Sample records for advanced computing research

  1. Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2000-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center. It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. Ames has been designated NASA's Center of Excellence in Information Technology. In this capacity, Ames is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA Ames and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth; (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking. Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to a

  2. [Activities of Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Gross, Anthony R. (Technical Monitor); Leiner, Barry M.

    2001-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administrations missions. RIACS is located at the NASA Ames Research Center, Moffett Field, California. RIACS research focuses on the three cornerstones of IT research necessary to meet the future challenges of NASA missions: 1. Automated Reasoning for Autonomous Systems Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. 2. Human-Centered Computing Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities. 3. High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to analysis of large scientific datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply IT research to a variety of NASA application domains. RIACS also engages in other activities, such as workshops, seminars, visiting scientist programs and student summer programs, designed to encourage and facilitate collaboration between the university and NASA IT research communities.

  3. Activities of the Research Institute for Advanced Computer Science

    NASA Technical Reports Server (NTRS)

    Oliger, Joseph

    1994-01-01

    The Research Institute for Advanced Computer Science (RIACS) was established by the Universities Space Research Association (USRA) at the NASA Ames Research Center (ARC) on June 6, 1983. RIACS is privately operated by USRA, a consortium of universities with research programs in the aerospace sciences, under contract with NASA. The primary mission of RIACS is to provide research and expertise in computer science and scientific computing to support the scientific missions of NASA ARC. The research carried out at RIACS must change its emphasis from year to year in response to NASA ARC's changing needs and technological opportunities. Research at RIACS is currently being done in the following areas: (1) parallel computing; (2) advanced methods for scientific computing; (3) high performance networks; and (4) learning systems. RIACS technical reports are usually preprints of manuscripts that have been submitted to research journals or conference proceedings. A list of these reports for the period January 1, 1994 through December 31, 1994 is in the Reports and Abstracts section of this report.

  4. Bringing Advanced Computational Techniques to Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  5. Advanced Scientific Computing Research Exascale Requirements Review. An Office of Science review sponsored by Advanced Scientific Computing Research, September 27-29, 2016, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almgren, Ann; DeMar, Phil; Vetter, Jeffrey

    The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of themore » U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.« less

  6. First 3 years of operation of RIACS (Research Institute for Advanced Computer Science) (1983-1985)

    NASA Technical Reports Server (NTRS)

    Denning, P. J.

    1986-01-01

    The focus of the Research Institute for Advanced Computer Science (RIACS) is to explore matches between advanced computing architectures and the processes of scientific research. An architecture evaluation of the MIT static dataflow machine, specification of a graphical language for expressing distributed computations, and specification of an expert system for aiding in grid generation for two-dimensional flow problems was initiated. Research projects for 1984 and 1985 are summarized.

  7. Center for Advanced Computational Technology

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    2000-01-01

    The Center for Advanced Computational Technology (ACT) was established to serve as a focal point for diverse research activities pertaining to application of advanced computational technology to future aerospace systems. These activities include the use of numerical simulations, artificial intelligence methods, multimedia and synthetic environments, and computational intelligence, in the modeling, analysis, sensitivity studies, optimization, design and operation of future aerospace systems. The Center is located at NASA Langley and is an integral part of the School of Engineering and Applied Science of the University of Virginia. The Center has four specific objectives: 1) conduct innovative research on applications of advanced computational technology to aerospace systems; 2) act as pathfinder by demonstrating to the research community what can be done (high-potential, high-risk research); 3) help in identifying future directions of research in support of the aeronautical and space missions of the twenty-first century; and 4) help in the rapid transfer of research results to industry and in broadening awareness among researchers and engineers of the state-of-the-art in applications of advanced computational technology to the analysis, design prototyping and operations of aerospace and other high-performance engineering systems. In addition to research, Center activities include helping in the planning and coordination of the activities of a multi-center team of NASA and JPL researchers who are developing an intelligent synthesis environment for future aerospace systems; organizing workshops and national symposia; as well as writing state-of-the-art monographs and NASA special publications on timely topics.

  8. Research Institute for Advanced Computer Science: Annual Report October 1998 through September 1999

    NASA Technical Reports Server (NTRS)

    Leiner, Barry M.; Gross, Anthony R. (Technical Monitor)

    1999-01-01

    The Research Institute for Advanced Computer Science (RIACS) carries out basic research and technology development in computer science, in support of the National Aeronautics and Space Administration's missions. RIACS is located at the NASA Ames Research Center (ARC). It currently operates under a multiple year grant/cooperative agreement that began on October 1, 1997 and is up for renewal in the year 2002. ARC has been designated NASA's Center of Excellence in Information Technology. In this capacity, ARC is charged with the responsibility to build an Information Technology Research Program that is preeminent within NASA. RIACS serves as a bridge between NASA ARC and the academic community, and RIACS scientists and visitors work in close collaboration with NASA scientists. RIACS has the additional goal of broadening the base of researchers in these areas of importance to the nation's space and aeronautics enterprises. RIACS research focuses on the three cornerstones of information technology research necessary to meet the future challenges of NASA missions: (1) Automated Reasoning for Autonomous Systems. Techniques are being developed enabling spacecraft that will be self-guiding and self-correcting to the extent that they will require little or no human intervention. Such craft will be equipped to independently solve problems as they arise, and fulfill their missions with minimum direction from Earth. (2) Human-Centered Computing. Many NASA missions require synergy between humans and computers, with sophisticated computational aids amplifying human cognitive and perceptual abilities; (3) High Performance Computing and Networking Advances in the performance of computing and networking continue to have major impact on a variety of NASA endeavors, ranging from modeling and simulation to data analysis of large datasets to collaborative engineering, planning and execution. In addition, RIACS collaborates with NASA scientists to apply information technology research to

  9. Research | Computational Science | NREL

    Science.gov Websites

    Research Research NREL's computational science experts use advanced high-performance computing (HPC technologies, thereby accelerating the transformation of our nation's energy system. Enabling High-Impact Research NREL's computational science capabilities enable high-impact research. Some recent examples

  10. 75 FR 9887 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-04

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building...

  11. 76 FR 9765 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Office of Science... Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub. L. 92... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research, SC-21/Germantown Building...

  12. NASA's computer science research program

    NASA Technical Reports Server (NTRS)

    Larsen, R. L.

    1983-01-01

    Following a major assessment of NASA's computing technology needs, a new program of computer science research has been initiated by the Agency. The program includes work in concurrent processing, management of large scale scientific databases, software engineering, reliable computing, and artificial intelligence. The program is driven by applications requirements in computational fluid dynamics, image processing, sensor data management, real-time mission control and autonomous systems. It consists of university research, in-house NASA research, and NASA's Research Institute for Advanced Computer Science (RIACS) and Institute for Computer Applications in Science and Engineering (ICASE). The overall goal is to provide the technical foundation within NASA to exploit advancing computing technology in aerospace applications.

  13. Advanced Biomedical Computing Center (ABCC) | DSITP

    Cancer.gov

    The Advanced Biomedical Computing Center (ABCC), located in Frederick Maryland (MD), provides HPC resources for both NIH/NCI intramural scientists and the extramural biomedical research community. Its mission is to provide HPC support, to provide collaborative research, and to conduct in-house research in various areas of computational biology and biomedical research.

  14. 75 FR 64720 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Department of... the Advanced Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L.... FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21...

  15. 76 FR 41234 - Advanced Scientific Computing Advisory Committee Charter Renewal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... Secretariat, General Services Administration, notice is hereby given that the Advanced Scientific Computing... advice and recommendations concerning the Advanced Scientific Computing program in response only to... Advanced Scientific Computing Research program and recommendations based thereon; --Advice on the computing...

  16. 75 FR 43518 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee; Meeting AGENCY: Office of... Scientific Computing Advisory Committee (ASCAC). Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat. 770...: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building; U. S...

  17. 78 FR 41046 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Services Administration, notice is hereby given that the Advanced Scientific Computing Advisory Committee will be renewed for a two-year period beginning on July 1, 2013. The Committee will provide advice to the Director, Office of Science (DOE), on the Advanced Scientific Computing Research Program managed...

  18. Advanced Computer Typography.

    DTIC Science & Technology

    1981-12-01

    ADVANCED COMPUTER TYPOGRAPHY .(U) DEC 81 A V HERSHEY UNCLASSIFIED NPS012-81-005 M MEEEIEEEII IIUJIL15I.4 MICROCQP RE SO.JjI ON ft R NPS012-81-005...NAVAL POSTGRADUATE SCHOOL 0Monterey, California DTIC SELECTEWA APR 5 1982 B ADVANCED COMPUTER TYPOGRAPHY by A. V. HERSHEY December 1981 OApproved for...Subtitle) S. TYPE Or REPORT & PERIOD COVERED Final ADVANCED COMPUTER TYPOGRAPHY Dec 1979 - Dec 1981 S. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S CONTRACT

  19. Scientific Discovery through Advanced Computing in Plasma Science

    NASA Astrophysics Data System (ADS)

    Tang, William

    2005-03-01

    Advanced computing is generally recognized to be an increasingly vital tool for accelerating progress in scientific research during the 21st Century. For example, the Department of Energy's ``Scientific Discovery through Advanced Computing'' (SciDAC) Program was motivated in large measure by the fact that formidable scientific challenges in its research portfolio could best be addressed by utilizing the combination of the rapid advances in super-computing technology together with the emergence of effective new algorithms and computational methodologies. The imperative is to translate such progress into corresponding increases in the performance of the scientific codes used to model complex physical systems such as those encountered in high temperature plasma research. If properly validated against experimental measurements and analytic benchmarks, these codes can provide reliable predictive capability for the behavior of a broad range of complex natural and engineered systems. This talk reviews recent progress and future directions for advanced simulations with some illustrative examples taken from the plasma science applications area. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by the combination of access to powerful new computational resources together with innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning a huge range in time and space scales. In particular, the plasma science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations

  20. Advanced networks and computing in healthcare

    PubMed Central

    Ackerman, Michael

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  1. I Use the Computer to ADVANCE Advances in Comprehension-Strategy Research.

    ERIC Educational Resources Information Center

    Blohm, Paul J.

    Merging the instructional implications drawn from theory and research in the interactive reading model, schemata, and metacognition with computer based instruction seems a natural approach for actively involving students' participation in reading and learning from text. Computer based graphic organizers guide students' preview or review of lengthy…

  2. Advanced computations in plasma physics

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2002-05-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. In this paper we review recent progress and future directions for advanced simulations in magnetically confined plasmas with illustrative examples chosen from magnetic confinement research areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPP's to produce three-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to

  3. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  4. Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  5. Aerodynamic Analyses Requiring Advanced Computers, part 2

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle.

  6. Aerodynamic Analyses Requiring Advanced Computers, Part 1

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Papers are presented which deal with results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include: viscous flows, boundary layer equations, turbulence modeling and Navier-Stokes equations, and internal flows.

  7. Advances and trends in computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1986-01-01

    Recent developments in computational structural mechanics are reviewed with reference to computational needs for future structures technology, advances in computational models for material behavior, discrete element technology, assessment and control of numerical simulations of structural response, hybrid analysis, and techniques for large-scale optimization. Research areas in computational structural mechanics which have high potential for meeting future technological needs are identified. These include prediction and analysis of the failure of structural components made of new materials, development of computational strategies and solution methodologies for large-scale structural calculations, and assessment of reliability and adaptive improvement of response predictions.

  8. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Charles; Bell, Greg; Canon, Shane

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less

  9. 78 FR 6087 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing Research; SC-21/Germantown Building... Theory and Experiment (INCITE) Public Comment (10-minute rule) Public Participation: The meeting is open...

  10. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Colombano, Silvano; Scargle, Jeff; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2003-01-01

    We report on several projects in the field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. Research projects included modifying existing computer simulation codes to use efficient, multiple time step algorithms, statistical methods for analysis of astrophysical data via optimal partitioning methods, electronic structure calculations on water-nuclei acid complexes, incorporation of structural information into genomic sequence analysis methods and calculations of shock-induced formation of polycylic aromatic hydrocarbon compounds.

  11. A Research Program in Computer Technology. 1982 Annual Technical Report

    DTIC Science & Technology

    1983-03-01

    for the Defense Advanced Research Projects Agency. The research applies computer science and technology to areas of high DoD/ military impact. The ISI...implement the plan; New Computing Environment - investigation and adaptation of developing computer technologies to serve the research and military ...Computing Environment - ,.*_i;.;"’.)n and adaptation of developing computer technologies to serve the research and military tser communities; and Computer

  12. Structural biology computing: Lessons for the biomedical research sciences.

    PubMed

    Morin, Andrew; Sliz, Piotr

    2013-11-01

    The field of structural biology, whose aim is to elucidate the molecular and atomic structures of biological macromolecules, has long been at the forefront of biomedical sciences in adopting and developing computational research methods. Operating at the intersection between biophysics, biochemistry, and molecular biology, structural biology's growth into a foundational framework on which many concepts and findings of molecular biology are interpreted1 has depended largely on parallel advancements in computational tools and techniques. Without these computing advances, modern structural biology would likely have remained an exclusive pursuit practiced by few, and not become the widely practiced, foundational field it is today. As other areas of biomedical research increasingly embrace research computing techniques, the successes, failures and lessons of structural biology computing can serve as a useful guide to progress in other biomedically related research fields. Copyright © 2013 Wiley Periodicals, Inc.

  13. Advances in Computational Capabilities for Hypersonic Flows

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay; Gnoffo, Peter A.; Moss, James N.; Drummond, J. Philip

    1997-01-01

    The paper reviews the growth and advances in computational capabilities for hypersonic applications over the period from the mid-1980's to the present day. The current status of the code development issues such as surface and field grid generation, algorithms, physical and chemical modeling, and validation is provided. A brief description of some of the major codes being used at NASA Langley Research Center for hypersonic continuum and rarefied flows is provided, along with their capabilities and deficiencies. A number of application examples are presented, and future areas of research to enhance accuracy, reliability, efficiency, and robustness of computational codes are discussed.

  14. NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering |

    Science.gov Websites

    lithium-ion (Li-ion) batteries, known as a multi-scale multi-domain (GH-MSMD) model framework, was News | NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering NREL Kicks Off Next Phase of Advanced Computer-Aided Battery Engineering March 16, 2016 NREL researcher looks across

  15. PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)

    NASA Astrophysics Data System (ADS)

    Wang, Jianxiong

    2014-06-01

    This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

  16. Government Cloud Computing Policies: Potential Opportunities for Advancing Military Biomedical Research.

    PubMed

    Lebeda, Frank J; Zalatoris, Jeffrey J; Scheerer, Julia B

    2018-02-07

    indicated that the security infrastructure in cloud services may be more compliant with the Health Insurance Portability and Accountability Act of 1996 regulations than traditional methods. To gauge the DoD's adoption of cloud technologies proposed metrics included cost factors, ease of use, automation, availability, accessibility, security, and policy compliance. Since 2009, plans and policies were developed for the use of cloud technology to help consolidate and reduce the number of data centers which were expected to reduce costs, improve environmental factors, enhance information technology security, and maintain mission support for service members. Cloud technologies were also expected to improve employee efficiency and productivity. Federal cloud computing policies within the last decade also offered increased opportunities to advance military healthcare. It was assumed that these opportunities would benefit consumers of healthcare and health science data by allowing more access to centralized cloud computer facilities to store, analyze, search and share relevant data, to enhance standardization, and to reduce potential duplications of effort. We recommend that cloud computing be considered by DoD biomedical researchers for increasing connectivity, presumably by facilitating communications and data sharing, among the various intra- and extramural laboratories. We also recommend that policies and other guidances be updated to include developing additional metrics that will help stakeholders evaluate the above mentioned assumptions and expectations. Published by Oxford University Press on behalf of the Association of Military Surgeons of the United States 2018. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  17. PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)

    NASA Astrophysics Data System (ADS)

    Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

    2012-06-01

    ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the

  18. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  19. Computer-Assisted Foreign Language Teaching and Learning: Technological Advances

    ERIC Educational Resources Information Center

    Zou, Bin; Xing, Minjie; Wang, Yuping; Sun, Mingyu; Xiang, Catherine H.

    2013-01-01

    Computer-Assisted Foreign Language Teaching and Learning: Technological Advances highlights new research and an original framework that brings together foreign language teaching, experiments and testing practices that utilize the most recent and widely used e-learning resources. This comprehensive collection of research will offer linguistic…

  20. The ACI-REF Program: Empowering Prospective Computational Researchers

    NASA Astrophysics Data System (ADS)

    Cuma, M.; Cardoen, W.; Collier, G.; Freeman, R. M., Jr.; Kitzmiller, A.; Michael, L.; Nomura, K. I.; Orendt, A.; Tanner, L.

    2014-12-01

    The ACI-REF program, Advanced Cyberinfrastructure - Research and Education Facilitation, represents a consortium of academic institutions seeking to further advance the capabilities of their respective campus research communities through an extension of the personal connections and educational activities that underlie the unique and often specialized cyberinfrastructure at each institution. This consortium currently includes Clemson University, Harvard University, University of Hawai'i, University of Southern California, University of Utah, and University of Wisconsin. Working together in a coordinated effort, the consortium is dedicated to the adoption of models and strategies which leverage the expertise and experience of its members with a goal of maximizing the impact of each institution's investment in research computing. The ACI-REFs (facilitators) are tasked with making connections and building bridges between the local campus researchers and the many different providers of campus, commercial, and national computing resources. Through these bridges, ACI-REFs assist researchers from all disciplines in understanding their computing and data needs and in mapping these needs to existing capabilities or providing assistance with development of these capabilities. From the Earth sciences perspective, we will give examples of how this assistance improved methods and workflows in geophysics, geography and atmospheric sciences. We anticipate that this effort will expand the number of researchers who become self-sufficient users of advanced computing resources, allowing them to focus on making research discoveries in a more timely and efficient manner.

  1. DOE Advanced Scientific Computing Advisory Subcommittee (ASCAC) Report: Top Ten Exascale Research Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lucas, Robert; Ang, James; Bergman, Keren

    2014-02-10

    Exascale computing systems are essential for the scientific fields that will transform the 21st century global economy, including energy, biotechnology, nanotechnology, and materials science. Progress in these fields is predicated on the ability to perform advanced scientific and engineering simulations, and analyze the deluge of data. On July 29, 2013, ASCAC was charged by Patricia Dehmer, the Acting Director of the Office of Science, to assemble a subcommittee to provide advice on exascale computing. This subcommittee was directed to return a list of no more than ten technical approaches (hardware and software) that will enable the development of a systemmore » that achieves the Department's goals for exascale computing. Numerous reports over the past few years have documented the technical challenges and the non¬-viability of simply scaling existing computer designs to reach exascale. The technical challenges revolve around energy consumption, memory performance, resilience, extreme concurrency, and big data. Drawing from these reports and more recent experience, this ASCAC subcommittee has identified the top ten computing technology advancements that are critical to making a capable, economically viable, exascale system.« less

  2. The applications of computers in biological research

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer

    1988-01-01

    Research in many fields could not be done without computers. There is often a great deal of technical data, even in the biological fields, that need to be analyzed. These data, unfortunately, previously absorbed much of every researcher's time. Now, due to the steady increase in computer technology, biological researchers are able to make incredible advances in their work without the added worries of tedious and difficult tasks such as the many mathematical calculations involved in today's research and health care.

  3. Computer architectures for computational physics work done by Computational Research and Technology Branch and Advanced Computational Concepts Group

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Slides are reproduced that describe the importance of having high performance number crunching and graphics capability. They also indicate the types of research and development underway at Ames Research Center to ensure that, in the near term, Ames is a smart buyer and user, and in the long-term that Ames knows the best possible solutions for number crunching and graphics needs. The drivers for this research are real computational physics applications of interest to Ames and NASA. They are concerned with how to map the applications, and how to maximize the physics learned from the results of the calculations. The computer graphics activities are aimed at getting maximum information from the three-dimensional calculations by using the real time manipulation of three-dimensional data on the Silicon Graphics workstation. Work is underway on new algorithms that will permit the display of experimental results that are sparse and random, the same way that the dense and regular computed results are displayed.

  4. Applied Computational Fluid Dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.; Kwak, Dochan (Technical Monitor)

    1994-01-01

    The field of Computational Fluid Dynamics (CFD) has advanced to the point where it can now be used for many applications in fluid mechanics research and aerospace vehicle design. A few applications being explored at NASA Ames Research Center will be presented and discussed. The examples presented will range in speed from hypersonic to low speed incompressible flow applications. Most of the results will be from numerical solutions of the Navier-Stokes or Euler equations in three space dimensions for general geometry applications. Computational results will be used to highlight the presentation as appropriate. Advances in computational facilities including those associated with NASA's CAS (Computational Aerosciences) Project of the Federal HPCC (High Performance Computing and Communications) Program will be discussed. Finally, opportunities for future research will be presented and discussed. All material will be taken from non-sensitive, previously-published and widely-disseminated work.

  5. TOPICAL REVIEW: Advances and challenges in computational plasma science

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Chan, V. S.

    2005-02-01

    Scientific simulation, which provides a natural bridge between theory and experiment, is an essential tool for understanding complex plasma behaviour. Recent advances in simulations of magnetically confined plasmas are reviewed in this paper, with illustrative examples, chosen from associated research areas such as microturbulence, magnetohydrodynamics and other topics. Progress has been stimulated, in particular, by the exponential growth of computer speed along with significant improvements in computer technology. The advances in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics have produced increasingly good agreement between experimental observations and computational modelling. This was enabled by two key factors: (a) innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales and (b) access to powerful new computational resources. Excellent progress has been made in developing codes for which computer run-time and problem-size scale well with the number of processors on massively parallel processors (MPPs). Examples include the effective usage of the full power of multi-teraflop (multi-trillion floating point computations per second) MPPs to produce three-dimensional, general geometry, nonlinear particle simulations that have accelerated advances in understanding the nature of turbulence self-regulation by zonal flows. These calculations, which typically utilized billions of particles for thousands of time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In looking towards the future, the current results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. This

  6. Soft computing in design and manufacturing of advanced materials

    NASA Technical Reports Server (NTRS)

    Cios, Krzysztof J.; Baaklini, George Y; Vary, Alex

    1993-01-01

    The potential of fuzzy sets and neural networks, often referred to as soft computing, for aiding in all aspects of manufacturing of advanced materials like ceramics is addressed. In design and manufacturing of advanced materials, it is desirable to find which of the many processing variables contribute most to the desired properties of the material. There is also interest in real time quality control of parameters that govern material properties during processing stages. The concepts of fuzzy sets and neural networks are briefly introduced and it is shown how they can be used in the design and manufacturing processes. These two computational methods are alternatives to other methods such as the Taguchi method. The two methods are demonstrated by using data collected at NASA Lewis Research Center. Future research directions are also discussed.

  7. Computational structural mechanics methods research using an evolving framework

    NASA Technical Reports Server (NTRS)

    Knight, N. F., Jr.; Lotts, C. G.; Gillian, R. E.

    1990-01-01

    Advanced structural analysis and computational methods that exploit high-performance computers are being developed in a computational structural mechanics research activity sponsored by the NASA Langley Research Center. These new methods are developed in an evolving framework and applied to representative complex structural analysis problems from the aerospace industry. An overview of the methods development environment is presented, and methods research areas are described. Selected application studies are also summarized.

  8. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  9. Computational mechanics and physics at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    South, Jerry C., Jr.

    1987-01-01

    An overview is given of computational mechanics and physics at NASA Langley Research Center. Computational analysis is a major component and tool in many of Langley's diverse research disciplines, as well as in the interdisciplinary research. Examples are given for algorithm development and advanced applications in aerodynamics, transition to turbulence and turbulence simulation, hypersonics, structures, and interdisciplinary optimization.

  10. 76 FR 31945 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... DEPARTMENT OF ENERGY Advanced Scientific Computing Advisory Committee AGENCY: Department of Energy... teleconference meeting of the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal [email protected] . FOR FURTHER INFORMATION CONTACT: Melea Baker, Office of Advanced Scientific Computing...

  11. Parallel computing in genomic research: advances and applications

    PubMed Central

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today’s genomic experiments have to process the so-called “biological big data” that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities. PMID:26604801

  12. Parallel computing in genomic research: advances and applications.

    PubMed

    Ocaña, Kary; de Oliveira, Daniel

    2015-01-01

    Today's genomic experiments have to process the so-called "biological big data" that is now reaching the size of Terabytes and Petabytes. To process this huge amount of data, scientists may require weeks or months if they use their own workstations. Parallelism techniques and high-performance computing (HPC) environments can be applied for reducing the total processing time and to ease the management, treatment, and analyses of this data. However, running bioinformatics experiments in HPC environments such as clouds, grids, clusters, and graphics processing unit requires the expertise from scientists to integrate computational, biological, and mathematical techniques and technologies. Several solutions have already been proposed to allow scientists for processing their genomic experiments using HPC capabilities and parallelism techniques. This article brings a systematic review of literature that surveys the most recently published research involving genomics and parallel computing. Our objective is to gather the main characteristics, benefits, and challenges that can be considered by scientists when running their genomic experiments to benefit from parallelism techniques and HPC capabilities.

  13. Next Generation Distributed Computing for Cancer Research

    PubMed Central

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539

  14. Next generation distributed computing for cancer research.

    PubMed

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing.

  15. Advanced instrumentation for aeronautical propulsion research

    NASA Technical Reports Server (NTRS)

    Hartmann, M. J.

    1986-01-01

    The development and use of advanced instrumentation and measurement systems are key to extending the understanding of the physical phenomena that limit the advancement of aeropropulsion systems. The data collected by using these systems are necessary to verify numerical models and to increase the technologists' intuition into the physical phenomena. The systems must be versatile enough to allow their use with older technology measurement systems, with computer-based data reduction systems, and with existing test facilities. Researchers in all aeropropulsion fields contribute to the development of these systems.

  16. Emerging Nanophotonic Applications Explored with Advanced Scientific Parallel Computing

    NASA Astrophysics Data System (ADS)

    Meng, Xiang

    The domain of nanoscale optical science and technology is a combination of the classical world of electromagnetics and the quantum mechanical regime of atoms and molecules. Recent advancements in fabrication technology allows the optical structures to be scaled down to nanoscale size or even to the atomic level, which are far smaller than the wavelength they are designed for. These nanostructures can have unique, controllable, and tunable optical properties and their interactions with quantum materials can have important near-field and far-field optical response. Undoubtedly, these optical properties can have many important applications, ranging from the efficient and tunable light sources, detectors, filters, modulators, high-speed all-optical switches; to the next-generation classical and quantum computation, and biophotonic medical sensors. This emerging research of nanoscience, known as nanophotonics, is a highly interdisciplinary field requiring expertise in materials science, physics, electrical engineering, and scientific computing, modeling and simulation. It has also become an important research field for investigating the science and engineering of light-matter interactions that take place on wavelength and subwavelength scales where the nature of the nanostructured matter controls the interactions. In addition, the fast advancements in the computing capabilities, such as parallel computing, also become as a critical element for investigating advanced nanophotonic devices. This role has taken on even greater urgency with the scale-down of device dimensions, and the design for these devices require extensive memory and extremely long core hours. Thus distributed computing platforms associated with parallel computing are required for faster designs processes. Scientific parallel computing constructs mathematical models and quantitative analysis techniques, and uses the computing machines to analyze and solve otherwise intractable scientific challenges. In

  17. Biological and Environmental Research Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Biological and Environmental Research, March 28-31, 2016, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkin, Adam; Bader, David C.; Coffey, Richard

    Understanding the fundamentals of genomic systems or the processes governing impactful weather patterns are examples of the types of simulation and modeling performed on the most advanced computing resources in America. High-performance computing and computational science together provide a necessary platform for the mission science conducted by the Biological and Environmental Research (BER) office at the U.S. Department of Energy (DOE). This report reviews BER’s computing needs and their importance for solving some of the toughest problems in BER’s portfolio. BER’s impact on science has been transformative. Mapping the human genome, including the U.S.-supported international Human Genome Project that DOEmore » began in 1987, initiated the era of modern biotechnology and genomics-based systems biology. And since the 1950s, BER has been a core contributor to atmospheric, environmental, and climate science research, beginning with atmospheric circulation studies that were the forerunners of modern Earth system models (ESMs) and by pioneering the implementation of climate codes onto high-performance computers. See http://exascaleage.org/ber/ for more information.« less

  18. Computer Plotting Data Points in the Engine Research Building

    NASA Image and Video Library

    1956-09-21

    A female computer plotting compressor data in the Engine Research Building at the NACA’s Lewis Flight Propulsion Laboratory. The Computing Section was introduced during World War II to relieve short-handed research engineers of some of the tedious data-taking work. The computers made the initial computations and plotted the data graphically. The researcher then analyzed the data and either summarized the findings in a report or made modifications or ran the test again. With the introduction of mechanical computer systems in the 1950s the female computers learned how to encode the punch cards. As the data processing capabilities increased, fewer female computers were needed. Many left on their own to start families, while others earned mathematical degrees and moved into advanced positions.

  19. Advanced computational tools for 3-D seismic analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advancemore » in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.« less

  20. Measuring Impact of EPAs Computational Toxicology Research (BOSC)

    EPA Science Inventory

    Computational Toxicology (CompTox) research at the EPA was initiated in 2005. Since 2005, CompTox research efforts have made tremendous advances in developing new approaches to evaluate thousands of chemicals for potential health effects. The purpose of this case study is to trac...

  1. 77 FR 45345 - DOE/Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... Recompetition results for Scientific Discovery through Advanced Computing (SciDAC) applications Co-design Public... DEPARTMENT OF ENERGY DOE/Advanced Scientific Computing Advisory Committee AGENCY: Office of... the Advanced Scientific Computing Advisory Committee (ASCAC). The Federal Advisory Committee Act (Pub...

  2. NASA Advanced Propeller Research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic i e l d s a r e described along with wind tunnel tests to obtain data for code verification . Results from two kinds of experiments are reviewed: ( 1 ) performance and near field noise at cruise conditions as measured in the NASA Lewis 8-by 6-Foot Wind Tunnel and ( 2 ) farfield noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9-by 15-Font Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off design conditions . Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at take off but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise a real so illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  3. NASA advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1988-01-01

    Acoustic and aerodynamic research at NASA Lewis Research Center on advanced propellers is reviewed including analytical and experimental results on both single and counterrotation. Computational tools used to calculate the detailed flow and acoustic fields are described along with wind tunnel tests to obtain data for code verification. Results from two kinds of experiments are reviewed: (1) performance and near field noise at cruise conditions as measured in the NASA Lewis 8- by 6-foot Wind Tunnel; and (2) far field noise and performance for takeoff/approach conditions as measured in the NASA Lewis 9- by 15-foot Anechoic Wind Tunnel. Detailed measurements of steady blade surface pressures are described along with vortex flow phenomena at off-design conditions. Near field noise at cruise is shown to level out or decrease as tip relative Mach number is increased beyond 1.15. Counterrotation interaction noise is shown to be a dominant source at takeoff but a secondary source at cruise. Effects of unequal rotor diameters and rotor-to-rotor spacing on interaction noise are also illustrated. Comparisons of wind tunnel acoustic measurements to flight results are made. Finally, some future directions in advanced propeller research such as swirl recovery vanes, higher sweep, forward sweep, and ducted propellers are discussed.

  4. COMPUTATIONAL TOXICOLOGY ADVANCES: EMERGING CAPABILITIES FOR DATA EXPLORATION AND SAR MODEL DEVELOPMENT

    EPA Science Inventory

    Computational Toxicology Advances: Emerging capabilities for data exploration and SAR model development
    Ann M. Richard and ClarLynda R. Williams, National Health & Environmental Effects Research Laboratory, US EPA, Research Triangle Park, NC, USA; email: richard.ann@epa.gov

  5. Advanced Computational Methods in Bio-Mechanics.

    PubMed

    Al Qahtani, Waleed M S; El-Anwar, Mohamed I

    2018-04-15

    A novel partnership between surgeons and machines, made possible by advances in computing and engineering technology, could overcome many of the limitations of traditional surgery. By extending surgeons' ability to plan and carry out surgical interventions more accurately and with fewer traumas, computer-integrated surgery (CIS) systems could help to improve clinical outcomes and the efficiency of healthcare delivery. CIS systems could have a similar impact on surgery to that long since realised in computer-integrated manufacturing. Mathematical modelling and computer simulation have proved tremendously successful in engineering. Computational mechanics has enabled technological developments in virtually every area of our lives. One of the greatest challenges for mechanists is to extend the success of computational mechanics to fields outside traditional engineering, in particular to biology, the biomedical sciences, and medicine. Biomechanics has significant potential for applications in orthopaedic industry, and the performance arts since skills needed for these activities are visibly related to the human musculoskeletal and nervous systems. Although biomechanics is widely used nowadays in the orthopaedic industry to design orthopaedic implants for human joints, dental parts, external fixations and other medical purposes, numerous researches funded by billions of dollars are still running to build a new future for sports and human healthcare in what is called biomechanics era.

  6. Advanced Computation in Plasma Physics

    NASA Astrophysics Data System (ADS)

    Tang, William

    2001-10-01

    Scientific simulation in tandem with theory and experiment is an essential tool for understanding complex plasma behavior. This talk will review recent progress and future directions for advanced simulations in magnetically-confined plasmas with illustrative examples chosen from areas such as microturbulence, magnetohydrodynamics, magnetic reconnection, and others. Significant recent progress has been made in both particle and fluid simulations of fine-scale turbulence and large-scale dynamics, giving increasingly good agreement between experimental observations and computational modeling. This was made possible by innovative advances in analytic and computational methods for developing reduced descriptions of physics phenomena spanning widely disparate temporal and spatial scales together with access to powerful new computational resources. In particular, the fusion energy science community has made excellent progress in developing advanced codes for which computer run-time and problem size scale well with the number of processors on massively parallel machines (MPP's). A good example is the effective usage of the full power of multi-teraflop MPP's to produce 3-dimensional, general geometry, nonlinear particle simulations which have accelerated progress in understanding the nature of turbulence self-regulation by zonal flows. It should be emphasized that these calculations, which typically utilized billions of particles for tens of thousands time-steps, would not have been possible without access to powerful present generation MPP computers and the associated diagnostic and visualization capabilities. In general, results from advanced simulations provide great encouragement for being able to include increasingly realistic dynamics to enable deeper physics insights into plasmas in both natural and laboratory environments. The associated scientific excitement should serve to stimulate improved cross-cutting collaborations with other fields and also to help attract

  7. Louisiana: a model for advancing regional e-Research through cyberinfrastructure

    PubMed Central

    Katz, Daniel S.; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D.; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-01-01

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date. PMID:19451102

  8. Louisiana: a model for advancing regional e-Research through cyberinfrastructure.

    PubMed

    Katz, Daniel S; Allen, Gabrielle; Cortez, Ricardo; Cruz-Neira, Carolina; Gottumukkala, Raju; Greenwood, Zeno D; Guice, Les; Jha, Shantenu; Kolluru, Ramesh; Kosar, Tevfik; Leger, Lonnie; Liu, Honggao; McMahon, Charlie; Nabrzyski, Jarek; Rodriguez-Milla, Bety; Seidel, Ed; Speyrer, Greg; Stubblefield, Michael; Voss, Brian; Whittenburg, Scott

    2009-06-28

    Louisiana researchers and universities are leading a concentrated, collaborative effort to advance statewide e-Research through a new cyberinfrastructure: computing systems, data storage systems, advanced instruments and data repositories, visualization environments and people, all linked together by software programs and high-performance networks. This effort has led to a set of interlinked projects that have started making a significant difference in the state, and has created an environment that encourages increased collaboration, leading to new e-Research. This paper describes the overall effort, the new projects and environment and the results to date.

  9. Advances in Numerical Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.

    1997-01-01

    Advances in Computational Aeroacoustics (CAA) depend critically on the availability of accurate, nondispersive, least dissipative computation algorithm as well as high quality numerical boundary treatments. This paper focuses on the recent developments of numerical boundary conditions. In a typical CAA problem, one often encounters two types of boundaries. Because a finite computation domain is used, there are external boundaries. On the external boundaries, boundary conditions simulating the solution outside the computation domain are to be imposed. Inside the computation domain, there may be internal boundaries. On these internal boundaries, boundary conditions simulating the presence of an object or surface with specific acoustic characteristics are to be applied. Numerical boundary conditions, both external or internal, developed for simple model problems are reviewed and examined. Numerical boundary conditions for real aeroacoustic problems are also discussed through specific examples. The paper concludes with a description of some much needed research in numerical boundary conditions for CAA.

  10. Advanced technology airfoil research, volume 1, part 2

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This compilation contains papers presented at the NASA Conference on Advanced Technology Airfoil Research held at Langley Research Center on March 7-9, 1978, which have unlimited distribution. This conference provided a comprehensive review of all NASA airfoil research, conducted in-house and under grant and contract. A broad spectrum of airfoil research outside of NASA was also reviewed. The major thrust of the technical sessions were in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  11. EarthCube Activities: Community Engagement Advancing Geoscience Research

    NASA Astrophysics Data System (ADS)

    Kinkade, D.

    2015-12-01

    Our ability to advance scientific research in order to better understand complex Earth systems, address emerging geoscience problems, and meet societal challenges is increasingly dependent upon the concept of Open Science and Data. Although these terms are relatively new to the world of research, Open Science and Data in this context may be described as transparency in the scientific process. This includes the discoverability, public accessibility and reusability of scientific data, as well as accessibility and transparency of scientific communication (www.openscience.org). Scientists and the US government alike are realizing the critical need for easy discovery and access to multidisciplinary data to advance research in the geosciences. The NSF-supported EarthCube project was created to meet this need. EarthCube is developing a community-driven common cyberinfrastructure for the purpose of accessing, integrating, analyzing, sharing and visualizing all forms of data and related resources through advanced technological and computational capabilities. Engaging the geoscience community in EarthCube's development is crucial to its success, and EarthCube is providing several opportunities for geoscience involvement. This presentation will provide an overview of the activities EarthCube is employing to entrain the community in the development process, from governance development and strategic planning, to technical needs gathering. Particular focus will be given to the collection of science-driven use cases as a means of capturing scientific and technical requirements. Such activities inform the development of key technical and computational components that collectively will form a cyberinfrastructure to meet the research needs of the geoscience community.

  12. Development of Advanced Computational Aeroelasticity Tools at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Bartels, R. E.

    2008-01-01

    NASA Langley Research Center has continued to develop its long standing computational tools to address new challenges in aircraft and launch vehicle design. This paper discusses the application and development of those computational aeroelastic tools. Four topic areas will be discussed: 1) Modeling structural and flow field nonlinearities; 2) Integrated and modular approaches to nonlinear multidisciplinary analysis; 3) Simulating flight dynamics of flexible vehicles; and 4) Applications that support both aeronautics and space exploration.

  13. Why advanced computing? The key to space-based operations

    NASA Astrophysics Data System (ADS)

    Phister, Paul W., Jr.; Plonisch, Igor; Mineo, Jack

    2000-11-01

    The 'what is the requirement?' aspect of advanced computing and how it relates to and supports Air Force space-based operations is a key issue. In support of the Air Force Space Command's five major mission areas (space control, force enhancement, force applications, space support and mission support), two-fifths of the requirements have associated stringent computing/size implications. The Air Force Research Laboratory's 'migration to space' concept will eventually shift Science and Technology (S&T) dollars from predominantly airborne systems to airborne-and-space related S&T areas. One challenging 'space' area is in the development of sophisticated on-board computing processes for the next generation smaller, cheaper satellite systems. These new space systems (called microsats or nanosats) could be as small as a softball, yet perform functions that are currently being done by large, vulnerable ground-based assets. The Joint Battlespace Infosphere (JBI) concept will be used to manage the overall process of space applications coupled with advancements in computing. The JBI can be defined as a globally interoperable information 'space' which aggregates, integrates, fuses, and intelligently disseminates all relevant battlespace knowledge to support effective decision-making at all echelons of a Joint Task Force (JTF). This paper explores a single theme -- on-board processing is the best avenue to take advantage of advancements in high-performance computing, high-density memories, communications, and re-programmable architecture technologies. The goal is to break away from 'no changes after launch' design to a more flexible design environment that can take advantage of changing space requirements and needs while the space vehicle is 'on orbit.'

