Sample records for advanced diagnostic ultrasound

  1. Synergistic advances in diagnostic and therapeutic medical ultrasound

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    2003-04-01

    Significant advances are more fully exploiting ultrasound's potential for noninvasive diagnosis and treatment. Therapeutic systems employ intense focused beams to thermally kill cancer cells in, e.g., prostate; to stop bleeding; and to treat specific diseases (e.g., glaucoma). Diagnostic ultrasound techniques can quantitatively image an increasingly broad spectrum of physical tissue attributes. An exciting aspect of this progress is the emerging synergy between these modalities. Advanced diagnostic techniques may contribute at several stages in therapy. For example, treatment planning for small ocular tumors uses 50-MHz, 3-D ultrasonic images with 0.05-mm resolution. Thermal simulations employ these images to evaluate desired and undesired effects using exposure stategies with specially designed treatment beams. Therapy beam positioning can use diagnostic elastography to sense tissue motion induced by radiation pressure from high-intensity treatment beams. Therapy monitoring can sense lesion formation using elastography motion sensing (to detect the increased stiffness in lesions); harmonic imaging (to sense altered nonlinear properties); and spectrum analysis images (depicting changes in the sizes, concentration, and configuration of sub-resolution structures.) Experience from these applications will greatly expand the knowledge of acoustic phenomena in living tissues and should lead to further advances in medical ultrasound.

  2. Diagnostic and interventional musculoskeletal ultrasound: part 1. Fundamentals.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-01-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurologic and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared with other available imaging modalities, (2) describe how ultrasound machines produce images using sound waves, (3) discuss the steps necessary to acquire and optimize an ultrasound image, (4) understand the different ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones, and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound in musculoskeletal practice. Part 1 of this 2-part article reviews the fundamentals of clinical ultrasonographic imaging, including relevant physics, equipment, training, image optimization, and scanning principles for diagnostic and interventional purposes.

  3. MO-AB-210-00: Diagnostic Ultrasound Imaging Quality Control and High Intensity Focused Ultrasound Therapy Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  4. Diagnostic and interventional musculoskeletal ultrasound: part 2. Clinical applications.

    PubMed

    Smith, Jay; Finnoff, Jonathan T

    2009-02-01

    Musculoskeletal ultrasound involves the use of high-frequency sound waves to image soft tissues and bony structures in the body for the purposes of diagnosing pathology or guiding real-time interventional procedures. Recently, an increasing number of physicians have integrated musculoskeletal ultrasound into their practices to facilitate patient care. Technological advancements, improved portability, and reduced costs continue to drive the proliferation of ultrasound in clinical medicine. This increased interest creates a need for education pertaining to all aspects of musculoskeletal ultrasound. The primary purpose of this article is to review diagnostic ultrasound technology and its potential clinical applications in the evaluation and treatment of patients with neurological and musculoskeletal disorders. After reviewing this article, physicians should be able to (1) list the advantages and disadvantages of ultrasound compared to other available imaging modalities; (2) describe how ultrasound machines produce images using sound waves; (3) discuss the steps necessary to acquire and optimize an ultrasound image; (4) understand the difference ultrasound appearances of tendons, nerves, muscles, ligaments, blood vessels, and bones; and (5) identify multiple applications for diagnostic and interventional musculoskeletal ultrasound. Part 2 of this 2-part article will focus on the clinical applications of musculoskeletal ultrasound in clinical practice, including the ultrasonographic appearance of normal and abnormal tissues as well as specific diagnostic and interventional applications in major body regions.

  5. Advanced Ultrasound Technologies for Diagnosis and Therapy.

    PubMed

    Rix, Anne; Lederle, Wiltrud; Theek, Benjamin; Lammers, Twan; Moonen, Chrit; Schmitz, Georg; Kiessling, Fabian

    2018-05-01

    Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel superresolution techniques provide unique morphologic and functional insights into tissue vascularization. Functional analyses are complemented by molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications of tumor ablation with high-intensity focused ultrasound are being clinically evaluated, and its performance strongly benefits from the integration into MRI. Additionally, oscillating microbubbles mediate sonoporation to open biologic barriers, thus improving the delivery of drugs or nucleic acids that are coadministered or coformulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  6. MO-AB-210-03: Workshop [Advancements in high intensity focused ultrasound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  7. WE-AB-206-01: Diagnostic Ultrasound Imaging Quality Assurance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zagzebski, J.

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less

  8. Studies on the foundation and development of diagnostic ultrasound

    PubMed Central

    Wagai, Toshio

    2007-01-01

    In recent years, various types of diagnostic imaging methods, such as CT, MRI, PET and Ultrasound, have been developed rapidly and become indispensable as clinical diagnostic tools. Among these imaging modalities, CT, MRI and PET all apply electromagnetic waves like radiation rays. In contrast, an ultrasound imaging method uses a completely different mechanical pressure wave: “sound”. Ultrasound has various features, including inaudible sound at very high frequencies, which allows its use in medical diagnoses. That is, ultrasound techniques can be applied in transmission, reflection and Doppler methods. Moreover, the sharp directivity of an ultrasound beam can also improve image resolution. Another big advantage of diagnostic ultrasound is that it does not harm the human body or cause any pain to patients. Given these various advantages, diagnostic ultrasound has recently been widely used in diagnosing cancer and cardiovascular disease and scanning fetuses (Fig. 1) as well as routine clinical examinations in hospitals. In this paper, I outline my almost 50-year history of diagnostic ultrasound research, particularly that performed at the early stage from 1950–56. PMID:24367150

  9. Enhanced ultrasound for advanced diagnostics, ultrasound tomography for volume limb imaging and prosthetic fitting

    NASA Astrophysics Data System (ADS)

    Anthony, Brian W.

    2016-04-01

    Ultrasound imaging methods hold the potential to deliver low-cost, high-resolution, operator-independent and nonionizing imaging systems - such systems couple appropriate algorithms with imaging devices and techniques. The increasing demands on general practitioners motivate us to develop more usable and productive diagnostic imaging equipment. Ultrasound, specifically freehand ultrasound, is a low cost and safe medical imaging technique. It doesn't expose a patient to ionizing radiation. Its safety and versatility make it very well suited for the increasing demands on general practitioners, or for providing improved medical care in rural regions or the developing world. However it typically suffers from sonographer variability; we will discuss techniques to address user variability. We also discuss our work to combine cylindrical scanning systems with state of the art inversion algorithms to deliver ultrasound systems for imaging and quantifying limbs in 3-D in vivo. Such systems have the potential to track the progression of limb health at a low cost and without radiation exposure, as well as, improve prosthetic socket fitting. Current methods of prosthetic socket fabrication remain subjective and ineffective at creating an interface to the human body that is both comfortable and functional. Though there has been recent success using methods like magnetic resonance imaging and biomechanical modeling, a low-cost, streamlined, and quantitative process for prosthetic cup design and fabrication has not been fully demonstrated. Medical ultrasonography may inform the design process of prosthetic sockets in a more objective manner. This keynote talk presents the results of progress in this area.

  10. Recent advances of ultrasound imaging in dentistry--a review of the literature.

    PubMed

    Marotti, Juliana; Heger, Stefan; Tinschert, Joachim; Tortamano, Pedro; Chuembou, Fabrice; Radermacher, Klaus; Wolfart, Stefan

    2013-06-01

    Ultrasonography as an imaging modality in dentistry has been extensively explored in recent years due to several advantages that diagnostic ultrasound provides. It is a non-invasive, inexpensive, painless method and unlike X-ray, it does not cause harmful ionizing radiation. Ultrasound has a promising future as a diagnostic imaging tool in all specialties in dentistry, for both hard and soft tissue detection. The aim of this review is to provide the scientific community and clinicians with an overview of the most recent advances of ultrasound imaging in dentistry. The use of ultrasound is described and discussed in the fields of dental scanning, caries detection, dental fractures, soft tissue and periapical lesions, maxillofacial fractures, periodontal bony defects, gingival and muscle thickness, temporomandibular disorders, and implant dentistry. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Diagnostic performance and useful findings of ultrasound re-evaluation for patients with equivocal CT features of acute appendicitis.

    PubMed

    Kim, Mi Sung; Kwon, Heon-Ju; Kang, Kyung A; Do, In-Gu; Park, Hee-Jin; Kim, Eun Young; Hong, Hyun Pyo; Choi, Yoon Jung; Kim, Young Hwan

    2018-02-01

    To evaluate the diagnostic performance of ultrasound and to determine which ultrasound findings are useful to differentiate appendicitis from non-appendicitis in patients who underwent ultrasound re-evaluation owing to equivocal CT features of acute appendicitis. 62 patients who underwent CT examinations for suspected appendicitis followed by ultrasound re-evaluation owing to equivocal CT findings were included. Equivocal CT findings were considered based on the presence of only one or two findings among the CT criteria, and ultrasound re-evaluation was done based on a predefined structured report form. The diagnostic performance of ultrasound and independent variables to discriminate appendicitis from non-appendicitis were assessed. There were 27 patients in the appendicitis group. The overall diagnostic performance of ultrasound re-evaluation was sensitivity of 96.3%, specificity of 91.2% and accuracy of 91.9%. In terms of the performance of individual ultrasound findings, probe-induced tenderness showed the highest accuracy (86.7%) with sensitivity of 74% and specificity of 97%, followed by non-compressibility (accuracy 71.7%, sensitivity 85.2% and specificity 60.6%). The independent ultrasound findings for discriminating appendicitis were non-compressibility (p = 0.002) and increased flow on the appendiceal wall (p = 0.001). Ultrasound re-evaluation can be used to improve diagnostic accuracy in cases with equivocal CT features for diagnosing appendicitis. The presence of non-compressibility and increased vascular flow on the appendix wall are useful ultrasound findings to discriminate appendicitis from non-appendicitis. Advances in knowledge: Ultrasound re-evaluation is useful to discriminate appendicitis from non-appendicitis when CT features are inconclusive.

  12. Virtual Guidance Ultrasound: A Tool to Obtain Diagnostic Ultrasound for Remote Environments

    NASA Technical Reports Server (NTRS)

    Caine,Timothy L.; Martin David S.; Matz, Timothy; Lee, Stuart M. C.; Stenger, Michael B.; Platts, Steven H.

    2012-01-01

    Astronauts currently acquire ultrasound images on the International Space Station with the assistance of real-time remote guidance from an ultrasound expert in Mission Control. Remote guidance will not be feasible when significant communication delays exist during exploration missions beyond low-Earth orbit. For example, there may be as much as a 20- minute delay in communications between the Earth and Mars. Virtual-guidance, a pre-recorded audio-visual tutorial viewed in real-time, is a viable modality for minimally trained scanners to obtain diagnostically-adequate images of clinically relevant anatomical structures in an autonomous manner. METHODS: Inexperienced ultrasound operators were recruited to perform carotid artery (n = 10) and ophthalmic (n = 9) ultrasound examinations using virtual guidance as their only instructional tool. In the carotid group, each each untrained operator acquired two-dimensional, pulsed, and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. RESULTS: Eight of the 10 carotid studies were judged to be diagnostically adequate. With one exception the quality of all the ophthalmic images were adequate to excellent. CONCLUSION: Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by untrained operators with instruction only from an audio/video tutorial viewed in real time while scanning. This form of quick-response-guidance, can be developed for other ultrasound examinations, represents an opportunity to acquire important medical and scientific information for NASA flight surgeons and researchers when trained medical personnel are not present. Further, virtual guidance will allow untrained personnel to autonomously obtain important medical information in remote locations on Earth where communication is

  13. Diagnostic value of contrast-enhanced ultrasound in thyroid nodules with calcification.

    PubMed

    Jiang, Jue; Shang, Xu; Wang, Hua; Xu, Yong-Bo; Gao, Ya; Zhou, Qi

    2015-03-01

    The aim of this study was to investigate the diagnostic values of conventional ultrasound and contrast-enhanced ultrasound (CEUS) in benign and malignant thyroid nodules with calcification. Conventional ultrasound and CEUS were performed in 122 patients with thyroid nodules with calcification. The thyroid nodules were characterized as benign or malignant by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of the two imaging methods were determined. The area under the receiver operating characteristics curve (AUC) was used to assess the diagnostic values of the two imaging methods. In 122 cases of thyroid nodules with calcification, 73 benign nodules and 49 malignant nodules were verified by pathological diagnosis. The sensitivity, specificity, positive predictive value, negative predictive value, and diagnostic accordance rate of conventional ultrasound were 50%, 77%, 59%, 69%, and 66%, respectively, and those of CEUS were 90%, 92%, 88%, 93%, and 91%, respectively. There were significant differences between the two imaging methods. AUCs of conventional ultrasound and CEUS were 0.628 ± 0.052 and 0.908 ± 0.031, suggesting low and high diagnostic values, respectively. CEUS has high diagnostic values, being significantly greater than those of conventional ultrasound, in differential diagnosis of benign and malignant thyroid nodules with calcification. Copyright © 2014. Published by Elsevier Taiwan.

  14. Ultrasound as Diagnostic Tool for Diaphragmatic Myoclonus

    PubMed Central

    Llaneza Ramos, Vesper Fe Marie; Considine, Elaine; Karp, Barbara I.; Lungu, Codrin; Alter, Katharine; Hallett, Mark

    2015-01-01

    Background Diaphragmatic myoclonus is a rare disorder of repetitive diaphragmatic contractions, acknowledged to be a spectrum that includes psychogenic features. Electromyography has been the diagnostic tool most commonly used in the literature. Methods To test if we could perform a noninvasive technique to delineate the diaphragm as the source of abnormal movements and demonstrate distractibility and entrainability, we used B-mode ultrasound in a patient with diaphragmatic myoclonus. Results Ultrasound imaging clearly delineated the diaphragm as the source of her abdominal movements. We were able to demonstrate entrainability of the diaphragm to hand tapping to a prescribed rhythm set by examiner. Conclusion We recommend the use of ultrasound as a noninvasive, convenient diagnostic tool for further studies of diaphragmatic myoclonus. We agree with previous findings that diaphragmatic myoclonus may be a functional movement disorder, as evidenced by distractibility and entrainability demonstrated on real-time video with ultrasonography. PMID:27430001

  15. Recent advances in ultrasound-triggered therapy.

    PubMed

    Yang, Chaopin; Li, Yue; Du, Meng; Chen, Zhiyi

    2018-04-27

    As a non-invasive and real-time diagnostic technique, ultrasound has provided a novel strategy for targeted treatment. With the rapid development of ultrasonic technique and ultrasound contrast agents (UCAs), spatiotemporally controllable application of ultrasound with or without UCAs makes it possible for site-specific delivery of therapeutic agents and targeted modulation with minimal side effects, which indicated a promising therapy in clinical use. This review will describe the main mechanism of targeted therapy induced by ultrasound briefly, then focus on the current application of ultrasound mediated targeted therapy in various fields including tumour, cardiovascular disease, central nervous system, skeletal muscle system diseases and stem cells therapy. In addition, ongoing challenges of ultrasound-mediated targeted therapy for further research and its clinical use are reviewed.

  16. Assessing the Risks for Modern Diagnostic Ultrasound Imaging

    NASA Astrophysics Data System (ADS)

    William, Jr.

    1998-05-01

    Some 35 years after Paul-Jacques and Pierre Curie discovered piezoelectricity, ultrasonic imaging was developed by Paul Langevin. During this work, ultrasonic energy was observed to have a detrimental biological effect. These observations were confirmed a decade later by R. W. Wood and A. L. Loomis. It was not until the early 1950s that ultrasonic exposure conditions were controlled and specified so that studies could focus on the mechanisms by which ultrasound influenced biological materials. In the late 1940s, pioneering work was initiated to image the human body by ultrasonic techniques. These engineers and physicians were aware of the deleterious ultrasound effects at sufficiently high levels; this endeavored them to keep the exposure levels reasonably low. Over the past three decades, diagnostic ultrasound has become a sophisticated technology. Yet, our understanding of the potential risks has not changed appreciably. It is very encouraging that human injury has never been attributed to clinical practice of diagnostic ultrasound.

  17. Ultrasound microscope: the new field in ultrasound diagnostics

    NASA Astrophysics Data System (ADS)

    Novyc'kyy, Victor V.; Lushchyk, Ulyana B.

    2001-06-01

    A device which is a new stage in the development of medical equipment has been developed. The device works as an ultrasound microscope in vivo and provides 4 up to 32 colored histological image. It gives possibility to estimate tissue acoustic density with the help of 4 up to 32 gradation coloring different tissues and enables tissue microcirculation visualization. With the help of the device a doctor can objectify fatty hepatitis and cirrhosis, edema of different organs and tissues as well as microcirculation in organs and tissues (e.g. muscles, myocard and bone system). New promising applications of ultrasound systems in diagnostics and for choosing individual treatment tactics, with pathogenesis being taken into account, may be developed with the help of the device.

  18. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  19. WE-A-210-00: Educational: Diagnostic Ultrasound QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This presentation will focus on the present role of ultrasound medical physics in clinical practices. The first part of the presentation will provide an overview of ultrasound QC methodologies and testing procedures. A brief review of ultrasound phantoms utilized in these testing procedures will be presented. The second part of the presentation will summarize ultrasound imaging technical standards and professional guidelines by American College of Radiology (ACR), American Institute of Ultrasound in Medicine (AIUM), American Association of Physicists in Medicine (AAPM) and International Electrotechnical Commission (IEC). The current accreditation requirements by ACR and AIUM for ultrasound practices will be describedmore » and the practical aspects of implementing QC programs to be compliant with these requirements will be discussed. Learning Objectives: Achieve familiarity with common ultrasound QC test methods and ultrasound phantoms. Understand the coverage of the existing testing standards and professional guidelines on diagnostic ultrasound imaging. Learn what a medical physicist needs to know about ultrasound program accreditation and be able to implement ultrasound QC programs accordingly.« less

  20. Advances in Diagnostic Bronchoscopy

    PubMed Central

    Haas, Andrew R.; Vachani, Anil; Sterman, Daniel H.

