Sample records for advanced concepts flight

  1. Design and analysis of advanced flight planning concepts

    NASA Technical Reports Server (NTRS)

    Sorensen, John A.

    1987-01-01

    The objectives of this continuing effort are to develop and evaluate new algorithms and advanced concepts for flight management and flight planning. This includes the minimization of fuel or direct operating costs, the integration of the airborne flight management and ground-based flight planning processes, and the enhancement of future traffic management systems design. Flight management (FMS) concepts are for on-board profile computation and steering of transport aircraft in the vertical plane between a city pair and along a given horizontal path. Flight planning (FPS) concepts are for the pre-flight ground based computation of the three-dimensional reference trajectory that connects the city pair and specifies the horizontal path, fuel load, and weather profiles for initializing the FMS. As part of these objectives, a new computer program called EFPLAN has been developed and utilized to study advanced flight planning concepts. EFPLAN represents an experimental version of an FPS. It has been developed to generate reference flight plans compatible as input to an FMS and to provide various options for flight planning research. This report describes EFPLAN and the associated research conducted in its development.

  2. General Aviation Flight Test of Advanced Operations Enabled by Synthetic Vision

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughhes, Monica F.; Parrish, Russell V.; Takallu, Mohammad A.

    2014-01-01

    A flight test was performed to compare the use of three advanced primary flight and navigation display concepts to a baseline, round-dial concept to assess the potential for advanced operations. The displays were evaluated during visual and instrument approach procedures including an advanced instrument approach resembling a visual airport traffic pattern. Nineteen pilots from three pilot groups, reflecting the diverse piloting skills of the General Aviation pilot population, served as evaluation subjects. The experiment had two thrusts: 1) an examination of the capabilities of low-time (i.e., <400 hours), non-instrument-rated pilots to perform nominal instrument approaches, and 2) an exploration of potential advanced Visual Meteorological Conditions (VMC)-like approaches in Instrument Meteorological Conditions (IMC). Within this context, advanced display concepts are considered to include integrated navigation and primary flight displays with either aircraft attitude flight directors or Highway In The Sky (HITS) guidance with and without a synthetic depiction of the external visuals (i.e., synthetic vision). Relative to the first thrust, the results indicate that using an advanced display concept, as tested herein, low-time, non-instrument-rated pilots can exhibit flight-technical performance, subjective workload and situation awareness ratings as good as or better than high-time Instrument Flight Rules (IFR)-rated pilots using Baseline Round Dials for a nominal IMC approach. For the second thrust, the results indicate advanced VMC-like approaches are feasible in IMC, for all pilot groups tested for only the Synthetic Vision System (SVS) advanced display concept.

  3. Advanced Concept Modeling

    NASA Technical Reports Server (NTRS)

    Chaput, Armand; Johns, Zachary; Hodges, Todd; Selfridge, Justin; Bevirt, Joeben; Ahuja, Vivek

    2015-01-01

    Advanced Concepts Modeling software validation, analysis, and design. This was a National Institute of Aerospace contract with a lot of pieces. Efforts ranged from software development and validation for structures and aerodynamics, through flight control development, and aeropropulsive analysis, to UAV piloting services.

  4. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  5. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  6. Advanced life support control/monitor instrumentation concepts for flight application

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Dahlhausen, M. J.; Fell, R. B.

    1986-01-01

    Development of regenerative Environmental Control/Life Support Systems requires instrumentation characteristics which evolve with successive development phases. As the development phase moves toward flight hardware, the system availability becomes an important design aspect which requires high reliability and maintainability. This program was directed toward instrumentation designs which incorporate features compatible with anticipated flight requirements. The first task consisted of the design, fabrication and test of a Performance Diagnostic Unit. In interfacing with a subsystem's instrumentation, the Performance Diagnostic Unit is capable of determining faulty operation and components within a subsystem, perform on-line diagnostics of what maintenance is needed and accept historical status on subsystem performance as such information is retained in the memory of a subsystem's computerized controller. The second focus was development and demonstration of analog signal conditioning concepts which reduce the weight, power, volume, cost and maintenance and improve the reliability of this key assembly of advanced life support instrumentation. The approach was to develop a generic set of signal conditioning elements or cards which can be configured to fit various subsystems. Four generic sensor signal conditioning cards were identified as being required to handle more than 90 percent of the sensors encountered in life support systems. Under company funding, these were detail designed, built and successfully tested.

  7. Enroute flight planning: Evaluating design concepts for the development of cooperative problem-solving concepts

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, C. Elaine

    1991-01-01

    The goals of this research were to develop design concepts to support the task of enroute flight planning. And within this context, to explore and evaluate general design concepts and principles to guide the development of cooperative problem solving systems. A detailed model is to be developed of the cognitive processes involved in flight planning. Included in this model will be the identification of individual differences of subjects. Of particular interest will be differences between pilots and dispatchers. The effect will be studied of the effect on performance of tools that support planning at different levels of abstraction. In order to conduct this research, the Flight Planning Testbed (FPT) was developed, a fully functional testbed environment for studying advanced design concepts for tools to aid in flight planning.

  8. Parabolic Flight Investigation for Advanced Exercise Concept Hardware Hybrid Ultimate Lifting Kit (HULK)

    NASA Technical Reports Server (NTRS)

    Weaver, A. S.; Funk, J. H.; Funk, N. W.; Sheehan, C. C.; Humphreys, B. T.; Perusek, G. P.

    2015-01-01

    Long-duration space flight poses many hazards to the health of the crew. Among those hazards is the physiological deconditioning of the musculoskeletal and cardiovascular systems due to prolonged exposure to microgravity. To combat this erosion of physical condition space flight may take on the crew, the Human Research Program (HRP) is charged with developing Advanced Exercise Concepts to maintain astronaut health and fitness during long-term missions, while keeping device mass, power, and volume to a minimum. The goal of this effort is to preserve the physical capability of the crew to perform mission critical tasks in transit and during planetary surface operations. The HULK is a pneumatic-based exercise system, which provides both resistive and aerobic modes to protect against human deconditioning in microgravity. Its design targeted the International Space Station (ISS) Advanced Resistive Exercise Device (ARED) high level performance characteristics and provides up to 600 foot pounds resitive loading with the capability to allow for eccentric to concentric (E:C) ratios of higher than 1:1 through a DC motor assist component. The device's rowing mode allows for high cadence aerobic activity. The HULK parabolic flight campaign, conducted through the NASA Flight Opportunities Program at Ellington Field, resulted in the creation of device specific data sets including low fidelity motion capture, accelerometry and both inline and ground reaction forces. These data provide a critical link in understanding how to vibration isolate the device in both ISS and space transit applications. Secondarily, the study of human exercise and associated body kinematics in microgravity allows for more complete understanding of human to machine interface designs to allow for maximum functionality of the device in microgravity.

  9. Guidance concepts for time-based flight operations

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1990-01-01

    Airport congestion and the associated delays are severe in today's airspace system and are expected to increase. NASA and the FAA is investigating various methods of alleviating this problem through new technology and operational procedures. One concept for improving airspace productivity is time-based control of aircraft. Research to date has focused primarily on the development of time-based flight management systems and Air Traffic Control operational procedures. Flight operations may, however, require special onboard guidance in order to satisfy the Air Traffic Control imposed time constraints. The results are presented of a simulation study aimed at evaluating several time-based guidance concepts in terms of tracking performance, pilot workload, and subjective preference. The guidance concepts tested varied in complexity from simple digital time-error feedback to an advanced time-referenced-energy guidance scheme.

  10. A rapid prototyping facility for flight research in advanced systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, Eugene L.; Brumbaugh, Randal W.; Disbrow, James D.

    1989-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  11. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    NASA Technical Reports Server (NTRS)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  12. Supersonic Retropropulsion Flight Test Concepts

    NASA Technical Reports Server (NTRS)

    Post, Ethan A.; Dupzyk, Ian C.; Korzun, Ashley M.; Dyakonov, Artem A.; Tanimoto, Rebekah L.; Edquist, Karl T.

    2011-01-01

    NASA's Exploration Technology Development and Demonstration Program has proposed plans for a series of three sub-scale flight tests at Earth for supersonic retropropulsion, a candidate decelerator technology for future, high-mass Mars missions. The first flight test in this series is intended to be a proof-of-concept test, demonstrating successful initiation and operation of supersonic retropropulsion at conditions that replicate the relevant physics of the aerodynamic-propulsive interactions expected in flight. Five sub-scale flight test article concepts, each designed for launch on sounding rockets, have been developed in consideration of this proof-of-concept flight test. Commercial, off-the-shelf components are utilized as much as possible in each concept. The design merits of the concepts are compared along with their predicted performance for a baseline trajectory. The results of a packaging study and performance-based trade studies indicate that a sounding rocket is a viable launch platform for this proof-of-concept test of supersonic retropropulsion.

  13. A rotor technology assessment of the advancing blade concept

    NASA Technical Reports Server (NTRS)

    Pleasants, W. A.

    1983-01-01

    A rotor technology assessment of the Advancing Blade Concept (ABC) was conducted in support of a preliminary design study. The analytical methodology modifications and inputs, the correlation, and the results of the assessment are documented. The primary emphasis was on the high-speed forward flight performance of the rotor. The correlation data base included both the wind tunnel and the flight test results. An advanced ABC rotor design was examined; the suitability of the ABC for a particular mission was not considered. The objective of this technology assessment was to provide estimates of the performance potential of an advanced ABC rotor designed for high speed forward flight.

  14. MSFC Advanced Concepts Office and the Iterative Launch Vehicle Concept Method

    NASA Technical Reports Server (NTRS)

    Creech, Dennis

    2011-01-01

    This slide presentation reviews the work of the Advanced Concepts Office (ACO) at Marshall Space Flight Center (MSFC) with particular emphasis on the method used to model launch vehicles using INTegrated ROcket Sizing (INTROS), a modeling system that assists in establishing the launch concept design, and stage sizing, and facilitates the integration of exterior analytic efforts, vehicle architecture studies, and technology and system trades and parameter sensitivities.

  15. High-speed civil transport - Advanced flight deck challenges

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    This paper presents the results of a nine month study of the HSCT flight deck challenges and assessment of its benefits. Operational requirements are discussed and the most significant findings for specified advanced concepts are highlighted. These concepts are a no nose-droop configuration, a far forward cockpit location and advanced crew monitoring and control of complex systems. Results indicate that the no nose-droop configuration is critically dependent on the design and development of a safe, reliable and certifiable synthetic vision system (SVS). This configuration would cause significant weight, performance and cost penalties. A far forward cockpit configuration with a tandem seating arrangement allows either an increase in additional payload or potential downsizing of the vehicle leading to increased performance efficiency and reductions in emissions. The technologies enabling such capabilities, which provide for Category III all-weather opreations on every flight represent a benefit multiplier in a 20005 ATM network in terms of enhanced economic viability and environmental acceptability.

  16. Generation of optimum vertical profiles for an advanced flight management system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Waters, M. H.

    1981-01-01

    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined.

  17. Asset Analysis and Operational Concepts for Separation Assurance Flight Testing at Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Costa, Guillermo J.; Arteaga, Ricardo A.

    2011-01-01

    A preliminary survey of existing separation assurance and collision avoidance advancements, technologies, and efforts has been conducted in order to develop a concept of operations for flight testing autonomous separation assurance at Dryden Flight Research Center. This effort was part of the Unmanned Aerial Systems in the National Airspace System project. The survey focused primarily on separation assurance projects validated through flight testing (including lessons learned), however current forays into the field were also examined. Comparisons between current Dryden flight and range assets were conducted using House of Quality matrices in order to allow project management to make determinations regarding asset utilization for future flight tests. This was conducted in order to establish a body of knowledge of the current collision avoidance landscape, and thus focus Dryden s efforts more effectively towards the providing of assets and test ranges for future flight testing within this research field.

  18. Robust flight design for an advanced launch system vehicle

    NASA Astrophysics Data System (ADS)

    Dhand, Sanjeev K.; Wong, Kelvin K.

    Current launch vehicle trajectory design philosophies are generally based on maximizing payload capability. This approach results in an expensive trajectory design process for each mission. Two concepts of robust flight design have been developed to significantly reduce this cost: Standardized Trajectories and Command Multiplier Steering (CMS). These concepts were analyzed for an Advanced Launch System (ALS) vehicle, although their applicability is not restricted to any particular vehicle. Preliminary analysis has demonstrated the feasibility of these concepts at minimal loss in payload capability.

  19. Flight demonstrator concept for key technologies enabling future reusable launch vehicles

    NASA Astrophysics Data System (ADS)

    Ishimoto, Shinji; Fujii, Kenji; Mori, Takeshi

    2005-07-01

    A research center in JAXA has recently started research on reusable launch vehicles according to its plan placing emphasis on advanced launch technology. It is planned to demonstrate key technologies using a rocket-powered winged vehicle, and concept studies on the flight demonstrator have been conducted. This paper describes the present research plan and introduces the most compact vehicle concept among some versions under consideration.

  20. Advanced beamed-energy and field propulsion concepts

    NASA Technical Reports Server (NTRS)

    Myrabo, L. N.

    1983-01-01

    Specific phenomena which might lead to major advances in payload, range and terminal velocity of very advanced vehicle propulsion are studied. The effort focuses heavily on advanced propulsion spinoffs enabled by current government-funded investigations in directed-energy technology: i.e., laser, microwave, and relativistic charged particle beams. Futuristic (post-year 2000) beamed-energy propulsion concepts which indicate exceptional promise are identified and analytically investigated. The concepts must be sufficiently developed to permit technical understanding of the physical processes involved, assessment of the enabling technologies, and evaluation of their merits over conventional systems. Propulsion concepts that can be used for manned and/or unmanned missions for purposes of solar system exploration, planetary landing, suborbital flight, transport to orbit, and escape are presented. Speculations are made on the chronology of milestones in beamed-energy propulsion development, such as in systems applications of defense, satellite orbit-raising, global aerospace transportation, and manned interplanetary carriers.

  1. Advanced Sensor Concepts

    NASA Technical Reports Server (NTRS)

    Alhorn, D. C.; Howard, D. E.; Smith, D. A.

    2005-01-01

    The Advanced Sensor Concepts project was conducted under the Center Director's Discretionary Fund at the Marshall Space Flight Center. Its objective was to advance the technology originally developed for the Glovebox Integrated Microgravity Isolation Technology project. The objective of this effort was to develop and test several new motion sensors. To date, the investigators have invented seven new technologies during this endeavor and have conceived several others. The innovative basic sensor technology is an absolute position sensor. It employs only two active components, and it is simple, inexpensive, reliable, repeatable, lightweight, and relatively unobtrusive. Two sensors can be utilized in the same physical space to achieve redundancy. The sensor has micrometer positional accuracy and can be configured as a two- or three-dimensional sensor. The sensor technology has the potential to pioneer a new class of linear and rotary sensors. This sensor is the enabling technology for autonomous assembly of modular structures in space and on extraterrestrial locations.

  2. Concept report: Experimental vector magnetograph (EXVM) operational configuration balloon flight assembly

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The observational limitations of earth bound solar studies has prompted a great deal of interest in recent months in being able to gain new scientific perspectives through, what should prove to be, relatively low cost flight of the magnetograph system. The ground work done by TBE for the solar balloon missions (originally planned for SOUP and GRID) as well as the rather advanced state of assembly of the EXVM has allowed the quick formulation of a mission concept for the 30 cm system currently being assembled. The flight system operational configuration will be discussed as it is proposed for short duration flight (on the order of one day) over the continental United States. Balloon hardware design requirements used in formulation of the concept are those set by the National Science Balloon Facility (NSBF), the support agency under NASA contract for flight services. The concept assumes that the flight hardware assembly would come together from three development sources: the scientific investigator package, the integration contractor package, and the NSBF support system. The majority of these three separate packages can be independently developed; however, the computer control interfaces and telemetry links would require extensive preplanning and coordination. A special section of this study deals with definition of a dedicated telemetry link to be provided by the integration contractor for video image data for pointing system performance verification. In this study the approach has been to capitalize to the maximum extent possible on existing hardware and system design. This is the most prudent step that can be taken to reduce eventual program cost for long duration flights. By fielding the existing EXVM as quickly as possible, experience could be gained from several short duration flight tests before it became necessary to commit to major upgrades for long duration flights of this system or of the larger 60 cm version being considered for eventual development.

  3. Analysis and Preliminary Design of an Advanced Technology Transport Flight Control System

    NASA Technical Reports Server (NTRS)

    Frazzini, R.; Vaughn, D.

    1975-01-01

    The analysis and preliminary design of an advanced technology transport aircraft flight control system using avionics and flight control concepts appropriate to the 1980-1985 time period are discussed. Specifically, the techniques and requirements of the flight control system were established, a number of candidate configurations were defined, and an evaluation of these configurations was performed to establish a recommended approach. Candidate configurations based on redundant integration of various sensor types, computational methods, servo actuator arrangements and data-transfer techniques were defined to the functional module and piece-part level. Life-cycle costs, for the flight control configurations, as determined in an operational environment model for 200 aircraft over a 15-year service life, were the basis of the optimum configuration selection tradeoff. The recommended system concept is a quad digital computer configuration utilizing a small microprocessor for input/output control, a hexad skewed set of conventional sensors for body rate and body acceleration, and triple integrated actuators.

  4. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    NASA Technical Reports Server (NTRS)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  5. Advanced aircraft service life monitoring method via flight-by-flight load spectra

    NASA Astrophysics Data System (ADS)

    Lee, Hongchul

    This research is an effort to understand current method and to propose an advanced method for Damage Tolerance Analysis (DTA) for the purpose of monitoring the aircraft service life. As one of tasks in the DTA, the current indirect Individual Aircraft Tracking (IAT) method for the F-16C/D Block 32 does not properly represent changes in flight usage severity affecting structural fatigue life. Therefore, an advanced aircraft service life monitoring method based on flight-by-flight load spectra is proposed and recommended for IAT program to track consumed fatigue life as an alternative to the current method which is based on the crack severity index (CSI) value. Damage Tolerance is one of aircraft design philosophies to ensure that aging aircrafts satisfy structural reliability in terms of fatigue failures throughout their service periods. IAT program, one of the most important tasks of DTA, is able to track potential structural crack growth at critical areas in the major airframe structural components of individual aircraft. The F-16C/D aircraft is equipped with a flight data recorder to monitor flight usage and provide the data to support structural load analysis. However, limited memory of flight data recorder allows user to monitor individual aircraft fatigue usage in terms of only the vertical inertia (NzW) data for calculating Crack Severity Index (CSI) value which defines the relative maneuver severity. Current IAT method for the F-16C/D Block 32 based on CSI value calculated from NzW is shown to be not accurate enough to monitor individual aircraft fatigue usage due to several problems. The proposed advanced aircraft service life monitoring method based on flight-by-flight load spectra is recommended as an improved method for the F-16C/D Block 32 aircraft. Flight-by-flight load spectra was generated from downloaded Crash Survival Flight Data Recorder (CSFDR) data by calculating loads for each time hack in selected flight data utilizing loads equations. From

  6. Human Research Program Advanced Exercise Concepts (AEC) Overview

    NASA Technical Reports Server (NTRS)

    Perusek, Gail; Lewandowski, Beth; Nall, Marsha; Norsk, Peter; Linnehan, Rick; Baumann, David

    2015-01-01

    Exercise countermeasures provide benefits that are crucial for successful human spaceflight, to mitigate the spaceflight physiological deconditioning which occurs during exposure to microgravity. The NASA Human Research Program (HRP) within the Human Exploration and Operations Mission Directorate (HEOMD) is managing next generation Advanced Exercise Concepts (AEC) requirements development and candidate technology maturation to Technology Readiness Level (TRL) 7 (ground prototyping and flight demonstration) for all exploration mission profiles from Multi Purpose Crew Vehicle (MPCV) Exploration Missions (up to 21 day duration) to Mars Transit (up to 1000 day duration) missions. These validated and optimized exercise countermeasures systems will be provided to the ISS Program and MPCV Program for subsequent flight development and operations. The International Space Station (ISS) currently has three major pieces of operational exercise countermeasures hardware: the Advanced Resistive Exercise Device (ARED), the second-generation (T2) treadmill, and the cycle ergometer with vibration isolation system (CEVIS). This suite of exercise countermeasures hardware serves as a benchmark and is a vast improvement over previous generations of countermeasures hardware, providing both aerobic and resistive exercise for the crew. However, vehicle and resource constraints for future exploration missions beyond low Earth orbit will require that the exercise countermeasures hardware mass, volume, and power be minimized, while preserving the current ISS capabilities or even enhancing these exercise capabilities directed at mission specific physiological functional performance and medical standards requirements. Further, mission-specific considerations such as preservation of sensorimotor function, autonomous and adaptable operation, integration with medical data systems, rehabilitation, and in-flight monitoring and feedback are being developed for integration with the exercise

  7. NASA advanced turboprop research and concept validation program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitlow, J.B. Jr.; Sievers, G.K.

    1988-01-01

    NASA has determined by experimental and analytical effort that use of advanced turboprop propulsion instead of the conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. In cooperation with industry, NASA has defined and implemented an Advanced Turboprop (ATP) program to develop and validate the technology required for these new high-speed, multibladed, thin, swept propeller concepts. This paper presents an overview of the analysis, model-scale test, and large-scale flight test elements of the program together with preliminary test results, as available.

  8. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) is used to test and develop these algorithms. Modifications to this airplane include adding canards and changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals include demonstration of revolutionary control approaches that can efficiently optimize aircraft performance in both normal and failure conditions and advancement of neural-network-based flight control technology for new aerospace system designs. This report presents an overview of the processes utilized to develop adaptive controller algorithms during a flight-test program, including a description of initial adaptive controller concepts and a discussion of modeling formulation and performance testing. Design finalization led to integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness; these are also discussed.

  9. SCIENCE BRIEF: ADVANCED CONCEPTS

    EPA Science Inventory

    Research on advanced concepts will evaluate and demonstrate the application of innovative infrastructure designs, management procedures and operational approaches. Advanced concepts go beyond simple asset management. The infusion of these advanced concepts into established wastew...

  10. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  11. Feasibility of a Networked Air Traffic Infrastructure Validation Environment for Advanced NextGen Concepts

    NASA Technical Reports Server (NTRS)

    McCormack, Michael J.; Gibson, Alec K.; Dennis, Noah E.; Underwood, Matthew C.; Miller,Lana B.; Ballin, Mark G.

    2013-01-01

    Abstract-Next Generation Air Transportation System (NextGen) applications reliant upon aircraft data links such as Automatic Dependent Surveillance-Broadcast (ADS-B) offer a sweeping modernization of the National Airspace System (NAS), but the aviation stakeholder community has not yet established a positive business case for equipage and message content standards remain in flux. It is necessary to transition promising Air Traffic Management (ATM) Concepts of Operations (ConOps) from simulation environments to full-scale flight tests in order to validate user benefits and solidify message standards. However, flight tests are prohibitively expensive and message standards for Commercial-off-the-Shelf (COTS) systems cannot support many advanced ConOps. It is therefore proposed to simulate future aircraft surveillance and communications equipage and employ an existing commercial data link to exchange data during dedicated flight tests. This capability, referred to as the Networked Air Traffic Infrastructure Validation Environment (NATIVE), would emulate aircraft data links such as ADS-B using in-flight Internet and easily-installed test equipment. By utilizing low-cost equipment that is easy to install and certify for testing, advanced ATM ConOps can be validated, message content standards can be solidified, and new standards can be established through full-scale flight trials without necessary or expensive equipage or extensive flight test preparation. This paper presents results of a feasibility study of the NATIVE concept. To determine requirements, six NATIVE design configurations were developed for two NASA ConOps that rely on ADS-B. The performance characteristics of three existing in-flight Internet services were investigated to determine whether performance is adequate to support the concept. Next, a study of requisite hardware and software was conducted to examine whether and how the NATIVE concept might be realized. Finally, to determine a business case

  12. Parameter identification studies on the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Mckavitt, Thomas P., Jr.

    1990-01-01

    The results of an aircraft parameters identification study conducted on the National Aeronautics and Space Administration/Ames Research Center Advanced Concepts Flight Simulator (ACFS) in conjunction with the Navy-NASA Joint Institute of Aeronautics are given. The ACFS is a commercial airline simulator with a design based on future technology. The simulator is used as a laboratory for human factors research and engineering as applied to the commercial airline industry. Parametric areas examined were engine pressure ratio (EPR), optimum long range cruise Mach number, flap reference speed, and critical take-off speeds. Results were compared with corresponding parameters of the Boeing 757 and 767 aircraft. This comparison identified two areas where improvements can be made: (1) low maximum lift coefficients (on the order of 20-25 percent less than those of a 757); and (2) low optimum cruise Mach numbers. Recommendations were made to those anticipated with the application of future technologies.

  13. Advanced Concept

    NASA Image and Video Library

    2004-04-15

    It is predicted that by the year 2040, there will be no distinction between a commercial airliner and a commercial launch vehicle. Fourth Generation Reusable Launch Vehicles (RLVs) will be so safe and reliable that no crew escape system will be necessary. Every year there will be in excess of 10,000 flights and the turn-around time between flights will be just hours. The onboard crew will be able to accomplish a launch without any assistance from the ground. Provided is an artist's concept of these fourth generation space vehicles.

  14. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Mcgough, J.; Moses, K.; Klafin, J. F.

    1982-01-01

    The architecture, requirements, and system elements of an ultrareliable, advanced flight control system are described. The basic criteria are functional reliability of 10 to the minus 10 power/hour of flight and only 6 month scheduled maintenance. A distributed system architecture is described, including a multiplexed communication system, reliable bus controller, the use of skewed sensor arrays, and actuator interfaces. Test bed and flight evaluation program are proposed.

  15. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  16. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  17. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    Shown is an illustration of the Ares I concept. The first stage will be a single, five-segment solid rocket booster derived from the space shuttle programs reusable solid rocket motor. The first stage is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama for NASA's Constellation program.

  18. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Creech, Dennis M.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2012-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent go-to group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA s design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer s needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  19. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Threet, Grady E., Jr.; Phillips, Alan

    2013-01-01

    The Earth-to-Orbit Team (ETO) of the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) is considered the pre-eminent "go-to" group for pre-phase A and phase A concept definition. Over the past several years the ETO team has evaluated thousands of launch vehicle concept variations for a significant number of studies including agency-wide efforts such as the Exploration Systems Architecture Study (ESAS), Constellation, Heavy Lift Launch Vehicle (HLLV), Augustine Report, Heavy Lift Propulsion Technology (HLPT), Human Exploration Framework Team (HEFT), and Space Launch System (SLS). The ACO ETO Team is called upon to address many needs in NASA's design community; some of these are defining extremely large trade-spaces, evaluating advanced technology concepts which have not been addressed by a large majority of the aerospace community, and the rapid turn-around of highly time critical actions. It is the time critical actions, those often limited by schedule or little advanced warning, that have forced the five member ETO team to develop a design process robust enough to handle their current output level in order to meet their customer's needs. Based on the number of vehicle concepts evaluated over the past year this output level averages to four completed vehicle concepts per day. Each of these completed vehicle concepts includes a full mass breakdown of the vehicle to a tertiary level of subsystem components and a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. A structural analysis of the vehicle to determine flight loads based on the trajectory output, material properties, and geometry of the concept is also performed. Due to working in this fast-paced and sometimes rapidly changing environment, the ETO Team has developed a finely tuned process to maximize their delivery capabilities. The objective of this paper is to describe the interfaces

  20. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.

    2009-01-01

    The National Aeronautics and Space Administration Dryden Flight Research Center (Edwards, California) is conducting ongoing flight research using adaptive controller algorithms. A highly modified McDonnell-Douglas NF-15B airplane called the F-15 Intelligent Flight Control System (IFCS) was used for these algorithms. This airplane has been modified by the addition of canards and by changing the flight control systems to interface a single-string research controller processor for neural network algorithms. Research goals included demonstration of revolutionary control approaches that can efficiently optimize aircraft performance for both normal and failure conditions, and to advance neural-network-based flight control technology for new aerospace systems designs. Before the NF-15B IFCS airplane was certified for flight test, however, certain processes needed to be completed. This paper presents an overview of these processes, including a description of the initial adaptive controller concepts followed by a discussion of modeling formulation and performance testing. Upon design finalization, the next steps are: integration with the system interfaces, verification of the software, validation of the hardware to the requirements, design of failure detection, development of safety limiters to minimize the effect of erroneous neural network commands, and creation of flight test control room displays to maximize human situational awareness.

  1. Advanced Radioisotope Power System Enabled Titan Rover Concept with Inflatable Wheels

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Explorer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110 We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced-Stirling and Brayton RPSs are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  2. Next Generation NASA GA Advanced Concept

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2006-01-01

    Not only is the common dream of frequent personal flight travel going unfulfilled, the current generation of General Aviation (GA) is facing tremendous challenges that threaten to relegate the Single Engine Piston (SEP) aircraft market to a footnote in the history of U.S. aviation. A case is made that this crisis stems from a generally low utility coupled to a high cost that makes the SEP aircraft of relatively low transportation value and beyond the means of many. The roots of this low value are examined in a broad sense, and a Next Generation NASA Advanced GA Concept is presented that attacks those elements addressable by synergistic aircraft design.

  3. NASA Advanced Concepts Office, Earth-To-Orbit Team Design Process and Tools

    NASA Technical Reports Server (NTRS)

    Waters, Eric D.; Garcia, Jessica; Beers, Benjamin; Philips, Alan; Holt, James B.; Threet, Grady E., Jr.

    2013-01-01

    The Earth to Orbit (ETO) Team of the Advanced Concepts Office (ACO) at NASA Marshal Space Flight Center (MSFC) is considered the preeminent group to go to for prephase A and phase A concept definition. The ACO team has been at the forefront of a multitude of launch vehicle studies determining the future direction of the Agency as a whole due, in part, to their rapid turnaround time in analyzing concepts and their ability to cover broad trade spaces of vehicles in that limited timeframe. Each completed vehicle concept includes a full mass breakdown of each vehicle to tertiary subsystem components, along with a vehicle trajectory analysis to determine optimized payload delivery to specified orbital parameters, flight environments, and delta v capability. Additionally, a structural analysis of the vehicle based on material properties and geometries is performed as well as an analysis to determine the flight loads based on the trajectory outputs. As mentioned, the ACO Earth to Orbit Team prides themselves on their rapid turnaround time and often need to fulfill customer requests within limited schedule or little advanced notice. Due to working in this fast paced environment, the ETO team has developed some finely honed skills and methods to maximize the delivery capability to meet their customer needs. This paper will describe the interfaces between the 3 primary disciplines used in the design process; weights and sizing, trajectory, and structural analysis, as well as the approach each discipline employs to streamline their particular piece of the design process.

  4. Low-speed wind-tunnel investigation of the flight dynamic characteristics of an advanced turboprop business/commuter aircraft configuration

    NASA Technical Reports Server (NTRS)

    Coe, Paul L., Jr.; Turner, Steven G.; Owens, D. Bruce

    1990-01-01

    An investigation was conducted to determine the low-speed flight dynamic behavior of a representative advanced turboprop business/commuter aircraft concept. Free-flight tests were conducted in the NASA Langley Research Center's 30- by 60-Foot Tunnel. In support of the free-flight tests, conventional static, dynamic, and free-to-roll oscillation tests were performed. Tests were intended to explore normal operating and post stall flight conditions, and conditions simulating the loss of power in one engine.

  5. Cryogenic fluid management program flight concept definition

    NASA Technical Reports Server (NTRS)

    Kroeger, Erich

    1987-01-01

    The Lewis Research Center's cryogenic fluid management program flight concept definition is presented in viewgraph form. Diagrams are given of the cryogenic fluid management subpallet and its configuration with the Delta launch vehicle. Information is given in outline form on feasibility studies, requirements definition, and flight experiments design.

  6. Advanced Airspace Concept

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2002-01-01

    A general overview of the Advanced Airspace Concept (AAC) is presented. The topics include: 1) Limitations of the existing system; 2) The Advanced Airspace Concept; 3) Candidate architecture for the AAC; 4) Separation assurance and conflict avoidance system (TSAFE); and 5) Ground-Air Interactions. This paper is in viewgraph form.

  7. The relationship of certified flight instructors' emotional intelligence levels on flight student advancement

    NASA Astrophysics Data System (ADS)

    Hokeness, Mark Merrill

    Aviation researchers estimate airline companies will require nearly 500,000 pilots in the next 20 years. The role of a Certified Flight Instructor (CFI) is to move student pilots to professional pilots with training typically conducted in one-on-one student and instructor sessions. The knowledge of aviation, professionalism as a teacher, and the CFI’s interpersonal skills can directly affect the successes and advancement of a student pilot. A new and emerging assessment of people skills is known as emotional intelligence (EI). The EI of the CFI can and will affect a flight students’ learning experiences. With knowledge of emotional intelligence and its effect on flight training, student pilot dropouts from aviation may be reduced, thus helping to ensure an adequate supply of pilots. Without pilots, the growth of the commercial aviation industry will be restricted. This mixed method research study established the correlation between a CFI’s measured EI levels and the advancement of flight students. The elements contributing to a CFI’s EI level were not found to be teaching or flight-related experiences, suggesting other life factors are drawn upon by the CFI and are reflected in their emotional intelligence levels presented to flight students. Students respond positively to CFIs with higher levels of emotional intelligence. Awareness of EI skills by both the CFI and flight student contribute to flight student successes and advancement.

  8. Structural Framework for Flight: NASA's Role in Development of Advanced Composite Materials for Aircraft and Space Structures

    NASA Technical Reports Server (NTRS)

    Tenney, Darrel R.; Davis, John G., Jr.; Johnston, Norman J.; Pipes, R. Byron; McGuire, Jack F.

    2011-01-01

    This serves as a source of collated information on Composite Research over the past four decades at NASA Langley Research Center, and is a key reference for readers wishing to grasp the underlying principles and challenges associated with developing and applying advanced composite materials to new aerospace vehicle concepts. Second, it identifies the major obstacles encountered in developing and applying composites on advanced flight vehicles, as well as lessons learned in overcoming these obstacles. Third, it points out current barriers and challenges to further application of composites on future vehicles. This is extremely valuable for steering research in the future, when new breakthroughs in materials or processing science may eliminate/minimize some of the barriers that have traditionally blocked the expanded application of composite to new structural or revolutionary vehicle concepts. Finally, a review of past work and identification of future challenges will hopefully inspire new research opportunities and development of revolutionary materials and structural concepts to revolutionize future flight vehicles.

  9. A perspective on 15 years of proof-of-concept aircraft development and flight research at Ames-Moffett by the Rotorcraft and Powered-Lift Flight Projects Division, 1970-1985

    NASA Technical Reports Server (NTRS)

    Few, David D.

    1987-01-01

    A proof-of-concept (POC) aircraft is defined and the concept of interest described for each of the six aircraft developed by the Ames-Moffet Rotorcraft and Powered-Lift Flight Projects Division from 1970 through 1985; namely, the OV-10, the C-8A Augmentor Wing, the Quiet Short-Haul Research Aircraft (QSRA), the XV-15 Tilt Rotor Research Aircraft (TRRA), the Rotor Systems Research Aircraft (RSRA)-compound, and the yet-to-fly RSRA/X-Wing Aircraft. The program/project chronology and most noteworthy features of the concepts are reviewed. The paper discusses the significance of each concept and the project demonstrating it; it briefly looks at what concepts are on the horizon as potential POC research aircraft and emphasizes that no significant advanced concept in aviation technology has ever been accepted by civilian or military users without first completing a demonstration through flight testing.

  10. HIAD on ULA (HULA) Orbital Reentry Flight Experiment Concept

    NASA Technical Reports Server (NTRS)

    Dinonno, J. M.; Cheatwood, F. M.; Hughes, S. J.; Ragab, M. M.; Dillman, R. A.; Bodkin, R. J.; Zumwalt, C. H.; Johnson, R. K.

    2016-01-01

    This paper describes a proposed orbital velocity reentry flight test of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). The flight test builds upon ground development activities that continue to advance the materials, design, and manufacturing techniques for the inflatable structure and flexible thermal protection system (F-TPS) that comprise the inflatable heat shield. While certain aspects of material and system performance can be assessed using a variety of ground testing capabilities, only orbital velocity energy on a trajectory through the gradient density of the atmosphere can impart the combined aerodynamic and aeroheating design environments in real time. To achieve this at limited cost, the HIAD would be delivered to a spin-stabilized entry trajectory as a secondary payload on the Centaur stage of a United Launch Alliance (ULA) Atlas V launch vehicle. Initial trajectory studies indicate that the combination of launch vehicle capability and achievable reentry vehicle ballistic numbers make this a strategic opportunity for technology development. This 4 to 6 meter diameter scale aeroshell flight, referred to as HIAD on ULA (HULA), would also contribute to ULA asset recovery development. ULA has proposed that a HIAD be utilized as part of the Sensible, Modular, Autonomous Return Technology (SMART) initiative to enable recovery of the Vulcan launch vehicle booster main engines [1], including a Mid-Air Recovery (MAR) to gently return these assets for reuse. Whereas HULA will attain valuable aerothermal and structural response data toward advancing HIAD technology, it may also provide a largest-to-date scaled flight test of the MAR operation, which in turn would allow the examination of a nearly pristine post-entry aeroshell. By utilizing infrared camera imaging, HULA will also attain aft-side thermal response data, enhancing understanding of the aft side aerothermal environment, an area of high uncertainty. The aeroshell inflation will utilize a

  11. Advanced Concept

    NASA Image and Video Library

    2002-01-01

    An artist's rendering of the air-breathing, hypersonic X-43B, the third and largest of NASA's Hyper-X series flight demonstrators, which could fly later this decade. Revolutionizing the way we gain access to space is NASA's primary goal for the Hypersonic Investment Area, managed for NASA by the Advanced Space Transportation Program at the Marshall Space Flight Center in Huntsville, Alabama. The Hypersonic Investment area, which includes leading-edge partners in industry and academia, will support future generation reusable vehicles and improved access to space. These technology demonstrators, intended for flight testing by decade's end, are expected to yield a new generation of vehicles that routinely fly about 100,000 feet above Earth's surface and reach sustained speeds in excess of Mach 5 (3,750 mph), the point at which "supersonic" flight becomes "hypersonic" flight. The flight demonstrators, the Hyper-X series, will be powered by air-breathing rocket or turbine-based engines, and ram/scramjets. Air-breathing engines, known as combined-cycle systems, achieve their efficiency gains over rocket systems by getting their oxygen for combustion from the atmosphere, as opposed to a rocket that must carry its oxygen. Once a hypersonic vehicle has accelerated to more than twice the speed of sound, the turbine or rockets are turned off, and the engine relies solely on oxygen in the atmosphere to burn fuel. When the vehicle has accelerated to more than 10 to 15 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's series of hypersonic flight demonstrators includes three air-breathing vehicles: the X-43A, X-43B and X-43C.

  12. Advanced transport operating system software upgrade: Flight management/flight controls software description

    NASA Technical Reports Server (NTRS)

    Clinedinst, Winston C.; Debure, Kelly R.; Dickson, Richard W.; Heaphy, William J.; Parks, Mark A.; Slominski, Christopher J.; Wolverton, David A.

    1988-01-01

    The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU).

  13. Prototype Flight Management Capabilities to Explore Temporal RNP Concepts

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Williams, David H.; Allen, Bonnie Danette; Palmer, Michael T.

    2008-01-01

    Next Generation Air Transportation System (NextGen) concepts of operation may require aircraft to fly planned trajectories in four dimensions three spatial dimensions and time. A prototype 4D flight management capability is being developed by NASA to facilitate the development of these concepts. New trajectory generation functions extend today's flight management system (FMS) capabilities that meet a single Required Time of Arrival (RTA) to trajectory solutions that comply with multiple RTA constraints. When a solution is not possible, a constraint management capability relaxes constraints to achieve a trajectory solution that meets the most important constraints as specified by candidate NextGen concepts. New flight guidance functions provide continuous guidance to the aircraft s flight control system to enable it to fly specified 4D trajectories. Guidance options developed for research investigations include a moving time window with varying tolerances that are a function of proximity to imposed constraints, and guidance that recalculates the aircraft s planned trajectory as a function of the estimation of current compliance. Compliance tolerances are related to required navigation performance (RNP) through the extension of existing RNP concepts for lateral containment. A conceptual temporal RNP implementation and prototype display symbology are proposed.

  14. Coevolving advances in animal flight and aerial robotics

    PubMed Central

    Lentink, David

    2017-01-01

    Our understanding of animal flight has inspired the design of new aerial robots with more effective flight capacities through the process of biomimetics and bioinspiration. The aerodynamic origin of the elevated performance of flying animals remains, however, poorly understood. In this themed issue, animal flight research and aerial robot development coalesce to offer a broader perspective on the current advances and future directions in these coevolving fields of research. Together, four reviews summarize and 14 reports contribute to our understanding of low Reynolds number flight. This area of applied aerodynamics research is challenging to dissect due to the complicated flow phenomena that include laminar–turbulent flow transition, laminar separation bubbles, delayed stall and nonlinear vortex dynamics. Our mechanistic understanding of low Reynolds number flight has perhaps been advanced most by the development of dynamically scaled robot models and new specialized wind tunnel facilities: in particular, the tiltable Lund flight tunnel for animal migration research and the recently developed AFAR hypobaric wind tunnel for high-altitude animal flight studies. These world-class facilities are now complemented with a specialized low Reynolds number wind tunnel for studying the effect of turbulence on animal and robot flight in much greater detail than previously possible. This is particular timely, because the study of flight in extremely laminar versus turbulent flow opens a new frontier in our understanding of animal flight. Advancing this new area will offer inspiration for developing more efficient high-altitude aerial robots and removes roadblocks for aerial robots operating in turbulent urban environments.

  15. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  16. Advanced propulsion concepts

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1991-01-01

    A variety of Advanced Propulsion Concepts (APC) is discussed. The focus is on those concepts that are sufficiently near-term that they could be developed for the Space Exploration Initiative. High-power (multi-megawatt) electric propulsion, solar sails, tethers, and extraterrestrial resource utilization concepts are discussed. A summary of these concepts and some general conclusions on their technology development needs are presented.

  17. Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Regenie, V. A.; Deets, D. A.

    1986-01-01

    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs.