  14. Advancing Ethical Neuroscience Research.

    PubMed

    Borah, B Rashmi; Strand, Nicolle K; Chillag, Kata L

    2016-12-01

    As neuroscience research advances, researchers, clinicians, and other stakeholders will face a host of ethical challenges. The Presidential Commission for the Study of Bioethical Issues (Bioethics Commission) has published two reports that provide recommendations on how to advance research endeavors ethically. The commission addressed, among other issues, how to prioritize different types of neuroscience research and how to include research participants who have impaired consent capacity. The Bioethics Commission's recommendations provide a foundation for ethical guidelines as neuroscience research advances and progresses. © 2016 American Medical Association. All Rights Reserved.

  15. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1987-01-01

    Resent results of aerodynamic and acoustic research on both single and counter-rotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA); and F7-A7, the 8+8 counterrotating design used in the proof-of-concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortices are described. Aerodynamic and acoustic computational results derived from three-dimensional Euler and acoustic radiation codes are presented. Research on unsteady flows, which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of three-dimensional unsteady Euler solutions are illustrated for a single rotation propeller at an angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies of the unsteady aerodynamics of oscillating cascades are outlined. Finally, advanced concepts involving swirl recovery vanes and ultra bypass ducted propellers are discussed.

  16. An introduction to NASA's advanced computing program: Integrated computing systems in advanced multichip modules

    NASA Technical Reports Server (NTRS)

    Fang, Wai-Chi; Alkalai, Leon

    1996-01-01

    Recent changes within NASA's space exploration program favor the design, implementation, and operation of low cost, lightweight, small and micro spacecraft with multiple launches per year. In order to meet the future needs of these missions with regard to the use of spacecraft microelectronics, NASA's advanced flight computing (AFC) program is currently considering industrial cooperation and advanced packaging architectures. In relation to this, the AFC program is reviewed, considering the design and implementation of NASA's AFC multichip module.

  17. Interfaces for Advanced Computing.

    ERIC Educational Resources Information Center

    Foley, James D.

    1987-01-01

    Discusses the coming generation of supercomputers that will have the power to make elaborate "artificial realities" that facilitate user-computer communication. Illustrates these technological advancements with examples of the use of head-mounted monitors which are connected to position and orientation sensors, and gloves that track finger and…

  18. Whole-genome CNV analysis: advances in computational approaches.

    PubMed

    Pirooznia, Mehdi; Goes, Fernando S; Zandi, Peter P

    2015-01-01

    Accumulating evidence indicates that DNA copy number variation (CNV) is likely to make a significant contribution to human diversity and also play an important role in disease susceptibility. Recent advances in genome sequencing technologies have enabled the characterization of a variety of genomic features, including CNVs. This has led to the development of several bioinformatics approaches to detect CNVs from next-generation sequencing data. Here, we review recent advances in CNV detection from whole genome sequencing. We discuss the informatics approaches and current computational tools that have been developed as well as their strengths and limitations. This review will assist researchers and analysts in choosing the most suitable tools for CNV analysis as well as provide suggestions for new directions in future development.

  19. NIH Research: Advances in Parkinson's Disease Research

    MedlinePlus

    ... of this page please turn JavaScript on. NIH Research: Advances in Parkinson's Disease Research Past Issues / Winter 2014 Table of Contents Story ... Photo courtesy of NIH Advances in Parkinson's Disease Research Story Landis, Ph.D., has been Director of ...

  20. Current state and future direction of computer systems at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Rogers, James L. (Editor); Tucker, Jerry H. (Editor)

    1992-01-01

    Computer systems have advanced at a rate unmatched by any other area of technology. As performance has dramatically increased there has been an equally dramatic reduction in cost. This constant cost performance improvement has precipitated the pervasiveness of computer systems into virtually all areas of technology. This improvement is due primarily to advances in microelectronics. Most people are now convinced that the new generation of supercomputers will be built using a large number (possibly thousands) of high performance microprocessors. Although the spectacular improvements in computer systems have come about because of these hardware advances, there has also been a steady improvement in software techniques. In an effort to understand how these hardware and software advances will effect research at NASA LaRC, the Computer Systems Technical Committee drafted this white paper to examine the current state and possible future directions of computer systems at the Center. This paper discusses selected important areas of computer systems including real-time systems, embedded systems, high performance computing, distributed computing networks, data acquisition systems, artificial intelligence, and visualization.

  1. The Design and Implementation of NASA's Advanced Flight Computing Module

    NASA Technical Reports Server (NTRS)

    Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce

    1995-01-01

    This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.

  2. Systems Engineering Building Advances Power Grid Research

    ScienceCinema

    Virden, Jud; Huang, Henry; Skare, Paul; Dagle, Jeff; Imhoff, Carl; Stoustrup, Jakob; Melton, Ron; Stiles, Dennis; Pratt, Rob

    2018-01-16

    Researchers and industry are now better equipped to tackle the nation’s most pressing energy challenges through PNNL’s new Systems Engineering Building – including challenges in grid modernization, buildings efficiency and renewable energy integration. This lab links real-time grid data, software platforms, specialized laboratories and advanced computing resources for the design and demonstration of new tools to modernize the grid and increase buildings energy efficiency.

  3. Computational chemistry research

    NASA Technical Reports Server (NTRS)

    Levin, Eugene

    1987-01-01

    Task 41 is composed of two parts: (1) analysis and design studies related to the Numerical Aerodynamic Simulation (NAS) Extended Operating Configuration (EOC) and (2) computational chemistry. During the first half of 1987, Dr. Levin served as a member of an advanced system planning team to establish the requirements, goals, and principal technical characteristics of the NAS EOC. A paper entitled 'Scaling of Data Communications for an Advanced Supercomputer Network' is included. The high temperature transport properties (such as viscosity, thermal conductivity, etc.) of the major constituents of air (oxygen and nitrogen) were correctly determined. The results of prior ab initio computer solutions of the Schroedinger equation were combined with the best available experimental data to obtain complete interaction potentials for both neutral and ion-atom collision partners. These potentials were then used in a computer program to evaluate the collision cross-sections from which the transport properties could be determined. A paper entitled 'High Temperature Transport Properties of Air' is included.

  4. Research Advances

    ERIC Educational Resources Information Center

    King, Angela G.

    2004-01-01

    Research advances, a new feature in Journal of Chemical Engineering that brings information about innovations in current areas of research to high school and college science faculty with an intent to provide educators with timely descriptions of latest progress in research that can be integrated into existing courses to update course content and…

  5. Advances in computer imaging/applications in facial plastic surgery.

    PubMed

    Papel, I D; Jiannetto, D F

    1999-01-01

    Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.

  6. The Role of Computers in Research and Development at Langley Research Center

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D. (Compiler)

    1994-01-01

    This document is a compilation of presentations given at a workshop on the role cf computers in research and development at the Langley Research Center. The objectives of the workshop were to inform the Langley Research Center community of the current software systems and software practices in use at Langley. The workshop was organized in 10 sessions: Software Engineering; Software Engineering Standards, methods, and CASE tools; Solutions of Equations; Automatic Differentiation; Mosaic and the World Wide Web; Graphics and Image Processing; System Design Integration; CAE Tools; Languages; and Advanced Topics.

  7. Advanced Computed-Tomography Inspection System

    NASA Technical Reports Server (NTRS)

    Harris, Lowell D.; Gupta, Nand K.; Smith, Charles R.; Bernardi, Richard T.; Moore, John F.; Hediger, Lisa

    1993-01-01

    Advanced Computed Tomography Inspection System (ACTIS) is computed-tomography x-ray apparatus revealing internal structures of objects in wide range of sizes and materials. Three x-ray sources and adjustable scan geometry gives system unprecedented versatility. Gantry contains translation and rotation mechanisms scanning x-ray beam through object inspected. Distance between source and detector towers varied to suit object. System used in such diverse applications as development of new materials, refinement of manufacturing processes, and inspection of components.

  8. Advances in Cross-Cutting Ideas for Computational Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Esmond; Evans, Katherine J.; Caldwell, Peter

    This report presents results from the DOE-sponsored workshop titled, ``Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  9. Advances in Cross-Cutting Ideas for Computational Climate Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, E.; Evans, K.; Caldwell, P.

    This report presents results from the DOE-sponsored workshop titled, Advancing X-Cutting Ideas for Computational Climate Science Workshop,'' known as AXICCS, held on September 12--13, 2016 in Rockville, MD. The workshop brought together experts in climate science, computational climate science, computer science, and mathematics to discuss interesting but unsolved science questions regarding climate modeling and simulation, promoted collaboration among the diverse scientists in attendance, and brainstormed about possible tools and capabilities that could be developed to help address them. Emerged from discussions at the workshop were several research opportunities that the group felt could advance climate science significantly. These include (1)more » process-resolving models to provide insight into important processes and features of interest and inform the development of advanced physical parameterizations, (2) a community effort to develop and provide integrated model credibility, (3) including, organizing, and managing increasingly connected model components that increase model fidelity yet complexity, and (4) treating Earth system models as one interconnected organism without numerical or data based boundaries that limit interactions. The group also identified several cross-cutting advances in mathematics, computer science, and computational science that would be needed to enable one or more of these big ideas. It is critical to address the need for organized, verified, and optimized software, which enables the models to grow and continue to provide solutions in which the community can have confidence. Effectively utilizing the newest computer hardware enables simulation efficiency and the ability to handle output from increasingly complex and detailed models. This will be accomplished through hierarchical multiscale algorithms in tandem with new strategies for data handling, analysis, and storage. These big ideas and cross-cutting technologies for enabling

  10. Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saffer, Shelley

    2014-12-01

    This is a final report of the DOE award DE-SC0001132, Advanced Artificial Science. The development of an artificial science and engineering research infrastructure to facilitate innovative computational modeling, analysis, and application to interdisciplinary areas of scientific investigation. This document describes the achievements of the goals, and resulting research made possible by this award.

  11. Making Advanced Computer Science Topics More Accessible through Interactive Technologies

    ERIC Educational Resources Information Center

    Shao, Kun; Maher, Peter

    2012-01-01

    Purpose: Teaching advanced technical concepts in a computer science program to students of different technical backgrounds presents many challenges. The purpose of this paper is to present a detailed experimental pedagogy in teaching advanced computer science topics, such as computer networking, telecommunications and data structures using…

  12. Some research advances in computer graphics that will enhance applications to engineering design

    NASA Technical Reports Server (NTRS)

    Allan, J. J., III

    1975-01-01

    Research in man/machine interactions and graphics hardware/software that will enhance applications to engineering design was described. Research aspects of executive systems, command languages, and networking used in the computer applications laboratory are mentioned. Finally, a few areas where little or no research is being done were identified.

  13. Advances in Parallel Computing and Databases for Digital Pathology in Cancer Research

    DTIC Science & Technology

    2016-11-13

    these technologies and how we have used them in the past. We are interested in learning more about the needs of clinical pathologists as we continue to...such as image processing and correlation. Further, High Performance Computing (HPC) paradigms such as the Message Passing Interface (MPI) have been...Defense for Research and Engineering. such as pMatlab [4], or bcMPI [5] can significantly reduce the need for deep knowledge of parallel computing. In

  14. ASCR Cybersecurity for Scientific Computing Integrity - Research Pathways and Ideas Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peisert, Sean; Potok, Thomas E.; Jones, Todd

    At the request of the U.S. Department of Energy's (DOE) Office of Science (SC) Advanced Scientific Computing Research (ASCR) program office, a workshop was held June 2-3, 2015, in Gaithersburg, MD, to identify potential long term (10 to +20 year) cybersecurity fundamental basic research and development challenges, strategies and roadmap facing future high performance computing (HPC), networks, data centers, and extreme-scale scientific user facilities. This workshop was a follow-on to the workshop held January 7-9, 2015, in Rockville, MD, that examined higher level ideas about scientific computing integrity specific to the mission of the DOE Office of Science. Issues includedmore » research computation and simulation that takes place on ASCR computing facilities and networks, as well as network-connected scientific instruments, such as those run by various DOE Office of Science programs. Workshop participants included researchers and operational staff from DOE national laboratories, as well as academic researchers and industry experts. Participants were selected based on the submission of abstracts relating to the topics discussed in the previous workshop report [1] and also from other ASCR reports, including "Abstract Machine Models and Proxy Architectures for Exascale Computing" [27], the DOE "Preliminary Conceptual Design for an Exascale Computing Initiative" [28], and the January 2015 machine learning workshop [29]. The workshop was also attended by several observers from DOE and other government agencies. The workshop was divided into three topic areas: (1) Trustworthy Supercomputing, (2) Extreme-Scale Data, Knowledge, and Analytics for Understanding and Improving Cybersecurity, and (3) Trust within High-end Networking and Data Centers. Participants were divided into three corresponding teams based on the category of their abstracts. The workshop began with a series of talks from the program manager and workshop chair, followed by the leaders for each of the

  15. Research Projects | Advanced Manufacturing Research | NREL

    Science.gov Websites

    advanced manufacturing research through these projects. Photo of men working on turbine blades in a dome -shaped building. Advanced Thermoplastic Resins for Manufacturing Wind Turbine Blades At its Composites

  16. Construction of databases: advances and significance in clinical research.

    PubMed

    Long, Erping; Huang, Bingjie; Wang, Liming; Lin, Xiaoyu; Lin, Haotian

    2015-12-01

    Widely used in clinical research, the database is a new type of data management automation technology and the most efficient tool for data management. In this article, we first explain some basic concepts, such as the definition, classification, and establishment of databases. Afterward, the workflow for establishing databases, inputting data, verifying data, and managing databases is presented. Meanwhile, by discussing the application of databases in clinical research, we illuminate the important role of databases in clinical research practice. Lastly, we introduce the reanalysis of randomized controlled trials (RCTs) and cloud computing techniques, showing the most recent advancements of databases in clinical research.

  17. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    PubMed

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  18. Computational aerodynamics development and outlook /Dryden Lecture in Research for 1979/

    NASA Technical Reports Server (NTRS)

    Chapman, D. R.

    1979-01-01

    Some past developments and current examples of computational aerodynamics are briefly reviewed. An assessment is made of the requirements on future computer memory and speed imposed by advanced numerical simulations, giving emphasis to the Reynolds averaged Navier-Stokes equations and to turbulent eddy simulations. Experimental scales of turbulence structure are used to determine the mesh spacings required to adequately resolve turbulent energy and shear. Assessment also is made of the changing market environment for developing future large computers, and of the projections of micro-electronics memory and logic technology that affect future computer capability. From the two assessments, estimates are formed of the future time scale in which various advanced types of aerodynamic flow simulations could become feasible. Areas of research judged especially relevant to future developments are noted.

  19. Advanced Manufacturing Research | NREL

    Science.gov Websites

    engineering research in advanced manufacturing is focused on the identification and development of advanced materials and advanced processes that drive the impact of new energy technologies. Our world-class strategies, and policy evaluation. We partner with industry to bridge innovation gaps in advanced

  20. Advanced laptop and small personal computer technology

    NASA Technical Reports Server (NTRS)

    Johnson, Roger L.

    1991-01-01

    Advanced laptop and small personal computer technology is presented in the form of the viewgraphs. The following areas of hand carried computers and mobile workstation technology are covered: background, applications, high end products, technology trends, requirements for the Control Center application, and recommendations for the future.

  1. Computation of Asteroid Proper Elements: Recent Advances

    NASA Astrophysics Data System (ADS)

    Knežević, Z.

    2017-12-01

    The recent advances in computation of asteroid proper elements are briefly reviewed. Although not representing real breakthroughs in computation and stability assessment of proper elements, these advances can still be considered as important improvements offering solutions to some practical problems encountered in the past. The problem of getting unrealistic values of perihelion frequency for very low eccentricity orbits is solved by computing frequencies using the frequency-modified Fourier transform. The synthetic resonant proper elements adjusted to a given secular resonance helped to prove the existence of Astraea asteroid family. The preliminary assessment of stability with time of proper elements computed by means of the analytical theory provides a good indication of their poorer performance with respect to their synthetic counterparts, and advocates in favor of ceasing their regular maintenance; the final decision should, however, be taken on the basis of more comprehensive and reliable direct estimate of their individual and sample average deviations from constancy.

  2. Advanced Simulation & Computing FY15 Implementation Plan Volume 2, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Michel; Archer, Bill; Matzen, M. Keith

    2014-09-16

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balance of resource, including technical staff, hardware, simulation software, and computer science solutions. As the program approaches the end of its second decade, ASC is intently focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Where possible, the program also enables the use of high-performance simulation and computing tools to address broader national security needs, such as foreign nuclear weapon assessments and counternuclear terrorism.« less

  3. Computation Directorate and Science& Technology Review Computational Science and Research Featured in 2002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alchorn, A L

    Thank you for your interest in the activities of the Lawrence Livermore National Laboratory Computation Directorate. This collection of articles from the Laboratory's Science & Technology Review highlights the most significant computational projects, achievements, and contributions during 2002. In 2002, LLNL marked the 50th anniversary of its founding. Scientific advancement in support of our national security mission has always been the core of the Laboratory. So that researchers could better under and predict complex physical phenomena, the Laboratory has pushed the limits of the largest, fastest, most powerful computers in the world. In the late 1950's, Edward Teller--one of themore » LLNL founders--proposed that the Laboratory commission a Livermore Advanced Research Computer (LARC) built to Livermore's specifications. He tells the story of being in Washington, DC, when John Von Neumann asked to talk about the LARC. He thought Teller wanted too much memory in the machine. (The specifications called for 20-30,000 words.) Teller was too smart to argue with him. Later Teller invited Von Neumann to the Laboratory and showed him one of the design codes being prepared for the LARC. He asked Von Neumann for suggestions on fitting the code into 10,000 words of memory, and flattered him about ''Labbies'' not being smart enough to figure it out. Von Neumann dropped his objections, and the LARC arrived with 30,000 words of memory. Memory, and how close memory is to the processor, is still of interest to us today. Livermore's first supercomputer was the Remington-Rand Univac-1. It had 5600 vacuum tubes and was 2 meters wide by 4 meters long. This machine was commonly referred to as a 1 KFlop machine [E+3]. Skip ahead 50 years. The ASCI White machine at the Laboratory today, produced by IBM, is rated at a peak performance of 12.3 TFlops or E+13. We've improved computer processing power by 10 orders of magnitude in 50 years, and I do not believe there's any reason to think

  4. A First Attempt to Bring Computational Biology into Advanced High School Biology Classrooms

    PubMed Central

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S.

    2011-01-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors. PMID:22046118

  5. A first attempt to bring computational biology into advanced high school biology classrooms.

    PubMed

    Gallagher, Suzanne Renick; Coon, William; Donley, Kristin; Scott, Abby; Goldberg, Debra S

    2011-10-01

    Computer science has become ubiquitous in many areas of biological research, yet most high school and even college students are unaware of this. As a result, many college biology majors graduate without adequate computational skills for contemporary fields of biology. The absence of a computational element in secondary school biology classrooms is of growing concern to the computational biology community and biology teachers who would like to acquaint their students with updated approaches in the discipline. We present a first attempt to correct this absence by introducing a computational biology element to teach genetic evolution into advanced biology classes in two local high schools. Our primary goal was to show students how computation is used in biology and why a basic understanding of computation is necessary for research in many fields of biology. This curriculum is intended to be taught by a computational biologist who has worked with a high school advanced biology teacher to adapt the unit for his/her classroom, but a motivated high school teacher comfortable with mathematics and computing may be able to teach this alone. In this paper, we present our curriculum, which takes into consideration the constraints of the required curriculum, and discuss our experiences teaching it. We describe the successes and challenges we encountered while bringing this unit to high school students, discuss how we addressed these challenges, and make suggestions for future versions of this curriculum.We believe that our curriculum can be a valuable seed for further development of computational activities aimed at high school biology students. Further, our experiences may be of value to others teaching computational biology at this level. Our curriculum can be obtained at http://ecsite.cs.colorado.edu/?page_id=149#biology or by contacting the authors.

  6. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  7. Role of HPC in Advancing Computational Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.

    2004-01-01

    On behalf of the High Performance Computing and Modernization Program (HPCMP) and NASA Advanced Supercomputing Division (NAS) a study is conducted to assess the role of supercomputers on computational aeroelasticity of aerospace vehicles. The study is mostly based on the responses to a web based questionnaire that was designed to capture the nuances of high performance computational aeroelasticity, particularly on parallel computers. A procedure is presented to assign a fidelity-complexity index to each application. Case studies based on major applications using HPCMP resources are presented.

  8. PARTNERING WITH DOE TO APPLY ADVANCED BIOLOGICAL, ENVIRONMENTAL, AND COMPUTATIONAL SCIENCE TO ENVIRONMENTAL ISSUES

    EPA Science Inventory

    On February 18, 2004, the U.S. Environmental Protection Agency and Department of Energy signed a Memorandum of Understanding to expand the research collaboration of both agencies to advance biological, environmental, and computational sciences for protecting human health and the ...

  9. Statistical Methodologies to Integrate Experimental and Computational Research

    NASA Technical Reports Server (NTRS)

    Parker, P. A.; Johnson, R. T.; Montgomery, D. C.

    2008-01-01

    Development of advanced algorithms for simulating engine flow paths requires the integration of fundamental experiments with the validation of enhanced mathematical models. In this paper, we provide an overview of statistical methods to strategically and efficiently conduct experiments and computational model refinement. Moreover, the integration of experimental and computational research efforts is emphasized. With a statistical engineering perspective, scientific and engineering expertise is combined with statistical sciences to gain deeper insights into experimental phenomenon and code development performance; supporting the overall research objectives. The particular statistical methods discussed are design of experiments, response surface methodology, and uncertainty analysis and planning. Their application is illustrated with a coaxial free jet experiment and a turbulence model refinement investigation. Our goal is to provide an overview, focusing on concepts rather than practice, to demonstrate the benefits of using statistical methods in research and development, thereby encouraging their broader and more systematic application.

  10. Recent advances in computational actinoid chemistry.

    PubMed

    Wang, Dongqi; van Gunsteren, Wilfred F; Chai, Zhifang

    2012-09-07

    We briefly review advances in computational actinoid (An) chemistry during the past ten years in regard to two issues: the geometrical and electronic structures, and reactions. The former addresses the An-O, An-C, and M-An (M is a metal atom including An) bonds in the actinoid molecular systems, including actinoid oxo and oxide species, actinoid-carbenoid, dinuclear and diatomic systems, and the latter the hydration and ligand exchange, the disproportionation, the oxidation, the reduction of uranyl, hydroamination, and the photolysis of uranium azide. Concerning their relevance to the electronic structures and reactions of actinoids and their importance in the development of an advanced nuclear fuel cycle, we also mentioned the work on actinoid carbides and nitrides, which have been proposed to be candidates of the next generation of nuclear fuel, and the oxidation of PuO(x), which is important to understand the speciation of actinoids in the environment, followed by a brief discussion on the urgent need for a heavier involvement of computational actinoid chemistry in developing advanced reprocessing protocols of spent nuclear fuel. The paper is concluded with an outlook.

  11. Advances and trends in the development of computational models for tires

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Tanner, J. A.

    1985-01-01

    Status and some recent developments of computational models for tires are summarized. Discussion focuses on a number of aspects of tire modeling and analysis including: tire materials and their characterization; evolution of tire models; characteristics of effective finite element models for analyzing tires; analysis needs for tires; and impact of the advances made in finite element technology, computational algorithms, and new computing systems on tire modeling and analysis. An initial set of benchmark problems has been proposed in concert with the U.S. tire industry. Extensive sets of experimental data will be collected for these problems and used for evaluating and validating different tire models. Also, the new Aircraft Landing Dynamics Facility (ALDF) at NASA Langley Research Center is described.

  12. Advances and future directions of research on spectral methods

    NASA Technical Reports Server (NTRS)

    Patera, A. T.

    1986-01-01

    Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.

  13. Computational Science: A Research Methodology for the 21st Century

    NASA Astrophysics Data System (ADS)

    Orbach, Raymond L.

    2004-03-01

    Computational simulation - a means of scientific discovery that employs computer systems to simulate a physical system according to laws derived from theory and experiment - has attained peer status with theory and experiment. Important advances in basic science are accomplished by a new "sociology" for ultrascale scientific computing capability (USSCC), a fusion of sustained advances in scientific models, mathematical algorithms, computer architecture, and scientific software engineering. Expansion of current capabilities by factors of 100 - 1000 open up new vistas for scientific discovery: long term climatic variability and change, macroscopic material design from correlated behavior at the nanoscale, design and optimization of magnetic confinement fusion reactors, strong interactions on a computational lattice through quantum chromodynamics, and stellar explosions and element production. The "virtual prototype," made possible by this expansion, can markedly reduce time-to-market for industrial applications such as jet engines and safer, more fuel efficient cleaner cars. In order to develop USSCC, the National Energy Research Scientific Computing Center (NERSC) announced the competition "Innovative and Novel Computational Impact on Theory and Experiment" (INCITE), with no requirement for current DOE sponsorship. Fifty nine proposals for grand challenge scientific problems were submitted for a small number of awards. The successful grants, and their preliminary progress, will be described.

  14. Incorporating computational resources in a cancer research program

    PubMed Central

    Woods, Nicholas T.; Jhuraney, Ankita; Monteiro, Alvaro N.A.

    2015-01-01

    Recent technological advances have transformed cancer genetics research. These advances have served as the basis for the generation of a number of richly annotated datasets relevant to the cancer geneticist. In addition, many of these technologies are now within reach of smaller laboratories to answer specific biological questions. Thus, one of the most pressing issues facing an experimental cancer biology research program in genetics is incorporating data from multiple sources to annotate, visualize, and analyze the system under study. Fortunately, there are several computational resources to aid in this process. However, a significant effort is required to adapt a molecular biology-based research program to take advantage of these datasets. Here, we discuss the lessons learned in our laboratory and share several recommendations to make this transition effectively. This article is not meant to be a comprehensive evaluation of all the available resources, but rather highlight those that we have incorporated into our laboratory and how to choose the most appropriate ones for your research program. PMID:25324189

  15. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  16. 77 FR 12823 - Advanced Scientific Computing Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-02

    ... Exascale ARRA projects--Magellan final report, Advanced Networking update Status from Computer Science COV Early Career technical talks Summary of Applied Math and Computer Science Workshops ASCR's new SBIR..., Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the...

  17. Research in Computational Aeroscience Applications Implemented on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Wigton, Larry

    1996-01-01

    Improving the numerical linear algebra routines for use in new Navier-Stokes codes, specifically Tim Barth's unstructured grid code, with spin-offs to TRANAIR is reported. A fast distance calculation routine for Navier-Stokes codes using the new one-equation turbulence models is written. The primary focus of this work was devoted to improving matrix-iterative methods. New algorithms have been developed which activate the full potential of classical Cray-class computers as well as distributed-memory parallel computers.

  18. PNNLs Data Intensive Computing research battles Homeland Security threats

    ScienceCinema

    David Thurman; Joe Kielman; Katherine Wolf; David Atkinson

    2018-05-11

    The Pacific Northwest National Laboratorys (PNNL's) approach to data intensive computing (DIC) is focused on three key research areas: hybrid hardware architecture, software architectures, and analytic algorithms. Advancements in these areas will help to address, and solve, DIC issues associated with capturing, managing, analyzing and understanding, in near real time, data at volumes and rates that push the frontiers of current technologies.

  19. Advanced Simulation and Computing Fiscal Year 14 Implementation Plan, Rev. 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meisner, Robert; McCoy, Michel; Archer, Bill

    2013-09-11

    The Stockpile Stewardship Program (SSP) is a single, highly integrated technical program for maintaining the surety and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational enhancements to support these programs. The Advanced Simulation and Computing Program (ASC) is a cornerstone of the SSP, providing simulation capabilities andmore » computational resources that support annual stockpile assessment and certification, study advanced nuclear weapons design and manufacturing processes, analyze accident scenarios and weapons aging, and provide the tools to enable stockpile Life Extension Programs (LEPs) and the resolution of Significant Finding Investigations (SFIs). This requires a balanced resource, including technical staff, hardware, simulation software, and computer science solutions. In its first decade, the ASC strategy focused on demonstrating simulation capabilities of unprecedented scale in three spatial dimensions. In its second decade, ASC is now focused on increasing predictive capabilities in a three-dimensional (3D) simulation environment while maintaining support to the SSP. The program continues to improve its unique tools for solving progressively more difficult stockpile problems (sufficient resolution, dimensionality, and scientific details), quantify critical margins and uncertainties, and resolve increasingly difficult analyses needed for the SSP. Moreover, ASC’s business model is integrated and focused on requirements-driven products that address long-standing technical questions related to enhanced predictive

  20. Computer sciences

    NASA Technical Reports Server (NTRS)

    Smith, Paul H.

    1988-01-01

    The Computer Science Program provides advanced concepts, techniques, system architectures, algorithms, and software for both space and aeronautics information sciences and computer systems. The overall goal is to provide the technical foundation within NASA for the advancement of computing technology in aerospace applications. The research program is improving the state of knowledge of fundamental aerospace computing principles and advancing computing technology in space applications such as software engineering and information extraction from data collected by scientific instruments in space. The program includes the development of special algorithms and techniques to exploit the computing power provided by high performance parallel processors and special purpose architectures. Research is being conducted in the fundamentals of data base logic and improvement techniques for producing reliable computing systems.

  1. Exploratory Advanced Research Program

    DOT National Transportation Integrated Search

    2014-12-31

    Exploratory advanced research focuses on longer-term, higher-risk research with a high payoff potential. It matches opportunities from discoveries in science and technology with the needs of specific industries. The uncertainties in the research appr...

  2. Exploratory Advanced Research Program

    DOT National Transportation Integrated Search

    2016-12-15

    Exploratory advanced research focuses on longer term, higher risk research with a high payoff potential. It matches opportunities from discoveries in science and technology with the needs of specific industries. The uncertainties in the research appr...

  3. Three Decades of Research on Computer Applications in Health Care

    PubMed Central

    Michael Fitzmaurice, J.; Adams, Karen; Eisenberg, John M.

    2002-01-01

    The Agency for Healthcare Research and Quality and its predecessor organizations—collectively referred to here as AHRQ—have a productive history of funding research and development in the field of medical informatics, with grant investments since 1968 totaling $107 million. Many computerized interventions that are commonplace today, such as drug interaction alerts, had their genesis in early AHRQ initiatives. This review provides a historical perspective on AHRQ investment in medical informatics research. It shows that grants provided by AHRQ resulted in achievements that include advancing automation in the clinical laboratory and radiology, assisting in technology development (computer languages, software, and hardware), evaluating the effectiveness of computer-based medical information systems, facilitating the evolution of computer-aided decision making, promoting computer-initiated quality assurance programs, backing the formation and application of comprehensive data banks, enhancing the management of specific conditions such as HIV infection, and supporting health data coding and standards initiatives. Other federal agencies and private organizations have also supported research in medical informatics, some earlier and to a greater degree than AHRQ. The results and relative roles of these related efforts are beyond the scope of this review. PMID:11861630

  4. Computational Nanotechnology at NASA Ames Research Center, 1996

    NASA Technical Reports Server (NTRS)

    Globus, Al; Bailey, David; Langhoff, Steve; Pohorille, Andrew; Levit, Creon; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Some forms of nanotechnology appear to have enormous potential to improve aerospace and computer systems; computational nanotechnology, the design and simulation of programmable molecular machines, is crucial to progress. NASA Ames Research Center has begun a computational nanotechnology program including in-house work, external research grants, and grants of supercomputer time. Four goals have been established: (1) Simulate a hypothetical programmable molecular machine replicating itself and building other products. (2) Develop molecular manufacturing CAD (computer aided design) software and use it to design molecular manufacturing systems and products of aerospace interest, including computer components. (3) Characterize nanotechnologically accessible materials of aerospace interest. Such materials may have excellent strength and thermal properties. (4) Collaborate with experimentalists. Current in-house activities include: (1) Development of NanoDesign, software to design and simulate a nanotechnology based on functionalized fullerenes. Early work focuses on gears. (2) A design for high density atomically precise memory. (3) Design of nanotechnology systems based on biology. (4) Characterization of diamonoid mechanosynthetic pathways. (5) Studies of the laplacian of the electronic charge density to understand molecular structure and reactivity. (6) Studies of entropic effects during self-assembly. Characterization of properties of matter for clusters up to sizes exhibiting bulk properties. In addition, the NAS (NASA Advanced Supercomputing) supercomputer division sponsored a workshop on computational molecular nanotechnology on March 4-5, 1996 held at NASA Ames Research Center. Finally, collaborations with Bill Goddard at CalTech, Ralph Merkle at Xerox Parc, Don Brenner at NCSU (North Carolina State University), Tom McKendree at Hughes, and Todd Wipke at UCSC are underway.

  5. Computational methods to extract meaning from text and advance theories of human cognition.

    PubMed

    McNamara, Danielle S

    2011-01-01

    Over the past two decades, researchers have made great advances in the area of computational methods for extracting meaning from text. This research has to a large extent been spurred by the development of latent semantic analysis (LSA), a method for extracting and representing the meaning of words using statistical computations applied to large corpora of text. Since the advent of LSA, researchers have developed and tested alternative statistical methods designed to detect and analyze meaning in text corpora. This research exemplifies how statistical models of semantics play an important role in our understanding of cognition and contribute to the field of cognitive science. Importantly, these models afford large-scale representations of human knowledge and allow researchers to explore various questions regarding knowledge, discourse processing, text comprehension, and language. This topic includes the latest progress by the leading researchers in the endeavor to go beyond LSA. Copyright © 2010 Cognitive Science Society, Inc.

  6. Advanced Computing Tools and Models for Accelerator Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryne, Robert; Ryne, Robert D.

    2008-06-11

    This paper is based on a transcript of my EPAC'08 presentation on advanced computing tools for accelerator physics. Following an introduction I present several examples, provide a history of the development of beam dynamics capabilities, and conclude with thoughts on the future of large scale computing in accelerator physics.

  7. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...

  8. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...

  9. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...

  10. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...

  11. 32 CFR 37.1210 - Advanced research.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Advanced research. 37.1210 Section 37.1210... research. Research that creates new technology or demonstrates the viability of applying existing technology to new products and processes in a general way. Advanced research is most closely analogous to...

  12. Research data collection methods: from paper to tablet computers.

    PubMed

    Wilcox, Adam B; Gallagher, Kathleen D; Boden-Albala, Bernadette; Bakken, Suzanne R

    2012-07-01

    Primary data collection is a critical activity in clinical research. Even with significant advances in technical capabilities, clear benefits of use, and even user preferences for using electronic systems for collecting primary data, paper-based data collection is still common in clinical research settings. However, with recent developments in both clinical research and tablet computer technology, the comparative advantages and disadvantages of data collection methods should be determined. To describe case studies using multiple methods of data collection, including next-generation tablets, and consider their various advantages and disadvantages. We reviewed 5 modern case studies using primary data collection, using methods ranging from paper to next-generation tablet computers. We performed semistructured telephone interviews with each project, which considered factors relevant to data collection. We address specific issues with workflow, implementation and security for these different methods, and identify differences in implementation that led to different technology considerations for each case study. There remain multiple methods for primary data collection, each with its own strengths and weaknesses. Two recent methods are electronic health record templates and next-generation tablet computers. Electronic health record templates can link data directly to medical records, but are notably difficult to use. Current tablet computers are substantially different from previous technologies with regard to user familiarity and software cost. The use of cloud-based storage for tablet computers, however, creates a specific challenge for clinical research that must be considered but can be overcome.

  13. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  14. Collaborative Research Goes to School: Guided Inquiry with Computers in Classrooms. Technical Report.

    ERIC Educational Resources Information Center

    Wiske, Martha Stone; And Others

    Twin aims--to advance theory and to improve practice in science, mathematics, and computing education--guided the Educational Technology Center's (ETC) research from its inception in 1983. These aims led ETC to establish collaborative research groups in which people whose primary interest was classroom teaching and learning, and researchers…

  15. Advanced Physics Labs and Undergraduate Research: Helping Them Work Together

    NASA Astrophysics Data System (ADS)

    Peterson, Richard W.

    2009-10-01

    The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.

  16. Airborne Advanced Reconfigurable Computer System (ARCS)

    NASA Technical Reports Server (NTRS)

    Bjurman, B. E.; Jenkins, G. M.; Masreliez, C. J.; Mcclellan, K. L.; Templeman, J. E.

    1976-01-01

    A digital computer subsystem fault-tolerant concept was defined, and the potential benefits and costs of such a subsystem were assessed when used as the central element of a new transport's flight control system. The derived advanced reconfigurable computer system (ARCS) is a triple-redundant computer subsystem that automatically reconfigures, under multiple fault conditions, from triplex to duplex to simplex operation, with redundancy recovery if the fault condition is transient. The study included criteria development covering factors at the aircraft's operation level that would influence the design of a fault-tolerant system for commercial airline use. A new reliability analysis tool was developed for evaluating redundant, fault-tolerant system availability and survivability; and a stringent digital system software design methodology was used to achieve design/implementation visibility.

  17. Research in mobile robotics at ORNL/CESAR (Oak Ridge National Laboratory/Center for Engineering Systems Advanced Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, R.C.; Weisbin, C.R.; Pin, F.G.

    1989-01-01

    This paper reviews ongoing and planned research with mobile autonomous robots at the Oak Ridge National Laboratory (ORNL), Center for Engineering Systems Advanced Research (CESAR). Specifically we report on results obtained with the robot HERMIES-IIB in navigation, intelligent sensing, learning, and on-board parallel computing in support of these functions. We briefly summarize an experiment with HERMIES-IIB that demonstrates the capability of smooth transitions between robot autonomy and tele-operation. This experiment results from collaboration among teams at the Universities of Florida, Michigan, Tennessee, and Texas; and ORNL in a program targeted at robotics for advanced nuclear power stations. We conclude bymore » summarizing ongoing R D with our new mobile robot HERMIES-III which is equipped with a seven degree-of-freedom research manipulator arm. 12 refs., 4 figs.« less

  18. Intermediate/Advanced Research Design and Statistics

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Robert

    2009-01-01

    The purpose of this module is To provide Institutional Researchers (IRs) with an understanding of the principles of advanced research design and the intermediate/advanced statistical procedures consistent with such designs

  19. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less

  20. Vision 20/20: Automation and advanced computing in clinical radiation oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Kevin L., E-mail: kevinmoore@ucsd.edu; Moiseenko, Vitali; Kagadis, George C.

    2014-01-15

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authorsmore » contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.« less

  1. Vision 20/20: Automation and advanced computing in clinical radiation oncology.

    PubMed

    Moore, Kevin L; Kagadis, George C; McNutt, Todd R; Moiseenko, Vitali; Mutic, Sasa

    2014-01-01

    This Vision 20/20 paper considers what computational advances are likely to be implemented in clinical radiation oncology in the coming years and how the adoption of these changes might alter the practice of radiotherapy. Four main areas of likely advancement are explored: cloud computing, aggregate data analyses, parallel computation, and automation. As these developments promise both new opportunities and new risks to clinicians and patients alike, the potential benefits are weighed against the hazards associated with each advance, with special considerations regarding patient safety under new computational platforms and methodologies. While the concerns of patient safety are legitimate, the authors contend that progress toward next-generation clinical informatics systems will bring about extremely valuable developments in quality improvement initiatives, clinical efficiency, outcomes analyses, data sharing, and adaptive radiotherapy.