    2010-01-01

    Diagnostic bronchoscopy has undergone two major paradigm shifts in the last 40 years. First, the advent of flexible bronchoscopy gave chest physicians improved access to the tracheobronchial tree with a rapid learning curve and greater patient comfort compared with rigid bronchoscopy. The second paradigm shift has evolved over the last 5 years with the proliferation of new technologies that have significantly enhanced the diagnostic capabilities of flexible bronchoscopy compared with traditional methods. At the forefront of these new technologies is endobronchial ultrasound. In its various forms, endobronchial ultrasound has improved diagnostic yield for pulmonary masses, nodules, intrathoracic adenopathy, and disease extent, thereby reducing the need for more invasive surgical interventions. Various navigational bronchoscopy systems have become available to increase flexible bronchoscope access to small peripheral pulmonary lesions. Furthermore, various modalities of airway assessment, including optical microscopic imaging technologies, may play significant roles in the diagnosis of a variety of pulmonary diseases in the future. Finally, the combination of new diagnostic bronchoscopy technologies and novel approaches in molecular analysis and biomarker assessment hold promise for enhanced diagnosis and personalized management of many pulmonary disorders. In this review, we provide a contemporary review of diagnostic bronchoscopy developments over the past decade. PMID:20378726

  1. High-Accuracy Ultrasound Contrast Agent Detection Method for Diagnostic Ultrasound Imaging Systems.

    PubMed

    Ito, Koichi; Noro, Kazumasa; Yanagisawa, Yukari; Sakamoto, Maya; Mori, Shiro; Shiga, Kiyoto; Kodama, Tetsuya; Aoki, Takafumi

    2015-12-01

    An accurate method for detecting contrast agents using diagnostic ultrasound imaging systems is proposed. Contrast agents, such as microbubbles, passing through a blood vessel during ultrasound imaging are detected as blinking signals in the temporal axis, because their intensity value is constantly in motion. Ultrasound contrast agents are detected by evaluating the intensity variation of a pixel in the temporal axis. Conventional methods are based on simple subtraction of ultrasound images to detect ultrasound contrast agents. Even if the subject moves only slightly, a conventional detection method will introduce significant error. In contrast, the proposed technique employs spatiotemporal analysis of the pixel intensity variation over several frames. Experiments visualizing blood vessels in the mouse tail illustrated that the proposed method performs efficiently compared with conventional approaches. We also report that the new technique is useful for observing temporal changes in microvessel density in subiliac lymph nodes containing tumors. The results are compared with those of contrast-enhanced computed tomography. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  2. Development of a reliable simulation-based test for diagnostic abdominal ultrasound with a pass/fail standard usable for mastery learning.

    PubMed

    Østergaard, Mia L; Nielsen, Kristina R; Albrecht-Beste, Elisabeth; Konge, Lars; Nielsen, Michael B

    2018-01-01

    This study aimed to develop a test with validity evidence for abdominal diagnostic ultrasound with a pass/fail-standard to facilitate mastery learning. The simulator had 150 real-life patient abdominal scans of which 15 cases with 44 findings were selected, representing level 1 from The European Federation of Societies for Ultrasound in Medicine and Biology. Four groups of experience levels were constructed: Novices (medical students), trainees (first-year radiology residents), intermediates (third- to fourth-year radiology residents) and advanced (physicians with ultrasound fellowship). Participants were tested in a standardized setup and scored by two blinded reviewers prior to an item analysis. The item analysis excluded 14 diagnoses. Both internal consistency (Cronbach's alpha 0.96) and inter-rater reliability (0.99) were good and there were statistically significant differences (p < 0.001) between all four groups, except the intermediate and advanced groups (p = 1.0). There was a statistically significant correlation between experience and test scores (Pearson's r = 0.82, p < 0.001). The pass/fail-standard failed all novices (no false positives) and passed all advanced (no false negatives). All intermediate participants and six out of 14 trainees passed. We developed a test for diagnostic abdominal ultrasound with solid validity evidence and a pass/fail-standard without any false-positive or false-negative scores. • Ultrasound training can benefit from competency-based education based on reliable tests. • This simulation-based test can differentiate between competency levels of ultrasound examiners. • This test is suitable for competency-based education, e.g. mastery learning. • We provide a pass/fail standard without false-negative or false-positive scores.

  3. Enhanced cytotoxic effect of cisplatin using diagnostic ultrasound and microbubbles in vitro

    NASA Astrophysics Data System (ADS)

    Sasaki, Noboru; Nakamura, Kensuke; Murakami, Masahiro; Lim, Sue Yee; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2012-10-01

    Diagnostic ultrasound has accomplished drug and gene delivery by ultrasound targeted microbubble destruction (UTMD). However, the efficacy of delivery is still relatively low. Therefore, we optimized conditions of UTMD using diagnostic ultrasound and ultrasound contrast agent microbubbles. Canine thyroid adenocarcinoma cells were cultured in a 96-well plate. After addition of cisplatin and Sonazoid®, the plate was inverted to raise microbubbles near cells and incubated. Cells were exposed to diagnostic ultrasound using a linear probe operated in the contrast harmonic imaging mode. The center frequency was 2.5 MHz with a mechanical index of 1.33 and a frame rate of 48 frames/sec. Cytotoxic effect of cisplatin was evaluated 24h after exposure using trypan blue dye exclusion test. We optimized incubation duration, cisplatin concentration, and the relationship between microbubble concentration and exposure duration. The optimum enhancement was observed at incubation duration of 5min, cisplatin concentration of 1 μg/ml, and microbubble concentration of 2.4 × 105 microbubbles/ml. Exposure duration did not influence the enhancement at the microbubble concentration of 2.4 × 105 microbubbles/ml. Our results suggest that relative low concentrations of drug and microbubbles with short exposure duration might be sufficient for drug delivery by UTMD using diagnostic ultrasound.

  4. Recent technological advancements in cardiac ultrasound imaging.

    PubMed

    Dave, Jaydev K; Mc Donald, Maureen E; Mehrotra, Praveen; Kohut, Andrew R; Eisenbrey, John R; Forsberg, Flemming

    2018-03-01

    About 92.1 million Americans suffer from at least one type of cardiovascular disease. Worldwide, cardiovascular diseases are the number one cause of death (about 31% of all global deaths). Recent technological advancements in cardiac ultrasound imaging are expected to aid in the clinical diagnosis of many cardiovascular diseases. This article provides an overview of such recent technological advancements, specifically focusing on tissue Doppler imaging, strain imaging, contrast echocardiography, 3D echocardiography, point-of-care echocardiography, 3D volumetric flow assessments, and elastography. With these advancements ultrasound imaging is rapidly changing the domain of cardiac imaging. The advantages offered by ultrasound imaging include real-time imaging, imaging at patient bed-side, cost-effectiveness and ionizing-radiation-free imaging. Along with these advantages, the steps taken towards standardization of ultrasound based quantitative markers, reviewed here, will play a major role in addressing the healthcare burden associated with cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Dependence of thresholds for pulmonary capillary hemorrhage on diagnostic ultrasound frequency.

    PubMed

    Miller, Douglas L; Dou, Chunyan; Raghavendran, Krishnan

    2015-06-01

    Pulmonary ultrasound examination has become routine for diagnosis in many clinical and point-of-care medical settings. However, the phenomenon of pulmonary capillary hemorrhage (PCH) induction during diagnostic ultrasound imaging presents a poorly understood risk factor. PCH was observed in anesthetized rats exposed to 1.5-, 4.5- and 12.0-MHz diagnostic ultrasound to investigate the frequency dependence of PCH thresholds. PCH was detected in the ultrasound images as growing comet tail artifacts and was assessed using photographs of the surface of excised lungs. Previous photographs acquired after exposure to 7.6-MHz diagnostic ultrasound were included for analysis. In addition, at each frequency we measured dosimetric parameters, including peak rarefactional pressure amplitude and spatial peak, pulse average intensity attenuated by rat chest wall samples. Peak rarefactional pressure amplitude thresholds determined at each frequency, based on the proportion of PCH in groups of five rats, were 1.03 ± 0.02, 1.28 ± 0.14, 1.18 ± 0.12 and 1.36 ± 0.15 MPa at 1.5, 4.5, 7.6 and 12.0 MHz, respectively. Although the PCH lesions decreased in size with increasing ultrasonic frequency, owing to the smaller beam widths and scan lengths, the peak rarefactional pressure amplitude thresholds remained approximately constant. This dependence was different from that of the mechanical index, which indicates a need for a specific dosimetric parameter for safety guidance in pulmonary ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  6. Comparison of a pocket-size ultrasound device with a premium ultrasound machine: diagnostic value and time required in bedside ultrasound examination.

    PubMed

    Stock, Konrad Friedrich; Klein, Bettina; Steubl, Dominik; Lersch, Christian; Heemann, Uwe; Wagenpfeil, Stefan; Eyer, Florian; Clevert, Dir-Andre

    2015-10-01

    Time savings and clinical accuracy of a new miniature ultrasound device was investigated utilizing comparison with conventional high-end ultrasound instruments. Our objective was to determine appropriate usage and limitations of this diagnostic tool in internal medicine. We investigated 28 patients from the internal-medicine department. Patients were examined with the Acuson P10 portable device and a Sonoline Antares instrument in a cross-over design. All investigations were carried out at the bedside; the results were entered on a standardized report form. The time for the ultrasound examination (transfer time, setting up and disassembly, switching on and off, and complete investigation time) was recorded separately. Mean time for overall examination per patient with the portable ultrasound device was shorter (25.0 ± 4.5 min) than with the high-end machine (29.4 ± 4.4 min; p < 0.001). When measuring the size of liver, spleen, and kidneys, the values obtained differed significantly between portable device and the high-end instrument. In our study, we identified 113 pathological ultrasound findings with the high-end ultrasound machine, while 82 pathological findings (73%) were concordantly detected with the portable ultrasound device. The main diagnostic strengths of the portable device were in the detection of ascites (sensitivity 80%), diagnosis of fatty liver, and identification of severe parenchymal liver damage. The clinical utility of portable ultrasound machines is limited. There will be clinical roles for distinct clinical questions such as detection of ascites or pleural effusion when used by experienced examiners. However, sensitivity in detecting multiple pathologies is not comparable to high-end ultrasound machines.

  7. Multiparametric ultrasound in the detection of prostate cancer: a systematic review.

    PubMed

    Postema, Arnoud; Mischi, Massimo; de la Rosette, Jean; Wijkstra, Hessel

    2015-11-01

    To investigate the advances and clinical results of the different ultrasound modalities and the progress in combining them into multiparametric UltraSound (mpUS). A systematic literature search on mpUS and the different ultrasound modalities included: greyscale ultrasound, computerized transrectal ultrasound, Doppler and power Doppler techniques, dynamic contrast-enhanced ultrasound and (shear wave) elastography. Limited research available on combining ultrasound modalities has presented improvement in diagnostic performance. The data of two studies suggest that even adding a lower performing ultrasound modality to a better performing modality using crude methods can already improve the sensitivity by 13-51 %. The different modalities detect different tumours. No study has tried to combine ultrasound modalities employing a system similar to the PIRADS system used for mpMRI or more advanced classifying algorithms. Available evidence confirms that combining different ultrasound modalities significantly improves diagnostic performance.

  8. Hazards, risks and safety of diagnostic ultrasound.

    PubMed

    Duck, Francis A

    2008-12-01

    The safety of exposure to diagnostic ultrasound is evaluated using a structured approach to risk assessment, based on the acoustic output of present ultrasound scanners. Thermal hazard is described, the magnitude and probability of temperature rise is reviewed, and the severity of harm from any outcome is reviewed. Similar assessments are made separately for acoustic cavitation and gas-body effects, which have previously been considered together. Finally, radiation pressure is considered in a similar manner. In each case, means to minimize the risk are suggested where appropriate. The highest risks are associated with the use of gas-bubble contrast agents. It is concluded that there is a medium risk associated with trans-cranial Doppler use, and that this use of ultrasound deserves more detailed safety review. The risks associated with the current practice of obstetric ultrasound are low. Whilst the severity of radiation pressure as a hazard is low, it is always present. Little is known about any associated cell responses and so the associated risk cannot be evaluated.

  9. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  10. Ultrasound for Distal Forearm Fracture: A Systematic Review and Diagnostic Meta-Analysis

    PubMed Central

    Douma-den Hamer, Djoke; Blanker, Marco H.; Edens, Mireille A.; Buijteweg, Lonneke N.; Boomsma, Martijn F.; van Helden, Sven H.; Mauritz, Gert-Jan

    2016-01-01

    Study Objective To determine the diagnostic accuracy of ultrasound for detecting distal forearm fractures. Methods A systematic review and diagnostic meta-analysis was performed according to the PRISMA statement. We searched MEDLINE, Web of Science and the Cochrane Library from inception to September 2015. All prospective studies of the diagnostic accuracy of ultrasound versus radiography as the reference standard were included. We excluded studies with a retrospective design and those with evidence of verification bias. We assessed the methodological quality of the included studies with the QUADAS-2 tool. We performed a meta-analysis of studies evaluating ultrasound to calculate the pooled sensitivity and specificity with 95% confidence intervals (CI95%) using a bivariate model with random effects. Subgroup and sensitivity analysis were used to examine the effect of methodological differences and other study characteristics. Results Out of 867 publications we included 16 studies with 1,204 patients and 641 fractures. The pooled test characteristics for ultrasound were: sensitivity 97% (CI95% 93–99%), specificity 95% (CI95% 89–98%), positive likelihood ratio (LR) 20.0 (8.5–47.2) and negative LR 0.03 (0.01–0.08). The corresponding pooled diagnostic odds ratio (DOR) was 667 (142–3,133). Apparent differences were shown for method of viewing, with the 6-view method showing higher specificity, positive LR, and DOR, compared to the 4-view method. Conclusion The present meta-analysis showed that ultrasound has a high accuracy for the diagnosis of distal forearm fractures in children when used by proper viewing method. Based on this, ultrasound should be considered a reliable alternative, which has the advantages of being radiation free. PMID:27196439

  11. Focused ultrasound in ophthalmology

    PubMed Central

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007

  12. Focused ultrasound in ophthalmology.

    PubMed

    Silverman, Ronald H

    2016-01-01

    The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.

  13. Uncertainty evaluation of dead zone of diagnostic ultrasound equipment

    NASA Astrophysics Data System (ADS)

    Souza, R. M.; Alvarenga, A. V.; Braz, D. S.; Petrella, L. I.; Costa-Felix, R. P. B.

    2016-07-01

    This paper presents a model for evaluating measurement uncertainty of a feature used in the assessment of ultrasound images: dead zone. The dead zone was measured by two technicians of the INMETRO's Laboratory of Ultrasound using a phantom and following the standard IEC/TS 61390. The uncertainty model was proposed based on the Guide to the Expression of Uncertainty in Measurement. For the tested equipment, results indicate a dead zone of 1.01 mm, and based on the proposed model, the expanded uncertainty was 0.17 mm. The proposed uncertainty model contributes as a novel way for metrological evaluation of diagnostic imaging by ultrasound.

  14. Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound.

    PubMed

    Oelze, Michael L; Mamou, Jonathan

    2016-02-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation, and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years, QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient (BSC), estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter (ESD) and the effective acoustic concentration (EAC) of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on

  15. Review of quantitative ultrasound: envelope statistics and backscatter coefficient imaging and contributions to diagnostic ultrasound

    PubMed Central

    Oelze, Michael L.; Mamou, Jonathan

    2017-01-01

    Conventional medical imaging technologies, including ultrasound, have continued to improve over the years. For example, in oncology, medical imaging is characterized by high sensitivity, i.e., the ability to detect anomalous tissue features, but the ability to classify these tissue features from images often lacks specificity. As a result, a large number of biopsies of tissues with suspicious image findings are performed each year with a vast majority of these biopsies resulting in a negative finding. To improve specificity of cancer imaging, quantitative imaging techniques can play an important role. Conventional ultrasound B-mode imaging is mainly qualitative in nature. However, quantitative ultrasound (QUS) imaging can provide specific numbers related to tissue features that can increase the specificity of image findings leading to improvements in diagnostic ultrasound. QUS imaging techniques can encompass a wide variety of techniques including spectral-based parameterization, elastography, shear wave imaging, flow estimation and envelope statistics. Currently, spectral-based parameterization and envelope statistics are not available on most conventional clinical ultrasound machines. However, in recent years QUS techniques involving spectral-based parameterization and envelope statistics have demonstrated success in many applications, providing additional diagnostic capabilities. Spectral-based techniques include the estimation of the backscatter coefficient, estimation of attenuation, and estimation of scatterer properties such as the correlation length associated with an effective scatterer diameter and the effective acoustic concentration of scatterers. Envelope statistics include the estimation of the number density of scatterers and quantification of coherent to incoherent signals produced from the tissue. Challenges for clinical application include correctly accounting for attenuation effects and transmission losses and implementation of QUS on clinical

  16. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure.

    PubMed

    Miller, Douglas L

    2016-12-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas-body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustical radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiologic conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  17. Mechanisms for Induction of Pulmonary Capillary Hemorrhage by Diagnostic Ultrasound: Review and Consideration of Acoustical Radiation Surface Pressure

    PubMed Central

    Miller, Douglas L.