  18. The Design of a Primary Flight Trainer using Concurrent Engineering Concepts

    NASA Technical Reports Server (NTRS)

    Ladesic, James G.; Eastlake, Charles N.; Kietzmann, Nicholas H.

    1993-01-01

    Concurrent Engineering (CE) concepts seek to coordinate the expertise of various disciplines from initial design configuration selection through product disposal so that cost efficient design solutions may be achieve. Integrating this methodology into an undergraduate design course sequence may provide a needed enhancement to engineering education. The Advanced Design Program (ADP) project at Embry-Riddle Aeronautical University (EMU) is focused on developing recommendations for the general aviation Primary Flight Trainer (PFT) of the twenty first century using methods of CE. This project, over the next two years, will continue synthesizing the collective knowledge of teams composed of engineering students along with students from other degree programs, their faculty, and key industry representatives. During the past year (Phase I). conventional trainer configurations that comply with current regulations and existing technologies have been evaluated. Phase I efforts have resulted in two baseline concepts, a high-wing, conventional design named Triton and a low-wing, mid-engine configuration called Viper. In the second and third years (Phases II and III). applications of advanced propulsion, advanced materials, and unconventional airplane configurations along with military and commercial technologies which are anticipated to be within the economic range of general aviation by the year 2000, will be considered.

  19. Advanced Transport Operating System (ATOPS) Flight Management/Flight Controls (FM/FC) software description

    NASA Technical Reports Server (NTRS)

    Wolverton, David A.; Dickson, Richard W.; Clinedinst, Winston C.; Slominski, Christopher J.

    1993-01-01

    The flight software developed for the Flight Management/Flight Controls (FM/FC) MicroVAX computer used on the Transport Systems Research Vehicle for Advanced Transport Operating Systems (ATOPS) research is described. The FM/FC software computes navigation position estimates, guidance commands, and those commands issued to the control surfaces to direct the aircraft in flight. Various modes of flight are provided for, ranging from computer assisted manual modes to fully automatic modes including automatic landing. A high-level system overview as well as a description of each software module comprising the system is provided. Digital systems diagrams are included for each major flight control component and selected flight management functions.

  20. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, Randal W.; Hewett, M. D.; Tartt, D. M.

    1991-01-01

    The capabilities and evolution is described of a flight engineer's workstation (called TEST-PLAN) from an automated flight test management system. The concept and capabilities of the automated flight test management systems are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  1. Accomplishments of the Advanced Reusable Technologies (ART) RBCC Project at NASA/Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Nelson, Karl W.; McArthur, J. Craig (Technical Monitor)

    2001-01-01

    The focus of the NASA / Marshall Space Flight Center (MSFC) Advanced Reusable Technologies (ART) project is to advance and develop Rocket-Based Combined-Cycle (RBCC) technologies. The ART project began in 1996 as part of the Advanced Space Transportation Program (ASTP). The project is composed of several activities including RBCC engine ground testing, tool development, vehicle / mission studies, and component testing / development. The major contractors involved in the ART project are Aerojet and Rocketdyne. A large database of RBCC ground test data was generated for the air-augmented rocket (AAR), ramjet, scramjet, and ascent rocket modes of operation for both the Aerojet and Rocketdyne concepts. Transition between consecutive modes was also demonstrated as well as trajectory simulation. The Rocketdyne freejet tests were conducted at GASL in the Flight Acceleration Simulation Test (FAST) facility. During a single test, the FAST facility is capable of simulating both the enthalpy and aerodynamic conditions over a range of Mach numbers in a flight trajectory. Aerojet performed freejet testing in the Pebble Bed facility at GASL as well as direct-connect testing at GASL. Aerojet also performed sea-level static (SLS) testing at the Aerojet A-Zone facility in Sacramento, CA. Several flight-type flowpath components were developed under the ART project. Aerojet designed and fabricated ceramic scramjet injectors. The structural design of the injectors will be tested in a simulated scramjet environment where thermal effects and performance will be assessed. Rocketdyne will be replacing the cooled combustor in the A5 rig with a flight-weight combustor that is near completion. Aerojet's formed duct panel is currently being fabricated and will be tested in the SLS rig in Aerojet's A-Zone facility. Aerojet has already successfully tested a cooled cowl panel in the same facility. In addition to MSFC, other NASA centers have contributed to the ART project as well. Inlet testing

  2. From an automated flight-test management system to a flight-test engineer's workstation

    NASA Technical Reports Server (NTRS)

    Duke, E. L.; Brumbaugh, R. W.; Hewett, M. D.; Tartt, D. M.

    1992-01-01

    Described here are the capabilities and evolution of a flight-test engineer's workstation (called TEST PLAN) from an automated flight-test management system. The concept and capabilities of the automated flight-test management system are explored and discussed to illustrate the value of advanced system prototyping and evolutionary software development.

  3. Prototype Tool and Focus Group Evaluation for an Advanced Trajectory-Based Operations Concept

    NASA Technical Reports Server (NTRS)

    Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.

    2017-01-01

    Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. NASA has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality of an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group activity.

  4. Advanced boundary layer transition measurement methods for flight applications

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.; Croom, C. C.; Gail, P. D.; Manuel, G. S.; Carraway, D. L.

    1986-01-01

    In modern laminar flow flight research, it is important to understand the specific cause(s) of laminar to turbulent boundary-layer transition. Such information is crucial to the exploration of the limits of practical application of laminar flow for drag reduction on aircraft. The transition modes of interest in current flight investigations include the viscous Tollmien-Schlichting instability, the inflectional instability at laminar separation, and the crossflow inflectional instability, as well as others. This paper presents the results to date of research on advanced devices and methods used for the study of laminar boundary-layer transition phenomena in the flight environment. Recent advancements in the development of arrayed hot-film devices and of a new flow visualization method are discussed. Arrayed hot-film devices have been designed to detect the presence of laminar separation, and of crossflow vorticity. The advanced flow visualization method utilizes color changes in liquid-crystal coatings to detect boundary-layer transition at high altitude flight conditions. Flight and wind tunnel data are presented to illustrate the design and operation of these advanced methods. These new research tools provide information on disturbance growth and transition mode which is essential to furthering our understanding of practical design limits for applications of laminar flow technology.

  5. Application of Nonlinear Systems Inverses to Automatic Flight Control Design: System Concepts and Flight Evaluations

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Cicolani, L.

    1981-01-01

    A practical method for the design of automatic flight control systems for aircraft with complex characteristics and operational requirements, such as the powered lift STOL and V/STOL configurations, is presented. The method is effective for a large class of dynamic systems requiring multi-axis control which have highly coupled nonlinearities, redundant controls, and complex multidimensional operational envelopes. It exploits the concept of inverse dynamic systems, and an algorithm for the construction of inverse is given. A hierarchic structure for the total control logic with inverses is presented. The method is illustrated with an application to the Augmentor Wing Jet STOL Research Aircraft equipped with a digital flight control system. Results of flight evaluation of the control concept on this aircraft are presented.

  6. Second Annual Transformative Vertical Flight Concepts Workshop: Enabling New Flight Concepts Through Novel Propulsion and Energy Architectures

    NASA Technical Reports Server (NTRS)

    Dudley, Michael R. (Editor); Duffy, Michael; Hirschberg, Michael; Moore, Mark; German, Brian; Goodrich, Ken; Gunnarson, Tom; Petermaier,Korbinian; Stoll, Alex; Fredericks, Bill; hide

    2015-01-01

    On August 3rd and 4th, 2015, a workshop was held at the NASA Ames Research Center, located at the Moffett Federal Airfield in California to explore the aviation communities interest in Transformative Vertical Flight (TVF) Concepts. The Workshop was sponsored by the AHS International (AHS), the American Institute of Aeronautics and Astronautics (AIAA), the National Aeronautics and Space Administration (NASA), and hosted by the NASA Aeronautics Research Institute (NARI). This second annual workshop built on the success and enthusiasm generated by the first TVF Workshop held in Washington, DC in August of 2014. The previous Workshop identified the existence of a multi-disciplinary community interested in this topic and established a consensus among the participants that opportunities to establish further collaborations in this area are warranted. The desire to conduct a series of annual workshops augmented by online virtual technical seminars to strengthen the TVF community and continue planning for advocacy and collaboration was a direct outcome of the first Workshop. The second Workshop organizers focused on four desired action-oriented outcomes. The first was to establish and document common stakeholder needs and areas of potential collaborations. This includes advocacy strategies to encourage the future success of unconventional vertiport capable flight concept solutions that are enabled by emerging technologies. The second was to assemble a community that can collaborate on new conceptual design and analysis tools to permit novel configuration paths with far greater multi-disciplinary coupling (i.e., aero-propulsive-control) to be investigated. The third was to establish a community to develop and deploy regulatory guidelines. This community would have the potential to initiate formation of an American Society for Testing and Materials (ASTM) F44 Committee Subgroup for the development of consensus-based certification standards for General Aviation scale vertiport

  7. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The development and flight evaluation of an advanced composite empennage component is presented. The recommended concept for the covers is graphite-epoxy hats bonded to a graphite-epoxy skin. The hat flare-out has been eliminated, instead the hat is continuous into the joint. The recommended concept for the spars is graphite-epoxy caps and a hybrid of Kevlar-49 and graphite-epoxy in the spar web. The spar cap, spar web stiffeners for attaching the ribs, and intermediate stiffeners are planned to be fabricated as a unit. Access hole in the web will be reinforced with a donut type, zero degree graphite-epoxy wound reinforcement. The miniwich design concept in the upper three ribs originally proposed is changed to a graphite-epoxy stiffened solid laminate design concept. The recommended configuration for the lower seven ribs remains as graphite-epoxy caps with aluminum cruciform diagonals. The indicated weight saving for the current advanced composite vertical fin configuration is 20.2% including a 24 lb growth allowance. The project production cost saving is approximately 1% based on a cumulative average of 250 aircraft and including only material, production labor, and quality assurance costs.

  8. The IXV experience, from the mission conception to the flight results

    NASA Astrophysics Data System (ADS)

    Tumino, G.; Mancuso, S.; Gallego, J.-M.; Dussy, S.; Preaud, J.-P.; Di Vita, G.; Brunner, P.

    2016-07-01

    The atmospheric re-entry domain is a cornerstone of a wide range of space applications, ranging from reusable launcher stages developments, robotic planetary exploration, human space flight, to innovative applications such as reusable research platforms for in orbit validation of multiple space applications technologies. The Intermediate experimental Vehicle (IXV) is an advanced demonstrator which has performed in-flight experimentation of atmospheric re-entry enabling systems and technologies aspects, with significant advancements on Europe's previous flight experiences, consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission objectives were the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention was paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight, successfully performed on February 11th, 2015.

  9. Advanced flight computer. Special study

    NASA Technical Reports Server (NTRS)

    Coo, Dennis

    1995-01-01

    This report documents a special study to define a 32-bit radiation hardened, SEU tolerant flight computer architecture, and to investigate current or near-term technologies and development efforts that contribute to the Advanced Flight Computer (AFC) design and development. An AFC processing node architecture is defined. Each node may consist of a multi-chip processor as needed. The modular, building block approach uses VLSI technology and packaging methods that demonstrate a feasible AFC module in 1998 that meets that AFC goals. The defined architecture and approach demonstrate a clear low-risk, low-cost path to the 1998 production goal, with intermediate prototypes in 1996.

  10. Concept of Operations for Integrated Intelligent Flight Deck Displays and Decision Support Technologies

    NASA Technical Reports Server (NTRS)

    Bailey, Randall E.; Prinzel, Lawrence J.; Kramer, Lynda J.; Young, Steve D.

    2011-01-01

    The document describes a Concept of Operations for Flight Deck Display and Decision Support technologies which may help enable emerging Next Generation Air Transportation System capabilities while also maintaining, or improving upon, flight safety. This concept of operations is used as the driving function within a spiral program of research, development, test, and evaluation for the Integrated Intelligent Flight Deck (IIFD) project. As such, the concept will be updated at each cycle within the spiral to reflect the latest research results and emerging developments

  11. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  12. cFE/CFS (Core Flight Executive/Core Flight System)

    NASA Technical Reports Server (NTRS)

    Wildermann, Charles P.

    2008-01-01

    This viewgraph presentation describes in detail the requirements and goals of the Core Flight Executive (cFE) and the Core Flight System (CFS). The Core Flight Software System is a mission independent, platform-independent, Flight Software (FSW) environment integrating a reusable core flight executive (cFE). The CFS goals include: 1) Reduce time to deploy high quality flight software; 2) Reduce project schedule and cost uncertainty; 3) Directly facilitate formalized software reuse; 4) Enable collaboration across organizations; 5) Simplify sustaining engineering (AKA. FSW maintenance); 6) Scale from small instruments to System of Systems; 7) Platform for advanced concepts and prototyping; and 7) Common standards and tools across the branch and NASA wide.

  13. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  14. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  15. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  16. Integrated technology rotor/flight research rotor hub concept definition

    NASA Technical Reports Server (NTRS)

    Dixon, P. G. C.

    1983-01-01

    Two variations of the helicopter bearingless main rotor hub concept are proposed as bases for further development in the preliminary design phase of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) program. This selection was the result of an evaluation of three bearingless hub concepts and two articulated hub concepts with elastomeric bearings. The characteristics of each concept were evaluated by means of simplified methodology. These characteristics included the assessment of stability, vulnerability, weight, drag, cost, stiffness, fatigue life, maintainability, and reliability.

  17. Advanced Concept

    NASA Image and Video Library

    1997-01-02

    The Advanced Space Transportation Group takes the future of space travel far into the 21st Century. Pictured is an artist's concept of a third generation Reusable Launch Vehicle (RLV). Projected for the year 2025, this third generation RLV will introduce an era of space travel not unlike air travel today.

  18. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  19. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  20. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check components of the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  1. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, quality technicians check the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environment Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  2. The Next Generation Advanced Video Guidance Sensor: Flight Heritage and Current Development

    NASA Technical Reports Server (NTRS)

    Howard, Richard T.; Bryan, Thomas C.

    2009-01-01

    The Next Generation Advanced Video Guidance Sensor (NGAVGS) is the latest in a line of sensors that have flown four times in the last 10 years. The NGAVGS has been under development for the last two years as a long-range proximity operations and docking sensor for use in an Automated Rendezvous and Docking (AR&D) system. The first autonomous rendezvous and docking in the history of the U.S. Space Program was successfully accomplished by Orbital Express, using the Advanced Video Guidance Sensor (AVGS) as the primary docking sensor. That flight proved that the United States now has a mature and flight proven sensor technology for supporting Crew Exploration Vehicles (CEV) and Commercial Orbital Transport Systems (COTS) Automated Rendezvous and Docking (AR&D). NASA video sensors have worked well in the past: the AVGS used on the Demonstration of Autonomous Rendezvous Technology (DART) mission operated successfully in "spot mode" out to 2 km, and the first generation rendezvous and docking sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on Space Shuttle flights in 1997 and 1998. This paper presents the flight heritage and results of the sensor technology, some hardware trades for the current sensor, and discusses the needs of future vehicles that may rendezvous and dock with the International Space Station (ISS) and other Constellation vehicles. It also discusses approaches for upgrading AVGS to address parts obsolescence, and concepts for minimizing the sensor footprint, weight, and power requirements. In addition, the testing of the various NGAVGS development units will be discussed along with the use of the NGAVGS as a proximity operations and docking sensor.

  3. Design of an advanced flight planning system

    NASA Technical Reports Server (NTRS)

    Sorensen, J. A.; Goka, T.

    1985-01-01

    The demand for both fuel conservation and four-dimensional traffic management require that the preflight planning process be designed to account for advances in airborne flight management and weather forecasting. The steps and issues in designing such an advanced flight planning system are presented. Focus is placed on the different optimization options for generating the three-dimensional reference path. For the cruise phase, one can use predefined jet routes, direct routes based on a network of evenly spaced grid points, or a network where the grid points are existing navaid locations. Each choice has its own problem in determining an optimum solution. Finding the reference path is further complicated by choice of cruise altitude levels, use of a time-varying weather field, and requiring a fixed time-of-arrival (four-dimensional problem).

  4. External Vision Systems (XVS) Proof-of-Concept Flight Test Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Williams, Steven P.; Kramer, Lynda J.; Arthur, Jarvis J.; Prinzel, Lawrence, III; Bailey, Randall E.

    2014-01-01

    NASA's Fundamental Aeronautics Program, High Speed Project is performing research, development, test and evaluation of flight deck and related technologies to support future low-boom, supersonic configurations (without forward-facing windows) by use of an eXternal Vision System (XVS). The challenge of XVS is to determine a combination of sensor and display technologies which can provide an equivalent level of safety and performance to that provided by forward-facing windows in today's aircraft. This flight test was conducted with the goal of obtaining performance data on see-and-avoid and see-to-follow traffic using a proof-of-concept XVS design in actual flight conditions. Six data collection flights were flown in four traffic scenarios against two different sized participating traffic aircraft. This test utilized a 3x1 array of High Definition (HD) cameras, with a fixed forward field-of-view, mounted on NASA Langley's UC-12 test aircraft. Test scenarios, with participating NASA aircraft serving as traffic, were presented to two evaluation pilots per flight - one using the proof-of-concept (POC) XVS and the other looking out the forward windows. The camera images were presented on the XVS display in the aft cabin with Head-Up Display (HUD)-like flight symbology overlaying the real-time imagery. The test generated XVS performance data, including comparisons to natural vision, and post-run subjective acceptability data were also collected. This paper discusses the flight test activities, its operational challenges, and summarizes the findings to date.

  5. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a quality technician checks the control panel on hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  6. Advanced Plant Habitat Flight Unit #1

    NASA Image and Video Library

    2017-07-24

    Inside a laboratory in the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, LED plant growth lights are being checked out on the hardware for the Advanced Plant Habitat flight unit. The flight unit is an exact replica of the APH that was delivered to the International Space Station. Validation tests and post-delivery checkout was performed to prepare for space station in-orbit APH activities. The flight unit will be moved to the International Space Station Environmental Simulator to begin an experiment verification test for the science that will fly on the first mission, PH-01. Developed by NASA and ORBITEC of Madison, Wisconsin, the APH is the largest plant chamber built for the agency. It is a fully automated plant growth facility that will be used to conduct bioscience research on the space station.

  7. High speed research system study. Advanced flight deck configuration effects

    NASA Technical Reports Server (NTRS)

    Swink, Jay R.; Goins, Richard T.

    1992-01-01

    In mid-1991 NASA contracted with industry to study the high-speed civil transport (HSCT) flight deck challenges and assess the benefits, prior to initiating their High Speed Research Program (HSRP) Phase 2 efforts, then scheduled for FY-93. The results of this nine-month effort are presented, and a number of the most significant findings for the specified advanced concepts are highlighted: (1) a no nose-droop configuration; (2) a far forward cockpit location; and (3) advanced crew monitoring and control of complex systems. The results indicate that the no nose-droop configuration is critically dependent upon the design and development of a safe, reliable, and certifiable Synthetic Vision System (SVS). The droop-nose configuration would cause significant weight, performance, and cost penalties. The far forward cockpit location, with the conventional side-by-side seating provides little economic advantage; however, a configuration with a tandem seating arrangement provides a substantial increase in either additional payload (i.e., passengers) or potential downsizing of the vehicle with resulting increases in performance efficiencies and associated reductions in emissions. Without a droop nose, forward external visibility is negated and takeoff/landing guidance and control must rely on the use of the SVS. The technologies enabling such capabilities, which de facto provides for Category 3 all-weather operations on every flight independent of weather, represent a dramatic benefits multiplier in a 2005 global ATM network: both in terms of enhanced economic viability and environmental acceptability.

  8. Advanced flight hardware for organic separations

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1997-01-01

    Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT fabricated and integrated the ADSEP flight hardware for a commercially-driven flight experiment as the initial step in marketing space processing services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  9. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  10. Electrolysis Performance Improvement Concept Study (EPICS) Flight Experiment-Reflight

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.

    1997-01-01

    The Electrolysis Performance Improvement Concept Study (EPICS) is a flight experiment to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer (SFE) concept which was selected for the use aboard the International Space Station (ISS) for oxygen (O2) generation. It also is to investigate the impact of microgravity on electrochemical cell performance. Electrochemical cells are important to the space program because they provide an efficient means of generating O2 and hydrogen (H2) in space. Oxygen and H2 are essential not only for the survival of humans in space but also for the efficient and economical operation of various space systems. Electrochemical cells can reduce the mass, volume and logistical penalties associated with resupply and storage by generating and/or consuming these gases in space. An initial flight of the EPICS was conducted aboard STS-69 from September 7 to 8, 1995. A temperature sensor characteristics shift and a missing line of software code resulted in only partial success of this initial flight. Based on the review and recommendations of a National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) review team a reflight activity was initiated to obtain the remaining desired results, not achieved during the initial flight.

  11. Flight control systems development and flight test experience with the HiMAT research vehicles

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Earls, Michael R.

    1988-01-01

    Two highly maneuverable aircraft technology (HiMAT) remotely piloted vehicles were flown a total of 26 flights. These subscale vehicles were of advanced aerodynamic configuration with advanced technology concepts such as composite and metallic structures, digital integrated propulsion control, and ground (primary) and airborne (backup) relaxed static stability, digital fly-by-wire control systems. Extensive systems development, checkout, and flight qualification were required to conduct the flight test program. The design maneuver goal was to achieve a sustained 8-g turn at Mach 0.9 at an altitude of 25,000 feet. This goal was achieved, along with the acquisition of high-quality flight data at subsonic and supersonic Mach numbers. Control systems were modified in a variety of ways using the flight-determined aerodynamic characteristics. The HiMAT program was successfully completed with approximately 11 hours of total flight time.

  12. Recent flight-test results of optical airdata techniques

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.

    1993-01-01

    Optical techniques for measuring airdata parameters were demonstrated with promising results on high performance fighter aircraft. These systems can measure the airspeed vector, and some are not as dependent on special in-flight calibration processes as current systems. Optical concepts for measuring freestream static temperature and density are feasible for in-flight applications. The best feature of these concepts is that the air data measurements are obtained nonintrusively, and for the most part well into the freestream region of the flow field about the aircraft. Current requirements for measuring air data at high angle of attack, and future need to measure the same information at hypersonic flight conditions place strains on existing techniques. Optical technology advances show outstanding potential for application in future programs and promise to make common use of optical concepts a reality. Results from several flight-test programs are summarized, and the technology advances required to make optical airdata techniques practical are identified.

  13. Acoustic flight testing of advanced design propellers on a JetStar aircraft

    NASA Technical Reports Server (NTRS)

    Lasagna, P.; Mackall, K.

    1981-01-01

    Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.

  14. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; hide

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  15. Advances in the Remote Monitoring of Balloon Flights

    NASA Astrophysics Data System (ADS)

    Breeding, S.

    At the National Scientific Balloon Facility (NSBF), we must staff the Long Duration Balloon (LDB) control center 24 hours a day during LDB flights. This requires three daily shifts of two operators (balloon control and tdrss scheduling). In addition to this we also have one engineer on-call as LDB Lead to resolve technical issues and one manager on-call for flight management. These on-call periods are typically 48 to 72 hours in length. In the past the on-call staff had to travel to the LDB control center in order to monitor the status of a flight in any detail. This becomes problematic as flight durations push out beyond 20 to 30 day lengths, as these staff members are not available for business travel during these periods. This paper describes recent advances which allow for the remote monitoring of scientific balloon flight ground station computer displays. This allows balloon flight managers and lead engineers to check flight status and performance from any location with a network or telephone connection. This capability frees key personnel from the NSBF base during flights. It also allows other interested parties to check on the flight status at their convenience.

  16. Conflict Probe Concepts Analysis in Support of Free Flight

    NASA Technical Reports Server (NTRS)

    Warren, Anthony W.; Schwab, Robert W.; Geels, Timothy J.; Shakarian, Arek

    1997-01-01

    This study develops an operational concept and requirements for en route Free Flight using a simulation of the Cleveland Air Route Traffic Control Center, and develops requirements for an automated conflict probe for use in the Air Traffic Control (ATC) Centers. In this paper, we present the results of simulation studies and summarize implementation concepts and infrastructure requirements to transition from the current air traffic control system to mature Free Right. The transition path to Free Flight envisioned in this paper assumes an orderly development of communications, navigation, and surveillance (CNS) technologies based on results from our simulation studies. The main purpose of this study is to provide an overall context and methodology for evaluating airborne and ground-based requirements for cooperative development of the future ATC system.

  17. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  18. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    Pictured is an artist's concept of the experimental X-37 Reusable Launch Vehicle re-entering Earth‘s atmosphere. NASA and the Boeing Company entered a cooperative agreement to develop and fly a new experimental space plane called the X-37 that would be ferried into orbit to test new technologies. The reusable space plane incorporated technologies aimed at significantly cutting the cost of space flight. The X-37 would be carried into orbit by the Space Shuttle or be launched by an expendable rocket. After the X-37 was deployed, it would remain in orbit up to 21 days, performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  19. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  20. Free Flight Ground Testing of ADEPT in Advance of the Sounding Rocket One Flight Experiment

    NASA Technical Reports Server (NTRS)

    Smith, B. P.; Dutta, S.

    2017-01-01

    The Adaptable Deployable Entry and Placement Technology (ADEPT) project will be conducting the first flight test of ADEPT, titled Sounding Rocket One (SR-1), in just two months. The need for this flight test stems from the fact that ADEPT's supersonic dynamic stability has not yet been characterized. The SR-1 flight test will provide critical data describing the flight mechanics of ADEPT in ballistic flight. These data will feed decision making on future ADEPT mission designs. This presentation will describe the SR-1 scientific data products, possible flight test outcomes, and the implications of those outcomes on future ADEPT development. In addition, this presentation will describe free-flight ground testing performed in advance of the flight test. A subsonic flight dynamics test conducted at the Vertical Spin Tunnel located at NASA Langley Research Center provided subsonic flight dynamics data at high and low altitudes for multiple center of mass (CoM) locations. A ballistic range test at the Hypervelocity Free Flight Aerodynamics Facility (HFFAF) located at NASA Ames Research Center provided supersonic flight dynamics data at low supersonic Mach numbers. Execution and outcomes of these tests will be discussed. Finally, a hypothesized trajectory estimate for the SR-1 flight will be presented.

  1. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  2. Advanced space propulsion concepts

    NASA Technical Reports Server (NTRS)

    Lapointe, Michael R.

    1993-01-01

    The NASA Lewis Research Center has been actively involved in the evaluation and development of advanced spacecraft propulsion. Recent program elements have included high energy density propellants, electrode less plasma thruster concepts, and low power laser propulsion technology. A robust advanced technology program is necessary to develop new, cost-effective methods of spacecraft propulsion, and to continue to push the boundaries of human knowledge and technology.

  3. Applications of flight control system methods to an advanced combat rotorcraft

    NASA Technical Reports Server (NTRS)

    Tischler, Mark B.; Fletcher, Jay W.; Morris, Patrick M.; Tucker, George T.

    1989-01-01

    Advanced flight control system design, analysis, and testing methodologies developed at the Ames Research Center are applied in an analytical and flight test evaluation of the Advanced Digital Optical Control System (ADOCS) demonstrator. The primary objectives are to describe the knowledge gained about the implications of digital flight control system design for rotorcraft, and to illustrate the analysis of the resulting handling-qualities in the context of the proposed new handling-qualities specification for rotorcraft. Topics covered in-depth are digital flight control design and analysis methods, flight testing techniques, ADOCS handling-qualities evaluation results, and correlation of flight test results with analytical models and the proposed handling-qualities specification. The evaluation of the ADOCS demonstrator indicates desirable response characteristics based on equivalent damping and frequency, but undersirably large effective time-delays (exceeding 240 m sec in all axes). Piloted handling-qualities are found to be desirable or adequate for all low, medium, and high pilot gain tasks; but handling-qualities are inadequate for ultra-high gain tasks such as slope and running landings.

  4. A Multi-Operator Simulation for Investigation of Distributed Air Traffic Management Concepts

    NASA Technical Reports Server (NTRS)

    Peters, Mark E.; Ballin, Mark G.; Sakosky, John S.

    2002-01-01

    This paper discusses the current development of an air traffic operations simulation that supports feasibility research for advanced air traffic management concepts. The Air Traffic Operations Simulation (ATOS) supports the research of future concepts that provide a much greater role for the flight crew in traffic management decision-making. ATOS provides representations of the future communications, navigation, and surveillance (CNS) infrastructure, a future flight deck systems architecture, and advanced crew interfaces. ATOS also provides a platform for the development of advanced flight guidance and decision support systems that may be required for autonomous operations.

  5. Impact of advanced onboard processing concepts on end-to-end data system

    NASA Technical Reports Server (NTRS)

    Sos, J. Y.

    1978-01-01

    An investigation is conducted of the impact of advanced onboard data handling concepts on the total system in general and on ground processing operations, such as those being performed in the central data processing facility of the NASA Goddard Space Flight Center. In one of these concepts, known as the instrument telemetry packet (ITP) system, telemetry data from a single instrument is encoded into a packet, along with other ancillary data, and transmitted in this form to the ground. Another concept deals with onboard temporal registration of image data from such sensors as the thematic mapper, to be carried onboard the Landsat-D spacecraft in 1981. It is found that the implementation of the considered concepts will result in substantial simplification of the ground processing element of the system. With the projected tenfold increase in the data volume expected in the next decade, the introduction of ITP should keep the cost of the ground data processing function within reasonable bounds and significantly contribute to a more timely delivery of data/information to the end user.

  6. Testing Microgravity Flight Hardware Concepts on the NASA KC-135

    NASA Technical Reports Server (NTRS)

    Motil, Susan M.; Harrivel, Angela R.; Zimmerli, Gregory A.

    2001-01-01

    This paper provides an overview of utilizing the NASA KC-135 Reduced Gravity Aircraft for the Foam Optics and Mechanics (FOAM) microgravity flight project. The FOAM science requirements are summarized, and the KC-135 test-rig used to test hardware concepts designed to meet the requirements are described. Preliminary results regarding foam dispensing, foam/surface slip tests, and dynamic light scattering data are discussed in support of the flight hardware development for the FOAM experiment.

  7. Development and flight test of a helicopter compact, portable, precision landing system concept

    NASA Technical Reports Server (NTRS)

    Clary, G. R.; Bull, J. S.; Davis, T. J.; Chisholm, J. P.

    1984-01-01

    An airborne, radar-based, precision approach concept is being developed and flight tested as a part of NASA's Rotorcraft All-Weather Operations Research Program. A transponder-based beacon landing system (BLS) applying state-of-the-art X-band radar technology and digital processing techniques, was built and is being flight tested to demonstrate the concept feasibility. The BLS airborne hardware consists of an add-on microprocessor, installed in conjunction with the aircraft weather/mapping radar, which analyzes the radar beacon receiver returns and determines range, localizer deviation, and glide-slope deviation. The ground station is an inexpensive, portable unit which can be quickly deployed at a landing site. Results from the flight test program show that the BLS concept has a significant potential for providing rotorcraft with low-cost, precision instrument approach capability in remote areas.

  8. Potential of balloon payloads for in flight validation of direct and nulling interferometry concepts

    NASA Astrophysics Data System (ADS)

    Demangeon, Olivier; Ollivier, Marc; Le Duigou, Jean-Michel; Cassaing, Frédéric; Coudé du Foresto, Vincent; Mourard, Denis; Kern, Pierre; Lam Trong, Tien; Evrard, Jean; Absil, Olivier; Defrere, Denis; Lopez, Bruno

    2010-07-01

    While the question of low cost / low science precursors is raised to validate the concepts of direct and nulling interferometry space missions, balloon payloads offer a real opportunity thanks to their relatively low cost and reduced development plan. Taking into account the flight capabilities of various balloon types, we propose in this paper, several concepts of payloads associated to their flight plan. We also discuss the pros and cons of each concepts in terms of technological and science demonstration power.

  9. Proof-of-Concept of a Networked Validation Environment for Distributed Air/Ground NextGen Concepts

    NASA Technical Reports Server (NTRS)

    Grisham, James; Larson, Natalie; Nelson, Justin; Reed, Joshua; Suggs, Marvin; Underwood, Matthew; Papelis, Yiannis; Ballin, Mark G.

    2013-01-01

    The National Airspace System (NAS) must be improved to increase capacity, reduce flight delays, and minimize environmental impacts of air travel. NASA has been tasked with aiding the Federal Aviation Administration (FAA) in NAS modernization. Automatic Dependent Surveillance-Broadcast (ADS-B) is an enabling technology that is fundamental to realization of the Next Generation Air Transportation System (NextGen). Despite the 2020 FAA mandate requiring ADS-B Out equipage, airspace users are lacking incentives to equip with the requisite ADS-B avionics. A need exists to validate in flight tests advanced concepts of operation (ConOps) that rely on ADS-B and other data links without requiring costly equipage. A potential solution is presented in this paper. It is possible to emulate future data link capabilities using the existing in-flight Internet and reduced-cost test equipment. To establish proof-of-concept, a high-fidelity traffic operations simulation was modified to include a module that simulated Internet transmission of ADS-B messages. An advanced NASA ConOp, Flight Deck Interval Management (FIM), was used to evaluate technical feasibility. A preliminary assessment of the effects of latency and dropout rate on FIM was performed. Flight hardware that would be used by proposed test environment was connected to the simulation so that data transfer from aircraft systems to test equipment could be verified. The results indicate that the FIM ConOp, and therefore, many other advanced ConOps with equal or lesser response characteristics and data requirements, can be evaluated in flight using the proposed concept.

  10. Experience with synchronous and asynchronous digital control systems. [for flight

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Chacon, Claude V.; Lock, Wilton P.

    1986-01-01

    Flight control systems have undergone a revolution since the days of simple mechanical linkages; presently the most advanced systems are full-authority, full-time digital systems controlling unstable aircraft. With the use of advanced control systems, the aerodynamic design can incorporate features that allow greater performance and fuel savings, as can be seen on the new Airbus design and advanced tactical fighter concepts. These advanced aircraft will be and are relying on the flight control system to provide the stability and handling qualities required for safe flight and to allow the pilot to control the aircraft. Various design philosophies have been proposed and followed to investigate system architectures for these advanced flight control systems. One major area of discussion is whether a multichannel digital control system should be synchronous or asynchronous. This paper addressed the flight experience at the Dryden Flight Research Facility of NASA's Ames Research Center with both synchronous and asynchronous digital flight control systems. Four different flight control systems are evaluated against criteria such as software reliability, cost increases, and schedule delays.

  11. Advancing Free Flight Through Human Factors: Workshop Report

    DOT National Transportation Integrated Search

    1995-08-01

    This report describes the results of the Advancing Free Flight Through Human : Factors technical workshop held on June 20 and 21, 1995. The purpose of this : technical workshop was to begin the process of identifying and solving human : factors issue...

  12. Dryden Flight Research Center: The World's Premiere Installation for Atmospheric Flight Research

    NASA Technical Reports Server (NTRS)

    Ratnayake, Nalin Asela

    2007-01-01

    This viewgraph presentation reviews NASA Dryden's capabilities, the work that Dryden has done for NASA, and its current research. Dryden's Mission is stated to advance technology and science through flight. The mission elements are: (1) Perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, (2) Validate space exploration concepts, (3) Conduct airborne remote sensing and science observations, (4) Support operations of the Space Shuttle and the ISS for NASA and the Nation.

  13. Study of advanced fuel system concepts for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.

    1985-01-01

    An analytical study was performed in order to assess relative performance and economic factors involved with alternative advanced fuel systems for future commercial aircraft operating with broadened property fuels. The DC-10-30 wide-body tri-jet aircraft and the CF6-8OX engine were used as a baseline design for the study. Three advanced systems were considered and were specifically aimed at addressing freezing point, thermal stability and lubricity fuel properties. Actual DC-10-30 routes and flight profiles were simulated by computer modeling and resulted in prediction of aircraft and engine fuel system temperatures during a nominal flight and during statistical one-day-per-year cold and hot flights. Emergency conditions were also evaluated. Fuel consumption and weight and power extraction results were obtained. An economic analysis was performed for new aircraft and systems. Advanced system means for fuel tank heating included fuel recirculation loops using engine lube heat and generator heat. Environmental control system bleed air heat was used for tank heating in a water recirculation loop. The results showed that fundamentally all of the three advanced systems are feasible but vary in their degree of compatibility with broadened-property fuel.

  14. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  15. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  16. Comparison of Pilots' Situational Awareness While Monitoring Autoland Approaches Using Conventional and Advanced Flight Display Formats

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Busquets, Anthony M.

    2000-01-01

    A simulation experiment was performed to assess situation awareness (SA) and workload of pilots while monitoring simulated autoland operations in Instrument Meteorological Conditions with three advanced display concepts: two enhanced electronic flight information system (EFIS)-type display concepts and one totally synthetic, integrated pictorial display concept. Each concept incorporated sensor-derived wireframe runway and iconic depictions of sensor-detected traffic in different locations on the display media. Various scenarios, involving conflicting traffic situation assessments, main display failures, and navigation/autopilot system errors, were used to assess the pilots' SA and workload during autoland approaches with the display concepts. From the results, for each scenario, the integrated pictorial display concept provided the pilots with statistically equivalent or substantially improved SA over the other display concepts. In addition to increased SA, subjective rankings indicated that the pictorial concept offered reductions in overall pilot workload (in both mean ranking and spread) over the two enhanced EFIS-type display concepts. Out of the display concepts flown, the pilots ranked the pictorial concept as the display that was easiest to use to maintain situational awareness, to monitor an autoland approach, to interpret information from the runway and obstacle detecting sensor systems, and to make the decision to go around.

  17. Preliminary flight test results from the advanced photovoltaic experiment

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight, limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  18. Preliminary results from the advanced photovoltaic experiment flight test

    NASA Technical Reports Server (NTRS)

    Brinker, David J.; Hart, Russell E., Jr.; Hickey, John R.

    1990-01-01

    The Advanced Photovoltaic Experiment is a space flight test designed to provide reference cell standards for photovoltaic measurement as well as to investigate the solar spectrum and the effect of the space environment on solar cells. After a flight of 69 months in low earth orbit as part of the Long Duration Exposure Facility set of experiments, it was retrieved in January, 1990. The electronic data acquisition system functioned as designed, measuring and recording cell performance data over the first 358 days of flight; limited by battery lifetime. Significant physical changes are also readily apparent, including erosion of front surface paint, micrometeoroid and debris catering and contamination.

  19. Nanotechnology Concepts at Marshall Space Flight Center: Engineering Directorate

    NASA Technical Reports Server (NTRS)

    Bhat, B.; Kaul, R.; Shah, S.; Smithers, G.; Watson, M. D.

    2001-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has need for miniaturization of components, minimization of weight, and maximization of performance, and nanotechnology will help us get there. Marshall Space Flight Center's (MSFC's) Engineering Directorate is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science, and space optics manufacturing. MSFC has a dedicated group of technologists who are currently developing high-payoff nanotechnology concepts. This poster presentation will outline some of the concepts being developed including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors, and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  20. Flight evaluation of advanced third-generation midwave infrared sensor

    NASA Astrophysics Data System (ADS)

    Shen, Chyau N.; Donn, Matthew

    1998-08-01

    In FY-97 the Counter Drug Optical Upgrade (CDOU) demonstration program was initiated by the Program Executive Office for Counter Drug to increase the detection and classification ranges of P-3 counter drug aircraft by using advanced staring infrared sensors. The demonstration hardware is a `pin-for-pin' replacement of the AAS-36 Infrared Detection Set (IRDS) located under the nose radome of a P-3 aircraft. The hardware consists of a 3rd generation mid-wave infrared (MWIR) sensor integrated into a three axis-stabilized turret. The sensor, when installed on the P- 3, has a hemispheric field of regard and analysis has shown it will be capable of detecting and classifying Suspected Drug Trafficking Aircraft and Vessels at ranges several factors over the current IRDS. This paper will discuss the CDOU system and it's lab, ground, and flight evaluation results. Test targets included target templates, range targets, dedicated target boats, and targets of opportunity at the Naval Air Warfare Center Aircraft Division and at operational test sites. The objectives of these tests were to: (1) Validate the integration concept of the CDOU package into the P-3 aircraft. (2) Validate the end-to-end functionality of the system, including sensor/turret controls and recording of imagery during flight. (3) Evaluate the system sensitivity and resolution on a set of verified resolution targets templates. (4) Validate the ability of the 3rd generation MWIR sensor to detect and classify targets at a significantly increased range.

  1. Research Opportunities in Advanced Aerospace Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  2. Flight vehicle thermal testing with infrared lamps

    NASA Technical Reports Server (NTRS)

    Fields, Roger A.

    1992-01-01

    The verification and certification of new structural material concepts for advanced high speed flight vehicles relies greatly on thermal testing with infrared quartz lamps. The basic quartz heater system characteristics and design considerations are presented. Specific applications are illustrated with tests that were conducted for the X-15, the Space Shuttle, and YF-12 flight programs.

  3. Modeling and Test Data Analysis of a Tank Rapid Chill and Fill System for the Advanced Shuttle Upper Stage (ASUS) Concept

    NASA Technical Reports Server (NTRS)

    Flachbart, Robin; Hedayat, Ali; Holt, Kimberly A.; Cruit, Wendy (Technical Monitor)

    2001-01-01

    The Advanced Shuttle Upper Stage (ASUS) concept addresses safety concerns associated .with cryogenic stages by launching empty, and filling on ascent. The ASUS employs a rapid chill and fill concept. A spray bar is used to completely chill the tank before fill, allowing the vent valve to be closed during the fill process. The first tests of this concept, using a flight size (not flight weight) tank. were conducted at Marshall Space Flight Center (MSFC) during the summer of 2000. The objectives of the testing were to: 1) demonstrate that a flight size tank could be filled in roughly 5 minutes to accommodate the shuttle ascent window, and 2) demonstrate a no-vent fill of the tank. A total of 12 tests were conducted. Models of the test facility fill and vent systems, as well as the tank, were constructed. The objective of achieving tank fill in 5 minutes was met during the test series. However, liquid began to accumulate in the tank before it was chilled. Since the tank was not chilled until the end of each test, vent valve closure during fill was not possible. Even though the chill and fill process did not occur as expected, reasonable model correlation with the test data was achieved.