  2. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windus, Theresa; Banda, Michael; Devereaux, Thomas

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. Wemore » could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic

  3. Advanced Computer Simulations of Military Incinerators

    DTIC Science & Technology

    2004-12-01

    Reaction Engineering International (REI) has developed advanced computer simulation tools for analyzing chemical demilitarization incinerators. The...Manager, 2003a: Summary of Engineering Design Study Projectile Washout System (PWS) Testing. Assembled Chemical Weapons Alternatives (ACWA), Final... Engineering Design Studies for Demilitarization of Assembled Chemical Weapons at Pueblo Chemical Depot. O’Shea, L. et al, 2003: RIM 57 – Monitoring in

  4. Ethics Regulation in Social Computing Research: Examining the Role of Institutional Review Boards.

    PubMed

    Vitak, Jessica; Proferes, Nicholas; Shilton, Katie; Ashktorab, Zahra

    2017-12-01

    The parallel rise of pervasive data collection platforms and computational methods for collecting, analyzing, and drawing inferences from large quantities of user data has advanced social computing research, investigating digital traces to understand mediated behaviors of individuals, groups, and societies. At the same time, methods employed to access these data have raised questions about ethical research practices. This article provides insights into U.S. institutional review boards' (IRBs) attitudes and practices regulating social computing research. Through descriptive and inferential analysis of survey data from staff at 59 IRBs at research universities, we examine how IRBs evaluate the growing variety of studies using pervasive digital data. Findings unpack the difficulties IRB staff face evaluating increasingly technical research proposals while highlighting the belief in their ability to surmount these difficulties. They also indicate a lack of consensus among IRB staff about what should be reviewed and a willingness to work closely with researchers.

  5. Exploratory Advanced Research Program

    DOT National Transportation Integrated Search

    2013-08-20

    The Exploratory Advanced Research Program strives to develop partnerships with the public and private sectors because the very nature of EAR is to apply ideas across traditional fields of research and stimulate new approaches to problem solving. Thro...

  6. Advanced Simulation and Computing Fiscal Year 2016 Implementation Plan, Version 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, M.; Archer, B.; Hendrickson, B.

    2015-08-27

    The Stockpile Stewardship Program (SSP) is an integrated technical program for maintaining the safety, surety, and reliability of the U.S. nuclear stockpile. The SSP uses nuclear test data, computational modeling and simulation, and experimental facilities to advance understanding of nuclear weapons. It includes stockpile surveillance, experimental research, development and engineering programs, and an appropriately scaled production capability to support stockpile requirements. This integrated national program requires the continued use of experimental facilities and programs, and the computational capabilities to support these programs. The purpose of this IP is to outline key work requirements to be performed and to control individualmore » work activities within the scope of work. Contractors may not deviate from this plan without a revised WA or subsequent IP.« less

  7. Developing an Advanced Environment for Collaborative Computing

    NASA Technical Reports Server (NTRS)

    Becerra-Fernandez, Irma; Stewart, Helen; DelAlto, Martha; DelAlto, Martha; Knight, Chris

    1999-01-01

    Knowledge management in general tries to organize and make available important know-how, whenever and where ever is needed. Today, organizations rely on decision-makers to produce "mission critical" decisions that am based on inputs from multiple domains. The ideal decision-maker has a profound understanding of specific domains that influence the decision-making process coupled with the experience that allows them to act quickly and decisively on the information. In addition, learning companies benefit by not repeating costly mistakes, and by reducing time-to-market in Research & Development projects. Group-decision making tools can help companies make better decisions by capturing the knowledge from groups of experts. Furthermore, companies that capture their customers preferences can improve their customer service, which translates to larger profits. Therefore collaborative computing provides a common communication space, improves sharing of knowledge, provides a mechanism for real-time feedback on the tasks being performed, helps to optimize processes, and results in a centralized knowledge warehouse. This paper presents the research directions. of a project which seeks to augment an advanced collaborative web-based environment called Postdoc, with workflow capabilities. Postdoc is a "government-off-the-shelf" document management software developed at NASA-Ames Research Center (ARC).

  8. Center for Computing Research Summer Research Proceedings 2015.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, Andrew Michael; Parks, Michael L.

    2015-12-18

    The Center for Computing Research (CCR) at Sandia National Laboratories organizes a summer student program each summer, in coordination with the Computer Science Research Institute (CSRI) and Cyber Engineering Research Institute (CERI).

  9. Robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery from stroke: updates and advances.

    PubMed

    Boninger, Michael L; Wechsler, Lawrence R; Stein, Joel

    2014-11-01

    The aim of this study was to describe the current state and latest advances in robotics, stem cells, and brain-computer interfaces in rehabilitation and recovery for stroke. The authors of this summary recently reviewed this work as part of a national presentation. The article represents the information included in each area. Each area has seen great advances and challenges as products move to market and experiments are ongoing. Robotics, stem cells, and brain-computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial.

  10. Robotics, Stem Cells and Brain Computer Interfaces in Rehabilitation and Recovery from Stroke; Updates and Advances

    PubMed Central

    Boninger, Michael L; Wechsler, Lawrence R.; Stein, Joel

    2014-01-01

    Objective To describe the current state and latest advances in robotics, stem cells, and brain computer interfaces in rehabilitation and recovery for stroke. Design The authors of this summary recently reviewed this work as part of a national presentation. The paper represents the information included in each area. Results Each area has seen great advances and challenges as products move to market and experiments are ongoing. Conclusion Robotics, stem cells, and brain computer interfaces all have tremendous potential to reduce disability and lead to better outcomes for patients with stroke. Continued research and investment will be needed as the field moves forward. With this investment, the potential for recovery of function is likely substantial PMID:25313662

  11. Advanced cogeneration research study: Executive summary

    NASA Technical Reports Server (NTRS)

    Bluhm, S. A.; Moore, N.; Rosenberg, L.; Slonski, M.

    1983-01-01

    This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology.

  12. Institute for scientific computing research;fiscal year 1999 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyes, D

    2000-03-28

    Large-scale scientific computation, and all of the disciplines that support it and help to validate it, have been placed at the focus of Lawrence Livermore National Laboratory by the Accelerated Strategic Computing Initiative (ASCI). The Laboratory operates the computer with the highest peak performance in the world and has undertaken some of the largest and most compute-intensive simulations ever performed. Computers at the architectural extremes, however, are notoriously difficult to use efficiently. Even such successes as the Laboratory's two Bell Prizes awarded in November 1999 only emphasize the need for much better ways of interacting with the results of large-scalemore » simulations. Advances in scientific computing research have, therefore, never been more vital to the core missions of the Laboratory than at present. Computational science is evolving so rapidly along every one of its research fronts that to remain on the leading edge, the Laboratory must engage researchers at many academic centers of excellence. In FY 1999, the Institute for Scientific Computing Research (ISCR) has expanded the Laboratory's bridge to the academic community in the form of collaborative subcontracts, visiting faculty, student internships, a workshop, and a very active seminar series. ISCR research participants are integrated almost seamlessly with the Laboratory's Center for Applied Scientific Computing (CASC), which, in turn, addresses computational challenges arising throughout the Laboratory. Administratively, the ISCR flourishes under the Laboratory's University Relations Program (URP). Together with the other four Institutes of the URP, it must navigate a course that allows the Laboratory to benefit from academic exchanges while preserving national security. Although FY 1999 brought more than its share of challenges to the operation of an academic-like research enterprise within the context of a national security laboratory, the results declare the challenges well met

  13. Research Advances: DNA Computing Targets West Nile Virus, Other Deadly Diseases, and Tic-Tac-Toe; Marijuana Component May Offer Hope for Alzheimer's Disease Treatment; New Wound Dressing May Lead to Maggot Therapy--Without the Maggots

    ERIC Educational Resources Information Center

    King, Angela G.

    2007-01-01

    This article presents three reports of research advances. The first report describes a deoxyribonucleic acid (DNA)-based computer that could lead to faster, more accurate tests for diagnosing West Nile Virus and bird flu. Representing the first "medium-scale integrated molecular circuit," it is the most powerful computing device of its type to…

  14. Recent advances in computational structural reliability analysis methods

    NASA Astrophysics Data System (ADS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-10-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  15. Recent advances in computational structural reliability analysis methods

    NASA Technical Reports Server (NTRS)

    Thacker, Ben H.; Wu, Y.-T.; Millwater, Harry R.; Torng, Tony Y.; Riha, David S.

    1993-01-01

    The goal of structural reliability analysis is to determine the probability that the structure will adequately perform its intended function when operating under the given environmental conditions. Thus, the notion of reliability admits the possibility of failure. Given the fact that many different modes of failure are usually possible, achievement of this goal is a formidable task, especially for large, complex structural systems. The traditional (deterministic) design methodology attempts to assure reliability by the application of safety factors and conservative assumptions. However, the safety factor approach lacks a quantitative basis in that the level of reliability is never known and usually results in overly conservative designs because of compounding conservatisms. Furthermore, problem parameters that control the reliability are not identified, nor their importance evaluated. A summary of recent advances in computational structural reliability assessment is presented. A significant level of activity in the research and development community was seen recently, much of which was directed towards the prediction of failure probabilities for single mode failures. The focus is to present some early results and demonstrations of advanced reliability methods applied to structural system problems. This includes structures that can fail as a result of multiple component failures (e.g., a redundant truss), or structural components that may fail due to multiple interacting failure modes (e.g., excessive deflection, resonate vibration, or creep rupture). From these results, some observations and recommendations are made with regard to future research needs.

  16. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  17. 78 FR 68058 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology..., computational, and systems biology data can better inform risk assessment. This draft document is available for...

  18. Generalized Advanced Propeller Analysis System (GAPAS). Volume 2: Computer program user manual

    NASA Technical Reports Server (NTRS)

    Glatt, L.; Crawford, D. R.; Kosmatka, J. B.; Swigart, R. J.; Wong, E. W.

    1986-01-01

    The Generalized Advanced Propeller Analysis System (GAPAS) computer code is described. GAPAS was developed to analyze advanced technology multi-bladed propellers which operate on aircraft with speeds up to Mach 0.8 and altitudes up to 40,000 feet. GAPAS includes technology for analyzing aerodynamic, structural, and acoustic performance of propellers. The computer code was developed for the CDC 7600 computer and is currently available for industrial use on the NASA Langley computer. A description of all the analytical models incorporated in GAPAS is included. Sample calculations are also described as well as users requirements for modifying the analysis system. Computer system core requirements and running times are also discussed.

  19. COMPUTER-AIDED WORD RESEARCH.

    ERIC Educational Resources Information Center

    SILIAKUS, H.J.

    IN PREPARATION FOR THE DEVELOPMENT OF A GENERAL FREQUENCY WORD LIST IN GERMAN DESIGNED TO MEET THE NEEDS OF THE INTERMEDIATE AND ADVANCED LEVELS OF READING IN THE GERMAN CURRICULUM, A COMPUTER-BASED WORD COUNT WAS BEGUN IN AUSTRALIA'S UNIVERSITY OF ADELAIDE. USING MAGNETIC TAPES CONTAINING (1) A TEXT OF OVER 100,000 RUNNING WORDS, (2) 1,000 MOST…

  20. 78 FR 59927 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-30

    ... Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology..., Computational, and Systems Biology [External Review Draft]'' (EPA/600/R-13/214A). EPA is also announcing that... Advances in Molecular, Computational, and Systems Biology [External Review Draft]'' is available primarily...

  1. Advanced flight computers for planetary exploration

    NASA Technical Reports Server (NTRS)

    Stephenson, R. Rhoads

    1988-01-01

    Research concerning flight computers for use on interplanetary probes is reviewed. The history of these computers from the Viking mission to the present is outlined. The differences between ground commercial computers and computers for planetary exploration are listed. The development of a computer for the Mariner Mark II comet rendezvous asteroid flyby mission is described. Various aspects of recently developed computer systems are examined, including the Max real time, embedded computer, a hypercube distributed supercomputer, a SAR data processor, a processor for the High Resolution IR Imaging Spectrometer, and a robotic vision multiresolution pyramid machine for processsing images obtained by a Mars Rover.

  2. Implementing an Affordable High-Performance Computing for Teaching-Oriented Computer Science Curriculum

    ERIC Educational Resources Information Center

    Abuzaghleh, Omar; Goldschmidt, Kathleen; Elleithy, Yasser; Lee, Jeongkyu

    2013-01-01

    With the advances in computing power, high-performance computing (HPC) platforms have had an impact on not only scientific research in advanced organizations but also computer science curriculum in the educational community. For example, multicore programming and parallel systems are highly desired courses in the computer science major. However,…

  3. OPENING REMARKS: Scientific Discovery through Advanced Computing

    NASA Astrophysics Data System (ADS)

    Strayer, Michael

    2006-01-01

    Good morning. Welcome to SciDAC 2006 and Denver. I share greetings from the new Undersecretary for Energy, Ray Orbach. Five years ago SciDAC was launched as an experiment in computational science. The goal was to form partnerships among science applications, computer scientists, and applied mathematicians to take advantage of the potential of emerging terascale computers. This experiment has been a resounding success. SciDAC has emerged as a powerful concept for addressing some of the biggest challenges facing our world. As significant as these successes were, I believe there is also significance in the teams that achieved them. In addition to their scientific aims these teams have advanced the overall field of computational science and set the stage for even larger accomplishments as we look ahead to SciDAC-2. I am sure that many of you are expecting to hear about the results of our current solicitation for SciDAC-2. I’m afraid we are not quite ready to make that announcement. Decisions are still being made and we will announce the results later this summer. Nearly 250 unique proposals were received and evaluated, involving literally thousands of researchers, postdocs, and students. These collectively requested more than five times our expected budget. This response is a testament to the success of SciDAC in the community. In SciDAC-2 our budget has been increased to about 70 million for FY 2007 and our partnerships have expanded to include the Environment and National Security missions of the Department. The National Science Foundation has also joined as a partner. These new partnerships are expected to expand the application space of SciDAC, and broaden the impact and visibility of the program. We have, with our recent solicitation, expanded to turbulence, computational biology, and groundwater reactive modeling and simulation. We are currently talking with the Department’s applied energy programs about risk assessment, optimization of complex systems - such

  4. Advanced Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure

    DTIC Science & Technology

    2017-01-05

    AFRL-AFOSR-JP-TR-2017-0002 Advanced Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure Manabu...Computational Methods for Optimization of Non-Periodic Inspection Intervals for Aging Infrastructure 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386...UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT This report for the project titled ’Advanced Computational Methods for Optimization of

  5. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Frederick National Laboratory for Cancer Research

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru

  6. Computer Science Research at Langley

    NASA Technical Reports Server (NTRS)

    Voigt, S. J. (Editor)

    1982-01-01

    A workshop was held at Langley Research Center, November 2-5, 1981, to highlight ongoing computer science research at Langley and to identify additional areas of research based upon the computer user requirements. A panel discussion was held in each of nine application areas, and these are summarized in the proceedings. Slides presented by the invited speakers are also included. A survey of scientific, business, data reduction, and microprocessor computer users helped identify areas of focus for the workshop. Several areas of computer science which are of most concern to the Langley computer users were identified during the workshop discussions. These include graphics, distributed processing, programmer support systems and tools, database management, and numerical methods.

  7. Advances in computer-aided well-test interpretation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horne, R.N.

    1994-07-01

    Despite the feeling expressed several times over the past 40 years that well-test analysis had reached it peak development, an examination of recent advances shows continuous expansion in capability, with future improvement likely. The expansion in interpretation capability over the past decade arose mainly from the development of computer-aided techniques, which, although introduced 20 years ago, have come into use only recently. The broad application of computer-aided interpretation originated with the improvement of the methodologies and continued with the expansion in computer access and capability that accompanied the explosive development of the microcomputer industry. This paper focuses on the differentmore » pieces of the methodology that combine to constitute a computer-aided interpretation and attempts to compare some of the approaches currently used. Future directions of the approach are also discussed. The separate areas discussed are deconvolution, pressure derivatives, model recognition, nonlinear regression, and confidence intervals.« less

  8. Using Computer-Assisted Argumentation Mapping to develop effective argumentation skills in high school advanced placement physics

    NASA Astrophysics Data System (ADS)

    Heglund, Brian

    Educators recognize the importance of reasoning ability for development of critical thinking skills, conceptual change, metacognition, and participation in 21st century society. There is a recognized need for students to improve their skills of argumentation, however, argumentation is not explicitly taught outside logic and philosophy---subjects that are not part of the K-12 curriculum. One potential way of supporting the development of argumentation skills in the K-12 context is through incorporating Computer-Assisted Argument Mapping to evaluate arguments. This quasi-experimental study tested the effects of such argument mapping software and was informed by the following two research questions: 1. To what extent does the collaborative use of Computer-Assisted Argumentation Mapping to evaluate competing theories influence the critical thinking skill of argument evaluation, metacognitive awareness, and conceptual knowledge acquisition in high school Advanced Placement physics, compared to the more traditional method of text tables that does not employ Computer-Assisted Argumentation Mapping? 2. What are the student perceptions of the pros and cons of argument evaluation in the high school Advanced Placement physics environment? This study examined changes in critical thinking skills, including argumentation evaluation skills, as well as metacognitive awareness and conceptual knowledge, in two groups: a treatment group using Computer-Assisted Argumentation Mapping to evaluate physics arguments, and a comparison group using text tables to evaluate physics arguments. Quantitative and qualitative methods for collecting and analyzing data were used to answer the research questions. Quantitative data indicated no significant difference between the experimental groups, and qualitative data suggested students perceived pros and cons of argument evaluation in the high school Advanced Placement physics environment, such as self-reported sense of improvement in argument

  9. Crosscut report: Exascale Requirements Reviews, March 9–10, 2017 – Tysons Corner, Virginia. An Office of Science review sponsored by: Advanced Scientific Computing Research, Basic Energy Sciences, Biological and Environmental Research, Fusion Energy Sciences, High Energy Physics, Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Hack, James; Riley, Katherine

    The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain

  10. ISAAC Advanced Composites Research Testbed

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication capability to support the Center's advanced research and technology mission. The system introduced in this paper is named ISAAC (Integrated Structural Assembly of Advanced Composites). The initial operational capability of ISAAC is automated fiber placement, built around a commercial system from Electroimpact, Inc. that consists of a multi-degree of freedom robot platform, a tool changer mechanism, and a purpose-built fiber placement end effector. Examples are presented of the advanced materials, structures, structural concepts, fabrication processes and technology development that may be enabled using the ISAAC system. The fiber placement end effector may be used directly or with appropriate modifications for these studies, or other end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  11. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  12. Computer program user's manual for advanced general aviation propeller study

    NASA Technical Reports Server (NTRS)

    Worobel, R.

    1972-01-01

    A user's manual is presented for a computer program for predicting the performance (static, flight, and reverse), noise, weight and cost of propellers for advanced general aviation aircraft of the 1980 time period. Complete listings of this computer program with detailed instructions and samples of input and output are included.

  13. ADVANCED COMPUTATIONAL METHODS IN DOSE MODELING

    EPA Science Inventory

    The overall goal of the EPA-ORD NERL research program on Computational Toxicology (CompTox) is to provide the Agency with the tools of modern chemistry, biology, and computing to improve quantitative risk assessments and reduce uncertainties in the source-to-adverse outcome conti...

  14. ISAAC: An Introduction to IBM's Information System for Advanced Academic Computing at the University of Washington-Seattle.

    ERIC Educational Resources Information Center

    Hernandez, Nicolas, Jr.

    1988-01-01

    Traces the origin of ISAAC (Information System for Advanced Academic Computing) and the development of a languages and linguistics "room" at the University of Washington-Seattle. ISAAC, a free, valuable resource, consists of two databases and an electronic bulletin board spanning broad areas of pedagogical and research fields. (Author/CB)

  15. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  16. Cogeneration computer model assessment: Advanced cogeneration research study

    NASA Technical Reports Server (NTRS)

    Rosenberg, L.

    1983-01-01

    Cogeneration computer simulation models to recommend the most desirable models or their components for use by the Southern California Edison Company (SCE) in evaluating potential cogeneration projects was assessed. Existing cogeneration modeling capabilities are described, preferred models are identified, and an approach to the development of a code which will best satisfy SCE requirements is recommended. Five models (CELCAP, COGEN 2, CPA, DEUS, and OASIS) are recommended for further consideration.

  17. Teaching Advance Care Planning to Medical Students with a Computer-Based Decision Aid

    PubMed Central

    Levi, Benjamin H.

    2013-01-01

    Discussing end-of-life decisions with cancer patients is a crucial skill for physicians. This article reports findings from a pilot study evaluating the effectiveness of a computer-based decision aid for teaching medical students about advance care planning. Second-year medical students at a single medical school were randomized to use a standard advance directive or a computer-based decision aid to help patients with advance care planning. Students' knowledge, skills, and satisfaction were measured by self-report; their performance was rated by patients. 121/133 (91%) of students participated. The Decision-Aid Group (n=60) outperformed the Standard Group (n=61) in terms of students´ knowledge (p<0.01), confidence in helping patients with advance care planning (p<0.01), knowledge of what matters to patients (p=0.05), and satisfaction with their learning experience (p<0.01). Likewise, patients in the Decision Aid Group were more satisfied with the advance care planning method (p<0.01) and with several aspects of student performance. Use of a computer-based decision aid may be an effective way to teach medical students how to discuss advance care planning with cancer patients. PMID:20632222

  18. NHERI: Advancing the Research Infrastructure of the Multi-Hazard Community

    NASA Astrophysics Data System (ADS)

    Blain, C. A.; Ramirez, J. A.; Bobet, A.; Browning, J.; Edge, B.; Holmes, W.; Johnson, D.; Robertson, I.; Smith, T.; Zuo, D.

    2017-12-01

    The Natural Hazards Engineering Research Infrastructure (NHERI), supported by the National Science Foundation (NSF), is a distributed, multi-user national facility that provides the natural hazards research community with access to an advanced research infrastructure. Components of NHERI are comprised of a Network Coordination Office (NCO), a cloud-based cyberinfrastructure (DesignSafe-CI), a computational modeling and simulation center (SimCenter), and eight Experimental Facilities (EFs), including a post-disaster, rapid response research facility (RAPID). Utimately NHERI enables researchers to explore and test ground-breaking concepts to protect homes, businesses and infrastructure lifelines from earthquakes, windstorms, tsunamis, and surge enabling innovations to help prevent natural hazards from becoming societal disasters. When coupled with education and community outreach, NHERI will facilitate research and educational advances that contribute knowledge and innovation toward improving the resiliency of the nation's civil infrastructure to withstand natural hazards. The unique capabilities and coordinating activities over Year 1 between NHERI's DesignSafe-CI, the SimCenter, and individual EFs will be presented. Basic descriptions of each component are also found at https://www.designsafe-ci.org/facilities/. Additionally to be discussed are the various roles of the NCO in leading development of a 5-year multi-hazard science plan, coordinating facility scheduling and fostering the sharing of technical knowledge and best practices, leading education and outreach programs such as the recent Summer Institute and multi-facility REU program, ensuring a platform for technology transfer to practicing engineers, and developing strategic national and international partnerships to support a diverse multi-hazard research and user community.

  19. Research in Computational Astrobiology

    NASA Technical Reports Server (NTRS)

    Chaban, Galina; Jaffe, Richard; Liang, Shoudan; New, Michael H.; Pohorille, Andrew; Wilson, Michael A.

    2002-01-01

    We present results from several projects in the new field of computational astrobiology, which is devoted to advancing our understanding of the origin, evolution and distribution of life in the Universe using theoretical and computational tools. We have developed a procedure for calculating long-range effects in molecular dynamics using a plane wave expansion of the electrostatic potential. This method is expected to be highly efficient for simulating biological systems on massively parallel supercomputers. We have perform genomics analysis on a family of actin binding proteins. We have performed quantum mechanical calculations on carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible sources of organic material on the early earth. Finally, we have developed a model of protobiological chemistry using neural networks.

  20. Projected role of advanced computational aerodynamic methods at the Lockheed-Georgia company

    NASA Technical Reports Server (NTRS)

    Lores, M. E.

    1978-01-01

    Experience with advanced computational methods being used at the Lockheed-Georgia Company to aid in the evaluation and design of new and modified aircraft indicates that large and specialized computers will be needed to make advanced three-dimensional viscous aerodynamic computations practical. The Numerical Aerodynamic Simulation Facility should be used to provide a tool for designing better aerospace vehicles while at the same time reducing development costs by performing computations using Navier-Stokes equations solution algorithms and permitting less sophisticated but nevertheless complex calculations to be made efficiently. Configuration definition procedures and data output formats can probably best be defined in cooperation with industry, therefore, the computer should handle many remote terminals efficiently. The capability of transferring data to and from other computers needs to be provided. Because of the significant amount of input and output associated with 3-D viscous flow calculations and because of the exceedingly fast computation speed envisioned for the computer, special attention should be paid to providing rapid, diversified, and efficient input and output.

  1. Proposal for continued research in intelligent machines at the Center for Engineering Systems Advanced Research (CESAR) for FY 1988 to FY 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisbin, C.R.

    1987-03-01

    This document reviews research accomplishments achieved by the staff of the Center for Engineering Systems Advanced Research (CESAR) during the fiscal years 1984 through 1987. The manuscript also describes future CESAR objectives for the 1988-1991 planning horizon, and beyond. As much as possible, the basic research goals are derived from perceived Department of Energy (DOE) needs for increased safety, productivity, and competitiveness in the United States energy producing and consuming facilities. Research areas covered include the HERMIES-II Robot, autonomous robot navigation, hypercube computers, machine vision, and manipulators.

  2. DOE Advanced Scientific Computing Advisory Committee (ASCAC) Report: Exascale Computing Initiative Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, Daniel; Berzins, Martin; Pennington, Robert

    On November 19, 2014, the Advanced Scientific Computing Advisory Committee (ASCAC) was charged with reviewing the Department of Energy’s conceptual design for the Exascale Computing Initiative (ECI). In particular, this included assessing whether there are significant gaps in the ECI plan or areas that need to be given priority or extra management attention. Given the breadth and depth of previous reviews of the technical challenges inherent in exascale system design and deployment, the subcommittee focused its assessment on organizational and management issues, considering technical issues only as they informed organizational or management priorities and structures. This report presents the observationsmore » and recommendations of the subcommittee.« less

  3. The Design and Transfer of Advanced Command and Control (C2) Computer-Based Systems

    DTIC Science & Technology

    1980-03-31

    TECHNICAL REPORT 80-02 QUARTERLY TECHNICAL REPORT: THE DESIGN AND TRANSFER OF ADVANCED COMMAND AND CONTROL (C 2 ) COMPUTER-BASED SYSTEMS ARPA...The Tasks/Objectives and/or Purposes of the overall project are connected with the design , development, demonstration and transfer of advanced...command and control (C2 ) computer-based systems; this report covers work in the computer-based design and transfer areas only. The Technical Problems thus

  4. Computers in aeronautics and space research at the Lewis Research Center

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This brochure presents a general discussion of the role of computers in aerospace research at NASA's Lewis Research Center (LeRC). Four particular areas of computer applications are addressed: computer modeling and simulation, computer assisted engineering, data acquisition and analysis, and computer controlled testing.

  5. High performance computing for advanced modeling and simulation of materials

    NASA Astrophysics Data System (ADS)

    Wang, Jue; Gao, Fei; Vazquez-Poletti, Jose Luis; Li, Jianjiang

    2017-02-01

    The First International Workshop on High Performance Computing for Advanced Modeling and Simulation of Materials (HPCMS2015) was held in Austin, Texas, USA, Nov. 18, 2015. HPCMS 2015 was organized by Computer Network Information Center (Chinese Academy of Sciences), University of Michigan, Universidad Complutense de Madrid, University of Science and Technology Beijing, Pittsburgh Supercomputing Center, China Institute of Atomic Energy, and Ames Laboratory.

  6. Portable Computer Technology (PCT) Research and Development Program Phase 2

    NASA Technical Reports Server (NTRS)

    Castillo, Michael; McGuire, Kenyon; Sorgi, Alan

    1995-01-01

    The subject of this project report, focused on: (1) Design and development of two Advanced Portable Workstation 2 (APW 2) units. These units incorporate advanced technology features such as a low power Pentium processor, a high resolution color display, National Television Standards Committee (NTSC) video handling capabilities, a Personal Computer Memory Card International Association (PCMCIA) interface, and Small Computer System Interface (SCSI) and ethernet interfaces. (2) Use these units to integrate and demonstrate advanced wireless network and portable video capabilities. (3) Qualification of the APW 2 systems for use in specific experiments aboard the Mir Space Station. A major objective of the PCT Phase 2 program was to help guide future choices in computing platforms and techniques for meeting National Aeronautics and Space Administration (NASA) mission objectives. The focus being on the development of optimal configurations of computing hardware, software applications, and network technologies for use on NASA missions.

  7. Advanced computer architecture specification for automated weld systems

    NASA Technical Reports Server (NTRS)

    Katsinis, Constantine

    1994-01-01

    This report describes the requirements for an advanced automated weld system and the associated computer architecture, and defines the overall system specification from a broad perspective. According to the requirements of welding procedures as they relate to an integrated multiaxis motion control and sensor architecture, the computer system requirements are developed based on a proven multiple-processor architecture with an expandable, distributed-memory, single global bus architecture, containing individual processors which are assigned to specific tasks that support sensor or control processes. The specified architecture is sufficiently flexible to integrate previously developed equipment, be upgradable and allow on-site modifications.

  8. Advancing Research on Undergraduate Science Learning

    ERIC Educational Resources Information Center

    Singer, Susan Rundell

    2013-01-01

    This special issue of "Journal of Research in Science Teaching" reflects conclusions and recommendations in the "Discipline-Based Education Research" (DBER) report and makes a substantial contribution to advancing the field. Research on undergraduate science learning is currently a loose affiliation of related fields. The…

  9. Information and Communicative Technology--Computers as Research Tools

    ERIC Educational Resources Information Center

    Sarsani, Mahender Reddy

    2007-01-01

    The emergence of "the electronic age,/electronic cottages/the electronic world" has affected the whole world; particularly the emergence of computers has penetrated everyone's life to a remarkable degree. They are being used in various fields including education. Recent advances, especially in the area of computer technology have…

  10. Research in computer science

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.

    1986-01-01

    Various graduate research activities in the field of computer science are reported. Among the topics discussed are: (1) failure probabilities in multi-version software; (2) Gaussian Elimination on parallel computers; (3) three dimensional Poisson solvers on parallel/vector computers; (4) automated task decomposition for multiple robot arms; (5) multi-color incomplete cholesky conjugate gradient methods on the Cyber 205; and (6) parallel implementation of iterative methods for solving linear equations.

  11. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    PubMed

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  12. The multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) high performance computing infrastructure: applications in neuroscience and neuroinformatics research

    PubMed Central

    Goscinski, Wojtek J.; McIntosh, Paul; Felzmann, Ulrich; Maksimenko, Anton; Hall, Christopher J.; Gureyev, Timur; Thompson, Darren; Janke, Andrew; Galloway, Graham; Killeen, Neil E. B.; Raniga, Parnesh; Kaluza, Owen; Ng, Amanda; Poudel, Govinda; Barnes, David G.; Nguyen, Toan; Bonnington, Paul; Egan, Gary F.

    2014-01-01

    The Multi-modal Australian ScienceS Imaging and Visualization Environment (MASSIVE) is a national imaging and visualization facility established by Monash University, the Australian Synchrotron, the Commonwealth Scientific Industrial Research Organization (CSIRO), and the Victorian Partnership for Advanced Computing (VPAC), with funding from the National Computational Infrastructure and the Victorian Government. The MASSIVE facility provides hardware, software, and expertise to drive research in the biomedical sciences, particularly advanced brain imaging research using synchrotron x-ray and infrared imaging, functional and structural magnetic resonance imaging (MRI), x-ray computer tomography (CT), electron microscopy and optical microscopy. The development of MASSIVE has been based on best practice in system integration methodologies, frameworks, and architectures. The facility has: (i) integrated multiple different neuroimaging analysis software components, (ii) enabled cross-platform and cross-modality integration of neuroinformatics tools, and (iii) brought together neuroimaging databases and analysis workflows. MASSIVE is now operational as a nationally distributed and integrated facility for neuroinfomatics and brain imaging research. PMID:24734019

  13. Prediction of helicopter rotor discrete frequency noise: A computer program incorporating realistic blade motions and advanced acoustic formulation

    NASA Technical Reports Server (NTRS)

    Brentner, K. S.

    1986-01-01

    A computer program has been developed at the Langley Research Center to predict the discrete frequency noise of conventional and advanced helicopter rotors. The program, called WOPWOP, uses the most advanced subsonic formulation of Farassat that is less sensitive to errors and is valid for nearly all helicopter rotor geometries and flight conditions. A brief derivation of the acoustic formulation is presented along with a discussion of the numerical implementation of the formulation. The computer program uses realistic helicopter blade motion and aerodynamic loadings, input by the user, for noise calculation in the time domain. A detailed definition of all the input variables, default values, and output data is included. A comparison with experimental data shows good agreement between prediction and experiment; however, accurate aerodynamic loading is needed.

  14. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  15. CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment

    NASA Astrophysics Data System (ADS)

    Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.

    2017-12-01

    Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).

  16. A brief overview of computational structures technology related activities at NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.

    1992-01-01

    The presentation gives a partial overview of research and development underway in the Structures Division of LeRC, which collectively is referred to as the Computational Structures Technology Program. The activities in the program are diverse and encompass four major categories: (1) composite materials and structures; (2) probabilistic analysis and reliability; (3) design optimization and expert systems; and (4) computational methods and simulation. The approach of the program is comprehensive and entails exploration of fundamental theories of structural mechanics to accurately represent the complex physics governing engine structural performance, formulation, and implementation of computational techniques and integrated simulation strategies to provide accurate and efficient solutions of the governing theoretical models by exploiting the emerging advances in computer technology, and validation and verification through numerical and experimental tests to establish confidence and define the qualities and limitations of the resulting theoretical models and computational solutions. The program comprises both in-house and sponsored research activities. The remainder of the presentation provides a sample of activities to illustrate the breadth and depth of the program and to demonstrate the accomplishments and benefits that have resulted.

  17. [Research advances in pharmacogenomics of mercaptopurine].

    PubMed

    Chen, Xiao-Xiao; Shen, Shu-Hong

    2017-09-01

    Mercaptopurine is a common chemotherapeutic drug and immunosuppressive agent and plays an important role in the treatment of acute lymphoblastic leukemia and inflammatory bowel disease. It may cause severe adverse effects such as myelosuppression, which may result in the interruption of treatment or complications including infection or even threaten patients' lives. However, the adverse effects of mercaptopurine show significant racial and individual differences, which reveal the important role of genetic diversity. Recent research advances in pharmacogenomics have gradually revealed the genetic nature of such differences. This article reviews the recent research advances in the pharmacogenomics and individualized application of mercaptopurine.

  18. Use of a Computer Program for Advance Care Planning with African American Participants.

    PubMed

    Markham, Sarah A; Levi, Benjamin H; Green, Michael J; Schubart, Jane R

    2015-02-01

    The authors wish to acknowledge the support and assistance of Dr. William Lawrence for his contribution to the M.A.UT model used in the decision aid, Making Your Wishes Known: Planning Your Medical Future (MYWK), Dr. Cheryl Dellasega for her leadership in focus group activities, Charles Sabatino for his review of legal aspects of MYWK, Dr. Robert Pearlman and his collaborative team for use of the advance care planning booklet "Your Life, Your Choices," Megan Whitehead for assistance in grant preparation and project organization, and the Instructional Media Development Center at the University of Wisconsin as well as JPL Integrated Communications for production and programming of MYWK. For various cultural and historical reasons, African Americans are less likely than Caucasians to engage in advance care planning (ACP) for healthcare decisions. This pilot study tested whether an interactive computer program could help overcome barriers to effective ACP among African Americans. African American adults were recruited from traditionally Black churches to complete an interactive computer program on ACP, pre-/post-questionnaires, and a follow-up phone interview. Eighteen adults (mean age =53.2 years, 83% female) completed the program without any problems. Knowledge about ACP significantly increased following the computer intervention (44.9% → 61.3%, p=0.0004), as did individuals' sense of self-determination. Participants were highly satisfied with the ACP process (9.4; 1 = not at all satisfied, 10 = extremely satisfied), and reported that the computer-generated advance directive accurately reflected their wishes (6.4; 1 = not at all accurate, 7 = extremely accurate). Follow-up phone interviews found that >80% of participants reported having shared their advance directives with family members and spokespeople. Preliminary evidence suggests that an interactive computer program can help African Americans engage in effective advance care planning, including creating an

  19. Advances in equine computed tomography and use of contrast media.

    PubMed

    Puchalski, Sarah M

    2012-12-01

    Advances in equine computed tomography have been made as a result of improvements in software and hardware and an increasing body of knowledge. Contrast media can be administered intravascularly or intrathecally. Contrast media is useful to differentiate between tissues of similar density. Equine computed tomography can be used for many different clinical conditions, including lameness diagnosis, fracture identification and characterization, preoperative planning, and characterization of skull diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. TAIGA: Twente Advanced Interactive Graphic Authoring System. A New Concept in Computer Assisted Learning (CAL) and Educational Research. Doc 88-18.

    ERIC Educational Resources Information Center

    Pilot, A.

    TAIGA (Twente Advanced Interactive Graphic Authoring system) is a system which can be used to develop instructional software. It is written in MS-PASCAL, and runs on computers that support MS-DOS. Designed to support the production of structured software, TAIGA has a hierarchical structure of three layers, each with a specific function, and each…

  1. Advanced Technology Airfoil Research, volume 1, part 1. [conference on development of computational codes and test facilities

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of all NASA airfoil research, conducted both in-house and under grant and contract, as well as a broad spectrum of airfoil research outside of NASA is presented. Emphasis is placed on the development of computational aerodynamic codes for airfoil analysis and design, the development of experimental facilities and test techniques, and all types of airfoil applications.

  2. Educational Technology Network: a computer conferencing system dedicated to applications of computers in radiology practice, research, and education.

    PubMed

    D'Alessandro, M P; Ackerman, M J; Sparks, S M

    1993-11-01

    Educational Technology Network (ET Net) is a free, easy to use, on-line computer conferencing system organized and funded by the National Library of Medicine that is accessible via the SprintNet (SprintNet, Reston, VA) and Internet (Merit, Ann Arbor, MI) computer networks. It is dedicated to helping bring together, in a single continuously running electronic forum, developers and users of computer applications in the health sciences, including radiology. ET Net uses the Caucus computer conferencing software (Camber-Roth, Troy, NY) running on a microcomputer. This microcomputer is located in the National Library of Medicine's Lister Hill National Center for Biomedical Communications and is directly connected to the SprintNet and the Internet networks. The advanced computer conferencing software of ET Net allows individuals who are separated in space and time to unite electronically to participate, at any time, in interactive discussions on applications of computers in radiology. A computer conferencing system such as ET Net allows radiologists to maintain contact with colleagues on a regular basis when they are not physically together. Topics of discussion on ET Net encompass all applications of computers in radiological practice, research, and education. ET Net has been in successful operation for 3 years and has a promising future aiding radiologists in the exchange of information pertaining to applications of computers in radiology.

  3. Computation of the tip vortex flowfield for advanced aircraft propellers

    NASA Technical Reports Server (NTRS)

    Tsai, Tommy M.; Dejong, Frederick J.; Levy, Ralph

    1988-01-01

    The tip vortex flowfield plays a significant role in the performance of advanced aircraft propellers. The flowfield in the tip region is complex, three-dimensional and viscous with large secondary velocities. An analysis is presented using an approximate set of equations which contains the physics required by the tip vortex flowfield, but which does not require the resources of the full Navier-Stokes equations. A computer code was developed to predict the tip vortex flowfield of advanced aircraft propellers. A grid generation package was developed to allow specification of a variety of advanced aircraft propeller shapes. Calculations of the tip vortex generation on an SR3 type blade at high Reynolds numbers were made using this code and a parametric study was performed to show the effect of tip thickness on tip vortex intensity. In addition, calculations of the tip vortex generation on a NACA 0012 type blade were made, including the flowfield downstream of the blade trailing edge. Comparison of flowfield calculations with experimental data from an F4 blade was made. A user's manual was also prepared for the computer code (NASA CR-182178).