    2016-01-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and other mammals. This phenomenon represents the only clearly demonstrated biological effect of (non-contrast enhanced) diagnostic ultrasound and thus presents a uniquely important safety issue. However, the physical mechanism responsible for PCH remains uncertain more than 25 y after its discovery. Experimental research has indicated that neither heating nor acoustic cavitation, the predominant mechanisms for bioeffects of ultrasound, is responsible for PCH. Furthermore, proposed theoretical mechanisms based on gas body activation, on alveolar resonance and on impulsive generation of liquid droplets all appear unlikely to be responsible for PCH, owing to unrealistic model assumptions. Here, a simple model based on the acoustic radiation surface pressure (ARSP) at a tissue-air interface is hypothesized as the mechanism for PCH. The ARSP model seems to explain some features of PCH, including the approximate frequency independence of PCH thresholds, and the dependence of thresholds on biological factors. However, ARSP evaluated for experimental threshold conditions appear to be too weak to fully account for stress failure of pulmonary capillaries, gauging by known stresses for injurious physiological conditions. Furthermore, consideration of bulk properties of lung tissue suggests substantial transmission of ultrasound through the pleura, with reduced ARSP and potential involvement of additional mechanisms within the pulmonary interior. Although these recent findings advance our knowledge, only a full understanding of PCH mechanisms will allow development of science-based safety assurance for pulmonary ultrasound. PMID:27649878

  18. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space.

    PubMed

    Jones, J A; Sargsyan, A E; Barr, Y R; Melton, S; Hamilton, D R; Dulchavsky, S A; Whitson, P A

    2009-07-01

    An operationally available diagnostic imaging capability augments spaceflight medical support by facilitating the diagnosis, monitoring and treatment of medical or surgical conditions, by improving medical outcomes and, thereby, by lowering medical mission impacts and the probability of crew evacuation due to medical causes. Microgravity-related physiological changes occurring during spaceflight can affect the genitourinary system and potentially cause conditions such as urinary retention or nephrolithiasis for which ultrasonography (U/S) would be a useful diagnostic tool. This study describes the first genitourinary ultrasound examination conducted in space, and evaluates image quality, frame rate, resolution requirements, real-time remote guidance of nonphysician crew medical officers and evaluation of on-orbit tools that can augment image acquisition. A nonphysician crew medical officer (CMO) astronaut, with minimal training in U/S, performed a self-examination of the genitourinary system onboard the International Space Station, using a Philips/ATL Model HDI-5000 ultrasound imaging unit located in the International Space Station Human Research Facility. The CMO was remotely guided by voice commands from experienced, earth-based sonographers stationed in Mission Control Center in Houston. The crewmember, with guidance, was able to acquire all of the target images. Real-time and still U/S images received at Mission Control Center in Houston were of sufficient quality for the images to be diagnostic for multiple potential genitourinary applications. Microgravity-based ultrasound imaging can provide diagnostic quality images of the retroperitoneum and pelvis, offering improved diagnosis and treatment for onboard medical contingencies. Successful completion of complex sonographic examinations can be obtained even with minimally trained nonphysician ultrasound operators, with the assistance of ground-based real-time guidance.

  19. Application of light and ultrasound for medical diagnostics and treatment

    NASA Astrophysics Data System (ADS)

    Esenaliev, Rinat O.

    2002-07-01

    We develop novel optical and ultrasound techniques for medical noninvasive diagnostics and treatment. In this review, we present our results on the development of: (1) optoacoustic technique for detection of small tumors; (2) optoacoustic monitoring of blood oxygenation; (3) optoacoustic monitoring during thermotherapy; (4) optical coherence tomography for monitoring of blood glucose concentration; and (5) laser- and ultrasound-based anti- cancer drug delivery technique. Motivation, experimental methods, results obtained in vitro and in vivo with the use of these techniques are presented.

  20. Unilateral Opening of Rat Blood-Brain Barrier Assisted by Diagnostic Ultrasound Targeted Microbubbles Destruction.

    PubMed

    Xu, Yali; Cui, Hai; Zhu, Qiong; Hua, Xing; Xia, Hongmei; Tan, Kaibin; Gao, Yunhua; Zhao, Jing; Liu, Zheng

    2016-01-01

    Objective. Blood-brain barrier (BBB) is a key obstacle that prevents the medication from blood to the brain. Microbubble-enhanced cavitation by focused ultrasound can open the BBB and proves to be valuable in the brain drug delivery. The study aimed to explore the feasibility, efficacy, and safety of unilateral opening of BBB using diagnostic ultrasound targeted microbubbles destruction in rats. Methods. A transtemporal bone irradiation of diagnostic ultrasound and intravenous injection of lipid-coated microbubbles were performed at unilateral hemisphere. Pathological changes were monitored. Evans Blue extravasation grades, extraction from brain tissue, and fluorescence optical density were quantified. Lanthanum nitrate was traced by transmission electron microscopy. Results. After diagnostic ultrasound mediated microbubbles destruction, Evans Blue extravasation and fluorescence integrated optical density were significantly higher in the irradiated hemisphere than the contralateral side (all p < 0.01). Erythrocytes extravasations were demonstrated in the ultrasound-exposed hemisphere (4 ± 1, grade 2) while being invisible in the control side. Lanthanum nitrate tracers leaked through interendothelial cleft and spread to the nerve fiber existed in the irradiation side. Conclusions. Transtemporal bone irradiation under DUS mediated microbubble destruction provides us with a more accessible, safer, and higher selective BBB opening approach in rats, which is advantageous in brain targeted drugs delivery.

  1. MO-AB-210-02: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sammet, S.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  2. MO-AB-210-01: Ultrasound Imaging and Therapy-Hands On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Z.

    The goal of this ultrasound hands-on workshop is to demonstrate advancements in high intensity focused ultrasound (HIFU) and to demonstrate quality control (QC) testing in diagnostic ultrasound. HIFU is a therapeutic modality that uses ultrasound waves as carriers of energy. HIFU is used to focus a beam of ultrasound energy into a small volume at specific target locations within the body. The focused beam causes localized high temperatures and produces a well-defined regions of necrosis. This completely non-invasive technology has great potential for tumor ablation and targeted drug delivery. At the workshop, attendees will see configurations, applications, and hands-on demonstrationsmore » with on-site instructors at separate stations. The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. At the workshop, an array of ultrasound testing phantoms and ultrasound scanners will be provided for attendees to learn diagnostic ultrasound QC in a hands-on environment with live demonstrations of the techniques. Target audience: Medical physicists and other medical professionals in diagnostic imaging and radiation oncology with interest in high-intensity focused ultrasound and in diagnostic ultrasound QC. Learning Objectives: Learn ultrasound physics and safety for HIFU applications through live demonstrations Get an overview of the state-of-the art in HIFU technologies and equipment Gain familiarity with common elements of a quality control program for diagnostic ultrasound imaging Identify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools List of supporting vendors for HIFU and diagnostic ultrasound QC hands-on workshop: Philips Healthcare Alpinion Medical Systems Verasonics, Inc Zonare Medical Systems, Inc Computerized Imaging Reference Systems (CIRS), Inc. GAMMEX, Inc., Cablon Medical BV Steffen Sammet: NIH/NCI grant 5R25CA132822, NIH/NINDS grant

  3. Virtual guidance as a tool to obtain diagnostic ultrasound for spaceflight and remote environments.

    PubMed

    Martin, David S; Caine, Timothy L; Matz, Timothy; Lee, Stuart M C; Stenger, Michael B; Sargsyan, Ashot E; Platts, Steven H

    2012-10-01

    With missions planned to travel greater distances from Earth at ranges that make real-time two-way communication impractical, astronauts will be required to perform autonomous medical diagnostic procedures during future exploration missions. Virtual guidance is a form of just-in-time training developed to allow novice ultrasound operators to acquire diagnostically-adequate images of clinically relevant anatomical structures using a prerecorded audio/visual tutorial viewed in real-time. Individuals without previous experience in ultrasound were recruited to perform carotid artery (N = 10) and ophthalmic (N = 9) ultrasound examinations using virtual guidance as their only training tool. In the carotid group, each untrained operator acquired two-dimensional, pulsed and color Doppler of the carotid artery. In the ophthalmic group, operators acquired representative images of the anterior chamber of the eye, retina, optic nerve, and nerve sheath. Ultrasound image quality was evaluated by independent imaging experts. Of the studies, 8 of the 10 carotid and 17 of 18 of the ophthalmic images (2 images collected per study) were judged to be diagnostically adequate. The quality of all but one of the ophthalmic images ranged from adequate to excellent. Diagnostically-adequate carotid and ophthalmic ultrasound examinations can be obtained by previously untrained operators with assistance from only an audio/video tutorial viewed in real time while scanning. This form of just-in-time training, which can be applied to other examinations, represents an opportunity to acquire important information for NASA flight surgeons and researchers when trained medical personnel are not available or when remote guidance is impractical.

  4. Contrast-Enhanced Ultrasound as a New Investigative Tool in Diagnostic Imaging of Muscle Injuries-A Pilot Study Evaluating Conventional Ultrasound, CEUS, and Findings in MRI.

    PubMed

    Hotfiel, Thilo; Heiss, Rafael; Swoboda, Bernd; Kellermann, Marion; Gelse, Kolja; Grim, Casper; Strobel, Deike; Wildner, Dane

    2018-07-01

    To emphasize the diagnostic value of contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries with different degrees of severity by comparing findings to established imaging modalities such as conventional ultrasound and magnetic resonance imaging (MRI). Case series. Institutional study. Conventional ultrasound and CEUS were performed in the Department of Internal Medicine. Magnetic resonance imaging was carried out in the Department of Radiology within the Magnetom Avanto 1.5T and Magnetom Skyra fit 3T (Siemens Healthineers, Erlangen, Germany) and in the Institution of Imaging Diagnostics and Therapy (Magnetom Avanto 1.5T; Siemens, Erlangen, Germany). Fifteen patients who underwent an acute muscle injury were recruited. The appearance and detectable size of muscle injuries were compared between each imaging modality. The injuries were assessed by 3 independent observers and blinded between imaging modalities. All 15 injuries were identified on MRI and CEUS, whereas 10 injuries showed abnormalities in conventional ultrasound. The determination and measurement revealed significant differences between conventional ultrasound and CEUS depending on injury severity. Contrast-enhanced ultrasound revealed an impairment of microcirculation in grade I lesions (corresponding to intramuscular edema observed in MRI), which was not detectable using conventional ultrasound. Our results indicate that performing CEUS seems to be a sensitive additional diagnostic modality in the early assessment of muscle injuries. Our results highlight the advantages of CEUS in the imaging of low-grade lesions when compared with conventional ultrasound, as this was the more accurate modality for identifying intramuscular edema.

  5. Diagnostic Performance of Wells Score Combined With Point-of-care Lung and Venous Ultrasound in Suspected Pulmonary Embolism.

    PubMed

    Nazerian, Peiman; Volpicelli, Giovanni; Gigli, Chiara; Becattini, Cecilia; Sferrazza Papa, Giuseppe Francesco; Grifoni, Stefano; Vanni, Simone

    2017-03-01

    Lung and venous ultrasound are bedside diagnostic tools increasingly used in the early diagnostic approach of suspected pulmonary embolism (PE). However, the possibility of improving the conventional prediction rule for PE by integrating ultrasound has never been investigated. We performed lung and venous ultrasound in consecutive patients suspected of PE in four emergency departments. Conventional Wells score (Ws) was adjudicated by the attending physician, and ultrasound was performed by one of 20 investigators. Signs of deep venous thrombosis (DVT) at venous ultrasound and signs of pulmonary infarcts or alternative diagnoses at lung ultrasound were considered to recalculate two items of the Ws: signs and symptoms of DVT and alternative diagnosis less likely than PE. The diagnostic performances of the ultrasound-enhanced Ws (USWs) and Ws were then compared after confirmation of the final diagnosis. A total of 446 patients were studied. PE was confirmed in 125 patients (28%). USWs performed significantly better than Ws, with a sensitivity of 69.6% versus 57.6% and a specificity of 88.2% versus 68.2%. In combination with D-dimer, USWs showed an optimal failure rate (0.8%) and a significantly superior efficiency than Ws (32.3% vs. 27.2%). A strategy based on lung and venous ultrasound combined with D-dimer would allow to avoid CT pulmonary angiography in 50.5% of patients with suspected PE, compared to 27.2% when the rule without ultrasound is applied. A pretest risk stratification enhanced by ultrasound of lung and venous performs better than Ws in the early diagnostic process of PE. © 2016 by the Society for Academic Emergency Medicine.

  6. Ultrasound Metrology in Mexico: a round robin test for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Amezola Luna, R.; López Sánchez, A. L.; Elías Juárez, A. A.

    2011-02-01

    This paper presents preliminary statistical results from an on-going imaging medical ultrasound study, of particular relevance for gynecology and obstetrics areas. Its scope is twofold, firstly to compile the medical ultrasound infrastructure available in cities of Queretaro-Mexico, and second to promote the use of traceable measurement standards as a key aspect to assure quality of ultrasound examinations performed by medical specialists. The experimental methodology is based on a round robin test using an ultrasound phantom for medical imaging. The physician, using its own ultrasound machine, couplant and facilities, measures the size and depth of a set of pre-defined reflecting and absorbing targets of the reference phantom, which simulate human illnesses. Measurements performed give the medical specialist an objective feedback regarding some performance characteristics of their ultrasound examination systems, such as measurement system accuracy, dead zone, axial resolution, depth of penetration and anechoic targets detection. By the end of March 2010, 66 entities with medical ultrasound facilities, from both public and private institutions, have performed measurements. A network of medical ultrasound calibration laboratories in Mexico, with traceability to The International System of Units via national measurement standards, may indeed contribute to reduce measurement deviations and thus attain better diagnostics.

  7. Diagnostic Yield of Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration

    PubMed Central

    2011-01-01

    Background: New transbronchial needle aspiration (TBNA) technologies have been developed, but their clinical effectiveness and determinants of diagnostic yield have not been quantified. Prospective data are needed to determine risk-adjusted diagnostic yield. Methods: We prospectively enrolled patients undergoing TBNA of mediastinal lymph nodes in the American College of Chest Physicians Quality Improvement Registry, Evaluation, and Education (AQuIRE) multicenter database and recorded clinical, procedural, and provider information. All clinical decisions, including type of TBNA used (conventional vs endobronchial ultrasound-guided), were made by the attending bronchoscopist. The primary outcome was obtaining a specific diagnosis. Results: We enrolled 891 patients at six hospitals. Most procedures (95%) were performed with ultrasound guidance. A specific diagnosis was made in 447 cases. Unadjusted diagnostic yields were 37% to 54% for different hospitals, with significant between-hospital heterogeneity (P = .0001). Diagnostic yield was associated with annual hospital TBNA volume (OR, 1.003; 95% CI, 1.000-1.006; P = .037), smoking (OR, 1.55; 95% CI, 1.02-2.34; P = .042), biopsy of more than two sites (OR, 0.57; 95% CI, 0.38-0.85; P = .015), lymph node size (reference > 1-2 cm, ≤ 1 cm: OR, 0.51; 95% CI, 0.34-0.77; P = .003; > 2-3 cm: OR, 2.49; 95% CI, 1.61-3.85; P < .001; and > 3 cm: OR, 3.61; 95% CI, 2.17-6.00; P < .001), and positive PET scan (OR, 3.12; 95% CI, 1.39-7.01; P = .018). Biopsy was performed on more and smaller nodes at high-volume hospitals (P < .0001). Conclusions: To our knowledge, this is the first bronchoscopy study of risk-adjusted diagnostic yields on a hospital-level basis. High-volume hospitals were associated with high diagnostic yields. This study also demonstrates the value of procedural registries as a quality improvement tool. A larger number and variety of participating hospitals is needed to verify these results and to further

  8. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2018-05-01

    The induction of pulmonary capillary hemorrhage (PCH) is a well-established non-thermal biological effect of pulsed ultrasound in animal models. Typically, research has been done using laboratory pulsed ultrasound systems with a fixed beam and, recently, by B-mode diagnostic ultrasound. In this study, a GE Vivid 7 Dimension ultrasound machine with 10 L linear array probe was used at 6.6 MHz to explore the relative PCH efficacy of B-mode imaging, M-mode (fixed beam), color angio mode Doppler imaging and pulsed Doppler mode (fixed beam). Anesthetized rats were scanned in a warmed water bath, and thresholds were determined by scanning at different power steps, 2 dB apart, in different groups of six rats. Exposures were performed for 5 min, except for a 15-s M-mode group. Peak rarefactional pressure amplitude thresholds were 1.5 MPa for B-mode and 1.1 MPa for angio Doppler mode. For the non-scanned modes, thresholds were 1.1 MPa for M-mode and 0.6 MPa for pulsed Doppler mode with its relatively high duty cycle (7.7 × 10 -3 vs. 0.27 × 10 -3 for M-mode). Reducing the duration of M-mode to 15 s (from 300 s) did not significantly reduce PCH (area, volume or depth) for some power settings, but the threshold was increased to 1.4 MPa. Pulmonary sonographers should be aware of this unique adverse bio-effect of diagnostic ultrasound and should consider reduced on-screen mechanical index settings for potentially vulnerable patients. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.

  9. Signal processing in ultrasound. [for diagnostic medicine

    NASA Technical Reports Server (NTRS)

    Le Croissette, D. H.; Gammell, P. M.

    1978-01-01

    Signal is the term used to denote the characteristic in the time or frequency domain of the probing energy of the system. Processing of this signal in diagnostic ultrasound occurs as the signal travels through the ultrasonic and electrical sections of the apparatus. The paper discusses current signal processing methods, postreception processing, display devices, real-time imaging, and quantitative measurements in noninvasive cardiology. The possibility of using deconvolution in a single transducer system is examined, and some future developments using digital techniques are outlined.

  10. Diagnostic Ultrasound High Mechanical Index Impulses Restore Microvascular Flow in Peripheral Arterial Thromboembolism.

