explorer (ACE) Measurements for Solar Cycle 23

    NASA Technical Reports Server (NTRS)

    ONeill, P. M.

    2007-01-01

    Advanced Composition Explorer (ACE) satellite measurements of the galactic cosmic ray flux and correlation with the Climax Neutron Monitor count over Solar Cycle 23 are used to update the Badhwar O'Neill Galactic Cosmic Ray (GCR) model.

  4. Distributed sensor coordination for advanced energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumer, Kagan

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement

  5. Integrated System Test of the Advanced Instructional System (AIS). Final Report.

    ERIC Educational Resources Information Center

    Lintz, Larry M.; And Others

    The integrated system test for the Advanced Instructional System (AIS) was designed to provide quantitative information regarding training time reductions resulting from certain computer managed instruction features. The reliabilities of these features and of support systems were also investigated. Basic computer managed instruction reduced…

  6. Advanced energy system program

    NASA Astrophysics Data System (ADS)

    Trester, K.

    1987-06-01

    The ogjectives are to design, develop, and demonstrate a natural-gas-fueled, highly recuperated, 50 kw Brayton-cycle cogeneration system for commercial, institutional, and multifamily residential applications. Recent marketing studies have shown that the Advanced Energy System (AES), with its many cost-effective features, has the potential to offer significant reductions in annual electrical and thermal energy costs to the consumer. Specific advantates of the system that result in low cost ownership are high electrical efficiency (34 percent, LHV), low maintenance, high reliability and long life (20 years). Significant technical features include: an integral turbogenerator with shaft-speed permanent magnet generator; a rotating assembly supported by compliant foil air bearings; a formed-tubesheet plate/fin recuperator with 91 percent effectiveness; and a bi-directional power conditioner to ultilize the generator for system startup. The planned introduction of catalytic combustion will further enhance the economic and ecological attractiveness.

  7. Filler particle size and composite resin classification systems.

    PubMed

    Lang, B R; Jaarda, M; Wang, R F

    1992-11-01

    The currently used composite resin classification systems need review if they are to continue to serve as descriptives and quantitative parameters denoting the filler particle content of these materials. Examination of the particles in 12 composite resins using a technique of washing the filler particles from the matrix of the composite resin was presented as yet another method of grouping composites according to filler particle content. Light microscopic examination of the filler particles that remained provided a separation of the 12 materials into four easily distinguished groups based on filler particle sizes. The wear of the 12 composite resins determined in a previous study was examined in relation to the classification of the materials by the currently available systems. The wear values were also examined using the groupings of the materials according to their filler particle sizes as determined by separating the particles from the matrix by the washing technique. Grouping composites on the basis of the filler particle sizes found after washing was easily correlated with wear and supported the suggestion that composites with smaller filler particles wear less.

  8. Evaluation of reliability modeling tools for advanced fault tolerant systems

    NASA Technical Reports Server (NTRS)

    Baker, Robert; Scheper, Charlotte

    1986-01-01

    The Computer Aided Reliability Estimation (CARE III) and Automated Reliability Interactice Estimation System (ARIES 82) reliability tools for application to advanced fault tolerance aerospace systems were evaluated. To determine reliability modeling requirements, the evaluation focused on the Draper Laboratories' Advanced Information Processing System (AIPS) architecture as an example architecture for fault tolerance aerospace systems. Advantages and limitations were identified for each reliability evaluation tool. The CARE III program was designed primarily for analyzing ultrareliable flight control systems. The ARIES 82 program's primary use was to support university research and teaching. Both CARE III and ARIES 82 were not suited for determining the reliability of complex nodal networks of the type used to interconnect processing sites in the AIPS architecture. It was concluded that ARIES was not suitable for modeling advanced fault tolerant systems. It was further concluded that subject to some limitations (the difficulty in modeling systems with unpowered spare modules, systems where equipment maintenance must be considered, systems where failure depends on the sequence in which faults occurred, and systems where multiple faults greater than a double near coincident faults must be considered), CARE III is best suited for evaluating the reliability of advanced tolerant systems for air transport.

  9. Advanced Microelectronics Technologies for Future Small Satellite Systems

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    1999-01-01

    Future small satellite systems for both Earth observation as well as deep-space exploration are greatly enabled by the technological advances in deep sub-micron microelectronics technologies. Whereas these technological advances are being fueled by the commercial (non-space) industries, more recently there has been an exciting new synergism evolving between the two otherwise disjointed markets. In other words, both the commercial and space industries are enabled by advances in low-power, highly integrated, miniaturized (low-volume), lightweight, and reliable real-time embedded systems. Recent announcements by commercial semiconductor manufacturers to introduce Silicon On Insulator (SOI) technology into their commercial product lines is driven by the need for high-performance low-power integrated devices. Moreover, SOI has been the technology of choice for many space semiconductor manufacturers where radiation requirements are critical. This technology has inherent radiation latch-up immunity built into the process, which makes it very attractive to space applications. In this paper, we describe the advanced microelectronics and avionics technologies under development by NASA's Deep Space Systems Technology Program (also known as X2000). These technologies are of significant benefit to both the commercial satellite as well as the deep-space and Earth orbiting science missions. Such a synergistic technology roadmap may truly enable quick turn-around, low-cost, and highly capable small satellite systems for both Earth observation as well as deep-space missions.

  10. Advanced orbit transfer vehicle propulsion system study

    NASA Technical Reports Server (NTRS)

    Cathcart, J. A.; Cooper, T. W.; Corringrato, R. M.; Cronau, S. T.; Forgie, S. C.; Harder, M. J.; Mcallister, J. G.; Rudman, T. J.; Stoneback, V. W.

    1985-01-01

    A reuseable orbit transfer vehicle concept was defined and subsequent recommendations for the design criteria of an advanced LO2/LH2 engine were presented. The major characteristics of the vehicle preliminary design include a low lift to drag aerocapture capability, main propulsion system failure criteria of fail operational/fail safe, and either two main engines with an attitude control system for backup or three main engines to meet the failure criteria. A maintenance and servicing approach was also established for the advanced vehicle and engine concepts. Design tradeoff study conclusions were based on the consideration of reliability, performance, life cycle costs, and mission flexibility.

  11. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites.

    PubMed

    Bello, Dhimiter; Wardle, Brian L; Zhang, Jie; Yamamoto, Namiko; Santeufemio, Christopher; Hallock, Marilyn; Virji, M Abbas

    2010-01-01

    This work investigated exposures to nanoparticles and nanofibers during solid core drilling of two types of advanced carbon nanotube (CNT)-hybrid composites: (1) reinforced plastic hybrid laminates (alumina fibers and CNT); and (2) graphite-epoxy composites (carbon fibers and CNT). Multiple real-time instruments were used to characterize the size distribution (5.6 nm to 20 microm), number and mass concentration, particle-bound polyaromatic hydrocarbons (b-PAHs), and surface area of airborne particles at the source and breathing zone. Time-integrated samples included grids for electron microscopy characterization of particle morphology and size resolved (2 nm to 20 microm) samples for the quantification of metals. Several new important findings herein include generation of airborne clusters of CNTs not seen during saw-cutting of similar composites, fewer nanofibers and respirable fibers released, similarly high exposures to nanoparticles with less dependence on the composite thickness, and ultrafine (< 5 nm) aerosol originating from thermal degradation of the composite material.

  12. Advanced public transportation system deployment in the United States

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...

  13. An Advanced Platform for Biomolecular Detection and Analysis Systems

    DTIC Science & Technology

    2005-02-01

    AFRL-IF-RS-TR-2005-54 Final Technical Report February 2005 AN ADVANCED PLATFORM FOR BIOMOLECULAR DETECTION AND ANALYSIS SYSTEMS...SUBTITLE AN ADVANCED PLATFORM FOR BIOMOLECULAR DETECTION AND ANALYSIS SYSTEMS 6. AUTHOR(S) David J. Beebe 5. FUNDING NUMBERS G...detection, analysis and response as well as many non BC warfare applications such as environmental toxicology, clinical detection and diagnosis

  14. Composite Flywheels Assessed Analytically by NDE and FEA

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2000-01-01

    As an alternative to expensive and short-lived lead-acid batteries, composite flywheels are being developed to provide an uninterruptible power supply for advanced aerospace and industrial applications. Flywheels can help prevent irregularities in voltage caused by power spikes, sags, surges, burnout, and blackouts. Other applications include load-leveling systems for wind and solar power facilities, where energy output fluctuates with weather. Advanced composite materials are being considered for these components because they are significantly lighter than typical metallic alloys and have high specific strength and stiffness. However, much more research is needed before these materials can be fully utilized, because there is insufficient data concerning their fatigue characteristics and nonlinear behavior, especially at elevated temperatures. Moreover, these advanced types of structural composites pose greater challenges for nondestructive evaluation (NDE) techniques than are encountered with typical monolithic engineering metals. This is particularly true for ceramic polymer and metal matrix composites, where structural properties are tailored during the processing stages. Current efforts involving the NDE group at the NASA Glenn Research Center at Lewis Field are focused on evaluating many important structural components, including the flywheel system. Glenn's in-house analytical and experimental capabilities are being applied to analyze data produced by computed tomography (CT) scans to help assess the damage and defects of high-temperature structural composite materials. Finite element analysis (FEA) has been used extensively to model the effects of static and dynamic loading on aerospace propulsion components. This technique allows the use of complicated loading schemes by breaking the complex part geometry into many smaller, geometrically simple elements.

  15. Out-of-Autoclave Cure Composites

    NASA Technical Reports Server (NTRS)

    Hayes, Brian S.