  4. Flight Test Results for the F-16XL With a Digital Flight Control System

    NASA Technical Reports Server (NTRS)

    Stachowiak, Susan J.; Bosworth, John T.

    2004-01-01

    In the early 1980s, two F-16 airplanes were modified to extend the fuselage length and incorporate a large area delta wing planform. These two airplanes, designated the F-16XL, were designed by the General Dynamics Corporation (now Lockheed Martin Tactical Aircraft Systems) (Fort Worth, Texas) and were prototypes for a derivative fighter evaluation program conducted by the United States Air Force. Although the concept was never put into production, the F-16XL prototypes provided a unique planform for testing concepts in support of future high-speed supersonic transport aircraft. To extend the capabilities of this testbed vehicle the F-16XL ship 1 aircraft was upgraded with a digital flight control system. The added flexibility of a digital flight control system increases the versatility of this airplane as a testbed for aerodynamic research and investigation of advanced technologies. This report presents the handling qualities flight test results covering the envelope expansion of the F-16XL with the digital flight control system.

  5. Dryden Flight Research Center Overview

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    2007-01-01

    This viewgraph document presents a overview of the Dryden Flight Research Center's facilities. Dryden's mission is to advancing technology and science through flight. The mission elements are: perform flight research and technology integration to revolutionize aviation and pioneer aerospace technology, validate space exploration concepts, conduct airborne remote sensing and science observations, and support operations of the Space Shuttle and the ISS for NASA and the Nation. It reviews some of the recent research projects that Dryden has been involved in, such as autonomous aerial refueling, the"Quiet Spike" demonstration on supersonic F-15, intelligent flight controls, high angle of attack research on blended wing body configuration, and Orion launch abort tests.

  6. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).

  7. Development of a VOR/DME model for an advanced concepts simulator

    NASA Technical Reports Server (NTRS)

    Steinmetz, G. G.; Bowles, R. L.

    1984-01-01

    The report presents a definition of a VOR/DME, airborne and ground systems simulation model. This description was drafted in response to a need in the creation of an advanced concepts simulation in which flight station design for the 1980 era can be postulated and examined. The simulation model described herein provides a reasonable representation of VOR/DME station in the continental United States including area coverage by type and noise errors. The detail in which the model has been cast provides the interested researcher with a moderate fidelity level simulator tool for conducting research and evaluation of navigator algorithms. Assumptions made within the development are listed and place certain responsibilities (data bases, communication with other simulation modules, uniform round earth, etc.) upon the researcher.

  8. An evolving-requirements technology assessment process for advanced propulsion concepts

    NASA Astrophysics Data System (ADS)

    McClure, Erin Kathleen

    The following dissertation investigates the development of a methodology suitable for the evaluation of advanced propulsion concepts. At early stages of development, both the future performance of these concepts and their requirements are highly uncertain, making it difficult to forecast their future value. Developing advanced propulsion concepts requires a huge investment of resources. The methodology was developed to enhance the decision-makers understanding of the concepts, so that they could mitigate the risks associated with developing such concepts. A systematic methodology to identify potential advanced propulsion concepts and assess their robustness is necessary to reduce the risk of developing advanced propulsion concepts. Existing advanced design methodologies have evaluated the robustness of technologies or concepts to variations in requirements, but they are not suitable to evaluate a large number of dissimilar concepts. Variations in requirements have been shown to impact the development of advanced propulsion concepts, and any method designed to evaluate these concepts must incorporate the possible variations of the requirements into the assessment. In order to do so, a methodology was formulated to be capable of accounting for two aspects of the problem. First, it had to systemically identify a probabilistic distribution for the future requirements. Such a distribution would allow decision-makers to quantify the uncertainty introduced by variations in requirements. Second, the methodology must be able to assess the robustness of the propulsion concepts as a function of that distribution. This dissertation describes in depth these enabling elements and proceeds to synthesize them into a new method, the Evolving Requirements Technology Assessment (ERTA). As a proof of concept, the ERTA method was used to evaluate and compare advanced propulsion systems that will be capable of powering a hurricane tracking, High Altitude, Long Endurance (HALE) unmanned

  9. A concept of a hypersonic flight experiment of a winged vehicle

    NASA Astrophysics Data System (ADS)

    Shirouzu, Masao; Watanabe, Shigeya

    A concept of a flight experiment using a winged hypersonic research vehicle is proposed by the National Aerospace Laboratory (NAL) as one of the flight experiment series preceding to the development of HOPE (H-II Orbiting Plane). The present paper describes the purpose of the experiment, the outline of the flight, the configuration and aerodynamic characteristics of the vehicle, and items of experiment and measurement. The present experiment is to acquire experience on the development and the flight of a hypersonic winged vehicle, in contrast to the ballistic flight of the OREX (Orbital Reentry Experiment) and to collect flight data for validation of tests and simulations on the ground. The vehicle of about 1.5 tons will be launched by a two-stage version of the J-I. The vehicle will be separated at an altitude of 70-80 km at a velocity of Mach 18-20, and inserted to the reentry trajectory of HOPE. The vehicle will be decelerated by parachutes and splash into the ocean south of Japan, where it will be recovered.

  10. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  11. The Design and Implementation of NASA's Advanced Flight Computing Module

    NASA Technical Reports Server (NTRS)

    Alkakaj, Leon; Straedy, Richard; Jarvis, Bruce

    1995-01-01

    This paper describes a working flight computer Multichip Module developed jointly by JPL and TRW under their respective research programs in a collaborative fashion. The MCM is fabricated by nCHIP and is packaged within a 2 by 4 inch Al package from Coors. This flight computer module is one of three modules under development by NASA's Advanced Flight Computer (AFC) program. Further development of the Mass Memory and the programmable I/O MCM modules will follow. The three building block modules will then be stacked into a 3D MCM configuration. The mass and volume of the flight computer MCM achieved at 89 grams and 1.5 cubic inches respectively, represent a major enabling technology for future deep space as well as commercial remote sensing applications.

  12. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  13. Screening studies of advanced control concepts for airbreathing engines

    NASA Technical Reports Server (NTRS)

    Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.

    1993-01-01

    The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.

  14. NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    Cassanova, Robert A.

    1999-01-01

    The purpose of NASA Institute for Advanced Concepts (NIAC) is to provide an independent, open forum for the external analysis and definition of space and aeronautics advanced concepts to complement the advanced concepts activities conducted within the NASA Enterprises. The NIAC will issue Calls for Proposals during each year of operation and will select revolutionary advanced concepts for grant or contract awards through a peer review process. Final selection of awards will be with the concurrence of NASA's Chief Technologist. The operation of the NIAC is reviewed biannually by the NIAC Science, Exploration and Technology Council (NSETC) whose members are drawn from the senior levels of industry and universities. The process of defining the technical scope of the initial Call for Proposals was begun with the NIAC "Grand Challenges" workshop conducted on May 21-22, 1998 in Columbia, Maryland. These "Grand Challenges" resulting from this workshop became the essence of the technical scope for the first Phase I Call for Proposals which was released on June 19, 1998 with a due date of July 31, 1998. The first Phase I Call for Proposals attracted 119 proposals. After a thorough peer review, prioritization by NIAC and technical concurrence by NASA, sixteen subgrants were awarded. The second Phase I Call for Proposals was released on November 23, 1998 with a due date of January 31, 1999. Sixty-three (63) proposals were received in response to this Call. On December 2-3, 1998, the NSETC met to review the progress and future plans of the NIAC. The next NSETC meeting is scheduled for August 5-6, 1999. The first Phase II Call for Proposals was released to the current Phase I grantees on February 3,1999 with a due date of May 31, 1999. Plans for the second year of the contract include a continuation of the sequence of Phase I and Phase II Calls for Proposals and hosting the first NIAC Annual Meeting and USRA/NIAC Technical Symposium in NASA HQ.

  15. The Vehicle Control Systems Branch at the Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1990-01-01

    This paper outlines the responsibility of the Vehicle Control Systems Branch at the Marshall Space Flight Center (MSFC) to analyze, evaluate, define, design, verify, and specify requirements for advanced launch vehicles and related space projects, and to conduct research in advanced flight control concepts. Attention is given to branch responsibilities which include Shuttle-C, Shuttle-C Block II, Shuttle-Z, lunar cargo launch vehicles, Mars cargo launch vehicles, orbital maneuvering vehicle, automatic docking, tethered satellite, aeroassisted flight experiment, and solid rocket booster parachute recovery system design.

  16. Multiplexing electro-optic architectures for advanced aircraft integrated flight control systems

    NASA Technical Reports Server (NTRS)

    Seal, D. W.

    1989-01-01

    This report describes the results of a 10 month program sponsored by NASA. The objective of this program was to evaluate various optical sensor modulation technologies and to design an optimal Electro-Optic Architecture (EOA) for servicing remote clusters of sensors and actuators in advanced aircraft flight control systems. The EOA's supply optical power to remote sensors and actuators, process the modulated optical signals returned from the sensors, and produce conditioned electrical signals acceptable for use by a digital flight control computer or Vehicle Management System (VMS) computer. This study was part of a multi-year initiative under the Fiber Optic Control System Integration (FOCSI) program to design, develop, and test a totally integrated fiber optic flight/propulsion control system for application to advanced aircraft. Unlike earlier FOCSI studies, this program concentrated on the design of the EOA interface rather than the optical transducer technology itself.

  17. Flight Test Comparison Between Enhanced Vision (FLIR) and Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Kramer, Lynda J.; Bailey, Randall E.

    2005-01-01

    Limited visibility and reduced situational awareness have been cited as predominant causal factors for both Controlled Flight Into Terrain (CFIT) and runway incursion accidents. NASA s Synthetic Vision Systems (SVS) project is developing practical application technologies with the goal of eliminating low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance. A flight test evaluation was conducted in the summer of 2004 by NASA Langley Research Center under NASA s Aviation Safety and Security, Synthetic Vision System - Commercial and Business program. A Gulfstream G-V aircraft, modified and operated under NASA contract by the Gulfstream Aerospace Corporation, was flown over a 3-week period at the Reno/Tahoe International Airport and an additional 3-week period at the NASA Wallops Flight Facility to evaluate integrated Synthetic Vision System concepts. Flight testing was conducted to evaluate the performance, usability, and acceptance of an integrated synthetic vision concept which included advanced Synthetic Vision display concepts for a transport aircraft flight deck, a Runway Incursion Prevention System, an Enhanced Vision Systems (EVS), and real-time Database Integrity Monitoring Equipment. This paper focuses on comparing qualitative and subjective results between EVS and SVS display concepts.

  18. Flight Test of Propulsion Monitoring and Diagnostic System

    NASA Technical Reports Server (NTRS)

    Gabel, Steve; Elgersma, Mike

    2002-01-01

    The objective of this program was to perform flight tests of the propulsion monitoring and diagnostic system (PMDS) technology concept developed by Honeywell under the NASA Advanced General Aviation Transport Experiment (AGATE) program. The PMDS concept is intended to independently monitor the performance of the engine, providing continuous status to the pilot along with warnings if necessary as well as making the data available to ground maintenance personnel via a special interface. These flight tests were intended to demonstrate the ability of the PMDS concept to detect a class of selected sensor hardware failures, and the ability to successfully model the engine for the purpose of engine diagnosis.

  19. Feasibility of Supersonic Aircraft Concepts for Low-Boom and Flight Trim Constraints

    NASA Technical Reports Server (NTRS)

    Li, Wu

    2015-01-01

    This paper documents a process for analyzing whether a particular supersonic aircraft configuration layout and a given cruise condition are feasible to achieve a trimmed low-boom design. This process was motivated by the need to know whether a particular configuration at a given cruise condition could be reshaped to satisfy both low-boom and flight trim constraints. Without such a process, much effort could be wasted on shaping a configuration layout at a cruise condition that could never satisfy both low-boom and flight trim constraints simultaneously. The process helps to exclude infeasible configuration layouts with minimum effort and allows a designer to develop trimmed low-boom concepts more effectively. A notional low-boom supersonic demonstrator concept is used to illustrate the analysis/design process.

  20. Advanced Smart Structures Flight Experiments for Precision Spacecraft

    NASA Astrophysics Data System (ADS)

    Denoyer, Keith K.; Erwin, R. Scott; Ninneman, R. Rory

    2000-07-01

    This paper presents an overview as well as data from four smart structures flight experiments directed by the U.S. Air Force Research Laboratory's Space Vehicles Directorate in Albuquerque, New Mexico. The Middeck Active Control Experiment $¯Flight II (MACE II) is a space shuttle flight experiment designed to investigate modeling and control issues for achieving high precision pointing and vibration control of future spacecraft. The Advanced Controls Technology Experiment (ACTEX-I) is an experiment that has demonstrated active vibration suppression using smart composite structures with embedded piezoelectric sensors and actuators. The Satellite Ultraquiet Isolation Technology Experiment (SUITE) is an isolation platform that uses active piezoelectric actuators as well as damped mechanical flexures to achieve hybrid passive/active isolation. The Vibration Isolation, Suppression, and Steering Experiment (VISS) is another isolation platform that uses viscous dampers in conjunction with electromagnetic voice coil actuators to achieve isolation as well as a steering capability for an infra-red telescope.

  1. Flight Simulator Evaluation of Synthetic Vision Display Concepts to Prevent Controlled Flight Into Terrain (CFIT)

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Kramer, Lynda J.; Parrish, Russell V.; Bailey, Randall E.

    2004-01-01

    In commercial aviation, over 30-percent of all fatal accidents worldwide are categorized as Controlled Flight Into Terrain (CFIT) accidents, where a fully functioning airplane is inadvertently flown into the ground. The major hypothesis for a simulation experiment conducted at NASA Langley Research Center was that a Primary Flight Display (PFD) with synthetic terrain will improve pilots ability to detect and avoid potential CFITs compared to conventional instrumentation. All display conditions, including the baseline, contained a Terrain Awareness and Warning System (TAWS) and Vertical Situation Display (VSD) enhanced Navigation Display (ND). Each pilot flew twenty-two approach departure maneuvers in Instrument Meteorological Conditions (IMC) to the terrain challenged Eagle County Regional Airport (EGE) in Colorado. For the final run, flight guidance cues were altered such that the departure path went into terrain. All pilots with a synthetic vision system (SVS) PFD (twelve of sixteen pilots) noticed and avoided the potential CFIT situation. The four pilots who flew the anomaly with the conventional baseline PFD configuration (which included a TAWS and VSD enhanced ND) had a CFIT event. Additionally, all the SVS display concepts enhanced the pilot s situational awareness, decreased workload and improved flight technical error (FTE) compared to the baseline configuration.

  2. In-flight acoustic test results for the SR-2 and SR-3 advanced-design propellers

    NASA Technical Reports Server (NTRS)

    Lasagna, P. L.; Mackall, K. G.; Cohn, R. B.

    1983-01-01

    Several advanced-design propellers, previously tested in the wind tunnel at the Lewis Research Center, have been tested in flight at the Dryden Flight Research Facility. The flight-test propellers were mounted on a pylon on the top of the fuselage of a JetStar airplane. Acoustic data for the advanced-design SR-2 and SR-3 propellers at Mach numbers to 0.8 and helical-tip Mach numbers to 1.15 are presented; maximum blade-passage frequency sound-pressure levels are also compared.

  3. NASA Langley Research Center's Simulation-To-Flight Concept Accomplished through the Integration Laboratories of the Transport Research Facility

    NASA Technical Reports Server (NTRS)

    Martinez, Debbie; Davidson, Paul C.; Kenney, P. Sean; Hutchinson, Brian K.

    2004-01-01

    The Flight Simulation and Software Branch (FSSB) at NASA Langley Research Center (LaRC) maintains the unique national asset identified as the Transport Research Facility (TRF). The TRF is a group of facilities and integration laboratories utilized to support the LaRC's simulation-to-flight concept. This concept incorporates common software, hardware, and processes for both groundbased flight simulators and LaRC s B-757-200 flying laboratory identified as the Airborne Research Integrated Experiments System (ARIES). These assets provide Government, industry, and academia with an efficient way to develop and test new technology concepts to enhance the capacity, safety, and operational needs of the ever-changing national airspace system. The integration of the TRF enables a smooth continuous flow of the research from simulation to actual flight test.

  4. Concepts of advanced practice: what does it mean?

    PubMed

    Pearson, Helen

    'Advanced practice nursing' may be a familiar concept, but a definition of advanced practice, its scope and its responsibilities, remains elusive. This article discusses the origins of advanced practice, and its practical meaning for nurses working in the NHS today.

  5. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.

  6. Crew systems and flight station concepts for a 1995 transport aircraft

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1983-01-01

    Aircraft functional systems and crew systems were defined for a 1995 transport aircraft through a process of mission analysis, preliminary design, and evaluation in a soft mockup. This resulted in a revolutionary pilot's desk flight station design featuring an all-electric aircraft, fly-by-wire/light flight and thrust control systems, large electronic color head-down displays, head-up displays, touch panel controls for aircraft functional systems, voice command and response systems, and air traffic control systems projected for the 1990s. The conceptual aircraft, for which crew systems were designed, is a generic twin-engine wide-body, low-wing transport, capable of worldwide operation. The flight control system consists of conventional surfaces (some employed in unique ways) and new surfaces not used on current transports. The design will be incorporated into flight simulation facilities at NASA-Langley, NASA-Ames, and the Lockheed-Georgia Company. When interfaced with advanced air traffic control system models, the facilities will provide full-mission capability for researching issues affecting transport aircraft flight stations and crews of the 1990s.

  7. Qualification of the flight-critical AFTI/F-16 digital flight control system. [Advanced Fighter Technology Integration

    NASA Technical Reports Server (NTRS)

    Mackall, D. A.; Ishmael, S. D.; Regenie, V. A.

    1983-01-01

    Qualification considerations for assuring the safety of a life-critical digital flight control system include four major areas: systems interactions, verification, validation, and configuration control. The AFTI/F-16 design, development, and qualification illustrate these considerations. In this paper, qualification concepts, procedures, and methodologies are discussed and illustrated through specific examples.

  8. User type certification for advanced flight control systems

    NASA Technical Reports Server (NTRS)

    Gilson, Richard D.; Abbott, David W.

    1994-01-01

    Advanced avionics through flight management systems (FMS) coupled with autopilots can now precisely control aircraft from takeoff to landing. Clearly, this has been the most important improvement in aircraft since the jet engine. Regardless of the eventual capabilities of this technology, it is doubtful that society will soon accept pilotless airliners with the same aplomb they accept driverless passenger trains. Flight crews are still needed to deal with inputing clearances, taxiing, in-flight rerouting, unexpected weather decisions, and emergencies; yet it is well known that the contribution of human errors far exceed those of current hardware or software systems. Thus human errors remain, and are even increasing in percentage as the largest contributor to total system error. Currently, the flight crew is regulated by a layered system of certification: by operation, e.g., airline transport pilot versus private pilot; by category, e.g., airplane versus helicopter; by class, e.g., single engine land versus multi-engine land; and by type (for larger aircraft and jet powered aircraft), e.g., Boeing 767 or Airbus A320. Nothing in the certification process now requires an in-depth proficiency with specific types of avionics systems despite their prominent role in aircraft control and guidance.

  9. The Naturalistic Flight Deck System: An Integrated System Concept for Improved Single-Pilot Operations

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Goodrich, Kenneth H.; Cox, David E.; Jackson, Bruce; Palmer, Michael T.; Pope, Alan T.; Schlecht, Robin W.; Tedjojuwono, Ken K.; Trujillo, Anna C.; Williams, Ralph A.; hide

    2007-01-01

    This paper reviews current and emerging operational experiences, technologies, and human-machine interaction theories to develop an integrated flight system concept designed to increase the safety, reliability, and performance of single-pilot operations in an increasingly accommodating but stringent national airspace system. This concept, know as the Naturalistic Flight Deck (NFD), uses a form of human-centered automation known as complementary-automation (or complemation) to structure the relationship between the human operator and the aircraft as independent, collaborative agents having complimentary capabilities. The human provides commonsense knowledge, general intelligence, and creative thinking, while the machine contributes specialized intelligence and control, extreme vigilance, resistance to fatigue, and encyclopedic memory. To support the development of the NFD, an initial Concept of Operations has been created and selected normal and non-normal scenarios are presented in this document.

  10. Advanced Civilian Aeronautical Concepts

    NASA Technical Reports Server (NTRS)

    Bushnell, Dennis M.

    1996-01-01

    Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.

  11. Thermal energy storage flight experiments

    NASA Technical Reports Server (NTRS)

    Namkoong, D.

    1989-01-01

    Consideration is given to the development of an experimental program to study heat transfer, energy storage, fluid movement, and void location under microgravity. Plans for experimental flight packages containing Thermal Energy Storage (TES) material applicable for advanced solar heat receivers are discussed. Candidate materials for TES include fluoride salts, salt eutectics, silicides, and metals. The development of a three-dimensional computer program to describe TES material behavior undergoing melting and freezing under microgravity is also discussed. The TES experiment concept and plans for ground and flight tests are outlined.

  12. Launch vehicle flight control augmentation using smart materials and advanced composites (CDDF Project 93-05)

    NASA Technical Reports Server (NTRS)

    Barret, C.

    1995-01-01

    The Marshall Space Flight Center has a rich heritage of launch vehicles that have used aerodynamic surfaces for flight stability such as the Saturn vehicles and flight control such as on the Redstone. Recently, due to aft center-of-gravity locations on launch vehicles currently being studied, the need has arisen for the vehicle control augmentation that is provided by these flight controls. Aerodynamic flight control can also reduce engine gimbaling requirements, provide actuator failure protection, enhance crew safety, and increase vehicle reliability, and payload capability. In the Saturn era, NASA went to the Moon with 300 sq ft of aerodynamic surfaces on the Saturn V. Since those days, the wealth of smart materials and advanced composites that have been developed allow for the design of very lightweight, strong, and innovative launch vehicle flight control surfaces. This paper presents an overview of the advanced composites and smart materials that are directly applicable to launch vehicle control surfaces.

  13. Evaluation of advanced airship concepts

    NASA Technical Reports Server (NTRS)

    Joner, B. A.; Schneider, J. J.

    1975-01-01

    A historical overview of the airship, technical and operational characteristics of conventional and hybrid concepts, and the results of a parametric design analysis and evaluation are presented. The lift capabilities of certain buoyant fluids for a hypothetical 16 million cu.ft. volume airship are compared. The potential advanced airship concepts are surveyed, followed by a discussion of the six configurations: conventional nonrigid, conventional rigid, Deltoid (Dynairship), Guppoid (Megalifter), Helipsoid, and Heli-Stat. It is suggested that a partially buoyant Helipsoid concept of the optimum buoyancy ratio has the potential to solve the problems facing future airship development, such as Ballast and Ballast Recovery System, Full Low-Speed Controllability, Susceptibility to Wind/Gusting, Weather/Icing Constraints, Ground Handling/Hangaring, and Direct/Indirect Operating Costs.

  14. Advanced OTV engine concepts

    NASA Technical Reports Server (NTRS)

    Zachary, A. T.

    1984-01-01

    The results and status of engine technology efforts to date and related company funded activities are presented. Advanced concepts in combustors and injectors, high speed turbomachinery, controls, and high-area-ratio nozzles that package within a short length result is engines with specific impulse values 35 to 46 seconds higher than those now realized by operational systems. The improvement in life, reliability, and maintainability of OTV engines are important.

  15. Integrated control and display research for transition and vertical flight on the NASA V/STOL Research Aircraft (VSRA)

    NASA Technical Reports Server (NTRS)

    Foster, John D.; Moralez, Ernesto, III; Franklin, James A.; Schroeder, Jeffery A.

    1987-01-01

    Results of a substantial body of ground-based simulation experiments indicate that a high degree of precision of operation for recovery aboard small ships in heavy seas and low visibility with acceptable levels of effort by the pilot can be achieved by integrating the aircraft flight and propulsion controls. The availability of digital fly-by-wire controls makes it feasible to implement an integrated control design to achieve and demonstrate in flight the operational benefits promised by the simulation experience. It remains to validate these systems concepts in flight to establish their value for advanced short takeoff vertical landing (STOVL) aircraft designs. This paper summarizes analytical studies and simulation experiments which provide a basis for the flight research program that will develop and validate critical technologies for advanced STOVL aircraft through the development and evaluation of advanced, integrated control and display concepts, and lays out the plan for the flight program that will be conducted on NASA's V/STOL Research Aircraft (VSRA).

  16. In-flight acoustic results from an advanced-design propeller at Mach numbers to 0.8

    NASA Technical Reports Server (NTRS)

    Mackall, K. G.; Lasagna, P. L.; Walsh, K.; Dittmar, J. H.

    1982-01-01

    Acoustic data for the advanced-design SR-3 propeller at Mach numbers to 0.8 and helical tip Mach numbers to 1.14 are presented. Several advanced-design propellers, previously tested in wind tunnels at the Lewis Research Center, are being tested in flight at the Dryden Flight Research Facility. The flight-test propellers are mounted on a pylon on the top of the fuselage of a JetStar airplane. Instrumentation provides near-field acoustic data for the SR-3. Acoustic data for the SR-3 propeller at Mach numbers up to 0.8, for propeller helical tip Mach numbers up to 1.14, and comparison of wind tunnel to flight data are included. Flowfield profiles measured in the area adjacent to the propeller are also included.

  17. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  18. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    NASA Technical Reports Server (NTRS)

    Merrill, Walter; Garg, Sanjay

    1996-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular, the integrated method for propulsion and airframe controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  19. Freight advanced traveler information system : concept of operations.

    DOT National Transportation Integrated Search

    2012-08-01

    This report describes a Concept of Operations (ConOps) for a Freight Advanced Traveler Information System (FRATIS). The ConOps describes the goals, functions, key concepts, user classes, high-level architecture, operational scenarios, operational pol...

  20. The advancement of a new human factors report--'The Unique Report'--facilitating flight crew auditing of performance/operations as part of an airline's safety management system.

    PubMed

    Leva, M C; Cahill, J; Kay, A M; Losa, G; McDonald, N

    2010-02-01

    This paper presents the findings of research relating to the specification of a new human factors report, conducted as part of the work requirements for the Human Integration into the Lifecycle of Aviation Systems project, sponsored by the European Commission. Specifically, it describes the proposed concept for a unique report, which will form the basis for all operational and safety reports completed by flight crew. This includes all mandatory and optional reports. Critically, this form is central to the advancement of improved processes and technology tools, supporting airline performance management, safety management, organisational learning and knowledge integration/information-sharing activities. Specifically, this paper describes the background to the development of this reporting form, the logic and contents of this form and how reporting data will be made use of by airline personnel. This includes a description of the proposed intelligent planning process and the associated intelligent flight plan concept, which makes use of airline operational and safety analyses information. Primarily, this new reporting form has been developed in collaboration with a major Spanish airline. In addition, it has involved research with five other airlines. Overall, this has involved extensive field research, collaborative prototyping and evaluation of new reports/flight plan concepts and a number of evaluation activities. Participants have included both operational and management personnel, across different airline flight operations processes. Statement of Relevance: This paper presents the development of a reporting concept outlined through field research and collaborative prototyping within an airline. The resulting reporting function, embedded in the journey log compiled at the end of each flight, aims at enabling employees to audit the operations of the company they work for.

  1. Hyper-X Research Vehicle - Artist Concept in Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  2. Affordable In-Space Transportation. Phase 2; An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (ITM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIM was managed by NASA-Mar-shaU Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Manidns of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIM in a summary format. It incorporates the response to the following basic issues of the TPA, which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? What is the current Technology Readiness Level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5. What is the proposed implementation time frame

  3. Affordable In-Space Transportation Phase 2: An Advanced Concepts Project

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Affordable In-Space Transportation (AIST) program was established by the NASA Office of Space Access to improve transportation and lower the costs from Low Earth Orbit (LEO) to Geostationary Earth Orbit (GEO) and beyond (to Lunar orbit, Mars orbit, inner solar system missions, and return to LEO). A goal was established to identify and develop radically innovative concepts for new upper stages for Reusable Launch Vehicles (RLV) and Highly Reusable Space Transportation (HRST) systems. New architectures and technologies are being identified which have the potential to meet a cost goal of $1,000 to $2,000 per pound for transportation to GEO and beyond for overall mission cost (including the cost to LEO). A Technical Interchange Meeting (TTM) was held on October 16 and 17, 1996 in Huntsville, Alabama to review previous studies, present advanced concepts and review technologies that could be used to meet the stated goals. The TIN4 was managed by NASA-Marshall Space Flight Center (MSFC) Advanced Concepts Office with Mr. Alan Adams providing TIM coordination. Mr. John C. Mankins of NASA Headquarters provided overall sponsorship. The University of Alabama in Huntsville (UAH) Propulsion Research Center hosted the TIM at the UAH Research Center. Dr. Clark Hawk, Center Director, was the principal investigator. Technical support was provided by Christensen Associates. Approximately 70 attendees were present at the meeting. This Executive Summary provides a record of the key discussions and results of the TIN4 in a summary for-mat. It incorporates the response to the following basic issues of the TDVL which addressed the following questions: 1. What are the cost drivers and how can they be reduced? 2. What are the operational issues and their impact on cost? 3. What is the current technology readiness level (TRL) and what will it take to reach TRL 6? 4. What are the key enabling technologies and sequence for their accomplishment? 5 . What is the proposed implementation time

  4. An overview of the NASA Advanced Propulsion Concepts program

    NASA Technical Reports Server (NTRS)

    Curran, Francis M.; Bennett, Gary L.; Frisbee, Robert H.; Sercel, Joel C.; Lapointe, Michael R.

    1992-01-01

    NASA Advanced Propulsion Concepts (APC) program for the development of long-term space propulsion system schemes is managed by both NASA-Lewis and the JPL and is tasked with the identification and conceptual development of high-risk/high-payoff configurations. Both theoretical and experimental investigations have been undertaken in technology areas deemed essential to the implementation of candidate concepts. These APC candidates encompass very high energy density chemical propulsion systems, advanced electric propulsion systems, and an antiproton-catalyzed nuclear propulsion concept. A development status evaluation is presented for these systems.

  5. Advanced instrumentation concepts for environmental control subsystems

    NASA Technical Reports Server (NTRS)

    Yang, P. Y.; Schubert, F. H.; Gyorki, J. R.; Wynveen, R. A.

    1978-01-01

    Design, evaluation and demonstration of advanced instrumentation concepts for improving performance of manned spacecraft environmental control and life support systems were successfully completed. Concepts to aid maintenance following fault detection and isolation were defined. A computer-guided fault correction instruction program was developed and demonstrated in a packaged unit which also contains the operator/system interface.

  6. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    NASA Technical Reports Server (NTRS)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  7. Orbital Express Advanced Video Guidance Sensor: Ground Testing, Flight Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Pinson, Robin M.; Howard, Richard T.; Heaton, Andrew F.

    2008-01-01

    Orbital Express (OE) was a successful mission demonstrating automated rendezvous and docking. The 2007 mission consisted of two spacecraft, the Autonomous Space Transport Robotic Operations (ASTRO) and the Next Generation Serviceable Satellite (NEXTSat) that were designed to work together and test a variety of service operations in orbit. The Advanced Video Guidance Sensor, AVGS, was included as one of the primary proximity navigation sensors on board the ASTRO. The AVGS was one of four sensors that provided relative position and attitude between the two vehicles. Marshall Space Flight Center was responsible for the AVGS software and testing (especially the extensive ground testing), flight operations support, and analyzing the flight data. This paper briefly describes the historical mission, the data taken on-orbit, the ground testing that occurred, and finally comparisons between flight data and ground test data for two different flight regimes.

  8. Advanced Concept

    NASA Image and Video Library

    2000-06-22

    The photograph depicts the X-37 neutral buoyancy simulator mockup at Dryden Flight Research Center. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliabiltiy, while reducing launch costs from $10,000 per pound to $1000 per pound. Managed by Marshall Space Flight Center and built by the boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  9. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This illustration is an artist’s concept of a Magnetic Launch Assist System, formerly referred as the Magnetic Levitation (Maglev) system, for space launch. Overcoming the grip of Earth’s gravity is a supreme challenge for engineers who design rockets that leave the planet. Engineers at the Marshall Space Flight Center have developed and tested Magnetic Launch Assist System technologies that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, landing gear and the wing size, as well as the elimination of propellant weight resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  10. Options for flight testing rocket-based combined-cycle (RBCC) engines

    NASA Technical Reports Server (NTRS)

    Olds, John

    1996-01-01

    While NASA's current next-generation launch vehicle research has largely focused on advanced all-rocket single-stage-to-orbit vehicles (i.e. the X-33 and it's RLV operational follow-on), some attention is being given to advanced propulsion concepts suitable for 'next-generation-and-a-half' vehicles. Rocket-based combined-cycle (RBCC) engines combining rocket and airbreathing elements are one candidate concept. Preliminary RBCC engine development was undertaken by the United States in the 1960's. However, additional ground and flight research is required to bring the engine to technological maturity. This paper presents two options for flight testing early versions of the RBCC ejector scramjet engine. The first option mounts a single RBCC engine module to the X-34 air-launched technology testbed for test flights up to about Mach 6.4. The second option links RBCC engine testing to the simultaneous development of a small-payload (220 lb.) two-stage-to-orbit operational vehicle in the Bantam payload class. This launcher/testbed concept has been dubbed the W vehicle. The W vehicle can also serve as an early ejector ramjet RBCC launcher (albeit at a lower payload). To complement current RBCC ground testing efforts, both flight test engines will use earth-storable propellants for their RBCC rocket primaries and hydrocarbon fuel for their airbreathing modes. Performance and vehicle sizing results are presented for both options.

  11. Advanced composite structural concepts and material technologies for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  12. Flight evaluation of configuration management system concepts during transition to the landing approach for a powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.

    1980-01-01

    Flight experiments were conducted to evaluate two control concepts for configuration management during the transition to landing approach for a powered-lift STOL aircraft. NASA Ames' augmentor wing research aircraft was used in the program. Transitions from nominal level-flight configurations at terminal area pattern speeds were conducted along straight and curved descending flightpaths. Stabilization and command augmentation for attitude and airspeed control were used in conjunction with a three-cue flight director that presented commands for pitch, roll, and throttle controls. A prototype microwave system provided landing guidance. Results of these flight experiments indicate that these configuration management concepts permit the successful performance of transitions and approaches along curved paths by powered-lift STOL aircraft. Flight director guidance was essential to accomplish the task.

  13. Preliminary Sizing of 120-Passenger Advanced Civil Rotorcraft Concepts

    NASA Technical Reports Server (NTRS)

    vanAken, Johannes M.; Sinsay, Jeffrey D.

    2006-01-01

    The results of a preliminary sizing study of advanced civil rotorcraft concepts that are capable of carrying 120 passengers over a range of 1,200 nautical miles are presented. The cruise altitude of these rotorcraft is 30,000 ft and the cruise velocity is 350 knots. The mission requires a hover capability, creating a runway independent solution, which might aid in reducing strain on the existing airport infrastructure. Concepts studied are a tiltrotor, a tandem rotor compound, and an advancing blade concept. The first objective of the study is to determine the relative merits of these designs in terms of mission gross weight, engine size, fuel weight, aircraft purchase price, and direct operating cost. The second objective is to identify the enabling technology for these advanced heavy lift civil rotorcraft.

  14. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  15. Operational requirements for flight control and navigation systems for short haul transport aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1978-01-01

    To provide a background for evaluating advanced STOL systems concepts, a number of short haul and STOL airline operations in the United States and one operation in Canada were studied. A study of flight director operational procedures for an advanced STOL research airplane, the Augmented Wing Jet STOL Research Airplane, was conducted using the STOLAND simulation facility located at the Ames Changes to the advanced digital flight control system (STOLAND) installed in the Augmentor Wing Airplane are proposed to improve the mode sequencing to simplify pilot procedures and reduce pilot workload.

  16. Test Hardware Design for Flight-Like Operation of Advanced Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.

    2012-01-01

    NASA Glenn Research Center (GRC) has been supporting development of the Advanced Stirling Radioisotope Generator (ASRG) since 2006. A key element of the ASRG project is providing life, reliability, and performance testing of the Advanced Stirling Convertor (ASC). For this purpose, the Thermal Energy Conversion branch at GRC has been conducting extended operation of a multitude of free-piston Stirling convertors. The goal of this effort is to generate long-term performance data (tens of thousands of hours) simultaneously on multiple units to build a life and reliability database. The test hardware for operation of these convertors was designed to permit in-air investigative testing, such as performance mapping over a range of environmental conditions. With this, there was no requirement to accurately emulate the flight hardware. For the upcoming ASC-E3 units, the decision has been made to assemble the convertors into a flight-like configuration. This means the convertors will be arranged in the dual-opposed configuration in a housing that represents the fit, form, and thermal function of the ASRG. The goal of this effort is to enable system level tests that could not be performed with the traditional test hardware at GRC. This offers the opportunity to perform these system-level tests much earlier in the ASRG flight development, as they would normally not be performed until fabrication of the qualification unit. This paper discusses the requirements, process, and results of this flight-like hardware design activity.

  17. Technical and economic evaluation of advanced air cargo system concepts

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1977-01-01

    The paper reviews NASA air cargo market studies, reports on NASA and NASA-sponsored studies of advanced freighter concepts, and identifies the opportunities for the application of advanced technology. The air cargo market is studied to evaluate the timing for, and the potential market response to, advanced technology aircraft. The degree of elasticity in future air freight markets is also being investigated, since the demand for a new aircraft is most favorable in a price-sensitive environment. Aircraft design studies are considered with attention to mission and design requirements, incorporation of advanced technologies in transport aircraft, new cargo aircraft concepts, advanced freighter evaluation, and civil-military design commonality.

  18. Synthetic Vision Enhanced Surface Operations and Flight Procedures Rehearsal Tool

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Prinzel, Lawrence J., III; Williams, Steven P.; Kramer, Lynda J.

    2006-01-01

    Limited visibility has been cited as predominant causal factor for both Controlled-Flight-Into-Terrain (CFIT) and runway incursion accidents. NASA is conducting research and development of Synthetic Vision Systems (SVS) technologies which may potentially mitigate low visibility conditions as a causal factor to these accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. Two experimental evaluation studies were performed to determine the efficacy of two concepts: 1) head-worn display application of SVS technology to enhance transport aircraft surface operations, and 2) three-dimensional SVS electronic flight bag display concept for flight plan preview, mission rehearsal and controller-pilot data link communications interface of flight procedures. In the surface operation study, pilots evaluated two display devices and four display modes during taxi under unlimited and CAT II visibility conditions. In the mission rehearsal study, pilots flew approaches and departures in an operationally-challenged airport environment, including CFIT scenarios. Performance using the SVS concepts was compared to traditional baseline displays with paper charts only or EFB information. In general, the studies evince the significant situation awareness and enhanced operational capabilities afforded from these advanced SVS display concepts. The experimental results and conclusions from these studies are discussed along with future directions.

  19. Facilitating researcher use of flight simulators

    NASA Technical Reports Server (NTRS)

    Russell, C. Ray

    1990-01-01

    Researchers conducting experiments with flight simulators encounter numerous obstacles in bringing their ideas to the simulator. Research into how these simulators could be used more efficiently is presented. The study involved: (1) analyzing the Advanced Concepts Simulator software architecture, (2) analyzing the interaction between the researchers and simulation programmers, and (3) proposing a documentation tool for the researchers.

  20. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    This photograph is an artist's cutaway view of the X-37 flight demonstrator showing its components. The X-37 experimental launch vehicle is roughly 27.5 feet (8.3 meters) long and 15 feet (4.5 meters) in wingspan. Its experiment bay is 7 feet (2.1 meters) long and 4 feet (1.2 meters) in diameter. Designed to operate in both the orbital and reentry phases of flight, the X-37 will increase both safety and reliability, while reducing launch costs from $10,000 per pound to $1000 per pound. The X-37 can be carried into orbit by the Space Shuttle or be launched by an expendable rocket. Managed by Marshall Space Flight Center and built by the Boeing Company, the X-37 is scheduled to fly two orbital missions in 2002/2003 to test the reusable launch vehicle technologies.

  1. Science and Technology of Low Speed and Motorless Flight, Part 1

    NASA Technical Reports Server (NTRS)

    Hanson, P. W. (Compiler)

    1979-01-01

    The proceedings of the Third International Symposium on the Science and Technology of Low Speed and Motorless Flight are reported. Twenty-eight papers were presented in the areas of low speed aerodynamics, new materials applications and structural concepts, advanced flight instrumentation, sailplane optimal flight techniques, and self launching and ultralight glider technology. These papers are included in the document along with another paper, which was not presented, on proposed definitions for various categories of sailplanes and gliders.

  2. Flight evaluation results from the general-aviation advanced avionics system program

    NASA Technical Reports Server (NTRS)

    Callas, G. P.; Denery, D. G.; Hardy, G. H.; Nedell, B. F.

    1983-01-01

    A demonstration advanced avionics system (DAAS) for general-aviation aircraft was tested at NASA Ames Research Center to provide information required for the design of reliable, low-cost, advanced avionics systems which would make general-aviation operations safer and more practicable. Guest pilots flew a DAAS-equipped NASA Cessna 402-B aircraft to evaluate the usefulness of data busing, distributed microprocessors, and shared electronic displays, and to provide data on the DAAS pilot/system interface for the design of future integrated avionics systems. Evaluation results indicate that the DAAS hardware and functional capability meet the program objective. Most pilots felt that the DAAS representative of the way avionics systems would evolve and felt the added capability would improve the safety and practicability of general-aviation operations. Flight-evaluation results compiled from questionnaires are presented, the results of the debriefings are summarized. General conclusions of the flight evaluation are included.

  3. Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.

    2017-01-01

    Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.

  4. Advance (Advanced Driver and Vehicle Advisory Navigation ConcEpt) Project: Insights and Achievements Compendium

    DOT National Transportation Integrated Search

    1996-10-23

    ADVANCE (Advanced Driver and Vehicle Advisory Navigation ConcEpt) was a public/private partnership developed by the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Nor...