    PubMed

    Porter, Thomas R; Radio, Stanley; Lof, John; Everbach, Carr; Powers, Jeffry E; Vignon, Francois; Shi, William T; Xie, Feng

    2016-07-01

    We sought to explore mechanistically how intermittent high-mechanical-index (MI) diagnostic ultrasound impulses restore microvascular flow. Thrombotic microvascular obstruction was created in the rat hindlimb muscle of 36 rats. A diagnostic transducer confirmed occlusion with low-MI imaging during an intravenous microbubble infusion. This same transducer was used to intermittently apply ultrasound with an MI that produced stable or inertial cavitation (IC) for 10 min through a tissue-mimicking phantom. A nitric oxide inhibitor, L-Nω-nitroarginine methyl ester (L-NAME), was pre-administered to six rats. Plateau microvascular contrast intensity quantified skeletal microvascular blood volume, and postmortem staining was used to detect perivascular hemorrhage. Intermittent IC impulses produced the greatest recovery of microvascular blood volume (p < 0.0001, analysis of variance). Nitric oxide inhibition did not affect the skeletal microvascular blood volume improvement, but did result in more perivascular hemorrhage. IC inducing pulses from a diagnostic transducer can reverse microvascular obstruction after acute arterial thromboembolism. Nitric oxide may prevent unwanted bio-effects of these IC pulses. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. Non-invasive estimation of temperature using diagnostic ultrasound during HIFU therapy

    NASA Astrophysics Data System (ADS)

    Georg, O.; Wilkens, V.

    2017-03-01

    The use of HIFU for thermal ablation of human tissues requires safe real-time monitoring of the lesion formation during the treatment to avoid damage of the surrounding healthy tissues and to control temperature rise. Besides MR imaging, several methods have been proposed for temperature imaging using diagnostic ultrasound, and echoshift estimation (using speckle tracking) is the most promising and commonly used technique. It is based on the thermal dependence of the ultrasound echo that accounts for two different physical phenomena: local change in speed of sound and thermal expansion of the propagating medium due to changes in temperature. In our experiments we have used two separate transducers: HIFU exposure was performed using a 1.06 MHz single element focusing transducer of 64 mm aperture and 63.2 mm focal length; the ultrasound diagnostic probe of 11 MHz operated in B-mode for image guidance. The temperature measurements were performed in an agar-based tissue-mimicking phantom. To verify the obtained results, numerical modeling of the acoustic and temperature fields was carried out using KZK and Pennes Bioheat equations, as well as measurements with thermocouples were performed.

  12. The diagnostic validity of musculoskeletal ultrasound in lateral epicondylalgia: a systematic review.

    PubMed

    Dones, Valentin C; Grimmer, Karen; Thoirs, Kerry; Suarez, Consuelo G; Luker, Julie

    2014-03-03

    Ultrasound is considered a reliable, widely available, non-invasive and inexpensive imaging technique for assessing soft tissue involvement in Lateral epicondylalgia. Despite the number of diagnostic studies for Lateral Epicondylalgia, there is no consensus in the current literature on the best abnormal ultrasound findings that confirm lateral epicondylalgia. Eligible studies identified by searching electronic databases, scanning reference lists of articles and chapters on ultrasound in reference books, and consultation of experts in sonography. Three reviewers (VCDIII, KP, KW) independently searched the databases using the agreed search strategy, and independently conducted all stages of article selection. Two reviewers (VCDIII, KP) then screened titles and abstracts to remove obvious irrelevance. Potentially relevant full text publications which met the inclusion criteria were reviewed by the primary investigator (VCDIII) and another reviewer (CGS). Among the 15 included diagnostic studies in this review, seven were Level II diagnostic accuracy studies for chronic lateral epicondylalgia based on the National Health and Medical Research Council Hierarchy of Evidence. Based from the pooled sensitivity of abnormal ultrasound findings with homogenous results (p > 0.05), the hypoechogenicity of the common extensor origin has the best combination of diagnostic sensitivity and specificity. It is moderately sensitive [Sensitivity: 0.64 (0.56-0.72)] and highly specific [Specificity: 0.82 (0.72-0.90)] in determining elbows with lateral epicondylalgia. Additionally, bone changes on the lateral epicondyle [Sensitivity: 0.56 (0.50-0.62)] were moderately sensitive to chronic LE. Conversely, neovascularity [Specificity: 1.00 (0.97-1.00)], calcifications [Specificity: 0.97 (0.94-0.99)] and cortical irregularities [Specificity: 0.96 (0.88-0.99)] have strong specificity for chronic lateral epicondylalgia. There is insufficient evidence supporting the use of Power Doppler

  13. Diagnostic Imaging of the Hepatobiliary System: An Update.

    PubMed

    Marolf, Angela J

    2017-05-01

    Recent advances in diagnostic imaging of the hepatobiliary system include MRI, computed tomography (CT), contrast-enhanced ultrasound, and ultrasound elastography. With the advent of multislice CT scanners, sedated examinations in veterinary patients are feasible, increasing the utility of this imaging modality. CT and MRI provide additional information for dogs and cats with hepatobiliary diseases due to lack of superimposition of structures, operator dependence, and through intravenous contrast administration. Advanced ultrasound methods can offer complementary information to standard ultrasound imaging. These newer imaging modalities assist clinicians by aiding diagnosis, prognostication, and surgical planning. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Ultrasound diagnostic of mesonephric paraovarian cyst - case report

    PubMed Central

    Bohîlțea, RE; Cîrstoiu, MM; Turcan, N; Ionescu, CA

    2016-01-01

    Paraovarian cysts are a rare pathology, constituting 10-20% of the adnexal masses. The origin can be represented by paramesonephric ducts (Hydatid cysts of Morgagni), vestiges of mesonephric ducts also represented by mesothelium, or neoplastic (cystadenomas or cystadenofibromas) that are mostly benign. Borderline or malignant paraovarian tumors are encountered less often. This article presents a case of paraovarian cyst in a 37-year-old patient, with a history of 2 pregnancies, completed by cesarean. The patient sought medical attention for an asymptomatic voluminous ovarian cyst, detected in a routine ultrasound scan. Laboratory tests and tumor markers were within normal limits. Transvaginal ultrasound and color Doppler revealed a cystic adnexal mass with 10 cm transonic, smooth, homogeneous content, avascular walls with no internal papillary projections, with a “hyperechoic line” sign of delimitation from the ovarian capsule, mostly visible when the adnexa was mobilized. The diagnostic and curative laparoscopic surgery was successful, followed by a quick recovery. The histopathological exam confirmed the benignity and the origin of the paraovarian cyst. The case was discussed in the context of the literature review concerning this pathology, drawing attention to the real possibility of differentiating ovarian from paraovarian cysts by ultrasound. PMID:27974934

  15. Comparison of Thermal Safety Practice Guidelines for Diagnostic Ultrasound Exposures.

    PubMed

    Harris, Gerald R; Church, Charles C; Dalecki, Diane; Ziskin, Marvin C; Bagley, Jennifer E

    2016-02-01

    This article examines the historical evolution of various practice guidelines designed to minimize the possibility of thermal injury during a diagnostic ultrasound examination, including those published by the American Institute of Ultrasound in Medicine, British Medical Ultrasound Society and Health Canada. The guidelines for prenatal/neonatal examinations are in general agreement, but significant differences were found for postnatal exposures. We propose sets of thermal index versus exposure time for these examination categories below which there is reasonable assurance that an examination can be conducted without risk of producing an adverse thermal effect under any scanning conditions. If it is necessary to exceed these guidelines, the occurrence of an adverse thermal event is still unlikely in most situations because of mitigating factors such as transducer movement and perfusion, but the general principle of "as low as reasonably achievable" should be followed. Some limitations of the biological effects studies underpinning the guidelines also are discussed briefly. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Principles of Billing for Diagnostic Ultrasound in the Office and Operating Room.

    PubMed

    Grasu, Beatrice L; Wolock, Bruce S; Sedgley, Matthew D; Murphy, Michael S

    2018-05-08

    Ultrasound is becoming more prevalent as physicians gain comfort in its diagnostic and therapeutic uses. It allows for both static and dynamic evaluation of conditions and assists in therapeutic injections of joints and tendons. Proper technique is necessary for successful use of this modality. Appropriate coding for physician reimbursement is required. We discuss common wrist and hand pathology for which ultrasound may be useful as an adjunct to diagnosis and treatment and provide an overview of technique and reimbursement codes when using ultrasound in a variety of situations. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  17. The Role of Ultrasound on Advanced Oxidation Processes.

    PubMed

    Babu, Sundaram Ganesh; Ashokkumar, Muthupandian; Neppolian, Bernaurdshaw

    2016-10-01

    This chapter describes the use of ultrasound in remediation of wastewater contaminated with organic pollutants in the absence and presence of other advanced oxidation processes (AOPs) such as sonolysis, sono-ozone process, sonophotocatalysis, sonoFenton systems and sonophoto-Fenton methods in detail. All these methods are explained with the suitable literature illustrations. In most of the cases, hybrid AOPs (combination of ultrasound with one or more AOPs) resulted in superior efficacy to that of individual AOP. The advantageous effects such as additive and synergistic effects obtained by operating the hybrid AOPs are highlighted with appropriate examples. It is worth to mention here that the utilization of ultrasound is not only restricted in preparation of modern active catalysts but also extensively used for the wastewater treatment. Interestingly, ultrasound coupled AOPs are operationally simple, efficient, and environmentally benign, and can be readily applied for large scale industrial processes which make them economically viable.

  18. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice

    PubMed Central

    Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-01

    Objective To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. Results The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. Conclusions These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. Methods The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption. PMID:29435150

  19. Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice.

    PubMed

    Zhao, Bingxia; Chen, Yihan; Liu, Jinfeng; Zhang, Li; Wang, Jing; Yang, Yali; Lv, Qing; Xie, Mingxing

    2018-01-12

    To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disruption associated with minimal tissue damage was achieved by an appropriate MB dose and ultrasound exposure parameters with diagnostic ultrasound. Decreased expression of ZO-1, occludin and claudin-5 were correlated with disruption of the BBB, as confirmed by paracellular passage of the tracer lanthanum nitrate into the brain parenchyma after BBB disruption. These findings indicated that this technique is a promising tool for promoting brain delivery of diagnostic and therapeutic agents in the diagnosis and treatment of brain diseases. The extent of BBB disruption was qualitatively assessed by Evans blue (EB) staining and quantitatively analyzed by an EB extravasation measurement. A histological examination was performed to evaluate tissue damage. Expression of tight junction (TJ) related proteins ZO-1, occludin and claudin-5 was determined by western blotting analysis and immunohistofluorescence. Transmission electron microscopy was performed to observe ultrastructure changes of TJs after BBB disruption.

  20. Anterolateral ankle impingement: findings and diagnostic accuracy with ultrasound imaging.

    PubMed

    McCarthy, C L; Wilson, D J; Coltman, T P

    2008-03-01

    The objective was to evaluate the findings and diagnostic accuracy of ultrasound in antero-lateral ankle impingement (ALI) with clinical and arthroscopic correlation. Seventeen elite footballers with chronic ankle pain were referred for ultrasound with a clinical diagnosis of ALI (n = 8) or a control condition (n = 9; lateral mechanical instability, osteochondral defect, intra-articular bodies and osteoarthritis). Ultrasound examination included the antero-lateral gutter for abnormal synovial tissue (synovitic lesion), lateral ligament integrity, tibiotalar joint and osseous spurs of the distal tibia and talus. Ultrasound findings were correlated with subsequent arthroscopic appearance. Ultrasound examination detected a synovitic mass in the antero-lateral gutter in all 8 footballers with clinical ALI (100%) and in 2 patients with a control diagnosis (22%). Arthroscopic correlation of antero-lateral synovitis and fibrosis was present in all 10 cases (100%). The synovitic lesion was seen at ultrasound as a nodular soft tissue mass of mixed echogenicity within the antero-lateral gutter, which extruded anteriorly with manual compression of the distal fibula against the tibia. Increased blood supply was detected using power Doppler imaging in only 1 patient. The synovitic lesion measured >10 mm in its maximum dimension in 7 footballers with clinical ALI and <10 mm in the control group. Additional ultrasound findings in patients with abnormal antero-lateral synovial tissue included an anterior talofibular ligament injury in all patients (n = 10), a tibiotalar joint effusion (n = 6) and osseous spurs (n = 4). Antero-lateral synovitic tissue was accurately identified at ultrasound in the absence of an effusion (n = 4). No synovitic lesion was detected at ultrasound or arthroscopy in the remaining 7 patients with a control diagnosis. Ultrasound is accurate in detecting synovitic lesions within the antero-lateral gutter, demonstrating associated ligamentous injuries and in

  1. Endoscopic ultrasound for the characterization and staging of rectal cancer. Current state of the method. Technological advances and perspectives.

    PubMed

    Gersak, Mariana M; Badea, Radu; Graur, Florin; Hajja, Nadim Al; Furcea, Luminita; Dudea, Sorin M

    2015-06-01

    Endoscopic ultrasound is the most accurate type of examination for the assessment of rectal tumors. Over the years, the method has advanced from gray-scale examination to intravenous contrast media administration and to different types of elastography. The multimodal approach of tumors (transrectal, transvaginal) is adapted to each case. 3D ultrasound is useful for spatial representation and precise measurement of tumor formations, using CT/MR image reconstruction; color elastography is useful for tumor characterization and staging; endoscopic ultrasound using intravenous contrast agents can help study the amount of contrast agent targeted at the level of the tumor formations and contrast wash-in/wash-out time, based on the curves displayed on the device. The transvaginal approach often allows better visualization of the tumor than the transrectal approach. Performing the procedure with the rectal ampulla distended with contrast agent may be seen as an optimization of the examination methodology. All these aspects are additional methods for gray-scale endoscopic ultrasound, capable of increasing diagnostic accuracy. This paper aims at reviewing the progress of transrectal and transvaginal ultrasound, generically called endoscopic ultrasound, for rectal tumor diagnosis and staging, with emphasis on the current state of the method and its development trends.

  2. Comparison of Diagnostic Performance of Semi-Quantitative Knee Ultrasound and Knee Radiography with MRI: Oulu Knee Osteoarthritis Study.

    PubMed

    Podlipská, Jana; Guermazi, Ali; Lehenkari, Petri; Niinimäki, Jaakko; Roemer, Frank W; Arokoski, Jari P; Kaukinen, Päivi; Liukkonen, Esa; Lammentausta, Eveliina; Nieminen, Miika T; Tervonen, Osmo; Koski, Juhani M; Saarakkala, Simo

    2016-03-01

    Osteoarthritis (OA) is a common degenerative musculoskeletal disease highly prevalent in aging societies worldwide. Traditionally, knee OA is diagnosed using conventional radiography. However, structural changes of articular cartilage or menisci cannot be directly evaluated using this method. On the other hand, ultrasound is a promising tool able to provide direct information on soft tissue degeneration. The aim of our study was to systematically determine the site-specific diagnostic performance of semi-quantitative ultrasound grading of knee femoral articular cartilage, osteophytes and meniscal extrusion, and of radiographic assessment of joint space narrowing and osteophytes, using MRI as a reference standard. Eighty asymptomatic and 79 symptomatic subjects with mean age of 57.7 years were included in the study. Ultrasound performed best in the assessment of femoral medial and lateral osteophytes, and medial meniscal extrusion. In comparison to radiography, ultrasound performed better or at least equally well in identification of tibio-femoral osteophytes, medial meniscal extrusion and medial femoral cartilage morphological degeneration. Ultrasound provides relevant additional diagnostic information on tissue-specific morphological changes not depicted by conventional radiography. Consequently, the use of ultrasound as a complementary imaging tool along with radiography may enable more accurate and cost-effective diagnostics of knee osteoarthritis at the primary healthcare level.

  3. Recent advances in the imaging of hepatocellular carcinoma. From ultrasound to positron emission tomography scan.

    PubMed

    Camaggi, Valeria; Piscaglia, Fabio; Bolondi, Luigi

    2007-07-01

    Recent advances in imaging techniques for hepatocellular carcinoma (HCC) offer the possibility of investigating contrast perfusion of liver nodules in cirrhosis. It is now accepted that a non-invasive diagnosis of HCC can be established based on the vascular pattern obtained with pure blood pool contrast agents. The diagnostic pattern consists of contrast enhancement in the arterial phase, indicative of arterial hypervascularization, followed by contrast wash out in the portal and late phases, which leads the nodule to show the same, or, more specifically, a lower contrast signal than the surrounding parenchyma. Such patterns can be obtained by CT, MRI and, more recently, by real time Contrast Enhanced Ultrasonography with second-generation ultrasound contrast agents. A typical vascular pattern in a nodule perceptible also without contrast is highly specific for HCC, so that non-invasive diagnostic algorithms have been developed and recently updated.

  4. Effect of Watermarking on Diagnostic Preservation of Atherosclerotic Ultrasound Video in Stroke Telemedicine.

    PubMed

    Dey, Nilanjan; Bose, Soumyo; Das, Achintya; Chaudhuri, Sheli Sinha; Saba, Luca; Shafique, Shoaib; Nicolaides, Andrew; Suri, Jasjit S

    2016-04-01

    Embedding of diagnostic and health care information requires secure encryption and watermarking. This research paper presents a comprehensive study for the behavior of some well established watermarking algorithms in frequency domain for the preservation of stroke-based diagnostic parameters. Two different sets of watermarking algorithms namely: two correlation-based (binary logo hiding) and two singular value decomposition (SVD)-based (gray logo hiding) watermarking algorithms are used for embedding ownership logo. The diagnostic parameters in atherosclerotic plaque ultrasound video are namely: (a) bulb identification and recognition which consists of identifying the bulb edge points in far and near carotid walls; (b) carotid bulb diameter; and (c) carotid lumen thickness all along the carotid artery. The tested data set consists of carotid atherosclerotic movies taken under IRB protocol from University of Indiana Hospital, USA-AtheroPoint™ (Roseville, CA, USA) joint pilot study. ROC (receiver operating characteristic) analysis was performed on the bulb detection process that showed an accuracy and sensitivity of 100 % each, respectively. The diagnostic preservation (DPsystem) for SVD-based approach was above 99 % with PSNR (Peak signal-to-noise ratio) above 41, ensuring the retention of diagnostic parameter devalorization as an effect of watermarking. Thus, the fully automated proposed system proved to be an efficient method for watermarking the atherosclerotic ultrasound video for stroke application.