    2015-01-01

    As the size of aerospace composite parts exceeds that of even the largest autoclaves, the development of new out-of-autoclave processes and materials is necessary to ensure quality and performance. Many out-of-autoclave prepreg systems can produce high-quality composites initially; however, due to long layup times, the resin advancement commonly causes high void content and variations in fiber volume. Applied Poleramic, Inc. (API), developed an aerospace-grade benzoxazine matrix composite prepreg material that offers more than a year out-time at ambient conditions and provides exceptionally low void content when out-of-autoclave cured. When compared with aerospace epoxy prepreg systems, API's innovation offers significant improvements in terms of out-time at ambient temperature and the corresponding tack retention. The carbon fiber composites developed with the optimized matrix technology have significantly better mechanical performance in terms of hot-wet retention and compression when compared with aerospace epoxy matrices. These composites also offer an excellent overall balance of properties. This matrix system imparts very low cure shrinkage, low coefficient of thermal expansion, and low density when compared with most aerospace epoxy prepreg materials.

  16. Advanced public transportation systems : the state of the art

    DOT National Transportation Integrated Search

    1991-03-01

    This report documents one of the early initiatives of UMTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communi...

  17. Performance of advance warning systems in a coordinated system : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    The Advance Warning System (AWS), developed by the Nebraska Department of Roads (NDOR) has proven to be effective at improving traffic safety at isolated signalized intersections. However, the effectiveness of the system has not been analyzed at sign...

  18. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  19. An advanced actuator for high-performance slewing

    NASA Technical Reports Server (NTRS)

    Downer, James; Eisenhaure, David; Hockney, Richard

    1988-01-01

    A conceptual design for an advanced momentum exchange actuator for application to spacecraft slewing is described. The particular concept is a magnetically-suspended, magnetically gimballed Control Moment Gyro (CMG). A scissored pair of these devices is sized to provide the torque and angular momentum capacity required to reorient a large spacecraft through large angle maneuvers. The concept described utilizes a composite material rotor to achieve the high momentum and energy densities to minimize system mass, an advanced superconducting magnetic suspension system to minimize system weight and power consumption. The magnetic suspension system is also capable of allowing for large angle gimballing of the rotor, thus eliminating the mass and reliability penalties attendant to conventional gimbals. Descriptions of the various subelement designs are included along with the necessary system sizing formulation and material.

  20. Advanced information processing system: Input/output system services

    NASA Technical Reports Server (NTRS)

    Masotto, Tom; Alger, Linda

    1989-01-01

    The functional requirements and detailed specifications for the Input/Output (I/O) Systems Services of the Advanced Information Processing System (AIPS) are discussed. The introductory section is provided to outline the overall architecture and functional requirements of the AIPS system. Section 1.1 gives a brief overview of the AIPS architecture as well as a detailed description of the AIPS fault tolerant network architecture, while section 1.2 provides an introduction to the AIPS systems software. Sections 2 and 3 describe the functional requirements and design and detailed specifications of the I/O User Interface and Communications Management modules of the I/O System Services, respectively. Section 4 illustrates the use of the I/O System Services, while Section 5 concludes with a summary of results and suggestions for future work in this area.

  1. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  2. Advanced Ground Systems Maintenance Cryogenics Test Lab Control System Upgrade Project

    NASA Technical Reports Server (NTRS)

    Harp, Janice Leshay

    2014-01-01

    This project will outfit the Simulated Propellant Loading System (SPLS) at KSC's Cryogenics Test Laboratory with a new programmable logic control system. The control system upgrade enables the Advanced Ground Systems Maintenace Element Integration Team and other users of the SPLS to conduct testing in a controls environment similar to that used at the launch pad.

  3. Advanced Cosmic-ray Composition Experiment for Space Station: ISS accommodation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wefel, John P.

    1999-01-22

    ACCESS--Advanced Cosmic-ray Composition Experiment for Space Station--was selected as a new Mission Concept under NRA 96-OSS-03, with the goal of combining calorimeter and transition radiation techniques to provide measurements of cosmic rays from Hydrogen through Nickel up to energies approaching the 'knee' in the cosmic ray all particle spectrum, plus providing measurements of the Z>28 (Ultra-Heavy) nuclei at all energies. An instrument to perform such an investigation is undergoing an ISS/STS Accommodation Study at JSC. The instrument concept, the mission plan, and the accommodation issues for an ISS attached payload which include, in part, the carrier, ISS Site, thermal control,more » power, data and operations are described and the current status of these issues, for an ACCESS Mission, is summarized.« less

  4. Micro-scale thermal imaging of advanced organic and polymeric materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2012-10-01

    Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.

  5. The Role of Intelligent Agents in Advanced Information Systems

    NASA Technical Reports Server (NTRS)

    Kerschberg, Larry

    1999-01-01

    In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.

  6. Composite Cryotank Technologies and Demonstration

    NASA Technical Reports Server (NTRS)

    Vickers, John

    2015-01-01

    NASA is exploring advanced composite materials and processes to reduce the overall cost and weight of liquid hydrogen (LH2) cryotanks while maintaining the reliability of existing metallic designs. The fundamental goal of the composite cryotank project was to provide new and innovative technologies that enable human space exploration to destinations beyond low-Earth orbit such as the Moon, near-Earth asteroids, and Mars. In September 2011, NASA awarded Boeing the contract to design, manufacture, and test two lightweight composite cryogenic propellant tanks. The all-composite tanks shown iare fabricated with an automated fiber placement machine using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. Switching from metallic to composite construction holds the potential to dramatically increase the performance capabilities of future space systems through a dramatic reduction in weight. Composite Cryotank Technologies and Demonstration testing was an agency-wide effort with NASA Marshall Space Flight Center (MSFC) leading project management, manufacturing, and test; Glenn Research Center leading the materials; and Langley Research Center leading the structures effort for this project. Significant contributions from NASA loads/stress personnel contributed to the understanding of thermal/mechanical strain response while undergoing testing at cryogenic temperatures. The project finalized in September 2014.

  7. Advanced integrated life support system update

    NASA Technical Reports Server (NTRS)

    Whitley, Phillip E.

    1994-01-01

    The Advanced Integrated Life Support System Program (AILSS) is an advanced development effort to integrate the life support and protection requirements using the U.S. Navy's fighter/attack mission as a starting point. The goal of AILSS is to optimally mate protection from altitude, acceleration, chemical/biological agent, thermal environment (hot, cold, and cold water immersion) stress as well as mission enhancement through improved restraint, night vision, and head-mounted reticules and displays to ensure mission capability. The primary emphasis to date has been to establish garment design requirements and tradeoffs for protection. Here the garment and the human interface are treated as a system. Twelve state-off-the-art concepts from government and industry were evaluated for design versus performance. On the basis of a combination of centrifuge, thermal manikin data, thermal modeling, and mobility studies, some key design parameters have been determined. Future efforts will concentrate on the integration of protection through garment design and the use of a single layer, multiple function concept to streamline the garment system.

  8. Supervisory Control System Architecture for Advanced Small Modular Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Sacit M; Cole, Daniel L; Fugate, David L

    2013-08-01

    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history ofmore » hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations.« less

  9. Advanced radiology information system.

    PubMed

    Kolovou, L; Vatousi, M; Lymperopoulos, D; Koukias, M

    2005-01-01

    The innovative features of an advanced Radiology Information System (RIS) are presented in this paper. The interoperability of RIS with the other Intra-hospital Information Systems that interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms [1]. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol's specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The same mechanism allows the secure and HL7-compatible interactions with the Hospital Information System (HIS) too. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS). The whole structure ensures the automation of the every-day procedures that the ;medical protocol' specifies and provides its services through a friendly and easy to manage graphical user interface.

  10. Processing, properties and applications of composites using powder-coated epoxy towpreg technology

    NASA Technical Reports Server (NTRS)

    Bayha, T. D.; Osborne, P. P.; Thrasher, T. P.; Hartness, J. T.; Johnston, N. J.; Marchello, J. M.; Hugh, M. K.

    1993-01-01

    Composite manufacturing using the current prepregging technology of impregnating liquid resin into three-dimensionally reinforced textile preforms can be a costly and difficult operation. Alternatively, using polymer in the solid form, grinding it into a powder, and then depositing it onto a carbon fiber tow prior to making a textile preform is a viable method for the production of complex textile shapes. The powder-coated towpreg yarn is stable, needs no refrigeration, contains no solvents and is easy to process into various woven and braided preforms for later consolidation into composite structures. NASA's Advanced Composites Technology (ACT) program has provided an avenue for developing the technology by which advanced resins and their powder-coated preforms may be used in aircraft structures. Two-dimensional braiding and weaving studies using powder-coated towpreg have been conducted to determine the effect of resin content, towpreg size and twist on textile composite properties. Studies have been made to customize the towpreg to reduce friction and bulk factor. Processing parameters have been determined for three epoxy resin systems on eight-harness satin fabric, and on more advanced 3-D preform architectures for the downselected resin system. Processing effects and the resultant mechanical properties of these textile composites will be presented and compared.

  11. Composite system in rotationally invariant noncommutative phase space

    NASA Astrophysics Data System (ADS)

    Gnatenko, Kh. P.; Tkachuk, V. M.

    2018-03-01

    Composite system is studied in noncommutative phase space with preserved rotational symmetry. We find conditions on the parameters of noncommutativity on which commutation relations for coordinates and momenta of the center-of-mass of composite system reproduce noncommutative algebra for coordinates and momenta of individual particles. Also, on these conditions, the coordinates and the momenta of the center-of-mass satisfy noncommutative algebra with effective parameters of noncommutativity which depend on the total mass of the system and do not depend on its composition. Besides, it is shown that on these conditions the coordinates in noncommutative space do not depend on mass and can be considered as kinematic variables, the momenta are proportional to mass as it has to be. A two-particle system with Coulomb interaction is studied and the corrections to the energy levels of the system are found in rotationally invariant noncommutative phase space. On the basis of this result the effect of noncommutativity on the spectrum of exotic atoms is analyzed.