  5. Advanced avionics concepts: Autonomous spacecraft control

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A large increase in space operations activities is expected because of Space Station Freedom (SSF) and long range Lunar base missions and Mars exploration. Space operations will also increase as a result of space commercialization (especially the increase in satellite networks). It is anticipated that the level of satellite servicing operations will grow tenfold from the current level within the next 20 years. This growth can be sustained only if the cost effectiveness of space operations is improved. Cost effectiveness is operational efficiency with proper effectiveness. A concept is presented of advanced avionics, autonomous spacecraft control, that will enable the desired growth, as well as maintain the cost effectiveness (operational efficiency) in satellite servicing operations. The concept of advanced avionics that allows autonomous spacecraft control is described along with a brief description of each component. Some of the benefits of autonomous operations are also described. A technology utilization breakdown is provided in terms of applications.

  6. Advanced Concept

    NASA Image and Video Library

    1999-10-21

    This artist’s concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  7. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    NASA Technical Reports Server (NTRS)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  8. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  9. Military applications of a cockpit integrated electronic flight bag

    NASA Astrophysics Data System (ADS)

    Herman, Robert P.; Seinfeld, Robert D.

    2004-09-01

    Converting the pilot's flight bag information from paper to electronic media is being performed routinely by commercial airlines for use with an on-board PC. This concept is now being further advanced with a new class of electronic flight bags (EFB) recently put into commercial operation which interface directly with major on-board avionics systems and has its own dedicated panel mounted display. This display combines flight bag information with real time aircraft performance and maintenance data. This concept of an integrated EFB which is now being used by the commercial airlines as a level 1 certified system, needs to be explored for military applications. This paper describes a system which contains all the attributes of an Electronic Flight Bag with the addition of interfaces which are linked to military aircraft missions such as those for tankers, cargo haulers, search and rescue and maritime aircraft as well as GATM requirements. The adaptation of the integrated EFB to meet these military requirements is then discussed.

  10. Artist concept of Shuttle Solar Backscatter UV (SSBUV) flight configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Artist concept of STS-34 payload bay (PLB) experiment is titled SSBUV FLIGHT CONFIGURATION. The labeled drawing of the Shuttle Solar Backscatter Ultraviolet (UV) (SSBUV) get away special (GAS) canisters identifies the adapter beam, motorized door mechanism, instrument canister, support canister, bottom hat, and interconnect cable. The GAS canisters will be mounted on the starboard wall of Atlantis', Orbiter Vehicle (OV) 104's, PLB. One canister contains an instrument nearly identical to that flown on the satellite. The second canister provides power, data, and command systems. During STS-34, SSBUV instrument will calibrate similar ozone measuring space-based instruments on the National Oceanic and Atmospheric Administration's (NOAA's) TIROS satellites (NOAA-9 and NOAA-11). SSBUV uses the Space Shuttle's orbital flight path to assess instrument performance by directly comparing data from identical instruments aboard TIROS spacecraft, as the Shuttle and the satellite pass over the same E

  11. Solid propulsion advanced concepts

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Shafer, J. I.

    1972-01-01

    The feasibility and application of a solid propulsion powered spacecraft concept to implement high energy missions independent of multiplanetary swingby opportunities are assessed and recommendations offered for future work. An upper stage, solid propulsion launch vehicle augmentation system was selected as the baseline configuration in view of the established program goals of low cost and high reliability. Spacecraft and propulsion system data that characterize mission performance capabilities were generated to serve as the basis for subsequent tradeoff studies. A cost effectiveness model was used for the preliminary feasibility assessment to provide a meaningful comparative effectiveness measure of the various candidate designs. The results substantiated the feasibility of the powered spacecraft concept when used in conjunction with several intermediate-sized launch vehicles as well as the existence of energy margins by which to exploit the attainment of extended mission capabilities. Additionally, in growth option applications, the employment of advanced propulsion systems and alternate spacecraft approaches appear promising.

  12. Flight-test evaluation of STOL control and flight director concepts in a powered-lift aircraft flying curved decelerating approaches

    NASA Technical Reports Server (NTRS)

    Hindson, W. S.; Hardy, G. H.; Innis, R. C.

    1981-01-01

    Flight tests were carried out to assess the feasibility of piloted steep curved, and decelerating approach profiles in powered lift STOL aircraft. Several STOL control concepts representative of a variety of aircraft were evaluated in conjunction with suitably designed flight directions. The tests were carried out in a real navigation environment, employed special electronic cockpit displays, and included the development of the performance achieved and the control utilization involved in flying 180 deg turning, descending, and decelerating approach profiles to landing. The results suggest that such moderately complex piloted instrument approaches may indeed be feasible from a pilot acceptance point of view, given an acceptable navigation environment. Systems with the capability of those used in this experiment can provide the potential of achieving instrument operations on curved, descending, and decelerating landing approaches to weather minima corresponding to CTOL Category 2 criteria, while also providing a means of realizing more efficient operations during visual flight conditions.

  13. A potential flight evaluation of an upper-surface-blowing/circulation-control-wing concept

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Eppel, Joseph C.

    1987-01-01

    The technology data base for powered lift aircraft design has advanced over the last 15 years. NASA's Quiet Short Haul Research Aircraft (QSRA) has provided a flight verification of upper surface blowing (USB) technology. The A-6 Circulation Control Wing flight demonstration aricraft has provide data for circulation control wing (CCW) technology. Recent small scale wind tunnel model tests and full scale static flow turning test have shown the potential of combining USB with CCW technology. A flight research program is deemed necessary to fully explore the performance and control aspects of CCW jet substitution for the mechanical USB Coanda flap. The required hardware design would also address questions about the development of flight weight ducts and CCW jets and the engine bleed-air capabilities vs requirements. NASA's QSRA would be an optimum flight research vehicle for modification to the USB/CCW configuration. The existing QSRA data base, the design simplicity of the QSRA wing trailing edge controls, availability of engine bleed-air, and the low risk, low cost potential of the suggested program is discussed.

  14. Heuristics Applied in the Development of Advanced Space Mission Concepts

    NASA Technical Reports Server (NTRS)

    Nilsen, Erik N.

    1998-01-01

    Advanced mission studies are the first step in determining the feasibility of a given space exploration concept. A space scientist develops a science goal in the exploration of space. This may be a new observation method, a new instrument or a mission concept to explore a solar system body. In order to determine the feasibility of a deep space mission, a concept study is convened to determine the technology needs and estimated cost of performing that mission. Heuristics are one method of defining viable mission and systems architectures that can be assessed for technology readiness and cost. Developing a viable architecture depends to a large extent upon extending the existing body of knowledge, and applying it in new and novel ways. These heuristics have evolved over time to include methods for estimating technical complexity, technology development, cost modeling and mission risk in the unique context of deep space missions. This paper examines the processes involved in performing these advanced concepts studies, and analyzes the application of heuristics in the development of an advanced in-situ planetary mission. The Venus Surface Sample Return mission study provides a context for the examination of the heuristics applied in the development of the mission and systems architecture. This study is illustrative of the effort involved in the initial assessment of an advance mission concept, and the knowledge and tools that are applied.

  15. Advanced Vehicle system concepts. [nonpetroleum passenger transportation

    NASA Technical Reports Server (NTRS)

    Hardy, K. S.; Langendoen, J. M.

    1983-01-01

    Various nonpetroleum vehicle system concepts for passenger vehicles in the 1990's are being considered as part of the Advanced Vehicle (AV) Assessment at the Jet Propulsion Laboratory. The vehicle system and subsystem performance requirements, the projected characteristics of mature subsystem candidates, and promising systems are presented. The system candidates include electric and hybrid vehicles powered by electricity with or without a nonpetroleum power source. The subsystem candidates include batteries (aqueous-mobile, flow, high-temperature, and metal-air), fuel cells (phosphoric acid, advanced acids, and solid polymer electrolyte), nonpetroleum heat engines, advanced dc and ac propulsion components, power-peaking devices, and transmissions.

  16. Career Profile: Flight Operations Engineer (Aeronautics) Brian Griffin

    NASA Image and Video Library

    2014-10-17

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Brian Griffin during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  17. Advanced Concepts: Aneutronic Fusion Power and Propulsion

    NASA Technical Reports Server (NTRS)

    Chapman, John J.

    2012-01-01

    Aneutronic Fusion for In-Space thrust, power. Clean energy & potential nuclear gains. Fusion plant concepts, potential to use advanced fuels. Methods to harness ionic momentum for high Isp thrust plus direct power conversion into electricity will be presented.

  18. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial newmore » technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.« less

  19. Advanced Stirling Convertor (ASC) Technology Maturation in Preparation for Flight

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Cornell, Peggy A.

    2012-01-01

    The Advanced Stirling Convertor (ASC) is being developed by an integrated team of Sunpower and National Aeronautics and Space Administration s (NASA s) Glenn Research Center (GRC). The ASC development, funded by NASA s Science Mission Directorate, started as a technology development effort in 2003 and has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency, low mass, and capability to meet long-life Radioisotope Power System (RPS) requirements. The technology has been adopted by the Department of Energy and Lockheed Martin Space Systems Company s Advanced Stirling Radioisotope Generator (ASRG), which has been selected for potential flight demonstration on Discovery 12. This paper provides an overview of the status of ASC development including the most recent ASC-E2 convertors that have been delivered to GRC and an introduction to the ASC-E3 and ASC flight convertors that Sunpower will build next. The paper also describes the technology maturation and support tasks being conducted at GRC to support ASC and ASRG development in the areas of convertor and generator extended operation, high-temperature materials, heater head life assessment, organics, nondestructive inspection, spring fatigue testing, and other reliability verification tasks.

  20. Advanced Concept

    NASA Image and Video Library

    1999-01-01

    This artist’s concept depicts a Magnetic Launch Assist vehicle clearing the track and shifting to rocket engines for launch into orbit. The system, formerly referred as the Magnetic Levitation (MagLev) system, is a launch system developed and tested by Engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using an off-board electric energy source and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  1. The value of early flight evaluation of propulsion concepts using the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Ray, Ronald J.

    1987-01-01

    The value of early flight evaluation of propulsion and propulsion control concepts was demonstrated on the NASA F-15 airplane in programs such as highly integrated digital electronic control (HIDEC), the F100 engine model derivative (EMD), and digital electronic engine control (DEEC). (In each case, the value of flight demonstration was conclusively demonstrated). This paper described these programs, and discusses the results that were not expected, based on ground test or analytical prediction. The role of flight demonstration in facilitating transfer of technology from the laboratory to operational airplanes is discussed.

  2. Advanced nuclear thermal propulsion concepts

    NASA Technical Reports Server (NTRS)

    Howe, Steven D.

    1993-01-01

    In 1989, a Presidential directive created the Space Exploration Initiative (SEI) which had a goal of placing mankind on Mars in the early 21st century. The SEI was effectively terminated in 1992 with the election of a new administration. Although the initiative did not exist long enough to allow substantial technology development, it did provide a venue, for the first time in 20 years, to comprehensively evaluate advanced propulsion concepts which could enable fast, manned transits to Mars. As part of the SEI based investigations, scientists from NASA, DoE National Laboratories, universities, and industry met regularly and proceeded to examine a variety of innovative ideas. Most of the effort was directed toward developing a solid-core, nuclear thermal rocket and examining a high-power nuclear electric propulsion system. In addition, however, an Innovative Concepts committee was formed and charged with evaluating concepts that offered a much higher performance but were less technologically mature. The committee considered several concepts and eventually recommended that further work be performed in the areas of gas core fission rockets, inertial confinement fusion systems, antimatter based rockets, and gas core fission electric systems. Following the committee's recommendations, some computational modeling work has been performed at Los Alamos in certain of these areas and critical issues have been identified.

  3. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    This photo gives an overhead look at an RS-88 development rocket engine being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  4. Advanced Concept

    NASA Image and Video Library

    2003-12-01

    In this photo, an RS-88 development rocket engine is being test fired at NASA's Marshall Space Flight Center in Huntsville, Alabama, in support of the Pad Abort Demonstration (PAD) test flights for NASA's Orbital Space Plane (OSP). The tests could be instrumental in developing the first crew launch escape system in almost 30 years. Paving the way for a series of integrated PAD test flights, the engine tests support development of a system that could pull a crew safely away from danger during liftoff. A series of 16 hot fire tests of a 50,000-pound thrust RS-88 rocket engine were conducted, resulting in a total of 55 seconds of successful engine operation. The engine is being developed by the Rocketdyne Propulsion and Power unit of the Boeing Company. Integrated launch abort demonstration tests in 2005 will use four RS-88 engines to separate a test vehicle from a test platform, simulating pulling a crewed vehicle away from an aborted launch. Four 156-foot parachutes will deploy and carry the vehicle to landing. Lockheed Martin is building the vehicles for the PAD tests. Seven integrated tests are plarned for 2005 and 2006.

  5. Flight Test Evaluation of Synthetic Vision Concepts at a Terrain Challenged Airport

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prince, Lawrence J., III; Bailey, Randell E.; Arthur, Jarvis J., III; Parrish, Russell V.

    2004-01-01

    NASA's Synthetic Vision Systems (SVS) Project is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft through the display of computer generated imagery derived from an onboard database of terrain, obstacle, and airport information. To achieve these objectives, NASA 757 flight test research was conducted at the Eagle-Vail, Colorado airport to evaluate three SVS display types (Head-up Display, Head-Down Size A, Head-Down Size X) and two terrain texture methods (photo-realistic, generic) in comparison to the simulated Baseline Boeing-757 Electronic Attitude Direction Indicator and Navigation/Terrain Awareness and Warning System displays. The results of the experiment showed significantly improved situation awareness, performance, and workload for SVS concepts compared to the Baseline displays and confirmed the retrofit capability of the Head-Up Display and Size A SVS concepts. The research also demonstrated that the tunnel guidance display concept used within the SVS concepts achieved required navigation performance (RNP) criteria.

  6. Advanced Technology Display House. Volume 2: Energy system design concepts

    NASA Technical Reports Server (NTRS)

    Maund, D. H.

    1981-01-01

    The preliminary design concept for the energy systems in the Advanced Technology Display House is analyzed. Residential energy demand, energy conservation, and energy concepts are included. Photovoltaic arrays and REDOX (reduction oxidation) sizes are discussed.

  7. Pathfinding the Flight Advanced Stirling Convertor Design with the ASC-E3

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wilson, Kyle; Smith, Eddie; Collins, Josh

    2012-01-01

    The Advanced Stirling Convertor (ASC) was initially developed by Sunpower, Inc. under contract to NASA Glenn Research Center (GRC) as a technology development project. The ASC technology fulfills NASA's need for high efficiency power convertors for future Radioisotope Power Systems (RPS). Early successful technology demonstrations between 2003 to 2005 eventually led to the expansion of the project including the decision in 2006 to use the ASC technology on the Advanced Stirling Radioisotope Generator (ASRG). Sunpower has delivered 22 ASC convertors of progressively mature designs to date to GRC. Currently, Sunpower with support from GRC, Lockheed Martin Space System Company (LMSSC), and the Department of Energy (DOE) is developing the flight ASC-F in parallel with the ASC-E3 pathfinders. Sunpower will deliver four pairs of ASC-E3 convertors to GRC which will be used for extended operation reliability assessment, independent validation and verification testing, system interaction tests, and to support LMSSC controller verification. The ASC-E3 and -F convertors are being built to the same design and processing documentation and the same product specification. The initial two pairs of ASC-E3 are built before the flight units and will validate design and processing changes prior to implementation on the ASC-F flight convertors. This paper provides a summary on development of the ASC technology and the status of the ASC-E3 build and how they serve the vital pathfinder role ahead of the flight build for ASRG. The ASRG is part of two of the three candidate missions being considered for selection for the Discovery 12 mission.

  8. Advanced piloted aircraft flight control system design methodology. Volume 2: The FCX flight control design expert system

    NASA Technical Reports Server (NTRS)

    Myers, Thomas T.; Mcruer, Duane T.

    1988-01-01

    The development of a comprehensive and electric methodology for conceptual and preliminary design of flight control systems is presented and illustrated. The methodology is focused on the design states starting with the layout of system requirements and ending when some viable competing system architectures (feedback control structures) are defined. The approach is centered on the human pilot and the aircraft as both the sources of, and the keys to the solution of, many flight control problems. The methodology relies heavily on computational procedures which are highly interactive with the design engineer. To maximize effectiveness, these techniques, as selected and modified to be used together in the methodology, form a cadre of computational tools specifically tailored for integrated flight control system preliminary design purposes. The FCX expert system as presently developed is only a limited prototype capable of supporting basic lateral-directional FCS design activities related to the design example used. FCX presently supports design of only one FCS architecture (yaw damper plus roll damper) and the rules are largely focused on Class IV (highly maneuverable) aircraft. Despite this limited scope, the major elements which appear necessary for application of knowledge-based software concepts to flight control design were assembled and thus FCX represents a prototype which can be tested, critiqued and evolved in an ongoing process of development.

  9. Career Profile: Flight Operations Engineer (Airborne Science) Matthew Berry

    NASA Image and Video Library

    2014-11-05

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Matthew Berry during the preparation and execution of flight tests in support of aeronautics research. http://www.nasa.gov/centers/armstrong/home/ http://www.nasa.gov/

  10. Overview on NASA's Advanced Electric Propulsion Concepts Activities

    NASA Technical Reports Server (NTRS)

    Frisbee, Robert H.

    1999-01-01

    Advanced electric propulsion research activities are currently underway that seek to addresses feasibility issues of a wide range of advanced concepts, and may result in the development of technologies that will enable exciting new missions within our solar system and beyond. Each research activity is described in terms of the present focus and potential future applications. Topics include micro-electric thrusters, electrodynamic tethers, high power plasma thrusters and related applications in materials processing, variable specific impulse plasma thrusters, pulsed inductive thrusters, computational techniques for thruster modeling, and advanced electric propulsion missions and systems studies.

  11. Validation Database Based Thermal Analysis of an Advanced RPS Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Emis, Nickolas D.

    2006-01-01

    Advanced RPS concepts can be conceived, designed and assessed using high-end computational analysis tools. These predictions may provide an initial insight into the potential performance of these models, but verification and validation are necessary and required steps to gain confidence in the numerical analysis results. This paper discusses the findings from a numerical validation exercise for a small advanced RPS concept, based on a thermal analysis methodology developed at JPL and on a validation database obtained from experiments performed at Oregon State University. Both the numerical and experimental configurations utilized a single GPHS module enabled design, resembling a Mod-RTG concept. The analysis focused on operating and environmental conditions during the storage phase only. This validation exercise helped to refine key thermal analysis and modeling parameters, such as heat transfer coefficients, and conductivity and radiation heat transfer values. Improved understanding of the Mod-RTG concept through validation of the thermal model allows for future improvements to this power system concept.

  12. Flight tests of IFR landing approach systems for helicopters

    NASA Technical Reports Server (NTRS)

    Bull, J. S.; Hegarty, D. M.; Peach, L. L.; Phillips, J. D.; Anderson, D. J.; Dugan, D. C.; Ross, V. L.

    1981-01-01

    Joint NASA/FAA helicopter flight tests were conducted to investigate airborne radar approaches (ARA) and microwave landing system (MLS) approaches. Flight-test results were utilized to prove NASA with a data base to be used as a performance measure for advanced guidance and navigation concepts, and to provide FAA with data for establishment of TERPS criteria. The first flight-test investigation consisted of helicopter IFR approaches to offshore oil rigs in the Gulf of Mexico, using weather/mapping radar, operational pilots, and a Bell 212 helicopter. The second flight-test investigation consisted of IFR MLS approaches at Crows Landing (near Ames Research Center), with a Bell UH-1H helicopter, using NASA, FAA, and operational industry pilots. Tests are described and results discussed.

  13. Fostering Visions for the Future: A Review of the NASA Institute for Advanced Concepts

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The NASA Institute for Advanced Concepts (NIAC) was formed in 1998 to provide an independent source of advanced aeronautical and space concepts that could dramatically impact how NASA develops and conducts its missions. Until the program's termination in August 2007, NIAC provided an independent open forum, a high-level point of entry to NASA for an external community of innovators, and an external capability for analysis and definition of advanced aeronautics and space concepts to complement the advanced concept activities conducted within NASA. Throughout its 9-year existence, NIAC inspired an atmosphere for innovation that stretched the imagination and encouraged creativity. As requested by Congress, this volume reviews the effectiveness of NIAC and makes recommendations concerning the importance of such a program to NASA and to the nation as a whole, including the proper role of NASA and the federal government in fostering scientific innovation and creativity and in developing advanced concepts for future systems. Key findings and recommendations include that in order to achieve its mission, NASA must have, and is currently lacking, a mechanism to investigate visionary, far-reaching advanced concepts. Therefore, a NIAC-like entity should be reestablished to fill this gap.

  14. X-43A Hypersonic Experimental Vehicle - Artist Concept in Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  15. Advanced automation in space shuttle mission control

    NASA Technical Reports Server (NTRS)

    Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.

    1991-01-01

    The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.

  16. Operational Concept for Flight Crews to Participate in Merging and Spacing of Aircraft

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Barmore, Bryan E.; Abbott, Terence S.; Capron, William R.

    2006-01-01

    The predicted tripling of air traffic within the next 15 years is expected to cause significant aircraft delays and create a major financial burden for the airline industry unless the capacity of the National Airspace System can be increased. One approach to improve throughput and reduce delay is to develop new ground tools, airborne tools, and procedures to reduce the variance of aircraft delivery to the airport, thereby providing an increase in runway throughput capacity and a reduction in arrival aircraft delay. The first phase of the Merging and Spacing Concept employs a ground based tool used by Air Traffic Control that creates an arrival time to the runway threshold based on the aircraft s current position and speed, then makes minor adjustments to that schedule to accommodate runway throughput constraints such as weather and wake vortex separation criteria. The Merging and Spacing Concept also employs arrival routing that begins at an en route metering fix at altitude and continues to the runway threshold with defined lateral, vertical, and velocity criteria. This allows the desired spacing interval between aircraft at the runway to be translated back in time and space to the metering fix. The tool then calculates a specific speed for each aircraft to fly while enroute to the metering fix based on the adjusted land timing for that aircraft. This speed is data-linked to the crew who fly this speed, causing the aircraft to arrive at the metering fix with the assigned spacing interval behind the previous aircraft in the landing sequence. The second phase of the Merging and Spacing Concept increases the timing precision of the aircraft delivery to the runway threshold by having flight crews using an airborne system make minor speed changes during enroute, descent, and arrival phases of flight. These speed changes are based on broadcast aircraft state data to determine the difference between the actual and assigned time interval between the aircraft pair. The

  17. Functional categories for future flight deck designs

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    1993-01-01

    With the addition of each new system on the flight deck, the danger of increasing overall operator workload while reducing crew understanding of critical mission information exists. The introduction of more powerful onboard computers, larger databases, and the increased use of electronic display media may lead to a situation of flight deck 'sophistication' at the expense of losses in flight crew capabilities and situational awareness. To counter this potentially negative impact of new technology, research activities are underway to reassess the flight deck design process. The fundamental premise of these activities is that a human-centered, systems-oriented approach to the development of advanced civil aircraft flight decks will be required for future designs to remain ergonomically sound and economically competitive. One of the initial steps in an integrated flight deck process is to define the primary flight deck functions needed to support the mission goals of the vehicle. This would allow the design team to evaluate candidate concepts in relation to their effectiveness in meeting the functional requirements. In addition, this would provide a framework to aid in categorizing and bookkeeping all of the activities that are required to be performed on the flight deck, not just activities of the crew or of a specific system. This could then allow for a better understanding and allocation of activities in the design, an understanding of the impact of a specific system on overall system performance, and an awareness of the total crew performance requirements for the design. One candidate set of functional categories that could be used to guide an advanced flight deck design are described.

  18. Career Profile: Flight Operations Engineer (Airborne Science) Robert Rivera

    NASA Image and Video Library

    2015-05-14

    Operations engineers at NASA's Armstrong Flight Research Center help to advance science, technology, aeronautics, and space exploration by managing operational aspects of a flight research project. They serve as the governing authority on airworthiness related to the modification, operation, or maintenance of specialized research or support aircraft so those aircraft can be flown safely without jeopardizing the pilots, persons on the ground or the flight test project. With extensive aircraft modifications often required to support new research and technology development efforts, operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. Other responsibilities of an operations engineer include configuration management, performing systems design and integration, system safety analysis, coordinating flight readiness activities, and providing real-time flight support. This video highlights the responsibilities and daily activities of NASA Armstrong operations engineer Robert Rivera during the preparation and execution of the Global Hawk airborne missions under NASA's Science Mission Directorate.

  19. Development of Advanced Plant Habitat Flight Unit

    NASA Technical Reports Server (NTRS)

    Johnson, Curtis J., Jr

    2013-01-01

    With NASA's current goals and resources moving forward to bring the idea of Manned Deep-Space missions from a long-thought concept to a reality, innovative research methods and expertise are being utilized for studies that integrate human needs with that of technology to make for the most efficient operations possible. Through the capability to supply food, provide oxygen from what was once carbon dioxide, and various others which help to make plant research one of the prime factors of future long-duration mission, the Advanced Plant Habitat will be the largest microgravity plant growth chamber on the International Space Station when it is launched in the near future (2014- 2015). Soon, the Advanced Plant Habitat unit will continue on and enrich the discoveries and studies on the long-term effects of microgravity on plants.

  20. Autonomous Flight Rules - A Concept for Self-Separation in U.S. Domestic Airspace

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Cotton, William B.

    2011-01-01

    Autonomous Flight Rules (AFR) are proposed as a new set of operating regulations in which aircraft navigate on tracks of their choice while self-separating from traffic and weather. AFR would exist alongside Instrument and Visual Flight Rules (IFR and VFR) as one of three available flight options for any appropriately trained and qualified operator with the necessary certified equipment. Historically, ground-based separation services evolved by necessity as aircraft began operating in the clouds and were unable to see each other. Today, technologies for global navigation, airborne surveillance, and onboard computing enable the functions of traffic conflict management to be fully integrated with navigation procedures onboard the aircraft. By self-separating, aircraft can operate with more flexibility and fewer restrictions than are required when using ground-based separation. The AFR concept is described in detail and provides practical means by which self-separating aircraft could share the same airspace as IFR and VFR aircraft without disrupting the ongoing processes of Air Traffic Control.

  1. Flight experience with flight control redundancy management

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Larson, R. R.; Glover, R. D.

    1980-01-01

    Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.

  2. Advances in time-of-flight PET

    PubMed Central

    Surti, Suleman; Karp, Joel S.

    2016-01-01

    This paper provides a review and an update on time-of-flight PET imaging with a focus on PET instrumentation, ranging from hardware design to software algorithms. We first present a short introduction to PET, followed by a description of TOF PET imaging and its history from the early days. Next, we introduce the current state-of-art in TOF PET technology and briefly summarize the benefits of TOF PET imaging. This is followed by a discussion of the various technological advancements in hardware (scintillators, photo-sensors, electronics) and software (image reconstruction) that have led to the current widespread use of TOF PET technology, and future developments that have the potential for further improvements in the TOF imaging performance. We conclude with a discussion of some new research areas that have opened up in PET imaging as a result of having good system timing resolution, ranging from new algorithms for attenuation correction, through efficient system calibration techniques, to potential for new PET system designs. PMID:26778577

  3. Flight control systems development of highly maneuverable aircraft technology /HiMAT/ vehicle

    NASA Technical Reports Server (NTRS)

    Petersen, K. L.

    1979-01-01

    The highly maneuverable aircraft technology (HiMAT) program was conceived to demonstrate advanced technology concepts through scaled-aircraft flight tests using a remotely piloted technique. Closed-loop primary flight control is performed from a ground-based cockpit, utilizing a digital computer and up/down telemetry links. A backup flight control system for emergency operation resides in an onboard computer. The onboard systems are designed to provide fail-operational capabilities and utilize two microcomputers, dual uplink receiver/decoders, and redundant hydraulic actuation and power systems. This paper discusses the design and validation of the primary and backup digital flight control systems as well as the unique pilot and specialized systems interfaces.

  4. Evaluation of restraint system concepts for the Japanese Experiment Module flight demonstration

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Fleming, Terence F.; Stuart, Mark A.; Backemeyer, Lynn A.

    1995-01-01

    The current International Space Station configuration includes a Japanese Experiment Module which relies on a large manipulator and a smaller dexterous manipulator to operate outside the pressurized environment of the experiment module. The module's flight demonstration is a payload that will be mounted in the aft flight deck on STS-87 to evaluate a prototype of the dexterous manipulator. Since the payload operations entail two 8-hour scenarios on consecutive days, adequate operator restraint at the workstation will be critical to the perceived success or failure of the payload. Simulations in reduced gravity environment on the KC-135A were the only way to evaluate the restraint systems and workstation configuration. Two astronaut and two non-astronaut operators evaluated the Advanced Lower Body Extremities Restraint Test and a foot loop restraint system by performing representative tasks at the workstation in each of the two restraint systems; at the end of each flight they gave their impressions of each system and the workstation. Results indicated that access to the workstation switch panels was difficult and manipulation of the hand controllers forced operators too low for optimal viewing of the aft flight deck monitors. The workstation panel should be angled for better visibility, and infrequently used switches should be on the aft flight deck panel. Pitch angle and placement of the hand controllers should optimize the operator's eye position with respect to the monitors. The lower body restraint was preferred over the foot loops because it allowed operators to maintain a more relaxed posture during long-duration tasks, its height adjustability allowed better viewing of aft flight deck monitors, and it provided better restraint for reacting forces imparted on the operator at the workstation. The foot loops provide adequate restraint for the flight demonstration tasks identified. Since results will impact the design of the workstation, both restraints should be

  5. Advanced Modeling and Uncertainty Quantification for Flight Dynamics; Interim Results and Challenges

    NASA Technical Reports Server (NTRS)

    Hyde, David C.; Shweyk, Kamal M.; Brown, Frank; Shah, Gautam

    2014-01-01

    As part of the NASA Vehicle Systems Safety Technologies (VSST), Assuring Safe and Effective Aircraft Control Under Hazardous Conditions (Technical Challenge #3), an effort is underway within Boeing Research and Technology (BR&T) to address Advanced Modeling and Uncertainty Quantification for Flight Dynamics (VSST1-7). The scope of the effort is to develop and evaluate advanced multidisciplinary flight dynamics modeling techniques, including integrated uncertainties, to facilitate higher fidelity response characterization of current and future aircraft configurations approaching and during loss-of-control conditions. This approach is to incorporate multiple flight dynamics modeling methods for aerodynamics, structures, and propulsion, including experimental, computational, and analytical. Also to be included are techniques for data integration and uncertainty characterization and quantification. This research shall introduce new and updated multidisciplinary modeling and simulation technologies designed to improve the ability to characterize airplane response in off-nominal flight conditions. The research shall also introduce new techniques for uncertainty modeling that will provide a unified database model comprised of multiple sources, as well as an uncertainty bounds database for each data source such that a full vehicle uncertainty analysis is possible even when approaching or beyond Loss of Control boundaries. Methodologies developed as part of this research shall be instrumental in predicting and mitigating loss of control precursors and events directly linked to causal and contributing factors, such as stall, failures, damage, or icing. The tasks will include utilizing the BR&T Water Tunnel to collect static and dynamic data to be compared to the GTM extended WT database, characterizing flight dynamics in off-nominal conditions, developing tools for structural load estimation under dynamic conditions, devising methods for integrating various modeling elements

  6. Proof-of-Concept Demonstrations of a Flight Adjustment Logging and Communication Network

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.; Merlino, Daniel K.; Carboneau, Lindsey M.; Wilson, C. Logan; Wilder, Andrew J.

    2016-01-01

    The National Airspace System is a highly complex system of systems within which a number of participants with widely varying business and operating models exist. From the airspace user's perspective, a means by which to operate flights in a more flexible and efficient manner is highly desired to meet their business objectives. From the air navigation service provider's viewpoint, there is a need for increasing the capacity of the airspace, while maintaining or increasing the levels of efficiency and safety that currently exist in order to meet the charter under which they operate. Enhancing the communication between airspace operators and users is essential in order to meet these demands. In the spring of 2015, a prototype system that implemented an airborne tool to optimize en-route flight paths for fuel and time savings was designed and tested. The system utilized in-flight Internet as a high-bandwidth data link to facilitate collaborative decision making between the flight deck and an airline dispatcher. The system was tested and demonstrated in a laboratory environment, as well as in-situ. Initial results from these tests indicate that this system is not only feasible, but could also serve as a growth path and testbed for future air traffic management concepts that rely on shared situational awareness through data exchange and electronic negotiation between multiple entities operating within the National Airspace System.

  7. HIAD Advancements and Extension of Mission Applications

    NASA Technical Reports Server (NTRS)

    Johnson, R. Keith; Cheatwood, F. McNeil; Calomino, Anthony M.; Hughes, Stephen J.; Korzun, Ashley M.; DiNonno, John M.; Lindell, Mike C.; Swanson, Greg T.

    2016-01-01

    The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology has made significant advancements over the last decade with flight test demonstrations and ground development campaigns. The first generation (Gen-1) design and materials were flight tested with the successful third Inflatable Reentry Vehicle Experiment flight test of a 3-m HIAD (IRVE-3). Ground development efforts incorporated materials with higher thermal capabilities for the inflatable structure (IS) and flexible thermal protection system (F-TPS) as a second generation (Gen-2) system. Current efforts and plans are focused on extending capabilities to improve overall system performance and reduce areal weight, as well as expand mission applicability. F-TPS materials that offer greater thermal resistance, and ability to be packed to greater density, for a given thickness are being tested to demonstrated thermal performance benefits and manufacturability at flight-relevant scale. IS materials and construction methods are being investigated to reduce mass, increase load capacities, and improve durability for packing. Previous HIAD systems focused on symmetric geometries using stacked torus construction. Flight simulations and trajectory analysis show that symmetrical HIADs may provide L/D up to 0.25 via movable center of gravity (CG) offsets. HIAD capabilities can be greatly expanded to suit a broader range of mission applications with asymmetric shapes and/or modulating L/D. Various HIAD concepts are being developed to provide greater control to improve landing accuracy and reduce dependency upon propulsion systems during descent and landing. Concepts being studied include a canted stack torus design, control surfaces, and morphing configurations that allow the shape to be actively manipulated for flight control. This paper provides a summary of recent HIAD development activities, and plans for future HIAD developments including advanced materials, improved construction techniques, and alternate

  8. A Framework for Human Performance Criteria for Advanced Reactor Operational Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques V Hugo; David I Gertman; Jeffrey C Joe

    2014-08-01

    This report supports the determination of new Operational Concept models needed in support of the operational design of new reactors. The objective of this research is to establish the technical bases for human performance and human performance criteria frameworks, models, and guidance for operational concepts for advanced reactor designs. The report includes a discussion of operating principles for advanced reactors, the human performance issues and requirements for human performance based upon work domain analysis and current regulatory requirements, and a description of general human performance criteria. The major findings and key observations to date are that there is some operatingmore » experience that informs operational concepts for baseline designs for SFR and HGTRs, with the Experimental Breeder Reactor-II (EBR-II) as a best-case predecessor design. This report summarizes the theoretical and operational foundations for the development of a framework and model for human performance criteria that will influence the development of future Operational Concepts. The report also highlights issues associated with advanced reactor design and clarifies and codifies the identified aspects of technology and operating scenarios.« less

  9. Development of an air ground data exchange concept: Flight deck perspective

    NASA Technical Reports Server (NTRS)

    Flathers, G. W., II

    1987-01-01

    The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.

  10. Advanced Transport Operating Systems Program

    NASA Technical Reports Server (NTRS)

    White, John J.

    1990-01-01

    NASA-Langley's Advanced Transport Operating Systems Program employs a heavily instrumented, B 737-100 as its Transport Systems Research Vehicle (TRSV). The TRSV has been used during the demonstration trials of the Time Reference Scanning Beam Microwave Landing System (TRSB MLS), the '4D flight-management' concept, ATC data links, and airborne windshear sensors. The credibility obtainable from successful flight test experiments is often a critical factor in the granting of substantial commitments for commercial implementation by the FAA and industry. In the case of the TRSB MLS, flight test demonstrations were decisive to its selection as the standard landing system by the ICAO.

  11. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Testing of the Ascent Thrust Vector Control System in support of the Ares 1-X program at the Marshall Space Flight Center in Huntsville, Alabama. This image is extracted from a high definition video file and is the highest resolution available

  12. Integrated digital/electric aircraft concepts study

    NASA Technical Reports Server (NTRS)

    Cronin, M. J.; Hays, A. P.; Green, F. B.; Radovcich, N. A.; Helsley, C. W.; Rutchik, W. L.

    1985-01-01

    The integrated digital/electrical aircraft (IDEA) is an aircraft concept which employs all electric secondary power systems and advanced digital flight control systems. After trade analysis, preferred systems were applied to the baseline configuration. An additional configuration, the alternate IDEA, was also considered. For this concept the design ground rules were relaxed in order to quantify additional synergistic benefits. It was proposed that an IDEA configuration and technical risks associated with the IDEA systems concepts be defined and the research and development required activities to reduce these risks be identified. The selected subsystems include: power generation, power distribution, actuators, environmental control system and flight controls systems. When the aircraft was resized, block fuel was predicted to decrease by 11.3 percent, with 7.9 percent decrease in direct operating cost. The alternate IDEA shows a further 3.4 percent reduction in block fuel and 3.1 percent reduction in direct operating cost.

  13. Advanced Concepts. Chapter 21

    NASA Technical Reports Server (NTRS)

    Johnson, Les; Mulqueen, Jack

    2013-01-01

    Before there is a funded space mission, there must be a present need for the mission. Space science and exploration are expensive, and without a well-defined and justifiable need, no one is going to commit significant funding for any space endeavor. However, as discussed in Chapter 1, applications of space technology and many and broad, hence there are many ways to determine and establish a mission need. Robotic science missions are justified by their science return. To be selected for flight, questions like these must be addressed: What is the science question that needs answering, and will the proposed mission be the most cost-effective way to answer it? Why does answering the question require an expensive space flight, instead of some ground-based alternative? If the question can only be answered by flying in space, then why is this approach better than other potential approaches? How much will it cost? And is the technology required to answer the question in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? There are also many ways to justify human exploration missions, including science return, technology advancement, as well as intangible reasons, such as national pride. Nonetheless, many of the questions that need answering, are similar to those for robotic science missions: Where are the people going, why, and will the proposed mission be the most cost-effective way to get there? What is the safest method to achieve the goal? How much will it cost? And is the technology required to get there and keep the crew alive in hand and ready to use? If not, then how much will it cost and how long will it take to mature the technology to a usable level? Another reason for some groups sending spacecraft into space is for profit. Telecommunications, geospatial imaging, and tourism are examples of proven, market-driven space missions and applications. For this specific set of users, the

  14. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  15. Recent advances in convectively cooled engine and airframe structures for hypersonic flight

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.; Shore, C. P.; Nowak, R. J.

    1978-01-01

    A hydrogen-cooled structure for a fixed-geometry, airframe-integrated scramjet is described. The thermal/structural problems, concepts, design features, and technological advances are applicable to a broad range of engines. Convectively cooled airframe structural concepts that have evolved from an extensive series of investigations, the technology developments that have led to these concepts, and the benefits that accrue from their use are discussed.

  16. Overview of an Advanced Hypersonic Structural Concept Test Program

    NASA Technical Reports Server (NTRS)

    Stephens, Craig A.; Hudson, Larry D.; Piazza, Anthony

    2007-01-01

    This viewgraph presentation provides an overview of hypersonics M&S advanced structural concepts development and experimental methods. The discussion on concepts development includes the background, task objectives, test plan, and current status of the C/SiC Ruddervator Subcomponent Test Article (RSTA). The discussion of experimental methods examines instrumentation needs, sensors of interest, and examples of ongoing efforts in the development of extreme environment sensors.

  17. Advanced fuel cell concepts for future NASA missions

    NASA Technical Reports Server (NTRS)

    Stedman, J. K.

    1987-01-01

    Studies of primary fuel cells for advanced all electric shuttle type vehicles show an all fuel cell power system with peak power capability of 100's of kW to be potentially lighter and have lower life cycle costs than a hybrid system using advanced H2O2 APU's for peak power and fuel cells for low power on orbit. Fuel cell specific weights of 1 to 3 lb/kW, a factor of 10 improvement over the orbiter power plant, are projected for the early 1990's. For satellite applications, a study to identify high performance regenerative hydrogen oxygen fuel cell concepts for geosynchronous orbit was completed. Emphasis was placed on concepts with the potential for high energy density (Wh/lb) and passive means for water and heat management to maximize system reliability. Both alkaline electrolyte and polymer membrane fuel cells were considered.

  18. Flight-determined benefits of integrated flight-propulsion control systems

    NASA Technical Reports Server (NTRS)

    Stewart, James F.; Burcham, Frank W., Jr.; Gatlin, Donald H.

    1992-01-01

    Over the last two decades, NASA has conducted several experiments in integrated flight-propulsion control. Benefits have included improved maneuverability; increased thrust, range, and survivability; reduced fuel consumption; and reduced maintenance. This paper presents the basic concepts for control integration, examples of implementation, and benefits. The F-111E experiment integrated the engine and inlet control systems. The YF-12C incorporated an integral control system involving the inlet, autopilot, autothrottle, airdata, navigation, and stability augmentation systems. The F-15 research involved integration of the engine, flight, and inlet control systems. Further extension of the integration included real-time, onboard optimization of engine, inlet, and flight control variables; a self-repairing flight control system; and an engines-only control concept for emergency control. The F-18A aircraft incorporated thrust vectoring integrated with the flight control system to provide enhanced maneuvering at high angles of attack. The flight research programs and the resulting benefits of each program are described.

  19. Remotely Piloted Vehicles for Experimental Flight Control Testing

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; High, James W.

    2009-01-01

    A successful flight test and training campaign of the NASA Flying Controls Testbed was conducted at Naval Outlying Field, Webster Field, MD during 2008. Both the prop and jet-powered versions of the subscale, remotely piloted testbeds were used to test representative experimental flight controllers. These testbeds were developed by the Subsonic Fixed Wing Project s emphasis on new flight test techniques. The Subsonic Fixed Wing Project is under the Fundamental Aeronautics Program of NASA's Aeronautics Research Mission Directorate (ARMD). The purpose of these testbeds is to quickly and inexpensively evaluate advanced concepts and experimental flight controls, with applications to adaptive control, system identification, novel control effectors, correlation of subscale flight tests with wind tunnel results, and autonomous operations. Flight tests and operator training were conducted during four separate series of tests during April, May, June and August 2008. Experimental controllers were engaged and disengaged during fully autonomous flight in the designated test area. Flaps and landing gear were deployed by commands from the ground control station as unanticipated disturbances. The flight tests were performed NASA personnel with support from the Maritime Unmanned Development and Operations (MUDO) team of the Naval Air Warfare Center, Aircraft Division

  20. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  1. Flight testing of airbreathing hypersonic vehicles

    NASA Technical Reports Server (NTRS)

    Hicks, John W.