  4. ATCA for Machines-- Advanced Telecommunications Computing Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, R.S.; /SLAC

    2008-04-22

    The Advanced Telecommunications Computing Architecture is a new industry open standard for electronics instrument modules and shelves being evaluated for the International Linear Collider (ILC). It is the first industrial standard designed for High Availability (HA). ILC availability simulations have shown clearly that the capabilities of ATCA are needed in order to achieve acceptable integrated luminosity. The ATCA architecture looks attractive for beam instruments and detector applications as well. This paper provides an overview of ongoing R&D including application of HA principles to power electronics systems.

  5. Advanced Microwave Ferrite Research (AMFeR): Phase Three

    DTIC Science & Technology

    2008-07-31

    lApril 1, 2006 thru June 30, 2008 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Microwave Ferrite Research (AMFeR): Phase Three 5b. GRANT NUMBER...Advance Microwave Ferrite Research (AMFeR), Phase III project. The purpose of this research endeavor is to devise ferrite materials for microwave, self...biased circulator applications. The central task of the project is to fabricate ferrites that have a high magnetic saturation, high coercivity and low

  6. Research and the Personal Computer.

    ERIC Educational Resources Information Center

    Blackburn, D. A.

    1989-01-01

    Discussed is the history and elements of the personal computer. Its uses as a laboratory assistant and generic toolkit for mathematical analysis and modeling are included. The future of the personal computer in research is addressed. (KR)

  7. Recent Advances in X-ray Cone-beam Computed Laminography.

    PubMed

    O'Brien, Neil S; Boardman, Richard P; Sinclair, Ian; Blumensath, Thomas

    2016-10-06

    X-ray computed tomography is an established volume imaging technique used routinely in medical diagnosis, industrial non-destructive testing, and a wide range of scientific fields. Traditionally, computed tomography uses scanning geometries with a single axis of rotation together with reconstruction algorithms specifically designed for this setup. Recently there has however been increasing interest in more complex scanning geometries. These include so called X-ray computed laminography systems capable of imaging specimens with large lateral dimensions or large aspect ratios, neither of which are well suited to conventional CT scanning procedures. Developments throughout this field have thus been rapid, including the introduction of novel system trajectories, the application and refinement of various reconstruction methods, and the use of recently developed computational hardware and software techniques to accelerate reconstruction times. Here we examine the advances made in the last several years and consider their impact on the state of the art.

  8. Attitudes toward Advanced and Multivariate Statistics When Using Computers.

    ERIC Educational Resources Information Center

    Kennedy, Robert L.; McCallister, Corliss Jean

    This study investigated the attitudes toward statistics of graduate students who studied advanced statistics in a course in which the focus of instruction was the use of a computer program in class. The use of the program made it possible to provide an individualized, self-paced, student-centered, and activity-based course. The three sections…

  9. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 2: Programming manual

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for nonlinear structural modeling with advanced time-temperature constitutive relationships are presented. The implementation of the theory in the MARC nonlinear finite element code is discussed, and instructions for the computational application of the theory are provided.

  10. The Nuclear Energy Advanced Modeling and Simulation Enabling Computational Technologies FY09 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diachin, L F; Garaizar, F X; Henson, V E

    2009-10-12

    In this document we report on the status of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Enabling Computational Technologies (ECT) effort. In particular, we provide the context for ECT In the broader NEAMS program and describe the three pillars of the ECT effort, namely, (1) tools and libraries, (2) software quality assurance, and (3) computational facility (computers, storage, etc) needs. We report on our FY09 deliverables to determine the needs of the integrated performance and safety codes (IPSCs) in these three areas and lay out the general plan for software quality assurance to meet the requirements of DOE andmore » the DOE Advanced Fuel Cycle Initiative (AFCI). We conclude with a brief description of our interactions with the Idaho National Laboratory computer center to determine what is needed to expand their role as a NEAMS user facility.« less

  11. Evaluation of Advanced Computing Techniques and Technologies: Reconfigurable Computing

    NASA Technical Reports Server (NTRS)

    Wells, B. Earl

    2003-01-01

    The focus of this project was to survey the technology of reconfigurable computing determine its level of maturity and suitability for NASA applications. To better understand and assess the effectiveness of the reconfigurable design paradigm that is utilized within the HAL-15 reconfigurable computer system. This system was made available to NASA MSFC for this purpose, from Star Bridge Systems, Inc. To implement on at least one application that would benefit from the performance levels that are possible with reconfigurable hardware. It was originally proposed that experiments in fault tolerance and dynamically reconfigurability would be perform but time constraints mandated that these be pursued as future research.

  12. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  13. Computational fluid dynamics research

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh; Jones, Kenneth; Hassan, Hassan; Mcrae, David Scott

    1992-01-01

    The focus of research in the computational fluid dynamics (CFD) area is two fold: (1) to develop new approaches for turbulence modeling so that high speed compressible flows can be studied for applications to entry and re-entry flows; and (2) to perform research to improve CFD algorithm accuracy and efficiency for high speed flows. Research activities, faculty and student participation, publications, and financial information are outlined.

  14. Computer aided design and manufacturing: analysis and development of research issues

    NASA Astrophysics Data System (ADS)

    Taylor, K.; Jadeja, J. C.

    2005-11-01

    The paper focuses on the current issues in the areas of computer aided manufacturing and design. The importance of integrating CAD and CAM is analyzed. The associated issues with the integration and recent advancements in this field have been documented. The development of methods for enhancing productivity is explored. A research experiment was conducted in the laboratories of West Virginia University with an objective to portray effects of various machining parameters on production. Graphical results and their interpretations are supplied to better realize the main purpose of the experimentation.

  15. Image Understanding Research and Its Application to Cartography and Computer-Based Analysis of Aerial Imagery

    DTIC Science & Technology

    1983-09-01

    Report Al-TR-346. Artifcial Intelligence Laboratory, Mamachusetts Institute of Tech- niugy. Cambridge, Mmeh mett. June 19 [G.usmn@ A. Gaman-Arenas...Testbed Coordinator, 415/859-4395 Artificial Intelligence Center Computer Science and Technology Division Prepared for: Defense Advanced Research...to support processing of aerial photographs for such military applications as cartography, Intelligence , weapon guidance, and targeting. A key

  16. Linguistic Alternatives to Quantitative Research Strategies. Part One: How Linguistic Mechanisms Advance Research Outcomes

    ERIC Educational Resources Information Center

    Yeager, Joseph; Sommer, Linda

    2007-01-01

    Combining psycholinguistic technologies and systems analysis created advances in motivational profiling and numerous new behavioral engineering applications. These advances leapfrog many mainstream statistical research methods, producing superior research results via cause-effect language mechanisms. Entire industries explore motives ranging from…

  17. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus

    PubMed Central

    Karp, Peter D.; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology (ISMB) 2016, Orlando, Florida). PMID:26097686

  18. ISCB Ebola Award for Important Future Research on the Computational Biology of Ebola Virus.

    PubMed

    Karp, Peter D; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard

    2015-01-01

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains as well as 3-D protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature, and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2,000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology (ISMB) 2016, Orlando, Florida).

  19. Action Research of Computer-Assisted-Remediation of Basic Research Concepts.

    ERIC Educational Resources Information Center

    Packard, Abbot L.; And Others

    This study investigated the possibility of creating a computer-assisted remediation program to assist students having difficulties in basic college research and statistics courses. A team approach involving instructors and students drove the research into and creation of the computer program. The effect of student use was reviewed by looking at…

  20. Advances in Intelligence Research: What Should be Expected in the XXI Century (Questions & Answers).

    PubMed

    Colom, Roberto

    2016-12-06

    Here I briefly delineate my view about the main question of this International Seminar, namely, what should we expecting from the XXI Century regarding the advancements in intelligence research. This view can be summarized as 'The Brain Connection' (TBC), meaning that neuroscience will be of paramount relevance for increasing our current knowledge related to the key question: why are some people smarter than others? We need answers to the issue of what happens in our brains when the genotype and the environment are integrated. The scientific community has devoted great research efforts, ranging from observable behavior to hidden genetics, but we are still far from having a clear general picture of what it means to be more or less intelligent. After the discussion held with the panel of experts participating in the seminar, it is concluded that advancements will be more solid and safe increasing the collaboration of scientists with shared research interests worldwide. Paralleling current sophisticated analyses of how the brain computes, nowadays science may embrace a network approach.

  1. Public-Private Partnerships in Cloud-Computing Services in the Context of Genomic Research.

    PubMed

    Granados Moreno, Palmira; Joly, Yann; Knoppers, Bartha Maria

    2017-01-01

    Public-private partnerships (PPPs) have been increasingly used to spur and facilitate innovation in a number of fields. In healthcare, the purpose of using a PPP is commonly to develop and/or provide vaccines and drugs against communicable diseases, mainly in developing or underdeveloped countries. With the advancement of technology and of the area of genomics, these partnerships also focus on large-scale genomic research projects that aim to advance the understanding of diseases that have a genetic component and to develop personalized treatments. This new focus has created new forms of PPPs that involve information technology companies, which provide computing infrastructure and services to store, analyze, and share the massive amounts of data genomic-related projects produce. In this article, we explore models of PPPs proposed to handle, protect, and share the genomic data collected and to further develop genomic-based medical products. We also identify the reasons that make these models suitable and the challenges they have yet to overcome. To achieve this, we describe the details and complexities of MSSNG, International Cancer Genome Consortium, and 100,000 Genomes Project, the three PPPs that focus on large-scale genomic research to better understand the genetic components of autism, cancer, rare diseases, and infectious diseases with the intention to find appropriate treatments. Organized as PPP and employing cloud-computing services, the three projects have advanced quickly and are likely to be important sources of research and development for future personalized medicine. However, there still are unresolved matters relating to conflicts of interest, commercialization, and data control. Learning from the challenges encountered by past PPPs allowed us to establish that developing guidelines to adequately manage personal health information stored in clouds and ensuring the protection of data integrity and privacy would be critical steps in the development of

  2. Public–Private Partnerships in Cloud-Computing Services in the Context of Genomic Research

    PubMed Central

    Granados Moreno, Palmira; Joly, Yann; Knoppers, Bartha Maria

    2017-01-01

    Public–private partnerships (PPPs) have been increasingly used to spur and facilitate innovation in a number of fields. In healthcare, the purpose of using a PPP is commonly to develop and/or provide vaccines and drugs against communicable diseases, mainly in developing or underdeveloped countries. With the advancement of technology and of the area of genomics, these partnerships also focus on large-scale genomic research projects that aim to advance the understanding of diseases that have a genetic component and to develop personalized treatments. This new focus has created new forms of PPPs that involve information technology companies, which provide computing infrastructure and services to store, analyze, and share the massive amounts of data genomic-related projects produce. In this article, we explore models of PPPs proposed to handle, protect, and share the genomic data collected and to further develop genomic-based medical products. We also identify the reasons that make these models suitable and the challenges they have yet to overcome. To achieve this, we describe the details and complexities of MSSNG, International Cancer Genome Consortium, and 100,000 Genomes Project, the three PPPs that focus on large-scale genomic research to better understand the genetic components of autism, cancer, rare diseases, and infectious diseases with the intention to find appropriate treatments. Organized as PPP and employing cloud-computing services, the three projects have advanced quickly and are likely to be important sources of research and development for future personalized medicine. However, there still are unresolved matters relating to conflicts of interest, commercialization, and data control. Learning from the challenges encountered by past PPPs allowed us to establish that developing guidelines to adequately manage personal health information stored in clouds and ensuring the protection of data integrity and privacy would be critical steps in the development

  3. Research on advanced transportation systems

    NASA Astrophysics Data System (ADS)

    Nagai, Hirokazu; Hashimoto, Ryouhei; Nosaka, Masataka; Koyari, Yukio; Yamada, Yoshio; Noda, Keiichirou; Shinohara, Suetsugu; Itou, Tetsuichi; Etou, Takao; Kaneko, Yutaka

    1992-08-01

    An overview of the researches on advanced space transportation systems is presented. Conceptual study is conducted on fly back boosters with expendable upper stage rocket systems assuming a launch capacity of 30 tons and returning to the launch site by the boosters, and prospect of their feasibility is obtained. Reviews are conducted on subjects as follows: (1) trial production of 10 tons sub scale engines for the purpose of acquiring hardware data and picking up technical problems for full scale 100 tons thrust engines using hydrocarbon fuels; (2) development techniques for advanced liquid propulsion systems from the aspects of development schedule, cost; (3) review of conventional technologies, and common use of component; (4) oxidant switching propulsion systems focusing on feasibility of Liquefied Air Cycle Engine (LACE) and Compressed Air Cycle Engine (CACE); (5) present status of slosh hydrogen manufacturing, storage, and handling; (6) construction of small high speed dynamometer for promoting research on mini pump development; (7) hybrid solid boosters under research all over the world as low-cost and clean propulsion systems; and (8) high performance solid propellant for upper stage and lower stage propulsion systems.

  4. High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics

    DOE PAGES

    Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis

    2014-07-28

    The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less

  5. Advanced aerodynamics. Selected NASA research

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This Conference Publication contains selected NASA papers that were presented at the Fifth Annual Status Review of the NASA Aircraft Energy Efficiency (ACEE) Energy Efficient Transport (EET) Program held at Dryden Flight Research Center in Edwards, California on September 14 to 15, 1981. These papers describe the status of several NASA in-house research activities in the areas of advanced turboprops, natural laminar flow, oscillating control surfaces, high-Reynolds-number airfoil tests, high-lift technology, and theoretical design techniques.

  6. Large-scale high-throughput computer-aided discovery of advanced materials using cloud computing

    NASA Astrophysics Data System (ADS)

    Bazhirov, Timur; Mohammadi, Mohammad; Ding, Kevin; Barabash, Sergey

    Recent advances in cloud computing made it possible to access large-scale computational resources completely on-demand in a rapid and efficient manner. When combined with high fidelity simulations, they serve as an alternative pathway to enable computational discovery and design of new materials through large-scale high-throughput screening. Here, we present a case study for a cloud platform implemented at Exabyte Inc. We perform calculations to screen lightweight ternary alloys for thermodynamic stability. Due to the lack of experimental data for most such systems, we rely on theoretical approaches based on first-principle pseudopotential density functional theory. We calculate the formation energies for a set of ternary compounds approximated by special quasirandom structures. During an example run we were able to scale to 10,656 CPUs within 7 minutes from the start, and obtain results for 296 compounds within 38 hours. The results indicate that the ultimate formation enthalpy of ternary systems can be negative for some of lightweight alloys, including Li and Mg compounds. We conclude that compared to traditional capital-intensive approach that requires in on-premises hardware resources, cloud computing is agile and cost-effective, yet scalable and delivers similar performance.

  7. Advancing Research in the National Science Foundation's Advanced Technological Education Program

    ERIC Educational Resources Information Center

    Wingate, Lori A.

    2017-01-01

    Advanced Technological Education is distinct from typical National Science Foundation programs in that it is essentially a training--not research--program, and most grantees are located at technical and two-year colleges. This article presents empirical data on the status of research in the program, discusses the program's role in supporting NSF's…

  8. Aerodynamic optimization studies on advanced architecture computers

    NASA Technical Reports Server (NTRS)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  9. Conducting Nursing Research to Advance and Inform Health Policy.

    PubMed

    Ellenbecker, Carol Hall; Edward, Jean

    2016-11-01

    The primary roles of nurse scientists in conducting health policy research are to increase knowledge in the discipline and provide evidence for informing and advancing health policies with the goal of improving the health outcomes of society. Health policy research informs, characterizes, explains, or tests hypotheses by employing a variety of research designs. Health policy research focuses on improving the access to care, the quality and cost of care, and the efficiency with which care is delivered. In this article, we explain how nurses might envision their research in a policy process framework, describe research designs that nurse researchers might use to inform and advance health policies, and provide examples of research conducted by nurse researchers to explicate key concepts in the policy process framework. Health policies are well informed and advanced when nurse researchers have a good understanding of the political process. The policy process framework provides a context for improving the focus and design of research and better explicating the connection between research evidence and policy. Nurses should focus their research on addressing problems of importance that are on the healthcare agenda, work with interdisciplinary teams of researchers, synthesize, and widely disseminate results.

  10. Research priorities for advanced fibrous composites

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.; Swedlow, J. L.

    1981-01-01

    Priorities for research in advanced laminated fibrous composite materials are presented. Supporting evidence is presented in two bodies, including a general literature survey and a survey of aerospace composite hardware and service experience. Both surveys were undertaken during 1977-1979. Specific results and conclusions indicate that a significant portion of contemporary published research diverges from recommended priorites.

  11. Student Research in Computational Astrophysics

    NASA Astrophysics Data System (ADS)

    Blondin, J. M.

    1999-12-01

    Computational physics can shorten the long road from freshman physics major to independent research by providing students with powerful tools to deal with the complexities of modern research problems. At North Carolina State University we have introduced dozens of students to astrophysics research using the tools of computational fluid dynamics. We have used several formats for working with students, including the traditional approach of one-on-one mentoring, a more group-oriented format in which several students work together on one or more related projects, and a novel attempt to involve an entire class in a coordinated semester research project. The advantages and disadvantages of these formats will be discussed at length, but the single most important influence has been peer support. Having students work in teams or learn the tools of research together but tackle different problems has led to more positive experiences than a lone student diving into solo research. This work is supported by an NSF CAREER Award.

  12. A Multigrid NLS-4DVar Data Assimilation Scheme with Advanced Research WRF (ARW)

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Tian, X.

    2017-12-01

    The motions of the atmosphere have multiscale properties in space and/or time, and the background error covariance matrix (Β) should thus contain error information at different correlation scales. To obtain an optimal analysis, the multigrid three-dimensional variational data assimilation scheme is used widely when sequentially correcting errors from large to small scales. However, introduction of the multigrid technique into four-dimensional variational data assimilation is not easy, due to its strong dependence on the adjoint model, which has extremely high computational costs in data coding, maintenance, and updating. In this study, the multigrid technique was introduced into the nonlinear least-squares four-dimensional variational assimilation (NLS-4DVar) method, which is an advanced four-dimensional ensemble-variational method that can be applied without invoking the adjoint models. The multigrid NLS-4DVar (MG-NLS-4DVar) scheme uses the number of grid points to control the scale, with doubling of this number when moving from a coarse to a finer grid. Furthermore, the MG-NLS-4DVar scheme not only retains the advantages of NLS-4DVar, but also sufficiently corrects multiscale errors to achieve a highly accurate analysis. The effectiveness and efficiency of the proposed MG-NLS-4DVar scheme were evaluated by several groups of observing system simulation experiments using the Advanced Research Weather Research and Forecasting Model. MG-NLS-4DVar outperformed NLS-4DVar, with a lower computational cost.

  13. Emerging Uses of Computer Technology in Qualitative Research.

    ERIC Educational Resources Information Center

    Parker, D. Randall

    The application of computer technology in qualitative research and evaluation ranges from simple word processing to doing sophisticated data sorting and retrieval. How computer software can be used for qualitative research is discussed. Researchers should consider the use of computers in data analysis in light of their own familiarity and comfort…

  14. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  15. Advanced instrumentation for aircraft icing research

    NASA Technical Reports Server (NTRS)

    Bachalo, W.; Smith, J.; Rudoff, R.

    1990-01-01

    A compact and rugged probe based on the phase Doppler method was evaluated as a means for characterizing icing clouds using airborne platforms and for advancing aircraft icing research in large scale wind tunnels. The Phase Doppler Particle Analyzer (PDPA) upon which the new probe was based is now widely recognized as an accurate method for the complete characterization of sprays. The prototype fiber optic-based probe was evaluated in simulated aircraft icing clouds and found to have the qualities essential to providing information that will advance aircraft icing research. Measurement comparisons of the size and velocity distributions made with the standard PDPA and the fiber optic probe were in excellent agreement as were the measurements of number density and liquid water content. Preliminary testing in the NASA Lewis Icing Research Tunnel (IRT) produced reasonable results but revealed some problems with vibration and signal quality at high speeds. The cause of these problems were identified and design changes were proposed to eliminate the shortcomings of the probe.

  16. Acoustic impulse response method as a source of undergraduate research projects and advanced laboratory experiments.

    PubMed

    Robertson, W M; Parker, J M

    2012-03-01

    A straightforward and inexpensive implementation of acoustic impulse response measurement is described utilizing the signal processing technique of coherent averaging. The technique is capable of high signal-to-noise measurements with personal computer data acquisition equipment, an amplifier/speaker, and a high quality microphone. When coupled with simple waveguide test systems fabricated from commercial PVC plumbing pipe, impulse response measurement has proven to be ideal for undergraduate research projects-often of publishable quality-or for advanced laboratory experiments. The technique provides important learning objectives for science or engineering students in areas such as interfacing and computer control of experiments; analog-to-digital conversion and sampling; time and frequency analysis using Fourier transforms; signal processing; and insight into a variety of current research areas such as acoustic bandgap materials, acoustic metamaterials, and fast and slow wave manipulation. © 2012 Acoustical Society of America

  17. Advanced Control and Autonomy Research

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan; Ippolito, Corey; Lombaerts, Thomas; Swei, Sean

    2017-01-01

    This presentation is given at a NASA DLR (German Aerospace Center) meeting at NASA ARC on March 14, 2017. The presentation provides an overview of the Advanced Control and Evolvable Systems (ACES) group at NASA ARC and the research areas in UAS autonomy, stall recovery guidance, and flexible aircraft flight control.

  18. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  19. Recent advances in sterol research

    USDA-ARS?s Scientific Manuscript database

    Since 1970, the AOCS has been a regular host to the sterol symposia. The 2008 Sterol Symposium, “Recent Advances in Sterol Research,” was held at the AOCS Annual Meeting in Seattle, Washington. This year the symposium held special significance, for it hosted the presentation of the fourth G.J. Schro...

  20. Values and Objectives in Computing Education Research

    ERIC Educational Resources Information Center

    Pears, Arnold; Malmi, Lauri

    2009-01-01

    What is Computing Education Research (CER), why are we doing this type of research, and what should the community achieve? As associate editors to this special edition we provide our perspectives and discuss how they have influenced the evolution of the Koli Calling International Conference on Computing Education Research over the last nine years.…

  1. High Energy Physics Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and High Energy Physics, June 10-12, 2015, Bethesda, Maryland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habib, Salman; Roser, Robert; Gerber, Richard

    The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at

  2. 77 FR 19744 - Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-02

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Advanced BioPhotonics, Inc., Advanced Viral Research Corp., Brantley Capital Corp., Brilliant Technologies Corporation, 4C Controls, Inc., and 2-Track... Commission that there is a lack of current and accurate information concerning the securities of Advanced Bio...

  3. Advanced Computational Methods for Monte Carlo Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B.

    This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.

  4. Introduction to the Special Issue: Advancing the State-of-the-Science in Reading Research through Modeling.

    PubMed

    Zevin, Jason D; Miller, Brett

    Reading research is increasingly a multi-disciplinary endeavor involving more complex, team-based science approaches. These approaches offer the potential of capturing the complexity of reading development, the emergence of individual differences in reading performance over time, how these differences relate to the development of reading difficulties and disability, and more fully understanding the nature of skilled reading in adults. This special issue focuses on the potential opportunities and insights that early and richly integrated advanced statistical and computational modeling approaches can provide to our foundational (and translational) understanding of reading. The issue explores how computational and statistical modeling, using both observed and simulated data, can serve as a contact point among research domains and topics, complement other data sources and critically provide analytic advantages over current approaches.

  5. WAATS: A computer program for Weights Analysis of Advanced Transportation Systems

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.

    1974-01-01

    A historical weight estimating technique for advanced transportation systems is presented. The classical approach to weight estimation is discussed and sufficient data is presented to estimate weights for a large spectrum of flight vehicles including horizontal and vertical takeoff aircraft, boosters and reentry vehicles. A computer program, WAATS (Weights Analysis for Advanced Transportation Systems) embracing the techniques discussed has been written and user instructions are presented. The program was developed for use in the ODIN (Optimal Design Integration System) system.

  6. Advanced Research and Data Methods in Women's Health: Big Data Analytics, Adaptive Studies, and the Road Ahead.

    PubMed

    Macedonia, Christian R; Johnson, Clark T; Rajapakse, Indika

    2017-02-01

    Technical advances in science have had broad implications in reproductive and women's health care. Recent innovations in population-level data collection and storage have made available an unprecedented amount of data for analysis while computational technology has evolved to permit processing of data previously thought too dense to study. "Big data" is a term used to describe data that are a combination of dramatically greater volume, complexity, and scale. The number of variables in typical big data research can readily be in the thousands, challenging the limits of traditional research methodologies. Regardless of what it is called, advanced data methods, predictive analytics, or big data, this unprecedented revolution in scientific exploration has the potential to dramatically assist research in obstetrics and gynecology broadly across subject matter. Before implementation of big data research methodologies, however, potential researchers and reviewers should be aware of strengths, strategies, study design methods, and potential pitfalls. Examination of big data research examples contained in this article provides insight into the potential and the limitations of this data science revolution and practical pathways for its useful implementation.

  7. Research in computer science

    NASA Technical Reports Server (NTRS)

    Ortega, J. M.

    1985-01-01

    Synopses are given for NASA supported work in computer science at the University of Virginia. Some areas of research include: error seeding as a testing method; knowledge representation for engineering design; analysis of faults in a multi-version software experiment; implementation of a parallel programming environment; two computer graphics systems for visualization of pressure distribution and convective density particles; task decomposition for multiple robot arms; vectorized incomplete conjugate gradient; and iterative methods for solving linear equations on the Flex/32.

  8. Computing Life

    ERIC Educational Resources Information Center

    National Institute of General Medical Sciences (NIGMS), 2009

    2009-01-01

    Computer advances now let researchers quickly search through DNA sequences to find gene variations that could lead to disease, simulate how flu might spread through one's school, and design three-dimensional animations of molecules that rival any video game. By teaming computers and biology, scientists can answer new and old questions that could…

  9. The Role of Research in Advanced Dental Education.

    ERIC Educational Resources Information Center

    Profitt, William R.; Vig, Peter S.

    1980-01-01

    Even though research is an integral part of quality advanced dental programs, many dental departments with postdoctoral programs lack faculty and other resources for research productivity. Programs to produce clinical faculty with research training are called for through the development of clinical research centers. (JSR)

  10. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource

    PubMed Central

    Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E.; Ellisman, Mark; Grethe, Jeffrey; Wooley, John

    2011-01-01

    The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data. PMID:21045053

  11. Community cyberinfrastructure for Advanced Microbial Ecology Research and Analysis: the CAMERA resource.

    PubMed

    Sun, Shulei; Chen, Jing; Li, Weizhong; Altintas, Ilkay; Lin, Abel; Peltier, Steve; Stocks, Karen; Allen, Eric E; Ellisman, Mark; Grethe, Jeffrey; Wooley, John

    2011-01-01

    The Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis (CAMERA, http://camera.calit2.net/) is a database and associated computational infrastructure that provides a single system for depositing, locating, analyzing, visualizing and sharing data about microbial biology through an advanced web-based analysis portal. CAMERA collects and links metadata relevant to environmental metagenome data sets with annotation in a semantically-aware environment allowing users to write expressive semantic queries against the database. To meet the needs of the research community, users are able to query metadata categories such as habitat, sample type, time, location and other environmental physicochemical parameters. CAMERA is compliant with the standards promulgated by the Genomic Standards Consortium (GSC), and sustains a role within the GSC in extending standards for content and format of the metagenomic data and metadata and its submission to the CAMERA repository. To ensure wide, ready access to data and annotation, CAMERA also provides data submission tools to allow researchers to share and forward data to other metagenomics sites and community data archives such as GenBank. It has multiple interfaces for easy submission of large or complex data sets, and supports pre-registration of samples for sequencing. CAMERA integrates a growing list of tools and viewers for querying, analyzing, annotating and comparing metagenome and genome data.

  12. Advances in natural language processing.

    PubMed

    Hirschberg, Julia; Manning, Christopher D

    2015-07-17

    Natural language processing employs computational techniques for the purpose of learning, understanding, and producing human language content. Early computational approaches to language research focused on automating the analysis of the linguistic structure of language and developing basic technologies such as machine translation, speech recognition, and speech synthesis. Today's researchers refine and make use of such tools in real-world applications, creating spoken dialogue systems and speech-to-speech translation engines, mining social media for information about health or finance, and identifying sentiment and emotion toward products and services. We describe successes and challenges in this rapidly advancing area. Copyright © 2015, American Association for the Advancement of Science.

  13. The department of transportation's advanced materials research and technology initiatives

    DOT National Transportation Integrated Search

    1995-02-28

    This report provides an overview of DOT's current research and technology efforts, as well as those planned for Fiscal Year (FY) 1996, in two major areas: 1) Advanced Materials Research for Transportation Infrastructure, and 2) Advanced Materials Res...

  14. Advances in insect physiology. Progress in mosquito research

    USDA-ARS?s Scientific Manuscript database

    This book review briefly summarizes the most interesting topics/chapters from the book: "Advances in Insect Physiology: Progress in mosquito Research". The book is an excellent overview of the recent advances in mosquito biology. This volume encompasses 13 chapters from 32 contributing authors who ...

  15. Advanced computational simulations of water waves interacting with wave energy converters

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Freniere, Cole; Raessi, Mehdi

    2017-03-01

    Wave energy converter (WEC) devices harness the renewable ocean wave energy and convert it into useful forms of energy, e.g. mechanical or electrical. This paper presents an advanced 3D computational framework to study the interaction between water waves and WEC devices. The computational tool solves the full Navier-Stokes equations and considers all important effects impacting the device performance. To enable large-scale simulations in fast turnaround times, the computational solver was developed in an MPI parallel framework. A fast multigrid preconditioned solver is introduced to solve the computationally expensive pressure Poisson equation. The computational solver was applied to two surface-piercing WEC geometries: bottom-hinged cylinder and flap. Their numerically simulated response was validated against experimental data. Additional simulations were conducted to investigate the applicability of Froude scaling in predicting full-scale WEC response from the model experiments.

  16. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  17. Computational biology and bioinformatics in Nigeria.

    PubMed

    Fatumo, Segun A; Adoga, Moses P; Ojo, Opeolu O; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-04-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries.

  18. Computational Biology and Bioinformatics in Nigeria

    PubMed Central

    Fatumo, Segun A.; Adoga, Moses P.; Ojo, Opeolu O.; Oluwagbemi, Olugbenga; Adeoye, Tolulope; Ewejobi, Itunuoluwa; Adebiyi, Marion; Adebiyi, Ezekiel; Bewaji, Clement; Nashiru, Oyekanmi

    2014-01-01

    Over the past few decades, major advances in the field of molecular biology, coupled with advances in genomic technologies, have led to an explosive growth in the biological data generated by the scientific community. The critical need to process and analyze such a deluge of data and turn it into useful knowledge has caused bioinformatics to gain prominence and importance. Bioinformatics is an interdisciplinary research area that applies techniques, methodologies, and tools in computer and information science to solve biological problems. In Nigeria, bioinformatics has recently played a vital role in the advancement of biological sciences. As a developing country, the importance of bioinformatics is rapidly gaining acceptance, and bioinformatics groups comprised of biologists, computer scientists, and computer engineers are being constituted at Nigerian universities and research institutes. In this article, we present an overview of bioinformatics education and research in Nigeria. We also discuss professional societies and academic and research institutions that play central roles in advancing the discipline in Nigeria. Finally, we propose strategies that can bolster bioinformatics education and support from policy makers in Nigeria, with potential positive implications for other developing countries. PMID:24763310

  19. From computer-assisted intervention research to clinical impact: The need for a holistic approach.

    PubMed

    Ourselin, Sébastien; Emberton, Mark; Vercauteren, Tom

    2016-10-01

    The early days of the field of medical image computing (MIC) and computer-assisted intervention (CAI), when publishing a strong self-contained methodological algorithm was enough to produce impact, are over. As a community, we now have substantial responsibility to translate our scientific progresses into improved patient care. In the field of computer-assisted interventions, the emphasis is also shifting from the mere use of well-known established imaging modalities and position trackers to the design and combination of innovative sensing, elaborate computational models and fine-grained clinical workflow analysis to create devices with unprecedented capabilities. The barriers to translating such devices in the complex and understandably heavily regulated surgical and interventional environment can seem daunting. Whether we leave the translation task mostly to our industrial partners or welcome, as researchers, an important share of it is up to us. We argue that embracing the complexity of surgical and interventional sciences is mandatory to the evolution of the field. Being able to do so requires large-scale infrastructure and a critical mass of expertise that very few research centres have. In this paper, we emphasise the need for a holistic approach to computer-assisted interventions where clinical, scientific, engineering and regulatory expertise are combined as a means of moving towards clinical impact. To ensure that the breadth of infrastructure and expertise required for translational computer-assisted intervention research does not lead to a situation where the field advances only thanks to a handful of exceptionally large research centres, we also advocate that solutions need to be designed to lower the barriers to entry. Inspired by fields such as particle physics and astronomy, we claim that centralised very large innovation centres with state of the art technology and health technology assessment capabilities backed by core support staff and open

  20. Advances in Integrated Computational Materials Engineering "ICME"

    NASA Astrophysics Data System (ADS)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  1. Advanced soft computing diagnosis method for tumour grading.

    PubMed

    Papageorgiou, E I; Spyridonos, P P; Stylios, C D; Ravazoula, P; Groumpos, P P; Nikiforidis, G N

    2006-01-01

    To develop an advanced diagnostic method for urinary bladder tumour grading. A novel soft computing modelling methodology based on the augmentation of fuzzy cognitive maps (FCMs) with the unsupervised active Hebbian learning (AHL) algorithm is applied. One hundred and twenty-eight cases of urinary bladder cancer were retrieved from the archives of the Department of Histopathology, University Hospital of Patras, Greece. All tumours had been characterized according to the classical World Health Organization (WHO) grading system. To design the FCM model for tumour grading, three experts histopathologists defined the main histopathological features (concepts) and their impact on grade characterization. The resulted FCM model consisted of nine concepts. Eight concepts represented the main histopathological features for tumour grading. The ninth concept represented the tumour grade. To increase the classification ability of the FCM model, the AHL algorithm was applied to adjust the weights of the FCM. The proposed FCM grading model achieved a classification accuracy of 72.5%, 74.42% and 95.55% for tumours of grades I, II and III, respectively. An advanced computerized method to support tumour grade diagnosis decision was proposed and developed. The novelty of the method is based on employing the soft computing method of FCMs to represent specialized knowledge on histopathology and on augmenting FCMs ability using an unsupervised learning algorithm, the AHL. The proposed method performs with reasonably high accuracy compared to other existing methods and at the same time meets the physicians' requirements for transparency and explicability.

  2. TerraFERMA: Harnessing Advanced Computational Libraries in Earth Science

    NASA Astrophysics Data System (ADS)

    Wilson, C. R.; Spiegelman, M.; van Keken, P.

    2012-12-01

    Many important problems in Earth sciences can be described by non-linear coupled systems of partial differential equations. These "multi-physics" problems include thermo-chemical convection in Earth and planetary interiors, interactions of fluids and magmas with the Earth's mantle and crust and coupled flow of water and ice. These problems are of interest to a large community of researchers but are complicated to model and understand. Much of this complexity stems from the nature of multi-physics where small changes in the coupling between variables or constitutive relations can lead to radical changes in behavior, which in turn affect critical computational choices such as discretizations, solvers and preconditioners. To make progress in understanding such coupled systems requires a computational framework where multi-physics problems can be described at a high-level while maintaining the flexibility to easily modify the solution algorithm. Fortunately, recent advances in computational science provide a basis for implementing such a framework. Here we present the Transparent Finite Element Rapid Model Assembler (TerraFERMA), which leverages several advanced open-source libraries for core functionality. FEniCS (fenicsproject.org) provides a high level language for describing the weak forms of coupled systems of equations, and an automatic code generator that produces finite element assembly code. PETSc (www.mcs.anl.gov/petsc) provides a wide range of scalable linear and non-linear solvers that can be composed into effective multi-physics preconditioners. SPuD (amcg.ese.ic.ac.uk/Spud) is an application neutral options system that provides both human and machine-readable interfaces based on a single xml schema. Our software integrates these libraries and provides the user with a framework for exploring multi-physics problems. A single options file fully describes the problem, including all equations, coefficients and solver options. Custom compiled applications are

  3. 2010 Summary of Advances in Autism Spectrum Disorder Research

    ERIC Educational Resources Information Center

    Interagency Autism Coordinating Committee, 2010

    2010-01-01

    As part of the Combating Autism Act of 2006, the members of the Interagency Autism Coordinating Committee (IACC) are required to develop an annual "Summary of Advances" to describe each year's top advances in autism spectrum disorder (ASD) research. These advances represent significant progress in the early diagnosis of ASD, understanding the…

  4. Mentoring advanced practice nurses in research: recommendations from a pilot program.

    PubMed

    Leung, Doris; Widger, Kimberley; Howell, Doris; Nelson, Sioban; Molassiotis, Alex

    2012-01-01

    Advanced Practice Nurses (APNs) need research skills to develop and advance their practice and, yet, many have limited access to research training and support following completion of their advanced degree. In this paper we report on the development, delivery, and evaluation of an innovative pilot program that combined research training and one-to-one mentorship for nine APNs in conducting research relevant to their practice. The program was organized within an academic institution and its affiliated hospitals in Toronto, Canada. Our experience with this program may assist those in other organizations to plan and deliver a similar program for APN research mentorship.

  5. Expanded serial communication capability for the transport systems research vehicle laptop computers

    NASA Technical Reports Server (NTRS)

    Easley, Wesley C.

    1991-01-01

    A recent upgrade of the Transport Systems Research Vehicle (TSRV) operated by the Advanced Transport Operating Systems Program Office at the NASA Langley Research Center included installation of a number of Grid 1500 series laptop computers. Each unit is a 80386-based IBM PC clone. RS-232 data busses are needed for TSRV flight research programs, and it has been advantageous to extend the application of the Grids in this area. Use was made of the expansion features of the Grid internal bus to add a user programmable serial communication channel. Software to allow use of the Grid bus expansion has been written and placed in a Turbo C library for incorporation into applications programs in a transparent manner via function calls. Port setup; interrupt-driven, two-way data transfer; and software flow control are built into the library functions.

  6. Computational mechanics - Advances and trends; Proceedings of the Session - Future directions of Computational Mechanics of the ASME Winter Annual Meeting, Anaheim, CA, Dec. 7-12, 1986

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor)

    1986-01-01

    The papers contained in this volume provide an overview of the advances made in a number of aspects of computational mechanics, identify some of the anticipated industry needs in this area, discuss the opportunities provided by new hardware and parallel algorithms, and outline some of the current government programs in computational mechanics. Papers are included on advances and trends in parallel algorithms, supercomputers for engineering analysis, material modeling in nonlinear finite-element analysis, the Navier-Stokes computer, and future finite-element software systems.

  7. The new Langley Research Center advanced real-time simulation (ARTS) system

    NASA Technical Reports Server (NTRS)

    Crawford, D. J.; Cleveland, J. I., II

    1986-01-01

    Based on a survey of current local area network technology with special attention paid to high bandwidth and very low transport delay requirements, NASA's Langley Research Center designed a new simulation subsystem using the computer automated measurement and control (CAMAC) network. This required significant modifications to the standard CAMAC system and development of a network switch, a clocking system, new conversion equipment, new consoles, supporting software, etc. This system is referred to as the advanced real-time simulation (ARTS) system. It is presently being built at LaRC. This paper provides a functional and physical description of the hardware and a functional description of the software. The requirements which drove the design are presented as well as present performance figures and status.