  12. Wood Composite Adhesives

    NASA Astrophysics Data System (ADS)

    Gomez-Bueso, Jose; Haupt, Robert

    The global environment, in which phenolic resins are being used for wood composite manufacture, has changed significantly during the last decade. This chapter reviews trends that are driving the use and consumption of phenolic resins around the world. The review begins with recent data on volume usage and regional trends, followed by an analysis of factors affecting global markets. In a section on environmental factors, the impact of recent formaldehyde emission regulations is discussed. The section on economics introduces wood composite production as it relates to the available adhesive systems, with special emphasis on the technical requirement to improve phenolic reactivity. Advances in composite process technology are introduced, especially in regard to the increased demands the improvements place upon adhesive system performance. The specific requirements for the various wood composite families are considered in the context of adhesive performance needs. The results of research into current chemistries are discussed, with a review of recent findings regarding the mechanisms of phenolic condensation and acceleration. Also, the work regarding alternate natural materials, such as carbohydrates, lignins, tannins, and proteinaceous materials, is presented. Finally, new developments in alternative adhesive technologies are reported.

  13. Advanced instrumentation for next-generation aerospace propulsion control systems

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Cross, G. S.; Lorenzo, Carl F.

    1993-01-01

    New control concepts for the next generation of advanced air-breathing and rocket engines and hypersonic combined-cycle propulsion systems are analyzed. The analysis provides a database on the instrumentation technologies for advanced control systems and cross matches the available technologies for each type of engine to the control needs and applications of the other two types of engines. Measurement technologies that are considered to be ready for implementation include optical surface temperature sensors, an isotope wear detector, a brushless torquemeter, a fiberoptic deflectometer, an optical absorption leak detector, the nonintrusive speed sensor, and an ultrasonic triducer. It is concluded that all 30 advanced instrumentation technologies considered can be recommended for further development to meet need of the next generation of jet-, rocket-, and hypersonic-engine control systems.

  14. Development of Stitched Composite Structure for Advanced Aircraft

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  15. Peer and Teacher Assessment in EFL Writing Compositions: The Case of Advanced English Major Students in Jendouba, Tunisia

    ERIC Educational Resources Information Center

    Ayachi, Zeineb

    2017-01-01

    This study investigated the difference between peer and teacher assessment of writing compositions of advanced university students in English. Besides, it investigated the likely effect this type of evaluation might have on the learners' writing skill. To this end, 17 participants were surveyed over seven weeks. During every session, the…

  16. Flat tensile specimen design for advanced composites

    NASA Technical Reports Server (NTRS)

    Worthem, Dennis W.

    1990-01-01

    Finite element analyses of flat, reduced gage section tensile specimens with various transition region contours were performed. Within dimensional constraints, such as maximum length, tab region width, gage width, gage length, and minimum tab length, a transition contour radius of 41.9 cm produced the lowest stress values in the specimen transition region. The stresses in the transition region were not sensitive to specimen material properties. The stresses in the tab region were sensitive to specimen composite and/or tab material properties. An evaluation of stresses with different specimen composite and tab material combinations must account for material nonlinearity of both the tab and the specimen composite. Material nonlinearity can either relieve stresses in the composite under the tab or elevate them to cause failure under the tab.

  17. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  18. Health Monitoring System for Composite Structures

    NASA Technical Reports Server (NTRS)

    Tang, S. S.; Riccardella, P. C.; Andrews, R. J.; Grady, J. E.; Mucciaradi, A. N.

    1996-01-01

    An automated system was developed to monitor the health status of composites. It uses the vibration characteristics of composites to identify a component's damage condition. The vibration responses are characterized by a set of signal features defined in the time, frequency and spatial domains. The identification of these changes in the vibration characteristics corresponding to different health conditions was performed using pattern recognition principles. This allows efficient data reduction and interpretation of vast amounts of information. Test components were manufactured from isogrid panels to evaluate performance of the monitoring system. The components were damaged by impact to simulate different health conditions. Free vibration response was induced by a tap test on the test components. The monitoring system was trained using these free vibration responses to identify three different health conditions. They are undamaged vs. damaged, damage location and damage zone size. High reliability in identifying the correct component health condition was achieved by the monitoring system.

  19. Magnetic suspension and balance system advanced study, 1989 design

    NASA Technical Reports Server (NTRS)

    Boom, Roger W.; Eyssa, Y. M.; Abdelsalam, Moustafa K.; Mcintosh, Glen E.

    1991-01-01

    The objectives are to experimentally confirm several advanced design concepts on the Magnetic Suspension and Balance Systems (MSBS). The advanced design concepts were identified as potential improvements by Madison Magnetics, Inc. (MMI) during 1984 and 1985 studies of an MSBS utilizing 14 external superconductive coils and a superconductive solenoid in an airplane test model suspended in a wind tunnel. This study confirmed several advanced design concepts on magnetic suspension and balance systems. The 1989 MSBS redesign is based on the results of these experiments. Savings of up to 30 percent in supporting magnet ampere meters and 50 percent in energy stored over the 1985 design were achieved.

  20. A review on the advances in 3D printing and additive manufacturing of ceramics and ceramic matrix composites for optical applications

    NASA Astrophysics Data System (ADS)

    Goodman, William A.

    2017-09-01

    This paper provides a review of advances in 3D printing and additive manufacturing of ceramic and ceramic matrix composites for optical applications. Dr. Goodman has been pioneering additive manufacturing of ceramic matrix composites since 2008. He is the inventor of HoneySiC material, a zero-CTE additively manufactured carbon fiber reinforced silicon carbide ceramic matrix composite, briefly mentioned here. More recently Dr. Goodman has turned his attention to the direct printing of ceramics for optical applications via various techniques including slurry and laser sintering of silicon carbide and other ceramic materials.

  1. High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components

    NASA Technical Reports Server (NTRS)

    DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.

    2004-01-01

    As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices

  2. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1989-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  3. Fiber optics for advanced aircraft

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J.

    1988-01-01

    The increased use of composites makes the digital control more susceptible to electromagnetic effects. In order to provide the protection to the digital control additional shielding will be required as well as protective circuitry for the electronics. This results in increased weight and reduced reliability. The advantages that fiber optic technology provides for advanced aircraft applications is recognized. The use of optical signals to carry information between the aircraft and the control module provides immunity from contamination by electromagnetic sources as well as other important benefits such as reduced weight and volume resulting from the elimination of the shielding and the replacement of metal conductors with low weight glass fibers. In 1975 NASA began work to develop passive optical sensors for use with fiber optics in aircraft control systems. The problem now is to choose the best optical sensor concepts and evaluate them for use. In 1985 NASA and DOD entered into a joint program, Fiber Optic Control System Integration (FOCSI), to look at optical technology specifically for use in advanced aircraft systems. The results of this program are discussed. The conclusion of the study indicated that the use of fiber optic technology in advanced aircraft systems is feasible and desirable. The study pointed to a lack of available sensors from vendors capable of operating in the adverse environments of advanced aircraft.

  4. Energy and momentum management of the Space Station using magnetically suspended composite rotors

    NASA Technical Reports Server (NTRS)

    Eisenhaure, D. B.; Oglevie, R. E.; Keckler, C. R.

    1985-01-01

    The research addresses the feasibility of using magnetically suspended composite rotors to jointly perform the energy and momentum management functions of an advanced manned Space Station. Recent advancements in composite materials, magnetic suspensions, and power conversion electronics have given flywheel concepts the potential to simultaneously perform these functions for large, long duration spacecraft, while offering significant weight, volume, and cost savings over conventional approaches. The Space Station flywheel concept arising out of this study consists of a composite-material rotor, a large-angle magnetic suspension (LAMS) system, an ironless armature motor/generator, and high-efficiency power conversion electronics. The LAMS design permits the application of appropriate spacecraft control torques without the use of conventional mechanical gimbals. In addition, flywheel systems have the growth potential and modularity needed to play a key role in many future system developments.

  5. The Advanced Composition Explorer is placed atop its Delta II launcher at Pad 17A, CCAS

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Advanced Composition Explorer (ACE) spacecraft is placed atop its launch vehicle at Launch Complex 17A. Scheduled for launch on a Delta II rocket from Cape Canaveral Air Station on Aug. 24, ACE will study low-energy particles of solar origin and high-energy galactic particles. The collecting power of instruments aboard ACE is 10 to 1,000 times greater than anything previously flown to collect similar data by NASA.

  6. Investigation of an advanced fault tolerant integrated avionics system

    NASA Technical Reports Server (NTRS)

    Dunn, W. R.; Cottrell, D.; Flanders, J.; Javornik, A.; Rusovick, M.

    1986-01-01

    Presented is an advanced, fault-tolerant multiprocessor avionics architecture as could be employed in an advanced rotorcraft such as LHX. The processor structure is designed to interface with existing digital avionics systems and concepts including the Army Digital Avionics System (ADAS) cockpit/display system, navaid and communications suites, integrated sensing suite, and the Advanced Digital Optical Control System (ADOCS). The report defines mission, maintenance and safety-of-flight reliability goals as might be expected for an operational LHX aircraft. Based on use of a modular, compact (16-bit) microprocessor card family, results of a preliminary study examining simplex, dual and standby-sparing architectures is presented. Given the stated constraints, it is shown that the dual architecture is best suited to meet reliability goals with minimum hardware and software overhead. The report presents hardware and software design considerations for realizing the architecture including redundancy management requirements and techniques as well as verification and validation needs and methods.