    1993-01-01

    Using the scramjet engine as the prime example of a hypersonic airbreathing concept, this paper reviews the history of and addresses the need for hypersonic flight tests. It also describes how such tests can contribute to the development of airbreathing technology. Aspects of captive-carry and free-flight concepts are compared. An incremental flight envelope expansion technique for manned flight vehicles is also described. Such critical issues as required instrumentation technology and proper scaling of experimental devices are addressed. Lastly, examples of international flight test approaches, existing programs, or concepts currently under study, development, or both, are given.

  2. To Fly or Not to Fly: Teaching Advanced Secondary School Students about Principles of Flight in Biological Systems

    ERIC Educational Resources Information Center

    Pietsch, Renée B.; Bohland, Cynthia L.; Schmale, David G., III.

    2015-01-01

    Biological flight mechanics is typically taught in graduate level college classes rather than in secondary school classes. We developed an interdisciplinary unit for advanced upper-level secondary school students (ages 15-18) to teach the principles of flight and applications to biological systems. This unit capitalised on the tremendous…

  3. Full Scale Advanced Systems Testbed (FAST): Capabilities and Recent Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Christopher

    2014-01-01

    At the NASA Armstrong Flight Research Center research is being conducted into flight control technologies that will enable the next generation of air and space vehicles. The Full Scale Advanced Systems Testbed (FAST) aircraft provides a laboratory for flight exploration of these technologies. In recent years novel but simple adaptive architectures for aircraft and rockets have been researched along with control technologies for improving aircraft fuel efficiency and control structural interaction. This presentation outlines the FAST capabilities and provides a snapshot of the research accomplishments to date. Flight experimentation allows a researcher to substantiate or invalidate their assumptions and intuition about a new technology or innovative approach Data early in a development cycle is invaluable for determining which technology barriers are real and which ones are imagined Data for a technology at a low TRL can be used to steer and focus the exploration and fuel rapid advances based on real world lessons learned It is important to identify technologies that are mature enough to benefit from flight research data and not be tempted to wait until we have solved all the potential issues prior to getting some data Sometimes a stagnated technology just needs a little real world data to get it going One trick to getting data for low TRL technologies is finding an environment where it is okay to take risks, where occasional failure is an expected outcome Learning how things fail is often as valuable as showing that they work FAST has been architected to facilitate this type of testing for control system technologies, specifically novel algorithms and sensors Rapid prototyping with a quick turnaround in a fly-fix-fly paradigm Sometimes it's easier and cheaper to just go fly it than to analyze the problem to death The goal is to find and test control technologies that would benefit from flight data and find solutions to the real barriers to innovation. The FAST

  4. Voice measures of workload in the advanced flight deck

    NASA Technical Reports Server (NTRS)

    Schneider, Sid J.; Alpert, Murray; Odonnell, Richard

    1989-01-01

    Voice samples were obtained from 14 male subjects under high and low workload conditions. Acoustical analysis of the voice suggested that high workload conditions can be revealed by their effects on the voice over time. Aircrews in the advanced flight deck will be voicing short, imperative sentences repeatedly. A drop in the energy of the voice, as reflected by reductions in amplitude and frequency over time, and the failure to achieve old amplitude and frequency levels after rest periods, can signal that the workload demands of the situation are straining the speaker. This kind of measurement would be relatively unaffected by individual differences in acoustical measures.

  5. ARPS Enabled Titan Rover Concept with Inflatable Wheels

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.; Schriener, Timothy M.; Shirley, James H.

    2006-01-01

    The Decadal Survey identified Titan as one of the top priority science destinations in the large moons category, while NASA's proposed Design Reference Mission Set ranked a Titan in-situ explorer second, after a recommended Europa Geophysical Observer mission. This paper discusses a Titan rover concept, enabled by a single advanced Radioisotope Power System that could provide about 110We (BOL). The concept targets the smaller Flagship or potentially the New Frontiers mission class. This MSL class rover would traverse on four 1.5 m diameter inflatable wheels during its 3 years mission duration and would use as much design and flight heritage as possible to reduce mission cost. Direct to Earth communication would remove the need for a relay orbiter. Details on the strawman instrument payload, and rover subsystems are given for this science driven mission concept. In addition, power system trades between Advanced RTG, TPV, and Advanced Stirling and Brayton Radioisotope Power Systems (RPS) are outlined. While many possible approaches exist for Titan in-situ exploration, the Titan rover concept presented here could provide a scientifically interesting and programmatically affordable solution.

  6. A neural based intelligent flight control system for the NASA F-15 flight research aircraft

    NASA Technical Reports Server (NTRS)

    Urnes, James M.; Hoy, Stephen E.; Ladage, Robert N.; Stewart, James

    1993-01-01

    A flight control concept that can identify aircraft stability properties and continually optimize the aircraft flying qualities has been developed by McDonnell Aircraft Company under a contract with the NASA-Dryden Flight Research Facility. This flight concept, termed the Intelligent Flight Control System, utilizes Neural Network technology to identify the host aircraft stability and control properties during flight, and use this information to design on-line the control system feedback gains to provide continuous optimum flight response. This self-repairing capability can provide high performance flight maneuvering response throughout large flight envelopes, such as needed for the National Aerospace Plane. Moreover, achieving this response early in the vehicle's development schedule will save cost.

  7. Flight Test Comparison of Synthetic Vision Display Concepts at Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Kramer, Lynda J.; Arthur, Trey; Parrish, Russell V.; Barry, John S.

    2003-01-01

    Limited visibility is the single most critical factor affecting the safety and capacity of worldwide aviation operations. Synthetic Vision Systems (SVS) technology can solve this visibility problem with a visibility solution. These displays employ computer-generated terrain imagery to present 3D, perspective out-the-window scenes with sufficient information and realism to enable operations equivalent to those of a bright, clear day, regardless of weather conditions. To introduce SVS display technology into as many existing aircraft as possible, a retrofit approach was defined that employs existing HDD display capabilities for glass cockpits and HUD capabilities for the other aircraft. This retrofit approach was evaluated for typical nighttime airline operations at a major international airport. Overall, 6 evaluation pilots performed 75 research approaches, accumulating 18 hours flight time evaluating SVS display concepts that used the NASA LaRC's Boeing B-757-200 aircraft at Dallas/Fort Worth International Airport. Results from this flight test establish the SVS retrofit concept, regardless of display size, as viable for tested conditions. Future assessments need to extend evaluation of the approach to operations in an appropriate, terrain-challenged environment with daytime test conditions.

  8. Advancing circadian rhythms before eastward flight: a strategy to prevent or reduce jet lag.

    PubMed

    Eastman, Charmane I; Gazda, Clifford J; Burgess, Helen J; Crowley, Stephanie J; Fogg, Louis F

    2005-01-01

    To develop a practical pre-eastward flight treatment to advance circadian rhythms as much as possible but not misalign them with sleep. One group had their sleep schedule advanced by 1 hour per day and another by 2 hours per day. Baseline at home, treatment in lab. Young healthy adults (11 men, 15 women) between the ages of 22 and 36 years. Three days of a gradually advancing sleep schedule (1 or 2 hours per day) plus intermittent morning bright light (one-half hour approximately 5000 lux, one-half hour of <60 lux) for 3.5 hours. The dim light melatonin onset was assessed before and after the 3-day treatment. Subjects completed daily sleep logs and symptom questionnaires and wore wrist activity monitors. The dim light melatonin onset advanced more in the 2-hours-per-day group than in the 1-hour-per-day group (median phase advances of 1.9 and 1.4 hours), but the difference between the means (1.8 and 1.5 hours) was not statistically significant. By the third treatment day, circadian rhythms were misaligned relative to the sleep schedule, and subjects had difficulty falling asleep in the 2-hours-per-day group, but this was not the case in the 1-hour-per-day group. Nevertheless, the 2-hours-per-day group did slightly better on the symptom questionnaires. In general, sleep disturbance and other side effects were small. A gradually advancing sleep schedule with intermittent morning bright light can be used to advance circadian rhythms before eastward flight and, thus, theoretically, prevent or reduce subsequent jet lag. Given the morning light treatment used here, advancing the sleep schedule 2 hours per day is not better than advancing it 1 hour per day because it was too fast for the advance in circadian rhythms. A diagram is provided to help the traveler plan a preflight schedule.

  9. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  10. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  11. Overview of the NASA Dryden Flight Research Facility aeronautical flight projects

    NASA Technical Reports Server (NTRS)

    Meyer, Robert R., Jr.

    1992-01-01

    Several principal aerodynamics flight projects of the NASA Dryden Flight Research Facility are discussed. Key vehicle technology areas from a wide range of flight vehicles are highlighted. These areas include flight research data obtained for ground facility and computation correlation, applied research in areas not well suited to ground facilities (wind tunnels), and concept demonstration.

  12. Advances in terrestrial physics research at NASA/Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salomonson, Vincent V.

    1987-01-01

    Some past, current, and future terrestrial physics research activities at NASA/Goddard Space Flight Center are described. The uses of satellites and sensors, such as Tiros, Landsat, Nimbus, and SMMR, for terrestrial physics research are discussed. The spaceborne data are applicable for monitoring and studying vegetation, snow, and ice dynamics; geological features; soil moisture; water resources; the geoid of the earth; and the earth's magnetic field. Consideration is given to improvements in remote sensing systems and data records and the Earth Observing System sensor concepts.

  13. Design options for advanced manned launch systems

    NASA Astrophysics Data System (ADS)

    Freeman, Delma C.; Talay, Theodore A.; Stanley, Douglas O.; Lepsch, Roger A.; Wilhite, Alan W.

    1995-03-01

    Various concepts for advanced manned launch systems are examined for delivery missions to space station and polar orbit. Included are single-and two-stage winged systems with rocket and/or air-breathing propulsion systems. For near-term technologies, two-stage reusable rocket systems are favored over single-stage rocket or two-stage air-breathing/rocket systems. Advanced technologies enable viable single-stage-to-orbit (SSTO) concepts. Although two-stage rocket systems continue to be lighter in dry weight than SSTO vehicles, advantages in simpler operations may make SSTO vehicles more cost-effective over the life cycle. Generally, rocket systems maintain a dry-weight advantage over air-breathing systems at the advanced technology levels, but to a lesser degree than when near-term technologies are used. More detailed understanding of vehicle systems and associated ground and flight operations requirements and procedures is essential in determining quantitative discrimination between these latter concepts.

  14. Hypersonic airframe structures: Technology needs and flight test requirements

    NASA Technical Reports Server (NTRS)

    Stone, J. E.; Koch, L. C.

    1979-01-01

    Hypersonic vehicles, that may be produced by the year 2000, were identified. Candidate thermal/structural concepts that merit consideration for these vehicles were described. The current status of analytical methods, materials, manufacturing techniques, and conceptual developments pertaining to these concepts were reviewed. Guidelines establishing meaningful technology goals were defined and twenty-eight specific technology needs were identified. The extent to which these technology needs can be satisfied, using existing capabilities and facilities without the benefit of a hypersonic research aircraft, was assessed. The role that a research aircraft can fill in advancing this technology was discussed and a flight test program was outlined. Research aircraft thermal/structural design philosophy was also discussed. Programs, integrating technology advancements with the projected vehicle needs, were presented. Program options were provided to reflect various scheduling and cost possibilities.

  15. An advanced concept secondary power systems study for an advanced transport technology aircraft

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The application of advanced technology to the design of an integrated secondary power system for future near-sonic long-range transports was investigated. The study showed that the highest payoff is achieved by utilizing secondary power equipment that contributes to minimum cruise drag. This is best accomplished by the use of the dedicated auxiliary power unit concept (inflight APU) as the prime power source for an airplane with a body-mounted engine or by the use of the internal engine generator concept (electrical power extraction from the propulsion engine) for an airplane with a wing-pod-mounted engine.

  16. ADVANCED SULFUR CONTROL CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apostolos A. Nikolopoulos; Santosh K. Gangwal; William J. McMichael

    Conventional sulfur removal in integrated gasification combined cycle (IGCC) power plants involves numerous steps: COS (carbonyl sulfide) hydrolysis, amine scrubbing/regeneration, Claus process, and tail-gas treatment. Advanced sulfur removal in IGCC systems involves typically the use of zinc oxide-based sorbents. The sulfides sorbent is regenerated using dilute air to produce a dilute SO{sub 2} (sulfur dioxide) tail gas. Under previous contracts the highly effective first generation Direct Sulfur Recovery Process (DSRP) for catalytic reduction of this SO{sub 2} tail gas to elemental sulfur was developed. This process is currently undergoing field-testing. In this project, advanced concepts were evaluated to reduce themore » number of unit operations in sulfur removal and recovery. Substantial effort was directed towards developing sorbents that could be directly regenerated to elemental sulfur in an Advanced Hot Gas Process (AHGP). Development of this process has been described in detail in Appendices A-F. RTI began the development of the Single-step Sulfur Recovery Process (SSRP) to eliminate the use of sorbents and multiple reactors in sulfur removal and recovery. This process showed promising preliminary results and thus further process development of AHGP was abandoned in favor of SSRP. The SSRP is a direct Claus process that consists of injecting SO{sub 2} directly into the quenched coal gas from a coal gasifier, and reacting the H{sub 2}S-SO{sub 2} mixture over a selective catalyst to both remove and recover sulfur in a single step. The process is conducted at gasifier pressure and 125 to 160 C. The proposed commercial embodiment of the SSRP involves a liquid phase of molten sulfur with dispersed catalyst in a slurry bubble-column reactor (SBCR).« less

  17. Effectively Transforming IMC Flight into VMC Flight: An SVS Case Study

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Hughes, Monic F.; Parrish, Russell V.; Takallu, Mohammad A.

    2006-01-01

    A flight-test experiment was conducted using the NASA LaRC Cessna 206 aircraft. Four primary flight and navigation display concepts, including baseline and Synthetic Vision System (SVS) concepts, were evaluated in the local area of Roanoke Virginia Airport, flying visual and instrument approach procedures. A total of 19 pilots, from 3 pilot groups reflecting the diverse piloting skills of the GA population, served as evaluation pilots. Multi-variable Discriminant Analysis was applied to three carefully selected and markedly different operating conditions with conventional instrumentation to provide an extension of traditional analysis methods as well as provide an assessment of the effectiveness of SVS displays to effectively transform IMC flight into VMC flight.

  18. Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.

    2016-01-01

    Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.

  19. The flight telerobotic servicer Tinman concept: System design drivers and task analysis

    NASA Technical Reports Server (NTRS)

    Andary, J. F.; Hewitt, D. R.; Hinkal, S. W.

    1989-01-01

    A study was conducted to develop a preliminary definition of the Flight Telerobotic Servicer (FTS) that could be used to understand the operational concepts and scenarios for the FTS. Called the Tinman, this design concept was also used to begin the process of establishing resources and interfaces for the FTS on Space Station Freedom, the National Space Transportation System shuttle orbiter, and the Orbital Maneuvering vehicle. Starting with an analysis of the requirements and task capabilities as stated in the Phase B study requirements document, the study identified eight major design drivers for the FTS. Each of these design drivers and their impacts on the Tinman design concept are described. Next, the planning that is currently underway for providing resources for the FTS on Space Station Freedom is discussed, including up to 2000 W of peak power, up to four color video channels, and command and data rates up to 500 kbps between the telerobot and the control station. Finally, an example is presented to show how the Tinman design concept was used to analyze task scenarios and explore the operational capabilities of the FTS. A structured methodology using a standard terminology consistent with the NASA/National Bureau of Standards Standard Reference Model for Telerobot Control System Architecture (NASREM) was developed for this analysis.

  20. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases [1]. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission [2]. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful

  1. Experimentation and evaluation of advanced integrated system concepts

    NASA Astrophysics Data System (ADS)

    Ross, M.; Garrigus, K.; Gottschalck, J.; Rinearson, L.; Longee, E.

    1980-09-01

    This final report examines the implementation of a time-phased test bed for experimentation and evaluation of advanced system concepts relative to the future Defense Switched Network (DSN). After identifying issues pertinent to the DSN, a set of experiments which address these issues are developed. Experiments are ordered based on their immediacy and relative importance to DSN development. The set of experiments thus defined allows requirements for a time phased implementation of a test bed to be identified, and several generic test bed architectures which meet these requirements are examined. Specific architecture implementations are costed and cost/schedule profiles are generated as a function of experimental capability. The final recommended system consists of two separate test beds: a circuit switch test bed, configured around an off-the-shelf commercial switch, and directed toward the examination of nearer term and transitional issues raised by the evolving DSN; and a packet/hybrid test bed, featuring a discrete buildup of new hardware and software modules, and directed toward examination of the more advanced integrated voice and data telecommunications issues and concepts.

  2. ASME Material Challenges for Advanced Reactor Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piyush Sabharwall; Ali Siahpush

    2013-07-01

    This study presents the material Challenges associated with Advanced Reactor Concept (ARC) such as the Advanced High Temperature Reactor (AHTR). ACR are the next generation concepts focusing on power production and providing thermal energy for industrial applications. The efficient transfer of energy for industrial applications depends on the ability to incorporate cost-effective heat exchangers between the nuclear heat transport system and industrial process heat transport system. The heat exchanger required for AHTR is subjected to a unique set of conditions that bring with them several design challenges not encountered in standard heat exchangers. The corrosive molten salts, especially at highermore » temperatures, require materials throughout the system to avoid corrosion, and adverse high-temperature effects such as creep. Given the very high steam generator pressure of the supercritical steam cycle, it is anticipated that water tube and molten salt shell steam generators heat exchanger will be used. In this paper, the ASME Section III and the American Society of Mechanical Engineers (ASME) Section VIII requirements (acceptance criteria) are discussed. Also, the ASME material acceptance criteria (ASME Section II, Part D) for high temperature environment are presented. Finally, lack of ASME acceptance criteria for thermal design and analysis are discussed.« less

  3. A Flight Demonstration of Plasma Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Petro, Andrew

    1999-01-01

    The Advanced Space Propulsion Laboratory at the Johnson Space Center has been engaged in the development of a magneto-plasma rocket for several years. This type of rocket could be used in the future to propel interplanetary spacecraft. One advantageous feature of this rocket concept is the ability to vary its specific impulse so that it can be operated in a mode which maximizes propellant efficiency or a mode which maximizes thrust. This presentation will describe a proposed flight experiment in which a simple version of the rocket will be tested in space. In addition to the plasma rocket, the flight experiment will also demonstrate the use of a superconducting electromagnet, extensive use of heat pipes, and possibly the transfer of cryogenic propellant in space.

  4. 13kW Advanced Electric Propulsion Flight System Development and Qualification

    NASA Technical Reports Server (NTRS)

    Jackson, Jerry; Allen, May; Myers, Roger; Soendker, Erich; Welander, Benjamin; Tolentino, Artie; Hablitzel, Sam; Yeatts, Chyrl; Xu, Steven; Sheehan, Chris; hide

    2017-01-01

    The next phase of robotic and human deep space exploration missions is enhanced by high performance, high power solar electric propulsion systems for large-scale science missions and cargo transportation. Aerojet Rocketdynes Advanced Electric Propulsion System (AEPS) program is completing development, qualification and delivery of five flight 13.3kW EP systems to NASA. The flight AEPS includes a magnetically-shielded, long-life Hall thruster, power processing unit (PPU), xenon flow controller (XFC), and intrasystem harnesses. The Hall thruster, originally developed and demonstrated by NASAs Glenn Research Center and the Jet Propulsion Laboratory, operates at input powers up to 12.5kW while providing a specific impulse over 2600s at an input voltage of 600V. The power processor is designed to accommodate an input voltage range of 95 to 140V, consistent with operation beyond the orbit of Mars. The integrated system is continuously throttleable between 3 and 13.3kW. The program has completed the system requirement review; the system, thruster, PPU and XFC preliminary design reviews; development of engineering models, and initial system integration testing. This paper will present the high power AEPS capabilities, overall program and design status and the latest test results for the 13.3kW flight system development and qualification program.

  5. Advanced flight hardware for organic separations using aqueous two-phase partitioning

    NASA Astrophysics Data System (ADS)

    Deuser, Mark S.; Vellinger, John C.; Weber, John T.

    1996-03-01

    Separation of cells and cell components is the limiting factor in many biomedical research and pharmaceutical development processes. Aqueous Two-Phase Partitioning (ATPP) is a unique separation technique which allows purification and classification of biological materials. SHOT has employed the ATPP process in separation equipment developed for both space and ground applications. Initial equipment development and research focused on the ORganic SEParation (ORSEP) space flight experiments that were performed on suborbital rockets and the shuttle. ADvanced SEParations (ADSEP) technology was developed as the next generation of ORSEP equipment through a NASA Small Business Innovation Research (SBIR) contract. Under the SBIR contract, a marketing study was conducted, indicating a growing commercial market exists among biotechnology firms for ADSEP equipment and associated flight research and development services. SHOT is preparing to begin manufacturing and marketing laboratory versions of the ADSEP hardware for the ground-based market. In addition, through a self-financed SBIR Phase III effort, SHOT is fabricating and integrating the ADSEP flight hardware for a commercially-driven SPACEHAB 04 experiment that will be the initial step in marketing space separations services. The ADSEP ground-based and microgravity research is expected to play a vital role in developing important new biomedical and pharmaceutical products.

  6. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, A.; Hansman, R. John

    1994-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator was successfully used to evaluate graphical microbursts alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  7. An evaluation of flight path formats head-up and head-down

    NASA Technical Reports Server (NTRS)

    Sexton, George A.; Moody, Laura E.; Evans, Joanne; Williams, Kenneth E.

    1988-01-01

    Flight path primary flight display formats were incorporated on head-up and head-down electronic displays and integrated into an Advanced Concepts Flight Simulator. Objective and subjective data were collected while ten airline pilots evaluated the formats by flying an approach and landing task under various ceiling, visibility and wind conditions. Deviations from referenced/commanded airspeed, horizontal track, vertical track and touchdown point were smaller using the head-up display (HUD) format than the head-down display (HDD) format, but not significantly smaller. Subjectively, the pilots overwhelmingly preferred (1) flight path formats over attitude formats used in current aircraft, and (2) the head-up presentation over the head-down, primarily because it eliminated the head-down to head-up transition during low visibility landing approaches. This report describes the simulator, the flight displays, the format evaluation, and the results of the objective and subjective data.

  8. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  9. Enroute flight planning: Evaluating design concepts for the development of cooperative problem-solving systems

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.

    1995-01-01

    There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal has been two-fold. First, we have been developing specific system designs to help with this important practical problem. Second, we have been using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These design concepts are described below, along with illustrations of their application.

  10. Advanced turboprop testbed systems study

    NASA Technical Reports Server (NTRS)

    Goldsmith, I. M.

    1982-01-01

    The proof of concept, feasibility, and verification of the advanced prop fan and of the integrated advanced prop fan aircraft are established. The use of existing hardware is compatible with having a successfully expedited testbed ready for flight. A prop fan testbed aircraft is definitely feasible and necessary for verification of prop fan/prop fan aircraft integrity. The Allison T701 is most suitable as a propulsor and modification of existing engine and propeller controls are adequate for the testbed. The airframer is considered the logical overall systems integrator of the testbed program.

  11. Flight evaluation of an advanced technology light twin-engine airplane (ATLIT)

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1977-01-01

    Project organization and execution, airplane description and performance predictions, and the results of the flight evaluation of an advanced technology light twin engine airplane (ATLIT) are presented. The ATLIT is a Piper PA-34-200 Seneca I modified by the installation of new wings incorporating the GA(W)-1 (Whitcomb) airfoil, reduced wing area, roll control spoilers, and full span Fowler flaps. The conclusions for the ATLIT evaluation are based on complete stall and roll flight test results and partial performance test results. The Stalling and rolling characteristics met design expectations. Climb performance was penalized by extensive flow separation in the region of the wing body juncture. Cruise performance was found to be penalized by a large value of zero lift drag. Calculations showed that, with proper attention to construction details, the improvements in span efficiency and zero lift drag would permit the realization of the predicted increases in cruising and maximum rate of climb performance.

  12. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  13. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  14. A review of advanced turboprop transport aircraft

    NASA Astrophysics Data System (ADS)

    Lange, Roy H.

    The application of advanced technologies shows the potential for significant improvement in the fuel efficiency and operating costs of future transport aircraft envisioned for operation in the 1990s time period. One of the more promising advanced technologies is embodied in an advanced turboprop concept originated by Hamilton Standard and NASA and known as the propfan. The propfan concept features a highly loaded multibladed, variable pitch propeller geared to a high pressure ratio gas turbine engine. The blades have high sweepback and advanced airfoil sections to achieve 80 percent propulsive efficiency at M=0.80 cruise speed. Aircraft system studies have shown improvements in fuel efficiency of 15-20 percent for propfan advanced transport aircraft as compared to equivalent turbofan transports. Beginning with the Lockheed C-130 and Electra turboprop aircraft, this paper presents an overview of the evolution of propfan aircraft design concepts and system studies. These system studies include possible civil and military transport applications and data on the performance, community and far-field noise characteristics and operating costs of propfan aircraft design concepts. NASA Aircraft Energy Efficiency (ACEE) program propfan projects with industry are reviewed with respect to system studies of propfan aircraft and recommended flight development programs.

  15. Computer aiding for low-altitude helicopter flight

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    1991-01-01

    A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  16. ASTAR Flight Test: Overview and Spacing Results

    NASA Technical Reports Server (NTRS)

    Roper, Roy D.; Koch, Michael R.

    2016-01-01

    The purpose of the NASA Langley Airborne Spacing for Terminal Arrival Routes (ASTAR) research aboard the Boeing ecoDemonstrator aircraft was to demonstrate the use of NASA's ASTAR algorithm using contemporary tools of the Federal Aviation Administration's Next Generation Air Transportation System (NEXTGEN). EcoDemonstrator is a Boeing test program which utilizes advanced experimental equipment to accelerate the science of aerospace and environmentally friendly technologies. The ASTAR Flight Test provided a proof-of-concept flight demonstration that exercised an algorithmic-based application in an actual aircraft. The test aircraft conducted Interval Management operations to provide time-based spacing off a target aircraft in non-simulator wind conditions. Work was conducted as a joint effort between NASA and Boeing to integrate ASTAR in a Boeing supplied B787 test aircraft while using a T-38 aircraft as the target. This demonstration was also used to identify operational risks to future flight trials for the NASA Air Traffic Management Technology Demonstration expected in 2017.

  17. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Technical Reports Server (NTRS)

    Simpson, M. A.; Tran, B. N.

    1991-01-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  18. Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications

    NASA Astrophysics Data System (ADS)

    Simpson, M. A.; Tran, B. N.

    1991-08-01

    Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.

  19. Development and flight test experiences with a flight-crucial digital control system

    NASA Technical Reports Server (NTRS)

    Mackall, Dale A.

    1988-01-01

    Engineers and scientists in the advanced fighter technology integration (AFTI) F-16 program investigated the integration of emerging technologies into an advanced fighter aircraft. AFTI's three major technologies included: flight-crucial digital control, decoupled aircraft flight control, and integration of avionics, flight control, and pilot displays. In addition to investigating improvements in fighter performance, researchers studied the generic problems confronting the designers of highly integrated flight-crucial digital control. An overview is provided of both the advantages and problems of integration digital control systems. Also, an examination of the specification, design, qualification, and flight test life-cycle phase is provided. An overview is given of the fault-tolerant design, multimoded decoupled flight control laws, and integrated avionics design. The approach to qualifying the software and system designs is discussed, and the effects of design choices on system qualification are highlighted.

  20. Flight Test Evaluation of Situation Awareness Benefits of Integrated Synthetic Vision System Technology f or Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, Jarvis J., III

    2005-01-01

    Research was conducted onboard a Gulfstream G-V aircraft to evaluate integrated Synthetic Vision System concepts during flight tests over a 6-week period at the Wallops Flight Facility and Reno/Tahoe International Airport. The NASA Synthetic Vision System incorporates database integrity monitoring, runway incursion prevention alerting, surface maps, enhanced vision sensors, and advanced pathway guidance and synthetic terrain presentation. The paper details the goals and objectives of the flight test with a focus on the situation awareness benefits of integrating synthetic vision system enabling technologies for commercial aircraft.

  1. Advancing Your Career: Concepts of Professional Nursing. Second Edition.

    ERIC Educational Resources Information Center

    Kearney, Rose

    This textbook, intended for registered nurses (RN's) returning to school, is designed to provide practicing RN's with professional concepts to advance their careers. The book contains 22 chapters organized in five sections. Each chapter includes chapter objectives, key terms, key points, chapter exercises, references, and a bibliography. Section I…

  2. Flight dynamics research for highly agile aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Luat T.

    1989-01-01

    This paper highlights recent results of research conducted at the NASA Langley Research Center as part of a broad flight dynamics program aimed at developing technology that will enable future combat aircraft to achieve greatly enhanced agility capability at subsonic combat conditions. Studies of advanced control concepts encompassing both propulsive and aerodynamic approaches are reviewed. Dynamic stall phenomena and their potential impact on maneuvering performance and stability are summarized. Finally, issues of mathematical modeling of complex aerodynamics occurring during rapid, large amplitude maneuvers are discussed.

  3. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  4. A graphical workstation based part-task flight simulator for preliminary rapid evaluation of advanced displays

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Kuchar, James; Hahn, Edward; Pritchett, Amy; Hansman, R. J.

    1992-01-01

    Advances in avionics and display technology are significantly changing the cockpit environment in current transport aircraft. The MIT Aeronautical Systems Lab (ASL) has developed a part-task flight simulator specifically to study the effects of these new technologies on flight crew situational awareness and performance. The simulator is based on a commercially-available graphics workstation, and can be rapidly reconfigured to meet the varying demands of experimental studies. The simulator has been successfully used to evaluate graphical microburst alerting displays, electronic instrument approach plates, terrain awareness and alerting displays, and ATC routing amendment delivery through digital datalinks.

  5. Three input concepts for flight crew interaction with information presented on a large-screen electronic cockpit display

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    1990-01-01

    A piloted simulation study was conducted comparing three different input methods for interfacing to a large-screen, multiwindow, whole-flight-deck display for management of transport aircraft systems. The thumball concept utilized a miniature trackball embedded in a conventional side-arm controller. The touch screen concept provided data entry through a capacitive touch screen. The voice concept utilized a speech recognition system with input through a head-worn microphone. No single input concept emerged as the most desirable method of interacting with the display. Subjective results, however, indicate that the voice concept was the most preferred method of data entry and had the most potential for future applications. The objective results indicate that, overall, the touch screen concept was the most effective input method. There was also significant differences between the time required to perform specific tasks and the input concept employed, with each concept providing better performance relative to a specific task. These results suggest that a system combining all three input concepts might provide the most effective method of interaction.

  6. Future ATM Concepts Evaluation Tool (FACET) Interface Control Document

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon R.

    2017-01-01

    This Interface Control Document (ICD) documents the airspace adaptation and air traffic inputs of NASA's Future ATM Concepts and Evaluation Tool (FACET). Its intended audience is the project manager, project team, development team, and stakeholders interested in interfacing with the system. FACET equips Air Traffic Management (ATM) researchers and service providers with a way to explore, develop and evaluate advanced air transportation concepts before they are field-tested and eventually deployed. FACET is a flexible software tool that is capable of quickly generating and analyzing thousands of aircraft trajectories. It provides researchers with a simulation environment for preliminary testing of advanced ATM concepts. Using aircraft performance profiles, airspace models, weather data, and flight schedules, the tool models trajectories for the climb, cruise, and descent phases of flight for each type of aircraft. An advanced graphical interface displays traffic patterns in two and three dimensions, under various current and projected conditions for specific airspace regions or over the entire continental United States. The system is able to simulate a full day's dynamic national airspace system (NAS) operations, model system uncertainty, measure the impact of different decision-makers in the NAS, and provide analysis of the results in graphical form, including sector, airport, fix, and airway usage statistics. NASA researchers test and analyze the system-wide impact of new traffic flow management algorithms under anticipated air traffic growth projections on the nation's air traffic system. In addition to modeling the airspace system for NASA research, FACET has also successfully transitioned into a valuable tool for operational use. Federal Aviation Administration (FAA) traffic flow managers and commercial airline dispatchers have used FACET technology for real-time operations planning. FACET integrates live air traffic data from FAA radar systems and weather data

  7. Applications of Payload Directed Flight

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey; Fladeland, Matthew M.; Yeh, Yoo Hsiu

    2009-01-01

    Next generation aviation flight control concepts require autonomous and intelligent control system architectures that close control loops directly around payload sensors in manner more integrated and cohesive that in traditional autopilot designs. Research into payload directed flight control at NASA Ames Research Center is investigating new and novel architectures that can satisfy the requirements for next generation control and automation concepts for aviation. Tighter integration between sensor and machine requires definition of specific sensor-directed control modes to tie the sensor data directly into a vehicle control structures throughout the entire control architecture, from low-level stability- and control loops, to higher level mission planning and scheduling reasoning systems. Payload directed flight systems can thus provide guidance, navigation, and control for vehicle platforms hosting a suite of onboard payload sensors. This paper outlines related research into the field of payload directed flight; and outlines requirements and operating concepts for payload directed flight systems based on identified needs from the scientific literature.'

  8. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  9. Preliminary simulation of an advanced, hingless rotor XV-15 tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Mcveigh, M. A.

    1976-01-01

    The feasibility of the tilt-rotor concept was verified through investigation of the performance, stability and handling qualities of the XV-15 tilt rotor. The rotors were replaced by advanced-technology fiberglass/composite hingless rotors of larger diameter, combined with an advanced integrated fly-by-wire control system. A parametric simulation model of the HRXV-15 was developed, model was used to define acceptable preliminary ranges of primary and secondary control schedules as functions of the flight parameters, to evaluate performance, flying qualities and structural loads, and to have a Boeing-Vertol pilot conduct a simulated flight test evaluation of the aircraft.

  10. Assessment of the Performance Potential of Advanced Subsonic Transport Concepts for NASA's Environmentally Responsible Aviation Project

    NASA Technical Reports Server (NTRS)

    Nickol, Craig L.; Haller, William J.

    2016-01-01

    NASA's Environmentally Responsible Aviation (ERA) project has matured technologies to enable simultaneous reductions in fuel burn, noise, and nitrogen oxide (NOx) emissions for future subsonic commercial transport aircraft. The fuel burn reduction target was a 50% reduction in block fuel burn (relative to a 2005 best-in-class baseline aircraft), utilizing technologies with an estimated Technology Readiness Level (TRL) of 4-6 by 2020. Progress towards this fuel burn reduction target was measured through the conceptual design and analysis of advanced subsonic commercial transport concepts spanning vehicle size classes from regional jet (98 passengers) to very large twin aisle size (400 passengers). Both conventional tube-and-wing (T+W) concepts and unconventional (over-wing-nacelle (OWN), hybrid wing body (HWB), mid-fuselage nacelle (MFN)) concepts were developed. A set of propulsion and airframe technologies were defined and integrated onto these advanced concepts which were then sized to meet the baseline mission requirements. Block fuel burn performance was then estimated, resulting in reductions relative to the 2005 best-in-class baseline performance ranging from 39% to 49%. The advanced single-aisle and large twin aisle T+W concepts had reductions of 43% and 41%, respectively, relative to the 737-800 and 777-200LR aircraft. The single-aisle OWN concept and the large twin aisle class HWB concept had reductions of 45% and 47%, respectively. In addition to their estimated fuel burn reduction performance, these unconventional concepts have the potential to provide significant noise reductions due, in part, to engine shielding provided by the airframe. Finally, all of the advanced concepts also have the potential for significant NOx emissions reductions due to the use of advanced combustor technology. Noise and NOx emissions reduction estimates were also generated for these concepts as part of the ERA project.

  11. Flight Testing of an Airport Surface Guidance, Navigation, and Control System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Jones, Denise R.

    1998-01-01

    This document describes operations associated with a set of flight experiments and demonstrations using a Boeing-757-200 (B-757) research aircraft as part of low visibility landing and surface operations (LVLASO) research activities. To support this experiment, the B-757 performed flight and taxi operations at the Hartsfield-Atlanta International Airport (ATL) in Atlanta, GA. The B-757 was equipped with experimental displays that were designed to provide flight crews with sufficient information to enable safe, expedient surface operations in any weather condition down to a runway visual range (RVR) of 300 feet. In addition to flight deck displays and supporting equipment onboard the B-757, there was also a ground-based component of the system that provided for ground controller inputs and surveillance of airport surface movements. The integrated ground and airborne components resulted in a system that has the potential to significantly improve the safety and efficiency of airport surface movements particularly as weather conditions deteriorate. Several advanced technologies were employed to show the validity of the operational concept at a major airport facility, to validate flight simulation findings, and to assess each of the individual technologies performance in an airport environment. Results show that while the maturity of some of the technologies does not permit immediate implementation, the operational concept is valid and the performance is more than adequate in many areas.

  12. Introduction to Advanced Engine Control Concepts

    NASA Technical Reports Server (NTRS)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  13. NASA/industry advanced turboprop technology program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziemianski, J.A.; Whitlow, J.B. Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, andmore » a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.« less

  14. NASA/industry advanced turboprop technology program

    NASA Technical Reports Server (NTRS)

    Ziemianski, Joseph A.; Whitlow, John B., Jr.

    1988-01-01

    Experimental and analytical effort shows that use of advanced turboprop (propfan) propulsion instead of conventional turbofans in the older narrow-body airline fleet could reduce fuel consumption for this type of aircraft by up to 50 percent. The NASA Advanced Turboprop (ATP) program was formulated to address the key technologies required for these thin, swept-blade propeller concepts. A NASA, industry, and university team was assembled to develop and validate applicable design codes and prove by ground and flight test the viability of these propeller concepts. Some of the history of the ATP project, an overview of some of the issues, and a summary of the technology developed to make advanced propellers viable in the high-subsonic cruise speed application are presented. The ATP program was awarded the prestigious Robert J. Collier Trophy for the greatest achievement in aeronautics and astronautics in America in 1987.

  15. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  16. Post Landsat-D advanced concept evaluation /PLACE/

    NASA Technical Reports Server (NTRS)

    Alexander, L. D.; Alvarado, U. R.; Flatow, F. S.

    1979-01-01

    The aim of the Post Landsat-D Advanced Concept Evaluation (PLACE) program was to identify the key technology requirements of earth resources satellite systems for the 1985-2000 period. The program involved four efforts: (1) examination of future needs in the earth resources area, (2) creation of a space systems technology model capable of satisfying these needs, (3) identification of key technology requirements posed by this model, and (4) development of a methodology (PRISM) to assist in the priority structuring of the resulting technologies.

  17. Perseus in Flight

    NASA Image and Video Library

    1991-11-15

    The Perseus proof-of-concept vehicle in flight at the Dryden Flight Research Center, Edwards, California in 1991. Perseus is one of several remotely-piloted aircraft designed for high-altitude, long-endurance scientific sampling missions being evaluated under the ERAST program.

  18. Variable/Multispeed Rotorcraft Drive System Concepts

    NASA Technical Reports Server (NTRS)

    Stevens, Mark A.; Handschuh, Robert F.; Lewicki, David G.

    2009-01-01

    Several recent studies for advanced rotorcraft have identified the need for variable, or multispeed-capable rotors. A speed change of up to 50 percent has been proposed for future rotorcraft to improve vehicle performance. Varying rotor speed during flight not only requires a rotor capable of performing effectively over the extended operation speed and load range, but also requires an advanced propulsion system to provide the required speed changes. A study has been completed, which investigated possible drive system arrangements to accommodate up to the 50 percent speed change. These concepts are presented. The most promising configurations are identified and will be developed for future validation testing.

  19. Application of advanced technologies to future military transports

    NASA Technical Reports Server (NTRS)

    Clark, Rodney L.; Lange, Roy H.; Wagner, Richard D.

    1990-01-01

    Long range military transport technologies are addressed with emphasis of defining the potential benefits of the hybrid laminar flow control (HLFC) concept currently being flight tested. Results of a 1990's global range transport study are presented showing the expected payoff from application of advanced technologies. Technology forecast for military transports is also presented.

  20. Swingbed Amine Carbon Dioxide Removal Flight Experiment - Feasibility Study and Concept Development for Cost-Effective Exploration Technology Maturation on The International Space Station

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy

    2011-01-01

    The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.

  1. Development of a metal-clad advanced composite shear web design concept

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.

    1974-01-01

    An advanced composite web concept was developed for potential application to the Space Shuttle Orbiter main engine thrust structure. The program consisted of design synthesis, analysis, detail design, element testing, and large scale component testing. A concept was sought that offered significant weight saving by the use of Boron/Epoxy (B/E) reinforced titanium plate structure. The desired concept was one that was practical and that utilized metal to efficiently improve structural reliability. The resulting development of a unique titanium-clad B/E shear web design concept is described. Three large scale components were fabricated and tested to demonstrate the performance of the concept: a titanium-clad plus or minus 45 deg B/E web laminate stiffened with vertical B/E reinforced aluminum stiffeners.

  2. Advanced Accelerator Development Strategy Report: DOE Advanced Accelerator Concepts Research Roadmap Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    Over a full two day period, February 2–3, 2016, the Office of High Energy Physics convened a workshop in Gaithersburg, MD to seek community input on development of an Advanced Accelerator Concepts (AAC) research roadmap. The workshop was in response to a recommendation by the HEPAP Accelerator R&D Subpanel [1] [2] to “convene the university and laboratory proponents of advanced acceleration concepts to develop R&D roadmaps with a series of milestones and common down selection criteria towards the goal for constructing a multi-TeV e+e– collider” (the charge to the workshop can be found in Appendix A). During the workshop, proponentsmore » of laser-driven plasma wakefield acceleration (LWFA), particle-beam-driven plasma wakefield acceleration (PWFA), and dielectric wakefield acceleration (DWFA), along with a limited number of invited university and laboratory experts, presented and critically discussed individual concept roadmaps. The roadmap workshop was preceded by several preparatory workshops. The first day of the workshop featured presentation of three initial individual roadmaps with ample time for discussion. The individual roadmaps covered a time period extending until roughly 2040, with the end date assumed to be roughly appropriate for initial operation of a multi-TeV e+e– collider. The second day of the workshop comprised talks on synergies between the roadmaps and with global efforts, potential early applications, diagnostics needs, simulation needs, and beam issues and challenges related to a collider. During the last half of the day the roadmaps were revisited but with emphasis on the next five to ten years (as specifically requested in the charge) and on common challenges. The workshop concluded with critical and unanimous endorsement of the individual roadmaps and an extended discussion on the characteristics of the common challenges. (For the agenda and list of participants see Appendix B.)« less

  3. Outlook for advanced concepts in transport aircraft

    NASA Technical Reports Server (NTRS)

    Conner, D. W.