  8. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    NASA Technical Reports Server (NTRS)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  9. Scientific Discovery through Advanced Computing (SciDAC-3) Partnership Project Annual Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, Forest M.; Bochev, Pavel B.; Cameron-Smith, Philip J..

    The Applying Computationally Efficient Schemes for BioGeochemical Cycles ACES4BGC Project is advancing the predictive capabilities of Earth System Models (ESMs) by reducing two of the largest sources of uncertainty, aerosols and biospheric feedbacks, with a highly efficient computational approach. In particular, this project is implementing and optimizing new computationally efficient tracer advection algorithms for large numbers of tracer species; adding important biogeochemical interactions between the atmosphere, land, and ocean models; and applying uncertainty quanti cation (UQ) techniques to constrain process parameters and evaluate uncertainties in feedbacks between biogeochemical cycles and the climate system.

  10. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Bojanowski, C.; Shen, J.

    2012-04-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through

  11. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-12-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability

  12. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Bojanowski, C.; Shen, J.

    2012-06-28

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through

  13. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C.

    2011-08-26

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. Themore » analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project

  14. ISAAC - A Testbed for Advanced Composites Research

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stewart, Brian K.; Martin, Robert A.

    2014-01-01

    The NASA Langley Research Center is acquiring a state-of-art composites fabrication environment to support the Center's research and technology development mission. This overall system described in this paper is named ISAAC, or Integrated Structural Assembly of Advanced Composites. ISAAC's initial operational capability is a commercial robotic automated fiber placement system from Electroimpact, Inc. that consists of a multi-degree of freedom commercial robot platform, a tool changer mechanism, and a specialized automated fiber placement end effector. Examples are presented of how development of advanced composite materials, structures, fabrication processes and technology are enabled by utilizing the fiber placement end effector directly or with appropriate modifications. Alternatively, end effectors with different capabilities may either be bought or developed with NASA's partners in industry and academia.

  15. A Computational Methodology for Simulating Thermal Loss Testing of the Advanced Stirling Convertor

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.; Wilson, Scott D.; Schifer, Nicholas A.; Briggs, Maxwell H.

    2012-01-01

    The U.S. Department of Energy (DOE) and Lockheed Martin Space Systems Company (LMSSC) have been developing the Advanced Stirling Radioisotope Generator (ASRG) for use as a power system for space science missions. This generator would use two highefficiency Advanced Stirling Convertors (ASCs), developed by Sunpower Inc. and NASA Glenn Research Center (GRC). The ASCs convert thermal energy from a radioisotope heat source into electricity. As part of ground testing of these ASCs, different operating conditions are used to simulate expected mission conditions. These conditions require achieving a particular operating frequency, hot end and cold end temperatures, and specified electrical power output for a given net heat input. In an effort to improve net heat input predictions, numerous tasks have been performed which provided a more accurate value for net heat input into the ASCs, including the use of multidimensional numerical models. Validation test hardware has also been used to provide a direct comparison of numerical results and validate the multi-dimensional numerical models used to predict convertor net heat input and efficiency. These validation tests were designed to simulate the temperature profile of an operating Stirling convertor and resulted in a measured net heat input of 244.4 W. The methodology was applied to the multi-dimensional numerical model which resulted in a net heat input of 240.3 W. The computational methodology resulted in a value of net heat input that was 1.7 percent less than that measured during laboratory testing. The resulting computational methodology and results are discussed.

  16. Computers-for-edu: An Advanced Business Application Programming (ABAP) Teaching Case

    ERIC Educational Resources Information Center

    Boyle, Todd A.

    2007-01-01

    The "Computers-for-edu" case is designed to provide students with hands-on exposure to creating Advanced Business Application Programming (ABAP) reports and dialogue programs, as well as navigating various mySAP Enterprise Resource Planning (ERP) transactions needed by ABAP developers. The case requires students to apply a wide variety…

  17. IBM Watson: How Cognitive Computing Can Be Applied to Big Data Challenges in Life Sciences Research.

    PubMed

    Chen, Ying; Elenee Argentinis, J D; Weber, Griff

    2016-04-01

    Life sciences researchers are under pressure to innovate faster than ever. Big data offer the promise of unlocking novel insights and accelerating breakthroughs. Ironically, although more data are available than ever, only a fraction is being integrated, understood, and analyzed. The challenge lies in harnessing volumes of data, integrating the data from hundreds of sources, and understanding their various formats. New technologies such as cognitive computing offer promise for addressing this challenge because cognitive solutions are specifically designed to integrate and analyze big datasets. Cognitive solutions can understand different types of data such as lab values in a structured database or the text of a scientific publication. Cognitive solutions are trained to understand technical, industry-specific content and use advanced reasoning, predictive modeling, and machine learning techniques to advance research faster. Watson, a cognitive computing technology, has been configured to support life sciences research. This version of Watson includes medical literature, patents, genomics, and chemical and pharmacological data that researchers would typically use in their work. Watson has also been developed with specific comprehension of scientific terminology so it can make novel connections in millions of pages of text. Watson has been applied to a few pilot studies in the areas of drug target identification and drug repurposing. The pilot results suggest that Watson can accelerate identification of novel drug candidates and novel drug targets by harnessing the potential of big data. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Advanced Materials and Solids Analysis Research Core (AMSARC)

    EPA Science Inventory

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  19. Applications of Computer Vision for Assessing Quality of Agri-food Products: A Review of Recent Research Advances.

    PubMed

    Ma, Ji; Sun, Da-Wen; Qu, Jia-Huan; Liu, Dan; Pu, Hongbin; Gao, Wen-Hong; Zeng, Xin-An

    2016-01-01

    With consumer concerns increasing over food quality and safety, the food industry has begun to pay much more attention to the development of rapid and reliable food-evaluation systems over the years. As a result, there is a great need for manufacturers and retailers to operate effective real-time assessments for food quality and safety during food production and processing. Computer vision, comprising a nondestructive assessment approach, has the aptitude to estimate the characteristics of food products with its advantages of fast speed, ease of use, and minimal sample preparation. Specifically, computer vision systems are feasible for classifying food products into specific grades, detecting defects, and estimating properties such as color, shape, size, surface defects, and contamination. Therefore, in order to track the latest research developments of this technology in the agri-food industry, this review aims to present the fundamentals and instrumentation of computer vision systems with details of applications in quality assessment of agri-food products from 2007 to 2013 and also discuss its future trends in combination with spectroscopy.

  20. Special issue on the "Consortium for Advanced Simulation of Light Water Reactors Research and Development Progress"

    NASA Astrophysics Data System (ADS)

    Turinsky, Paul J.; Martin, William R.

    2017-04-01

    In this special issue of the Journal of Computational Physics, the research and development completed at the time of manuscript submission by the Consortium for Advanced Simulation of Light Water Reactors (CASL) is presented. CASL is the first of several Energy Innovation Hubs that have been created by the Department of Energy. The Hubs are modeled after the strong scientific management characteristics of the Manhattan Project and AT&T Bell Laboratories, and function as integrated research centers that combine basic and applied research with engineering to accelerate scientific discovery that addresses critical energy issues. Lifetime of a Hub is expected to be five or ten years depending upon performance, with CASL being granted a ten year lifetime.

  1. Argonne's Magellan Cloud Computing Research Project

    ScienceCinema

    Beckman, Pete

    2017-12-11

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  2. Argonne's Magellan Cloud Computing Research Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, Pete

    Pete Beckman, head of Argonne's Leadership Computing Facility (ALCF), discusses the Department of Energy's new $32-million Magellan project, which designed to test how cloud computing can be used for scientific research. More information: http://www.anl.gov/Media_Center/News/2009/news091014a.html

  3. Computer science security research and human subjects: emerging considerations for research ethics boards.

    PubMed

    Buchanan, Elizabeth; Aycock, John; Dexter, Scott; Dittrich, David; Hvizdak, Erin

    2011-06-01

    This paper explores the growing concerns with computer science research, and in particular, computer security research and its relationship with the committees that review human subjects research. It offers cases that review boards are likely to confront, and provides a context for appropriate consideration of such research, as issues of bots, clouds, and worms enter the discourse of human subjects review.

  4. Advanced Computing for Medicine.

    ERIC Educational Resources Information Center

    Rennels, Glenn D.; Shortliffe, Edward H.

    1987-01-01

    Discusses contributions that computers and computer networks are making to the field of medicine. Emphasizes the computer's speed in storing and retrieving data. Suggests that doctors may soon be able to use computers to advise on diagnosis and treatment. (TW)

  5. An overview of computer viruses in a research environment

    NASA Technical Reports Server (NTRS)

    Bishop, Matt

    1991-01-01

    The threat of attack by computer viruses is in reality a very small part of a much more general threat, specifically threats aimed at subverting computer security. Here, computer viruses are examined as a malicious logic in a research and development environment. A relation is drawn between the viruses and various models of security and integrity. Current research techniques aimed at controlling the threats posed to computer systems by threatening viruses in particular and malicious logic in general are examined. Finally, a brief examination of the vulnerabilities of research and development systems that malicious logic and computer viruses may exploit is undertaken.

  6. Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel

    NASA Astrophysics Data System (ADS)

    Dewangan, Satish Kumar

    2018-05-01

    Nanofluid is becoming a promising heat transfer fluids due to its improved thermo-physical properties and heat transfer performance. Micro channel heat transfer has potential application in the cooling high power density microchips in CPU system, micro power systems and many such miniature thermal systems which need advanced cooling capacity. Use of nanofluids enhances the effectiveness of t=scu systems. Computational Fluid Dynamics (CFD) is a very powerful tool in computational analysis of the various physical processes. It application to the situations of flow and heat transfer analysis of the nano fluids is catching up very fast. Present research paper gives a brief account of the methodology of the CFD and also summarizes its application on nano fluid and heat transfer for microchannel cases.

  7. Computer-Assisted Instruction in the Context of the Advanced Instructional System: Authoring Support Software. Final Report.

    ERIC Educational Resources Information Center

    Montgomery, Ann D.; Judd, Wilson A.

    This report details the design, development, and implementation of computer software to support the cost-effective production of computer assisted instruction (CAI) within the context of the Advanced Instructional System (AIS) located at Lowry Air Force Base. The report supplements the computer managed Air Force technical training that is…

  8. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH

  9. Literary Discussions and Advanced Speaking Functions: Researching the (Dis)Connection

    ERIC Educational Resources Information Center

    Donato, Richard; Brooks, Frank B.

    2004-01-01

    This study investigated the discourse of class discussion in the advanced undergraduate Spanish literature course. Motivating this study was the need for research to determine how discussion in advanced undergraduate literature courses provides discourse opportunities to students to develop advanced language functions, as defined in the ACTFL…

  10. Embedded Data Processor and Portable Computer Technology testbeds

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Liu, Yuan-Kwei; Goforth, Andre; Fernquist, Alan R.

    1993-01-01

    Attention is given to current activities in the Embedded Data Processor and Portable Computer Technology testbed configurations that are part of the Advanced Data Systems Architectures Testbed at the Information Sciences Division at NASA Ames Research Center. The Embedded Data Processor Testbed evaluates advanced microprocessors for potential use in mission and payload applications within the Space Station Freedom Program. The Portable Computer Technology (PCT) Testbed integrates and demonstrates advanced portable computing devices and data system architectures. The PCT Testbed uses both commercial and custom-developed devices to demonstrate the feasibility of functional expansion and networking for portable computers in flight missions.

  11. Some Hail 'Computational Science' as Biggest Advance Since Newton, Galileo.

    ERIC Educational Resources Information Center

    Turner, Judith Axler

    1987-01-01

    Computational science is defined as science done on a computer. A computer can serve as a laboratory for researchers who cannot experiment with their subjects, and as a calculator for those who otherwise might need centuries to solve some problems mathematically. The National Science Foundation's support of supercomputers is discussed. (MLW)

  12. Advanced technology airfoil research, volume 2. [conferences

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A comprehensive review of airfoil research is presented. The major thrust of the research is in three areas: development of computational aerodynamic codes for airfoil analysis and design, development of experimental facilities and test techniques, and all types of airfoil applications.

  13. Parameters that affect parallel processing for computational electromagnetic simulation codes on high performance computing clusters

    NASA Astrophysics Data System (ADS)

    Moon, Hongsik

    What is the impact of multicore and associated advanced technologies on computational software for science? Most researchers and students have multicore laptops or desktops for their research and they need computing power to run computational software packages. Computing power was initially derived from Central Processing Unit (CPU) clock speed. That changed when increases in clock speed became constrained by power requirements. Chip manufacturers turned to multicore CPU architectures and associated technological advancements to create the CPUs for the future. Most software applications benefited by the increased computing power the same way that increases in clock speed helped applications run faster. However, for Computational ElectroMagnetics (CEM) software developers, this change was not an obvious benefit - it appeared to be a detriment. Developers were challenged to find a way to correctly utilize the advancements in hardware so that their codes could benefit. The solution was parallelization and this dissertation details the investigation to address these challenges. Prior to multicore CPUs, advanced computer technologies were compared with the performance using benchmark software and the metric was FLoting-point Operations Per Seconds (FLOPS) which indicates system performance for scientific applications that make heavy use of floating-point calculations. Is FLOPS an effective metric for parallelized CEM simulation tools on new multicore system? Parallel CEM software needs to be benchmarked not only by FLOPS but also by the performance of other parameters related to type and utilization of the hardware, such as CPU, Random Access Memory (RAM), hard disk, network, etc. The codes need to be optimized for more than just FLOPs and new parameters must be included in benchmarking. In this dissertation, the parallel CEM software named High Order Basis Based Integral Equation Solver (HOBBIES) is introduced. This code was developed to address the needs of the

  14. Recent advances in computational mechanics of the human knee joint.

    PubMed

    Kazemi, M; Dabiri, Y; Li, L P

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling.

  15. Publication Bias in Methodological Computational Research.

    PubMed

    Boulesteix, Anne-Laure; Stierle, Veronika; Hapfelmeier, Alexander

    2015-01-01

    The problem of publication bias has long been discussed in research fields such as medicine. There is a consensus that publication bias is a reality and that solutions should be found to reduce it. In methodological computational research, including cancer informatics, publication bias may also be at work. The publication of negative research findings is certainly also a relevant issue, but has attracted very little attention to date. The present paper aims at providing a new formal framework to describe the notion of publication bias in the context of methodological computational research, facilitate and stimulate discussions on this topic, and increase awareness in the scientific community. We report an exemplary pilot study that aims at gaining experiences with the collection and analysis of information on unpublished research efforts with respect to publication bias, and we outline the encountered problems. Based on these experiences, we try to formalize the notion of publication bias.

  16. Advancing neurosurgery through translational research.

    PubMed

    Lacey, Claire; Sutherland, Garnette

    2013-01-01

    Every year, the number of published research articles increases significantly. However, many potentially useful ideas are lost in this flood of data. Translational research provides a framework through which investigators or laboratories can maximize the likelihood that the product of their research will be adopted in medical practice. There are 2 recognizable models of translation appropriate for the majority of research: investigator driven and industry enabled. Investigator-driven research has more range because it does not have to consider the profit margin of research, but it is a slow process. The industry-enabled model accelerates the translational research process through the power of industry funding but is interested primarily in products with potential for profit. Two cases are examined to illustrate different methods of partnering with industry. IMRIS is a company founded by investigators to distribute intraoperative magnetic resonance imaging technology based on a movable high-field magnet. It took 7 years for IMRIS to make its first sale, but it is now a successful company. With neuroArm, a surgical robot, investigators decided to sell the intellectual property to an established company to ensure successful global commercialization. Translational research advances medicine by creating and distributing effective solutions to contemporary problems.

  17. Advances in computational design and analysis of airbreathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Klineberg, John M.

    1989-01-01

    The development of commercial and military aircraft depends, to a large extent, on engine manufacturers being able to achieve significant increases in propulsion capability through improved component aerodynamics, materials, and structures. The recent history of propulsion has been marked by efforts to develop computational techniques that can speed up the propulsion design process and produce superior designs. The availability of powerful supercomputers, such as the NASA Numerical Aerodynamic Simulator, and the potential for even higher performance offered by parallel computer architectures, have opened the door to the use of multi-dimensional simulations to study complex physical phenomena in propulsion systems that have previously defied analysis or experimental observation. An overview of several NASA Lewis research efforts is provided that are contributing toward the long-range goal of a numerical test-cell for the integrated, multidisciplinary design, analysis, and optimization of propulsion systems. Specific examples in Internal Computational Fluid Mechanics, Computational Structural Mechanics, Computational Materials Science, and High Performance Computing are cited and described in terms of current capabilities, technical challenges, and future research directions.

  18. 2017 Publications Demonstrate Advancements in Wind Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    In 2017, wind energy experts at the National Renewable Energy Laboratory (NREL) made significant strides to advance wind energy. Many of these achievements were presented in articles published in scientific and engineering journals and technical reports that detailed research accomplishments in new and progressing wind energy technologies. During fiscal year 2017, NREL wind energy thought leaders shared knowledge and insights through 45 journal articles and 25 technical reports, benefiting academic and national-lab research communities; industry stakeholders; and local, state, and federal decision makers. Such publications serve as important outreach, informing the public of how NREL wind research, analysis, and deploymentmore » activities complement advanced energy growth in the United States and around the world. The publications also illustrate some of the noteworthy outcomes of U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and Laboratory Directed Research and Development funding, as well as funding and facilities leveraged through strategic partnerships and other collaborations.« less

  19. Open-Source Software in Computational Research: A Case Study

    DOE PAGES

    Syamlal, Madhava; O'Brien, Thomas J.; Benyahia, Sofiane; ...

    2008-01-01

    A case study of open-source (OS) development of the computational research software MFIX, used for multiphase computational fluid dynamics simulations, is presented here. The verification and validation steps required for constructing modern computational software and the advantages of OS development in those steps are discussed. The infrastructure used for enabling the OS development of MFIX is described. The impact of OS development on computational research and education in gas-solids flow, as well as the dissemination of information to other areas such as geophysical and volcanology research, is demonstrated. This study shows that the advantages of OS development were realized inmore » the case of MFIX: verification by many users, which enhances software quality; the use of software as a means for accumulating and exchanging information; the facilitation of peer review of the results of computational research.« less

  20. NASA Trapezoidal Wing Computations Including Transition and Advanced Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Lee-Rausch, E. M.

    2012-01-01

    Flow about the NASA Trapezoidal Wing is computed with several turbulence models by using grids from the first High Lift Prediction Workshop in an effort to advance understanding of computational fluid dynamics modeling for this type of flowfield. Transition is accounted for in many of the computations. In particular, a recently-developed 4-equation transition model is utilized and works well overall. Accounting for transition tends to increase lift and decrease moment, which improves the agreement with experiment. Upper surface flap separation is reduced, and agreement with experimental surface pressures and velocity profiles is improved. The predicted shape of wakes from upstream elements is strongly influenced by grid resolution in regions above the main and flap elements. Turbulence model enhancements to account for rotation and curvature have the general effect of increasing lift and improving the resolution of the wing tip vortex as it convects downstream. However, none of the models improve the prediction of surface pressures near the wing tip, where more grid resolution is needed.

  1. Sustainability of evidence-based healthcare: research agenda, methodological advances, and infrastructure support.

    PubMed

    Proctor, Enola; Luke, Douglas; Calhoun, Annaliese; McMillen, Curtis; Brownson, Ross; McCrary, Stacey; Padek, Margaret

    2015-06-11

    Little is known about how well or under what conditions health innovations are sustained and their gains maintained once they are put into practice. Implementation science typically focuses on uptake by early adopters of one healthcare innovation at a time. The later-stage challenges of scaling up and sustaining evidence-supported interventions receive too little attention. This project identifies the challenges associated with sustainability research and generates recommendations for accelerating and strengthening this work. A multi-method, multi-stage approach, was used: (1) identifying and recruiting experts in sustainability as participants, (2) conducting research on sustainability using concept mapping, (3) action planning during an intensive working conference of sustainability experts to expand the concept mapping quantitative results, and (4) consolidating results into a set of recommendations for research, methodological advances, and infrastructure building to advance understanding of sustainability. Participants comprised researchers, funders, and leaders in health, mental health, and public health with shared interest in the sustainability of evidence-based health care. Prompted to identify important issues for sustainability research, participants generated 91 distinct statements, for which a concept mapping process produced 11 conceptually distinct clusters. During the conference, participants built upon the concept mapping clusters to generate recommendations for sustainability research. The recommendations fell into three domains: (1) pursue high priority research questions as a unified agenda on sustainability; (2) advance methods for sustainability research; (3) advance infrastructure to support sustainability research. Implementation science needs to pursue later-stage translation research questions required for population impact. Priorities include conceptual consistency and operational clarity for measuring sustainability, developing evidence

  2. Advances in Statistical Methods for Substance Abuse Prevention Research

    PubMed Central

    MacKinnon, David P.; Lockwood, Chondra M.

    2010-01-01

    The paper describes advances in statistical methods for prevention research with a particular focus on substance abuse prevention. Standard analysis methods are extended to the typical research designs and characteristics of the data collected in prevention research. Prevention research often includes longitudinal measurement, clustering of data in units such as schools or clinics, missing data, and categorical as well as continuous outcome variables. Statistical methods to handle these features of prevention data are outlined. Developments in mediation, moderation, and implementation analysis allow for the extraction of more detailed information from a prevention study. Advancements in the interpretation of prevention research results include more widespread calculation of effect size and statistical power, the use of confidence intervals as well as hypothesis testing, detailed causal analysis of research findings, and meta-analysis. The increased availability of statistical software has contributed greatly to the use of new methods in prevention research. It is likely that the Internet will continue to stimulate the development and application of new methods. PMID:12940467

  3. Advanced low-floor vehicle (ALFV) specification research.

    DOT National Transportation Integrated Search

    2015-08-01

    This report details the results of research on market comparison, operational cost efficiencies, and prototype tests conducted on : a novel design for an Advanced Low Floor Vehicle (ALFV), flex-route transit bus. Section I describes how the need for ...

  4. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Technical Reports Server (NTRS)

    Landgrebe, Anton J.

    1987-01-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  5. Computational fluid dynamics research at the United Technologies Research Center requiring supercomputers

    NASA Astrophysics Data System (ADS)

    Landgrebe, Anton J.

    1987-03-01

    An overview of research activities at the United Technologies Research Center (UTRC) in the area of Computational Fluid Dynamics (CFD) is presented. The requirement and use of various levels of computers, including supercomputers, for the CFD activities is described. Examples of CFD directed toward applications to helicopters, turbomachinery, heat exchangers, and the National Aerospace Plane are included. Helicopter rotor codes for the prediction of rotor and fuselage flow fields and airloads were developed with emphasis on rotor wake modeling. Airflow and airload predictions and comparisons with experimental data are presented. Examples are presented of recent parabolized Navier-Stokes and full Navier-Stokes solutions for hypersonic shock-wave/boundary layer interaction, and hydrogen/air supersonic combustion. In addition, other examples of CFD efforts in turbomachinery Navier-Stokes methodology and separated flow modeling are presented. A brief discussion of the 3-tier scientific computing environment is also presented, in which the researcher has access to workstations, mid-size computers, and supercomputers.

  6. Research on Computers in Mathematics Education, IV. The Use of Computers in Mathematics Education Resource Series.

    ERIC Educational Resources Information Center

    Kieren, Thomas E.

    This last paper in a set of four reviews research on a wide variety of computer applications in the mathematics classroom. It covers computer-based instruction, especially drill-and-practice and tutorial modes; computer-managed instruction; and computer-augmented problem-solving. Analytical comments on the findings and status of the research are…

  7. Advanced propeller research

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.; Bober, Lawrence J.

    1990-01-01

    Recent results of aerodynamic and acoustic research on both single rotation and counterrotation propellers are reviewed. Data and analytical results are presented for three propellers: SR-7A, the single rotation design used in the NASA Propfan Test Assessment (PTA) flight program; CRP-X1, the initial 5+5 Hamilton Standard counterrotating design; and F7-A7, the 8+8 counterrotating G.E. design used in the proof of concept Unducted Fan (UDF) engine. In addition to propeller efficiencies, cruise and takeoff noise, and blade pressure data, off-design phenomena involving formation of leading edge vortexes are described. Aerodynamic and acoustic computational results derived from 3-D Euler and acoustic radiation codes are presented. Research on unsteady flows which are particularly important for understanding counterrotation interaction noise, unsteady loading effects on acoustics, and flutter or forced response is described. The first results of 3-D unsteady Euler solutions are illustrated for a single rotation propeller at angle of attack and for a counterrotation propeller. Basic experimental and theoretical results from studies on the unsteady aerodynamics of oscillating cascades are outlined.

  8. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iacono, Michael J.

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting eithermore » more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.« less

  9. GRAVTool, Advances on the Package to Compute Geoid Model path by the Remove-Compute-Restore Technique, Following Helmert's Condensation Method

    NASA Astrophysics Data System (ADS)

    Marotta, G. S.

    2017-12-01

    Currently, there are several methods to determine geoid models. They can be based on terrestrial gravity data, geopotential coefficients, astrogeodetic data or a combination of them. Among the techniques to compute a precise geoid model, the Remove Compute Restore (RCR) has been widely applied. It considers short, medium and long wavelengths derived from altitude data provided by Digital Terrain Models (DTM), terrestrial gravity data and Global Geopotential Model (GGM), respectively. In order to apply this technique, it is necessary to create procedures that compute gravity anomalies and geoid models, by the integration of different wavelengths, and adjust these models to one local vertical datum. This research presents the advances on the package called GRAVTool to compute geoid models path by the RCR, following Helmert's condensation method, and its application in a study area. The studied area comprehends the federal district of Brazil, with 6000 km², wavy relief, heights varying from 600 m to 1340 m, located between the coordinates 48.25ºW, 15.45ºS and 47.33ºW, 16.06ºS. The results of the numerical example on the studied area show a geoid model computed by the GRAVTool package, after analysis of the density, DTM and GGM values, more adequate to the reference values used on the study area. The accuracy of the computed model (σ = ± 0.058 m, RMS = 0.067 m, maximum = 0.124 m and minimum = -0.155 m), using density value of 2.702 g/cm³ ±0.024 g/cm³, DTM SRTM Void Filled 3 arc-second and GGM EIGEN-6C4 up to degree and order 250, matches the uncertainty (σ =± 0.073) of 26 points randomly spaced where the geoid was computed by geometrical leveling technique supported by positioning GNSS. The results were also better than those achieved by Brazilian official regional geoid model (σ = ± 0.076 m, RMS = 0.098 m, maximum = 0.320 m and minimum = -0.061 m).

  10. Advanced IR sensing technology research in the city of Tomsk, USSR

    NASA Astrophysics Data System (ADS)

    Vavilov, Vladimir P.; Ivanov, A. I.; Isakov, A. V.; Reino, V. V.; Shiryaev, Vladimir V.; Tsvyk, Ruvim S.

    1990-03-01

    Some large scientific organisations in the city of Tomsk, Siberia, USSR are involved into the researchings on the advanced IR sensing technology. They are Polytechnic Institute founded in 1896, Uriiversity of Tomsk founded in 1888, Institute of Atmosphere's Optics, Academy of Sciences arid Institute of Automatized Control Systems and Radio electronics. Main fields are as follows: 1) thermal (IR) nondestructive testing of materials, machines and systems; 2) optoelectronics; 3) laser optics, transmission of infrared through the atmosphere and investigation of energy distribution in laser beams. Researching equipment includes Western and Russian industrial thermovisers, lasers, personal computers, IR detectors etc and some borne-made devices and components. There are optical arid JR detectors Lndustry in Tomsk that allows i.e produce spheric and aspheric mirrors and lenses, JR filters, cadmium-mercury-teilur and indium anlymonide T1 receivers arid to develop the scanning and measuring devices on the base mentioned above. Seine projects to develop the specific Tomsk thermoviser so far have nOt come true so the main accent was made onto the computerized thermographic systems suitable for solution of particular scientific problems.

  11. Research in applied mathematics, numerical analysis, and computer science

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering (ICASE) in applied mathematics, numerical analysis, and computer science is summarized and abstracts of published reports are presented. The major categories of the ICASE research program are: (1) numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; (2) control and parameter identification; (3) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, and structural analysis; and (4) computer systems and software, especially vector and parallel computers.

  12. Research for Lunar Exploration: ADVANCE Program

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina

    2009-01-01

    This viewgraph presentation reviews the work that the author has been involved with in her undergraduate and graduate education and the ADVANCE Program. One project was the Lunar Entry and Approach Platform For Research On Ground (LEAPFROG). This vehicle was to be a completely autonomous vehicle, and was developed in successive academic years with increases in the perofmamnce and capability of the simulated lander. Another research project for the PhD was on long-term lunar radiation degradation of materials to be used for construction of lunar habitats. This research has concentrated on developing and testing light-weight composite materials with high strength characteristics, and the ability of these composite materials to withstand the lunar radiation environment.

  13. Conceptualizing and Advancing Research Networking Systems

    PubMed Central

    SCHLEYER, TITUS; BUTLER, BRIAN S.; SONG, MEI; SPALLEK, HEIKO

    2013-01-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture, and evaluation. Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers’ need for comprehensive information and potential collaborators’ desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user’s primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems. PMID:24376309

  14. Conceptualizing and Advancing Research Networking Systems.

    PubMed

    Schleyer, Titus; Butler, Brian S; Song, Mei; Spallek, Heiko

    2012-03-01

    Science in general, and biomedical research in particular, is becoming more collaborative. As a result, collaboration with the right individuals, teams, and institutions is increasingly crucial for scientific progress. We propose Research Networking Systems (RNS) as a new type of system designed to help scientists identify and choose collaborators, and suggest a corresponding research agenda. The research agenda covers four areas: foundations, presentation, architecture , and evaluation . Foundations includes project-, institution- and discipline-specific motivational factors; the role of social networks; and impression formation based on information beyond expertise and interests. Presentation addresses representing expertise in a comprehensive and up-to-date manner; the role of controlled vocabularies and folksonomies; the tension between seekers' need for comprehensive information and potential collaborators' desire to control how they are seen by others; and the need to support serendipitous discovery of collaborative opportunities. Architecture considers aggregation and synthesis of information from multiple sources, social system interoperability, and integration with the user's primary work context. Lastly, evaluation focuses on assessment of collaboration decisions, measurement of user-specific costs and benefits, and how the large-scale impact of RNS could be evaluated with longitudinal and naturalistic methods. We hope that this article stimulates the human-computer interaction, computer-supported cooperative work, and related communities to pursue a broad and comprehensive agenda for developing research networking systems.

  15. Advanced aircraft for atmospheric research

    NASA Technical Reports Server (NTRS)

    Russell, P.; Wegener, S.; Langford, J.; Anderson, J.; Lux, D.; Hall, D. W.

    1991-01-01

    The development of aircraft for high-altitude research is described in terms of program objectives and environmental, technological limitations, and the work on the Perseus A aircraft. The need for these advanced aircraft is proposed in relation to atmospheric science issues such as greenhouse trapping, the dynamics of tropical cyclones, and stratospheric ozone. The implications of the study on aircraft design requirements is addressed with attention given to the basic categories of high-altitude, long-range, long-duration, and nap-of-the-earth aircraft. A strategy is delineated for a platform that permits unique stratospheric measurements and is a step toward a more advanced aircraft. The goal of Perseus A is to carry scientific air sampling payloads weighing at least 50 kg to altitudes of more than 25 km. The airfoils are designed for low Reynolds numbers, the structural weight is very low, and the closed-cycle power plant runs on liquid oxygen.

  16. 78 FR 34901 - Final Priority; National Institute on Disability and Rehabilitation Research-Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-11

    ... Institute on Disability and Rehabilitation Research--Advanced Rehabilitation Research Training Program... priority for the Advanced Rehabilitation Research Training (ARRT) program under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and...

  17. Advanced Computing for Science.

    ERIC Educational Resources Information Center

    Hut, Piet; Sussman, Gerald Jay

    1987-01-01

    Discusses some of the contributions that high-speed computing is making to the study of science. Emphasizes the use of computers in exploring complicated systems without the simplification required in traditional methods of observation and experimentation. Provides examples of computer assisted investigations in astronomy and physics. (TW)

  18. Development and Validation of a Fast, Accurate and Cost-Effective Aeroservoelastic Method on Advanced Parallel Computing Systems

    NASA Technical Reports Server (NTRS)

    Goodwin, Sabine A.; Raj, P.

    1999-01-01

    Progress to date towards the development and validation of a fast, accurate and cost-effective aeroelastic method for advanced parallel computing platforms such as the IBM SP2 and the SGI Origin 2000 is presented in this paper. The ENSAERO code, developed at the NASA-Ames Research Center has been selected for this effort. The code allows for the computation of aeroelastic responses by simultaneously integrating the Euler or Navier-Stokes equations and the modal structural equations of motion. To assess the computational performance and accuracy of the ENSAERO code, this paper reports the results of the Navier-Stokes simulations of the transonic flow over a flexible aeroelastic wing body configuration. In addition, a forced harmonic oscillation analysis in the frequency domain and an analysis in the time domain are done on a wing undergoing a rigid pitch and plunge motion. Finally, to demonstrate the ENSAERO flutter-analysis capability, aeroelastic Euler and Navier-Stokes computations on an L-1011 wind tunnel model including pylon, nacelle and empennage are underway. All computational solutions are compared with experimental data to assess the level of accuracy of ENSAERO. As the computations described above are performed, a meticulous log of computational performance in terms of wall clock time, execution speed, memory and disk storage is kept. Code scalability is also demonstrated by studying the impact of varying the number of processors on computational performance on the IBM SP2 and the Origin 2000 systems.

  19. Recent Advances in Computational Mechanics of the Human Knee Joint

    PubMed Central

    Kazemi, M.; Dabiri, Y.; Li, L. P.

    2013-01-01

    Computational mechanics has been advanced in every area of orthopedic biomechanics. The objective of this paper is to provide a general review of the computational models used in the analysis of the mechanical function of the knee joint in different loading and pathological conditions. Major review articles published in related areas are summarized first. The constitutive models for soft tissues of the knee are briefly discussed to facilitate understanding the joint modeling. A detailed review of the tibiofemoral joint models is presented thereafter. The geometry reconstruction procedures as well as some critical issues in finite element modeling are also discussed. Computational modeling can be a reliable and effective method for the study of mechanical behavior of the knee joint, if the model is constructed correctly. Single-phase material models have been used to predict the instantaneous load response for the healthy knees and repaired joints, such as total and partial meniscectomies, ACL and PCL reconstructions, and joint replacements. Recently, poromechanical models accounting for fluid pressurization in soft tissues have been proposed to study the viscoelastic response of the healthy and impaired knee joints. While the constitutive modeling has been considerably advanced at the tissue level, many challenges still exist in applying a good material model to three-dimensional joint simulations. A complete model validation at the joint level seems impossible presently, because only simple data can be obtained experimentally. Therefore, model validation may be concentrated on the constitutive laws using multiple mechanical tests of the tissues. Extensive model verifications at the joint level are still crucial for the accuracy of the modeling. PMID:23509602

  20. ceRNAs in plants: computational approaches and associated challenges for target mimic research.

    PubMed

    Paschoal, Alexandre Rossi; Lozada-Chávez, Irma; Domingues, Douglas Silva; Stadler, Peter F

    2017-05-30

    The competing endogenous RNA hypothesis has gained increasing attention as a potential global regulatory mechanism of microRNAs (miRNAs), and as a powerful tool to predict the function of many noncoding RNAs, including miRNAs themselves. Most studies have been focused on animals, although target mimic (TMs) discovery as well as important computational and experimental advances has been developed in plants over the past decade. Thus, our contribution summarizes recent progresses in computational approaches for research of miRNA:TM interactions. We divided this article in three main contributions. First, a general overview of research on TMs in plants is presented with practical descriptions of the available literature, tools, data, databases and computational reports. Second, we describe a common protocol for the computational and experimental analyses of TM. Third, we provide a bioinformatics approach for the prediction of TM motifs potentially cross-targeting both members within the same or from different miRNA families, based on the identification of consensus miRNA-binding sites from known TMs across sequenced genomes, transcriptomes and known miRNAs. This computational approach is promising because, in contrast to animals, miRNA families in plants are large with identical or similar members, several of which are also highly conserved. From the three consensus TM motifs found with our approach: MIM166, MIM171 and MIM159/319, the last one has found strong support on the recent experimental work by Reichel and Millar [Specificity of plant microRNA TMs: cross-targeting of mir159 and mir319. J Plant Physiol 2015;180:45-8]. Finally, we stress the discussion on the major computational and associated experimental challenges that have to be faced in future ceRNA studies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Towards an advanced e-Infrastructure for Civil Protection applications: Research Strategies and Innovation Guidelines

    NASA Astrophysics Data System (ADS)

    Mazzetti, P.; Nativi, S.; Verlato, M.; Angelini, V.

    2009-04-01

    In the context of the EU co-funded project CYCLOPS (http://www.cyclops-project.eu) the problem of designing an advanced e-Infrastructure for Civil Protection (CP) applications has been addressed. As a preliminary step, some studies about European CP systems and operational applications were performed in order to define their specific system requirements. At a higher level it was verified that CP applications are usually conceived to map CP Business Processes involving different levels of processing including data access, data processing, and output visualization. At their core they usually run one or more Earth Science models for information extraction. The traditional approach based on the development of monolithic applications presents some limitations related to flexibility (e.g. the possibility of running the same models with different input data sources, or different models with the same data sources) and scalability (e.g. launching several runs for different scenarios, or implementing more accurate and computing-demanding models). Flexibility can be addressed adopting a modular design based on a SOA and standard services and models, such as OWS and ISO for geospatial services. Distributed computing and storage solutions could improve scalability. Basing on such considerations an architectural framework has been defined. It is made of a Web Service layer providing advanced services for CP applications (e.g. standard geospatial data sharing and processing services) working on the underlying Grid platform. This framework has been tested through the development of prototypes as proof-of-concept. These theoretical studies and proof-of-concept demonstrated that although Grid and geospatial technologies would be able to provide significant benefits to CP applications in terms of scalability and flexibility, current platforms are designed taking into account requirements different from CP. In particular CP applications have strict requirements in terms of: a) Real

  2. Investigation of advanced counterrotation blade configuration concepts for high speed turboprop systems. Task 4: Advanced fan section aerodynamic analysis computer program user's manual

    NASA Technical Reports Server (NTRS)

    Crook, Andrew J.; Delaney, Robert A.

    1992-01-01

    The computer program user's manual for the ADPACAPES (Advanced Ducted Propfan Analysis Code-Average Passage Engine Simulation) program is included. The objective of the computer program is development of a three-dimensional Euler/Navier-Stokes flow analysis for fan section/engine geometries containing multiple blade rows and multiple spanwise flow splitters. An existing procedure developed by Dr. J. J. Adamczyk and associates at the NASA Lewis Research Center was modified to accept multiple spanwise splitter geometries and simulate engine core conditions. The numerical solution is based upon a finite volume technique with a four stage Runge-Kutta time marching procedure. Multiple blade row solutions are based upon the average-passage system of equations. The numerical solutions are performed on an H-type grid system, with meshes meeting the requirement of maintaining a common axisymmetric mesh for each blade row grid. The analysis was run on several geometry configurations ranging from one to five blade rows and from one to four radial flow splitters. The efficiency of the solution procedure was shown to be the same as the original analysis.

  3. Highly parallel computation

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.; Tichy, Walter F.

    1990-01-01

    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed.

  4. [Animal experimentation, computer simulation and surgical research].

    PubMed

    Carpentier, Alain

    2009-11-01

    We live in a digital world In medicine, computers are providing new tools for data collection, imaging, and treatment. During research and development of complex technologies and devices such as artificial hearts, computer simulation can provide more reliable information than experimentation on large animals. In these specific settings, animal experimentation should serve more to validate computer models of complex devices than to demonstrate their reliability.