  7. Anodic composite deposition of RuO2/reduced graphene oxide/carbon nanotube for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Chi-Chang; Wang, Chia-Wei; Chang, Kuo-Hsin; Chen, Ming-Guan

    2015-07-01

    Anodic composite deposition is demonstrated to be a unique method for fabricating a ternary ruthenium dioxide/reduced graphene oxide/carbon nanotube (RuO2 · xH2O/rGO/CNT, denoted as RGC) nanocomposite onto Ti as an advanced electrode material for supercapacitors. The rGO/CNT composite in RGCs acts as a conductive backbone to facilitate the electron transport between current collector and RuO2 · xH2O nanoparticles (NPs), revealed by the high total specific capacitance (CS,T = 808 F g-1) of RGC without annealing. The contact resistance among RuO2 · xH2O NPs is improved by low-temperature annealing at 150 °C (RGC-150), which renders slight sintering and enhances the specific capacitance of RuO2 · xH2O to achieve 1200 F g-1. The desirable nanocomposite microstructure of RGC-150 builds up the smooth pathways of both protons and electrons to access the active oxy-ruthenium species. This nanocomposite exhibits an extremely high CS,T of 973 F g-1 at 25 mV s-1 (much higher than 435 F g-1 of an annealed RuO2 · xH2O deposit) and good capacitance retention (60.5% with scan rate varying from 5 to 500 mV s-1), revealing an advanced electrode material for high-performance supercapacitors.

  8. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  9. [Development of performance evaluation and management system on advanced schistosomiasis medical treatment].

    PubMed

    Zhou, Xiao-Rong; Huang, Shui-Sheng; Gong, Xin-Guo; Cen, Li-Ping; Zhang, Cong; Zhu, Hong; Yang, Jun-Jing; Chen, Li

    2012-04-01

    To construct a performance evaluation and management system on advanced schistosomiasis medical treatment, and analyze and evaluate the work of the advanced schistosomiasis medical treatment over the years. By applying the database management technique and C++ programming technique, we inputted the information of the advanced schistosomiasis cases into the system, and comprehensively evaluated the work of the advanced schistosomiasis medical treatment through the cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. We made a set of software formula about cost-effect analysis, cost-effectiveness analysis, and cost-benefit analysis. This system had many features such as clear building, easy to operate, friendly surface, convenient information input and information search. It could benefit the performance evaluation of the province's advanced schistosomiasis medical treatment work. This system can satisfy the current needs of advanced schistosomiasis medical treatment work and can be easy to be widely used.

  10. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  11. Design, fabrication and test of graphite/polyimide composite joints and attachments for advanced aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Barclay, D. L.

    1980-01-01

    Results of an experimental program to develop several types of graphite/polyimide (GR/PI) bonded and bolted joints for lightly loaded flight components for advanced space transportation systems and high speed aircraft are presented. Tasks accomplished include: a literature survey; design of static discriminator specimens; design allowables testing; fabrication of test panels and specimens; small specimen testing; and standard joint testing. Detail designs of static discriminator specimens for each of the four major attachment types are presented. Test results are given for the following: (1) transverse tension of Celion 3000/PMR-15 laminate; (2) net tension of a laminate for both a loaded and unloaded bolt hole; (3) comparative testing of bonded and co-cured doublers along with pull-off tests of single and double bonded angles; (4) single lap shear tests, transverse tension and coefficient of thermal expansion tests of A7F (LARC-13 amide-imide modified) adhesive; and (5) tension tests of standard single lap, double lap, and symmetric step lap bonded joints. Also, included are results of a finite element analysis of a single lap bonded composite joint.

  12. NASA's Advanced Solar Sail Propulsion System for Low-Cost Deep Space Exploration and Science Missions that Use High Performance Rollable Composite Booms

    NASA Technical Reports Server (NTRS)

    Fernandez, Juan M.; Rose, Geoffrey K.; Younger, Casey J.; Dean, Gregory D.; Warren, Jerry E.; Stohlman, Olive R.; Wilkie, W. Keats

    2017-01-01

    Several low-cost solar sail technology demonstrator missions are under development in the United States. However, the mass saving derived benefits that composites can offer to such a mass critical spacecraft architecture have not been realized yet. This is due to the lack of suitable composite booms that can fit inside CubeSat platforms and ultimately be readily scalable to much larger sizes, where they can fully optimize their use. With this aim, a new effort focused at developing scalable rollable composite booms for solar sails and other deployable structures has begun. Seven meter booms used to deploy a 90 m2 class solar sail that can fit inside a 6U CubeSat have already been developed. The NASA road map to low-cost solar sail capability demonstration envisioned, consists of increasing the size of these composite booms to enable sailcrafts with a reflective area of up to 2000 m2 housed aboard small satellite platforms. This paper presents a solar sail system initially conceived to serve as a risk reduction alternative to Near Earth Asteroid (NEA) Scout's baseline design but that has recently been slightly redesigned and proposed for follow-on missions. The features of the booms and various deployment mechanisms for the booms and sail, as well as ground support equipment used during testing, are introduced. The results of structural analyses predict the performance of the system under microgravity conditions. Finally, the results of the functional and environmental testing campaign carried out are shown.

  13. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Clear, T. D.; Weibel, R. T.

    An advanced thermal energy storage (TES) media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. This paper describes the composite latent/sensible media concept and its potential advantages over state-of-the-art latent heat systems. Media stability requirements, on-going materials development efforts and planned TES performance evaluation tests are discussed.

  14. Advanced high-temperature thermal energy storage media for industrial applications

    NASA Astrophysics Data System (ADS)

    Claar, T. D.; Waibel, R. T.

    1982-02-01

    An advanced thermal energy storage media concept based on use of carbonate salt/ceramic composite materials is being developed for industrial process and reject heat applications. The composite latent/sensible media concept and its potential advantages over state of the art latent heat systems is described. Media stability requirements, on-going materials development efforts, and planned thermal energy storage (TES) performance evaluation tests are discussed.

  15. Cost analysis of composite fan blade manufacturing processes

    NASA Technical Reports Server (NTRS)

    Stelson, T. S.; Barth, C. F.

    1980-01-01

    The relative manufacturing costs were estimated for large high technology fan blades prepared by advanced composite fabrication methods using seven candidate materials/process systems. These systems were identified as laminated resin matrix composite, filament wound resin matrix composite, superhybrid solid laminate, superhybrid spar/shell, metal matrix composite, metal matrix composite with a spar and shell, and hollow titanium. The costs were calculated utilizing analytical process models and all cost data are presented as normalized relative values where 100 was the cost of a conventionally forged solid titanium fan blade whose geometry corresponded to a size typical of 42 blades per disc. Four costs were calculated for each of the seven candidate systems to relate the variation of cost on blade size. Geometries typical of blade designs at 24, 30, 36 and 42 blades per disc were used. The impact of individual process yield factors on costs was also assessed as well as effects of process parameters, raw materials, labor rates and consumable items.

  16. Radiological study on newly developed composite corn advance lines in Malaysia

    NASA Astrophysics Data System (ADS)

    Adekunle Olatunji, Michael; Bemigho Uwatse, Onosohwo; Uddin Khandaker, Mayeen; Amin, Y. M.; Faruq, G.

    2014-12-01

    Owing to population growth, there has been high demand for food across the world, and hence, different agricultural activities such as use of phosphate fertilizers, recycling of organic matters, etc, have been deployed to increase crop yields. In Malaysia, a total of nine composite corn advance lines have been developed at the Institute of Biological Sciences, University of Malaya and are being grown under different conditions with a bid to meet the average daily human need for energy and fiber intake. To this end, the knowledge of radioactivity levels in these corn advance lines are of paramount importance for the estimation of possible radiological hazards due to its consumption. Hence, the radioactivity concentrations of 226Ra, 228Ra and 40K in the corn have been determined using HPGe γ-ray spectrometry. The activity concentrations in the corn ranged from 0.05 to 19.18 Bq kg-1 for 226Ra, from 0.10 to 3.22 Bq kg-1 for 228Ra and from 26.4 to 129 Bq kg-1 for 40K. In order to ascertain the radiological safety of the population regarding maize consumption, the daily intakes of these radionuclides as well as the annual effective dose were estimated. The total effective dose obtained due to the ingestion of radionuclides via maize consumption is 15.39 μSv y-1, which is less than the international recommendations.

  17. Advanced Design Composite Aircraft (ADCA) Study. Volume I

    DTIC Science & Technology

    1976-11-01

    Aluminum Machined Paits 008 ’— Aluminum Honeycomb 001 - - Steel Machined Parts 0.08 - Titanium 0 66 Fiberglass 1 18 _ Boron Composite 0...Honeycomb 001 ~ Steel Machined Parti 0 09 | Titanium 056 Fi bei glass 037 r i Boron Composite 0 Graphite Composite 6 36 Total 81 2 31 7 42 1...1 Aluminum Machined Parts 006 - 2 1 Aluminum Honeycomb 001 Steel Machined Parts 007 - Trtamum 001 1 Frberglass 029 - Boron Composite 0

  18. Society for the advancement of material and process engineering. 41st International SAMPE symposium and exhibition, Volume 41, Books 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This document contains reports which were presented at the 41st International Society For The Advancement of Material and Process Engineering Symposium and Exhibition. Topics include: structural integrity of aging aircraft; composite materials development; affordable composites and processes; corrosion characterization of aging aircraft; adhesive advances; composite design; dual use materials and processing; repair of aircraft structures; adhesive inspection; materials systems for infrastructure; fire safety; composite impact/energy absorption; advanced materials for space; seismic retrofit; high temperature resins; preform technology; thermoplastics; alternative energy and transportation; manufacturing; and durability. Individual reports have been processed separately for the United States Department of Energy databases.

  19. Modeling of Spacecraft Advanced Chemical Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Benfield, Michael P. J.; Belcher, Jeremy A.