  5. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography

    PubMed Central

    Liu, Mei-Juan; Men, Yan-Ming; Zhang, Yong-Lin; Zhang, Yu-Xi; Liu, Hao

    2017-01-01

    We aimed to evaluate the diagnostic values of conventional ultrasound (US), ultrasound contrast (UC) and ultrasound elastography (UE) in distinguishing the benign and malignant thyroid nodules. A total of 100 patients with thyroid nodules receiving operative treatment were selected; they underwent the conventional US, UE and UC examinations before operation, respectively. The nodules received pathological examination after operation to distinguish benign from malignant lesions. The sensitivity, specificity and diagnostic accordance rate of each diagnostic method was evaluated by receiver operating characteristic (ROC) curve, and the area under the curve (AUC) of ROC was calculated. The manifestations of malignant thyroid nodules in conventional US examination were mostly the hypoecho, heterogeneous echo, irregular shape, unclear boundary, aspect ratio <1, microcalcification and irregular peripheral echo halo, and there were statistically significant differences compared with the benign nodules (P<0.05). UE showed that the differences between benign and malignant nodules in 2, 3 and 4 points were statistically significant (P<0.05). The manifestations of malignant nodules in UC were mostly the irregular shape, obscure boundary, no obvious enhancement, heterogeneous enhancement and visible perfusion defects, and there were statistically significant differences compared with the benign nodules (P<0.05). ROC curve showed that both sensitivity and specificity of UE and UC were superior to those of conventional US. AUC was the largest (AUC = 0.908) and the diagnostic value was the highest in the conventional US combined with UE and UC. Conventional US combined with elastography and UC can significantly improve the sensitivity, specificity and accuracy of diagnosis of benign and malignant thyroid nodules. PMID:28693244

  6. Improvement of diagnostic efficiency in distinguishing the benign and malignant thyroid nodules via conventional ultrasound combined with ultrasound contrast and elastography.

    PubMed

    Liu, Mei-Juan; Men, Yan-Ming; Zhang, Yong-Lin; Zhang, Yu-Xi; Liu, Hao

    2017-07-01

    We aimed to evaluate the diagnostic values of conventional ultrasound (US), ultrasound contrast (UC) and ultrasound elastography (UE) in distinguishing the benign and malignant thyroid nodules. A total of 100 patients with thyroid nodules receiving operative treatment were selected; they underwent the conventional US, UE and UC examinations before operation, respectively. The nodules received pathological examination after operation to distinguish benign from malignant lesions. The sensitivity, specificity and diagnostic accordance rate of each diagnostic method was evaluated by receiver operating characteristic (ROC) curve, and the area under the curve (AUC) of ROC was calculated. The manifestations of malignant thyroid nodules in conventional US examination were mostly the hypoecho, heterogeneous echo, irregular shape, unclear boundary, aspect ratio <1, microcalcification and irregular peripheral echo halo, and there were statistically significant differences compared with the benign nodules (P<0.05). UE showed that the differences between benign and malignant nodules in 2, 3 and 4 points were statistically significant (P<0.05). The manifestations of malignant nodules in UC were mostly the irregular shape, obscure boundary, no obvious enhancement, heterogeneous enhancement and visible perfusion defects, and there were statistically significant differences compared with the benign nodules (P<0.05). ROC curve showed that both sensitivity and specificity of UE and UC were superior to those of conventional US. AUC was the largest (AUC = 0.908) and the diagnostic value was the highest in the conventional US combined with UE and UC. Conventional US combined with elastography and UC can significantly improve the sensitivity, specificity and accuracy of diagnosis of benign and malignant thyroid nodules.

  7. Discussion of the quality control and performance testing of ultrasound diagnostic equipment

    NASA Astrophysics Data System (ADS)

    Jiang, Junjie

    2018-03-01

    In recent years, with the rapid development of ultrasonography, the application and popularization of new technology used in ultrasound equipment, the level of providing diagnostic information for doctors enhances unceasingly, which has become the indispensable diagnostic tool for medical institutions. The performance of equipment is directly related to the doctor’s diagnosis and the patient’s health, therefore, it is very important to choose a good method for quality control and performance testing.

  8. The Use of Enteric Contrast Media for Diagnostic CT, MRI, and Ultrasound in Infants and Children: A Practical Approach.

    PubMed

    Callahan, Michael J; Talmadge, Jennifer M; MacDougall, Robert; Buonomo, Carlo; Taylor, George A

    2016-05-01

    Enteric contrast media are commonly administered for diagnostic cross-sectional imaging studies in the pediatric population. The purpose of this manuscript is to review the use of enteric contrast media for CT, MRI, and ultrasound in infants, children, and adolescents and to share our experiences at a large tertiary care pediatric teaching hospital. The use of enteric contrast material for diagnostic imaging in infants and children continues to evolve with advances in imaging technology and available enteric contrast media. Many principles of enteric contrast use in pediatric imaging are similar to those in adult imaging, but important differences must be kept in mind when imaging the gastrointestinal tract in infants and children, and practical ways to optimize the imaging examination and the patient experience should be employed where possible.

  9. Advanced ultrasound applications in the assessment of renal transplants: contrast-enhanced ultrasound, elastography, and B-flow.

    PubMed

    Morgan, Tara A; Jha, Priyanka; Poder, Liina; Weinstein, Stefanie

    2018-04-09

    Ultrasound is routinely used as the first imaging exam for evaluation of renal transplants and can identify most major surgical complications and evaluate vascularity with color Doppler. Ultrasound is limited, however, in the detection of parenchymal disease processes and Doppler evaluation is also prone to technical errors. Multiple new ultrasound applications have been developed and are under ongoing investigation which could add additional diagnostic capability to the routine ultrasound exam with minimal additional time, cost, and patient risk. Contrast-enhanced ultrasound (CEUS) can be used off-label in the transplant kidney, and can assist in detection of infection, trauma, and vascular complications. CEUS also can demonstrate perfusion of the transplant assessed quantitatively with generation of time-intensity curves. Future directions of CEUS include monitoring treatment response and microbubble targeted medication delivery. Elastography is an ultrasound application that can detect changes in tissue elasticity, which is useful to diagnose diffuse parenchymal disease, such as fibrosis, otherwise unrecognizable with ultrasound. Elastography has been successfully applied in other organs including the liver, thyroid, and breast; however, it is still under development for use in the transplant kidney. Unique properties of the transplant kidney including its heterogeneity, anatomic location, and other technical factors present challenges in the development of reference standard measurements. Lastly, B-flow imaging is a flow application derived from B-mode. This application can show the true lumen size of a vessel which is useful to depict vascular anatomy and bypasses some of the pitfalls of color Doppler such as demonstration of slow flow.

  10. Diagnostic ultrasound imaging for lateral epicondylalgia: a case-control study.

    PubMed

    Heales, Luke James; Broadhurst, Nathan; Mellor, Rebecca; Hodges, Paul William; Vicenzino, Bill

    2014-11-01

    Lateral epicondylalgia (LE) is clinically diagnosed as pain over the lateral elbow that is provoked by gripping. Usually, LE responds well to conservative intervention; however, those who fail such treatment require further evaluation, including musculoskeletal ultrasound. Previous studies of musculoskeletal ultrasound have methodological flaws, such as lack of assessor blinding and failure to control for participant age, sex, and arm dominance. The purpose of this study was to assess the diagnostic use of blinded ultrasound imaging in people with clinically diagnosed LE compared with that in a control group matched for age, sex, and arm dominance. Participants (30 with LE and 30 controls) underwent clinical examination as the criterion standard test. Unilateral LE was defined as pain over the lateral epicondyle, which was provoked by palpation, resisted wrist and finger extension, and gripping. Controls without symptoms were matched for age, sex, and arm dominance. Ultrasound investigations were performed by two sonographers using a standardized protocol. Grayscale images were assessed for signs of tendon pathology and rated on a four-point ordinal scale. Power Doppler was used to assess neovascularity and rated on a five-point ordinal scale. The combination of grayscale and power Doppler imaging revealed an overall sensitivity of 90% and specificity of 47%. The positive and negative likelihood ratios for combined grayscale and power Doppler imaging were 1.69 and 0.21, respectively. Although ultrasound imaging helps confirm the absence of LE, when findings are negative for tendinopathic changes, the high prevalence of tendinopathic changes in pain-free controls challenges the specificity of the measure. The validity of ultrasound imaging to confirm tendon pathology in clinically diagnosed LE requires further study with strong methodology.

  11. Source Book of Educational Materials for Diagnostic Medical Ultrasound. Radiological Health Series.

    ERIC Educational Resources Information Center

    Pijar, Mary Lou, Comp; And Others

    This report is a compilation of educational materials that are available in the field of diagnostic medical ultrasound. Materials, which include publications, audiovisual aids, and teaching aids, are listed under the following categories: abdominal imaging; anatomy and physiology; anatomy and embryology; bioeffects; cardiology and vasculature;…

  12. Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index.

    PubMed

    Retz, K; Kotopoulis, S; Kiserud, T; Matre, K; Eide, G E; Sande, R

    2017-08-01

    To investigate if the thermal index for bone (TIB) displayed on screen is an adequate predictor for the derated spatial-peak temporal-average (I SPTA .3 ) and spatial-peak pulse-average (I SPPA .3 ) acoustic intensities in a selection of clinical diagnostic ultrasound machines and transducers. We calibrated five clinical diagnostic ultrasound scanners and 10 transducers, using two-dimensional grayscale, color Doppler and pulsed-wave Doppler, both close to and far from the transducer, with a TIB between 0.1 and 4.0, recording 103 unique measurements. Acoustic measurements were performed in a bespoke three-axis computer-controlled scanning tank, using a 200-μm-diameter calibrated needle hydrophone. There was significant but poor correlation between the acoustic intensities and the on-screen TIB. At a TIB of 0.1, the I SPTA .3 range was 0.51-50.49 mW/cm 2 and the I SPPA .3 range was 0.01-207.29 W/cm 2 . At a TIB of 1.1, the I SPTA .3 range was 19.02-309.44 mW/cm 2 and the I SPPA .3 range was 3.87-51.89 W/cm 2 . TIB is a poor predictor for I SPTA .3 and I SPPA .3 and for the potential bioeffects of clinical diagnostic ultrasound scanners. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  13. Diagnostic ultrasound and telemedicine utilization in the international space station

    NASA Astrophysics Data System (ADS)

    Carter, Stephen J.; Stewart, Brent K.; Kushmerick, Martin J.; Langer, Steve G.; Schmiedl, Udo P.; Winter, Thomas C.; Conley, Kevin E.; Jubrias, Sharon A.

    1999-01-01

    Clinical diagnostic ultrasound (US) is experiencing an expanding role that is well suited to application on the International Space Station (ISS). Diagnostic US can be used to reduce the risks associated with long duration human space flight by providing a non-invasive tool with head-to-toe diagnostic capability in both biomedical research and crew health care. General health care of the astronauts will be diagnosed with US, e.g., kidney stones, gall bladder disease, appendicitis, etc. Initial studies will focus on detection of ``ureteral jets'' in the bladder. This is a non-invasive test to rule out obstructive uropathy from kidney stones with minimal requirements for crew training. Biomedical research experiments, focusing on the effects of the microgravity environment, will be performed using both the HHU and the HDI 5000. US will be used to evaluate bone density and muscle mass in this environment. Prolonged or emergency EVAs may occur with the ISS. The hand-held ultrasound unit (HHU) and its telemedicine capability will be used in EVA settings to monitor events such as decompression sickness (DCS) microbubble formation in the cardiovascular system. There will be telemetry links between the HHU and the ATL/Lockheed Martin rack mounted HDI 5000 in the ISS Human Research Facility (HRF), as well as between the HRF and medical expertise on the ground. These links will provide the ISS with both real-time and store-and-forward telemedicine capabilities. The HHU can also be used with the existing telemedicine instrument pack (TIP).

  14. Evaluating the risk of appendiceal perforation when using ultrasound as the initial diagnostic imaging modality in children with suspected appendicitis.

    PubMed

    Alerhand, Stephen; Meltzer, James; Tay, Ee Tein

    2017-08-01

    Ultrasound scan has gained attention for diagnosing appendicitis due to its avoidance of ionizing radiation. However, studies show that ultrasound scan carries inferior sensitivity to computed tomography scan. A non-diagnostic ultrasound scan could increase the time to diagnosis and appendicectomy, particularly if follow-up computed tomography scan is needed. Some studies suggest that delaying appendicectomy increases the risk of perforation. To investigate the risk of appendiceal perforation when using ultrasound scan as the initial diagnostic imaging modality in children with suspected appendicitis. We retrospectively reviewed 1411 charts of children ≤17 years old diagnosed with appendicitis at two urban academic medical centers. Patients who underwent ultrasound scan first were compared to those who underwent computed tomography scan first. In the sub-group analysis, patients who only received ultrasound scan were compared to those who received initial ultrasound scan followed by computed tomography scan. Main outcome measures were appendiceal perforation rate and time from triage to appendicectomy. In 720 children eligible for analysis, there was no significant difference in perforation rate between those who had initial ultrasound scan and those who had initial computed tomography scan (7.3% vs. 8.9%, p = 0.44), nor in those who had ultrasound scan only and those who had initial ultrasound scan followed by computed tomography scan (8.0% vs. 5.6%, p = 0.42). Those patients who had ultrasound scan first had a shorter triage-to-incision time than those who had computed tomography scan first (9.2 (IQR: 5.9, 14.0) vs. 10.2 (IQR: 7.3, 14.3) hours, p = 0.03), whereas those who had ultrasound scan followed by computed tomography scan took longer than those who had ultrasound scan only (7.8 (IQR: 5.3, 11.6) vs. 15.1 (IQR: 10.6, 20.6), p < 0.001). Children < 12 years old receiving ultrasound scan first had lower perforation rate (p = 0.01) and

  15. Lung ultrasound as a diagnostic tool for radiographically-confirmed pneumonia in low resource settings.

    PubMed

    Ellington, Laura E; Gilman, Robert H; Chavez, Miguel A; Pervaiz, Farhan; Marin-Concha, Julio; Compen-Chang, Patricia; Riedel, Stefan; Rodriguez, Shalim J; Gaydos, Charlotte; Hardick, Justin; Tielsch, James M; Steinhoff, Mark; Benson, Jane; May, Evelyn A; Figueroa-Quintanilla, Dante; Checkley, William

    2017-07-01

    Pneumonia is a leading cause of morbidity and mortality in children worldwide; however, its diagnosis can be challenging, especially in settings where skilled clinicians or standard imaging are unavailable. We sought to determine the diagnostic accuracy of lung ultrasound when compared to radiographically-confirmed clinical pediatric pneumonia. Between January 2012 and September 2013, we consecutively enrolled children aged 2-59 months with primary respiratory complaints at the outpatient clinics, emergency department, and inpatient wards of the Instituto Nacional de Salud del Niño in Lima, Peru. All participants underwent clinical evaluation by a pediatrician and lung ultrasonography by one of three general practitioners. We also consecutively enrolled children without respiratory symptoms. Children with respiratory symptoms had a chest radiograph. We obtained ancillary laboratory testing in a subset. Final clinical diagnoses included 453 children with pneumonia, 133 with asthma, 103 with bronchiolitis, and 143 with upper respiratory infections. In total, CXR confirmed the diagnosis in 191 (42%) of 453 children with clinical pneumonia. A consolidation on lung ultrasound, which is our primary endpoint for pneumonia, had a sensitivity of 88.5%, specificity of 100%, and an area under-the-curve of 0.94 (95% CI 0.92-0.97) when compared to radiographically-confirmed clinical pneumonia. When any abnormality on lung ultrasound was compared to radiographically-confirmed clinical pneumonia the sensitivity increased to 92.2% and the specificity decreased to 95.2%, with an area under-the-curve of 0.94 (95% CI 0.91-0.96). Lung ultrasound had high diagnostic accuracy for the diagnosis of radiographically-confirmed pneumonia. Added benefits of lung ultrasound include rapid testing and high inter-rater agreement. Lung ultrasound may serve as an alternative tool for the diagnosis of pediatric pneumonia. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights

  16. [Endobronchial Ultrasound (EBUS) - an Update 2017].