  5. Building Research Cyberinfrastructure at Small/Medium Research Institutions

    ERIC Educational Resources Information Center

    Agee, Anne; Rowe, Theresa; Woo, Melissa; Woods, David

    2010-01-01

    A 2006 ECAR study defined cyberinfrastructure as the coordinated aggregate of "hardware, software, communications, services, facilities, and personnel that enable researchers to conduct advanced computational, collaborative, and data-intensive research." While cyberinfrastructure was initially seen as support for scientific and…

  6. Defense Science Board Report on Advanced Computing

    DTIC Science & Technology

    2009-03-01

    computers  will  require extensive  research and development  to have a chance of  reaching  the  exascale   level.  Even  if  exascale   level machines  can...generations of petascale and then  exascale   level  computing  capability.  This  includes  both  the  hardware  and  the  complex  software  that  may  be...required  for  the  architectures  needed  for  exacscale  capability.  The  challenges  are  extremely  daunting,  especially  at  the  exascale

  7. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  8. Advanced Training Technologies and Learning Environments

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    This document contains the proceedings of the Workshop on Advanced Training Technologies and Learning Environments held at NASA Langley Research Center, Hampton, Virginia, March 9-10, 1999. The workshop was jointly sponsored by the University of Virginia's Center for Advanced Computational Technology and NASA. Workshop attendees were from NASA, other government agencies, industry, and universities. The objective of the workshop was to assess the status and effectiveness of different advanced training technologies and learning environments.

  9. Computational chemistry in pharmaceutical research: at the crossroads.

    PubMed

    Bajorath, Jürgen

    2012-01-01

    Computational approaches are an integral part of pharmaceutical research. However, there are many of unsolved key questions that limit the scientific progress in the still evolving computational field and its impact on drug discovery. Importantly, a number of these questions are not new but date back many years. Hence, it might be difficult to conclusively answer them in the foreseeable future. Moreover, the computational field as a whole is characterized by a high degree of heterogeneity and so is, unfortunately, the quality of its scientific output. In light of this situation, it is proposed that changes in scientific standards and culture should be seriously considered now in order to lay a foundation for future progress in computational research.

  10. Research in mathematical theory of computation. [computer programming applications

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.

    1973-01-01

    Research progress in the following areas is reviewed: (1) new version of computer program LCF (logic for computable functions) including a facility to search for proofs automatically; (2) the description of the language PASCAL in terms of both LCF and in first order logic; (3) discussion of LISP semantics in LCF and attempt to prove the correctness of the London compilers in a formal way; (4) design of both special purpose and domain independent proving procedures specifically program correctness in mind; (5) design of languages for describing such proof procedures; and (6) the embedding of ideas in the first order checker.

  11. Medical technology advances from space research

    NASA Technical Reports Server (NTRS)

    Pool, S. L.

    1972-01-01

    Details of medical research and development programs, particularly an integrated medical laboratory, as derived from space technology are given. The program covers digital biotelemetry systems, automatic visual field mapping equipment, sponge electrode caps for clinical electroencephalograms, and advanced respiratory analysis equipment. The possibility of using the medical laboratory in ground based remote areas and regional health care facilities, as well as long duration space missions is discussed.

  12. Computational studies of horizontal axis wind turbines in high wind speed condition using advanced turbulence models

    NASA Astrophysics Data System (ADS)

    Benjanirat, Sarun

    Next generation horizontal-axis wind turbines (HAWTs) will operate at very high wind speeds. Existing engineering approaches for modeling the flow phenomena are based on blade element theory, and cannot adequately account for 3-D separated, unsteady flow effects. Therefore, researchers around the world are beginning to model these flows using first principles-based computational fluid dynamics (CFD) approaches. In this study, an existing first principles-based Navier-Stokes approach is being enhanced to model HAWTs at high wind speeds. The enhancements include improved grid topology, implicit time-marching algorithms, and advanced turbulence models. The advanced turbulence models include the Spalart-Allmaras one-equation model, k-epsilon, k-o and Shear Stress Transport (k-o-SST) models. These models are also integrated with detached eddy simulation (DES) models. Results are presented for a range of wind speeds, for a configuration termed National Renewable Energy Laboratory Phase VI rotor, tested at NASA Ames Research Center. Grid sensitivity studies are also presented. Additionally, effects of existing transition models on the predictions are assessed. Data presented include power/torque production, radial distribution of normal and tangential pressure forces, root bending moments, and surface pressure fields. Good agreement was obtained between the predictions and experiments for most of the conditions, particularly with the Spalart-Allmaras-DES model.

  13. Advancing the Science of Qualitative Research to Promote Health Equity.

    PubMed

    Griffith, Derek M; Shelton, Rachel C; Kegler, Michelle

    2017-10-01

    Qualitative methods have long been a part of health education research, but how qualitative approaches advance health equity has not been well described. Qualitative research is an increasingly important methodologic tool to use in efforts to understand, inform, and advance health equity. Qualitative research provides critical insight into the subjective meaning and context of health that can be essential for understanding where and how to intervene to inform health equity research and practice. We describe the larger context for this special theme issue of Health Education & Behavior, provide brief overviews of the 15 articles that comprise the issue, and discuss the promise of qualitative research that seeks to contextualize and illuminate answers to research questions in efforts to promote health equity. We highlight the critical role that qualitative research can play in considering and incorporating a diverse array of contextual information that is difficult to capture in quantitative research.

  14. Computer Science Research Funding: How Much Is Too Little?

    DTIC Science & Technology

    2009-06-01

    Bioinformatics Parallel computing Computational biology Principles of programming Computational neuroscience Real-time and embedded systems Scientific...National Security Agency ( NSA ) • Missile Defense Agency (MDA) and others The various research programs have been coordinated through the DDR&E...DOD funding included only DARPA and OSD programs. FY07 and FY08 PBR funding included DARPA, NSA , some of the Services’ basic and applied research

  15. Advanced Life Support Research and Technology Development Metric

    NASA Technical Reports Server (NTRS)

    Hanford, A. J.

    2004-01-01

    The Metric is one of several measures employed by the NASA to assess the Agency s progress as mandated by the United States Congress and the Office of Management and Budget. Because any measure must have a reference point, whether explicitly defined or implied, the Metric is a comparison between a selected ALS Project life support system and an equivalently detailed life support system using technology from the Environmental Control and Life Support System (ECLSS) for the International Space Station (ISS). This document provides the official calculation of the Advanced Life Support (ALS) Research and Technology Development Metric (the Metric) for Fiscal Year 2004. The values are primarily based on Systems Integration, Modeling, and Analysis (SIMA) Element approved software tools or reviewed and approved reference documents. For Fiscal Year 2004, the Advanced Life Support Research and Technology Development Metric value is 2.03 for an Orbiting Research Facility and 1.62 for an Independent Exploration Mission.

  16. 3D data processing with advanced computer graphics tools

    NASA Astrophysics Data System (ADS)

    Zhang, Song; Ekstrand, Laura; Grieve, Taylor; Eisenmann, David J.; Chumbley, L. Scott

    2012-09-01

    Often, the 3-D raw data coming from an optical profilometer contains spiky noises and irregular grid, which make it difficult to analyze and difficult to store because of the enormously large size. This paper is to address these two issues for an optical profilometer by substantially reducing the spiky noise of the 3-D raw data from an optical profilometer, and by rapidly re-sampling the raw data into regular grids at any pixel size and any orientation with advanced computer graphics tools. Experimental results will be presented to demonstrate the effectiveness of the proposed approach.

  17. A Research Program in Computer Technology. 1986 Annual Technical Report

    DTIC Science & Technology

    1989-08-01

    1986 (Annual Technical Report I July 1985 - June 1986 A Research Program in Computer Technology ISI/SR-87-178 U S C INFORMA-TION S C I EN C ES...Program in Computer Technology (Unclassified) 12. PERSONAL AUTHOR(S) 151 Research Staff 13a. TYPE OF REPORT 113b. TIME COVERED 14 DATE OF REPORT (Yeer...survivable networks 17. distributed processing, local networks, personal computers, workstation environment 18. computer acquisition, Strategic Computing 19

  18. Advanced public transportation systems : the state of the art update 2000

    DOT National Transportation Integrated Search

    2000-12-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, communication, information, computer...

  19. Recent advances and future prospects for Monte Carlo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Forrest B

    2010-01-01

    The history of Monte Carlo methods is closely linked to that of computers: The first known Monte Carlo program was written in 1947 for the ENIAC; a pre-release of the first Fortran compiler was used for Monte Carlo In 1957; Monte Carlo codes were adapted to vector computers in the 1980s, clusters and parallel computers in the 1990s, and teraflop systems in the 2000s. Recent advances include hierarchical parallelism, combining threaded calculations on multicore processors with message-passing among different nodes. With the advances In computmg, Monte Carlo codes have evolved with new capabilities and new ways of use. Production codesmore » such as MCNP, MVP, MONK, TRIPOLI and SCALE are now 20-30 years old (or more) and are very rich in advanced featUres. The former 'method of last resort' has now become the first choice for many applications. Calculations are now routinely performed on office computers, not just on supercomputers. Current research and development efforts are investigating the use of Monte Carlo methods on FPGAs. GPUs, and many-core processors. Other far-reaching research is exploring ways to adapt Monte Carlo methods to future exaflop systems that may have 1M or more concurrent computational processes.« less

  20. 76 FR 45786 - Advanced Scientific Computing Advisory Committee; Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... updates. EU Data Initiative. HPC & EERE Wind Program. Early Career Research on Energy Efficient Interconnect for Exascale Computing. Separating Algorithm and Implentation. Update on ASCR exascale planning...

  1. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances

    PubMed Central

    Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca

    2018-01-01

    Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268

  2. Storytelling to access social context and advance health equity research.

    PubMed

    Banks, JoAnne

    2012-11-01

    Increased understanding of individual and social determinants of health is crucial to moving toward health equity. This essay examines storytelling as a vehicle for advancing health equity research. Contemplative examination of storytelling as a research strategy. An overview of story theory is provided. This is followed by an examination of storytelling as a tool for increasing understanding about the contexts in which people negotiate health, strengthening participation of communities in addressing health issues, and building bridges between researchers and target populations. Storytelling can be a powerful tool for advancing health equity research. However, its effective use requires a renegotiation of relationships between researchers and target communities, as well as setting aside routine time to attend storytelling events and read a variety of stories. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Advanced Research Deposition System (ARDS) for processing CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Barricklow, Keegan Corey

    CdTe solar cells have been commercialized at the Gigawatt/year level. The development of volume manufacturing processes for next generation CdTe photovoltaics (PV) with higher efficiencies requires research systems with flexibility, scalability, repeatability and automation. The Advanced Research Deposition Systems (ARDS) developed by the Materials Engineering Laboratory (MEL) provides such a platform for the investigation of materials and manufacturing processes necessary to produce the next generation of CdTe PV. Limited by previous research systems, the ARDS was developed to provide process and hardware flexibility, accommodating advanced processing techniques, and capable of producing device quality films. The ARDS is a unique, in-line process tool with nine processing stations. The system was designed, built and assembled at the Materials Engineering Laboratory. Final assembly, startup, characterization and process development are the focus of this research. Many technical challenges encountered during the startup of the ARDS were addressed in this research. In this study, several hardware modifications needed for the reliable operation of the ARDS were designed, constructed and successfully incorporated into the ARDS. The effect of process condition on film properties for each process step was quantified. Process development to achieve 12% efficient baseline solar cell required investigation of discrete processing steps, troubleshooting process variation, and developing performance correlations. Subsequent to this research, many advances have been demonstrated with the ARDS. The ARDS consistently produces devices of 12% +/-.5% by the process of record (POR). The champion cell produced to date utilizing the ARDS has an efficiency of 16.2% on low cost commercial sodalime glass and utilizes advanced films. The ARDS has enabled investigation of advanced concepts for processing CdTe devices including, Plasma Cleaning, Plasma Enhanced Closed Space Sublimation

  4. Advanced imaging technologies for mapping cadaveric lymphatic anatomy: magnetic resonance and computed tomography lymphangiography.

    PubMed

    Pan, W R; Rozen, W M; Stretch, J; Thierry, B; Ashton, M W; Corlett, R J

    2008-09-01

    Lymphatic anatomy has become increasingly clinically important as surgical techniques evolve for investigating and treating cancer metastases. However, due to limited anatomical techniques available, research in this field has been insufficient. The techniques of computed tomography (CT) and magnetic resonance (MR) lymphangiography have not been described previously in the imaging of cadaveric lymphatic anatomy. This preliminary work describes the feasibility of these advanced imaging technologies for imaging lymphatic anatomy. A single, fresh cadaveric lower limb underwent lymphatic dissection and cannulation utilizing microsurgical techniques. Contrast materials for both CT and MR studies were chosen based on their suitability for subsequent clinical use, and imaging was undertaken with a view to mapping lymphatic anatomy. Microdissection studies were compared with imaging findings in each case. Both MR-based and CT-based contrast media in current clinical use were found to be suitable for demonstrating cadaveric lymphatic anatomy upon direct intralymphatic injection. MR lymphangiography and CT lymphangiography are feasible modalities for cadaveric anatomical research for lymphatic anatomy. Future studies including refinements in scanning techniques may offer these technologies to the clinical setting.

  5. Computer-aided drug discovery research at a global contract research organization

    NASA Astrophysics Data System (ADS)

    Kitchen, Douglas B.

    2017-03-01

    Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.

  6. Computer-aided drug discovery research at a global contract research organization.

    PubMed

    Kitchen, Douglas B

    2017-03-01

    Computer-aided drug discovery started at Albany Molecular Research, Inc in 1997. Over nearly 20 years the role of cheminformatics and computational chemistry has grown throughout the pharmaceutical industry and at AMRI. This paper will describe the infrastructure and roles of CADD throughout drug discovery and some of the lessons learned regarding the success of several methods. Various contributions provided by computational chemistry and cheminformatics in chemical library design, hit triage, hit-to-lead and lead optimization are discussed. Some frequently used computational chemistry techniques are described. The ways in which they may contribute to discovery projects are presented based on a few examples from recent publications.

  7. Geysers advanced direct contact condenser research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, J.; Bahning, T.; Bharathan, D.

    1997-12-31

    The first geothermal application of the Advanced Direct Contact Condenser (ADCC) technology developed by the National Renewable Energy Laboratory (NREL) is now operational and is being tested at The Geysers Power Plant Unit 11. This major research effort is being supported through the combined efforts of NREL, The Department of Energy (DOE), and Pacific Gas and Electric (PG&E). NREL and PG&E have entered into a Cooperative Research And Development Agreement (CRADA) for a project to improve the direct-contact condenser performance at The Geysers Power Plant. This project is the first geothermal adaptation of an advanced condenser design developed for themore » Ocean Thermal Energy Conversion (OTEC) systems. PG&E expects this technology to improve power plant performance and to help extend the life of the steam field by using steam more efficiently. In accordance with the CRADA, no money is transferred between the contracting parties. In this case the Department of Energy is funding NREL for their efforts in this project and PG&E is contributing funds in kind. Successful application of this technology at The Geysers will provide a basis for NREL to continue to develop this technology for other geothermal and fossil power plant systems.« less

  8. Beyond competence: advance directives in dementia research.

    PubMed

    Jongsma, Karin Rolanda; van de Vathorst, Suzanne

    2015-01-01

    Dementia is highly prevalent and incurable. The participation of dementia patients in clinical research is indispensable if we want to find an effective treatment for dementia. However, one of the primary challenges in dementia research is the patients' gradual loss of the capacity to consent. Patients with dementia are characterized by the fact that, at an earlier stage of their life, they were able to give their consent to participation in research. Therefore, the phase when patients are still competent to decide offers a valuable opportunity to authorize research, by using an advance research directive (ARD). Yet, the use of ARDs as an authorization for research participation remains controversial. In this paper we discuss the role of autonomous decision-making and the protection of incompetent research subjects. We will show why ARDs are a morally defensible basis for the inclusion of this population in biomedical research and that the use of ARDs is compatible with the protection of incompetent research subjects.

  9. Division of Computer Research Summary of Awards. Fiscal Year 1984.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC. Directorate for Mathematical and Physical Sciences.

    Provided in this report are summaries of grants awarded by the National Science Foundation Division of Computer Research in fiscal year 1984. Similar areas of research are grouped (for the purposes of this report only) into these major categories: (1) computational mathematics; (2) computer systems design; (3) intelligent systems; (4) software…

  10. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  11. Advanced Pediatric Brain Imaging Research Program

    DTIC Science & Technology

    2016-10-01

    pretest AVG =63.9% to combined post test AVG=98.8%). The prior year, 2015, the Pretest Mean result was 6.45 and Posttest mean result was 9.4 (64% and...makers, and more. 4. Within the pretest , existing knowledge of International Conference on Harmonization (ICH) GCP training including: GCP Overview...focusing on pediatric brain injury. Our goal is to train, with the highest rigor, military trainees in conducting clinical research using advanced brain

  12. What Research Says about Keyboarding Skills and Computer Anxiety.

    ERIC Educational Resources Information Center

    Artwohl, Mary Jane

    A literature search identified 14 studies that were examined concerning keyboarding and computer anxiety. Although research on the relationship between keyboarding skills and computer anxiety is scarce, studies are being conducted to measure the effects of basic keyboarding skills on increased productivity. In addition, research is being performed…

  13. Computer Security for Commercial Nuclear Power Plants - Literature Review for Korea Hydro Nuclear Power Central Research Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Felicia Angelica; Waymire, Russell L.

    2013-10-01

    Sandia National Laboratories (SNL) is providing training and consultation activities on security planning and design for the Korea Hydro and Nuclear Power Central Research Institute (KHNPCRI). As part of this effort, SNL performed a literature review on computer security requirements, guidance and best practices that are applicable to an advanced nuclear power plant. This report documents the review of reports generated by SNL and other organizations [U.S. Nuclear Regulatory Commission, Nuclear Energy Institute, and International Atomic Energy Agency] related to protection of information technology resources, primarily digital controls and computer resources and their data networks. Copies of the key documentsmore » have also been provided to KHNP-CRI.« less

  14. Research opportunities to advance solar energy utilization.

    PubMed

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  15. Sexual Objectification of Women: Advances to Theory and Research

    ERIC Educational Resources Information Center

    Szymanski, Dawn M.; Moffitt, Lauren B.; Carr, Erika R.

    2011-01-01

    Objectification theory provides an important framework for understanding, researching, and intervening to improve women's lives in a sociocultural context that sexually objectifies the female body and equates a woman's worth with her body's appearance and sexual functions. The purpose of this Major Contribution is to advance theory, research,…

  16. Research priorities and history of advanced composite compression testing

    NASA Technical Reports Server (NTRS)

    Baumann, K. J.

    1981-01-01

    Priorities for standard compression testing research in advanced laminated fibrous composite materials are presented along with a state of the art survey (completed in 1979) including history and commentary on industrial test methods. Historically apparent research priorities and consequent (lack of) progress are supporting evidence for newly derived priorities.

  17. The Computer: An Effective Research Assistant

    PubMed Central

    Gancher, Wendy

    1984-01-01

    The development of software packages such as data management systems and statistical packages has made it possible to process large amounts of research data. Data management systems make the organization and manipulation of such data easier. Floppy disks ease the problem of storing and retrieving records. Patient information can be kept confidential by limiting access to computer passwords linked with research files, or by using floppy disks. These attributes make the microcomputer essential to modern primary care research. PMID:21279042

  18. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX)

    PubMed Central

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-01-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 – Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning. PMID:26217710

  19. Tuning the cache memory usage in tomographic reconstruction on standard computers with Advanced Vector eXtensions (AVX).

    PubMed

    Agulleiro, Jose-Ignacio; Fernandez, Jose-Jesus

    2015-06-01

    Cache blocking is a technique widely used in scientific computing to minimize the exchange of information with main memory by reusing the data kept in cache memory. In tomographic reconstruction on standard computers using vector instructions, cache blocking turns out to be central to optimize performance. To this end, sinograms of the tilt-series and slices of the volumes to be reconstructed have to be divided into small blocks that fit into the different levels of cache memory. The code is then reorganized so as to operate with a block as much as possible before proceeding with another one. This data article is related to the research article titled Tomo3D 2.0 - Exploitation of Advanced Vector eXtensions (AVX) for 3D reconstruction (Agulleiro and Fernandez, 2015) [1]. Here we present data of a thorough study of the performance of tomographic reconstruction by varying cache block sizes, which allows derivation of expressions for their automatic quasi-optimal tuning.

  20. Computational methods in drug discovery

    PubMed Central

    Leelananda, Sumudu P

    2016-01-01

    The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein–ligand docking, pharmacophore modeling and QSAR techniques are reviewed. PMID:28144341

  1. Computational methods in drug discovery.

    PubMed

    Leelananda, Sumudu P; Lindert, Steffen

    2016-01-01

    The process for drug discovery and development is challenging, time consuming and expensive. Computer-aided drug discovery (CADD) tools can act as a virtual shortcut, assisting in the expedition of this long process and potentially reducing the cost of research and development. Today CADD has become an effective and indispensable tool in therapeutic development. The human genome project has made available a substantial amount of sequence data that can be used in various drug discovery projects. Additionally, increasing knowledge of biological structures, as well as increasing computer power have made it possible to use computational methods effectively in various phases of the drug discovery and development pipeline. The importance of in silico tools is greater than ever before and has advanced pharmaceutical research. Here we present an overview of computational methods used in different facets of drug discovery and highlight some of the recent successes. In this review, both structure-based and ligand-based drug discovery methods are discussed. Advances in virtual high-throughput screening, protein structure prediction methods, protein-ligand docking, pharmacophore modeling and QSAR techniques are reviewed.

  2. Strategy to Promote Active Learning of an Advanced Research Method

    ERIC Educational Resources Information Center

    McDermott, Hilary J.; Dovey, Terence M.

    2013-01-01

    Research methods courses aim to equip students with the knowledge and skills required for research yet seldom include practical aspects of assessment. This reflective practitioner report describes and evaluates an innovative approach to teaching and assessing advanced qualitative research methods to final-year psychology undergraduate students. An…

  3. Advancements in Research Synthesis Methods: From a Methodologically Inclusive Perspective

    ERIC Educational Resources Information Center

    Suri, Harsh; Clarke, David

    2009-01-01

    The dominant literature on research synthesis methods has positivist and neo-positivist origins. In recent years, the landscape of research synthesis methods has changed rapidly to become inclusive. This article highlights methodologically inclusive advancements in research synthesis methods. Attention is drawn to insights from interpretive,…

  4. Recent advances in research on Crimean-Congo hemorrhagic fever

    PubMed Central

    Papa, Anna; Mirazimi, Ali; Köksal, Iftihar; Estrada-Pena, Augustin; Feldmann, Heinz

    2014-01-01

    Crimean-Congo hemorrhagic fever (CCHF) is an expanding tick-borne hemorrhagic disease with increasing human and animal health impact. Immense knowledge was gained over the past 10 years mainly due to advances in molecular biology, but also driven by an increased global interest in CCHFV as an emerging/re-emerging zoonotic pathogen. In the present article we discuss the advances in research with focus on CCHF ecology, epidemiology, pathogenesis, diagnostics, prophylaxis and treatment. Despite tremendous achievements, future activities have to concentrate on the development of vaccines and antivirals/therapeutics to combat CCHF. Vector studies need to continue for better public and animal health preparedness and response. We conclude with a roadmap for future research priorities. PMID:25453328

  5. Computer Based Procedures for Field Workers - FY16 Research Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna; Bly, Aaron

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. A CBP provides the opportunity to incorporate context-driven jobmore » aids, such as drawings, photos, and just-in-time training. The presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps. This report provides a summary of the main research activities conducted in the Computer-Based Procedures for Field Workers effort since 2012. The main focus of the report is on the research activities conducted in fiscal year 2016. The activities discussed are the Nuclear Electronic Work Packages – Enterprise Requirements initiative, the development of a design guidance for CBPs (which compiles all insights gained through the years of CBP research), the facilitation of vendor studies at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), a pilot study for how to enhance the plant design modification work process, the collection of feedback from a field evaluation study at Plant Vogtle, and path forward to

  6. Computational approaches for predicting biomedical research collaborations.

    PubMed

    Zhang, Qing; Yu, Hong

    2014-01-01

    Biomedical research is increasingly collaborative, and successful collaborations often produce high impact work. Computational approaches can be developed for automatically predicting biomedical research collaborations. Previous works of collaboration prediction mainly explored the topological structures of research collaboration networks, leaving out rich semantic information from the publications themselves. In this paper, we propose supervised machine learning approaches to predict research collaborations in the biomedical field. We explored both the semantic features extracted from author research interest profile and the author network topological features. We found that the most informative semantic features for author collaborations are related to research interest, including similarity of out-citing citations, similarity of abstracts. Of the four supervised machine learning models (naïve Bayes, naïve Bayes multinomial, SVMs, and logistic regression), the best performing model is logistic regression with an ROC ranging from 0.766 to 0.980 on different datasets. To our knowledge we are the first to study in depth how research interest and productivities can be used for collaboration prediction. Our approach is computationally efficient, scalable and yet simple to implement. The datasets of this study are available at https://github.com/qingzhanggithub/medline-collaboration-datasets.

  7. Computation Directorate Annual Report 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, D L; McGraw, J R; Ashby, S F

    Big computers are icons: symbols of the culture, and of the larger computing infrastructure that exists at Lawrence Livermore. Through the collective effort of Laboratory personnel, they enable scientific discovery and engineering development on an unprecedented scale. For more than three decades, the Computation Directorate has supplied the big computers that enable the science necessary for Laboratory missions and programs. Livermore supercomputing is uniquely mission driven. The high-fidelity weapon simulation capabilities essential to the Stockpile Stewardship Program compel major advances in weapons codes and science, compute power, and computational infrastructure. Computation's activities align with this vital mission of the Departmentmore » of Energy. Increasingly, non-weapons Laboratory programs also rely on computer simulation. World-class achievements have been accomplished by LLNL specialists working in multi-disciplinary research and development teams. In these teams, Computation personnel employ a wide array of skills, from desktop support expertise, to complex applications development, to advanced research. Computation's skilled professionals make the Directorate the success that it has become. These individuals know the importance of the work they do and the many ways it contributes to Laboratory missions. They make appropriate and timely decisions that move the entire organization forward. They make Computation a leader in helping LLNL achieve its programmatic milestones. I dedicate this inaugural Annual Report to the people of Computation in recognition of their continuing contributions. I am proud that we perform our work securely and safely. Despite increased cyber attacks on our computing infrastructure from the Internet, advanced cyber security practices ensure that our computing environment remains secure. Through Integrated Safety Management (ISM) and diligent oversight, we address safety issues promptly and aggressively. The safety of our

  8. Computational Methods Development at Ames

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan; Smith, Charles A. (Technical Monitor)

    1998-01-01

    This viewgraph presentation outlines the development at Ames Research Center of advanced computational methods to provide appropriate fidelity computational analysis/design capabilities. Current thrusts of the Ames research include: 1) methods to enhance/accelerate viscous flow simulation procedures, and the development of hybrid/polyhedral-grid procedures for viscous flow; 2) the development of real time transonic flow simulation procedures for a production wind tunnel, and intelligent data management technology; and 3) the validation of methods and the flow physics study gives historical precedents to above research, and speculates on its future course.

  9. Advanced Simulation and Computing: A Summary Report to the Director's Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, M G; Peck, T

    2003-06-01

    It has now been three years since the Advanced Simulation and Computing Program (ASCI), as managed by Defense and Nuclear Technologies (DNT) Directorate, has been reviewed by this Director's Review Committee (DRC). Since that time, there has been considerable progress for all components of the ASCI Program, and these developments will be highlighted in this document and in the presentations planned for June 9 and 10, 2003. There have also been some name changes. Today, the Program is called ''Advanced Simulation and Computing,'' Although it retains the familiar acronym ASCI, the initiative nature of the effort has given way tomore » sustained services as an integral part of the Stockpile Stewardship Program (SSP). All computing efforts at LLNL and the other two Defense Program (DP) laboratories are funded and managed under ASCI. This includes the so-called legacy codes, which remain essential tools in stockpile stewardship. The contract between the Department of Energy (DOE) and the University of California (UC) specifies an independent appraisal of Directorate technical work and programmatic management. Such represents the work of this DNT Review Committee. Beginning this year, the Laboratory is implementing a new review system. This process was negotiated between UC, the National Nuclear Security Administration (NNSA), and the Laboratory Directors. Central to this approach are eight performance objectives that focus on key programmatic and administrative goals. Associated with each of these objectives are a number of performance measures to more clearly characterize the attainment of the objectives. Each performance measure has a lead directorate and one or more contributing directorates. Each measure has an evaluation plan and has identified expected documentation to be included in the ''Assessment File''.« less

  10. Computer Assisted Surgery and Current Trends in Orthopaedics Research and Total Joint Replacements

    NASA Astrophysics Data System (ADS)

    Amirouche, Farid

    2008-06-01

    Musculoskeletal research has brought about revolutionary changes in our ability to perform high precision surgery in joint replacement procedures. Recent advances in computer assisted surgery as well better materials have lead to reduced wear and greatly enhanced the quality of life of patients. The new surgical techniques to reduce the size of the incision and damage to underlying structures have been the primary advance toward this goal. These new techniques are known as MIS or Minimally Invasive Surgery. Total hip and knee Arthoplasties are at all time high reaching 1.2 million surgeries per year in the USA. Primary joint failures are usually due to osteoarthristis, rheumatoid arthritis, osteocronis and other inflammatory arthritis conditions. The methods for THR and TKA are critical to initial stability and longevity of the prostheses. This research aims at understanding the fundamental mechanics of the joint Arthoplasty and providing an insight into current challenges in patient specific fitting, fixing, and stability. Both experimental and analytical work will be presented. We will examine Cementless total hip arthroplasty success in the last 10 years and how computer assisted navigation is playing in the follow up studies. Cementless total hip arthroplasty attains permanent fixation by the ingrowth of bone into a porous coated surface. Loosening of an ingrown total hip arthroplasty occurs as a result of osteolysis of the periprosthetic bone and degradation of the bone prosthetic interface. The osteolytic process occurs as a result of polyethylene wear particles produced by the metal polyethylene articulation of the prosthesis. The total hip arthroplasty is a congruent joint and the submicron wear particles produced are phagocytized by macrophages initiating an inflammatory cascade. This cascade produces cytokines ultimately implicated in osteolysis. Resulting bone loss both on the acetabular and femoral sides eventually leads to component instability. As

  11. [Research Advances in Cyprinid Herpesvirus 3].

    PubMed

    Zheng, Shucheng; Wang, Qing; Li, Yingying; Zeng, Weiwei; Wang, Yingying; Liu, Chun; Liang, Hongru; Shi, Cunbin

    2016-01-01

    Cyprinid herpesvirus 3 (CyHV-3) is the causative agent of an extremely contagious and aggressive disease afflicting common corp Cyprinus carpio L. termed koi herpesvirus disease (KHVD). Since it was first reported in 1997, the virus has spread worldwide rapidly, leading to enormous financial losses in industries based on common carp and koi carp. This review summarizes recent advances in CyHV-3 research on the etiology, epidemiology, pathogenesis, diagnosis, prevention, and control of KHVD.

  12. Using Advanced Computing in Applied Dynamics: From the Dynamics of Granular Material to the Motion of the Mars Rover

    DTIC Science & Technology

    2013-08-26

    USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER Dan Negrut NVIDIA CUDA...USING ADVANCED COMPUTING IN APPLIED DYNAMICS : FROM THE DYNAMICS OF GRANULAR MATERIAL TO THE MOTION OF THE MARS ROVER 5a. CONTRACT NUMBER W911NF-11-F...University of Parma, Italy • Drs. Paramsothy Jayakumar & David Lamb, US Army TARDEC • Mihai Anitescu, University of Chicago & Argonne National Lab

  13. Advanced public transportation systems : the state of the art update of 1998

    DOT National Transportation Integrated Search

    1998-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, computer, and communica...

  14. Observations on computational methodologies for use in large-scale, gradient-based, multidisciplinary design incorporating advanced CFD codes

    NASA Technical Reports Server (NTRS)

    Newman, P. A.; Hou, G. J.-W.; Jones, H. E.; Taylor, A. C., III; Korivi, V. M.

    1992-01-01

    How a combination of various computational methodologies could reduce the enormous computational costs envisioned in using advanced CFD codes in gradient based optimized multidisciplinary design (MdD) procedures is briefly outlined. Implications of these MdD requirements upon advanced CFD codes are somewhat different than those imposed by a single discipline design. A means for satisfying these MdD requirements for gradient information is presented which appear to permit: (1) some leeway in the CFD solution algorithms which can be used; (2) an extension to 3-D problems; and (3) straightforward use of other computational methodologies. Many of these observations have previously been discussed as possibilities for doing parts of the problem more efficiently; the contribution here is observing how they fit together in a mutually beneficial way.

  15. Conversing with Computers

    NASA Technical Reports Server (NTRS)

    2004-01-01

    I/NET, Inc., is making the dream of natural human-computer conversation a practical reality. Through a combination of advanced artificial intelligence research and practical software design, I/NET has taken the complexity out of developing advanced, natural language interfaces. Conversational capabilities like pronoun resolution, anaphora and ellipsis processing, and dialog management that were once available only in the laboratory can now be brought to any application with any speech recognition system using I/NET s conversational engine middleware.

  16. Ethical Guidelines for Computer Security Researchers: "Be Reasonable"

    NASA Astrophysics Data System (ADS)

    Sassaman, Len

    For most of its existence, the field of computer science has been lucky enough to avoid ethical dilemmas by virtue of its relatively benign nature. The subdisciplines of programming methodology research, microprocessor design, and so forth have little room for the greater questions of human harm. Other, more recently developed sub-disciplines, such as data mining, social network analysis, behavioral profiling, and general computer security, however, open the door to abuse of users by practitioners and researchers. It is therefore the duty of the men and women who chart the course of these fields to set rules for themselves regarding what sorts of actions on their part are to be considered acceptable and what should be avoided or handled with caution out of ethical concerns. This paper deals solely with the issues faced by computer security researchers, be they vulnerability analysts, privacy system designers, malware experts, or reverse engineers.

  17. Quantum Nash Equilibria and Quantum Computing

    NASA Astrophysics Data System (ADS)

    Fellman, Philip Vos; Post, Jonathan Vos

    In 2004, At the Fifth International Conference on Complex Systems, we drew attention to some remarkable findings by researchers at the Santa Fe Institute (Sato, Farmer and Akiyama, 2001) about hitherto unsuspected complexity in the Nash Equilibrium. As we progressed from these findings about heteroclinic Hamiltonians and chaotic transients hidden within the learning patterns of the simple rock-paper-scissors game to some related findings on the theory of quantum computing, one of the arguments we put forward was just as in the late 1990's a number of new Nash equilibria were discovered in simple bi-matrix games (Shubik and Quint, 1996; Von Stengel, 1997, 2000; and McLennan and Park, 1999) we would begin to see new Nash equilibria discovered as the result of quantum computation. While actual quantum computers remain rather primitive (Toibman, 2004), and the theory of quantum computation seems to be advancing perhaps a bit more slowly than originally expected, there have, nonetheless, been a number of advances in computation and some more radical advances in an allied field, quantum game theory (Huberman and Hogg, 2004) which are quite significant. In the course of this paper we will review a few of these discoveries and illustrate some of the characteristics of these new "Quantum Nash Equilibria". The full text of this research can be found at http://necsi.org/events/iccs6/viewpaper.php?id-234

  18. Advanced Composite Structures At NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.

    2015-01-01

    Dr. Eldred's presentation will discuss several NASA efforts to improve and expand the use of composite structures within aerospace vehicles. Topics will include an overview of NASA's Advanced Composites Project (ACP), Space Launch System (SLS) applications, and Langley's ISAAC robotic composites research tool.

  19. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  20. Making Cloud Computing Available For Researchers and Innovators (Invited)

    NASA Astrophysics Data System (ADS)

    Winsor, R.

    2010-12-01

    High Performance Computing (HPC) facilities exist in most academic institutions but are almost invariably over-subscribed. Access is allocated based on academic merit, the only practical method of assigning valuable finite compute resources. Cloud computing on the other hand, and particularly commercial clouds, draw flexibly on an almost limitless resource as long as the user has sufficient funds to pay the bill. How can the commercial cloud model be applied to scientific computing? Is there a case to be made for a publicly available research cloud and how would it be structured? This talk will explore these themes and describe how Cybera, a not-for-profit non-governmental organization in Alberta Canada, aims to leverage its high speed research and education network to provide cloud computing facilities for a much wider user base.

  1. CSM parallel structural methods research

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1989-01-01

    Parallel structural methods, research team activities, advanced architecture computers for parallel computational structural mechanics (CSM) research, the FLEX/32 multicomputer, a parallel structural analyses testbed, blade-stiffened aluminum panel with a circular cutout and the dynamic characteristics of a 60 meter, 54-bay, 3-longeron deployable truss beam are among the topics discussed.

  2. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  3. An Educational Approach to Computationally Modeling Dynamical Systems

    ERIC Educational Resources Information Center

    Chodroff, Leah; O'Neal, Tim M.; Long, David A.; Hemkin, Sheryl

    2009-01-01

    Chemists have used computational science methodologies for a number of decades and their utility continues to be unabated. For this reason we developed an advanced lab in computational chemistry in which students gain understanding of general strengths and weaknesses of computation-based chemistry by working through a specific research problem.…

  4. A research program in empirical computer science

    NASA Technical Reports Server (NTRS)

    Knight, J. C.

    1991-01-01

    During the grant reporting period our primary activities have been to begin preparation for the establishment of a research program in experimental computer science. The focus of research in this program will be safety-critical systems. Many questions that arise in the effort to improve software dependability can only be addressed empirically. For example, there is no way to predict the performance of the various proposed approaches to building fault-tolerant software. Performance models, though valuable, are parameterized and cannot be used to make quantitative predictions without experimental determination of underlying distributions. In the past, experimentation has been able to shed some light on the practical benefits and limitations of software fault tolerance. It is common, also, for experimentation to reveal new questions or new aspects of problems that were previously unknown. A good example is the Consistent Comparison Problem that was revealed by experimentation and subsequently studied in depth. The result was a clear understanding of a previously unknown problem with software fault tolerance. The purpose of a research program in empirical computer science is to perform controlled experiments in the area of real-time, embedded control systems. The goal of the various experiments will be to determine better approaches to the construction of the software for computing systems that have to be relied upon. As such it will validate research concepts from other sources, provide new research results, and facilitate the transition of research results from concepts to practical procedures that can be applied with low risk to NASA flight projects. The target of experimentation will be the production software development activities undertaken by any organization prepared to contribute to the research program. Experimental goals, procedures, data analysis and result reporting will be performed for the most part by the University of Virginia.

  5. Recent advances in research on Crimean-Congo hemorrhagic fever.

    PubMed

    Papa, Anna; Mirazimi, Ali; Köksal, Iftihar; Estrada-Pena, Augustin; Feldmann, Heinz

    2015-03-01

    Crimean-Congo hemorrhagic fever (CCHF) is an expanding tick-borne hemorrhagic disease with increasing human and animal health impact. Immense knowledge was gained over the past 10 years mainly due to advances in molecular biology, but also driven by an increased global interest in CCHFV as an emerging/re-emerging zoonotic pathogen. In the present article, we discuss the advances in research with focus on CCHF ecology, epidemiology, pathogenesis, diagnostics, prophylaxis and treatment. Despite tremendous achievements, future activities have to concentrate on the development of vaccines and antivirals/therapeutics to combat CCHF. Vector studies need to continue for better public and animal health preparedness and response. We conclude with a roadmap for future research priorities. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Partners in research: building academic-practice partnerships to educate and mentor advanced practice nurses.