    1980-01-01

    Air transportation demand trends, air transportation system goals, and air transportation system trends well into the 21st century were examined in detail. The outlook is for continued growth in both air passenger travel and air freight movements. The present system, with some improvements, is expected to continue to the turn of the century and to utilize technologically upgraded, derivative versions of today's aircraft, plus possibly some new aircraft for supersonic long haul, short haul, and high density commuter service. Severe constraints of the system, expected by early in the 21st century, should lead to innovations at the airport, away from the airport, and in the air. The innovations are illustrated by descriptions of three candidate systems involving advanced aircraft concepts. Advanced technologies and vehicles expected to impact the airport are illustrated by descriptions of laminar flow control aircraft, very large air freighters and cryogenically fueled transports.

  4. A Concept for the HIFiRE 8 Flight Test

    NASA Astrophysics Data System (ADS)

    Alesi, H.; Paull, A.; Smart, M.; Bowcutt, K. G.

    2015-09-01

    HIFiRE 8 is a hypersonic flight test experiment scheduled for launch in late 2018 from the Woomera Test Center in Australia. This project aims to develop a Flight Test Vehicle that will, for the first time, complete 30 seconds of scramjet powered hypersonic flight at a Mach Number of 7.0. The engine used for this flight will be a rectangular to elliptic shape transition scramjet. It will be fuelled with gaseous hydrogen. The flight test engine configuration will be derived using scientific and engineering evaluation in the UQ shock tunnel T4 and other potential ground-based facilities. This paper presents current plans for the HIFiRE 8 trajectory, mission events, airframe and engine designs and also includes descriptions of critical subsystems and associated modelling, simulation and analysis activities.

  5. Development and evaluation of a prototype in-flight instrument flight rules (IFR) procedures trainer

    NASA Technical Reports Server (NTRS)

    Aaron, J. B., Jr.; Morris, G. G.

    1981-01-01

    An in-flight instrument flight rules (IFR) procedures trainer capable of providing simulated indications of instrument flight in a typical general aviation aircraft independent of ground based navigation aids was developed. The IFR navaid related instruments and circuits from an ATC 610J table top simulator were installed in a Cessna 172 aircraft and connected to its electrical power and pitot static systems. The benefits expected from this hybridization concept include increased safety by reducing the number of general aviation aircraft conducting IFR training flights in congested terminal areas, and reduced fuel use and instruction costs by lessening the need to fly to and from navaid equipped airports and by increased efficiency of the required in-flight training. Technical feasibility was demonstrated and the operational feasibility of the concept was evaluated. Results indicated that the in-flight simulator is an effective training device for teaching IFR procedural skills.

  6. Armstrong Flight Research Center Research Technology and Engineering 2017

    NASA Technical Reports Server (NTRS)

    Voracek, David F. (Editor)

    2018-01-01

    I am delighted to present this report of accomplishments at NASA's Armstrong Flight Research Center. Our dedicated innovators possess a wealth of performance, safety, and technical capabilities spanning a wide variety of research areas involving aircraft, electronic sensors, instrumentation, environmental and earth science, celestial observations, and much more. They not only perform tasks necessary to safely and successfully accomplish Armstrong's flight research and test missions but also support NASA missions across the entire Agency. Armstrong's project teams have successfully accomplished many of the nation's most complex flight research projects by crafting creative solutions that advance emerging technologies from concept development and experimental formulation to final testing. We are developing and refining technologies for ultra-efficient aircraft, electric propulsion vehicles, a low boom flight demonstrator, air launch systems, and experimental x-planes, to name a few. Additionally, with our unique location and airborne research laboratories, we are testing and validating new research concepts. Summaries of each project highlighting key results and benefits of the effort are provided in the following pages. Technology areas for the projects include electric propulsion, vehicle efficiency, supersonics, space and hypersonics, autonomous systems, flight and ground experimental test technologies, and much more. Additional technical information is available in the appendix, as well as contact information for the Principal Investigator of each project. I am proud of the work we do here at Armstrong and am pleased to share these details with you. We welcome opportunities for partnership and collaboration, so please contact us to learn more about these cutting-edge innovations and how they might align with your needs.

  7. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  8. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    PubMed

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  9. Greased Lightning (GL-10) Performance Flight Research: Flight Data Report

    NASA Technical Reports Server (NTRS)

    McSwain, Robert G.; Glaab, Louis J.; Theodore, Colin R.; Rhew, Ray D. (Editor); North, David D. (Editor)

    2017-01-01

    Modern aircraft design methods have produced acceptable designs for large conventional aircraft performance. With revolutionary electronic propulsion technologies fueled by the growth in the small UAS (Unmanned Aerial Systems) industry, these same prediction models are being applied to new smaller, and experimental design concepts requiring a VTOL (Vertical Take Off and Landing) capability for ODM (On Demand Mobility). A 50% sub-scale GL-10 flight model was built and tested to demonstrate the transition from hover to forward flight utilizing DEP (Distributed Electric Propulsion)[1][2]. In 2016 plans were put in place to conduct performance flight testing on the 50% sub-scale GL-10 flight model to support a NASA project called DELIVER (Design Environment for Novel Vertical Lift Vehicles). DELIVER was investigating the feasibility of including smaller and more experimental aircraft configurations into a NASA design tool called NDARC (NASA Design and Analysis of Rotorcraft)[3]. This report covers the performance flight data collected during flight testing of the GL-10 50% sub-scale flight model conducted at Beaver Dam Airpark, VA. Overall the flight test data provides great insight into how well our existing conceptual design tools predict the performance of small scale experimental DEP concepts. Low fidelity conceptual design tools estimated the (L/D)( sub max)of the GL-10 50% sub-scale flight model to be 16. Experimentally measured (L/D)( sub max) for the GL-10 50% scale flight model was 7.2. The aerodynamic performance predicted versus measured highlights the complexity of wing and nacelle interactions which is not currently accounted for in existing low fidelity tools.

  10. An iLab for Teaching Advanced Logic Concepts with Hardware Descriptive Languages

    ERIC Educational Resources Information Center

    Ayodele, Kayode P.; Inyang, Isaac A.; Kehinde, Lawrence O.

    2015-01-01

    One of the more interesting approaches to teaching advanced logic concepts is the use of online laboratory frameworks to provide student access to remote field-programmable devices. There is as yet, however, no conclusive evidence of the effectiveness of such an approach. This paper presents the Advanced Digital Lab, a remote laboratory based on…

  11. Active In-Flight Load Redistribution Utilizing Fiber-Optic Shape Sensing and Multiple Control Surfaces

    NASA Technical Reports Server (NTRS)

    Pena, Francisco; Martins, Benjamin L.; Richards, W. Lance

    2018-01-01

    Morphing wing technologies have gained research interest in recent years as technological advancements pave the way for such innovations. A key benefit of such a morphing wing concept is the ability of the wing to transition into an optimal configuration at multiple flight conditions. Such a morphing wing will have applications not only in drag reduction but also in flutter suppression and gust alleviation. By manipulating the wing geometry to match a given flight profile it is likely that the wing will yield increases in not just aerodynamic efficiency but also structural efficiency. These structurally efficient designs will likely rely on some type of structural sensing system which will ensure the wing maintains positive margins throughout its flight profile.

  12. Preparation for the Proof of Concept Flight of the Veggie Plant Growth Chamber

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Morrow, Robert; Hummerick, Mary; Newsham, Gerard; Wheeler, Raymond

    2012-01-01

    Veggie is a small plant growth chamber designed and built by ORBITEC that will fly to the International Space Station on SpaceX-3, scheduled for the summer of 2013. Ultimately Veggie will be used for research, education and outreach, and crew recreation. We want to demonstrate the functionality of this hardware by testing a scenario that could allow the crew to grow and consume fresh vegetables. Veggie will be collapsed and transported flat in a cargo transfer bag, and deployed on orbit, where it will be installed in an EXPRESS rack. The chamber consists of three subsystems: an LED light cap, a transparent bellows, and a root mat reservoir assembly. The bellows and flexible support arms allow the distance between plants and light cap to be adjusted for different ages and types of plants. Researchers at Kennedy Space Center and ORBITEC have been working to develop the plant growth interfaces for the proof of concept flight. We have developed a rooting pillow, consisting of a small bag containing media, time release fertilizer, seeds, and a wicking surface to conduct water from the root mat reservoir. Prototype pillows have been tested and results have influenced the design of flight pillows, which will be modified for microgravity from flight-approved materials. Several studies have been conducted selecting species and comparing media types in analog systems. Water content seems to be the most important factor differentiating media types in these small growth volumes (100 mL). Media type also influenced microbial levels on plants. Since produce sanitizing agents are not currently approved for growing food crops on orbit, plants and media types having very low microbial levels are being selected. Lettuce, mizuna, and other salad greens typically have microbial counts less than 10(exp 4) colony forming units and thus are good candidates for spaceflight. As we approach flight verification testing, we will finalize species, media selection, harvesting, and microbial

  13. Advanced Nacelle Acoustic Lining Concepts Development

    NASA Technical Reports Server (NTRS)

    Bielak, G.; Gallman, J.; Kunze, R.; Murray, P.; Premo, J.; Kosanchick, M.; Hersh, A.; Celano, J.; Walker, B.; Yu, J.; hide

    2002-01-01

    The work reported in this document consisted of six distinct liner technology development subtasks: 1) Analysis of Model Scale ADP Fan Duct Lining Data (Boeing): An evaluation of an AST Milestone experiment to demonstrate 1995 liner technology superiority relative to that of 1992 was performed on 1:5.9 scale model fan rig (Advanced Ducted Propeller) test data acquired in the NASA Glenn 9 x 15 foot wind tunnel. The goal of 50% improvement was deemed satisfied. 2) Bias Flow Liner Investigation (Boeing, VCES): The ability to control liner impedance by low velocity bias flow through liner was demonstrated. An impedance prediction model to include bias flow was developed. 3) Grazing Flow Impedance Testing (Boeing): Grazing flow impedance tests were conducted for comparison with results achieved at four different laboratories. 4) Micro-Perforate Acoustic Liner Technology (BFG, HAE, NG): Proof of concept testing of a "linear liner." 5) Extended Reaction Liners (Boeing, NG): Bandwidth improvements for non-locally reacting liner were investigated with porous honeycomb core test liners. 6) Development of a Hybrid Active/Passive Lining Concept (HAE): Synergism between active and passive attenuation of noise radiated by a model inlet was demonstrated.

  14. F-15B ACTIVE - First supersonic yaw vectoring flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    On Wednesday, April 24, 1996, the F-15 Advanced Control Technology for Integrated Vehicles (ACTIVE) aircraft achieved its first supersonic yaw vectoring flight at Dryden Flight Research Center, Edwards, California. ACTIVE is a joint NASA, U.S. Air Force, McDonnell Douglas Aerospace (MDA) and Pratt & Whitney (P&W) program. The team will assess performance and technology benefits during flight test operations. Current plans call for approximately 60 flights totaling 100 hours. 'Reaching this milestone is very rewarding. We hope to set some more records before we're through,' stated Roger W. Bursey, P&W's pitch-yaw balance beam nozzle (PYBBN) program manager. A pair of P&W PYBBNs vectored (horizontally side-to-side, pitch is up and down) the thrust for the MDA manufactured F-15 research aircraft. Power to reach supersonic speeds was provided by two high-performance F100-PW-229 engines that were modified with the multi-directional thrust vectoring nozzles. The new concept should lead to significant increases in performance of both civil and military aircraft flying at subsonic and supersonic speeds.

  15. Integrated Flight Performance Analysis of a Launch Abort System Concept

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  16. A Unique Software System For Simulation-to-Flight Research

    NASA Technical Reports Server (NTRS)

    Chung, Victoria I.; Hutchinson, Brian K.

    2001-01-01

    "Simulation-to-Flight" is a research development concept to reduce costs and increase testing efficiency of future major aeronautical research efforts at NASA. The simulation-to-flight concept is achieved by using common software and hardware, procedures, and processes for both piloted-simulation and flight testing. This concept was applied to the design and development of two full-size transport simulators, a research system installed on a NASA B-757 airplane, and two supporting laboratories. This paper describes the software system that supports the simulation-to-flight facilities. Examples of various simulation-to-flight experimental applications were also provided.

  17. Concept for Space Technology Advancement

    NASA Astrophysics Data System (ADS)

    Hansen, Jeremiah J.

    2005-02-01

    The space industry is based on an antiquated concept of disposable rockets, earth construction, and non-repairable satellites. Current space vehicle concepts hearken from a time of Cold War animosity and expeditiousness. Space systems are put together in small, single-purpose chunks that are launched with mighty, single-use rockets. Spacecraft need to change to a more versatile, capable, reusable, and mission efficient design. The Crew Exploration Vehicle (CEV) that President Bush put forward in his space initiative on Jan. 14, 2004 is a small first step. But like all first steps, the risk of eventual failure is great without a complementary set of steps, a reliable handhold, and a goal, which are outlined in this paper. The system for space access and development needs to be overhauled to allow for the access to space to complement the building in space, which promotes the production of goods in space, which enhances the exploitation of space resources… and the list goes on. Without supplemental and complementary infrastructure, all political, scientific, and idealistic endeavors to explore and exploit the near solar system will result in quagmires of failures and indecision. Renewed focus on fundamentals, integration, total-system consideration, and solid engineering can avoid catastrophe. Mission success, simple solutions, mission efficiency, and proper testing all seem to have been lost in the chase for the nickels and dimes. These items will increase capabilities available from a system or combination of systems. New propulsion options and materials will enable vehicles previously unachievable. Future spacecraft should exploit modular designs for repeatability and reduced cost. Space construction should use these modular systems on major components built in orbit. All vehicles should apply smart designs and monitoring systems for increased reliability and system awareness. Crew safety systems must use this awareness in alerting the crew, aiding collision

  18. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  19. The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept (Preprint)

    DTIC Science & Technology

    2008-06-10

    flight applications. Thrust augmentation , such as PDE- ejector configurations, can potentially alleviate this problem. Here, we study the potential...flow, to assist in augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams...and the ejector operates. This is one of several configurations in which the PDRIME concept could be used for thrust augmentation in advanced

  20. Integrated Flight-propulsion Control Concepts for Supersonic Transport Airplanes

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Gelhausen, Paul A.

    1990-01-01

    Integration of propulsion and flight control systems will provide significant performance improvements for supersonic transport airplanes. Increased engine thrust and reduced fuel consumption can be obtained by controlling engine stall margin as a function of flight and engine operating conditions. Improved inlet pressure recovery and decreased inlet drag can result from inlet control system integration. Using propulsion system forces and moments to augment the flight control system and airplane stability can reduce the flight control surface and tail size, weight, and drag. Special control modes may also be desirable for minimizing community noise and for emergency procedures. The overall impact of integrated controls on the takeoff gross weight for a generic high speed civil transport is presented.

  1. Advanced Turboprop Project

    NASA Technical Reports Server (NTRS)

    Hager, Roy D.; Vrabel, Deborah

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  2. Advanced turboprop project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hager, R.D.; Vrabel, D.

    1988-01-01

    At the direction of Congress, a task force headed by NASA was organized in 1975 to identify potential fuel saving concepts for aviation. The result was the Aircraft Energy Efficiency (ACEE) Program implemented in 1976. An important part of the program was the development of advanced turboprop technology for Mach 0.65 to 0.85 applications having the potential fuel saving of 30 to 50 percent relative to existing turbofan engines. A historical perspective is presented of the development and the accomplishments that brought the turboprop to successful flight tests in 1986 and 1987.

  3. Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors

    NASA Technical Reports Server (NTRS)

    Blanken, Christopher L. (Editor); Whalley, Matthew S. (Editor)

    1993-01-01

    This document contains papers from a specialists' meeting entitled 'Piloting Vertical Flight Aircraft: A Conference on Flying Qualities and Human Factors.' Vertical flight aircraft, including helicopters and a variety of Vertical Takeoff and Landing (VTOL) concepts, place unique requirements on human perception, control, and performance for the conduct of their design missions. The intent of this conference was to examine, for these vehicles, advances in: (1) design of flight control systems for ADS-33C standards; (2) assessment of human factors influences of cockpit displays and operational procedures; (3) development of VTOL design and operational criteria; and (4) development of theoretical methods or models for predicting pilot/vehicle performance and mission suitability. A secondary goal of the conference was to provide an initial venue for enhanced interaction between human factors and handling qualities specialists.

  4. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  5. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David

    2009-01-01

    NASA Dryden started working towards a single vehicle enhanced flight termination system (EFTS) in January 2008. NASA and AFFTC combined their efforts to work towards final operating capability for multiple vehicle and multiple missions simultaneously, to be completed by the end of 2011. Initially, the system was developed to support one vehicle and one frequency per mission for unmanned aerial vehicles (UAVs) at NASA Dryden. By May 2008 95% of design and hardware builds were completed, however, NASA Dryden's change of software safety scope and requirements caused delays after May 2008. This presentation reviews the initial and final operating capabilities for the Advanced Command Destruct System (ACDS), including command controller and configuration software development. A requirements summary is also provided.

  6. Flight evaluation of stabilization and command augmentation system concepts and cockpit displays during approach and landing of powered-lift STOL aircraft

    NASA Technical Reports Server (NTRS)

    Franklin, J. A.; Innis, R. C.; Hardy, G. H.

    1980-01-01

    A flight research program was conducted to assess the effectiveness of manual control concepts and various cockpit displays in improving altitude (pitch, roll, and yaw) and longitudinal path control during short takeoff aircraft approaches and landings. Satisfactory flying qualities were demonstrared to minimum decision heights of 30 m (100 ft) for selected stabilization and command augmentation systems and flight director combinations. Precise landings at low touchdown sink rates were achieved with a gentle flare maneuver.

  7. High Stability Engine Control (HISTEC): Flight Demonstration Results

    NASA Technical Reports Server (NTRS)

    Delaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The High Stability Engine Control (HISTEC) program has developed technologies for an advanced, integrated engine control system that uses measurement- based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and/or decrease in fuel burn. The HISTEC concept was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two parts, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  8. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  9. Thermostructural analysis of three structural concepts for reusable space vehicles

    NASA Technical Reports Server (NTRS)

    Taylor, A. H.; Jackson, L. R.

    1979-01-01

    Three structural concepts are studied: (1) a state-of-the-art insulated aluminum skin-stringer structure; (2) a near-art insulated evacuated aluminum-alloy honeycomb structure; and (3) an advanced evacuated Rene 41 honeycomb hot structure. Each is evaluated for its thermostructural performance for each of the flight profiles (ascent, entry, and a recall or abort). Results indicate that (1) the state-of-the-art structure encounters negligible thermal stress; (2) the near-art structure has acceptable thermal stresses; and (3) the advanced structure will have thermal stress levels above the material allowables.

  10. Feasibility of using a knowledge-based system concept for in-flight primary flight display research

    NASA Technical Reports Server (NTRS)

    Ricks, Wendell R.

    1991-01-01

    A study was conducted to determine the feasibility of using knowledge-based systems architectures for inflight research of primary flight display information management issues. The feasibility relied on the ability to integrate knowledge-based systems with existing onboard aircraft systems. And, given the hardware and software platforms available, the feasibility also depended on the ability to use interpreted LISP software with the real time operation of the primary flight display. In addition to evaluating these feasibility issues, the study determined whether the software engineering advantages of knowledge-based systems found for this application in the earlier workstation study extended to the inflight research environment. To study these issues, two integrated knowledge-based systems were designed to control the primary flight display according to pre-existing specifications of an ongoing primary flight display information management research effort. These two systems were implemented to assess the feasibility and software engineering issues listed. Flight test results were successful in showing the feasibility of using knowledge-based systems inflight with actual aircraft data.

  11. Flight telerobotic servicer legacy

    NASA Astrophysics Data System (ADS)

    Shattuck, Paul L.; Lowrie, James W.

    1992-11-01

    The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include

  12. Wide Field X-Ray Telescope Mission Concept Study Results

    NASA Technical Reports Server (NTRS)

    Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.

    2014-01-01

    The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.

  13. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less

  14. Evaluation of advanced displays for engine monitoring and control

    NASA Technical Reports Server (NTRS)

    Summers, L. G.

    1993-01-01

    The relative effectiveness of two advanced display concepts for monitoring engine performance for commercial transport aircraft was studied. The concepts were the Engine Monitoring and Control System (EMACS) display developed by NASA Langley and a display by exception design. Both of these concepts were based on the philosophy of providing information that is directly related to the pilot's task. Both concepts used a normalized thrust display. In addition, EMACS used column deviation indicators; i.e., the difference between the actual parameter value and the value predicted by an engine model, for engine health monitoring; while the Display by Exception displayed the engine parameters if the automated system detected a difference between the actual and the predicted values. The results showed that the advanced display concepts had shorter detection and response times. There were no differences in any of the results between manual and auto throttles. There were no effects upon perceived workload or performance on the primary flight task. The majority of pilots preferred the advanced displays and thought they were operationally acceptable. Certification of these concepts depends on the validation of the engine model. Recommendations are made to improve both the EMACS and the display by exception display formats.

  15. Advanced EVA Capabilities: A Study for NASA's Revolutionary Aerospace Systems Concept Program

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.

    2004-01-01

    This report documents the results of a study carried out as part of NASA s Revolutionary Aerospace Systems Concepts Program examining the future technology needs of extravehicular activities (EVAs). The intent of this study is to produce a comprehensive report that identifies various design concepts for human-related advanced EVA systems necessary to achieve the goals of supporting future space exploration and development customers in free space and on planetary surfaces for space missions in the post-2020 timeframe. The design concepts studied and evaluated are not limited to anthropomorphic space suits, but include a wide range of human-enhancing EVA technologies as well as consideration of coordination and integration with advanced robotics. The goal of the study effort is to establish a baseline technology "road map" that identifies and describes an investment and technical development strategy, including recommendations that will lead to future enhanced synergistic human/robot EVA operations. The eventual use of this study effort is to focus evolving performance capabilities of various EVA system elements toward the goal of providing high performance human operational capabilities for a multitude of future space applications and destinations. The data collected for this study indicate a rich and diverse history of systems that have been developed to perform a variety of EVA tasks, indicating what is possible. However, the data gathered for this study also indicate a paucity of new concepts and technologies for advanced EVA missions - at least any that researchers are willing to discuss in this type of forum.

  16. Integration of energy management concepts into the flight deck

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1981-01-01

    The rapid rise of fuel costs has become a major concern of the commercial aviation industry, and it has become mandatory to seek means by which to conserve fuel. A research program was initiated in 1979 to investigate the integration of fuel-conservative energy/flight management computations and information into today's and tomorrow's flight deck. One completed effort within this program has been the development and flight testing of a fuel-efficient, time-based metering descent algorithm in a research cockpit environment. Research flights have demonstrated that time guidance and control in the cockpit was acceptable to both pilots and ATC controllers. Proper descent planning and energy management can save fuel for the individual aircraft as well as the fleet by helping to maintain a regularized flow into the terminal area.

  17. Evaluation of innovative concepts for semi-active and active rotorcraft control

    NASA Astrophysics Data System (ADS)

    Van Weddingen, Yannick

    2011-12-01

    Lead-lag dampers are present in most rotor systems to provide the desired level of damping for all flight conditions. These dampers are critical components of the rotor system, and the performance of semi-active Coulomb friction-based lead-lag dampers is examined for the UH-60 aircraft. The concept of adaptive damping, or "damping on demand," is discussed for both ground resonance and forward flight. The concept of selective damping is also assessed, and shown to face many challenges. In rotorcraft flight dynamics, optimized warping twist change is a potentially enabling technology to improve overall rotorcraft performance. Research efforts in recent years have led to the application of active materials for rotorcraft blade actuation. An innovative concept is proposed wherein the typically closed section blade is cut open to create a torsionally compliant structure that acts as its own amplification device; deformation of the blade is dynamically controlled by out-of-plane warping. Full-blade warping is shown to have the potential for great design flexibility. Recent advances in rotorcraft blade design have also focused on variable-camber airfoils, particularly concepts involving "truss-core" configurations. One promising concept is the use of hexagonal chiral lattice structures in continuously deformable helicopter blades. The static behavior of passive and active chiral networks using piezoelectric actuation strategies is investigated, including under typical aerodynamic load levels. The analysis is then extended to the dynamic response of active chiral networks in unsteady aerodynamic environments.

  18. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  19. Flight Technical Error Analysis of the SATS Higher Volume Operations Simulation and Flight Experiments

    NASA Technical Reports Server (NTRS)

    Williams, Daniel M.; Consiglio, Maria C.; Murdoch, Jennifer L.; Adams, Catherine H.

    2005-01-01

    This paper provides an analysis of Flight Technical Error (FTE) from recent SATS experiments, called the Higher Volume Operations (HVO) Simulation and Flight experiments, which NASA conducted to determine pilot acceptability of the HVO concept for normal operating conditions. Reported are FTE results from simulation and flight experiment data indicating the SATS HVO concept is viable and acceptable to low-time instrument rated pilots when compared with today s system (baseline). Described is the comparative FTE analysis of lateral, vertical, and airspeed deviations from the baseline and SATS HVO experimental flight procedures. Based on FTE analysis, all evaluation subjects, low-time instrument-rated pilots, flew the HVO procedures safely and proficiently in comparison to today s system. In all cases, the results of the flight experiment validated the results of the simulation experiment and confirm the utility of the simulation platform for comparative Human in the Loop (HITL) studies of SATS HVO and Baseline operations.

  20. Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1993-01-01

    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel Ni-H cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous O and H flow within the cell, while maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack to accommodate Ni electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of Ni electrode expansion. Six 125 Ah flight cells based on this design were fabricated; the catalyzed wall wick cells have been cycled for over 19,000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900).

  1. High level organizing principles for display of systems fault information for commercial flight crews

    NASA Technical Reports Server (NTRS)

    Rogers, William H.; Schutte, Paul C.

    1993-01-01

    Advanced fault management aiding concepts for commercial pilots are being developed in a research program at NASA Langley Research Center. One aim of this program is to re-evaluate current design principles for display of fault information to the flight crew: (1) from a cognitive engineering perspective and (2) in light of the availability of new types of information generated by advanced fault management aids. The study described in this paper specifically addresses principles for organizing fault information for display to pilots based on their mental models of fault management.

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Security Chief and Event Manager Bruno Mombrinie, left, talks with CAFE Foundation eCharging Chief Alan Soule as flight crews prepare for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Teaching Advanced Concepts in Computer Networks: VNUML-UM Virtualization Tool

    ERIC Educational Resources Information Center

    Ruiz-Martinez, A.; Pereniguez-Garcia, F.; Marin-Lopez, R.; Ruiz-Martinez, P. M.; Skarmeta-Gomez, A. F.

    2013-01-01

    In the teaching of computer networks the main problem that arises is the high price and limited number of network devices the students can work with in the laboratories. Nowadays, with virtualization we can overcome this limitation. In this paper, we present a methodology that allows students to learn advanced computer network concepts through…

  4. Artist Concept of X-43A/Hyper-X Hypersonic Experimental Research Vehicle in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    An artist's conception of the X-43A Hypersonic Experimental Vehicle, or 'Hyper-X' in flight. The X-43A was developed to flight test a dual-mode ramjet/scramjet propulsion system at speeds from Mach 7 up to Mach 10 (7 to 10 times the speed of sound, which varies with temperature and altitude). Hyper-X, the flight vehicle for which is designated as X-43A, is an experimental flight-research program seeking to demonstrate airframe-integrated, 'air-breathing' engine technologies that promise to increase payload capacity for future vehicles, including hypersonic aircraft (faster than Mach 5) and reusable space launchers. This multiyear program is currently underway at NASA Dryden Flight Research Center, Edwards, California. The Hyper-X schedule calls for its first flight later this year (2000). Hyper-X is a joint program, with Dryden sharing responsibility with NASA's Langley Research Center, Hampton, Virginia. Dryden's primary role is to fly three unpiloted X-43A research vehicles to validate engine technologies and hypersonic design tools as well as the hypersonic test facility at Langley. Langley manages the program and leads the technology development effort. The Hyper-X Program seeks to significantly expand the speed boundaries of air-breathing propulsion by being the first aircraft to demonstrate an airframe-integrated, scramjet-powered free flight. Scramjets (supersonic-combustion ramjets) are ramjet engines in which the airflow through the whole engine remains supersonic. Scramjet technology is challenging because only limited testing can be performed in ground facilities. Long duration, full-scale testing requires flight research. Scramjet engines are air-breathing, capturing their oxygen from the atmosphere. Current spacecraft, such as the Space Shuttle, are rocket powered, so they must carry both fuel and oxygen for propulsion. Scramjet technology-based vehicles need to carry only fuel. By eliminating the need to carry oxygen, future hypersonic vehicles will

  5. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Technical Reports Server (NTRS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-01-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  6. Advanced onboard storage concepts for natural gas-fueled automotive vehicles

    NASA Astrophysics Data System (ADS)

    Remick, R. J.; Elkins, R. H.; Camara, E. H.; Bulicz, T.

    1984-06-01

    The evaluation of several advanced concepts for storing natural gas at reduced pressure is presented. The advanced concepts include adsorption on high surface area carbon, adsorption in high porosity zeolite, storage in clathration compounds, and storage by dissolution in liquid solvents. High surface area carbons with high packing density are the best low pressure storage mediums. A simple mathematical model is used to compare adsorption storage on a state of the art carbon with compression storage. The model indicates that a vehicle using adsorption storage of natural gas at 3.6 MPa will have 36 percent of the range, on the EPA city cycle, of a vehicle operating on a compression storage system having the same physical size and a peak storage pressure of 21 MPa. Preliminary experiments and current literature suggest that the storage capacity of state of the art carbons could be improved by as much as 50 percent, and that adsorption systems having a capacity equal to compression storage at 14 MPa are possible without exceeding a maximum pressure of 3.6 MPa.

  7. Flight Planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  8. Advanced secondary power system for transport aircraft

    NASA Technical Reports Server (NTRS)

    Hoffman, A. C.; Hansen, I. G.; Beach, R. F.; Plencner, R. M.; Dengler, R. P.; Jefferies, K. S.; Frye, R. J.

    1985-01-01

    A concept for an advanced aircraft power system was identified that uses 20-kHz, 440-V, sin-wave power distribution. This system was integrated with an electrically powered flight control system and with other aircraft systems requiring secondary power. The resulting all-electric secondary power configuration reduced the empty weight of a modern 200-passenger, twin-engine transport by 10 percent and the mission fuel by 9 percent.

  9. Development and flight evaluation of an augmented stability active controls concept with a small tail

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Parasite drag reduction evaluation is composed of wind tunnel tests with a standard L-1011 tail and two reduced area tail configurations. Trim drag reduction is evaluated by rebalancing the airplane for relaxed static stability. This is accomplished by pumping water to tanks in the forward and aft of the airplane to acheive desired center of gravity location. Also, the L-1011 is modified to incorporate term and advanced augmented systems. By using advanced wings and aircraft relaxed static stability significant fuel savings can be realized. An airplane's dynamic stability becomes more sensitive for decreased tail size, relaxed static stability, and advanced wing configurations. Active control pitch augmentation will be used to acheive the required handling qualities. Flight tests will be performed to evaluate the pitch augmentation systems. The effect of elevator downrig on stabilizer/elevator hinge moments will be measured. For control system analysis, the normal acceleration feedback and pitch rate feedback are analyzed.

  10. A System Concept for Facilitating User Preferences in En Route Airspace

    NASA Technical Reports Server (NTRS)

    Vivona, R. A.; Ballin, M. G.; Green, S. M.; Bach, R. E.; McNally, B. D.

    1996-01-01

    The Federal Aviation Administration is trying to make its air traffic management system more responsive to the needs of the aviation community by exploring the concept of 'free flight' for aircraft flying under instrument flight rules. A logical first step toward free flight could be made without significantly altering current air traffic control (ATC) procedures or requiring new airborne equipment by designing a ground-based system to be highly responsive to 'user preference' in en route airspace while providing for an orderly transition to the terminal area. To facilitate user preference in all en route environments, a system based on an extension of the Center/TRACON Automation System (CTAS) is proposed in this document. The new system would consist of two integrated components. An airspace tool (AT) focuses on unconstrained en route aircraft (e.g., not transitioning to the terminal airspace), taking advantage of the relatively unconstrained nature of their flights and using long-range trajectory prediction to provide cost-effective conflict resolution advisories to sector controllers. A sector tool (ST) generates efficient advisories for all aircraft, with a focus on supporting controllers in analyzing and resolving complex, highly constrained traffic situations. When combined, the integrated AT/ST system supports user preference in any air route traffic control center sector. The system should also be useful in evaluating advanced free-flight concepts by serving as a test bed for future research. This document provides an overview of the design concept, explains its anticipated benefits, and recommends a development strategy that leads to a deployable system.

  11. Nonlinear Dynamic Inversion Baseline Control Law: Flight-Test Results for the Full-scale Advanced Systems Testbed F/A-18 Airplane

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference nonlinear dynamic inversion control law has been developed to provide a baseline controller for research into simple adaptive elements for advanced flight control laws. This controller has been implemented and tested in a hardware-in-the-loop simulation and in flight. The flight results agree well with the simulation predictions and show good handling qualities throughout the tested flight envelope with some noteworthy deficiencies highlighted both by handling qualities metrics and pilot comments. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as simple as possible to easily allow the addition of the adaptive elements. The flight-test results and how they compare to the simulation predictions are discussed, along with a discussion about how each element affected pilot opinions. Additionally, aspects of the design that performed better than expected are presented, as well as some simple improvements that will be suggested for follow-on work.

  12. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    This study evaluates a traffic management concept designed to enable simultaneous operations of multiple small unmanned aircraft systems (UAS) in the national airspace system (NAS). A five-day flight-test activity is described that examined the feasibility of operating multiple UAS beyond visual line of sight (BVLOS) of their respective operators in the same airspace. Over the five-day campaign, three groups of five flight crews operated a total of eleven different aircraft. Each group participated in four flight scenarios involving five simultaneous missions. Each vehicle was operated BVLOS up to 1.5 miles from the pilot in command. Findings and recommendations are presented to support the feasibility and safety of routine BVLOS operations for small UAS.

  13. Development of a Low-Cost Sub-Scale Aircraft for Flight Research: The FASER Project

    NASA Technical Reports Server (NTRS)

    Owens, Donald B.; Cox, David E.; Morelli, Eugene A.

    2006-01-01

    An inexpensive unmanned sub-scale aircraft was developed to conduct frequent flight test experiments for research and demonstration of advanced dynamic modeling and control design concepts. This paper describes the aircraft, flight systems, flight operations, and data compatibility including details of some practical problems encountered and the solutions found. The aircraft, named Free-flying Aircraft for Sub-scale Experimental Research, or FASER, was outfitted with high-quality instrumentation to measure aircraft inputs and states, as well as vehicle health parameters. Flight data are stored onboard, but can also be telemetered to a ground station in real time for analysis. Commercial-off-the-shelf hardware and software were used as often as possible. The flight computer is based on the PC104 platform, and runs xPC-Target software. Extensive wind tunnel testing was conducted with the same aircraft used for flight testing, and a six degree-of-freedom simulation with nonlinear aerodynamics was developed to support flight tests. Flight tests to date have been conducted to mature the flight operations, validate the instrumentation, and check the flight data for kinematic consistency. Data compatibility analysis showed that the flight data are accurate and consistent after corrections are made for estimated systematic instrumentation errors.

  14. Quiet Short-Haul Research Aircraft - A summary of flight research since 1981

    NASA Technical Reports Server (NTRS)

    Riddle, Dennis W.; Stevens, Victor C.; Eppel, Joseph C.

    1988-01-01

    The Quiet Short-Haul Research Aircraft (QSRA), designed for flight investigation into powered-lift terminal area operations, first flew in 1978 and has flown 600 hours since. This report summarizes QSRA research since 1981. Numerous aerodynamic flight experiments have been conducted including research with an advanced concept stability and control augmentation and pilot display system for category III instrument landings. An electromechanical actuator system was flown to assess performance and reliability. A second ground-based test was conducted to further evaluate circulation-control-wing/upper-surface-blowing performance. QSRA technology has been transferred through reports, guest pilot evaluations and airshow participation. QSRA future research thoughts and an extensive report bibliography are also presented.

  15. Conceptual Design of a Hypervelocity Asteroid Intercept Vehicle (HAIV) Flight Validation Mission

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Wie, Bong; Steiner, Mark; Getzandanner, Kenneth

    2013-01-01

    In this paper we present a detailed overview of the MDL study results and subsequent advances in the design of GNC algorithms for accurate terminal guidance during hypervelocity NEO intercept. The MDL study produced a conceptual con guration of the two-body HAIV and its subsystems; a mission scenario and trajectory design for a notional flight validation mission to a selected candidate target NEO; GNC results regarding the ability of the HAIV to reliably intercept small (50 m) NEOs at hypervelocity (typically greater than 10 km/s); candidate launch vehicle selection; a notional operations concept and cost estimate for the flight validation mission; and a list of topics to address during the remainder of our NIAC Phase II study.

  16. Advanced Stirling Convertor (ASC)--From Technology Development to Future Flight Product

    NASA Technical Reports Server (NTRS)

    Wong, Wayne A.; Wood, J. Gary; Wilson, Kyle

    2008-01-01

    The Advanced Stirling Convertor (ASC) is being developed by Sunpower Inc. under contract to NASA s Glenn Research Center (GRC) with critical technology support tasks led by GRC. The ASC development, funded by NASA s Science Mission Directorate, started in 2003 as one of 10 competitively awarded contracts that were intended to address the power conversion needs of future Radioisotope Power Systems (RPS). The ASC technology has since evolved through progressive convertor builds and successful testing to demonstrate high conversion efficiency (38 percent), low mass (1.3 kg), hermetic sealing, launch vibration simulation, EMI characterization, and is undergoing extended operation. The GRC and Sunpower team recently delivered two ASC-E convertors to the Department of Energy (DOE) and Lockheed Martin Space Systems Company for integration onto the Advanced Stirling Radioisotope Generator Engineering Unit (ASRG EU) plus one spare. The design of the next build, called the ASC-E2, has recently been initiated and is based on the heritage ASC-E with design refinements to increase reliability margin and offer higher temperature operation and improve performance. The ASC enables RPS system specific power of about 7 to 8 W/kg. This paper provides a chronology of ASC development to date and summarizes technical achievements including advancements toward flight implementation of the technology on ASRG by as early as 2013.

  17. Advanced Numerical-Algebraic Thinking: Constructing the Concept of Covariation as a Prelude to the Concept of Function

    ERIC Educational Resources Information Center

    Hitt, Fernando; Morasse, Christian

    2009-01-01

    Introduction: In this document we stress the importance of developing in children a structure for advanced numerical-algebraic thinking that can provide an element of control when solving mathematical situations. We analyze pupils' conceptions that induce errors in algebra due to a lack of control in connection with their numerical thinking. We…

  18. [Research advances in secondary development of Chinese patent medicines based on quality by design concept].

    PubMed

    Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin

    2017-03-01

    Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The PhoEnix aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Advanced Hypervelocity Aerophysics Facility Workshop

    NASA Technical Reports Server (NTRS)

    Witcofski, Robert D. (Compiler); Scallion, William I. (Compiler)

    1989-01-01

    The primary objective of the workshop was to obtain a critical assessment of a concept for a large, advanced hypervelocity ballistic range test facility powered by an electromagnetic launcher, which was proposed by the Langley Research Center. It was concluded that the subject large-scale facility was feasible and would provide the required ground-based capability for performing tests at entry flight conditions (velocity and density) on large, complex, instrumented models. It was also concluded that advances in remote measurement techniques and particularly onboard model instrumentation, light-weight model construction techniques, and model electromagnetic launcher (EML) systems must be made before any commitment for the construction of such a facility can be made.

  2. Spacecraft Conceptual Design for the 8-Meter Advanced Technology Large Aperture Space Telescope (ATLAST)

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall C.; Capizzo, Peter; Fincher, Sharon; Hornsby, Linda S.; Jones, David

    2010-01-01

    The Advanced Concepts Office at Marshall Space Flight Center completed a brief spacecraft design study for the 8-meter monolithic Advanced Technology Large Aperture Space Telescope (ATLAST-8m). This spacecraft concept provides all power, communication, telemetry, avionics, guidance and control, and thermal control for the observatory, and inserts the observatory into a halo orbit about the second Sun-Earth Lagrange point. The multidisciplinary design team created a simple spacecraft design that enables component and science instrument servicing, employs articulating solar panels for help with momentum management, and provides precise pointing control while at the same time fast slewing for the observatory.

  3. Advanced Pathway Guidance Evaluations on a Synthetic Vision Head-Up Display

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Prinzel, Lawrence J., III; Arthur, Jarvis J., III; Bailey, Randall E.

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to potentially eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced guidance for commercial and business aircraft. This experiment evaluated the influence of different pathway and guidance display concepts upon pilot situation awareness (SA), mental workload, and flight path tracking performance for Synthetic Vision display concepts using a Head-Up Display (HUD). Two pathway formats (dynamic and minimal tunnel presentations) were evaluated against a baseline condition (no tunnel) during simulated instrument meteorological conditions approaches to Reno-Tahoe International airport. Two guidance cues (tadpole, follow-me aircraft) were also evaluated to assess their influence. Results indicated that the presence of a tunnel on an SVS HUD had no effect on flight path performance but that it did have significant effects on pilot SA and mental workload. The dynamic tunnel concept with the follow-me aircraft guidance symbol produced the lowest workload and provided the highest SA among the tunnel concepts evaluated.