    PubMed

    Darwiche, K; Özkan, F; Wolters, C; Eisenmann, S

    2017-11-01

    Endobronchial Ultrasound (EBUS) with the two modalities curved and radial EBUS significantly improved the diagnostics in several pulmonary diseases. The examination and staging of mediastinal and hilar lymph nodes in patients with known or suspected lung malignancy as well as the evaluation of unknown pulmonary or mediastinal lesions can be achieved with minimal invasive means when using EBUS. More invasive surgical procedures for diagnostic purposes can be omitted. The diagnostic yield also increases when EBUS is applied in sarcoidosis or mediastinal lymph node tuberculosis but only to some extend in case of lymphoma. Samples obtained by EBUS-TBNA should be handled efficiently to allow molecular analysis in lung cancer. EBUS is a safe procedure, and complication rate is extremely low. Further advances of the EBUS technology focus on improving analysis of the information provided by the ultrasound image and a better tissue sampling by developing of new EBUS bronchoscopes and TBNA-needles. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Smart Ultrasound Remote Guidance Experiment (SURGE) Preliminary Findings

    NASA Technical Reports Server (NTRS)

    Hurst, Victor; Dulchavsky, Scott; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Doug

    2009-01-01

    To date, diagnostic quality ultrasound images were obtained aboard the International Space Station (ISS) using the ultrasound of the Human Research Facility (HRF) rack in the Laboratory module. Through the Advanced Diagnostic Ultrasound in Microgravity (ADUM) and the Braslet-M Occlusion Cuffs (BRASLET SDTO) studies, non-expert ultrasound operators aboard the ISS have performed cardiac, thoracic, abdominal, vascular, ocular, and musculoskeletal ultrasound assessments using remote guidance from ground-based ultrasound experts. With exploration class missions to the lunar and Martian surfaces on the horizon, crew medical officers will necessarily need to operate with greater autonomy given communication delays (round trip times of up to 5 seconds for the Moon and 90 minutes for Mars) and longer periods of communication blackouts (due to orbital constraints of communication assets). The SURGE project explored the feasibility and training requirements of having non-expert ultrasound operators perform autonomous ultrasound assessments in a simulated exploration mission outpost. The project aimed to identify experience, training, and human factors requirements for crew medical officers to perform autonomous ultrasonography. All of these aims pertained to the following risks from the NASA Bioastronautics Road Map: 1) Risk 18: Major Illness and Trauna; 2) Risk 20) Ambulatory Care; 3) Risk 22: Medical Informatics, Technologies, and Support Systems; and 4) Risk 23: Medical Skill Training and Maintenance.

  18. Tuberculosis and the pancreas: a diagnostic challenge solved by endoscopic ultrasound. A case series.

    PubMed

    Chatterjee, Suvadip; Schmid, Matthias L; Anderson, Kirsty; Oppong, Kofi W

    2012-03-01

    Pancreatic tuberculosis is a rare disease. It can be easily confused with malignancy or pancreatitis on imaging. This could result in unnecessary surgery. As this is a treatable disease it is imperative to diagnose this condition pre-operatively. We report three cases of pancreatic tuberculosis that were diagnosed by endoscopic ultrasound. In conclusion, endoscopic ultrasound is the diagnostic modality of choice for pancreatic tuberculosis facilitating high resolution imaging, as well as sampling of tissue for staining, cytology, culture and polymerase chain reaction assay.

  19. Diagnostic image quality in gynaecological ultrasound: Who should measure it, what should we measure and how?

    PubMed Central

    Knapp, Karen

    2013-01-01

    Assessment of diagnostic image quality in gynaecological ultrasound is an important aspect of imaging department quality assurance. This may be addressed through audit, but who should undertake the audit, what should be measured and how, remains contentious. The aim of this study was to identify whether peer audit is a suitable method of assessing the diagnostic quality of gynaecological ultrasound images. Nineteen gynaecological ultrasound studies were independently assessed by six sonographers utilising a pilot version of an audit tool. Outcome measures were levels of inter-rater agreement using different data collection methods (binary scores, Likert scale, continuous scale), effect of ultrasound study difficulty on study score and whether systematic differences were present between reviewers of different clinical grades and length of experience. Inter-rater agreement ranged from moderate to good depending on the data collection method. A continuous scale gave the highest level of inter-rater agreement with an intra-class correlation coefficient of 0.73. A strong correlation (r = 0.89) between study difficulty and study score was yielded. Length of clinical experience between reviewers had no effect on the audit scores, but individuals of a higher clinical grade gave significantly lower scores than those of a lower grade (p = 0.04). Peer audit is a promising tool in the assessment of ultrasound image quality. Continuous scales seem to be the best method of data collection implying a strong element of heuristically driven decision making by reviewing ultrasound practitioners. PMID:27433192

  20. Advances in diagnostic interventional pulmonology

    PubMed Central

    Al-Zubaidi, Nassar; Soubani, Ayman O.

    2015-01-01

    The recent advances in diagnostic pulmonary procedures have revolutionized the evaluation of abnormal thoracic findings including lung nodules and masses, mediastinal lymphadenopathy, and pleural diseases. Bronchoscopies with endobronchial ultrasonography and electromagnetic navigation are examples of new technology that has significantly improved the specificity and sensitivity of these procedures in diagnosis and staging of lung cancer without the need for more invasive procedures. This report describes the different diagnostic pulmonary interventions providing a description of the procedures, their indications, diagnostic yield and drawback. PMID:26229756

  1. Sensitivity and specificity of diagnostic ultrasound in the diagnosis of phrenic neuropathy.

    PubMed

    Boon, Andrea J; Sekiguchi, Hiroshi; Harper, Caitlin J; Strommen, Jeffrey A; Ghahfarokhi, Leili S; Watson, James C; Sorenson, Eric J

    2014-09-30

    To determine the sensitivity and specificity of B-mode ultrasound in the diagnosis of neuromuscular diaphragmatic dysfunction, including phrenic neuropathy. A prospective study of patients with dyspnea referred to the EMG laboratory over a 2-year time frame for evaluation of neuromuscular respiratory failure who were recruited consecutively and examined with ultrasound for possible diaphragm dysfunction. Sonographic outcome measures were absolute thickness of the diaphragm and degree of increased thickness with maximal inspiration. The comparison standard for diagnosis of diaphragm dysfunction was the final clinical diagnosis of clinicians blinded to the diaphragm ultrasound results, but taking into account other diagnostic workup, including chest radiographs, fluoroscopy, phrenic nerve conduction studies, diaphragm EMG, and/or pulmonary function tests. Of 82 patients recruited over a 2-year period, 66 were enrolled in the study. Sixteen patients were excluded because of inconclusive or insufficient reference testing. One hemidiaphragm could not be adequately visualized; therefore, hemidiaphragm assessment was conducted in a total of 131 hemidiaphragms in 66 patients. Of the 82 abnormal hemidiaphragms, 76 had abnormal sonographic findings (atrophy or decreased contractility). Of the 49 normal hemidiaphragms, none had a false-positive ultrasound. Diaphragmatic ultrasound was 93% sensitive and 100% specific for the diagnosis of neuromuscular diaphragmatic dysfunction. B-mode ultrasound imaging of the diaphragm is a highly sensitive and specific tool for diagnosis of neuromuscular diaphragm dysfunction. This study provides Class II evidence that diaphragmatic ultrasound performed by well-trained individuals accurately identifies patients with neuromuscular diaphragmatic respiratory failure (sensitivity 93%; specificity 100%). © 2014 American Academy of Neurology.

  2. WE-H-209-01: Advances in Ultrasound Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hynynen, K.

    Focused ultrasound has been shown to be the only method that allows noninvasive thermal coagulation of tissues and recently this potential has been explored for image-guided drug delivery. In this presentation, the advances in ultrasound phased array technology for energy delivery, exposure monitoring and control will be discussed. Experimental results from novel multi-frequency transmit/receive arrays will be presented. In addition, the feasibility of fully electronically focused and steered high power arrays with many thousands of transducer elements will be discussed. Finally, some of the recent clinical and preclinical results for the treatment of brain disease will be reviewed. Learning Objectives:more » Introduce FUS therapy principles and modern techniques Discuss use of FUS for drug delivery Cover the technology required to deliver FUS and monitor therapy Present clinical examples of the uses of these techniques This research was supported by funding from The Canada Research Chair Program, Grants from CIHR and NIH (no. EB003268).; K. Hynynen, Canada Foundation for Innovation; Canadian Institutes of Health Research; Focused Ultrasound Surgery Foundation; Canada Research Chair Program; Natural Sciences and Engineering Research Council of Canada; Ontario Research Fund; National Institutes of Health; Canadian Cancer Society Research Institute; The Weston Brain Institute; Harmonic Medical; Focused Ultrasound Instruments.« less

  3. High-resolution ultrasound imaging of the eye - a review.

    PubMed

    Silverman, Ronald H

    2009-01-01

    This report summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) of the eye, in which frequencies of 35 MHz and above provide over a threefold improvement in resolution compared with conventional ophthalmic ultrasound systems. UBM allows imaging of anatomy and pathology involving the anterior segment, including regions obscured by overlying optically opaque anatomic or pathologic structures. UBM provides diagnostically significant information in conditions such as glaucoma, cysts and neoplasms, trauma and foreign bodies. UBM also can provide crucial biometric information regarding anterior segment structures, including the cornea and its constituent layers and the anterior and posterior chambers. Although UBM has now been in use for over 15 years, new technologies, including transducer arrays, pulse encoding and combination of ultrasound with light, offer the potential for significant advances in high-resolution diagnostic imaging of the eye.

  4. Spatially Resolved MR-Compatible Doppler Ultrasound: Proof of Concept for Triggering of Diagnostic Quality Cardiovascular MRI for Function and Flow Quantification at 3T.

    PubMed

    Crowe, Lindsey Alexandra; Manasseh, Gibran; Chmielewski, Aneta; Hachulla, Anne-Lise; Speicher, Daniel; Greiser, Andreas; Muller, Hajo; de Perrot, Thomas; Vallee, Jean-Paul; Salomir, Rares

    2018-02-01

    We demonstrate the use of a magnetic-resonance (MR)-compatible ultrasound (US) imaging probe using spatially resolved Doppler for diagnostic quality cardiovascular MR imaging (MRI) as an initial step toward hybrid US/MR fetal imaging. A newly developed technology for a dedicated MR-compatible phased array ultrasound-imaging probe acquired pulsed color Doppler carotid images, which were converted in near-real time to a trigger signal for cardiac cine and flow quantification MRI. Ultrasound and MR data acquired simultaneously were interference free. Conventional electrocardiogram (ECG) and the proposed spatially resolved Doppler triggering were compared in 10 healthy volunteers. A synthetic "false-triggered" image was retrospectively processed using metric optimized gating (MOG). Images were scored by expert readers, and sharpness, cardiac function and aortic flow were quantified. Four-dimensional (4-D) flow (two volunteers) showed feasibility of Doppler triggering over a long acquisition time. Imaging modalities were compatible. US probe positioning was stable and comfortable. Image quality scores and quantified sharpness were statistically equal for Doppler- and ECG-triggering (p ). ECG-, Doppler-triggered, and MOG ejection fractions were equivalent (p ), with false-triggered values significantly lower (p < 0.0005). Aortic flow showed no difference between ECG- and Doppler-triggered and MOG (p > 0.05). 4-D flow quantification gave consistent results between ECG and Doppler triggering. We report interference-free pulsed color Doppler ultrasound during MR data acquisition. Cardiovascular MRI of diagnostic quality was successfully obtained with pulsed color Doppler triggering. The hardware platform could further enable advanced free-breathing cardiac imaging. Doppler ultrasound triggering is applicable where ECG is compromised due to pathology or interference at higher magnetic fields, and where direct ECG is impossible, i.e., fetal imaging.

  5. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    PubMed Central

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.

    2015-01-01

    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more

  6. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia.

    PubMed

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R; Harris-Love, Michael O

    2015-01-01

    Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht(2)), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m(2) determined participant assignment into the Normal LBM and Low LBM subgroups. The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht(2) (adj. R (2) = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R (2) = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R (2) = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht(2) in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with

  7. Evaluation of lymph node status after neoadjuvant chemotherapy in breast cancer patients: comparison of diagnostic performance of ultrasound, MRI and ¹⁸F-FDG PET/CT.

    PubMed

    You, S; Kang, D K; Jung, Y S; An, Y-S; Jeon, G S; Kim, T H

    2015-08-01

    To evaluate the diagnostic performance of ultrasound, MRI and fluorine-18 fludeoxyglucose positron emission tomography (¹⁸F-FDG PET)/CT for the diagnosis of metastatic axillary lymph node (ALN) after neoadjuvant chemotherapy (NAC) and to find out histopathological factors affecting the diagnostic performance of these imaging modalities. From January 2012 to November 2014, 191 consecutive patients with breast cancer who underwent NAC before surgery were retrospectively reviewed. We included 139 patients with ALN metastasis that was confirmed on fine needle aspiration or core needle biopsy at initial diagnosis. After NAC, 39 (28%) patients showed negative conversion of ALN on surgical specimens of sentinel lymph node (LN) or ALN. The sensitivity of ultrasound, MRI and PET/CT was 50% (48/96), 72% (70/97) and 22% (16/73), respectively. The specificity of ultrasound, MRI and PET/CT was 77% (30/39), 54% (21/39) and 85% (22/26), respectively. The Az value of combination of ultrasound and PET/CT was the highest (0.634) followed by ultrasound (0.626) and combination of ultrasound, MRI and PET/CT (0.617). The size of tumour deposit in LN and oestrogen receptor was significantly associated with the diagnostic performance of ultrasound (p < 0.001 and p = 0.009, respectively) and MRI (p = 0.045 and p = 0.036, respectively). The percentage diameter decrease, size of tumour deposit in LN, progesterone receptor, HER2 and histological grade were significantly associated with the diagnostic performance of PET/CT (p = 0.023, p = 0.002, p = 0.036, p = 0.044 and p = 0.008, respectively). On multivariate logistic regression analysis, size of tumour deposit within LN was identified as being independently associated with diagnostic performance of ultrasound [odds ratio, 13.07; 95% confidence interval (CI), 2.95-57.96] and PET/CT (odds ratio, 6.47; 95% CI, 1.407-29.737). Combination of three imaging modalities showed the highest sensitivity, and PET

  8. Advanced ultrasound training for fourth-year medical students: a novel training program at The Ohio State University College of Medicine.

    PubMed

    Bahner, David P; Royall, Nelson A

    2013-02-01

    Ultrasound training and education in medical schools is rare, and the foci of current ultrasound curricula are limited. There is a significant need for advanced ultrasound training models in medical school curricula to reduce educational burdens for physician residency programs and improve overall physician competency.The authors describe and evaluate the advanced ultrasound training program developed at The Ohio State University College of Medicine (OSU COM). The OSU COM program is a longitudinal advanced ultrasound curriculum for fourth-year medical students pursuing specialties that require frequent use of focused ultrasound. One hundred fifty student participants have completed the yearlong program to date. Participants engage in didactic lectures, journal club sessions, hands-on training, teaching and patient-modeling activities, and complete a final project. Experienced Ohio State University Medical Center faculty are recruited from specialties that frequently use ultrasound (e.g., emergency medicine, internal medicine, obstetrics-gynecology). A multimodal instructional assessment approach ensures that ultrasound training yields experience with cognitive, behavioral, and constructive learning components. The authors discuss the benefits of the program as well as its challenges and future directions.The advanced ultrasound training program at OSU COM demonstrates a novel approach to providing ultrasound training for medical students, offering a feasible model for meeting training guidelines without increasing the educational requirements for residency programs.

  9. Abdominal calcifications and diagnostic imaging decision making: a topic review

    PubMed Central

    Bassano, John M.

    2006-01-01

    Abstract Objective To review commonly encountered calcifications found within the abdomen as seen on the lumbar spine radiograph and to determine which advanced imaging modality is best to thoroughly assess the patient. Methods Searches of electronic databases and textbooks were conducted to construct this narrative overview. Discussion By categorizing the type of calcification and localizing it anatomically, most often a definitive diagnosis can be reached. Two commonly encountered conditions, abdominal aortic aneurysms and urinary calculi, are used to compare the main advanced imaging modalities (diagnostic ultrasound and computed tomography) used to further assess abdominal calcifications. Conclusion In most circumstances, either diagnostic ultrasound or computed tomography will establish a definitive diagnosis and offer thorough imaging assessment for abdominal calcifications. PMID:19674671

  10. Comparison of the Diagnostic Performance of Power Doppler Ultrasound and a New Microvascular Doppler Ultrasound Technique (AngioPLUS) for Differentiating Benign and Malignant Breast Masses.

    PubMed

    Jung, Hae Kyoung; Park, Ah Young; Ko, Kyung Hee; Koh, Jieun

    2018-03-12

    This study was performed to compare the diagnostic performance of power Doppler ultrasound (US) and a new microvascular Doppler US technique (AngioPLUS; SuperSonic Imagine, Aix-en-Provence, France) for differentiating benign and malignant breast masses. Power Doppler US and AngioPLUS findings were available in 124 breast masses with confirmed pathologic results (benign, 80 [64.5%]; malignant, 44 [35.5%]). The diagnostic performance of each tool was calculated to distinguish benign from malignant masses using a receiver operating characteristic curve analysis and compared. The area under the curve showed that AngioPLUS was superior to power Doppler US in differentiating benign from malignant breast masses, but the difference was not statistically significant. © 2018 by the American Institute of Ultrasound in Medicine.

  11. High-resolution ultrasound imaging of the eye – a review

    PubMed Central

    Silverman, Ronald H

    2009-01-01

    This report summarizes the physics, technology and clinical application of ultrasound biomicroscopy (UBM) of the eye, in which frequencies of 35 MHz and above provide over a threefold improvement in resolution compared with conventional ophthalmic ultrasound systems. UBM allows imaging of anatomy and pathology involving the anterior segment, including regions obscured by overlying optically opaque anatomic or pathologic structures. UBM provides diagnostically significant information in conditions such as glaucoma, cysts and neoplasms, trauma and foreign bodies. UBM also can provide crucial biometric information regarding anterior segment structures, including the cornea and its constituent layers and the anterior and posterior chambers. Although UBM has now been in use for over 15 years, new technologies, including transducer arrays, pulse encoding and combination of ultrasound with light, offer the potential for significant advances in high-resolution diagnostic imaging of the eye. PMID:19138310

  12. Diagnostic performance of multi-organ ultrasound with pocket-sized device in the management of acute dyspnea.

    PubMed

    Sforza, Alfonso; Mancusi, Costantino; Carlino, Maria Viviana; Buonauro, Agostino; Barozzi, Marco; Romano, Giuseppe; Serra, Sossio; de Simone, Giovanni

    2017-06-19

    The availability of ultra-miniaturized pocket ultrasound devices (PUD) adds diagnostic power to the clinical examination. Information on accuracy of ultrasound with handheld units in immediate differential diagnosis in emergency department (ED) is poor. The aim of this study is to test the usefulness and accuracy of lung ultrasound (LUS) alone or combined with ultrasound of the heart and inferior vena cava (IVC) using a PUD for the differential diagnosis of acute dyspnea (AD). We included 68 patients presenting to the ED of "Maurizio Bufalini" Hospital in Cesena (Italy) for AD. All patients underwent integrated ultrasound examination (IUE) of lung-heart-IVC, using PUD. The series was divided into patients with dyspnea of cardiac or non-cardiac origin. We used 2 × 2 contingency tables to analyze sensitivity, specificity, positive predictive value and negative predictive value of the three ultrasonic methods and their various combinations for the diagnosis of cardiogenic dyspnea (CD), comparing with the final diagnosis made by an independent emergency physician. LUS alone exhibited a good sensitivity (92.6%) and specificity (80.5%). The highest accuracy (90%) for the diagnosis of CD was obtained with the combination of LUS and one of the other two methods (heart or IVC). The IUE with PUD is a useful extension of the clinical examination, can be readily available at the bedside or in ambulance, requires few minutes and has a reliable diagnostic discriminant ability in the setting of AD.