    2004-01-01

    This paper outlines the development of the Advanced Chemical Propulsion System (ACPS) model for Earth and Space Storable propellants. This model was developed by the System Technology Operation of SAIC-Huntsville for the NASA MSFC In-Space Propulsion Project Office. Each subsystem of the model is described. Selected model results will also be shown to demonstrate the model's ability to evaluate technology changes in chemical propulsion systems.

  20. ACEE composite structures technology

    NASA Technical Reports Server (NTRS)

    Klotzsche, M. (Compiler)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program has made significant progress in the development of technology for advanced composites in commercial aircraft. Commercial airframe manufacturers have demonstrated technology readiness and cost effectiveness of advanced composites for secondary and medium primary components and have initiated a concerted program to develop the data base required for efficient application to safety-of-flight wing and fuselage structures. Oral presentations were compiled into five papers. Topics addressed include: damage tolerance and failsafe testing of composite vertical stabilizer; optimization of composite multi-row bolted joints; large wing joint demonstation components; and joints and cutouts in fuselage structure.

  1. Health requirements for advanced coal extraction systems

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.

    1980-01-01

    Health requirements were developed as long range goals for future advanced coal extraction systems which would be introduced into the market in the year 2000. The goal of the requirements is that underground coal miners work in an environment that is as close as possible to the working conditions of the general population, that they do not exceed mortality and morbidity rates resulting from lung diseases that are comparable to those of the general population, and that their working conditions comply as closely as possible to those of other industries as specified by OSHA regulations. A brief technique for evaluating whether proposed advanced systems meet these safety requirements is presented, as well as a discussion of the costs of respiratory disability compensation.

  2. System design impacts on optimization of the advanced radioisotope power system (ARPS) AMTEC cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendricks, T.J.; Huang, C.

    1998-07-01

    Several NASA deep space missions require Advanced Radioisotope Power Systems (ARPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, next- generation RPS to power these spacecraft. Advanced Modular Power Systems, Inc. (AMPS) has begun investigating the design of an AMTEC-based ARPS using the General Purpose Heat Source (GPHS) and the latest PX-5 AMTEC cell technology with refractory materials in critical components. This paper presents and discusses the system design methodology, and results of important system design tradeoffs and system design impacts onmore » the ARPS AMTEC cell design. This work investigated dual 2-GPHS system configurations and 4-GPHS system configurations with 16 side-mounted AMTEC cells operating at beginning-of-mission (BOM) and end-of-mission (EOM) GPHS heat dissipation conditions. Current design studies indicate using a refractory material AMTEC cell with 8-BASE tubes, 5.0 inches long, and 1.75 inches diameter in the 4-GPHS system configuration is the strongest design candidate to satisfy system performance requirements.« less

  3. Composite resins in 2013: an update on their progress.

    PubMed

    Radz, Gary M

    2013-01-01

    Having steadily evolved and improved over the past several decades, composite resins are providing clinicians with an increased array of options for successfully restoring teeth in a minimally invasive manner. Numerous advances compared to early composite resin systems, such as increased shade availability, reduced polymerization shrinkage, and the development of nanoparticles, have enabled composite resins to offer long-term esthetic solutions for patients. This article summarizes the changes that have occurred, discusses popular applications for the use of composite materials, and presents brief case studies demonstrating their capabilities.

  4. Software modifications to the Demonstration Advanced Avionics Systems (DAAS)

    NASA Technical Reports Server (NTRS)

    Nedell, B. F.; Hardy, G. H.

    1984-01-01

    Critical information required for the design of integrated avionics suitable for generation aviation is applied towards software modifications for the Demonstration Advanced Avionics System (DAAS). The program emphasizes the use of data busing, distributed microprocessors, shared electronic displays and data entry devices, and improved functional capability. A demonstration advanced avionics system (DAAS) is designed, built, and flight tested in a Cessna 402, twin engine, general aviation aircraft. Software modifications are made to DAAS at Ames concurrent with the flight test program. The changes are the result of the experience obtained with the system at Ames, and the comments of the pilots who evaluated the system.

  5. Architectural development of an advanced EVA Electronic System

    NASA Technical Reports Server (NTRS)

    Lavelle, Joseph

    1992-01-01

    An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.

  6. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei

    2017-12-01

    In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.

  7. On stability of discrete composite systems.

    NASA Technical Reports Server (NTRS)

    Grujic, L. T.; Siljak, D. D.

    1973-01-01

    Conditions are developed under which exponential stability of a composite discrete system is implied by exponential stability of its subsystems and the nature of their interactions. Stability of the system is determined by testing positive definiteness property of a real symmetric matrix the dimension of which is equal to the number of subsystems.

  8. Development and Performance Evaluations of HfO2-Si and Rare Earth-Si Based Environmental Barrier Bond Coat Systems for SiC/SiC Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming

    2014-01-01

    Ceramic environmental barrier coatings (EBC) and SiCSiC ceramic matrix composites (CMCs) will play a crucial role in future aircraft propulsion systems because of their ability to significantly increase engine operating temperatures, improve component durability, reduce engine weight and cooling requirements. Advanced EBC systems for SiCSiC CMC turbine and combustor hot section components are currently being developed to meet future turbine engine emission and performance goals. One of the significant material development challenges for the high temperature CMC components is to develop prime-reliant, high strength and high temperature capable environmental barrier coating bond coat systems, since the current silicon bond coat cannot meet the advanced EBC-CMC temperature and stability requirements. In this paper, advanced NASA HfO2-Si based EBC bond coat systems for SiCSiC CMC combustor and turbine airfoil applications are investigated. The coating design approach and stability requirements are specifically emphasized, with the development and implementation focusing on Plasma Sprayed (PS) and Electron Beam-Physic Vapor Deposited (EB-PVD) coating systems and the composition optimizations. High temperature properties of the HfO2-Si based bond coat systems, including the strength, fracture toughness, creep resistance, and oxidation resistance were evaluated in the temperature range of 1200 to 1500 C. Thermal gradient heat flux low cycle fatigue and furnace cyclic oxidation durability tests were also performed at temperatures up to 1500 C. The coating strength improvements, degradation and failure modes of the environmental barrier coating bond coat systems on SiCSiC CMCs tested in simulated stress-environment interactions are briefly discussed and supported by modeling. The performance enhancements of the HfO2-Si bond coat systems with rare earth element dopants and rare earth-silicon based bond coats are also highlighted. The advanced bond coat systems, when

  9. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  10. Advanced teleprocessing systems

    NASA Astrophysics Data System (ADS)

    Kleinrock, L.; Gerla, M.

    1983-09-01

    This Semi-Annual Technical Report covers research carried out by the Advanced Teleprocessing Systems Group at UCLA under DARPA Contract No. MDA 903-82-C-0064 covering the period from April 1, 1983 to September 30, 1983. This contract has three primary designated research areas: packet radio systems, resource sharing and allocation, and distributed processing and control. This report contains the abstracts of the publications which summarize our research results in those areas during this semi-annual period, followed by the main body of the report which consists of the Ph.D. dissertation by H. Richard Gail, "On the Optimization of Computer Network Power', conducted under the supervision of Professor Leonard Kleinrock (Principal Investigator for this contract). It addresses the tradeoff between throughput and delay involving the selection of a suitable operating point for a computer network. This tradeoff is studied through the maximization of various throughput-delay performance measures, all known as power. The models analyzed for the most part are those for a terrestrial wire network.

  11. Composite Dry Structure Cost Improvement Approach

    NASA Technical Reports Server (NTRS)

    Nettles, Alan; Nettles, Mindy

    2015-01-01

    This effort demonstrates that by focusing only on properties of relevance, composite interstage and shroud structures can be placed on the Space Launch System vehicle that simultaneously reduces cost, improves reliability, and maximizes performance, thus providing the Advanced Development Group with a new methodology of how to utilize composites to reduce weight for composite structures on launch vehicles. Interstage and shroud structures were chosen since both of these structures are simple in configuration and do not experience extreme environments (such as cryogenic or hot gas temperatures) and should represent a good starting point for flying composites on a 'man-rated' vehicle. They are used as an example only. The project involves using polymer matrix composites for launch vehicle structures, and the logic and rationale behind the proposed new methodology.

  12. Imperfection Insensitivity Analyses of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Farrokh, Babak; Stanford, Bret K.; Weaver, Paul M.

    2016-01-01

    Two advanced composite tow-steered shells, one with tow overlaps and another without overlaps, were previously designed, fabricated and tested in end compression, both without cutouts, and with small and large cutouts. In each case, good agreement was observed between experimental buckling loads and supporting linear bifurcation buckling analyses. However, previous buckling tests and analyses have shown historically poor correlation, perhaps due to the presence of geometric imperfections that serve as failure initiators. For the tow-steered shells, their circumferential variation in axial stiffness may have suppressed this sensitivity to imperfections, leading to the agreement noted between tests and analyses. To investigate this further, a numerical investigation was performed in this study using geometric imperfections measured from both shells. Finite element models of both shells were analyzed first without, and then, with measured imperfections that were then, superposed in different orientations around the shell longitudinal axis. Small variations in both the axial prebuckling stiffness and global buckling load were observed for the range of imperfections studied here, which suggests that the tow steering, and resulting circumferentially varying axial stiffness, may result in the test-analysis correlation observed for these shells.

  13. Method of making a partial interlaminar separation composite system

    NASA Technical Reports Server (NTRS)

    Elber, W. (Inventor)

    1981-01-01

    An interlaminar separation system for composites is disclosed a thin layer of a perforated foil film is interposed between adjacent laminae of a composite formed from prepreg tapes. Laminae adherence takes place through the perforations and a composite structure with improved physical property characteristics is produced.