  4. Innovative Flow Control Concepts for Drag Reduction

    NASA Technical Reports Server (NTRS)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  5. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue.

  6. Propulsion system-flight control integration-flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offering significant performance improvement are assessed. In particular, research programs conducted by NASA on flight control systems and propulsion system-flight control interactions on the YF-12 and F-15 aircraft are addressed; these programs have demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved aircraft performance. Focus is placed on altitude control, speed-Mach control, integrated controller design, as well as flight control systems and digital electronic engine control. A highly integrated digital electronic control program is analyzed and compared with a performance seeking control program. It is shown that the flight evaluation and demonstration of these technologies have been a key part in the transition of the concepts to production and operational use on a timely basis.

  7. Validation test of advanced technology for IPV nickel-hydrogen flight cells - Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the LEO cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion.

  8. Single stage to orbit vertical takeoff and landing concept technology challenges

    NASA Astrophysics Data System (ADS)

    Heald, Daniel A.; Kessler, Thomas L.

    1991-10-01

    General Dynamics has developed a VTOL concept for a single-stage-to-orbit under contract to the Strategic Defense Initiative Organization. This paper briefly describes the configuration and its basic operations. Two key advanced technolgy areas are then discussed: high-performance rocket propulsion employing a plug nozzle arrangement and integrated health management to facilitate very rapid turnaround between flights, more like an aircraft than today's rockets.

  9. Technical evaluation report on the Flight Mechanics Panel Symposium on Flight Simulation

    NASA Technical Reports Server (NTRS)

    Cook, Anthony M.

    1986-01-01

    In recent years, important advances were made in technology both for ground-based and in-flight simulators. There was equally a broadening of the use of flight simulators for research, development, and training purposes. An up-to-date description of the state-of-the-art of technology and engineering was provided for both ground-based and in-flight simulators and their respective roles were placed in context within the aerospace scene.

  10. Flight Test Implementation of a Second Generation Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2005-01-01

    The NASA F-15 Intelligent Flight Control System project team has developed a series of flight control concepts designed to demonstrate the benefits of a neural network-based adaptive controller. The objective of the team was to develop and flight-test control systems that use neural network technology, to optimize the performance of the aircraft under nominal conditions, and to stabilize the aircraft under failure conditions. Failure conditions include locked or failed control surfaces as well as unforeseen damage that might occur to the aircraft in flight. The Intelligent Flight Control System team is currently in the process of implementing a second generation control scheme, collectively known as Generation 2 or Gen 2, for flight testing on the NASA F-15 aircraft. This report describes the Gen 2 system as implemented by the team for flight test evaluation. Simulation results are shown which describe the experiment to be performed in flight and highlight the ways in which the Gen 2 system meets the defined objectives.

  11. Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Sorokach, Michael R.

    2015-01-01

    NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.

  12. Pilot/Vehicle display development from simulation to flight

    NASA Technical Reports Server (NTRS)

    Dare, Alan R.; Burley, James R., II

    1992-01-01

    The Pilot Vehicle Interface Group, Cockpit Technology Branch, Flight Management Division, at the NASA Langley Research Center is developing display concepts for air combat in the next generation of highly maneuverable aircraft. The High-Alpha Technology Program, under which the research is being done, is involved in flight tests of many new control and display concepts on the High-Alpha Research Vehicle, a highly modified F-18 aircraft. In order to support display concept development through flight testing, a software/hardware system is being developed which will support each phase of the project with little or no software modifications, thus saving thousands of manhours in software development time. Simulation experiments are in progress now and flight tests are slated to begin in FY1994.

  13. Titan exploration with advanced systems. A study of future mission concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.

  14. A Vision of Quantitative Imaging Technology for Validation of Advanced Flight Technologies

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas J.; Kerns, Robert V.; Jones, Kenneth M.; Grinstead, Jay H.; Schwartz, Richard J.; Gibson, David M.; Taylor, Jeff C.; Tack, Steve; Dantowitz, Ronald F.

    2011-01-01

    Flight-testing is traditionally an expensive but critical element in the development and ultimate validation and certification of technologies destined for future operational capabilities. Measurements obtained in relevant flight environments also provide unique opportunities to observe flow phenomenon that are often beyond the capabilities of ground testing facilities and computational tools to simulate or duplicate. However, the challenges of minimizing vehicle weight and internal complexity as well as instrumentation bandwidth limitations often restrict the ability to make high-density, in-situ measurements with discrete sensors. Remote imaging offers a potential opportunity to noninvasively obtain such flight data in a complementary fashion. The NASA Hypersonic Thermodynamic Infrared Measurements Project has demonstrated such a capability to obtain calibrated thermal imagery on a hypersonic vehicle in flight. Through the application of existing and accessible technologies, the acreage surface temperature of the Shuttle lower surface was measured during reentry. Future hypersonic cruise vehicles, launcher configurations and reentry vehicles will, however, challenge current remote imaging capability. As NASA embarks on the design and deployment of a new Space Launch System architecture for access beyond earth orbit (and the commercial sector focused on low earth orbit), an opportunity exists to implement an imagery system and its supporting infrastructure that provides sufficient flexibility to incorporate changing technology to address the future needs of the flight test community. A long term vision is offered that supports the application of advanced multi-waveband sensing technology to aid in the development of future aerospace systems and critical technologies to enable highly responsive vehicle operations across the aerospace continuum, spanning launch, reusable space access and global reach. Motivations for development of an Agency level imagery

  15. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  16. NASA Synthetic Vision EGE Flight Test

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J.; Kramer, Lynda J.; Comstock, J. Raymond; Bailey, Randall E.; Hughes, Monica F.; Parrish, Russell V.

    2002-01-01

    NASA Langley Research Center conducted flight tests at the Eagle County, Colorado airport to evaluate synthetic vision concepts. Three display concepts (size 'A' head-down, size 'X' head-down, and head-up displays) and two texture concepts (photo, generic) were assessed for situation awareness and flight technical error / performance while making approaches to Runway 25 and Runway 07 and simulated engine-out Cottonwood 2 and KREMM departures. The results of the study confirm the retrofit capability of the HUD and Size 'A' SVS concepts to significantly improve situation awareness and performance over current EFIS glass and non-glass instruments for difficult approaches in terrain-challenged environments.

  17. Gas chromatography: Possible application of advanced instrumentation developed for solar system exploration to space station cabin atmospheres

    NASA Technical Reports Server (NTRS)

    Carle, G. C.

    1985-01-01

    Gas chromatography (GC) technology was developed for flight experiments in solar system exploration. The GC is a powerful analytical technique with simple devices separating individual components from complex mixtures to make very sensitive quantitative and qualitative measurements. It monitors samples containing mixtures of fixed gases and volatile organic molecules. The GC was used on the Viking mission in support of life detection experiments and on the Pioneer Venus Large Probe to determine the composition of the venusian atmosphere. A flight GC is under development to study the progress and extent of STS astronaut denitrogenation prior to extravehicular activity. Advanced flight GC concepts and systems for future solar system exploration are also studied. Studies include miniature ionization detectors and associated control systems capable of detecting from ppb up to 100% concentration levels. Further miniaturization is investigated using photolithography and controlled chemical etching in silicon wafers. Novel concepts such as ion mobility drift spectroscopy and multiplex gas chromatography are also developed for future flight experiments. These powerful analytical concepts and associated hardware are ideal for the monitoring of cabin atmospheres containing potentially dangerous volatile compounds.

  18. Control Design for an Advanced Geared Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 pound-force thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 feet and from 0 to 0.8 Mach. The purpose of this paper is to review the engine control design process for an advanced turbofan engine configuration. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding operational limits.

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft prepares to takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius aircraft is pulled out to the runway for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA team look up at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Media and ground crew look at aircraft as they participate in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Pipistrel-USA, Taurus G4 aircraft is seen as it participates in the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) concept definition study

    NASA Technical Reports Server (NTRS)

    Hughes, C. W.

    1983-01-01

    Studies were conducted by Hughes Helicopters, Inc. (HHI) for the Applied Technology Laboratory and Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories (AVRADCOM) and the Ames Research Center, National Aeronautics and Space Administration (NASA). Results of predesign studies of advanced main rotor hubs, including bearingless designs, are presented in this report. In addition, the Government's rotor design goals and specifications were reviewed and evaluated. Hub concepts were designed and qualitatively evaluated in order to select the two most promising concepts for further development. Various flexure designs, control systems, and pitchcase designs were investigated during the initial phases of this study. The two designs selected for additional development were designated the V-strap and flat-strap cruciform hubs. These hubs were designed for a four bladed rotor and were sized for 18,400 pounds gross weight with the same diameter (62 feet) and solidity (23 inch chord) as the existing rotor on the Rotor Systems Research Aircraft (RSRA).

  6. Study of advanced electric propulsion system concept using a flywheel for electric vehicles

    NASA Technical Reports Server (NTRS)

    Younger, F. C.; Lackner, H.

    1979-01-01

    Advanced electric propulsion system concepts with flywheels for electric vehicles are evaluated and it is predicted that advanced systems can provide considerable performance improvement over existing electric propulsion systems with little or no cost penalty. Using components specifically designed for an integrated electric propulsion system avoids the compromises that frequently lead to a loss of efficiency and to inefficient utilization of space and weight. A propulsion system using a flywheel power energy storage device can provide excellent acceleration under adverse conditions of battery degradation due either to very low temperatures or high degrees of discharge. Both electrical and mechanical means of transfer of energy to and from the flywheel appear attractive; however, development work is required to establish the safe limits of speed and energy storage for advanced flywheel designs and to achieve the optimum efficiency of energy transfer. Brushless traction motor designs using either electronic commutation schemes or dc-to-ac inverters appear to provide a practical approach to a mass producible motor, with excellent efficiency and light weight. No comparisons were made with advanced system concepts which do not incorporate a flywheel.

  7. Fish Swimming and Bird/Insect Flight

    NASA Astrophysics Data System (ADS)

    Wu, Theodore Yaotsu

    2011-01-01

    This expository review is devoted to fish swimming and bird/insect flight. (a) The simple waving motion of an elongated flexible ribbon plate of constant width propagating a wave distally down the plate to swim forward in a fluid, initially at rest, is first considered to provide a fundamental concept on energy conservation. It is generalized to include variations in body width and thickness, with appended dorsal, ventral and caudal fins shedding vortices to closely simulate fish swimming, for which a nonlinear theory is presented for large-amplitude propulsion. (b) For bird flight, the pioneering studies on oscillatory rigid wings are discussed with delineating a fully nonlinear unsteady theory for a two-dimensional flexible wing with arbitrary variations in shape and trajectory to provide a comparative study with experiments. (c) For insect flight, recent advances are reviewed by items on aerodynamic theory and modeling, computational methods, and experiments, for forward and hovering flights with producing leading-edge vortex to yield unsteady high lift. (d) Prospects are explored on extracting prevailing intrinsic flow energy by fish and bird to enhance thrust for propulsion. (e) The mechanical and biological principles are drawn together for unified studies on the energetics in deriving metabolic power for animal locomotion, leading to the surprising discovery that the hydrodynamic viscous drag on swimming fish is largely associated with laminar boundary layers, thus drawing valid and sound evidences for a resounding resolution to the long-standing fish-swim paradox proclaimed by Gray (1936, 1968 ).

  8. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  9. Implementation of an Adaptive Controller System from Concept to Flight Test

    NASA Technical Reports Server (NTRS)

    Larson, Richard R.; Burken, John J.; Butler, Bradley S.; Yokum, Steve

    2009-01-01

    The National Aeronautics and Space Administration (NASA) at the Dryden Flight Research Center (DFRC) has been conducting flight-test research using an F-15 aircraft (figure 1). This aircraft has been specially modified to interface a neural net (NN) controller as part of a single-string Airborne Research Test System (ARTS) computer with the existing quad-redundant flight control system (FCC) shown in figure 2. The NN commands are passed to FCC channels 2 and 4 and are cross channel data linked (CCDL) to the other computers as shown. Numerous types of fault-detection monitors exist in the FCC when the NN mode is engaged; these monitors would cause an automatic disengagement of the NN in the event of a triggering fault. Unfortunately, these monitors still may not prevent a possible NN hard-over command from coming through to the control laws. Therefore, an additional and unique safety monitor was designed for a single-string source that allows authority at maximum actuator rates but protects the pilot and structural loads against excessive g-limits in the case of a NN hard-over command input. This additional monitor resides in the FCCs and is executed before the control laws are computed. This presentation describes a "floating limiter" (FL) concept that was developed and successfully test-flown for this program (figure 3). The FL computes the rate of change of the NN commands that are input to the FCC from the ARTS. A window is created with upper and lower boundaries, which is constantly "floating" and trying to stay centered as the NN command rates are changing. The limiter works by only allowing the window to move at a much slower rate than those of the NN commands. Anywhere within the window, however, full rates are allowed. If a rate persists in one direction, it will eventually "hit" the boundary and be rate-limited to the floating limiter rate. When this happens, a persistent counter begins and after a limit is reached, a NN disengage command is generated. The

  10. Piloted Simulator Evaluation of Maneuvering Envelope Information for Flight Crew Awareness

    NASA Technical Reports Server (NTRS)

    Lombaerts, Thomas; Schuet, Stefan; Acosta, Diana; Kaneshige, John; Shish, Kimberlee; Martin, Lynne

    2015-01-01

    The implementation and evaluation of an efficient method for estimating safe aircraft maneuvering envelopes are discussed. A Bayesian approach is used to produce a deterministic algorithm for estimating aerodynamic system parameters from existing noisy sensor measurements, which are then used to estimate the trim envelope through efficient high- fidelity model-based computations of attainable equilibrium sets. The safe maneuverability limitations are extended beyond the trim envelope through a robust reachability analysis derived from an optimal control formulation. The trim and maneuvering envelope limits are then conveyed to pilots through three axes on the primary flight display. To evaluate the new display features, commercial airline crews flew multiple challenging approach and landing scenarios in the full motion Advanced Concepts Flight Simulator at NASA Ames Research Center, as part of a larger research initiative to investigate the impact on the energy state awareness of the crew. Results show that the additional display features have the potential to significantly improve situational awareness of the flight crew.

  11. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Shown is a concept illustration of the Ares I crew launch vehicle, left, and Ares V cargo launch vehicle. Ares I will carry the Orion Crew Exploration Vehicle to space. Ares V will serve as NASA's primary vehicle for delivery of large-scale hardware to space.

  12. Overcoming the Adoption Barrier to Electric Flight

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Nickol, Craig L.; Jones, Frank P.; Yasky, Richard J.; Woodham, Kurt; Fell, Jared S.; Litherland, Brandon L.; Loyselle, Patricia L.; Provenza, Andrew J.; Kohlman, Lee W.; hide

    2016-01-01

    Electrically-powered aircraft can enable dramatic increases in efficiency and reliability, reduced emissions, and reduced noise as compared to today's combustion-powered aircraft. This paper describes a novel flight demonstration concept that will enable the benefits of electric propulsion, while keeping the extraordinary convenience and utility of common fuels available at today's airports. A critical gap in airborne electric propulsion research is addressed by accommodating adoption at the integrated aircraft-airport systems level, using a confluence of innovative but proven concepts and technologies in power generation and electricity storage that need to reside only on the airframe. Technical discriminators of this demonstrator concept include (1) a novel, high-efficiency power system that utilizes advanced solid oxide fuel cells originally developed for ultra-long-endurance aircraft, coupled with (2) a high-efficiency, high-power electric propulsion system selected from mature products to reduce technical risk, assembled into (3) a modern, high-performance demonstration platform to provide useful and compelling data, both for the targeted early adopters and the eventual commercial market.

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Brien A. Seeley M.D., President of Comparative Aircraft Flight Efficiency (CAFE) Foundation, right, briefs pilots and ground crew prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The e-Genius pilots talk with a fellow team member prior to their takeoff for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The Embry-Riddle Aeronautical University, EcoEagle prepares to takeoff as an demonstration aircraft for the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The checkered flag is waved as the PhoEnix aircraft crosses the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    CAFE Foundation Hanger Boss Mike Fenn waves the checkered flag as aircraft pass the finish line of the miles per gallon (MPG) flight during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Pathfinder-Plus on flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight over Hawaii in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days

  20. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaii. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4 days above 50

  1. Smart sensor technology for advanced launch vehicles

    NASA Astrophysics Data System (ADS)

    Schoess, Jeff

    1989-07-01

    Next-generation advanced launch vehicles will require improved use of sensor data and the management of multisensor resources to achieve automated preflight checkout, prelaunch readiness assessment and vehicle inflight condition monitoring. Smart sensor technology is a key component in meeting these needs. This paper describes the development of a smart sensor-based condition monitoring system concept referred to as the Distributed Sensor Architecture. A significant event and anomaly detection scheme that provides real-time condition assessment and fault diagnosis of advanced launch system rocket engines is described. The design and flight test of a smart autonomous sensor for Space Shuttle structural integrity health monitoring is presented.

  2. Flight nursing expertise: towards a middle-range theory.

    PubMed

    Reimer, Andrew P; Moore, Shirley M

    2010-05-01

    This paper presents a middle-range Theory of Flight Nursing Expertise. Rotary-wing (helicopter) medical transport has grown rapidly in the USA since its introduction, particularly during the past 5 years. Patients once considered too sick to transport are now being transported more frequently and over longer distances. Many limitations are imposed by the air medical transport environment and these require nurses to alter their practice. A literature search was conducted using Pubmed, Medline, CINAHL, secondary referencing and an Internet search from 1960 to 2008 for studies related to the focal concepts in flight nursing. The middle-range Theory of Flight Nursing Expertise is composed of nine concepts (experience, training, transport environment of care, psychomotor skills, flight nursing knowledge, cue recognition, pattern recognition, decision-making and action) and their relationships. Five propositions describe the relationships between those concepts and how they apply to flight nursing expertise. After empirical testing, this theory may be a useful tool to assist novice flight nurses to attain the skills necessary to provide safe and competent care more efficiently, and may aid in designing curricula and programmes of research. Research is needed to determine the usefulness of this theory in both rotary and fixed-wing medical transport settings, and to examine the similarities and differences related to expertise needed for different flight nurse team compositions. Curriculum and training innovations can result from increased understanding of the concepts and relationships proposed in this theory.

  3. Evaluating the Effects of Dimensionality in Advanced Avionic Display Concepts for Synthetic Vision Systems

    NASA Technical Reports Server (NTRS)

    Alexander, Amy L.; Prinzel, Lawrence J., III; Wickens, Christopher D.; Kramer, Lynda J.; Arthur, Jarvis J.; Bailey, Randall E.

    2007-01-01

    Synthetic vision systems provide an in-cockpit view of terrain and other hazards via a computer-generated display representation. Two experiments examined several display concepts for synthetic vision and evaluated how such displays modulate pilot performance. Experiment 1 (24 general aviation pilots) compared three navigational display (ND) concepts: 2D coplanar, 3D, and split-screen. Experiment 2 (12 commercial airline pilots) evaluated baseline 'blue sky/brown ground' or synthetic vision-enabled primary flight displays (PFDs) and three ND concepts: 2D coplanar with and without synthetic vision and a dynamic multi-mode rotatable exocentric format. In general, the results pointed to an overall advantage for a split-screen format, whether it be stand-alone (Experiment 1) or available via rotatable viewpoints (Experiment 2). Furthermore, Experiment 2 revealed benefits associated with utilizing synthetic vision in both the PFD and ND representations and the value of combined ego- and exocentric presentations.

  4. Implementation and flight tests for the Digital Integrated Automatic Landing System (DIALS). Part 1: Flight software equations, flight test description and selected flight test data

    NASA Technical Reports Server (NTRS)

    Hueschen, R. M.

    1986-01-01

    Five flight tests of the Digital Automated Landing System (DIALS) were conducted on the Advanced Transport Operating Systems (ATOPS) Transportation Research Vehicle (TSRV) -- a modified Boeing 737 aircraft for advanced controls and displays research. These flight tests were conducted at NASA's Wallops Flight Center using the microwave landing system (MLS) installation on runway 22. This report describes the flight software equations of the DIALS which was designed using modern control theory direct-digital design methods and employed a constant gain Kalman filter. Selected flight test performance data is presented for localizer (runway centerline) capture and track at various intercept angles, for glideslope capture and track of 3, 4.5, and 5 degree glideslopes, for the decrab maneuver, and for the flare maneuver. Data is also presented to illustrate the system performance in the presence of cross, gust, and shear winds. The mean and standard deviation of the peak position errors for localizer capture were, respectively, 24 feet and 26 feet. For mild wind conditions, glideslope and localizer tracking position errors did not exceed, respectively, 5 and 20 feet. For gusty wind conditions (8 to 10 knots), these errors were, respectively, 10 and 30 feet. Ten hands off automatic lands were performed. The standard deviation of the touchdown position and velocity errors from the mean values were, respectively, 244 feet and 0.7 feet/sec.

  5. A flight expert system (FLES) for on-board fault monitoring and diagnosis

    NASA Technical Reports Server (NTRS)

    Ali, Moonis; Scharnhorst, D. A.; Ai, C. S.; Feber, H. J.

    1987-01-01

    The increasing complexity of modern aircraft creates a need for a larger number of caution and warning devices. But more alerts require more memorization and higher workloads for the pilot and tend to induce a higher probability of errors. Therefore, an architecture for a flight expert system (FLES) is developed to assist pilots in monitoring, diagnosing and recovering from in-flight faults. A prototype of FLES has been implemented. A sensor simulation model was developed and employed to provide FLES with airplane status information during the diagnostic process. The simulator is based on the Lockheed Advanced Concept System (ACS), a future generation airplane, and on the Boeing 737. A distinction between two types of faults, maladjustments and malfunctions, has led to two approaches to fault diagnosis. These approaches are evident in two FLES subsystems: the flight phase monitor and the sensor interrupt handler. The specific problem addressed in these subsystems has been that of integrating information received from multiple sensors with domain knowledge in order to access abnormal situations during airplane flight. Malfunctions and maladjustments are handled separately, diagnosed using domain knowledge.

  6. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David K.

    2011-01-01

    This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.

  7. The path to an experiment in space (from concept to flight)

    NASA Technical Reports Server (NTRS)

    Salzman, Jack A.

    1994-01-01

    The following are discussed in this viewgraph presentation on developing flight experiments for NASA's Microgravity Science and Applications Program: time from flight PI selection to launch; key flight experiment phases and schedule drivers; microgravity experiment definition/development process; definition and engineering development phase; ground-based reduced gravity research facilities; project organization; responsibilities and duties of principle investigator/co-investigators, project scientist, and project manager; the science requirements document; flight development phase; experiment cost and schedule; and keys to experiment success.

  8. Space telerobotic systems: Applications and concepts

    NASA Technical Reports Server (NTRS)

    Jenkins, L.

    1987-01-01

    The definition of a variety of assembly, servicing, and maintenance missions has led to the generation of a number of space telerobot concepts. The remote operation of a space telerobot is seen as a means to increase astronaut productivity. Dexterous manipulator arms are controlled from the Space Shuttle Orbiter cabin or a Space Station module. Concepts for the telerobotic work system have been developed by the Lyndon B. Johnson Space Center through contracts with the Grumman Aerospace Corporation and Marin Marietta Corporation. These studies defined a concept for a telerobot with extravehicular activity (EVA) astronaut equivalent capability that would be controlled from the Space Shuttle. An evolutionary development of the system is proposed as a means of incorporating technology advances. Early flight testing is seen as needed to address the uncertainties of robotic manipulation in space. Space robotics can be expected to spin off technology to terrestrial robots, particularly in hazardous and unstructured applications.

  9. NASA Dryden Flight Loads Laboratory

    NASA Technical Reports Server (NTRS)

    Horn, Tom

    2008-01-01

    This viewgraph presentation reviews the work of the Dryden Flight Loads Laboratory. The capabilities and research interests of the lab are: Structural, thermal, & dynamic analysis; Structural, thermal, & dynamic ground-test techniques; Advanced structural instrumentation; and Flight test support.

  10. Improving the Flight Path Marker Symbol on Rotorcraft Synthetic Vision Displays

    NASA Technical Reports Server (NTRS)

    Szoboszlay, Zoltan P.; Hardy, Gordon H.; Welsh, Terence M.

    2004-01-01

    Two potential improvements to the flight path marker symbol were evaluated on a panel-mounted, synthetic vision, primary flight display in a rotorcraft simulation. One concept took advantage of the fact that synthetic vision systems have terrain height information available ahead of the aircraft. For this first concept, predicted altitude and ground track information was added to the flight path marker. In the second concept, multiple copies of the flight path marker were displayed at 3, 4, and 5 second prediction times as compared to a single prediction time of 3 seconds. Objective and subjective data were collected for eight rotorcraft pilots. The first concept produced significant improvements in pilot attitude control, ground track control, workload ratings, and preference ratings. The second concept did not produce significant differences in the objective or subjective measures.

  11. The development of an automated flight test management system for flight test planning and monitoring

    NASA Technical Reports Server (NTRS)

    Hewett, Marle D.; Tartt, David M.; Duke, Eugene L.; Antoniewicz, Robert F.; Brumbaugh, Randal W.

    1988-01-01

    The development of an automated flight test management system (ATMS) as a component of a rapid-prototyping flight research facility for AI-based flight systems concepts is described. The rapid-prototyping facility includes real-time high-fidelity simulators, numeric and symbolic processors, and high-performance research aircraft modified to accept commands for a ground-based remotely augmented vehicle facility. The flight system configuration of the ATMS includes three computers: the TI explorer LX and two GOULD SEL 32/27s.

  12. In-flight source noise of an advanced full-scale single-rotation propeller

    NASA Technical Reports Server (NTRS)

    Woodward, Richard P.; Loffler, Irvin J.

    1991-01-01

    Flight tests to define the far-field tone source at cruise conditions have been completed on the full-scale SR-7L advanced turboprop, which was installed on the left wing of a Gulfstream II aircraft. These measurements defined source levels for input into long-distance propagation models to predict en route noise. Infight data were taken for seven test cases. The sideline directivities measured showed expected maximum levels near 105 deg from the propeller upstream axis. However, azimuthal directivities based on the maximum observed sideline tone levels showed highest levels below the aircraft. The tone level reduction associated with reductions in propeller tip speed is shown to be more significant in the horizontal plane than below the aircraft.

  13. Validation test of advanced technology for IPV nickel-hydrogen flight cells: Update

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1992-01-01

    Individual pressure vessel (IPV) nickel-hydrogen technology was advanced at NASA Lewis and under Lewis contracts with the intention of improving cycle life and performance. One advancement was to use 26 percent potassium hydroxide (KOH) electrolyte to improve cycle life. Another advancement was to modify the state-of-the-art cell design to eliminate identified failure modes. The modified design is referred to as the advanced design. A breakthrough in the low-earth-orbit (LEO) cycle life of IPV nickel-hydrogen cells has been previously reported. The cycle life of boiler plate cells containing 26 percent KOH electrolyte was about 40,000 LEO cycles compared to 3,500 cycles for cells containing 31 percent KOH. The boiler plate test results are in the process of being validated using flight hardware and real time LEO testing at the Naval Weapons Support Center (NWSC), Crane, Indiana under a NASA Lewis Contract. An advanced 125 Ah IPV nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, LEO spacecraft missions. The new features of this design are: (1) use of 26 percent rather than 31 percent KOH electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are: extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. The advanced cell design is in the process of being validated using real time LEO cycle life testing of NWSC, Crane, Indiana. An update of validation test results confirming this technology is presented.

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    Pipistrel-USA Pilots Robin Reid, left, and David Morss, talk on their cell phones shortly after participating in the miles per gallon (MPG) flight in their Taurus G4 aircraft during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Tuesday, Sept. 27, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. JWST Flight Mirrors

    NASA Image and Video Library

    2011-05-25

    Project scientist Mark Clampin is reflected in the flight mirrors of the Webb Space Telescope at Marshall Space Flight Center. Portions of the Webb telescope are being built at NASA Goddard. Credit: Ball Aerospace/NASA NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Find us on Instagram

  16. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  17. Three-Dimensional Displays In The Future Flight Station

    NASA Astrophysics Data System (ADS)

    Bridges, Alan L.

    1984-10-01

    This review paper summarizes the development and applications of computer techniques for the representation of three-dimensional data in the future flight station. It covers the development of the Lockheed-NASA Advanced Concepts Flight Station (ACFS) research simulators. These simulators contain: A Pilot's Desk Flight Station (PDFS) with five 13- inch diagonal, color, cathode ray tubes on the main instrument panel; a computer-generated day and night visual system; a six-degree-of-freedom motion base; and a computer complex. This paper reviews current research, development, and evaluation of easily modifiable display systems and software requirements for three-dimensional displays that may be developed for the PDFS. This includes the analysis and development of a 3-D representation of the entire flight profile. This 3-D flight path, or "Highway-in-the-Sky", will utilize motion and perspective cues to tightly couple the human responses of the pilot to the aircraft control systems. The use of custom logic, e.g., graphics engines, may provide the processing power and architecture required for 3-D computer-generated imagery (CGI) or visual scene simulation (VSS). Diffraction or holographic head-up displays (HUDs) will also be integrated into the ACFS simulator to permit research on the requirements and use of these "out-the-window" projection systems. Future research may include the retrieval of high-resolution, perspective view terrain maps which could then be overlaid with current weather information or other selectable cultural features.

  18. Experimental assessment of advanced Stirling component concepts

    NASA Technical Reports Server (NTRS)

    Ziph, B.

    1985-01-01

    The results of an experimental assessment of some advanced Stirling engine component concepts are presented. High performance piston rings, reciprocating oil scrapers and heat pipes with getters and with mechanical couplings were tested. The tests yielded the following results: (1) Bonded, split, pumping piston rings, in preliminary testing, proved a promising concept, exhibiting low leakage and friction losses. Solid piston rings proved impractical in view of their sensitivity to the operating temperature; (2) A babbit oil scraper in a compliant housing performed well in atmospheric endurance testing. In pressurized tests the scraper did not perform well as a containment seal. The latter tests suggest modifications which may adapt Ti successfully to that application; and (3) Heat pipe endurance tests indicated the adequacy of simple, inexpensive fabrication and filling procedures. Getters were provided to increase the tolerance of the heat pipes to the presence of air and commercially available couplings were demonstrated to be suitable for heat pipe application. In addition to the above tests, the program also included a design effort for a split shaft applicable to a swashplate driven engine with a pressurized crank-case. The design is aimed, and does accomplish, an increase in component life to more than 10,000 hours.

  19. Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development

    NASA Technical Reports Server (NTRS)

    O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.

    1998-01-01

    A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.

  20. Advanced Energetics for Aeronautical Applications. Volume II

    NASA Technical Reports Server (NTRS)

    Alexander, David S.

    2005-01-01

    NASA has identified water vapor emission into the upper atmosphere from commercial transport aircraft, particularly as it relates to the formation of persistent contrails, as a potential environmental problem. Since 1999, MSE has been working with NASA-LaRC to investigate the concept of a transport-size emissionless aircraft fueled with liquid hydrogen combined with other possible breakthrough technologies. The goal of the project is to significantly advance air transportation in the next decade and beyond. The power and propulsion (P/P) system currently being studied would be based on hydrogen fuel cells (HFCs) powering electric motors, which drive fans for propulsion. The liquid water reaction product is retained onboard the aircraft until a flight mission is completed. As of now, NASA-LaRC and MSE have identified P/P system components that, according to the high-level analysis conducted to date, are light enough to make the emissionless aircraft concept feasible. Calculated maximum aircraft ranges (within a maximum weight constraint) and other performance predictions are included in this report. This report also includes current information on advanced energy-related technologies, which are still being researched, as well as breakthrough physics concepts that may be applicable for advanced energetics and aerospace propulsion in the future.

  1. Computer-aided controllability assessment of generic manned Space Station concepts

    NASA Technical Reports Server (NTRS)

    Ferebee, M. J.; Deryder, L. J.; Heck, M. L.

    1984-01-01

    NASA's Concept Development Group assessment methodology for the on-orbit rigid body controllability characteristics of each generic configuration proposed for the manned space station is presented; the preliminary results obtained represent the first step in the analysis of these eight configurations. Analytical computer models of each configuration were developed by means of the Interactive Design Evaluation of Advanced Spacecraft CAD system, which created three-dimensional geometry models of each configuration to establish dimensional requirements for module connectivity, payload accommodation, and Space Shuttle berthing; mass, center-of-gravity, inertia, and aerodynamic drag areas were then derived. Attention was also given to the preferred flight attitude of each station concept.

  2. Development of electrical feedback controlled heat pipes and the advanced thermal control flight experiment

    NASA Technical Reports Server (NTRS)

    Bienert, W. B.

    1974-01-01

    The development and characteristics of electrical feedback controlled heat pipes (FCHP) are discussed. An analytical model was produced to describe the performance of the FCHP under steady state and transient conditions. An advanced thermal control flight experiment was designed to demonstrate the performance of the thermal control component in a space environment. The thermal control equipment was evaluated on the ATS-F satellite to provide performance data for the components and to act as a thermal control system which can be used to provide temperature stability of spacecraft components in future applications.

  3. Space Station propulsion - Advanced development testing of the water electrolysis concept at MSFC

    NASA Technical Reports Server (NTRS)

    Jones, Lee W.; Bagdigian, Deborah R.

    1989-01-01

    The successful demonstration at Marshall Space Flight Center (MSFC) that the water electrolysis concept is sufficiently mature to warrant adopting it as the baseline propulsion design for Space Station Freedom is described. In particular, the test results demonstrated that oxygen/hydrogen thruster, using gaseous propellants, can deliver more than two million lbf-seconds of total impulse at mixture ratios of 3:1 to 8:1 without significant degradation. The results alao demonstrated succcessful end-to-end operation of an integrated water electrolysis propulsion system.

  4. X-36 in Flight over Mojave Desert during 5th Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The unusual lines of the X-36 Tailless Fighter Agility Research Aircraft contrast sharply with the desert floor as the remotely-piloted aircraft flies over the Mojave Desert on a June 1997 research flight. The NASA/Boeing X-36 Tailless Fighter Agility Research Aircraft program successfully demonstrated the tailless fighter design using advanced technologies to improve the maneuverability and survivability of possible future fighter aircraft. The program met or exceeded all project goals. For 31 flights during 1997 at the Dryden Flight Research Center, Edwards, California, the project team examined the aircraft's agility at low speed / high angles of attack and at high speed / low angles of attack. The aircraft's speed envelope reached up to 206 knots (234 mph). This aircraft was very stable and maneuverable. It handled very well. The X-36 vehicle was designed to fly without the traditional tail surfaces common on most aircraft. Instead, a canard forward of the wing was used as well as split ailerons and an advanced thrust-vectoring nozzle for directional control. The X-36 was unstable in both pitch and yaw axes, so an advanced, single-channel digital fly-by-wire control system (developed with some commercially available components) was put in place to stabilize the aircraft. Using a video camera mounted in the nose of the aircraft and an onboard microphone, the X-36 was remotely controlled by a pilot in a ground station virtual cockpit. A standard fighter-type head-up display (HUD) and a moving-map representation of the vehicle's position within the range in which it flew provided excellent situational awareness for the pilot. This pilot-in-the-loop approach eliminated the need for expensive and complex autonomous flight control systems and the risks associated with their inability to deal with unknown or unforeseen phenomena in flight. Fully fueled the X-36 prototype weighed approximately 1,250 pounds. It was 19 feet long and three feet high with a wingspan of

  5. Integrated technology rotor/flight research rotor concept definition study

    NASA Technical Reports Server (NTRS)

    Carlson, R. G.; Beno, E. A.; Ulisnik, H. D.

    1983-01-01

    As part of the Integrated Technology Rotor/Flight Research Rotor (ITR/FRR) Program a number of advanced rotor system designs were conceived and investigated. From these, several were chosen that best meet the started ITR goals with emphasis on stability, reduced weight and hub drag, simplicity, low head moment stiffness, and adequate strength and fatigue life. It was concluded that obtaining low hub moment stiffness was difficult when only the blade flexibility of bearingless rotor blades is considered, unacceptably low fatigue life being the primary problem. Achieving a moderate hub moment stiffness somewhat higher than state of the art articulated rotors in production today is possible within the fatigue life constraint. Alternatively, low stiffness is possible when additional rotor elements, besides the blades themselves, provide part of the rotor flexibility. Two primary designs evolved as best meeting the general ITR requirements that presently exist. An I shaped flexbeam with an external torque tube can satisfy the general goals but would have either higher stiffness or reduced fatigue life. The elastic gimbal rotor can achieve a better combination of low stiffness and high fatigue life but would be a somewhat heavier design and possibly exhibit a higher risk of aeromechanical instability.

  6. High Stability Engine Control (HISTEC) Flight Test Results

    NASA Technical Reports Server (NTRS)

    Southwick, Robert D.; Gallops, George W.; Kerr, Laura J.; Kielb, Robert P.; Welsh, Mark G.; DeLaat, John C.; Orme, John S.

    1998-01-01

    The High Stability Engine Control (HISTEC) Program, managed and funded by the NASA Lewis Research Center, is a cooperative effort between NASA and Pratt & Whitney (P&W). The program objective is to develop and flight demonstrate an advanced high stability integrated engine control system that uses real-time, measurement-based estimation of inlet pressure distortion to enhance engine stability. Flight testing was performed using the NASA Advanced Controls Technologies for Integrated Vehicles (ACTIVE) F-15 aircraft at the NASA Dryden Flight Research Center. The flight test configuration, details of the research objectives, and the flight test matrix to achieve those objectives are presented. Flight test results are discussed that show the design approach can accurately estimate distortion and perform real-time control actions for engine accommodation.

  7. Advanced Concepts in Structuring and Utilizing Local Advisory Councils and Craft Committees.

    ERIC Educational Resources Information Center

    Carroll, Richard E.

    Adoption and implementation of advanced concepts in structuring and using a local advisory council and craft committees can result in significantly improved vocational education programs. The organizational structure of a vocational-technical school advisory council should be a vehicle that facilitates accomplishment of its prime function--to…

  8. Free Flight and Self-Separation from the Flight Deck Perspective

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; McGann, Alison; Mackintosh, Margaret-Anne; Cashion, Patricia; Shafto, Michael G. (Technical Monitor)

    1997-01-01

    The concept of "free flight", while still being developed, is intended to emphasize more, flexibility for operators in the National Airspace System (NAS) by providing more separation responsibility to pilots, New technologies, procedures, and concepts have been suggested by the aviation community to enable this task; however, much work needs to be accomplished to help define and evaluate the concept feasibility. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in the enroute environment. A simulation demonstration was conducted in the Boeing 747-400 simulator at NASA Ames Research Center. Commercial pilots (from a U.S. domestic carrier) current on the B747-400 aircraft were the participants. Ten flight crews (10 captains, 10 first officers) flew in the Denver enroute airspace environment. A new alerting logic designed to allow for airborne self-separation was created for this demonstration. This logic assumes automatic dependent surveillance broadcast (ADS-B) capability and represented aircraft up to 120 nautical miles on the display. The new flight deck display features were designed and incorporated on the existing navigational display in the simulator to allow for increased traffic and maneuvering information to the flight crew. New tools were also provided to allow the crews to assess conflicts and potential maneuvers before implementing them. Each of the flight crews flew eight different scenarios in the Denver enroute airspace. The scenarios included eight to ten other aircraft, and each scenario was created with the intent of having one of the other aircraft become an operational conflict for our simulator aircraft. Different types of conflict geometries were represented across the eight scenarios. Also, some scenarios allowed for more time to detect a potential clearance, while others allowed for less time for'detection. Additionally, the crews were asked to a ply the

  9. Advanced Earth-to-orbit propulsion technology program overview: Impact of civil space technology initiative

    NASA Technical Reports Server (NTRS)

    Stephenson, Frank W., Jr.

    1988-01-01

    The NASA Earth-to-Orbit (ETO) Propulsion Technology Program is dedicated to advancing rocket engine technologies for the development of fully reusable engine systems that will enable space transportation systems to achieve low cost, routine access to space. The program addresses technology advancements in the areas of engine life extension/prediction, performance enhancements, reduced ground operations costs, and in-flight fault tolerant engine operations. The primary objective is to acquire increased knowledge and understanding of rocket engine chemical and physical processes in order to evolve more realistic analytical simulations of engine internal environments, to derive more accurate predictions of steady and unsteady loads, and using improved structural analyses, to more accurately predict component life and performance, and finally to identify and verify more durable advanced design concepts. In addition, efforts were focused on engine diagnostic needs and advances that would allow integrated health monitoring systems to be developed for enhanced maintainability, automated servicing, inspection, and checkout, and ultimately, in-flight fault tolerant engine operations.

  10. Flight nursing expertise: towards a middle-range theory

    PubMed Central

    Reimer, Andrew P.; Moore, Shirley M.

    2010-01-01

    Aim This paper presents a middle-range Theory of Flight Nursing Expertise. Background Rotary-wing (helicopter) medical transport has grown rapidly in the USA since its introduction, particularly during the past 5 years. Patients once considered too sick to transport are now being transported more frequently and over longer distances. Many limitations are imposed by the air medical transport environment and these require nurses to alter their practice. Data sources A literature search was conducted using Pubmed, Medline, CINAHL, secondary referencing and an Internet search from 1960 to 2008 for studies related to the focal concepts in flight nursing. Discussion The middle-range Theory of Flight Nursing Expertise is composed of nine concepts (experience, training, transport environment of care, psychomotor skills, flight nursing knowledge, cue recognition, pattern recognition, decision-making and action) and their relationships. Five propositions describe the relationships between those concepts and how they apply to flight nursing expertise. Implications for nursing After empirical testing, this theory may be a useful tool to assist novice flight nurses to attain the skills necessary to provide safe and competent care more efficiently, and may aid in designing curricula and programmes of research. Conclusion Research is needed to determine the usefulness of this theory in both rotary and fixed-wing medical transport settings, and to examine the similarities and differences related to expertise needed for different flight nurse team compositions. Curriculum and training innovations can result from increased understanding of the concepts and relationships proposed in this theory. PMID:20337803

  11. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  12. Noise and economic characteristics of an advanced blended supersonic transport concept

    NASA Technical Reports Server (NTRS)

    Molloy, J. K.; Grantham, W. D.; Neubauer, M. J., Jr.