    PubMed

    Harbman, Patricia; Bryant-Lukosius, Denise; Martin-Misener, Ruth; Carter, Nancy; Covell, Christine L; Donald, Faith; Gibbins, Sharyn; Kilpatrick, Kelley; McKinlay, James; Rawson, Krista; Sherifali, Diana; Tranmer, Joan; Valaitis, Ruta

    2017-04-01

    Clinical practice is the primary focus of advanced practice nursing (APN) roles. However, with unprecedented needs for health care reform and quality improvement (QI), health care administrators are seeking new ways to utilize all dimensions of APN expertise, especially related to research and evidence-based practice. International studies reveal research as the most underdeveloped and underutilized aspect of these roles. To improve patient care by strengthening the capacity of advanced practice nurses to integrate research and evidence-based practice activities into their day-to-day practice. An academic-practice partnership was created among hospital-based advanced practice nurses, nurse administrators, and APN researchers to create an innovative approach to educate and mentor advanced practice nurses in conducting point-of-care research, QI, or evidence-based practice projects to improve patient, provider, and/or system outcomes. A practice-based research course was delivered to 2 cohorts of advanced practice nurses using a range of teaching strategies including 1-to-1 academic mentorship. All participants completed self-report surveys before and after course delivery. Through participation in this initiative, advanced practice nurses enhanced their knowledge, skills, and confidence in the design, implementation, and/or evaluation of research, QI, and evidence-based practice activities. Evaluation of this initiative provides evidence of the acceptability and feasibility of academic-practice partnerships to educate and mentor point-of-care providers on how to lead, implement, and integrate research, QI and evidence-based activities into their practices. © 2016 John Wiley & Sons, Ltd.

  7. Computational Approaches to Nucleic Acid Origami.

    PubMed

    Jabbari, Hosna; Aminpour, Maral; Montemagno, Carlo

    2015-10-12

    Recent advances in experimental DNA origami have dramatically expanded the horizon of DNA nanotechnology. Complex 3D suprastructures have been designed and developed using DNA origami with applications in biomaterial science, nanomedicine, nanorobotics, and molecular computation. Ribonucleic acid (RNA) origami has recently been realized as a new approach. Similar to DNA, RNA molecules can be designed to form complex 3D structures through complementary base pairings. RNA origami structures are, however, more compact and more thermodynamically stable due to RNA's non-canonical base pairing and tertiary interactions. With all these advantages, the development of RNA origami lags behind DNA origami by a large gap. Furthermore, although computational methods have proven to be effective in designing DNA and RNA origami structures and in their evaluation, advances in computational nucleic acid origami is even more limited. In this paper, we review major milestones in experimental and computational DNA and RNA origami and present current challenges in these fields. We believe collaboration between experimental nanotechnologists and computer scientists are critical for advancing these new research paradigms.

  8. Computer architecture for efficient algorithmic executions in real-time systems: New technology for avionics systems and advanced space vehicles

    NASA Technical Reports Server (NTRS)

    Carroll, Chester C.; Youngblood, John N.; Saha, Aindam

    1987-01-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processing elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.

  9. Computer architecture for efficient algorithmic executions in real-time systems: new technology for avionics systems and advanced space vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, C.C.; Youngblood, J.N.; Saha, A.

    1987-12-01

    Improvements and advances in the development of computer architecture now provide innovative technology for the recasting of traditional sequential solutions into high-performance, low-cost, parallel system to increase system performance. Research conducted in development of specialized computer architecture for the algorithmic execution of an avionics system, guidance and control problem in real time is described. A comprehensive treatment of both the hardware and software structures of a customized computer which performs real-time computation of guidance commands with updated estimates of target motion and time-to-go is presented. An optimal, real-time allocation algorithm was developed which maps the algorithmic tasks onto the processingmore » elements. This allocation is based on the critical path analysis. The final stage is the design and development of the hardware structures suitable for the efficient execution of the allocated task graph. The processing element is designed for rapid execution of the allocated tasks. Fault tolerance is a key feature of the overall architecture. Parallel numerical integration techniques, tasks definitions, and allocation algorithms are discussed. The parallel implementation is analytically verified and the experimental results are presented. The design of the data-driven computer architecture, customized for the execution of the particular algorithm, is discussed.« less

  10. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  11. [The advances of suppression in research of amblyopia].

    PubMed

    Liu, S; Liu, H

    2016-04-11

    Suppression that is the result of interocular competition is an important machanism of amblyopia. The imbalance of suppression may lead the consequence to amblyopia. In the early study, researchers had raised the theory of II. Quadratic Summation which had revealed the relationship of interocular interaction and suppression. In some basic researches, other studies had showed the most possible anatomic location of suppression. Recently, researchers found a new method to quantify the interocular suppression named the noise model. Further studies found a novel disinhibition therapy to treat amblyopia. We summarized the research advances in suppression and disinhibition treatment in amblyopia. (Chin J Ophthalmol, 2016, 52: 305-308).

  12. Advanced High-Level Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeler, David K.; Vienna, John D.; Schweiger, Michael J.

    2015-07-01

    The U.S. Department of Energy Office of River Protection (ORP) has implemented an integrated program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product quality requirements. The integrated ORP program is focused on providing a technical, science-based foundation from which key decisions can be made regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities. The fundamental data stemming from this program will support development of advanced glass formulations, key process control models, and tactical processing strategies to ensure safe and successful operations formore » both the low-activity waste (LAW) and high-level waste (HLW) vitrification facilities with an appreciation toward reducing overall mission life. The purpose of this advanced HLW glass research and development plan is to identify the near-, mid-, and longer-term research and development activities required to develop and validate advanced HLW glasses and their associated models to support facility operations at WTP, including both direct feed and full pretreatment flowsheets. This plan also integrates technical support of facility operations and waste qualification activities to show the interdependence of these activities with the advanced waste glass (AWG) program to support the full WTP mission. Figure ES-1 shows these key ORP programmatic activities and their interfaces with both WTP facility operations and qualification needs. The plan is a living document that will be updated to reflect key advancements and mission strategy changes. The research outlined here is motivated by the potential for substantial economic benefits (e.g., significant increases in waste throughput and reductions in glass volumes) that will be realized when advancements in glass formulation continue and models supporting facility operations are implemented. Developing and applying

  13. Computer-Assisted Analysis of Qualitative Gerontological Research.

    ERIC Educational Resources Information Center

    Hiemstra, Roger; And Others

    1987-01-01

    Asserts that qualitative research has great potential for use in gerontological research. Describes QUALOG, a computer-assisted, qualitative data analysis scheme using logic programming developed at Syracuse University. Reviews development of QUALOG and discusses how QUALOG was used to analyze data from a qualitative study of older adult learners.…

  14. Recent Advances in Cigarette Ignition Propensity Research and Development

    PubMed Central

    O’Connor, Richard J.; Spalletta, Ron; Connolly, Gregory N.

    2009-01-01

    Major U.S. cigarette companies for decades conducted research and development regarding cigarette ignition propensity which has continued beyond fire safety standards for cigarettes that have recently been legislated. This paper describes recent scientific advances and technological development based on a comprehensive review of the physical, chemical, and engineering sciences, public health, and trade literature, U.S. and international patents, and research in the tobacco industry document libraries. Advancements since the first implementation of standards have made been in: a) understanding the key parameters involved in cigarette smoldering combustion and ignition of substrates; b) developing new cigarette and paper wrapper designs to reduce ignition propensity, including banded and non-banded cigarette paper approaches, c) assessing toxicology, and d) measuring performance. While the implications of manufacturers’ non-safety related aims are of concern, this research indicates possible alternative designs should experience with fire loss and existing technologies on the market suggest need for improvement. PMID:20495669

  15. Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) Implementation Study

    NASA Technical Reports Server (NTRS)

    Stadler, John H.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Ball, Donald J.

    1998-01-01

    New technological advances have made possible new active remote sensing capabilities from space. Utilizing these technologies, the Ozone Research with Advanced Cooperative Lidar Experiment (ORACLE) will provide high spatial resolution measurements of ozone, clouds and aerosols in the stratosphere and lower troposphere. Simultaneous measurements of ozone, clouds and aerosols will assist in the understanding of global change, atmospheric chemistry and meteorology.

  16. TRAINING AND RESEARCH PROGRAM IN COMPUTER APPLICATIONS.

    ERIC Educational Resources Information Center

    HUNKA, S.

    TO MAKE EDUCATIONAL RESEARCHERS AND TEACHERS MORE AWARE OF THE VALUES OF ELECTRONIC AUTOMATION, THIS ARTICLE PROPOSES A TRAINING-RESEARCH PROGRAM USING THE IBM 360/67 AND THE IBM 1500 COMPUTERS. PARTICIPANTS WOULD BE SELECTED FROM (1) POST-DOCTORAL AND PROFESSIONAL UNIVERSITY STAFF MEMBERS ON SABBATICAL LEAVE WHOSE MAIN INTEREST IS EDUCATIONAL…

  17. High performance computing and communications: Advancing the frontiers of information technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-31

    This report, which supplements the President`s Fiscal Year 1997 Budget, describes the interagency High Performance Computing and Communications (HPCC) Program. The HPCC Program will celebrate its fifth anniversary in October 1996 with an impressive array of accomplishments to its credit. Over its five-year history, the HPCC Program has focused on developing high performance computing and communications technologies that can be applied to computation-intensive applications. Major highlights for FY 1996: (1) High performance computing systems enable practical solutions to complex problems with accuracies not possible five years ago; (2) HPCC-funded research in very large scale networking techniques has been instrumental inmore » the evolution of the Internet, which continues exponential growth in size, speed, and availability of information; (3) The combination of hardware capability measured in gigaflop/s, networking technology measured in gigabit/s, and new computational science techniques for modeling phenomena has demonstrated that very large scale accurate scientific calculations can be executed across heterogeneous parallel processing systems located thousands of miles apart; (4) Federal investments in HPCC software R and D support researchers who pioneered the development of parallel languages and compilers, high performance mathematical, engineering, and scientific libraries, and software tools--technologies that allow scientists to use powerful parallel systems to focus on Federal agency mission applications; and (5) HPCC support for virtual environments has enabled the development of immersive technologies, where researchers can explore and manipulate multi-dimensional scientific and engineering problems. Educational programs fostered by the HPCC Program have brought into classrooms new science and engineering curricula designed to teach computational science. This document contains a small sample of the significant HPCC Program accomplishments in FY 1996

  18. Computer-aided design and computer science technology

    NASA Technical Reports Server (NTRS)

    Fulton, R. E.; Voigt, S. J.

    1976-01-01

    A description is presented of computer-aided design requirements and the resulting computer science advances needed to support aerospace design. The aerospace design environment is examined, taking into account problems of data handling and aspects of computer hardware and software. The interactive terminal is normally the primary interface between the computer system and the engineering designer. Attention is given to user aids, interactive design, interactive computations, the characteristics of design information, data management requirements, hardware advancements, and computer science developments.

  19. Computer-assisted map projection research

    USGS Publications Warehouse

    Snyder, John Parr

    1985-01-01

    Computers have opened up areas of map projection research which were previously too complicated to utilize, for example, using a least-squares fit to a very large number of points. One application has been in the efficient transfer of data between maps on different projections. While the transfer of moderate amounts of data is satisfactorily accomplished using the analytical map projection formulas, polynomials are more efficient for massive transfers. Suitable coefficients for the polynomials may be determined more easily for general cases using least squares instead of Taylor series. A second area of research is in the determination of a map projection fitting an unlabeled map, so that accurate data transfer can take place. The computer can test one projection after another, and include iteration where required. A third area is in the use of least squares to fit a map projection with optimum parameters to the region being mapped, so that distortion is minimized. This can be accomplished for standard conformal, equalarea, or other types of projections. Even less distortion can result if complex transformations of conformal projections are utilized. This bulletin describes several recent applications of these principles, as well as historical usage and background.

  20. Computational methods in the prediction of advanced subsonic and supersonic propeller induced noise: ASSPIN users' manual

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Tarkenton, G. M.

    1992-01-01

    This document describes the computational aspects of propeller noise prediction in the time domain and the use of high speed propeller noise prediction program ASSPIN (Advanced Subsonic and Supersonic Propeller Induced Noise). These formulations are valid in both the near and far fields. Two formulations are utilized by ASSPIN: (1) one is used for subsonic portions of the propeller blade; and (2) the second is used for transonic and supersonic regions on the blade. Switching between the two formulations is done automatically. ASSPIN incorporates advanced blade geometry and surface pressure modelling, adaptive observer time grid strategies, and contains enhanced numerical algorithms that result in reduced computational time. In addition, the ability to treat the nonaxial inflow case has been included.

  1. Rhetorical Strategies in Engineering Research Articles and Research Theses: Advanced Academic Literacy and Relations of Power

    ERIC Educational Resources Information Center

    Koutsantoni, Dimitra

    2006-01-01

    Research articles and research theses constitute two key genres used by scientific communities for the dissemination and ratification of knowledge. Both genres are produced at advanced stages of individuals' enculturation in disciplinary communities present original research aim to persuade the academic community to accept new knowledge claims,…

  2. Computational Unification: a Vision for Connecting Researchers

    NASA Astrophysics Data System (ADS)

    Troy, R. M.; Kingrey, O. J.

    2002-12-01

    Computational Unification of science, once only a vision, is becoming a reality. This technology is based upon a scientifically defensible, general solution for Earth Science data management and processing. The computational unification of science offers a real opportunity to foster inter and intra-discipline cooperation, and the end of 're-inventing the wheel'. As we move forward using computers as tools, it is past time to move from computationally isolating, "one-off" or discipline-specific solutions into a unified framework where research can be more easily shared, especially with researchers in other disciplines. The author will discuss how distributed meta-data, distributed processing and distributed data objects are structured to constitute a working interdisciplinary system, including how these resources lead to scientific defensibility through known lineage of all data products. Illustration of how scientific processes are encapsulated and executed illuminates how previously written processes and functions are integrated into the system efficiently and with minimal effort. Meta-data basics will illustrate how intricate relationships may easily be represented and used to good advantage. Retrieval techniques will be discussed including trade-offs of using meta-data versus embedded data, how the two may be integrated, and how simplifying assumptions may or may not help. This system is based upon the experience of the Sequoia 2000 and BigSur research projects at the University of California, Berkeley, whose goals were to find an alternative to the Hughes EOS-DIS system and is presently offered by Science Tools corporation, of which the author is a principal.

  3. Computational Approaches to Vestibular Research

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    The Biocomputation Center at NASA Ames Research Center is dedicated to a union between computational, experimental and theoretical approaches to the study of neuroscience and of life sciences in general. The current emphasis is on computer reconstruction and visualization of vestibular macular architecture in three-dimensions (3-D), and on mathematical modeling and computer simulation of neural activity in the functioning system. Our methods are being used to interpret the influence of spaceflight on mammalian vestibular maculas in a model system, that of the adult Sprague-Dawley rat. More than twenty 3-D reconstructions of type I and type II hair cells and their afferents have been completed by digitization of contours traced from serial sections photographed in a transmission electron microscope. This labor-intensive method has now been replace d by a semiautomated method developed in the Biocomputation Center in which conventional photography is eliminated. All viewing, storage and manipulation of original data is done using Silicon Graphics workstations. Recent improvements to the software include a new mesh generation method for connecting contours. This method will permit the investigator to describe any surface, regardless of complexity, including highly branched structures such as are routinely found in neurons. This same mesh can be used for 3-D, finite volume simulation of synapse activation and voltage spread on neuronal surfaces visualized via the reconstruction process. These simulations help the investigator interpret the relationship between neuroarchitecture and physiology, and are of assistance in determining which experiments will best test theoretical interpretations. Data are also used to develop abstract, 3-D models that dynamically display neuronal activity ongoing in the system. Finally, the same data can be used to visualize the neural tissue in a virtual environment. Our exhibit will depict capabilities of our computational approaches and

  4. Message from the ISCB: ISCB Ebola award for important future research on the computational biology of Ebola virus.

    PubMed

    Karp, Peter D; Berger, Bonnie; Kovats, Diane; Lengauer, Thomas; Linial, Michal; Sabeti, Pardis; Hide, Winston; Rost, Burkhard

    2015-02-15

    Speed is of the essence in combating Ebola; thus, computational approaches should form a significant component of Ebola research. As for the development of any modern drug, computational biology is uniquely positioned to contribute through comparative analysis of the genome sequences of Ebola strains and three-dimensional protein modeling. Other computational approaches to Ebola may include large-scale docking studies of Ebola proteins with human proteins and with small-molecule libraries, computational modeling of the spread of the virus, computational mining of the Ebola literature and creation of a curated Ebola database. Taken together, such computational efforts could significantly accelerate traditional scientific approaches. In recognition of the need for important and immediate solutions from the field of computational biology against Ebola, the International Society for Computational Biology (ISCB) announces a prize for an important computational advance in fighting the Ebola virus. ISCB will confer the ISCB Fight against Ebola Award, along with a prize of US$2000, at its July 2016 annual meeting (ISCB Intelligent Systems for Molecular Biology 2016, Orlando, FL). dkovats@iscb.org or rost@in.tum.de. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Recent research advances on Chromobacterium violaceum.

    PubMed

    Kothari, Vijay; Sharma, Sakshi; Padia, Divya

    2017-08-01

    Chromobacterium violaceum is a gram-negative bacterium, which has been used widely in microbiology labs involved in quorum sensing (QS) research. Among the QS-regulated traits of this bacterium, violacein production has received the maximum attention. Violacein production in this organism, however is not under sole control of QS machinery, and other QS-regulated traits of this bacterium also need to be investigated in better detail. Though not often involved in human infections, this bacterium is being viewed as an emerging pathogen. This review attempts to highlight the recent research advances on C. violaceum, with respect to violacein biosynthesis, development of various applications of this bacterium and its bioactive metabolite violacein, and its pathogenicity. Copyright © 2017 Hainan Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  6. Full-Scaled Advanced Systems Testbed: Ensuring Success of Adaptive Control Research Through Project Lifecycle Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate M.

    2011-01-01

    The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration

  7. Teaching advanced science concepts through Freshman Research Immersion

    NASA Astrophysics Data System (ADS)

    Wahila, M. J.; Amey-Proper, J.; Jones, W. E.; Stamp, N.; Piper, L. F. J.

    2017-03-01

    We have developed a new introductory physics/chemistry programme that teaches advanced science topics and practical laboratory skills to freshmen undergraduate students through the use of student-led, bona fide research activities. While many recent attempts to improve college-level physics education have focused on integrating interactive demonstrations and activities into traditional passive lectures, we have taken the idea of active-learning several steps further. Working in conjunction with several research faculty at Binghamton University, we have created a programme that puts undergraduate students on an accelerated path towards working in real research laboratories performing publishable research. Herein, we describe in detail the programme goals, structure, and educational content, and report on our promising initial student outcomes.

  8. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  9. Computational biology for cardiovascular biomarker discovery.

    PubMed

    Azuaje, Francisco; Devaux, Yvan; Wagner, Daniel

    2009-07-01

    Computational biology is essential in the process of translating biological knowledge into clinical practice, as well as in the understanding of biological phenomena based on the resources and technologies originating from the clinical environment. One such key contribution of computational biology is the discovery of biomarkers for predicting clinical outcomes using 'omic' information. This process involves the predictive modelling and integration of different types of data and knowledge for screening, diagnostic or prognostic purposes. Moreover, this requires the design and combination of different methodologies based on statistical analysis and machine learning. This article introduces key computational approaches and applications to biomarker discovery based on different types of 'omic' data. Although we emphasize applications in cardiovascular research, the computational requirements and advances discussed here are also relevant to other domains. We will start by introducing some of the contributions of computational biology to translational research, followed by an overview of methods and technologies used for the identification of biomarkers with predictive or classification value. The main types of 'omic' approaches to biomarker discovery will be presented with specific examples from cardiovascular research. This will include a review of computational methodologies for single-source and integrative data applications. Major computational methods for model evaluation will be described together with recommendations for reporting models and results. We will present recent advances in cardiovascular biomarker discovery based on the combination of gene expression and functional network analyses. The review will conclude with a discussion of key challenges for computational biology, including perspectives from the biosciences and clinical areas.

  10. Information Retrieval Research and ESPRIT.

    ERIC Educational Resources Information Center

    Smeaton, Alan F.

    1987-01-01

    Describes the European Strategic Programme of Research and Development in Information Technology (ESPRIT), and its five programs: advanced microelectronics, software technology, advanced information processing, office systems, and computer integrated manufacturing. The emphasis on logic programming and ESPRIT as the European response to the…

  11. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research.

    PubMed

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction.

  12. Potential applications of computational fluid dynamics to biofluid analysis

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.

    1988-01-01

    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.

  13. Monitoring of seismic time-series with advanced parallel computational tools and complex networks

    NASA Astrophysics Data System (ADS)

    Kechaidou, M.; Sirakoulis, G. Ch.; Scordilis, E. M.

    2012-04-01

    Earthquakes have been in the focus of human and research interest for several centuries due to their catastrophic effect to the everyday life as they occur almost all over the world demonstrating a hard to be modelled unpredictable behaviour. On the other hand, their monitoring with more or less technological updated instruments has been almost continuous and thanks to this fact several mathematical models have been presented and proposed so far to describe possible connections and patterns found in the resulting seismological time-series. Especially, in Greece, one of the most seismically active territories on earth, detailed instrumental seismological data are available from the beginning of the past century providing the researchers with valuable and differential knowledge about the seismicity levels all over the country. Considering available powerful parallel computational tools, such as Cellular Automata, these data can be further successfully analysed and, most important, modelled to provide possible connections between different parameters of the under study seismic time-series. More specifically, Cellular Automata have been proven very effective to compose and model nonlinear complex systems resulting in the advancement of several corresponding models as possible analogues of earthquake fault dynamics. In this work preliminary results of modelling of the seismic time-series with the help of Cellular Automata so as to compose and develop the corresponding complex networks are presented. The proposed methodology will be able to reveal under condition hidden relations as found in the examined time-series and to distinguish the intrinsic time-series characteristics in an effort to transform the examined time-series to complex networks and graphically represent their evolvement in the time-space. Consequently, based on the presented results, the proposed model will eventually serve as a possible efficient flexible computational tool to provide a generic

  14. Advanced Radioisotope Power Conversion Technology Research and Development

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.

    2004-01-01

    NASA's Radioisotope Power Conversion Technology program is developing next generation power conversion technologies that will enable future missions that have requirements that cannot be met by either the ubiquitous photovoltaic systems or by current Radioisotope Power System (RPS) technology. Performance goals of advanced radioisotope power systems include improvement over the state-of-practice General Purpose Heat Source/Radioisotope Thermoelectric Generator by providing significantly higher efficiency to reduce the number of radioisotope fuel modules, and increase specific power (watts/kilogram). Other Advanced RPS goals include safety, long-life, reliability, scalability, multi-mission capability, resistance to radiation, and minimal interference with the scientific payload. NASA has awarded ten contracts in the technology areas of Brayton, Stirling, Thermoelectric, and Thermophotovoltaic power conversion including five development contracts that deal with more mature technologies and five research contracts. The Advanced RPS Systems Assessment Team includes members from NASA GRC, JPL, DOE and Orbital Sciences whose function is to review the technologies being developed under the ten Radioisotope Power Conversion Technology contracts and assess their relevance to NASA's future missions. Presented is an overview of the ten radioisotope power conversion technology contracts and NASA's Advanced RPS Systems Assessment Team.

  15. [Advances in research on childhood neutropenia].

    PubMed

    Feng, Jian-Hua; Qian, Yan

    2017-04-01

    Neutrophils, an important type of human immune cells, are involved in host defense against infections. Neutropenia refers to a group of diseases manifesting as a reduction in the absolute value of mature neutrophils and is often accompanied by an increased risk of bacterial infection. According to etiology and pathogenesis, neutropenia is classified into congenital and acquired neutropenia. This article reviews the current research status and advances in the etiology of neutropenia in children. A deep understanding of the etiology of neutropenia helps to improve the diagnosis and treatment of this disease.

  16. Advancing a Program of Research within a Nursing Faculty Role

    PubMed Central

    Nolan, Marie T.; Wenzel, Jennifer; Han, Hae-Ra.; Allen, Jerilyn K.; Paez, Kathryn A.; Mock, Victoria

    2008-01-01

    Doctoral students and new faculty members often seek advice from more senior faculty on how to advance their program of research. Students may ask whether they should choose the manuscript option for their dissertation or whether they should seek a postdoctoral fellowship. New faculty members wonder whether they should pursue a career development (K) award and whether they need a mentor as they strive to advance their research while carrying out teaching, service, and practice responsibilities. In this paper, we describe literature on the impact of selected aspects of pre and postdoctoral training and faculty strategies on scholarly productivity in the faculty role. We also combine our experiences at a school of nursing within a research-intensive university to suggest strategies for success. Noting the scarcity of research that evaluates the effect of these strategies we are actively engaged in collecting data on their relationship to the scholarly productivity of students and faculty members within our own institution. PMID:19022210

  17. Educational Technology Research Journals: Computers & Education, 2002-2011

    ERIC Educational Resources Information Center

    Rackham, David D.; Hyatt, Frederick R.; Macfarlane, David C.; Nisse, Tony; Woodfield, Wendy; West, Richard E.

    2013-01-01

    In this study, the authors examined the journal "Computers & Education" to discover research trends in the articles published during 2002-2011. Research articles were analyzed to determine trends in the research methods and types of articles published, as well as the key topics published, top authors, and some of the most-cited…

  18. Computing, Information, and Communications Technology (CICT) Program Overview

    NASA Technical Reports Server (NTRS)

    VanDalsem, William R.

    2003-01-01

    The Computing, Information and Communications Technology (CICT) Program's goal is to enable NASA's Scientific Research, Space Exploration, and Aerospace Technology Missions with greater mission assurance, for less cost, with increased science return through the development and use of advanced computing, information and communication technologies

  19. 2016 Annual Report - Argonne Leadership Computing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Jim; Papka, Michael E.; Cerny, Beth A.

    The Argonne Leadership Computing Facility (ALCF) helps researchers solve some of the world’s largest and most complex problems, while also advancing the nation’s efforts to develop future exascale computing systems. This report presents some of the ALCF’s notable achievements in key strategic areas over the past year.

  20. [Advancements of computer chemistry in separation of Chinese medicine].

    PubMed

    Li, Lingjuan; Hong, Hong; Xu, Xuesong; Guo, Liwei

    2011-12-01

    Separating technique of Chinese medicine is not only a key technique in the field of Chinese medicine' s research and development, but also a significant step in the modernization of Chinese medicinal preparation. Computer chemistry can build model and look for the regulations from Chinese medicine system which is full of complicated data. This paper analyzed the applicability, key technology, basic mode and common algorithm of computer chemistry applied in the separation of Chinese medicine, introduced the mathematic mode and the setting methods of Extraction kinetics, investigated several problems which based on traditional Chinese medicine membrane procession, and forecasted the application prospect.

  1. Advancing Alzheimer's research: A review of big data promises.

    PubMed

    Zhang, Rui; Simon, Gyorgy; Yu, Fang

    2017-10-01

    To review the current state of science using big data to advance Alzheimer's disease (AD) research and practice. In particular, we analyzed the types of research foci addressed, corresponding methods employed and study findings reported using big data in AD. Systematic review was conducted for articles published in PubMed from January 1, 2010 through December 31, 2015. Keywords with AD and big data analytics were used for literature retrieval. Articles were reviewed and included if they met the eligibility criteria. Thirty-eight articles were included in this review. They can be categorized into seven research foci: diagnosing AD or mild cognitive impairment (MCI) (n=10), predicting MCI to AD conversion (n=13), stratifying risks for AD (n=5), mining the literature for knowledge discovery (n=4), predicting AD progression (n=2), describing clinical care for persons with AD (n=3), and understanding the relationship between cognition and AD (n=3). The most commonly used datasets are AD Neuroimaging Initiative (ADNI) (n=16), electronic health records (EHR) (n=11), MEDLINE (n=3), and other research datasets (n=8). Logistic regression (n=9) and support vector machine (n=8) are the most used methods for data analysis. Big data are increasingly used to address AD-related research questions. While existing research datasets are frequently used, other datasets such as EHR data provide a unique, yet under-utilized opportunity for advancing AD research. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Computer Assisted Virtual Environment - CAVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, Phillip; Podgorney, Robert; Weingartner,

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  3. Computer Assisted Virtual Environment - CAVE

    ScienceCinema

    Erickson, Phillip; Podgorney, Robert; Weingartner,

    2018-05-30

    Research at the Center for Advanced Energy Studies is taking on another dimension with a 3-D device known as a Computer Assisted Virtual Environment. The CAVE uses projection to display high-end computer graphics on three walls and the floor. By wearing 3-D glasses to create depth perception and holding a wand to move and rotate images, users can delve into data.

  4. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  5. Proposed Directions for Research in Computer-Based Education.

    ERIC Educational Resources Information Center

    Waugh, Michael L.

    Several directions for potential research efforts in the field of computer-based education (CBE) are discussed. (For the purposes of this paper, CBE is defined as any use of computers to promote learning with no intended inference as to the specific nature or organization of the educational application under discussion.) Efforts should be directed…

  6. Area Reports. Advanced materials and devices research area. Silicon materials research task, and advanced silicon sheet task

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The objectives of the Silicon Materials Task and the Advanced Silicon Sheet Task are to identify the critical technical barriers to low-cost silicon purification and sheet growth that must be overcome to produce a PV cell substrate material at a price consistent with Flat-plate Solar Array (FSA) Project objectives and to overcome these barriers by performing and supporting appropriate R&D. Progress reports are given on silicon refinement using silane, a chemical vapor transport process for purifying metallurgical grade silicon, silicon particle growth research, and modeling of silane pyrolysis in fluidized-bed reactors.

  7. Cloud computing approaches to accelerate drug discovery value chain.

    PubMed

    Garg, Vibhav; Arora, Suchir; Gupta, Chitra

    2011-12-01

    Continued advancements in the area of technology have helped high throughput screening (HTS) evolve from a linear to parallel approach by performing system level screening. Advanced experimental methods used for HTS at various steps of drug discovery (i.e. target identification, target validation, lead identification and lead validation) can generate data of the order of terabytes. As a consequence, there is pressing need to store, manage, mine and analyze this data to identify informational tags. This need is again posing challenges to computer scientists to offer the matching hardware and software infrastructure, while managing the varying degree of desired computational power. Therefore, the potential of "On-Demand Hardware" and "Software as a Service (SAAS)" delivery mechanisms cannot be denied. This on-demand computing, largely referred to as Cloud Computing, is now transforming the drug discovery research. Also, integration of Cloud computing with parallel computing is certainly expanding its footprint in the life sciences community. The speed, efficiency and cost effectiveness have made cloud computing a 'good to have tool' for researchers, providing them significant flexibility, allowing them to focus on the 'what' of science and not the 'how'. Once reached to its maturity, Discovery-Cloud would fit best to manage drug discovery and clinical development data, generated using advanced HTS techniques, hence supporting the vision of personalized medicine.

  8. Fiction as an Introduction to Computer Science Research

    ERIC Educational Resources Information Center

    Goldsmith, Judy; Mattei, Nicholas

    2014-01-01

    The undergraduate computer science curriculum is generally focused on skills and tools; most students are not exposed to much research in the field, and do not learn how to navigate the research literature. We describe how fiction reviews (and specifically science fiction) are used as a gateway to research reviews. Students learn a little about…

  9. Computational Models of Exercise on the Advanced Resistance Exercise Device (ARED)

    NASA Technical Reports Server (NTRS)

    Newby, Nate; Caldwell, Erin; Scott-Pandorf, Melissa; Peters,Brian; Fincke, Renita; DeWitt, John; Poutz-Snyder, Lori

    2011-01-01

    Muscle and bone loss remain a concern for crew returning from space flight. The advanced resistance exercise device (ARED) is used for on-orbit resistance exercise to help mitigate these losses. However, characterization of how the ARED loads the body in microgravity has yet to be determined. Computational models allow us to analyze ARED exercise in both 1G and 0G environments. To this end, biomechanical models of the squat, single-leg squat, and deadlift exercise on the ARED have been developed to further investigate bone and muscle forces resulting from the exercises.

  10. Advancements in remote physiological measurement and applications in human-computer interaction

    NASA Astrophysics Data System (ADS)

    McDuff, Daniel

    2017-04-01

    Physiological signals are important for tracking health and emotional states. Imaging photoplethysmography (iPPG) is a set of techniques for remotely recovering cardio-pulmonary signals from video of the human body. Advances in iPPG methods over the past decade combined with the ubiquity of digital cameras presents the possibility for many new, lowcost applications of physiological monitoring. This talk will highlight methods for recovering physiological signals, work characterizing the impact of video parameters and hardware on these measurements, and applications of this technology in human-computer interfaces.

  11. Use of the Computer for Research on Instruction and Student Understanding in Physics.

    NASA Astrophysics Data System (ADS)

    Grayson, Diane Jeanette

    This dissertation describes an investigation of how the computer may be utilized to perform research on instruction and on student understanding in physics. The research was conducted within three content areas: kinematics, waves and dynamics. The main focus of the research on instruction was the determination of factors needed for a computer program to be instructionally effective. The emphasis in the research on student understanding was the identification of specific conceptual and reasoning difficulties students encounter with the subject matter. Most of the research was conducted using the computer -based interview, a technique developed during the early part of the work, conducted within the domain of kinematics. In a computer-based interview, a student makes a prediction about how a particular system will behave under given circumstances, observes a simulation of the event on a computer screen, and then is asked by an interviewer to explain any discrepancy between prediction and observation. In the course of the research, a model was developed for producing educational software. The model has three important components: (i) research on student difficulties in the content area to be addressed, (ii) observations of students using the computer program, and (iii) consequent program modification. This model was used to guide the development of an instructional computer program dealing with graphical representations of transverse pulses. Another facet of the research involved the design of a computer program explicitly for the purposes of research. A computer program was written that simulates a modified Atwood's machine. The program was than used in computer -based interviews and proved to be an effective means of probing student understanding of dynamics concepts. In order to ascertain whether or not the student difficulties identified were peculiar to the computer, laboratory-based interviews with real equipment were also conducted. The laboratory

  12. Impact of new computing systems on computational mechanics and flight-vehicle structures technology

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Storaasli, O. O.; Fulton, R. E.

    1984-01-01

    Advances in computer technology which may have an impact on computational mechanics and flight vehicle structures technology were reviewed. The characteristics of supersystems, highly parallel systems, and small systems are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario for future hardware/software environment and engineering analysis systems is presented. Research areas with potential for improving the effectiveness of analysis methods in the new environment are identified.

  13. An Agenda to Advance Integrative Resilience Research and Practice

    PubMed Central

    Acosta, Joie D.; Chandra, Anita; Madrigano, Jaime

    2017-01-01

    Abstract People are facing an increasing variety and number of stressors, ranging from interpersonal difficulties to environmental hazards and societal forces. Resilience is the process of, capacity for, or outcome of adapting well in the face of adversity, trauma, tragedy, threats, or significant sources of stress. The science of resilience has advanced greatly since 2000, but there is an increasing recognition of the need for researchers and practitioners from different disciplines and sectors to work better together on this topic and for a shared agenda for promoting transdisciplinary resilience research. The study provides a path forward, primarily built on proceedings from a Resilience Roundtable, held in June 2016, and supplemented with relevant literature review. The Resilience Roundtable brought together researchers, practitioners, and policymakers, across disciplines and sectors for a daylong discussion of where and how we can move to a more integrated and cohesive resilience agenda, with attention to critical factors that would motivate more collaborative work. The roundtable identified priorities for advancing a shared resilience agenda and made ten recommendations for implementing it. PMID:29057155

  14. CBRAIN: a web-based, distributed computing platform for collaborative neuroimaging research

    PubMed Central

    Sherif, Tarek; Rioux, Pierre; Rousseau, Marc-Etienne; Kassis, Nicolas; Beck, Natacha; Adalat, Reza; Das, Samir; Glatard, Tristan; Evans, Alan C.

    2014-01-01

    The Canadian Brain Imaging Research Platform (CBRAIN) is a web-based collaborative research platform developed in response to the challenges raised by data-heavy, compute-intensive neuroimaging research. CBRAIN offers transparent access to remote data sources, distributed computing sites, and an array of processing and visualization tools within a controlled, secure environment. Its web interface is accessible through any modern browser and uses graphical interface idioms to reduce the technical expertise required to perform large-scale computational analyses. CBRAIN's flexible meta-scheduling has allowed the incorporation of a wide range of heterogeneous computing sites, currently including nine national research High Performance Computing (HPC) centers in Canada, one in Korea, one in Germany, and several local research servers. CBRAIN leverages remote computing cycles and facilitates resource-interoperability in a transparent manner for the end-user. Compared with typical grid solutions available, our architecture was designed to be easily extendable and deployed on existing remote computing sites with no tool modification, administrative intervention, or special software/hardware configuration. As October 2013, CBRAIN serves over 200 users spread across 53 cities in 17 countries. The platform is built as a generic framework that can accept data and analysis tools from any discipline. However, its current focus is primarily on neuroimaging research and studies of neurological diseases such as Autism, Parkinson's and Alzheimer's diseases, Multiple Sclerosis as well as on normal brain structure and development. This technical report presents the CBRAIN Platform, its current deployment and usage and future direction. PMID:24904400

  15. Conceptualizing the Role of Research Literacy in Advancing Societal Health

    PubMed Central

    Brody, Janet L.; Dalen, Jeanne; Annett, Robert D.; Scherer, David G.; Turner, Charles W.

    2013-01-01

    Purpose To provide a conceptual formulation for “research literacy” and preliminary evidence for the utility of the construct in enhancing knowledge of and ethical participation in research. Methods Examined the impact of a brief educational intervention on parents’ research knowledge and their research participation decisions. Results Research-related knowledge was improved. Parents with greater knowledge were more comfortable with their research participation decisions. Enhanced understanding of child volition increased parents’ willingness to enroll their children in research. Conclusion The proposed research literacy model identifies methods to enhance population knowledge and appreciation of research, strengthening links between scientific advancement and health. PMID:22021275

  16. The impact of CFD on development test facilities - A National Research Council projection. [computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Korkegi, R. H.

    1983-01-01

    The results of a National Research Council study on the effect that advances in computational fluid dynamics (CFD) will have on conventional aeronautical ground testing are reported. Current CFD capabilities include the depiction of linearized inviscid flows and a boundary layer, initial use of Euler coordinates using supercomputers to automatically generate a grid, research and development on Reynolds-averaged Navier-Stokes (N-S) equations, and preliminary research on solutions to the full N-S equations. Improvements in the range of CFD usage is dependent on the development of more powerful supercomputers, exceeding even the projected abilities of the NASA Numerical Aerodynamic Simulator (1 BFLOP/sec). Full representation of the Re-averaged N-S equations will require over one million grid points, a computing level predicted to be available in 15 yr. Present capabilities allow identification of data anomalies, confirmation of data accuracy, and adequateness of model design in wind tunnel trials. Account can be taken of the wall effects and the Re in any flight regime during simulation. CFD can actually be more accurate than instrumented tests, since all points in a flow can be modeled with CFD, while they cannot all be monitored with instrumentation in a wind tunnel.

  17. Better, Cheaper Biofuels through Computational Analysis - Continuum

    Science.gov Websites

    than 30 years, NREL researchers have made significant experimental advances in understanding the polymers to fermentable sugars. But while experimental studies are critical, this research approach can increasingly use computational (or "in silico") studies to complement their experimental work

  18. [Economic perspectives of the research on advanced therapies].