  14. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; hide

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  15. Advanced Fuel Cell System Thermal Management for NASA Exploration Missions

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth A.

    2009-01-01

    The NASA Glenn Research Center is developing advanced passive thermal management technology to reduce the mass and improve the reliability of space fuel cell systems for the NASA exploration program. An analysis of a state-of-the-art fuel cell cooling systems was done to benchmark the portion of a fuel cell system s mass that is dedicated to thermal management. Additional analysis was done to determine the key performance targets of the advanced passive thermal management technology that would substantially reduce fuel cell system mass.

  16. Erosion Coatings for High-Temperature Polymer Composites: A Collaborative Project With Allison Advanced Development Company

    NASA Technical Reports Server (NTRS)

    Sutter, James K.

    2000-01-01

    composite (ASTM D 4541 95 "Pull Off Strength of Coatings"). Glenn and Allison Advanced Development Company collaborated to optimize erosion coatings for gas turbine fan and compressor applications. All the coating systems survived aggressive thermal cycling without spalling. During erosion tests (see the final photo), the most promising coating systems tested had Cr3C2-NiCr and WC-Co as the hard topcoats. In all cases, these coating systems performed significantly better than that with a TiN hard topcoat. When material depth (thickness) loss is considered, the Cr3C2-NiCr and WC-Co coating systems provided, on average, an erosion resistance 8.5 times greater than that for the uncoated PMR 15/T650 35 composite. Similarly, Cr3C2-NiCr and WC-Co coating systems adhered to the PMC substrate during tensile tests significantly better than systems containing a TiN topcoat. Differences in topcoats of Cr3C2-NiCr and WC-Co were determined by considering issues such as cost and environmental impact. The preferred erosion-resistant coating system for PMR 15/T650 35 has WC-Co as the hard topcoat. This system provides the following benefits in comparison to the coating system with Cr3C2-NiCr topcoat: lower powder material cost (15 to 20 percent), environmentally friendly materials (Cr3C2-NiCr is hazardous), and higher deposition yield (10 to 15 percent), which results in less waste.

  17. Advanced electrophysiologic mapping systems: an evidence-based analysis.

    PubMed

    2006-01-01

    To assess the effectiveness, cost-effectiveness, and demand in Ontario for catheter ablation of complex arrhythmias guided by advanced nonfluoroscopy mapping systems. Particular attention was paid to ablation for atrial fibrillation (AF). Tachycardia Tachycardia refers to a diverse group of arrhythmias characterized by heart rates that are greater than 100 beats per minute. It results from abnormal firing of electrical impulses from heart tissues or abnormal electrical pathways in the heart because of scars. Tachycardia may be asymptomatic, or it may adversely affect quality of life owing to symptoms such as palpitations, headaches, shortness of breath, weakness, dizziness, and syncope. Atrial fibrillation, the most common sustained arrhythmia, affects about 99,000 people in Ontario. It is associated with higher morbidity and mortality because of increased risk of stroke, embolism, and congestive heart failure. In atrial fibrillation, most of the abnormal arrhythmogenic foci are located inside the pulmonary veins, although the atrium may also be responsible for triggering or perpetuating atrial fibrillation. Ventricular tachycardia, often found in patients with ischemic heart disease and a history of myocardial infarction, is often life-threatening; it accounts for about 50% of sudden deaths. Treatment of Tachycardia The first line of treatment for tachycardia is antiarrhythmic drugs; for atrial fibrillation, anticoagulation drugs are also used to prevent stroke. For patients refractory to or unable to tolerate antiarrhythmic drugs, ablation of the arrhythmogenic heart tissues is the only option. Surgical ablation such as the Cox-Maze procedure is more invasive. Catheter ablation, involving the delivery of energy (most commonly radiofrequency) via a percutaneous catheter system guided by X-ray fluoroscopy, has been used in place of surgical ablation for many patients. However, this conventional approach in catheter ablation has not been found to be effective for

  18. Advanced EVA system design requirements study, executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Design requirements and criteria for the space station advanced Extravehicular Activity System (EVAS) including crew enclosures, portable life support systems, maneuvering propulsion systems, and related EVA support equipment were established. The EVA mission requirements, environments, and medical and physiological requirements, as well as operational, procedures and training issues were considered.

  19. Advanced manufacturing development of a composite empennage component for L-1011 aircraft. Phase 4: Full scale ground test

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Dorwald, F.

    1982-01-01

    The ground tests conducted on the advanced composite vertical fin (ACVF) program are described. The design and fabrication of the test fixture and the transition structure, static test of Ground Test Article (GTA) No. 1, rework of GTA No. 2, and static, damage tolerance, fail-safe and residual strength tests of GTA No. 2 are described.

  20. Combined-load stress-strain relationship for advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sullivan, T. L.

    1975-01-01

    It was demonstrated experimentally that only one test specimen is required to determine the combined-load stress-strain relationships of a given fiber composite system. These relationships were determined using a thin angle-plied laminate tube and subjecting it to a number of combined-loading conditions. The measured data obtained are compared with theoretical predictions. Some important considerations associated with such a test are identified, and the significance of combined-load stress-strain relationships in certain practical designs are discussed.

  1. Fiber-optically sensorized composite wing

    NASA Astrophysics Data System (ADS)

    Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George

    2014-04-01

    Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.

  2. Economically effective material forms for composites

    NASA Astrophysics Data System (ADS)

    Woolstencroft, Dave

    This paper will consider advanced composites and the new degrees of freedom that are available to the composites engineer to be able to make parts that combine both an economic performance superior to existing systems, with no additional production investment, and high mechanical property translations. This unique advantage comes about through some pioneering and innovative work in the different forms of material into which the reinforcing fibers can be configured. The presentation will highlight the unique advantages and show a pioneering aerostructural application of this material form.

  3. Advancing the practice of systems engineering at JPL

    NASA Technical Reports Server (NTRS)

    Jansma, Patti A.; Jones, Ross M.

    2006-01-01

    In FY 2004, JPL launched an initiative to improve the way it practices systems engineering. The Lab's senior management formed the Systems Engineering Advancement (SEA) Project in order to "significantly advance the practice and organizational capabilities of systems engineering at JPL on flight projects and ground support tasks." The scope of the SEA Project includes the systems engineering work performed in all three dimensions of a program, project, or task: 1. the full life-cycle, i.e., concept through end of operations 2. the full depth, i.e., Program, Project, System, Subsystem, Element (SE Levels 1 to 5) 3. the full technical scope, e.g., the flight, ground and launch systems, avionics, power, propulsion, telecommunications, thermal, etc. The initial focus of their efforts defined the following basic systems engineering functions at JPL: systems architecture, requirements management, interface definition, technical resource management, system design and analysis, system verification and validation, risk management, technical peer reviews, design process management and systems engineering task management, They also developed a list of highly valued personal behaviors of systems engineers, and are working to inculcate those behaviors into members of their systems engineering community. The SEA Project is developing products, services, and training to support managers and practitioners throughout the entire system lifecycle. As these are developed, each one needs to be systematically deployed. Hence, the SEA Project developed a deployment process that includes four aspects: infrastructure and operations, communication and outreach, education and training, and consulting support. In addition, the SEA Project has taken a proactive approach to organizational change management and customer relationship management - both concepts and approaches not usually invoked in an engineering environment. This paper'3 describes JPL's approach to advancing the practice of

  4. Benefits assessment of advanced public transportation system technologies, update 2000

    DOT National Transportation Integrated Search

    This report was performed under the Federal Transit Administration's (FTA) Advanced Public Transportation Systems (APTS) Program. This program focuses on the development and demonstration of innovative advanced navigation, information and communicati...

  5. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  6. Advanced Engineering Fibers.

    ERIC Educational Resources Information Center

    Edie, Dan D.; Dunham, Michael G.

    1987-01-01

    Describes Clemson University's Advanced Engineered Fibers Laboratory, which was established to provide national leadership and expertise in developing the processing equipment and advance fibers necessary for the chemical, fiber, and textile industries to enter the composite materials market. Discusses some of the laboratory's activities in…

  7. Fuselage structure using advanced technology fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Robinson, R. K.; Tomlinson, H. M. (Inventor)

    1982-01-01

    A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.

  8. Advanced-technology space station study: Summary of systems and pacing technologies

    NASA Technical Reports Server (NTRS)

    Butterfield, A. J.; Garn, P. A.; King, C. B.; Queijo, M. J.

    1990-01-01

    The principal system features defined for the Advanced Technology Space Station are summarized and the 21 pacing technologies identified during the course of the study are described. The descriptions of system configurations were extracted from four previous study reports. The technological areas focus on those systems particular to all large spacecraft which generate artificial gravity by rotation. The summary includes a listing of the functions, crew requirements and electrical power demand that led to the studied configuration. The pacing technologies include the benefits of advanced materials, in-orbit assembly requirements, stationkeeping, evaluations of electrical power generation alternates, and life support systems. The descriptions of systems show the potential for synergies and identifies the beneficial interactions that can result from technological advances.

  9. Advanced electromagnetic methods for aerospace vehicles

    NASA Technical Reports Server (NTRS)

    Balanis, Constantine A.; El-Sharawy, El-Budawy; Hashemi-Yeganeh, Shahrokh; Aberle, James T.; Birtcher, Craig R.