    1982-01-01

    Noise and economic characteristics were obtained for an advanced supersonic transport concept that utilized wing body blending, a double bypass variable cycle engine, superplastically formed and diffusion bonded titanium in both the primary and secondary structures, and an alternative interior arrangement that provides increased seating capacity. The configuration has a cruise Mach number of 2.62, provisions for 290 passengers, a mission range of 8.19 Mm (4423 n.mi.), and an average operating cruise lift drag ratio of 9.23. Advanced operating procedures, which have the potential to reduce airport community noise, were explored by using a simulator. Traded jet noise levels of 105.7 and 103.4 EPNdB were obtained by using standard and advanced takeoff operational procedures, respectively. A new method for predicting lateral attenuation was utilized in obtaining these jet noise levels.

  13. Preliminary Effect of Synthetic Vision Systems Displays to Reduce Low-Visibility Loss of Control and Controlled Flight Into Terrain Accidents

    NASA Technical Reports Server (NTRS)

    Glaab, Louis J.; Takallu, Mohammad A.

    2002-01-01

    An experimental investigation was conducted to study the effectiveness of Synthetic Vision Systems (SVS) flight displays as a means of eliminating Low Visibility Loss of Control (LVLOC) and Controlled Flight Into Terrain (CFIT) accidents by low time general aviation (GA) pilots. A series of basic maneuvers were performed by 18 subject pilots during transition from Visual Meteorological Conditions (VMC) to Instrument Meteorological Conditions (IMC), with continued flight into IMC, employing a fixed-based flight simulator. A total of three display concepts were employed for this evaluation. One display concept, referred to as the Attitude Indicator (AI) replicated instrumentation common in today's General Aviation (GA) aircraft. The second display concept, referred to as the Electronic Attitude Indicator (EAI), featured an enlarged attitude indicator that was more representative of a glass display that also included advanced flight symbology, such as a velocity vector. The third concept, referred to as the SVS display, was identical to the EAI except that computer-generated terrain imagery replaced the conventional blue-sky/brown-ground of the EAI. Pilot performance parameters, pilot control inputs and physiological data were recorded for post-test analysis. Situation awareness (SA) and qualitative pilot comments were obtained through questionnaires and free-form interviews administered immediately after the experimental session. Initial pilot performance data were obtained by instructor pilot observations. Physiological data (skin temperature, heart rate, and muscle flexure) were also recorded. Preliminary results indicate that far less errors were committed when using the EAI and SVS displays than when using conventional instruments. The specific data example examined in this report illustrates the benefit from SVS displays to avoid massive loss of SA conditions. All pilots acknowledged the enhanced situation awareness provided by the SVS display concept. Levels of

  14. Flight Test of Advanced Digital Control Concepts.

    DTIC Science & Technology

    1982-03-01

    34 equations, and this result is then compared against the "model" equations. OPTION :::CREATrE ,CIEY, COFPY, MAT ,AMAT, COIP-YUMAT, BMAT , 74 COPFY, CMAT...BMATY .-COPY, NMAT, AMAT ,72 ,COPY, GMAT, RMA, COP:Y, (MAT, BMA’TCOFY, MA T ,AMAT >74, COPY, CMA’TsmA, PCOPY, RMAT, BmAT , pCOPYVMiAT , AMAo.T 72...COP’Y, MAT, AMAT, >75, COPY , MAtT, BMAT , COPY, ZMAT, AMAT, 74 ,COP’Y, MAT, TMAT, COPY, VMAT, AMAT, .:COPY ,RMAiT, MAT,73,COPW GMAT, E4MAT, COP-"YTMAT

  15. Flight-service program for advanced composite rudders on transport aircraft

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Flight service experience and in-service inspection results are reported for DC-10 graphite composite rudders during the third year of airline service. Test results and status are also reported for ground-based and airborne graphite-epoxy specimens with three different epoxy resin systems to obtain moisture absorption data. Twenty graphite composite rudders were produced, nine of which were installed on commercial aircraft during the past three years. The rudders collectively accumulated 75,863 flight hours. The high time rudder accumulated 12,740 flight hours in slightly over 36 months. The graphite composite rudders were inspected visually at approximately 1000 flight hour intervals and ultrasonically at approximately 3000 flight hour intervals in accordance with in-service inspection plans. All rudders were judged acceptable for continued service as a result of these inspections. Composite moisture absorption data on small specimens, both ground-based and carried aboard three flight-service aircraft, are given. The specimens include Thornel 300 fibers in Narmco 5208 and 5209 resin systems, and Type AS fibers in the Hercules 3501-6 resin system.

  16. Enabling Electric Propulsion for Flight - Hybrid Electric Aircraft Research at AFRC

    NASA Technical Reports Server (NTRS)

    Clarke, Sean; Lin, Yohan; Kloesel, Kurt; Ginn, Starr

    2014-01-01

    Advances in electric machine efficiency and energy storage capability are enabling a new alternative to traditional propulsion systems for aircraft. This has already begun with several small concept and demonstration vehicles, and NASA projects this technology will be essential to meet energy and emissions goals for commercial aviation in the next 30 years. In order to raise the Technology Readiness Level of electric propulsion systems, practical integration and performance challenges will need to be identified and studied in the near-term so that larger, more advanced electric propulsion system testbeds can be designed and built. Researchers at NASA Armstrong Flight Research Center are building up a suite of test articles for the development, integration, and validation of these systems in a real world environment.

  17. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    NASA Technical Reports Server (NTRS)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The PhoEnix aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    A hot air balloon passes over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The campus of the 2011 Green Flight Challenge, sponsored by Google, is seen in this aerial view at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    A hot air balloons pass over the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The e-Genius aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. The High Stability Engine Control (HISTEC) Program: Flight Demonstration Phase

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Southwick, Robert D.; Gallops, George W.; Orme, John S.

    1998-01-01

    Future aircraft turbine engines, both commercial and military, must be able to accommodate expected increased levels of steady-state and dynamic engine-face distortion. The current approach of incorporating sufficient design stall margin to tolerate these increased levels of distortion would significantly reduce performance. The objective of the High Stability Engine Control (HISTEC) program is to design, develop, and flight-demonstrate an advanced, integrated engine control system that uses measurement-based estimates of distortion to enhance engine stability. The resulting distortion tolerant control reduces the required design stall margin, with a corresponding increase in performance and decrease in fuel burn. The HISTEC concept has been developed and was successfully flight demonstrated on the F-15 ACTIVE aircraft during the summer of 1997. The flight demonstration was planned and carried out in two phases, the first to show distortion estimation, and the second to show distortion accommodation. Post-flight analysis shows that the HISTEC technologies are able to successfully estimate and accommodate distortion, transiently setting the stall margin requirement on-line and in real-time. This allows the design stall margin requirement to be reduced, which in turn can be traded for significantly increased performance and/or decreased weight. Flight demonstration of the HISTEC technologies has significantly reduced the risk of transitioning the technology to tactical and commercial engines.

  4. Pathfinder-Plus on a flight in Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on a flight in 1998 over Hawaiian waters. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least

  5. Pathfinder-Plus on flight over Hawaiian Islands

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus on flight over Hawaiian Islands in 1998. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100,000 feet and flying non-stop for at least 4

  6. Flight Simulator Evaluation of Display Media Devices for Synthetic Vision Concepts

    NASA Technical Reports Server (NTRS)

    Arthur, J. J., III; Williams, Steven P.; Prinzel, Lawrence J., III; Kramer, Lynda J.; Bailey, Randall E.

    2004-01-01

    The Synthetic Vision Systems (SVS) Project of the National Aeronautics and Space Administration's (NASA) Aviation Safety Program (AvSP) is striving to eliminate poor visibility as a causal factor in aircraft accidents as well as enhance operational capabilities of all aircraft. To accomplish these safety and capacity improvements, the SVS concept is designed to provide a clear view of the world around the aircraft through the display of computer-generated imagery derived from an onboard database of terrain, obstacle, and airport information. Display media devices with which to implement SVS technology that have been evaluated so far within the Project include fixed field of view head up displays and head down Primary Flight Displays with pilot-selectable field of view. A simulation experiment was conducted comparing these display devices to a fixed field of view, unlimited field of regard, full color Helmet-Mounted Display system. Subject pilots flew a visual circling maneuver in IMC at a terrain-challenged airport. The data collected for this experiment is compared to past SVS research studies.

  7. Preparations for the Advanced Scintillator Compton Telescope (ASCOT) balloon flight

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Bloser, P. F.; Legere, J. S.; Bancroft, C. M.; McConnell, M. L.; Ryan, J. M.; Wright, A. M.

    2017-08-01

    We describe our ongoing work to develop a new medium-energy gamma-ray Compton telescope using advanced scintillator materials combined with silicon photomultiplier readouts and fly it on a scientific balloon. There is a need in high-energy astronomy for a medium-energy gamma-ray mission covering the energy range from approximately 0.4 - 20 MeV to follow the success of the COMPTEL instrument on CGRO. We believe that directly building on the legacy of COMPTEL, using relatively robust, low-cost, off-the-shelf technologies, is the most promising path for such a mission. Fortunately, high-performance scintillators, such as Cerium Bromide (CeBr3) and p-terphenyl, and compact readout devices, such as silicon photomultipliers (SiPMs), are already commercially available and capable of meeting this need. We are now constructing an Advanced Scintillator Compton Telescope (ASCOT) with SiPM readout, with the goal of imaging the Crab Nebula at MeV energies from a high-altitude balloon flight. We expect a 4-sigma detection at 1 MeV in a single transit. We present calibration results of the detector modules, and updated simulations of the balloon instrument sensitivity. If successful, this project will demonstrate that the energy, timing, and position resolution of this technology are sufficient to achieve an order of magnitude improvement in sensitivity in the medium-energy gamma-ray band, were it to be applied to a 1 cubic meter instrument on a long-duration balloon or Explorer platform.

  8. Overview of the NASA/Marshall Space Flight Center (MSFC) CFD Consortium for Applications in Propulsion Technology

    NASA Astrophysics Data System (ADS)

    McConnaughey, P. K.; Schutzenhofer, L. A.

    1992-07-01

    This paper presents an overview of the NASA/Marshall Space Flight Center (MSFC) Computational Fluid Dynamics (CFD) Consortium for Applications in Propulsion Technology (CAPT). The objectives of this consortium are discussed, as is the approach of managing resources and technology to achieve these objectives. Significant results by the three CFD CAPT teams (Turbine, Pump, and Combustion) are briefly highlighted with respect to the advancement of CFD applications, the development and evaluation of advanced hardware concepts, and the integration of these results and CFD as a design tool to support Space Transportation Main Engine and National Launch System development.

  9. Flight Control of Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2017-01-01

    This presentation presents an overview of flight control research for flexible high aspect wing aircraft in support of the NASA ARMD Advanced Air Transport Technology (AATT) project. It summarizes multi-objective flight control technology being developed for drag optimization, flutter suppression, and maneuver and gust load alleviation.

  10. Aeronautical technology 2000: A projection of advanced vehicle concepts

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The Aeronautics and Space Engineering Board (ASEB) of the National Research Council conducted a Workshop on Aeronautical Technology: a Projection to the Year 2000 (Aerotech 2000 Workshop). The panels were asked to project advances in aeronautical technologies that could be available by the year 2000. As the workshop was drawing to a close, it became evident that a more comprehensive investigation of advanced air vehicle concepts than was possible in the limited time available at the workshop would be valuable. Thus, a special panel on vehicle applications was organized. In the course of two meetings, the panel identified and described representative types of aircraft judged possible with the workshop's technology projections. These representative aircraft types include: military aircraft; transport aircraft; rotorcraft; extremely high altitude aircraft; and transatmospheric aircraft. Improvements in performance, efficiency, and operational characteristics possible through the application of the workshop's year 2000 technology projections were discussed. The subgroups also identified the technologies considered essential and enhancing or supporting to achieve the projected aircraft improvements.

  11. Introduction to the aerodynamics of flight. [including aircraft stability, and hypersonic flight

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1975-01-01

    General concepts of the aerodynamics of flight are discussed. Topics considered include: the atmosphere; fluid flow; subsonic flow effects; transonic flow; supersonic flow; aircraft performance; and stability and control.

  12. Propulsion system-flight control integration and optimization: Flight evaluation and technology transition

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Gilyard, Glenn B.; Myers, Lawrence P.

    1990-01-01

    Integration of propulsion and flight control systems and their optimization offers significant performance improvements. Research programs were conducted which have developed new propulsion and flight control integration concepts, implemented designs on high-performance airplanes, demonstrated these designs in flight, and measured the performance improvements. These programs, first on the YF-12 airplane, and later on the F-15, demonstrated increased thrust, reduced fuel consumption, increased engine life, and improved airplane performance; with improvements in the 5 to 10 percent range achieved with integration and with no changes to hardware. The design, software and hardware developments, and testing requirements were shown to be practical.

  13. Validation test of 125 Ah advanced design IPV nickel-hydrogen flight cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.; Hall, Stephen W.

    1993-01-01

    An update of validation test results confirming the advanced design nickel-hydrogen cell is presented. An advanced 125 Ah individual pressure vessel (IPV) nickel-hydrogen cell was designed. The primary function of the advanced cell is to store and deliver energy for long-term, Low-Earth-Orbit (LEO) spacecraft missions. The new features of this design, which are not incorporated in state-of-the-art design cells, are: (1) use of 26 percent rather than 31 percent potassium hydroxide (KOH) electrolyte; (2) use of a patented catalyzed wall wick; (3) use of serrated-edge separators to facilitate gaseous oxygen and hydrogen flow within the cell, while still maintaining physical contact with the wall wick for electrolyte management; and (4) use of a floating rather than a fixed stack (state-of-the-art) to accommodate nickel electrode expansion due to charge/discharge cycling. The significant improvements resulting from these innovations are extended cycle life; enhanced thermal, electrolyte, and oxygen management; and accommodation of nickel electrode expansion. Six 125 Ah flight cells based on this design were fabricated by Eagle-Picher. Three of the cells contain all of the advanced features (test cells) and three are the same as the test cells except they do not have catalyst on the wall wick (control cells). All six cells are in the process of being evaluated in a LEO cycle life test at the Naval Weapons Support Center, Crane, IN, under a NASA Lewis Research Center contract. The catalyzed wall wick cells have been cycled for over 19000 cycles with no cell failures in the continuing test. Two of the noncatalyzed wall wick cells failed (cycles 9588 and 13,900).

  14. Simbol-X Formation Flight and Image Reconstruction

    NASA Astrophysics Data System (ADS)

    Civitani, M.; Djalal, S.; Le Duigou, J. M.; La Marle, O.; Chipaux, R.

    2009-05-01

    Simbol-X is the first operational mission relying on two satellites flying in formation. The dynamics of the telescope, due to the formation flight concept, raises a variety of problematic, like image reconstruction, that can be better evaluated via a simulation tools. We present here the first results obtained with Simulos, simulation tool aimed to study the relative spacecrafts navigation and the weight of the different parameters in image reconstruction and telescope performance evaluation. The simulation relies on attitude and formation flight sensors models, formation flight dynamics and control, mirror model and focal plane model, while the image reconstruction is based on the Line of Sight (LOS) concept.

  15. F-15 IFCS Intelligent Flight Control System

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2008-01-01

    This viewgraph presentation gives a detailed description of the F-15 aircraft, flight tests, aircraft performance and overall advanced neural network based flight control technologies for aerospace systems designs.

  16. Nonclassical Flight Control for Unhealthy Aircraft

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1997-01-01

    This research set out to investigate flight control of aircraft which has sustained damage in regular flight control effectors, due to jammed control surfaces or complete loss of hydraulic power. It is recognized that in such an extremely difficult situation unconventional measures may need to be taken to regain control and stability of the aircraft. Propulsion controlled aircraft (PCA) concept, initiated at the NASA Dryden Flight Research Center. represents a ground-breaking effort in this direction. In this approach, the engine is used as the only flight control effector in the rare event of complete loss of normal flight control system. Studies and flight testing conducted at NASA Dryden have confirmed the feasibility of the PCA concept. During the course of this research (March 98, 1997 to November 30, 1997), a comparative study has been done using the full nonlinear model of an F-18 aircraft. Linear controllers and nonlinear controllers based on a nonlinear predictive control method have been designed for normal flight control system and propulsion controlled aircraft. For the healthy aircraft with normal flight control, the study shows that an appropriately designed linear controller can perform as well as a nonlinear controller. On the other hand. when the normal flight control is lost and the engine is the only available means of flight control, a nonlinear PCA controller can significantly increase the size of the recoverable region in which the stability of the unstable aircraft can be attained by using only thrust modulation. The findings and controller design methods have been summarized in an invited paper entitled.

  17. M2-F1 in flight

    NASA Technical Reports Server (NTRS)

    1964-01-01

    The M2-F1 Lifting Body is seen here under tow by an unseen C-47 at the NASA Flight Research Center (later redesignated the Dryden Flight Research Center), Edwards, California. The low-cost vehicle was the first piloted lifting body to be test flown. The lifting-body concept originated in the mid-1950s at the National Advisory Committee for Aeronautics' Ames Aeronautical Laboratory, Mountain View California. By February 1962, a series of possible shapes had been developed, and R. Dale Reed was working to gain support for a research vehicle. The wingless, lifting body aircraft design was initially concieved as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. These initial tests produced enough flight data about the M2-F1 to proceed with flights behind a NASA C-47 tow plane at greater altitudes. The C-47 took the craft to an altitude of 12,000 where free flights back to Rogers Dry Lake began. Pilot for the first series of flights of the M2-F1 was NASA research pilot Milt Thompson. Typical glide flights with the M2-F1 lasted about two minutes and reached speeds of 110 to l20 mph. More than 400 ground tows and 77 aircraft tow flights were carried out with the M2-F1. The success of Dryden's M2-F1 program led to NASA's development and construction of two heavyweight lifting bodies based on studies at

  18. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    e-Genius Aircraft Pilot Klaus Ohlmann poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  19. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The e-Genius aircraft crew wait as their aircraft is inspected during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  20. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Support personnel prepare noise level measuring equipment along the runway for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  1. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Pipistrel-USA, Taurus G4 aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  2. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    e-Genius Aircraft Pilot Eric Raymond poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  3. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    PhoEnix Aircraft Co-Pilot Jeff Shingleton poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  4. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    PhoEnix Aircraft Pilot Jim Lee poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  5. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    EcoEagle Aircraft Pilot Mikhael Ponso poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  6. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Embry-Riddle Aeronautical University, EcoEagle aircraft takes off during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  7. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Various team members applaud as aircraft return from the speed competition during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  8. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Sid Siddiqi, seated, and other support personnel prepare noise level measuring equipment for the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  9. Iced Aircraft Flight Data for Flight Simulator Validation

    NASA Technical Reports Server (NTRS)

    Ratvasky, Thomas P.; Blankenship, Kurt; Rieke, William; Brinker, David J.

    2003-01-01

    NASA is developing and validating technology to incorporate aircraft icing effects into a flight training device concept demonstrator. Flight simulation models of a DHC-6 Twin Otter were developed from wind tunnel data using a subscale, complete aircraft model with and without simulated ice, and from previously acquired flight data. The validation of the simulation models required additional aircraft response time histories of the airplane configured with simulated ice similar to the subscale model testing. Therefore, a flight test was conducted using the NASA Twin Otter Icing Research Aircraft. Over 500 maneuvers of various types were conducted in this flight test. The validation data consisted of aircraft state parameters, pilot inputs, propulsion, weight, center of gravity, and moments of inertia with the airplane configured with different amounts of simulated ice. Emphasis was made to acquire data at wing stall and tailplane stall since these events are of primary interest to model accurately in the flight training device. Analyses of several datasets are described regarding wing and tailplane stall. Key findings from these analyses are that the simulated wing ice shapes significantly reduced the C , max, while the simulated tail ice caused elevator control force anomalies and tailplane stall when flaps were deflected 30 deg or greater. This effectively reduced the safe operating margins between iced wing and iced tail stall as flap deflection and thrust were increased. This flight test demonstrated that the critical aspects to be modeled in the icing effects flight training device include: iced wing and tail stall speeds, flap and thrust effects, control forces, and control effectiveness.

  10. Validation of a Computational Model for the SLS Core Stage Oxygen Tank Diffuser Concept and the Low Profile Diffuser - An Advanced Development Design for the SLS

    NASA Technical Reports Server (NTRS)

    Brodnick, Jacob; Richardson, Brian; Ramachandran, Narayanan

    2015-01-01

    The Low Profile Diffuser (LPD) project originated as an award from the Marshall Space Flight Center (MSFC) Advanced Development (ADO) office to the Main Propulsion Systems Branch (ER22). The task was created to develop and test an LPD concept that could produce comparable performance to a larger, traditionally designed, ullage gas diffuser while occupying a smaller volume envelope. Historically, ullage gas diffusers have been large, bulky devices that occupy a significant portion of the propellant tank, decreasing the tank volume available for propellant. Ullage pressurization of spacecraft propellant tanks is required to prevent boil-off of cryogenic propellants and to provide a positive pressure for propellant extraction. To achieve this, ullage gas diffusers must slow hot, high-pressure gas entering a propellant tank from supersonic speeds to only a few meters per second. Decreasing the incoming gas velocity is typically accomplished through expansion to larger areas within the diffuser which has traditionally led to large diffuser lengths. The Fluid Dynamics Branch (ER42) developed and applied advanced Computational Fluid Dynamics (CFD) analysis methods in order to mature the LPD design from and initial concept to an optimized test prototype and to provide extremely accurate pre-test predictions of diffuser performance. Additionally, the diffuser concept for the Core Stage of the Space Launch System (SLS) was analyzed in a short amount of time to guide test data collection efforts of the qualification of the device. CFD analysis of the SLS diffuser design provided new insights into the functioning of the device and was qualitatively validated against hot wire anemometry of the exterior flow field. Rigorous data analysis of the measurements was performed on static and dynamic pressure data, data from two microphones, accelerometers and hot wire anemometry with automated traverse. Feasibility of the LPD concept and validation of the computational model were

  11. Rotorcraft flight-propulsion control integration: An eclectic design concept

    NASA Technical Reports Server (NTRS)

    Mihaloew, James R.; Ballin, Mark G.; Ruttledge, D. C. G.

    1988-01-01

    The NASA Ames and Lewis Research Centers, in conjunction with the Army Research and Technology Laboratories, have initiated and partially completed a joint research program focused on improving the performance, maneuverability, and operating characteristics of rotorcraft by integrating the flight and propulsion controls. The background of the program, its supporting programs, its goals and objectives, and an approach to accomplish them are discussed. Results of the modern control governor design of the General Electric T700 engine and the Rotorcraft Integrated Flight-Propulsion Control Study, which were key elements of the program, are also presented.

  12. DEVELOPMENT OF OPERATIONAL CONCEPTS FOR ADVANCED SMRs: THE ROLE OF COGNITIVE SYSTEMS ENGINEERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacques Hugo; David Gertman

    Advanced small modular reactors (AdvSMRs) will use advanced digital instrumentation and control systems, and make greater use of automation. These advances not only pose technical and operational challenges, but will inevitably have an effect on the operating and maintenance (O&M) cost of new plants. However, there is much uncertainty about the impact of AdvSMR designs on operational and human factors considerations, such as workload, situation awareness, human reliability, staffing levels, and the appropriate allocation of functions between the crew and various automated plant systems. Existing human factors and systems engineering design standards and methodologies are not current in terms ofmore » human interaction requirements for dynamic automated systems and are no longer suitable for the analysis of evolving operational concepts. New models and guidance for operational concepts for complex socio-technical systems need to adopt a state-of-the-art approach such as Cognitive Systems Engineering (CSE) that gives due consideration to the role of personnel. This approach we report on helps to identify and evaluate human challenges related to non-traditional concepts of operations. A framework - defining operational strategies was developed based on the operational analysis of Argonne National Laboratory’s Experimental Breeder Reactor-II (EBR-II), a small (20MWe) sodium-cooled reactor that was successfully operated for thirty years. Insights from the application of the systematic application of the methodology and its utility are reviewed and arguments for the formal adoption of CSE as a value-added part of the Systems Engineering process are presented.« less

  13. Flight duration and flight muscle ultrastructure of unfed hawk moths.

    PubMed

    Wone, Bernard W M; Pathak, Jaika; Davidowitz, Goggy

    2018-06-13

    Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Selected Flight Test Results for Online Learning Neural Network-Based Flight Control System

    NASA Technical Reports Server (NTRS)

    Williams-Hayes, Peggy S.

    2004-01-01

    The NASA F-15 Intelligent Flight Control System project team developed a series of flight control concepts designed to demonstrate neural network-based adaptive controller benefits, with the objective to develop and flight-test control systems using neural network technology to optimize aircraft performance under nominal conditions and stabilize the aircraft under failure conditions. This report presents flight-test results for an adaptive controller using stability and control derivative values from an online learning neural network. A dynamic cell structure neural network is used in conjunction with a real-time parameter identification algorithm to estimate aerodynamic stability and control derivative increments to baseline aerodynamic derivatives in flight. This open-loop flight test set was performed in preparation for a future phase in which the learning neural network and parameter identification algorithm output would provide the flight controller with aerodynamic stability and control derivative updates in near real time. Two flight maneuvers are analyzed - pitch frequency sweep and automated flight-test maneuver designed to optimally excite the parameter identification algorithm in all axes. Frequency responses generated from flight data are compared to those obtained from nonlinear simulation runs. Flight data examination shows that addition of flight-identified aerodynamic derivative increments into the simulation improved aircraft pitch handling qualities.

  15. Pathfinder-Plus on flight over Hawaii

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Pathfinder-Plus flying over the Hawaiian Islands in 1998 with Ni'ihau Island in the background. Pathfinder was a remotely controlled, solar-powered flying wing, designed and built as a proof-of-concept vehicle for a much larger aircraft capable of flying at extremely high altitudes for weeks at a time. It was built by AeroVironment, Inc., a California company that developed the human-powered Gossamer Condor and Gossamer Albatross lightweight aircraft during the 1970s, and later made the solar-electric powered Gossamer Penguin and Solar Challenger. The basic configuration and concepts for Pathfinder were first realized with the HALSOL (High Altitude Solar) aircraft, built in 1983 by AeroVironment and the Lawrence Livermore Laboratory. Pathfinder was constructed of advanced composites, plastics, and foam, and despite a wingspan of nearly 100 feet, it weighed only about 600 pounds. Pathfinder was one of several unpiloted prototypes under study by NASA's ERAST (Environmental Research Aircraft and Sensor Technology) program, a NASA-industry alliance which is helping develop advanced technologies that will enable aircraft to study the earth's environment during extremely long flights at altitudes in excess of 100,000 feet. (See project description below for Pathfinder's conversion to Pathfinder Plus.) In 1998, the Pathfinder solar-powered flying wing (see its photographs and project description) was modified into the longer-winged Pathfinder Plus configuration and on Aug. 6, 1998, Pathfinder Plus set an altitude record (for propeller-driven aircraft) of approximately 80,285 feet at the Pacific Missile Range Facility. The goal of the Pathfinder Plus flights was to validate new solar, aerodynamic, propulsion, and systems technology developed for its successor, the Centurion, which was designed to reach and sustain altitudes in the 100,000-foot range. The Centurion was succeeded by the Helios Prototype with a goal of reaching and sustaining flight at an altitude of 100

  16. Navy’s Advanced Aircraft Armament System Program Concept Objectives

    DTIC Science & Technology

    1983-10-01

    12-1 00 NAVY’S ADVANCED AIRCRAFT ARMAMENT SYSTEM PROGRAM CONCEPT OBJECTIVES T. M . Leese and J. F. Haney Naval Weapons Center Code 31403 China...STORE FLWNT LIFE RECONFIOURATION ♦ UWMST OMHTH ninoairv M — MANN HUCTHM ^♦■ SILECT ALTERNATE • STORE 0PTI0M ■ REOUCIO CK« W0RKL0A0 • . README...mOVEMENTS INÜTEO FUIWUTY MM AM tTATWM COMPLEX AUTOMATIC LACK OF OIT RESTRICTIVE MLNIRV M FLUWAITV IUCSMVI Figure 1. Carrier aircraft

  17. Advanced Concept

    NASA Image and Video Library

    2008-02-15

    Shown is a concept illustration of the Ares I crew launch vehicle during launch and the Ares V cargo launch vehicle on the launch pad. Ares I will carry the Orion Crew Exploration Vehicle with an astronaut crew to Earth orbit. Ares V will deliver large-scale hardware to space. This includes the Altair Lunar Lander, materials for establishing an outpost on the moon, and the vehicles and hardware needed to extend a human presence beyond Earth orbit.

  18. Design and utilization of a Flight Test Engineering Database Management System at the NASA Dryden Flight Research Facility

    NASA Technical Reports Server (NTRS)

    Knighton, Donna L.

    1992-01-01

    A Flight Test Engineering Database Management System (FTE DBMS) was designed and implemented at the NASA Dryden Flight Research Facility. The X-29 Forward Swept Wing Advanced Technology Demonstrator flight research program was chosen for the initial system development and implementation. The FTE DBMS greatly assisted in planning and 'mass production' card preparation for an accelerated X-29 research program. Improved Test Plan tracking and maneuver management for a high flight-rate program were proven, and flight rates of up to three flights per day, two times per week were maintained.

  19. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  20. Simulation evaluation of a low-altitude helicopter flight guidance system adapted for a helmet-mounted display

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Zelenka, Richard E.; Hardy, Gordon H.; Dearing, Munro G.

    1992-01-01

    A computer aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generation algorithm based upon dynamic programming and a helmet-mounted display (HMD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor guidance symbology. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission way points that seeks valleys to minimize threat exposure. The pilot evaluation was conducted at NASA ARC moving base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, the Air Force, and the helicopter industry. The pilots manually tracked the trajectory generated by the algorithm utilizing the HMD symbology. The pilots were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  1. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    NASA Technical Reports Server (NTRS)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  2. Application of pneumatic lift and control surface technology to advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Englar, Robert J.

    1996-01-01

    The application of pneumatic (blown) aerodynamic technology to both the lifting and the control surfaces of advanced transport aircraft can provide revolutionary changes in the performance and operation of these vehicles, ranging in speed regime from Advanced Subsonic Transports to the High Speed Civil Transport, and beyond. This technology, much of it based on the Circulation Control Wing blown concepts, can provide aerodynamic force augmentations of 80 to 100 (i.e., return of 80-100 pounds of force per pound of input momentum from the blowing jet). This can be achieved without use of external mechanical surfaces. Clever application of this technology can provide no-moving-part lifting surfaces (wings/tails) integrated into the control system to greatly simplify aircraft designs while improving their aerodynamic performance. Lift/drag ratio may be pneumatically tailored to fit the current phase of the flight, and takeoff/landing performance can be greatly improved by reducing ground roll distances and liftoff/touchdown speeds. Alternatively, great increases in liftoff weights and payloads are possible, as are great reductions in wing and tail planform size, resulting in optimized cruise wing designs. Furthermore, lift generation independent of angle of attack provides much promise for increased safety of flight in the severe updrafts/downdrafts of microbursts and windshears, which is further augmented by the ability to sustain flight at greatly reduced airspeeds. Load-tailored blown wings can also reduce tip vorticity during highlift operations and the resulting vortex wake hazards near terminal areas. Reduced noise may also be possible as these jets can be made to operate at low pressures. The planned presentation will support the above statements through discussions of recent experimental and numerical (CFD) research and development of these advanced blown aerodynamic surfaces, portions of which have been conducted for NASA. Also to be presented will be

  3. Concept of Operations Evaluation for Mitigating Space Flight-Relevant Medical Issues in a Planetary Habitat

    NASA Technical Reports Server (NTRS)

    Barsten, Kristina; Hurst, Victor, IV; Scheuring, Richard; Baumann, David K.; Johnson-Throop, Kathy

    2010-01-01

    Introduction: Analogue environments assist the NASA Human Research Program (HRP) in developing capabilities to mitigate high risk issues to crew health and performance for space exploration. The Habitat Demonstration Unit (HDU) is an analogue habitat used to assess space-related products for planetary missions. The Exploration Medical Capability (ExMC) element at the NASA Johnson Space Center (JSC) was tasked with developing planetary-relevant medical scenarios to evaluate the concept of operations for mitigating medical issues in such an environment. Methods: Two medical scenarios were conducted within the simulated planetary habitat with the crew executing two space flight-relevant procedures: Eye Examination with a corneal injury and Skin Laceration. Remote guidance for the crew was provided by a flight surgeon (FS) stationed at a console outside of the habitat. Audio and video data were collected to capture the communication between the crew and the FS, as well as the movements of the crew executing the procedures. Questionnaire data regarding procedure content and remote guidance performance also were collected from the crew immediately after the sessions. Results: Preliminary review of the audio, video, and questionnaire data from the two scenarios conducted within the HDU indicate that remote guidance techniques from an FS on console can help crew members within a planetary habitat mitigate planetary-relevant medical issues. The content and format of the procedures were considered concise and intuitive, respectively. Discussion: Overall, the preliminary data from the evaluation suggest that use of remote guidance techniques by a FS can help HDU crew execute space exploration-relevant medical procedures within a habitat relevant to planetary missions, however further evaluations will be needed to implement this strategy into the complete concept of operations for conducting general space medicine within similar environments

  4. SHEFEX II Flight Instrumentation And Preparation Of Post Flight Analysis

    NASA Astrophysics Data System (ADS)

    Thiele, Thomas; Siebe, Frank; Gulhan, Ali

    2011-05-01

    A main disadvantage of modern TPS systems for re- entry vehicles is the expensive manufacturing and maintenance process due to the complex geometry of these blunt nose configurations. To reduce the costs and to improve the aerodynamic performance the German Aerospace Center (DLR) is following a different approach using TPS structures consisting of flat ceramic tiles. To test these new sharp edged TPS structures the SHEFEX I flight experiment was designed and successfully performed by DLR in 2005. To further improve the reliability of the sharp edged TPS design at even higher Mach numbers, a second flight experiment SHEFEX II will be performed in September 2011. In comparison to SHEFEX I the second flight experiment has a fully symmetrical shape and will reach a maximum Mach number of about 11. Furthermore the vehicle has an active steering system using four canards to control the flight attitude during re-entry, e.g. roll angle, angle of attack and sideslip. After a successful flight the evaluation of the flight data will be performed using a combination of numerical and experimental tools. The data will be used for the improvement of the present numerical analysis tools and to get a better understanding of the aerothermal behaviour of sharp TPS structures. This paper presents the flight instrumentation of the SHEFEX II TPS. In addition the concept of the post flight analysis is presented.

  5. Advanced Concept

    NASA Image and Video Library

    1999-08-13

    Pictured is an artist's concept of the experimental Reusable Launch Vehicle (RLV), the X-37 located in the cargo bay of a space shuttle with Earth in the background. The X-37 was designed to launch from the space shuttle's cargo bay as a secondary payload. Once deployed, the X-37 would remain on-orbit up to 21 days performing a variety of experiments before re-entering the Earth's atmosphere and landing. The X-37 program was discontinued in 2003.

  6. Advanced Concept

    NASA Image and Video Library

    2008-03-15

    A CONCEPT IMAGE SHOWS THE ARES I CREW LAUNCH VEHICLE DURING ASCENT. ARES I IS AN IN-LINE, TWO-STAGE ROCKET CONFIGURATION TOPED BY THE ORION CREW EXPLORATION VEHICLE AND LAUNCH ABORT SYSTEM. THE ARES I FIRST STAGE IS A SINGLE, FIVE-SEGMENT REUSABLE SOLID ROCKET BOOSTER, DERIVED FROM THE SPACE SHUTTLE. ITS UPPER STAGE IS POWERED BY A J-2X ENGINE. ARES I WILL CARRY THE ORION WITH ITS CRW OF UP TO SIX ASTRONAUTS TO EARTH ORBIT.

  7. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Perseus proof-of-concept vehicle flies over Rogers Dry Lake at the Dryden Flight Research Center, Edwards, California, to test basic design concepts for the remotely-piloted, high-altitude vehicle. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation of the Perseus design, which began with the Perseus Proof-Of-Concept aircraft. Perseus was initially developed as part of NASA's Small High-Altitude Science Aircraft (SHASA

  8. A Flight Dynamics Perspective of the Orion Pad Abort One Flight Test

    NASA Technical Reports Server (NTRS)

    Idicula, Jinu; Williams-Hayes, Peggy S.; Stillwater, Ryan; Yates, Max

    2009-01-01

    The Orion Crew Exploration Vehicle is America s next generation of human rated spacecraft. The Orion Launch Abort System will take the astronauts away from the exploration vehicle in the event of an aborted launch. The pad abort mode of the Launch Abort System will be flight-tested in 2009 from the White Sands Missile Range in New Mexico. This paper examines some of the efforts currently underway at the NASA Dryden Flight Research Center by the Controls & Dynamics group in preparation for the flight test. The concept of operation for the pad abort flight is presented along with an overview of the guidance, control and navigation systems. Preparations for the flight test, such as hardware testing and development of the real-time displays, are examined. The results from the validation and verification efforts for the aerodynamic and atmospheric models are shown along with Monte Carlo analysis results.

  9. Badminton--Teaching Concepts.

    ERIC Educational Resources Information Center

    Gibbs, Marilyn J.

    1988-01-01

    Teaching four basic badminton concepts along with the usual basic skill shots allows players to develop game strategy awareness as well as mechanical skills. These four basic concepts are: (1) ready position, (2) flight trajectory, (3) early shuttle contact, and (4) camouflage. (IAH)

  10. Requirements for Flight Testing Automated Terminal Service

    DOT National Transportation Integrated Search

    1977-05-01

    This report describes requirements for the flight tests of the baseline Automated Terminals Service (ATS) system. The overall objective of the flight test program is to evaluate the feasibility of the ATS concept. Within this objective there are two ...

  11. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    The PhoEnix aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  12. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel-USA Taurus G4 Aircraft Pilot Robin Reid poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  13. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    Pipistrel-USA Taurus G4 Aircraft Pilot David Morss poses for a photograph during the 2011 Green Flight Challenge, sponsored by Google, held at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  14. Green Flight Challenge

    NASA Image and Video Library

    2011-09-27

    The EcoEagle, left, and the PhoEnix aircraft are seen on the campus of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Wednesday, Sept. 28, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  15. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    Team members of the e-Genius aircraft prepare their plane prior to competition as part of the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  16. Green Flight Challenge

    NASA Image and Video Library

    2011-09-28

    The e-Genius aircraft takes off for the start of the speed competition during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Thursday, Sept. 29, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  17. Green Flight Challenge

    NASA Image and Video Library

    2011-09-25

    The Embry-Riddle Aeronautical University, EcoEagle is seen as it passes a Grumman Albatross during the 2011 Green Flight Challenge, sponsored by Google, at the Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. on Monday, Sept. 26, 2011. NASA and the Comparative Aircraft Flight Efficiency (CAFE) Foundation are having the challenge with the goal to advance technologies in fuel efficiency and reduced emissions with cleaner renewable fuels and electric aircraft. Photo Credit: (NASA/Bill Ingalls)

  18. Nonlinear flight control design using backstepping methodology

    NASA Astrophysics Data System (ADS)

    Tran, Thanh Trung

    The subject of nonlinear flight control design using backstepping control methodology is investigated in the dissertation research presented here. Control design methods based on nonlinear models of the dynamic system provide higher utility and versatility because the design model more closely matches the physical system behavior. Obtaining requisite model fidelity is only half of the overall design process, however. Design of the nonlinear control loops can lessen the effects of nonlinearity, or even exploit nonlinearity, to achieve higher levels of closed-loop stability, performance, and robustness. The goal of the research is to improve control quality for a general class of strict-feedback dynamic systems and provide flight control architectures to augment the aircraft motion. The research is divided into two parts: theoretical control development for the strict-feedback form of nonlinear dynamic systems and application of the proposed theory for nonlinear flight dynamics. In the first part, the research is built on two components: transforming the nonlinear dynamic model to a canonical strict-feedback form and then applying backstepping control theory to the canonical model. The research considers a process to determine when this transformation is possible, and when it is possible, a systematic process to transfer the model is also considered when practical. When this is not the case, certain modeling assumptions are explored to facilitate the transformation. After achieving the canonical form, a systematic design procedure for formulating a backstepping control law is explored in the research. Starting with the simplest subsystem and ending with the full system, pseudo control concepts based on Lyapunov control functions are used to control each successive subsystem. Typically each pseudo control must be solved from a nonlinear algebraic equation. At the end of this process, the physical control input must be re-expressed in terms of the physical states by

  19. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  20. System Concepts for the Advanced Post-TRMM Rainfall Profiling Radars

    NASA Technical Reports Server (NTRS)

    Im, Eastwood; Smith, Eric A.

    2000-01-01

    Global rainfall is the primary distributor of latent heat through atmospheric circulation. The recently launched Tropical Rainfall Measuring Mission satellite is dedicated to advance our understanding of tropical precipitation patterns and their implications on global climate and its change. The Precipitation Radar (PR) aboard the satellite is the first radar ever flown in space and has provided. exciting, new data on the 3-D rain structures for a variety of scientific uses. However, due to the limited mission lifetime and the dynamical nature of precipitation, the TRMM PR data acquired cannot address all the issues associated with precipitation, its related processes, and the long-term climate variability. In fact, a number of new post-TRMM mission concepts have emerged in response to the recent NASA's request for new ideas on Earth science missions at the post 2002 era. This paper will discuss the system concepts for two advanced, spaceborne rainfall profiling radars. In the first portion of this paper, we will present a system concept for a second-generation spaceborne precipitation radar for operations at the Low Earth Orbit (LEO). The key PR-2 electronics system will possess the following capabilities: (1) A 13.6/35 GHz dual frequency radar electronics that has Doppler and dual-polarization capabilities. (2) A large but light weight, dual-frequency, wide-swath scanning, deployable antenna. (3) Digital chirp generation and the corresponding on-board pulse compression scheme. This will allow a significant improvement on rain signal detection without using the traditional, high-peak-power transmitters and without sacrificing the range resolution. (4) Radar electronics and algorithm to adaptively scan the antenna so that more time can be spent to observe rain rather than clear air. and (5) Built-in flexibility on the radar parameters and timing control such that the same radar can be used by different future rain missions. This will help to reduce the overall