    PubMed

    Pamo Larrauri, Jose María

    2014-11-03

    Since a new advanced therapy medicinal product is discovered until finally allowed its sale in the domestic market, it has to overcome a series of stages. Biomedical research is the first phase, currently its situation is encouraging to the increase in the number of clinical trials in Spain and in the rest of the world, despite the economic situation and the various difficulties that have faced the pharmaceutical laboratories. The next phase consists in obtaining the authorization of marketing of the European Medicines Agency. After authorization, will attempt to set a fair and moderate price for inclusion in the list of health provision of Social Security. A price for a drug that provides added value to health and society, a price that is generated profits for the pharmaceutical companies that hope to make up for the years of work and investment. Commitment to advanced therapy must be clear and forceful, to fund ongoing research projects and encouraging their creation with economic aid. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  19. Phenomenography and Grounded Theory as Research Methods in Computing Education Research Field

    ERIC Educational Resources Information Center

    Kinnunen, Paivi; Simon, Beth

    2012-01-01

    This paper discusses two qualitative research methods, phenomenography and grounded theory. We introduce both methods' data collection and analysis processes and the type or results you may get at the end by using examples from computing education research. We highlight some of the similarities and differences between the aim, data collection and…

  20. UZIG USGS research: Advances through interdisciplinary interaction

    USGS Publications Warehouse

    Nimmo, J.R.; Andraski, Brian J.; Rafael, M.-C.

    2009-01-01

    BBecause vadose zone research relates to diverse disciplines, applications, and modes of research, collaboration across traditional operational and topical divisions is especially likely to yield major advances in understanding. The Unsaturated Zone Interest Group (UZIG) is an informal organization sponsored by the USGS to encourage and support interdisciplinary collaboration in vadose or unsaturated zone hydrologic research across organizational boundaries. It includes both USGS and non-USGS scientists. Formed in 1987, the UZIG operates to promote communication, especially through periodic meetings with presentations, discussions, and field trips. The 10th meeting of the UZIG at Los Alamos, NM, in August 2007 was jointly sponsored by the USGS and Los Alamos National Laboratory. Presentations at this meeting served as the initial basis for selecting papers for this special section of Vadose Zone Journal, the purpose of which is to present noteworthy cutting-edge unsaturated zone research promoted by, facilitated by, or presented in connection with the UZIG.

  1. Advanced Group Support Systems and Facilities

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Compiler); Malone, John B. (Compiler)

    1999-01-01

    The document contains the proceedings of the Workshop on Advanced Group Support Systems and Facilities held at NASA Langley Research Center, Hampton, Virginia, July 19-20, 1999. The workshop was jointly sponsored by the University of Virginia Center for Advanced Computational Technology and NASA. Workshop attendees came from NASA, other government agencies, industry, and universities. The objectives of the workshop were to assess the status of advanced group support systems and to identify the potential of these systems for use in future collaborative distributed design and synthesis environments. The presentations covered the current status and effectiveness of different group support systems.

  2. Research on Student Thought Processes during Computer-Based Instruction.

    ERIC Educational Resources Information Center

    Clark, Richard E.

    1984-01-01

    Reviews cognitive research related to computer-based instruction in the areas of motivation; the relationship between computer-assisted instruction and learning; learner control; transfer of learning; hemispheric dominance; and anxiety. Design professionals are urged to consider congitive views. (MBR)

  3. Technical Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project

    DTIC Science & Technology

    2005-09-30

    Technical Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project William R. Metzger Marine...Support Services for the Office of Naval Research Littoral Warfare Advanced Development Project 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  4. CFD Research, Parallel Computation and Aerodynamic Optimization

    NASA Technical Reports Server (NTRS)

    Ryan, James S.

    1995-01-01

    During the last five years, CFD has matured substantially. Pure CFD research remains to be done, but much of the focus has shifted to integration of CFD into the design process. The work under these cooperative agreements reflects this trend. The recent work, and work which is planned, is designed to enhance the competitiveness of the US aerospace industry. CFD and optimization approaches are being developed and tested, so that the industry can better choose which methods to adopt in their design processes. The range of computer architectures has been dramatically broadened, as the assumption that only huge vector supercomputers could be useful has faded. Today, researchers and industry can trade off time, cost, and availability, choosing vector supercomputers, scalable parallel architectures, networked workstations, or heterogenous combinations of these to complete required computations efficiently.

  5. [Advances in genetic research of cerebral palsy].

    PubMed

    Wang, Fang-Fang; Luo, Rong; Qu, Yi; Mu, De-Zhi

    2017-09-01

    Cerebral palsy is a group of syndromes caused by non-progressive brain injury in the fetus or infant and can cause disabilities in childhood. Etiology of cerebral palsy has always been a hot topic for clinical scientists. More and more studies have shown that genetic factors are closely associated with the development of cerebral palsy. With the development and application of various molecular and biological techniques such as chromosome microarray analysis, genome-wide association study, and whole exome sequencing, new achievements have been made in the genetic research of cerebral palsy. Chromosome abnormalities, copy number variations, susceptibility genes, and single gene mutation associated with the development of cerebral palsy have been identified, which provides new opportunities for the research on the pathogenesis of cerebral palsy. This article reviews the advances in the genetic research on cerebral palsy in recent years.

  6. Advancing High-Quality Literacy Research in Juvenile Justice: Methodological and Practical Considerations

    ERIC Educational Resources Information Center

    Houchins, David E.; Jolivette, Kristine; Shippen, Margaret E.; Lambert, Richard

    2010-01-01

    Special education researchers have made noteworthy progress toward conceptualizing literacy research questions, designing quality studies, and disseminating the results of their research. These advancements have been made through the establishment and refinement of quality research indicators. Unfortunately, this progress has mostly eluded the…

  7. Biophysical system models advance agricultural research and technology: Some examples and further research needs

    USDA-ARS?s Scientific Manuscript database

    Environmental concerns of the general public, droughts, and climate change effects require continual adaptation and optimization of agricultural systems through changes in cropping and management. Advancement of science and technology to achieve these changes requires cutting-edge field research, us...

  8. Research and development program for the development of advanced time-temperature dependent constitutive relationships. Volume 1: Theoretical discussion

    NASA Technical Reports Server (NTRS)

    Cassenti, B. N.

    1983-01-01

    The results of a 10-month research and development program for the development of advanced time-temperature constitutive relationships are presented. The program included (1) the effect of rate of change of temperature, (2) the development of a term to include time independent effects, and (3) improvements in computational efficiency. It was shown that rate of change of temperature could have a substantial effect on the predicted material response. A modification to include time-independent effects, applicable to many viscoplastic constitutive theories, was shown to reduce to classical plasticity. The computation time can be reduced by a factor of two if self-adaptive integration is used when compared to an integration using ordinary forward differences. During the course of the investigation, it was demonstrated that the most important single factor affecting the theoretical accuracy was the choice of material parameters.

  9. Advanced Algebra and Calculus. High School Mathematics Curricula. Instructor's Guide.

    ERIC Educational Resources Information Center

    Natour, Denise M.

    This manual is an instructor's guide for the utilization of the "CCA High School Mathematics Curricula: Advanced Algebra and Calculus" courseware developed by the Computer-based Education Research Laboratory (CERL). The curriculum comprises 34 algebra lessons within 12 units and 15 calculus lessons that are computer-based and require…

  10. Handheld Computers in Education. Research Brief

    ERIC Educational Resources Information Center

    Education Partnerships, Inc., 2003

    2003-01-01

    For over the last 20 years, educators have been trying to find the best practice in using technology for student learning. Some of the most widely used applications with computers have been student learning of programming, word processing, Web research, spreadsheets, games, and Web design. The difficulty with integrating many of these activities…

  11. [Research advances on anaerobic ferrous-oxidizing microorganisms].

    PubMed

    Zhang, Meng; Zheng, Ping; Ji, Jun-yuan

    2013-08-01

    Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications.

  12. Beyond moore computing research challenge workshop report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huey, Mark C.; Aidun, John Bahram

    2013-10-01

    We summarize the presentations and break out session discussions from the in-house workshop that was held on 11 July 2013 to acquaint a wider group of Sandians with the Beyond Moore Computing research challenge.

  13. Cloud computing in medical imaging.

    PubMed

    Kagadis, George C; Kloukinas, Christos; Moore, Kevin; Philbin, Jim; Papadimitroulas, Panagiotis; Alexakos, Christos; Nagy, Paul G; Visvikis, Dimitris; Hendee, William R

    2013-07-01

    Over the past century technology has played a decisive role in defining, driving, and reinventing procedures, devices, and pharmaceuticals in healthcare. Cloud computing has been introduced only recently but is already one of the major topics of discussion in research and clinical settings. The provision of extensive, easily accessible, and reconfigurable resources such as virtual systems, platforms, and applications with low service cost has caught the attention of many researchers and clinicians. Healthcare researchers are moving their efforts to the cloud, because they need adequate resources to process, store, exchange, and use large quantities of medical data. This Vision 20/20 paper addresses major questions related to the applicability of advanced cloud computing in medical imaging. The paper also considers security and ethical issues that accompany cloud computing.

  14. An Analysis of 27 Years of Research into Computer Education Published in Australian Educational Computing

    ERIC Educational Resources Information Center

    Zagami, Jason

    2015-01-01

    Analysis of three decades of publications in Australian Educational Computing (AEC) provides insight into the historical trends in Australian educational computing, highlighting an emphasis on pedagogy, comparatively few articles on educational technologies, and strong research topic alignment with similar international journals. Analysis confirms…

  15. Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH). Part 1

    NASA Technical Reports Server (NTRS)

    Micheletti, David A.; Baughman, Jack A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  16. Magnetohydrodynamics Accelerator Research into Advanced Hypersonics (MARIAH). Part 2

    NASA Technical Reports Server (NTRS)

    Baughman, Jack A.; Micheletti, David A.; Nelson, Gordon L.; Simmons, Gloyd A.

    1997-01-01

    This report documents the activities, results, conclusions and recommendations of the Magnetohydrodynamics Accelerator Research Into Advanced Hypersonics (MARIAH) Project in which the use of magnetohydrodynamics (MHD) technology is investigated for its applicability to augment hypersonic wind tunnels. The long range objective of this investigation is to advance the development of ground test facilities to support the development of hypervelocity flight vehicles. The MHD accelerator adds kinetic energy directly to the wind tunnel working fluid, thereby increasing its Mach number to hypervelocity levels. Several techniques for MHD augmentation, as well as other physical characteristics of the process are studied to enhance the overall performance of hypersonic wind tunnel design. Specific recommendations are presented to improve the effectiveness of ground test facilities. The work contained herein builds on nearly four decades of research and experimentation by the aeronautics ground test and evaluation community, both foreign and domestic.

  17. Parallel aeroelastic computations for wing and wing-body configurations

    NASA Technical Reports Server (NTRS)

    Byun, Chansup

    1994-01-01

    The objective of this research is to develop computationally efficient methods for solving fluid-structural interaction problems by directly coupling finite difference Euler/Navier-Stokes equations for fluids and finite element dynamics equations for structures on parallel computers. This capability will significantly impact many aerospace projects of national importance such as Advanced Subsonic Civil Transport (ASCT), where the structural stability margin becomes very critical at the transonic region. This research effort will have direct impact on the High Performance Computing and Communication (HPCC) Program of NASA in the area of parallel computing.

  18. First Aviation System Technology Advanced Research (AvSTAR) Workshop

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G. (Editor); Weathers, Del W. (Editor); Rosen, Robert (Technical Monitor); Edwards, Tom (Technical Monitor)

    2001-01-01

    This Conference Proceedings documents the results of a two-day NASA/FAA/Industry workshop that was held at the NASA Ames Research Center, located at Moffett Field, CA, on September 21-22, 2000. The purpose of the workshop was to bring together a representative cross section of leaders in air traffic management, from industry. FAA, and academia, to assist in defining the requirements for a new research effort, referred to as AvSTAR Aviation Systems Technology Advanced Research). The Conference Proceedings includes the individual presentation, and summarizes the workshop discussions and recommendations.

  19. Reproducible research in vadose zone sciences

    USDA-ARS?s Scientific Manuscript database

    A significant portion of present-day soil and Earth science research is computational, involving complex data analysis pipelines, advanced mathematical and statistical models, and sophisticated computer codes. Opportunities for scientific progress are greatly diminished if reproducing and building o...

  20. Reinforcement learning in depression: A review of computational research.

    PubMed

    Chen, Chong; Takahashi, Taiki; Nakagawa, Shin; Inoue, Takeshi; Kusumi, Ichiro

    2015-08-01

    Despite being considered primarily a mood disorder, major depressive disorder (MDD) is characterized by cognitive and decision making deficits. Recent research has employed computational models of reinforcement learning (RL) to address these deficits. The computational approach has the advantage in making explicit predictions about learning and behavior, specifying the process parameters of RL, differentiating between model-free and model-based RL, and the computational model-based functional magnetic resonance imaging and electroencephalography. With these merits there has been an emerging field of computational psychiatry and here we review specific studies that focused on MDD. Considerable evidence suggests that MDD is associated with impaired brain signals of reward prediction error and expected value ('wanting'), decreased reward sensitivity ('liking') and/or learning (be it model-free or model-based), etc., although the causality remains unclear. These parameters may serve as valuable intermediate phenotypes of MDD, linking general clinical symptoms to underlying molecular dysfunctions. We believe future computational research at clinical, systems, and cellular/molecular/genetic levels will propel us toward a better understanding of the disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Recent advances in computational methodology for simulation of mechanical circulatory assist devices

    PubMed Central

    Marsden, Alison L.; Bazilevs, Yuri; Long, Christopher C.; Behr, Marek

    2014-01-01

    Ventricular assist devices (VADs) provide mechanical circulatory support to offload the work of one or both ventricles during heart failure. They are used in the clinical setting as destination therapy, as bridge to transplant, or more recently as bridge to recovery to allow for myocardial remodeling. Recent developments in computational simulation allow for detailed assessment of VAD hemodynamics for device design and optimization for both children and adults. Here, we provide a focused review of the recent literature on finite element methods and optimization for VAD simulations. As VAD designs typically fall into two categories, pulsatile and continuous flow devices, we separately address computational challenges of both types of designs, and the interaction with the circulatory system with three representative case studies. In particular, we focus on recent advancements in finite element methodology that has increased the fidelity of VAD simulations. We outline key challenges, which extend to the incorporation of biological response such as thrombosis and hemolysis, as well as shape optimization methods and challenges in computational methodology. PMID:24449607

  2. Current preclinical models for the advancement of translational bladder cancer research.

    PubMed

    DeGraff, David J; Robinson, Victoria L; Shah, Jay B; Brandt, William D; Sonpavde, Guru; Kang, Yibin; Liebert, Monica; Wu, Xue-Ru; Taylor, John A

    2013-02-01

    Bladder cancer is a common disease representing the fifth most diagnosed solid tumor in the United States. Despite this, advances in our understanding of the molecular etiology and treatment of bladder cancer have been relatively lacking. This is especially apparent when recent advances in other cancers, such as breast and prostate, are taken into consideration. The field of bladder cancer research is ready and poised for a series of paradigm-shifting discoveries that will greatly impact the way this disease is clinically managed. Future preclinical discoveries with translational potential will require investigators to take full advantage of recent advances in molecular and animal modeling methodologies. We present an overview of current preclinical models and their potential roles in advancing our understanding of this deadly disease and for advancing care. ©2012 AACR.

  3. Computational oncology.

    PubMed

    Lefor, Alan T

    2011-08-01

    Oncology research has traditionally been conducted using techniques from the biological sciences. The new field of computational oncology has forged a new relationship between the physical sciences and oncology to further advance research. By applying physics and mathematics to oncologic problems, new insights will emerge into the pathogenesis and treatment of malignancies. One major area of investigation in computational oncology centers around the acquisition and analysis of data, using improved computing hardware and software. Large databases of cellular pathways are being analyzed to understand the interrelationship among complex biological processes. Computer-aided detection is being applied to the analysis of routine imaging data including mammography and chest imaging to improve the accuracy and detection rate for population screening. The second major area of investigation uses computers to construct sophisticated mathematical models of individual cancer cells as well as larger systems using partial differential equations. These models are further refined with clinically available information to more accurately reflect living systems. One of the major obstacles in the partnership between physical scientists and the oncology community is communications. Standard ways to convey information must be developed. Future progress in computational oncology will depend on close collaboration between clinicians and investigators to further the understanding of cancer using these new approaches.

  4. A Web-based Distributed Voluntary Computing Platform for Large Scale Hydrological Computations

    NASA Astrophysics Data System (ADS)

    Demir, I.; Agliamzanov, R.

    2014-12-01

    Distributed volunteer computing can enable researchers and scientist to form large parallel computing environments to utilize the computing power of the millions of computers on the Internet, and use them towards running large scale environmental simulations and models to serve the common good of local communities and the world. Recent developments in web technologies and standards allow client-side scripting languages to run at speeds close to native application, and utilize the power of Graphics Processing Units (GPU). Using a client-side scripting language like JavaScript, we have developed an open distributed computing framework that makes it easy for researchers to write their own hydrologic models, and run them on volunteer computers. Users will easily enable their websites for visitors to volunteer sharing their computer resources to contribute running advanced hydrological models and simulations. Using a web-based system allows users to start volunteering their computational resources within seconds without installing any software. The framework distributes the model simulation to thousands of nodes in small spatial and computational sizes. A relational database system is utilized for managing data connections and queue management for the distributed computing nodes. In this paper, we present a web-based distributed volunteer computing platform to enable large scale hydrological simulations and model runs in an open and integrated environment.

  5. A Research Program in Computer Technology

    DTIC Science & Technology

    1976-07-01

    K PROGRAM VERIFICATION 12 [Shaw76b] Shaw, M., W. A. Wulf, and R. L. London, Abstraction and Verification ain Aiphard: Iteration and Generators...millisecond trame of speech: pitch, gain, and 10 k -parameters (often called reflection coefficients). The 12 parameters from each frame are encoded into...del rey, CA 90291 Program Code 3D30 & 3P1O I,%’POLLING OFFICE NAME AND ADDRESS 12 REPORT DATE Defense Advanced Research Projects Agency July 1976 1400

  6. Cloud Computing Technologies Facilitate Earth Research

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Under a Space Act Agreement, NASA partnered with Seattle-based Amazon Web Services to make the agency's climate and Earth science satellite data publicly available on the company's servers. Users can access the data for free, but they can also pay to use Amazon's computing services to analyze and visualize information using the same software available to NASA researchers.

  7. Applications of computer-graphics animation for motion-perception research

    NASA Technical Reports Server (NTRS)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  8. Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology. This report describes new approaches that are faster, less resource intensive, and more robust that can help ...

  9. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  10. Twelfth International Symposium on Recent Advances in Environmental Health Research.

    PubMed

    Tchounwou, Paul B

    2016-05-04

    During the past century, environmental hazards have become a major concern, not only to public health professionals, but also to the society at large because of their tremendous health, socio-cultural and economic impacts. Various anthropogenic or natural factors have been implicated in the alteration of ecosystem integrity, as well as in the development of a wide variety of acute and/or chronic diseases in humans. It has also been demonstrated that many environmental agents, acting either independently or in combination with other toxins, may induce a wide range of adverse health outcomes. Understanding the role played by the environment in the etiology of human diseases is critical to designing cost-effective control/prevention measures. This special issue of International Journal of Environmental Research and Public Health includes the proceedings of the Twelfth International Symposium on Recent Advances in Environmental Health Research. The Symposium provided an excellent opportunity to discuss the scientific advances in biomedical, environmental, and public health research that addresses global environmental health issues.

  11. Advanced Earth-to-orbit propulsion technology information, dissemination and research

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1993-01-01

    A conference was held at MSFC in May 1992 describing the research achievements of the NASA-wide research and technology programs dealing with advanced oxygen/hydrogen and oxygen/hydrocarbon earth-to-orbit propulsion. The purpose of this conference was to provide a forum for the timely dissemination to the propulsion community of the results emerging from this program with particular emphasis on the transfer of information from the scientific/research to the designer.

  12. How institutional change and individual researchers helped advance clinical guidelines in American health care.

    PubMed

    Nigam, Amit

    2013-06-01

    Clinical guidelines are important tools for managing health care quality. Research on the origins of guidelines primarily focuses on the institutional causes of their emergence and growth. Individual medical researchers, however, have played important roles. This paper develops knowledge of the role of individual medical researchers in advancing guidelines, and of how researchers' efforts were enabled or constrained by broader institutional changes. Drawing on an analytical case study focused on the role of Kerr White, John Wennberg, and Robert Brook, it shows that guidelines were a product of the interplay between institutional change in the medical field and actions by individual researchers, acting as institutional entrepreneurs. Increased government involvement in the health care field triggered the involvement of a range of new actors in health care. These new organizations created a context that allowed individual researchers to advance guidelines by creating job opportunities, providing research funding, and creating opportunities for researchers to engage with the policy process. Individual researchers availed of this context to both advance their ideas, and to draw new actors into the field. Copyright © 2013. Published by Elsevier Ltd.

  13. A Comprehensive Toolset for General-Purpose Private Computing and Outsourcing

    DTIC Science & Technology

    2016-12-08

    project and scientific advances made towards each of the research thrusts throughout the project duration. 1 Project Objectives Cloud computing enables...possibilities that the cloud enables is computation outsourcing, when the client can utilize any necessary computing resources for its computational task...Security considerations, however, stand on the way of harnessing the full benefits of cloud computing to the fullest extent and prevent clients from

  14. Extreme-Scale Computing Project Aims to Advance Precision Oncology | Poster

    Cancer.gov

    Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict drug response, and improve treatments for patients.

  15. Images as drivers of progress in cardiac computational modelling

    PubMed Central

    Lamata, Pablo; Casero, Ramón; Carapella, Valentina; Niederer, Steve A.; Bishop, Martin J.; Schneider, Jürgen E.; Kohl, Peter; Grau, Vicente

    2014-01-01

    Computational models have become a fundamental tool in cardiac research. Models are evolving to cover multiple scales and physical mechanisms. They are moving towards mechanistic descriptions of personalised structure and function, including effects of natural variability. These developments are underpinned to a large extent by advances in imaging technologies. This article reviews how novel imaging technologies, or the innovative use and extension of established ones, integrate with computational models and drive novel insights into cardiac biophysics. In terms of structural characterization, we discuss how imaging is allowing a wide range of scales to be considered, from cellular levels to whole organs. We analyse how the evolution from structural to functional imaging is opening new avenues for computational models, and in this respect we review methods for measurement of electrical activity, mechanics and flow. Finally, we consider ways in which combined imaging and modelling research is likely to continue advancing cardiac research, and identify some of the main challenges that remain to be solved. PMID:25117497

  16. Clinical cancer advances 2006: major research advances in cancer treatment, prevention, and screening--a report from the American Society of Clinical Oncology.

    PubMed

    Ozols, Robert F; Herbst, Roy S; Colson, Yolonda L; Gralow, Julie; Bonner, James; Curran, Walter J; Eisenberg, Burton L; Ganz, Patricia A; Kramer, Barnett S; Kris, Mark G; Markman, Maurie; Mayer, Robert J; Raghavan, Derek; Reaman, Gregory H; Sawaya, Raymond; Schilsky, Richard L; Schuchter, Lynn M; Sweetenham, John W; Vahdat, Linda T; Winn, Rodger J

    2007-01-01

    A MESSAGE FROM ASCO's PRESIDENT For the second consecutive year, the American Society of Clinical Oncology (ASCO) is publishing Clinical Cancer Advances: Major Research Advances in Cancer Treatment, Prevention, and Screening, an annual review of the most significant cancer research presented or published over the past year. ASCO developed this report to demonstrate the enormous progress being made on the front lines of cancer research today. The report is intended to give all those with an interest in cancer care-the general public, cancer patients and physicians, policymakers, oncologists, and other medical professionals-an accessible summary of the year's most important cancer research advances. These pages report on new targeted therapies that are improving survival and response rates in hard-to-treat cancers such as kidney cancer, HER-2-positive breast cancer, head and neck cancer, and chronic myelogenous leukemia; the FDA's approval of the world's first preventive vaccine for human papillomavirus (HPV), which has the potential to dramatically reduce the global burden of cervical cancer; and advances in the fast-growing field of personalized medicine, including a new lung cancer test that could help physicians better target treatments and predict prognosis. These advances are only part of the landscape. Survival rates are on the rise, the number of cancer deaths in the United States began declining for the first time since 1930, and new research is showing that the rates of certain common cancers, such as those of the breast and colon, have stabilized, and may have even begun to decline. However, cancer research still faces a number of major obstacles. At a time of extraordinary scientific potential, declining federal funding of cancer research threatens to stall or even reverse recent progress. Such funding cuts have already led to fewer clinical trials, fewer talented young physicians entering the field, and a growing bottleneck of basic science discoveries

  17. Astrophysical Computation in Research, the Classroom and Beyond

    NASA Astrophysics Data System (ADS)

    Frank, Adam

    2009-03-01

    In this talk I review progress in the use of simulations as a tool for astronomical research, for education and public outreach. The talk will include the basic elements of numerical simulations as well as advances in algorithms which have led to recent dramatic progress such as the use of Adaptive Mesh Refinement methods. The scientific focus of the talk will be star formation jets and outflows while the educational emphasis will be on the use of advanced platforms for simulation based learning in lecture and integrated homework. Learning modules for science outreach websites such as DISCOVER magazine will also be highlighted.

  18. Research on OpenStack of open source cloud computing in colleges and universities’ computer room

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Dandan

    2017-06-01

    In recent years, the cloud computing technology has a rapid development, especially open source cloud computing. Open source cloud computing has attracted a large number of user groups by the advantages of open source and low cost, have now become a large-scale promotion and application. In this paper, firstly we briefly introduced the main functions and architecture of the open source cloud computing OpenStack tools, and then discussed deeply the core problems of computer labs in colleges and universities. Combining with this research, it is not that the specific application and deployment of university computer rooms with OpenStack tool. The experimental results show that the application of OpenStack tool can efficiently and conveniently deploy cloud of university computer room, and its performance is stable and the functional value is good.

  19. White paper: A plan for cooperation between NASA and DARPA to establish a center for advanced architectures

    NASA Technical Reports Server (NTRS)

    Denning, P. J.; Adams, G. B., III; Brown, R. L.; Kanerva, P.; Leiner, B. M.; Raugh, M. R.

    1986-01-01

    Large, complex computer systems require many years of development. It is recognized that large scale systems are unlikely to be delivered in useful condition unless users are intimately involved throughout the design process. A mechanism is described that will involve users in the design of advanced computing systems and will accelerate the insertion of new systems into scientific research. This mechanism is embodied in a facility called the Center for Advanced Architectures (CAA). CAA would be a division of RIACS (Research Institute for Advanced Computer Science) and would receive its technical direction from a Scientific Advisory Board established by RIACS. The CAA described here is a possible implementation of a center envisaged in a proposed cooperation between NASA and DARPA.

  20. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  1. Computer Skills Acquisition: A Review and Future Directions for Research.

    ERIC Educational Resources Information Center

    Gattiker, Urs E.

    A review of past research on training employees for computer-mediated work leads to the development of theory and propositions concerning the relationship between different variables, such as: (1) individual factors; (2) task and person-computer interface; (3) characteristics of training design for the acquisition of computer skills; and (4) the…

  2. NREL’s Advanced Analytics Research for Energy-Efficient Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutscher, Chuck; Livingood, Bill; Wilson, Eric

    At NREL, we believe in building better buildings. More importantly, high-performance buildings that can do more and be smarter than ever before. Forty percent of the total energy consumption in the United States comes from buildings. Working together, we can dramatically shrink that number. But first, it starts with the research: our observations, experiments, modeling, analysis, and more. NREL’s advanced analytics research has already proven to reduce energy use, save money, and stabilize the grid.

  3. A Research Roadmap for Computation-Based Human Reliability Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boring, Ronald; Mandelli, Diego; Joe, Jeffrey

    2015-08-01

    The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is oftenmore » secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.« less

  4. Remote sensing of vegetation structure using computer vision

    NASA Astrophysics Data System (ADS)

    Dandois, Jonathan P.

    High-spatial resolution measurements of vegetation structure are needed for improving understanding of ecosystem carbon, water and nutrient dynamics, the response of ecosystems to a changing climate, and for biodiversity mapping and conservation, among many research areas. Our ability to make such measurements has been greatly enhanced by continuing developments in remote sensing technology---allowing researchers the ability to measure numerous forest traits at varying spatial and temporal scales and over large spatial extents with minimal to no field work, which is costly for large spatial areas or logistically difficult in some locations. Despite these advances, there remain several research challenges related to the methods by which three-dimensional (3D) and spectral datasets are joined (remote sensing fusion) and the availability and portability of systems for frequent data collections at small scale sampling locations. Recent advances in the areas of computer vision structure from motion (SFM) and consumer unmanned aerial systems (UAS) offer the potential to address these challenges by enabling repeatable measurements of vegetation structural and spectral traits at the scale of individual trees. However, the potential advances offered by computer vision remote sensing also present unique challenges and questions that need to be addressed before this approach can be used to improve understanding of forest ecosystems. For computer vision remote sensing to be a valuable tool for studying forests, bounding information about the characteristics of the data produced by the system will help researchers understand and interpret results in the context of the forest being studied and of other remote sensing techniques. This research advances understanding of how forest canopy and tree 3D structure and color are accurately measured by a relatively low-cost and portable computer vision personal remote sensing system: 'Ecosynth'. Recommendations are made for optimal

  5. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    ERIC Educational Resources Information Center

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  6. Grid computing in large pharmaceutical molecular modeling.

    PubMed

    Claus, Brian L; Johnson, Stephen R

    2008-07-01

    Most major pharmaceutical companies have employed grid computing to expand their compute resources with the intention of minimizing additional financial expenditure. Historically, one of the issues restricting widespread utilization of the grid resources in molecular modeling is the limited set of suitable applications amenable to coarse-grained parallelization. Recent advances in grid infrastructure technology coupled with advances in application research and redesign will enable fine-grained parallel problems, such as quantum mechanics and molecular dynamics, which were previously inaccessible to the grid environment. This will enable new science as well as increase resource flexibility to load balance and schedule existing workloads.

  7. A Computational Architecture for Programmable Automation Research

    NASA Astrophysics Data System (ADS)

    Taylor, Russell H.; Korein, James U.; Maier, Georg E.; Durfee, Lawrence F.

    1987-03-01

    This short paper describes recent work at the IBM T. J. Watson Research Center directed at developing a highly flexible computational architecture for research on sensor-based programmable automation. The system described here has been designed with a focus on dynamic configurability, layered user inter-faces and incorporation of sensor-based real time operations into new commands. It is these features which distinguish it from earlier work. The system is cur-rently being implemented at IBM for research purposes and internal use and is an outgrowth of programmable automation research which has been ongoing since 1972 [e.g., 1, 2, 3, 4, 5, 6] .

  8. New computing systems, future computing environment, and their implications on structural analysis and design

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Housner, Jerrold M.

    1993-01-01

    Recent advances in computer technology that are likely to impact structural analysis and design of flight vehicles are reviewed. A brief summary is given of the advances in microelectronics, networking technologies, and in the user-interface hardware and software. The major features of new and projected computing systems, including high performance computers, parallel processing machines, and small systems, are described. Advances in programming environments, numerical algorithms, and computational strategies for new computing systems are reviewed. The impact of the advances in computer technology on structural analysis and the design of flight vehicles is described. A scenario for future computing paradigms is presented, and the near-term needs in the computational structures area are outlined.

  9. Introducing Enabling Computational Tools to the Climate Sciences: Multi-Resolution Climate Modeling with Adaptive Cubed-Sphere Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonowski, Christiane

    The research investigates and advances strategies how to bridge the scale discrepancies between local, regional and global phenomena in climate models without the prohibitive computational costs of global cloud-resolving simulations. In particular, the research explores new frontiers in computational geoscience by introducing high-order Adaptive Mesh Refinement (AMR) techniques into climate research. AMR and statically-adapted variable-resolution approaches represent an emerging trend for atmospheric models and are likely to become the new norm in future-generation weather and climate models. The research advances the understanding of multi-scale interactions in the climate system and showcases a pathway how to model these interactions effectively withmore » advanced computational tools, like the Chombo AMR library developed at the Lawrence Berkeley National Laboratory. The research is interdisciplinary and combines applied mathematics, scientific computing and the atmospheric sciences. In this research project, a hierarchy of high-order atmospheric models on cubed-sphere computational grids have been developed that serve as an algorithmic prototype for the finite-volume solution-adaptive Chombo-AMR approach. The foci of the investigations have lied on the characteristics of both static mesh adaptations and dynamically-adaptive grids that can capture flow fields of interest like tropical cyclones. Six research themes have been chosen. These are (1) the introduction of adaptive mesh refinement techniques into the climate sciences, (2) advanced algorithms for nonhydrostatic atmospheric dynamical cores, (3) an assessment of the interplay between resolved-scale dynamical motions and subgrid-scale physical parameterizations, (4) evaluation techniques for atmospheric model hierarchies, (5) the comparison of AMR refinement strategies and (6) tropical cyclone studies with a focus on multi-scale interactions and variable-resolution modeling. The results of this research

  10. Patient identity management for secondary use of biomedical research data in a distributed computing environment.

    PubMed

    Nitzlnader, Michael; Schreier, Günter

    2014-01-01

    Dealing with data from different source domains is of increasing importance in today's large scale biomedical research endeavours. Within the European Network for Cancer research in Children and Adolescents (ENCCA) a solution to share such data for secondary use will be established. In this paper the solution arising from the aims of the ENCCA project and regulatory requirements concerning data protection and privacy is presented. Since the details of secondary biomedical dataset utilisation are often not known in advance, data protection regulations are met with an identity management concept that facilitates context-specific pseudonymisation and a way of data aggregation using a hidden reference table later on. Phonetic hashing is proposed to prevent duplicated patient registration and re-identification of patients is possible via a trusted third party only. Finally, the solution architecture allows for implementation in a distributed computing environment, including cloud-based elements.

  11. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  12. Review of Research on the Cognitive Effects of Computer-Assisted Learning.

    ERIC Educational Resources Information Center

    Mandinach, E.; And Others

    This review of the research on the cognitive effects of computer-assisted instruction begins with an overview of the ACCCEL (Assessing Cognitive Consequences of Computer Environments for Learning) research program at the University of California at Berkeley, which consists of several interrelated studies examining the acquisition of such higher…

  13. A Research and Development Strategy for High Performance Computing.

    ERIC Educational Resources Information Center

    Office of Science and Technology Policy, Washington, DC.

    This report is the result of a systematic review of the status and directions of high performance computing and its relationship to federal research and development. Conducted by the Federal Coordinating Council for Science, Engineering, and Technology (FCCSET), the review involved a series of workshops attended by numerous computer scientists and…

  14. National Laboratory for Advanced Scientific Visualization at UNAM - Mexico

    NASA Astrophysics Data System (ADS)

    Manea, Marina; Constantin Manea, Vlad; Varela, Alfredo

    2016-04-01

    In 2015, the National Autonomous University of Mexico (UNAM) joined the family of Universities and Research Centers where advanced visualization and computing plays a key role to promote and advance missions in research, education, community outreach, as well as business-oriented consulting. This initiative provides access to a great variety of advanced hardware and software resources and offers a range of consulting services that spans a variety of areas related to scientific visualization, among which are: neuroanatomy, embryonic development, genome related studies, geosciences, geography, physics and mathematics related disciplines. The National Laboratory for Advanced Scientific Visualization delivers services through three main infrastructure environments: the 3D fully immersive display system Cave, the high resolution parallel visualization system Powerwall, the high resolution spherical displays Earth Simulator. The entire visualization infrastructure is interconnected to a high-performance-computing-cluster (HPCC) called ADA in honor to Ada Lovelace, considered to be the first computer programmer. The Cave is an extra large 3.6m wide room with projected images on the front, left and right, as well as floor walls. Specialized crystal eyes LCD-shutter glasses provide a strong stereo depth perception, and a variety of tracking devices allow software to track the position of a user's hand, head and wand. The Powerwall is designed to bring large amounts of complex data together through parallel computing for team interaction and collaboration. This system is composed by 24 (6x4) high-resolution ultra-thin (2 mm) bezel monitors connected to a high-performance GPU cluster. The Earth Simulator is a large (60") high-resolution spherical display used for global-scale data visualization like geophysical, meteorological, climate and ecology data. The HPCC-ADA, is a 1000+ computing core system, which offers parallel computing resources to applications that requires

  15. NASA high performance computing and communications program

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Smith, Paul; Hunter, Paul

    1993-01-01

    The National Aeronautics and Space Administration's HPCC program is part of a new Presidential initiative aimed at producing a 1000-fold increase in supercomputing speed and a 100-fold improvement in available communications capability by 1997. As more advanced technologies are developed under the HPCC program, they will be used to solve NASA's 'Grand Challenge' problems, which include improving the design and simulation of advanced aerospace vehicles, allowing people at remote locations to communicate more effectively and share information, increasing scientist's abilities to model the Earth's climate and forecast global environmental trends, and improving the development of advanced spacecraft. NASA's HPCC program is organized into three projects which are unique to the agency's mission: the Computational Aerosciences (CAS) project, the Earth and Space Sciences (ESS) project, and the Remote Exploration and Experimentation (REE) project. An additional project, the Basic Research and Human Resources (BRHR) project exists to promote long term research in computer science and engineering and to increase the pool of trained personnel in a variety of scientific disciplines. This document presents an overview of the objectives and organization of these projects as well as summaries of individual research and development programs within each project.

  16. Center for Center for Technology for Advanced Scientific Component Software (TASCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostadin, Damevski

    A resounding success of the Scientific Discovery through Advanced Computing (SciDAC) program is that high-performance computational science is now universally recognized as a critical aspect of scientific discovery [71], complementing both theoretical and experimental research. As scientific communities prepare to exploit unprecedented computing capabilities of emerging leadership-class machines for multi-model simulations at the extreme scale [72], it is more important than ever to address the technical and social challenges of geographically distributed teams that combine expertise in domain science, applied mathematics, and computer science to build robust and flexible codes that can incorporate changes over time. The Center for Technologymore » for Advanced Scientific Component Software (TASCS)1 tackles these these issues by exploiting component-based software development to facilitate collaborative high-performance scientific computing.« less

  17. Computers and the Future of Skill Demand. Educational Research and Innovation Series

    ERIC Educational Resources Information Center

    Elliott, Stuart W.

    2017-01-01

    Computer scientists are working on reproducing all human skills using artificial intelligence, machine learning and robotics. Unsurprisingly then, many people worry that these advances will dramatically change work skills in the years ahead and perhaps leave many workers unemployable. This report develops a new approach to understanding these…

  18. Application of supercomputers to computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.

    1984-01-01

    Computers are playing an increasingly important role in the field of aerodynamics such that they now serve as a major complement to wind tunnels in aerospace research and development. Factors pacing advances in computational aerodynamics are identified, including the amount of computational power required to take the next major step in the discipline. Example results obtained from the successively refined forms of the governing equations are discussed, both in the context of levels of computer power required and the degree to which they either further the frontiers of research or apply to problems of practical importance. Finally, the Numerical Aerodynamic Simulation (NAS) Program - with its 1988 target of achieving a sustained computational rate of 1 billion floating point operations per second and operating with a memory of 240 million words - is discussed in terms of its goals and its projected effect on the future of computational aerodynamics.

  19. Marketing and commercialization of computational research services.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toevs, J. W.

    Physical and computational scientists and mathematicians in Russia's nuclear cities are turning their work toward generating profits from Western markets. Successful ventures require an understanding of the marketing of contract research as well as Western expectations regarding contract execution, quality, and performance. This paper will address fundamentals in business structure, marketing, and contract performance for organizations engaging in the marketing and commercialization of research services. Considerable emphasis will be placed on developing adequate communication within the organization.

  20. University Libraries and Other General Research Libraries Section. General Research Libraries Division. Papers.

    ERIC Educational Resources Information Center

    International Federation of Library Associations, The Hague (Netherlands).

    Papers on university and other research libraries, presented at the 1983 International Federation of Library Associations (IFLA) conference, include: (1) "The Impact of Technology on Users of Academic and Research Libraries," in which C. Lee Jones (United States) focuses on the impact of technical advances in computing and…