    1991-01-01

    The Advanced Helicopter Electromagnetics is centered on issues that advance technology related to helicopter electromagnetics. Progress was made on three major topics: composite materials; precipitation static corona discharge; and antenna technology. In composite materials, the research has focused on the measurements of their electrical properties, and the modeling of material discontinuities and their effect on the radiation pattern of antennas mounted on or near material surfaces. The electrical properties were used to model antenna performance when mounted on composite materials. Since helicopter platforms include several antenna systems at VHF and UHF bands, measuring techniques are being explored that can be used to measure the properties at these bands. The effort on corona discharge and precipitation static was directed toward the development of a new two dimensional Voltage Finite Difference Time Domain computer program. Results indicate the feasibility of using potentials for simulating electromagnetic problems in the cases where potentials become primary sources. In antenna technology the focus was on Polarization Diverse Conformal Microstrip Antennas, Cavity Backed Slot Antennas, and Varactor Tuned Circular Patch Antennas. Numerical codes were developed for the analysis of two probe fed rectangular and circular microstrip patch antennas fed by resistive and reactive power divider networks.

  10. Advanced Radioisotope Power Systems Segmented Thermoelectric Research

    NASA Technical Reports Server (NTRS)

    Caillat, Thierry

    2004-01-01

    Flight times are long; - Need power systems with >15 years life. Mass is at an absolute premium; - Need power systems with high specific power and scalability. 3 orders of magnitude reduction in solar irradiance from Earth to Pluto. Nuclear power sources preferable. The Overall objective is to develop low mass, high efficiency, low-cost Advanced Radioisotope Power System with double the Specific Power and Efficiency over state-of-the-art Radioisotope Thermoelectric Generators (RTGs).

  11. Nanomaterials for Advanced Life Support in Advanced Life Support in Space systems

    NASA Technical Reports Server (NTRS)

    Allada, Rama Kumar; Moloney, Padraig; Yowell, Leonard

    2006-01-01

    A viewgraph presentation describing nanomaterial research at NASA Johnson Space Center with a focus on advanced life support in space systems is shown. The topics include: 1) Introduction; 2) Research and accomplishments in Carbon Dioxide Removal; 3) Research and Accomplishments in Water Purification; and 4) Next Steps

  12. Development, Implementation and Application of Micromechanical Analysis Tools for Advanced High Temperature Composites

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This document contains the final report to the NASA Glenn Research Center (GRC) for the research project entitled Development, Implementation, and Application of Micromechanical Analysis Tools for Advanced High-Temperature Composites. The research supporting this initiative has been conducted by Dr. Brett A. Bednarcyk, a Senior Scientist at OM in Brookpark, Ohio from the period of August 1998 to March 2005. Most of the work summarized herein involved development, implementation, and application of enhancements and new capabilities for NASA GRC's Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) software package. When the project began, this software was at a low TRL (3-4) and at release version 2.0. Due to this project, the TRL of MAC/GMC has been raised to 7 and two new versions (3.0 and 4.0) have been released. The most important accomplishments with respect to MAC/GMC are: (1) A multi-scale framework has been built around the software, enabling coupled design and analysis from the global structure scale down to the micro fiber-matrix scale; (2) The software has been expanded to analyze smart materials; (3) State-of-the-art micromechanics theories have been implemented and validated within the code; (4) The damage, failure, and lifing capabilities of the code have been expanded from a very limited state to a vast degree of functionality and utility; and (5) The user flexibility of the code has been significantly enhanced. MAC/GMC is now the premier code for design and analysis of advanced composite and smart materials. It is a candidate for the 2005 NASA Software of the Year Award. The work completed over the course of the project is summarized below on a year by year basis. All publications resulting from the project are listed at the end of this report.

  13. Advanced Collaborative Environments Supporting Systems Integration and Design

    DTIC Science & Technology

    2003-03-01

    concurrently view a virtual system or product model while maintaining natural, human communication . These virtual systems operate within a computer-generated...These environments allow multiple individuals to concurrently view a virtual system or product model while simultaneously maintaining natural, human ... communication . As a result, TARDEC researchers and system developers are using this advanced high-end visualization technology to develop future

  14. T/BEST: Technology Benefit Estimator for Composites and Applications to Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos

    1997-01-01

    Progress in the field of aerospace propulsion has heightened the need to combine advanced technologies. These benefits will provide guidelines for identifying and prioritizing high-payoff research areas, will help manage research with limited resources, and will show the link between advanced and basic concepts. An effort was undertaken at the NASA Lewis Research Center to develop a formal computational method, T/BEST (Technology Benefit Estimator), to assess advanced aerospace technologies, such as fibrous composites, and credibly communicate the benefits of research. Fibrous composites are ideal for structural applications such as high-performance aircraft engine blades where high strength-to-weight and stiffness-to-weight ratios are required. These factors - along with the flexibility to select the composite system and layup, and to favorably orient fiber directions - reduce the displacements and stresses caused by large rotational speeds in aircraft engines.

  15. Evaluation of NDOR's actuated advance warning systems.

    DOT National Transportation Integrated Search

    2011-12-01

    "Driver behavior within the dilemma zone can be a major safety concern at high-speed signalized intersections. The : Nebraska Department of Roads (NDOR) has developed and implemented an actuated advance warning (AAW) dilemma : zone protection system....

  16. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  17. Advanced technology and future earth-orbit transportation systems

    NASA Technical Reports Server (NTRS)

    Henry, B. Z.; Eldred, C. H.

    1977-01-01

    The paper is concerned with the identification and evaluation of technology developments which offer potential for high return on investment when applied to advanced transportation systems. These procedures are applied in a study of winged single-stage-to-orbit (SSTO) vehicles, which are considered feasible by the 1990s. Advanced technology is considered a key element in achieving improved economics, and near term investment in selected technology areas is recommended.

  18. Space Shuttle Main Engine: Advanced Health Monitoring System

    NASA Technical Reports Server (NTRS)

    Singer, Chirs

    1999-01-01

    The main gola of the Space Shuttle Main Engine (SSME) Advanced Health Management system is to improve flight safety. To this end the new SSME has robust new components to improve the operating margen and operability. The features of the current SSME health monitoring system, include automated checkouts, closed loop redundant control system, catastropic failure mitigation, fail operational/ fail-safe algorithms, and post flight data and inspection trend analysis. The features of the advanced health monitoring system include: a real time vibration monitor system, a linear engine model, and an optical plume anomaly detection system. Since vibration is a fundamental measure of SSME turbopump health, it stands to reason that monitoring the vibration, will give some idea of the health of the turbopumps. However, how is it possible to avoid shutdown, when it is not necessary. A sensor algorithm has been developed which has been exposed to over 400 test cases in order to evaluate the logic. The optical plume anomaly detection (OPAD) has been developed to be a sensitive monitor of engine wear, erosion, and breakage.

  19. Advanced rural transportation systems (ARTS) : strategic plan

    DOT National Transportation Integrated Search

    1997-08-01

    This Strategic Plan has been developed for the Advanced Rural Transportation Systems (ARTS) portion of the ITS Program. The plan focuses on the Federal Government's role in developing rural ITS options and prudently managing emerging ITS technologies...

  20. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  1. Self repairing composites for drone air vehicles

    NASA Astrophysics Data System (ADS)

    Dry, Carolyn

    2015-04-01

    The objective of this effort was to demonstrate the feasibility of impact-initiated delivery of repair chemicals through hollow fiber architectures embedded within graphite fiber reinforced polymer matrix composites, representative of advanced drone aircraft component material systems. Self-repairing structures through coupon and elements were demonstrated, and evaluated.

  2. Identification of salt-alloy combinations for thermal energy storage applications in advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Misra, A. K.

    1987-01-01

    Thermodynamic calculations based on the available data for flouride salt systems reveal that a number of congruently melting compositions and eutectics exist which have the potential to meet the lightweight, high energy storage requirements imposed for advanced solar dynamic systems operating between about 1000 and 1400 K. Compatibility studies to determine suitable containment alloys to be used with NaF-22CaF2-13MgF2, NaF-32CaF2, and NaF-23MgF2 have been conducted at the eutectic temperature + 25 K for each system. For these three NaF-based eutectics, none of the common, commercially available high temperature alloys appear to offer adequate corrosion resistance for a long lifetime; however mild steel, pure nickel and Nb-1Zr could prove useful. These latter materials suggest the possibility that a strong, corrosion resistant, nonrefractory, elevated temperature alloy based on the Ni-Ni3Nb system could be developed.

  3. Advanced Exploration Systems Water Architecture Study Interim Results

    NASA Technical Reports Server (NTRS)

    Sargusingh, Miriam J.

    2013-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  4. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  5. The freight shuttle system : advancing commercial readiness.

    DOT National Transportation Integrated Search

    2011-01-01

    This report summarizes the results of research aimed at advancing the commercial readiness of a new hybrid : mode of intermodal freight transportation called the Freight Shuttle System (FSS). The FSS represents a : unique combination of the best feat...

  6. Systems engineering and integration: Advanced avionics laboratories

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In order to develop the new generation of avionics which will be necessary for upcoming programs such as the Lunar/Mars Initiative, Advanced Launch System, and the National Aerospace Plane, new Advanced Avionics Laboratories are required. To minimize costs and maximize benefits, these laboratories should be capable of supporting multiple avionics development efforts at a single location, and should be of a common design to support and encourage data sharing. Recent technological advances provide the capability of letting the designer or analyst perform simulations and testing in an environment similar to his engineering environment and these features should be incorporated into the new laboratories. Existing and emerging hardware and software standards must be incorporated wherever possible to provide additional cost savings and compatibility. Special care must be taken to design the laboratories such that real-time hardware-in-the-loop performance is not sacrificed in the pursuit of these goals. A special program-independent funding source should be identified for the development of Advanced Avionics Laboratories as resources supporting a wide range of upcoming NASA programs.

  7. NASA's advanced space transportation system launch vehicles

    NASA Technical Reports Server (NTRS)

    Branscome, Darrell R.