  13. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment.

    PubMed

    Nightingale, Kathryn R; Church, Charles C; Harris, Gerald; Wear, Keith A; Bailey, Michael R; Carson, Paul L; Jiang, Hui; Sandstrom, Kurt L; Szabo, Thomas L; Ziskin, Marvin C

    2015-07-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term "conditionally" is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. © 2015 by the American Institute of

  14. WE-AB-206-02: ACR Ultrasound Accreditation: Requirements and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, J.

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less

  15. Strain elastography of abnormal axillary nodes in breast cancer patients does not improve diagnostic accuracy compared with conventional ultrasound alone.

    PubMed

    Park, Young Mi; Fornage, Bruno D; Benveniste, Ana Paula; Fox, Patricia S; Bassett, Roland L; Yang, Wei Tse

    2014-12-01

    The purpose of this study was to determine the diagnostic value of strain elastography (SE) alone and in combination with gray-scale ultrasound in the diagnosis of benign versus metastatic disease for abnormal axillary lymph nodes in breast cancer patients. Patients with breast cancer and axillary lymph nodes suspicious for metastatic disease on conventional ultrasound who underwent SE of the suspicious node before ultrasound-guided fine-needle aspiration biopsy (FNAB) were included in this study. On conventional ultrasound, the long- and short-axis diameters, long-axis-to-short-axis ratio, cortical echogenicity, thickness, and evenness were documented. The nodal vascularity was assessed on power Doppler imaging. Elastograms were evaluated for the percentage of black (hard) areas in the lymph node, and the SE-ultrasound size ratio was calculated. Two readers assessed the images independently and then in consensus in cases of disagreement. ROC AUCs were calculated for conventional ultrasound, SE, and both methods combined. Interreader reliability was assessed using kappa statistics. A total of 101 patients with 104 nodes were examined; 35 nodes were benign, and 69 had metastases. SE alone showed a significantly lower AUC (62%) than did conventional ultrasound (92%) (p<0.001). There was no difference between the AUC of conventional ultrasound and the AUC of the combination of conventional ultrasound and SE (93%) (p=0.16). Interreader reliability was moderate for all variables (κ≥0.60) except the SE-ultrasound size ratio (κ=0.35). Added SE does not improve the diagnostic ability of conventional ultrasound when evaluating abnormal axillary lymph nodes.

  16. An update on the role of advanced diagnostic bronchoscopy in the evaluation and staging of lung cancer

    PubMed Central

    Belanger, Adam R.; Akulian, Jason A.

    2017-01-01

    Lung cancer remains a common and deadly disease. Many modalities are available to the bronchoscopist to evaluate and stage lung cancer. We review the role of bronchoscopy in the staging of the mediastinum with convex endobronchial ultrasound (EBUS) and discuss emerging role of esophageal ultrasonography as a complementary modality. In addition, we discuss advances in scope technology and elastography. We review the bronchoscopic methods available for the diagnosis of peripheral lung nodules including radial EBUS and navigational bronchoscopy (NB) with a consideration of the basic methodologies and diagnostic accuracies. We conclude with a discussion of the comparison of the various methodologies. PMID:28470104

  17. Ultrasound artifacts: classification, applied physics with illustrations, and imaging appearances.

    PubMed

    Prabhu, Somnath J; Kanal, Kalpana; Bhargava, Puneet; Vaidya, Sandeep; Dighe, Manjiri K

    2014-06-01

    Ultrasound has become a widely used diagnostic imaging modality in medicine because of its safety and portability. Because of rapid advances in technology, in recent years, sonographic imaging quality has significantly increased. Despite these advances, the potential to encounter artifacts while imaging remains.This article classifies both common and uncommon gray-scale and Doppler ultrasound artifacts into those resulting from physiology and those caused by hardware. A brief applied-physics explanation for each artifact is listed along with an illustrated diagram. The imaging appearance of artifacts is presented in case examples, along with strategies to minimize the artifacts in real time or use them for clinical advantage where applicable.

  18. Visualizing and Measuring the Temperature Field Produced by Medical Diagnostic Ultrasound Using Thermography

    ERIC Educational Resources Information Center

    Vachutka, J.; Grec, P.; Mornstein, V.; Caruana, C. J.

    2008-01-01

    The heating of tissues by diagnostic ultrasound can pose a significant hazard particularly in the imaging of the unborn child. The demonstration of the temperature field in tissue is therefore an important objective in the teaching of biomedical physics to healthcare professionals. The temperature field in a soft tissue model was made visible and…

  19. Ultrasound-assisted advanced oxidation processes for water decontamination.

    PubMed

    Ince, Nilsun H

    2018-01-01

    The study reflects a part of my experience in sonochemistry and ultrasound-assisted advanced oxidation processes (AOPs) acquired during the last fifteen years with my research team. The data discussed were selected from studies with azo dyes, endocrine disrupting compounds and analgesic/anti-inflammatory pharmaceuticals, which are all classified as "hazardous" or "emerging" contaminants. The research focused on their treatability by ultrasound (US) and AOPs with emphasis on the mineralization of organic carbon. Some of the highlights as pointed out in the manuscript are: i) ultrasound is capable of partially or completely oxidizing the above contaminant groups if the operating conditions are properly selected and optimized, but incapable of mineralizing them; ii) the mechanism of degradation in homogeneous solutions is OH-mediated oxidation in the bulk solution or at the bubble-liquid interface, depending on the molecular properties of the contaminant, the applied frequency and pH; iii) US-assisted AOPs such as ozonation, UV/peroxide, Fenton and UV/Fenton are substantially more effective than ultrasound alone, particularly for the mineralization process; iv) catalytic processes involving TiO 2 , alumina and zero-valent iron and assisted by ultrasound are promising options not only for the destruction of the parent compounds, but also for the mineralization of their oxidation byproducts. The degradation reactions in heterogeneous solutions take place mostly at the catalyst surface despite the high-water solubility of the compounds; v) sonolytic modification of the above catalysts to reduce their particle size (to nano-levels) or to decorate the surface with metallic nanoparticles increases the catalytic activity under sonolysis, photolysis and both, and improves the stability of the catalyst. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Thyroid nodule ultrasound: technical advances and future horizons.

    PubMed

    McQueen, Andrew S; Bhatia, Kunwar S S

    2015-04-01

    Thyroid nodules are extremely common and the vast majority are non-malignant; therefore the accurate discrimination of a benign lesion from malignancy is challenging. Ultrasound (US) characterisation has become the key component of many thyroid nodule guidelines and is primarily based on the detection of key features by high-resolution US. The thyroid imager should be familiar with the strengths and limitations of this modality and understand the technical factors that create and alter the imaging characteristics. Specific advances in high-resolution US are discussed with reference to individual features of thyroid cancer and benign disease. Potential roles for three-dimensional thyroid ultrasound and computer-aided diagnosis are also considered. The second section provides an overview of current evidence regarding thyroid ultrasound elastography (USE). USE is a novel imaging technique that quantifies tissue elasticity (stiffness) non-invasively and has potential utility because cancers cause tissue stiffening. In recent years, there has been much research into the value of thyroid USE for distinguishing benign and malignant nodules. Preliminary findings from multiple pilot studies and meta-analyses are promising and suggest that USE can augment the anatomical detail provided by high-resolution US. However, a definite role remains controversial and is discussed. • High-resolution US characterises thyroid nodules by demonstration of specific anatomical features • Technical advances heavily influence the key US features of thyroid nodules • Most papillary carcinomas appear stiffer than benign thyroid nodules on US elastography (USE) • Thyroid USE is controversial because of variation in the reported accuracies for malignancy • Combined grey-scale US/USE may lower the FNAC rate in benign nodules.

  1. Portable bedside ultrasound: the visual stethoscope of the 21st century

    PubMed Central

    2012-01-01

    Over the past decade technological advances in the realm of ultrasound have allowed what was once a cumbersome and large machine to become essentially hand-held. This coupled with a greater understanding of lung sonography has revolutionized our bedside assessment of patients. Using ultrasound not as a diagnostic test, but instead as a component of the physical exam, may allow it to become the stethoscope of the 21st century. PMID:22400903

  2. [Ultrasound diagnostics of muscle and tendon injuries].

    PubMed

    Stević, Ruza; Masulović, Dragan

    2009-01-01

    Sonography is a useful technique for the investigation of a number of musculoskeletal disorders. The most common indication for ultrasonography of muscles and tendons is the diagnosis of traumatic lesions, distinguishing them from other disorders and follow- up of healing process. The purpose of this paper is to show the importance of ultrasound in the diagnosis of muscle and tendon injuries. The study included 170 patients (148 male and 22 female), mean age 29.6 years (range 14-60 years). All examinations were performed by linear transducer of 7.5-10 MHz, with longitudinal and transverse scanning. Ultrasound examination followed physical examination. Traumatic lesions of muscles were diagnosed in 113 patients (66.7%) and tendon injuries in 57 cases (33.2%). The muscle changes detected by ultrasonography were the following: 70 (61.9%) partial and two (1.76%) complete ruptures, 22 (19.46%) haematoma, 9 (7.96%) strains grade I, 4 fibroses and 4 ossifying myositis 4 (3.5%, respectively). Complications of muscle injuries were diagnosed in two cases, a muscular hernia and an arteriovenous fistula. Among tendon injuries, 21 (33.8%) ruptures and 36 (66.1%) tendinitis were diagnosed. Accompanying effusion in the bursa of patients with tendon injuries was found in 9 cases. Ultrasonography allowed visualization and objective assessment of the type and the extent of traumatic pathomorphological changes of muscles and tendons. Such diagnostic possibilities of ultrasonography are especially important in the choice of appropriate therapy.

  3. Advanced Imaging Utilization Trends in Privately Insured Patients From 2007 to 2013.

    PubMed

    Horný, Michal; Burgess, James F; Cohen, Alan B

    2015-12-01

    The aim of the study was to investigate whether the increase in utilization of advanced diagnostic imaging for privately insured patients in 2011 was the beginning of a new trend in imaging utilization growth, or an isolated deviation from the declining trend that began in 2008. We extracted outpatient and inpatient CT, diagnostic ultrasound, MRI, and PET procedures from databases, for the years 2007 to 2013. This study extended previous work, covering 2012 to 2013, using the same methodology. For every year of the study period, we calculated the following: number of procedures per person-year covered by private health insurance; proportion of office and emergency visits that resulted in an imaging session; average payments per procedure; and total payments per person-year covered by private health insurance. Outpatient utilization of CT and PET decreased in both 2012 and 2013; outpatient utilization of MRI mildly increased in 2012, but then decreased in 2013. Outpatient utilization of diagnostic ultrasound showed a very different pattern, increasing throughout the study period. Inpatient utilization of all imaging modalities except PET decreased in both 2012 and 2013. Adjusted payments for all imaging modalities increased in 2012, and then dropped substantially in 2013, except the adjusted payments for diagnostic ultrasound that increased in 2013 again. The trend of increasing utilization of advanced diagnostic imaging seems to be over for some, but not all, imaging modalities. A combination of policy (eg, breast density notification laws), technologic advancement, and wider access seems to be responsible for at least part of an increasing utilization of diagnostic ultrasound. Copyright © 2015 American College of Radiology. All rights reserved.

  4. [Contrast-enhanced Ultrasound in Diagnostic Imaging of Muscle Injuries: Perfusion Imaging in the Early Arterial Phase].

    PubMed

    Hotfiel, T; Carl, H D; Swoboda, B; Engelhardt, M; Heinrich, M; Strobel, D; Wildner, D

    2016-03-01

    Ultrasound is a standard procedure widely used in the diagnostic investigation of muscle injuries and widely described in the literature. Its advantages include rapid availability, cost effectiveness and the possibility to perform a real-time dynamic examination with the highest possible spatial resolution. In the diagnostic work-up of minor lesions (muscle stiffness, muscle strain), plain ultrasound has so far been inferior to MRI. The case presented by us is an example of the possibilities offered by contrast-enhanced ultrasound (CEUS) in the imaging of muscle injuries compared with plain B-mode image ultrasound and MRI imaging of the affected region. This case report is about a high-performance football player who sustained a muscle injury. He underwent an ultrasound examination (S 2000, 9L4 Probe, Siemens, Germany), which was performed simultaneously in the conventional and contrast-enhanced mode at the level of the lesion. An intravenous bolus injection of 4.8 ml of intravascular contrast agent (SonoVue(®), Bracco, Italy) was given via a cubital intravenous line. After that, the distribution of contrast agent was visualised in the early arterial phase. In addition, a plain magnetic resonance imaging scan of both thighs was performed for reference. On conventional ultrasound, the lesion was not clearly distinguishable from neighbouring tissue, whereas contrast-enhanced ultrasound demonstrated a well delineated, circumscribed area of impaired perfusion with hypoenhancement compared with the surrounding muscles at the clinical level of the lesion in the arterial wash-in phase (0-30 sec, after intravenous administration). The MRI scan revealed an edema signal with perifascial fluid accumulation in the corresponding site. The use of intravascular contrast agent enabled the sensitive detection of a minor injury by ultrasound for the first time. An intramuscular edema seen in the MRI scan showed a functional arterial perfusion impairment on ultrasound, which was

  5. Reliability of measuring sciatic and tibial nerve movement with diagnostic ultrasound during a neural mobilisation technique.

    PubMed

    Ellis, Richard; Hing, Wayne; Dilley, Andrew; McNair, Peter

    2008-08-01

    Diagnostic ultrasound provides a technique whereby real-time, in vivo analysis of peripheral nerve movement is possible. This study measured sciatic nerve movement during a "slider" neural mobilisation technique (ankle dorsiflexion/plantar flexion and cervical extension/flexion). Transverse and longitudinal movement was assessed from still ultrasound images and video sequences by using frame-by-frame cross-correlation software. Sciatic nerve movement was recorded in the transverse and longitudinal planes. For transverse movement, at the posterior midthigh (PMT) the mean value of lateral sciatic nerve movement was 3.54 mm (standard error of measurement [SEM] +/- 1.18 mm) compared with anterior-posterior/vertical (AP) movement of 1.61 mm (SEM +/- 0.78 mm). At the popliteal crease (PC) scanning location, lateral movement was 6.62 mm (SEM +/- 1.10 mm) compared with AP movement of 3.26 mm (SEM +/- 0.99 mm). Mean longitudinal sciatic nerve movement at the PMT was 3.47 mm (SEM +/- 0.79 mm; n = 27) compared with the PC of 5.22 mm (SEM +/- 0.05 mm; n = 3). The reliability of ultrasound measurement of transverse sciatic nerve movement was fair to excellent (Intraclass correlation coefficient [ICC] = 0.39-0.76) compared with excellent (ICC = 0.75) for analysis of longitudinal movement. Diagnostic ultrasound presents a reliable, noninvasive, real-time, in vivo method for analysis of sciatic nerve movement.

  6. Direct comparison of the diagnostic yield of ultrasound-assisted Abrams and Tru-Cut needle biopsies for pleural tuberculosis.

    PubMed

    Koegelenberg, Coenraad Frederik N; Bolliger, Christoph Thomas; Theron, Johan; Walzl, Gerhard; Wright, Colleen Anne; Louw, Mercia; Diacon, Andreas Henri

    2010-10-01

    Tuberculous pleuritis remains the commonest cause of exudative effusions in areas with a high prevalence of tuberculosis and histological and/or microbiological confirmation on pleural tissue is the gold standard for its diagnosis. Uncertainty remains regarding the choice of closed pleural biopsy needles. This prospective study compared ultrasound-assisted Abrams and Tru-Cut needle biopsies with regard to their diagnostic yield for pleural tuberculosis. 89 patients (54 men) of mean ± SD age 38.7 ± 16.7 years with pleural effusions and a clinical suspicion of tuberculosis were enrolled in the study. Transthoracic ultrasound was performed on all patients, who were then randomly assigned to undergo ≥ 4 Abrams needle biopsies followed by ≥ 4 Tru-Cut needle biopsies or vice versa. Medical thoracoscopy was performed on cases with non-diagnostic closed biopsies. Histological and/or microbiological proof of tuberculosis on any pleural specimen was considered the gold standard for pleural tuberculosis. Pleural tuberculosis was diagnosed in 66 patients, alternative diagnoses were established in 20 patients and 3 remained undiagnosed. Pleural biopsy specimens obtained with Abrams needles contained pleural tissue in 81 patients (91.0%) and were diagnostic for tuberculosis in 54 patients (sensitivity 81.8%), whereas Tru-Cut needle biopsy specimens only contained pleural tissue in 70 patients (78.7%, p=0.015) and were diagnostic in 43 patients (sensitivity 65.2%, p=0.022). Ultrasound-assisted pleural biopsies performed with an Abrams needle are more likely to contain pleura and have a significantly higher diagnostic sensitivity for pleural tuberculosis.