    1991-01-01

    Some insight is provided into the advanced transportation planning and systems that will evolve to support long term mission requirements. The general requirements include: launch and lift capacity to low earth orbit (LEO); space based transfer systems for orbital operations between LEO and geosynchronous equatorial orbit (GEO), the Moon, and Mars; and Transfer vehicle systems for long duration deep space probes. These mission requirements are incorporated in the NASA Civil Needs Data Base. To accomplish these mission goals, adequate lift capacity to LEO must be available: to support science and application missions; to provide for construction of the Space Station Freedom; and to support resupply of personnel and supplies for its operations. Growth in lift capacity must be time phased to support an expanding mission model that includes Freedom Station, the Mission to Planet Earth, and an expanded robotic planetary program. The near term increase in cargo lift capacity associated with development of the Shuttle-C is addressed. The joint DOD/NASA Advanced Launch System studies are focused on a longer term new cargo capability that will significantly reduce costs of placing payloads in space.

  8. Advanced materials for space nuclear power systems

    NASA Technical Reports Server (NTRS)

    Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.

    1991-01-01

    The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.

  9. Carbon fiber composites for cryogenic filament-wound vessels

    NASA Technical Reports Server (NTRS)

    Larsen, J. V.; Simon, R. A.

    1972-01-01

    Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.

  10. Recent advances in systems metabolic engineering tools and strategies.

    PubMed

    Chae, Tong Un; Choi, So Young; Kim, Je Woong; Ko, Yoo-Sung; Lee, Sang Yup

    2017-10-01

    Metabolic engineering has been playing increasingly important roles in developing microbial cell factories for the production of various chemicals and materials to achieve sustainable chemical industry. Nowadays, many tools and strategies are available for performing systems metabolic engineering that allows systems-level metabolic engineering in more sophisticated and diverse ways by adopting rapidly advancing methodologies and tools of systems biology, synthetic biology and evolutionary engineering. As an outcome, development of more efficient microbial cell factories has become possible. Here, we review recent advances in systems metabolic engineering tools and strategies together with accompanying application examples. In addition, we describe how these tools and strategies work together in simultaneous and synergistic ways to develop novel microbial cell factories. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Identification of novel compositions of ferromagnetic shape-memory alloys using composition spreads.

    PubMed

    Takeuchi, I; Famodu, O O; Read, J C; Aronova, M A; Chang, K-S; Craciunescu, C; Lofland, S E; Wuttig, M; Wellstood, F C; Knauss, L; Orozco, A

    2003-03-01

    Exploration of new ferroic (ferroelectric, ferromagnetic or ferroelastic) materials continues to be a central theme in condensed matter physics and to drive advances in key areas of technology. Here, using thin-film composition spreads, we have mapped the functional phase diagram of the Ni-Mn-Ga system whose Heusler composition Ni(2)MnGa is a well known ferromagnetic shape-memory alloy. A characterization technique that allows detection of martensitic transitions by visual inspection was combined with quantitative magnetization mapping using scanning SQUID (superconducting quantum interference device) microscopy. We find that a large, previously unexplored region outside the Heusler composition contains reversible martensites that are also ferromagnetic. A clear relationship between magnetization and the martensitic transition temperature is observed, revealing a strong thermodynamical coupling between magnetism and martensitic instability across a large fraction of the phase diagram.

  12. Recent advancements in the SQUID magnetospinogram system

    NASA Astrophysics Data System (ADS)

    Adachi, Yoshiaki; Kawai, Jun; Haruta, Yasuhiro; Miyamoto, Masakazu; Kawabata, Shigenori; Sekihara, Kensuke; Uehara, Gen

    2017-06-01

    In this study, a new superconducting quantum interference device (SQUID) biomagnetic measurement system known as magnetospinogram (MSG) is developed. The MSG system is used for observation of a weak magnetic field distribution induced by the neural activity of the spinal cord over the body surface. The current source reconstruction for the observed magnetic field distribution provides noninvasive functional imaging of the spinal cord, which enables medical personnel to diagnose spinal cord diseases more accurately. The MSG system is equipped with a uniquely shaped cryostat and a sensor array of vector-type SQUID gradiometers that are designed to detect the magnetic field from deep sources across a narrow observation area over the body surface of supine subjects. The latest prototype of the MSG system is already applied in clinical studies to develop a diagnosis protocol for spinal cord diseases. Advancements in hardware and software for MSG signal processing and cryogenic components aid in effectively suppressing external magnetic field noise and reducing the cost of liquid helium that act as barriers with respect to the introduction of the MSG system to hospitals. The application of the MSG system is extended to various biomagnetic applications in addition to spinal cord functional imaging given the advantages of the MSG system for investigating deep sources. The study also includes a report on the recent advancements of the SQUID MSG system including its peripheral technologies and wide-spread applications.

  13. Dispersion of Lamb waves in a honeycomb composite sandwich panel.

    PubMed

    Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit

    2015-02-01

    Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Conceptual definition of a technology development mission for advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, R. P.

    1986-01-01

    An initial conceptual definition of a technology development mission for advanced solar dynamic power systems is provided, utilizing a space station to provide a dedicated test facility. The advanced power systems considered included Brayton, Stirling, and liquid metal Rankine systems operating in the temperature range of 1040 to 1400 K. The critical technologies for advanced systems were identified by reviewing the current state of the art of solar dynamic power systems. The experimental requirements were determined by planning a system test of a 20 kWe solar dynamic power system on the space station test facility. These requirements were documented via the Mission Requirements Working Group (MRWG) and Technology Development Advocacy Group (TDAG) forms. Various concepts or considerations of advanced concepts are discussed. A preliminary evolutionary plan for this technology development mission was prepared.

  15. Recent Advances in Composite Damage Mechanics

    NASA Technical Reports Server (NTRS)

    Reifsnider, Ken; Case, Scott; Iyengar, Nirmal

    1996-01-01

    The state of the art and recent developments in the field of composite material damage mechanics are reviewed, with emphasis on damage accumulation. The kinetics of damage accumulation are considered with emphasis on the general accumulation of discrete local damage events such as single or multiple fiber fractures or microcrack formation. The issues addressed include: how to define strength in the presence of widely distributed damage, and how to combine mechanical representations in order to predict the damage tolerance and life of engineering components. It is shown that a damage mechanics approach can be related to the thermodynamics of the damage accumulation processes in composite laminates subjected to mechanical loading and environmental conditions over long periods of time.

  16. Manufacturing development of DC-10 advanced rudder

    NASA Technical Reports Server (NTRS)

    Cominsky, A.

    1979-01-01

    The design, manufacture, and ground test activities during development of production methods for an advanced composite rudder for the DC-10 transport aircraft are described. The advanced composite aft rudder is satisfactory for airline service and a cost saving in a full production manufacturing mode is anticipated.

  17. Automation of cutting and drilling of composite components

    NASA Technical Reports Server (NTRS)

    Warren, Charles W.

    1991-01-01

    The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.

  18. Polypropylene/glass fiber hierarchical composites incorporating inorganic fullerene-like nanoparticles for advanced technological applications.

    PubMed

    Díez-Pascual, Ana M; Naffakh, Mohammed

    2013-10-09

    Novel isotactic polypropylene (iPP)/glass fiber (GF) laminates reinforced with inorganic fullerene-like tungsten disulfide (IF-WS2) nanoparticles as environmentally friendly fillers have been successfully fabricated by simple melt-blending and fiber impregnation in a hot-press without the addition of any compatibilizer. The influence of IF-WS2 concentration on the morphology, viscosity. and thermal and mechanical behavior of the hierarchical composites has been investigated. Results revealed an unprecedented 62 °C increase in the degradation temperature of iPP/GF upon addition of only 4.0 wt % IF-WS2. The coexistence of both micro- and nanoscale fillers resulted in synergistic effects on enhancing the stiffness, strength, crystallinity, thermal stability, glass transition (Tg) and heat distortion temperature (HDT) of the matrix. The approach used in this work is an efficient, versatile, scalable and economic strategy to improve the mechanical and thermal behavior of GF-reinforced thermoplastics with a view to extend their use in advanced technological applications. This new type of composite materials shows great potential to improve the efficiency and sustainability of many forms of transport.

  19. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  20. Advanced processing for high-bandwidth sensor systems

    NASA Astrophysics Data System (ADS)

    Szymanski, John J.; Blain, Phil C.; Bloch, Jeffrey J.; Brislawn, Christopher M.; Brumby, Steven P.; Cafferty, Maureen M.; Dunham, Mark E.; Frigo, Janette R.; Gokhale, Maya; Harvey, Neal R.; Kenyon, Garrett; Kim, Won-Ha; Layne, J.; Lavenier, Dominique D.; McCabe, Kevin P.; Mitchell, Melanie; Moore, Kurt R.; Perkins, Simon J.; Porter, Reid B.; Robinson, S.; Salazar, Alfonso; Theiler, James P.; Young, Aaron C.

    2000-11-01

    Compute performance and algorithm design are key problems of image processing and scientific computing in general. For example, imaging spectrometers are capable of producing data in hundreds of spectral bands with millions of pixels. These data sets show great promise for remote sensing applications, but require new and computationally intensive processing. The goal of the Deployable Adaptive Processing Systems (DAPS) project at Los Alamos National Laboratory is to develop advanced processing hardware and algorithms for high-bandwidth sensor applications. The project has produced electronics for processing multi- and hyper-spectral sensor data, as well as LIDAR data, while employing processing elements using a variety of technologies. The project team is currently working on reconfigurable computing technology and advanced feature extraction techniques, with an emphasis on their application to image and RF signal processing. This paper presents reconfigurable computing technology and advanced feature extraction algorithm work and their application to multi- and hyperspectral image processing. Related projects on genetic algorithms as applied to image processing will be introduced, as will the collaboration between the DAPS project and the DARPA Adaptive Computing Systems program. Further details are presented in other talks during this conference and in other conferences taking place during this symposium.