  7. [Abdominal ultrasound course an introduction to the ultrasound technique. Physical basis. Ultrasound language].

    PubMed

    Segura-Grau, A; Sáez-Fernández, A; Rodríguez-Lorenzo, A; Díaz-Rodríguez, N

    2014-01-01

    Ultrasound is a non-invasive, accessible, and versatile diagnostic technique that uses high frequency ultrasound waves to define outline the organs of the human body, with no ionising radiation, in real time and with the capacity to visual several planes. The high diagnostic yield of the technique, together with its ease of uses plus the previously mentioned characteristics, has currently made it a routine method in daily medical practice. It is for this reason that the multidisciplinary character of this technique is being strengthened every day. To be able to perform the technique correctly requires knowledge of the physical basis of ultrasound, the method and the equipment, as well as of the human anatomy, in order to have the maximum information possible to avoid diagnostic errors due to poor interpretation or lack of information. Copyright © 2013 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España. All rights reserved.

  8. Detection of intracavitary uterine pathology using offline analysis of three-dimensional ultrasound volumes: interobserver agreement and diagnostic accuracy.

    PubMed

    Van den Bosch, T; Valentin, L; Van Schoubroeck, D; Luts, J; Bignardi, T; Condous, G; Epstein, E; Leone, F P; Testa, A C; Van Huffel, S; Bourne, T; Timmerman, D

    2012-10-01

    To estimate the diagnostic accuracy and interobserver agreement in predicting intracavitary uterine pathology at offline analysis of three-dimensional (3D) ultrasound volumes of the uterus. 3D volumes (unenhanced ultrasound and gel infusion sonography with and without power Doppler, i.e. four volumes per patient) of 75 women presenting with abnormal uterine bleeding at a 'bleeding clinic' were assessed offline by six examiners. The sonologists were asked to provide a tentative diagnosis. A histological diagnosis was obtained by hysteroscopy with biopsy or operative hysteroscopy. Proliferative, secretory or atrophic endometrium was classified as 'normal' histology; endometrial polyps, intracavitary myomas, endometrial hyperplasia and endometrial cancer were classified as 'abnormal' histology. The diagnostic accuracy of the six sonologists with regard to normal/abnormal histology and interobserver agreement were estimated. Intracavitary pathology was diagnosed at histology in 39% of patients. Agreement between the ultrasound diagnosis and the histological diagnosis (normal vs abnormal) ranged from 67 to 83% for the six sonologists. In 45% of cases all six examiners agreed with regard to the presence/absence of intracavitary pathology. The percentage agreement between any two examiners ranged from 65 to 91% (Cohen's κ, 0.31-0.81). The Schouten κ for all six examiners was 0.51 (95% CI, 0.40-0.62), while the highest Schouten κ for any three examiners was 0.69. When analyzing stored 3D ultrasound volumes, agreement between sonologists with regard to classifying the endometrium/uterine cavity as normal or abnormal as well as the diagnostic accuracy varied substantially. Possible actions to improve interobserver agreement and diagnostic accuracy include optimization of image quality and the use of a consistent technique for analyzing the 3D volumes. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  9. [Diagnostic ultrasound in pneumothorax].

    PubMed

    Maury, É; Pichereau, C; Bourcier, S; Galbois, A; Lejour, G; Baudel, J-L; Ait-Oufella, H; Guidet, B

    2016-10-01

    For a long time the lung has been regarded as inaccessible to ultrasound. However, recent clinical studies have shown that this organ can be examined by this technique, which appears, in some situations, to be superior to thoracic radiography. The examination does not require special equipment and is possible using a combination of simple qualitative signs: lung sliding, the presence of B lines and the demonstration of the lung point. The lung sliding corresponds to the artefact produced by the movement of the two pleural layers, one against the other. The B lines indicate the presence of an interstitial syndrome. The presence of lung sliding and/or B lines has a negative predictive value of 100% and formally excludes a pneumothorax in the area where the probe has been applied. The presence of the lung point is pathognomonic of pneumothorax but the sensitivity is no more than 60%. Ultrasound is therefore a rapid and simple means of excluding a pneumothorax (lung sliding or B lines) and of confirming a pneumothorax when the lung point is visible. The question that remains is whether ultrasound can totally replace radiography in the management of this disorder. Copyright © 2015 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  10. [Monitoring radiofrequency ablation by ultrasound temperature imaging and elastography under different power intensities].

    PubMed

    Geng, Xiaonan; Li, Qiang; Tsui, Pohsiang; Wang, Chiaoyin; Liu, Haoli

    2013-09-01

    To evaluate the reliability of diagnostic ultrasound-based temperature and elasticity imaging during radiofrequency ablation (RFA) through ex vivo experiments. Procine liver samples (n=7) were employed for RFA experiments with exposures of different power intensities (10 and 50w). The RFA process was monitored by a diagnostic ultrasound imager and the information were postoperatively captured for further temperature and elasticity image analysis. Infrared thermometry was concurrently applied to provide temperature change calibration during the RFA process. Results from this study demonstrated that temperature imaging was valid under 10 W RF exposure (r=0.95), but the ablation zone was no longer consistent with the reference infrared temperature distribution under high RF exposures. The elasticity change could well reflect the ablation zone under a 50 W exposure, whereas under low exposures, the thermal lesion could not be well detected due to the limited range of temperature elevation and incomplete tissue necrosis. Diagnostic ultrasound-based temperature and elastography is valid for monitoring thr RFA process. Temperature estimation can well reflect mild-power RF ablation dynamics, whereas the elastic-change estimation can can well predict the tissue necrosis. This study provide advances toward using diagnostic ultrasound to monitor RFA or other thermal-based interventions.

  11. Influence of Scan Duration on Pulmonary Capillary Hemorrhage Induced by Diagnostic Ultrasound.

    PubMed

    Miller, Douglas L; Dong, Zhihong; Dou, Chunyan; Raghavendran, Krishnan

    2016-08-01

    Diagnostic ultrasound can induce pulmonary capillary hemorrhage (PCH) in rats and display this as "comet tail" artifacts (CTAs) after a time delay. To test the hypothesis that no PCH occurs for brief scans, anesthetized rats were scanned using a 6-MHz linear array for different durations. PCH was characterized by ultrasound CTAs, micro-computed tomography (μCT), and measurements of fixed lung tissue. The μCT images revealed regions of PCH, sometimes penetrating the entire depth of a lobe, which were reflected in the fixed tissue measurements. At -3 dB of power, PCH was substantial for 300-s scans, but not significant for 25-s scans. At 0 dB, PCH was not strongly dependent on scan durations of 300 to 10 s. Contrary to the hypothesis, CTAs were not evident during most 10-s scans (p > 0.05), but PCH was significant (p = 0.02), indicating that PCH could occur without evidence of the injury in the images. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. The diagnostic performance of ultrasound for acute appendicitis in pregnant and young nonpregnant women: A case-control study.

    PubMed

    Segev, Lior; Segev, Yakir; Rayman, Shlomi; Nissan, Aviram; Sadot, Eran

    2016-10-01

    Ultrasonography is frequently used to diagnose acute appendicitis in women of reproductive age, but its diagnostic value in pregnant patients remains unclear. This study sought to compare the diagnostic performance of ultrasound in pregnant and young nonpregnant women with suspected acute appendicitis. The database of a single tertiary medical center was reviewed for all women of reproductive age who underwent appendectomy either during pregnancy (2000-2014) or in the nonpregnant state (2004-2007) following ultrasound evaluation. The performance of ultrasound in terms of predicting the final pathologic diagnosis was compared between the pregnant and non pregnant groups using receiver operating characteristic curve analysis. Of 586 young women treated for appendicitis during the study periods (92 pregnant, 494 non-pregnant), 200 underwent preoperative ultrasound [67 pregnant, and 133 nonpregnant young women]. The pregnant and nonpregnant groups were comparable in age and presenting symptoms. There was no significant difference in the predictive performance of ultrasound between the two groups (AUC 0.76 and 0.73 respectively, p = 0.78) or within the pregnant group, by trimester [first (n = 23), AUC 0.73; second (n = 32), AUC 0.67; third (n = 12), AUC 0.86; p = 0.4]. Ultrasound had a positive predictive value of 0.94 in the pregnant group and 0.91 in the nonpregnant group; corresponding negative predictive values were 0.40 and 0.43. There appears to be no difference in the ability of ultrasound to predict the diagnosis of acute appendicitis between pregnant women and nonpregnant women of reproductive age. Therefore, similar preoperative imaging algorithms may be used in both patient populations. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  13. Diagnostic Ultrasound Impulses Improve Microvascular Flow in Patients With STEMI Receiving Intravenous Microbubbles.

    PubMed

    Mathias, Wilson; Tsutsui, Jeane M; Tavares, Bruno G; Xie, Feng; Aguiar, Miguel O D; Garcia, Diego R; Oliveira, Mucio T; Soeiro, Alexandre; Nicolau, Jose C; Lemos, Pedro A; Rochitte, Carlos E; Ramires, José A F; Kalil, Roberto; Porter, Thomas R

    2016-05-31

    Pre-clinical trials have demonstrated that, during intravenous microbubble infusion, high mechanical index (HMI) impulses from a diagnostic ultrasound (DUS) transducer might restore epicardial and microvascular flow in acute ST-segment elevation myocardial infarction (STEMI). The purpose of this study was to test the safety and efficacy of this adjunctive approach in humans. From May 2014 through September 2015, patients arriving with their first STEMI were randomized to either DUS intermittent HMI impulses (n = 20) just prior to emergent percutaneous coronary intervention (PCI) and for an additional 30 min post-PCI (HMI + PCI), or low mechanical index (LMI) imaging only (n = 10) for perfusion assessments before and after PCI (LMI + PCI). All studies were conducted during an intravenous perflutren lipid microsphere infusion. A control reference group (n = 70) arrived outside of the time window of ultrasound availability and received emergent PCI alone (PCI only). Initial epicardial recanalization rates prior to emergent PCI and improvements in microvascular flow were compared between ultrasound-treated groups. Median door-to-dilation times were 82 ± 26 min in the LMI + PCI group, 72 ± 15 min in the HMI + PCI group, and 103 ± 42 min in the PCI-only group (p = NS). Angiographic recanalization prior to PCI was seen in 12 of 20 HMI + PCI patients (60%) compared with 10% of LMI + PCI and 23% of PCI-only patients (p = 0.002). There were no differences in microvascular obstructed segments prior to treatment, but there were significantly smaller proportions of obstructed segments in the HMI + PCI group at 1 month (p = 0.001) and significant improvements in left ventricular ejection fraction (p < 0.005). HMI impulses from a diagnostic transducer, combined with a commercial microbubble infusion, can prevent microvascular obstruction and improve functional outcome when added to the contemporary PCI management of acute STEMI. (Therapeutic Use of Ultrasound in

  14. Advances in point-of-care technologies for molecular diagnostics.

    PubMed

    Zarei, Mohammad

    2017-12-15

    Advances in miniaturization, nanotechnology, and microfluidics, along with developments in cloud-connected point-of-care (POC) diagnostics technologies are pushing the frontiers of POC devices toward low-cost, user-friendly, and enhanced sensitivity molecular-level diagnostics. The combination of various bio-sensing platforms within smartphone-integrated electronic readers provides accurate on-site and on-time diagnostics based on various types of chemical and biological targets. Further, 3D printing technology shows a huge potential toward fabrication and improving the performance of POC devices. Integration of skin-like flexible sensors with wireless communication technology creates a unique opportunity for continuous, real-time monitoring of patients for both preventative healthcare and during disease outbreaks. Here, we review recent developments and advances in POC technologies and describe how these advances enhance the performance of POC platforms. Also, this review describes challenges, directions, and future trends on application of emerging technologies in POC diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diagnostic Accuracy of Abdominal Ultrasound for Diagnosis of Acute Appendicitis: Systematic Review and Meta-analysis.

    PubMed

    Giljaca, Vanja; Nadarevic, Tin; Poropat, Goran; Nadarevic, Vesna Stefanac; Stimac, Davor

    2017-03-01

    To determine the diagnostic accuracy of abdominal ultrasound (US) for the diagnosis of acute appendicitis (AA), in terms of sensitivity, specificity and post-test probabilities for positive and negative result. A systematic search of MEDLINE, Embase, The Cochrane library and Science Citation Index Expanded from January 1994 to October 2014 was performed. Two authors independently evaluated studies for inclusion, extracted data and performed analyses. The reference standard for evaluation of final diagnosis was pathohistological report on tissue obtained at appendectomy. Summary sensitivity, specificity and post-test probability of AA after positive and negative result of US with corresponding 95% confidence intervals (CI) were calculated. Out of 3306 references identified through electronic searches, 17 reports met the inclusion criteria, with 2841 included participants. The summary sensitivity and specificity of US for diagnosis of AA were 69% (95% CI 59-78%) and 81% (95% CI 73-88%), respectively. At the median pretest probability of AA of 76.4%, the post-test probability for a positive and negative result of US was 92% (95% CI 88-95%) and 55% (95% CI 46-63%), respectively. Abdominal ultrasound does not seem to have a role in the diagnostic pathway for diagnosis of AA in suspected patients. The summary sensitivity and specificity of US do not exceed that of physical examination. Patients that require additional diagnostic workup should be referred to more sensitive and specific diagnostic procedures, such as computed tomography.

  16. High-intensity focused ultrasound: advances in technology and experimental trials support enhanced utility of focused ultrasound surgery in oncology

    PubMed Central

    Malietzis, G; Monzon, L; Hand, J; Wasan, H; Leen, E; Abel, M; Muhammad, A; Abel, P

    2013-01-01

    High-intensity focused ultrasound (HIFU) is a rapidly maturing technology with diverse clinical applications. In the field of oncology, the use of HIFU to non-invasively cause tissue necrosis in a defined target, a technique known as focused ultrasound surgery (FUS), has considerable potential for tumour ablation. In this article, we outline the development and underlying principles of HIFU, overview the limitations and commercially available equipment for FUS, then summarise some of the recent technological advances and experimental clinical trials that we predict will have a positive impact on extending the role of FUS in cancer therapy. PMID:23403455

  17. Temperature measurement by thermal strain imaging with diagnostic power ultrasound, with potential for thermal index determination.

    PubMed

    Liang, Hai-Dong; Zhou, Li-Xia; Wells, Peter N T; Halliwell, Michael

    2009-05-01

    Over the years, there has been a substantial increase in acoustic exposure in diagnostic ultrasound as new imaging modalities with higher intensities and frame rates have been introduced; and more electronic components have been packed into the probe head, so that there is a tendency for it to become hotter. With respect to potential thermal effects, including those which may be hazardous occurring during ultrasound scanning, there is a correspondingly growing need for in vivo techniques to guide the operator as to the actual temperature rise occurring in the examined tissues. Therefore, an in vivo temperature estimator would be of considerable practical value. The commonly-used method of tissue thermal index (TI) measurement with a hydrophone in water could underestimate the actual value of TI (in one report by as much as 2.9 times). To obtain meaningful results, it is necessary to map the temperature elevation in 2-D (or 3-D) space. We present methodology, results and validation of a 2-D spatial and temporal thermal strain ultrasound temperature estimation technique in phantoms, and its apparently novel application in tracking the evolution of heat deposition at diagnostic exposure levels. The same ultrasound probe is used for both transmission and reception. The displacement and thermal strain estimation methods are similar to those used in high-intensity focused ultrasound thermal monitoring. The use of radiofrequency signals permits the application of cross correlation as a similarity measurement for tracking feature displacement. The displacement is used to calculate the thermal strain directly related to the temperature rise. Good agreement was observed between the temperature rise and the ultrasound power and scan duration. Thermal strain up to 1.4% was observed during 4000-s scan. Based on the results obtained for the temperature range studied in this work, the technique demonstrates potential for applicability in phantom (and possibly in vivo tissue

  18. Diagnostic value of ultrasound indicators of neoplastic risk in preoperative differentiation of adnexal masses

    PubMed Central

    Bachanek, Michał; Trojanowski, Seweryn; Cendrowski, Krzysztof; Sawicki, Włodzimierz

    2013-01-01

    Aim To assess the diagnostic value of the risk of malignancy indices and simple ultrasound- based rules in preoperative differentiation of adnexal masses. Material and methods Retrospective examination of 87 patients admitted to hospital due to adnexal tumors. The lesions were evaluated on the basis of international ultrasound classification of ovarian tumors and four risk of malignancy indices were calculated based on ultrasound examination, concentration of CA 125 and menopausal status. Results The patients were aged between 17 and 79, the mean age was 44.5 (standard deviation SD=16.6). Most of the patients (60.91%) were before their menopause. The sensitivity of the simple ultrasound-based rules in the diagnosis of malignancies equaled 64.71% and the specificity constituted 90.00%. A significant statistical difference in the presence of the malignant process was demonstrated in relation to age, menopausal status, CA 125 concentration and analyzed ultrasound score. All indices were characterized by similar sensitivity and specificity. The highest specificity and predictive value of malignant lesions out of the assessed ones was demonstrated by the risk of malignancy index proposed by Yamamoto. The risk of malignancy index according to Jacobs, however, showed the highest predictive value in the case of non-malignant lesions. Conclusions The multiparametric ultrasound examination may facilitate the selection of patients with adnexal tumors to provide them with an appropriate treatment – observation, laparotomy and laparoscopy. These parameters constitute a simple ambulatory method of determining the character of adnexal masses before recommending appropriate treatment. PMID:26674849

  19. Comparing diagnostic accuracy of bedside ultrasound and radiography for bone fracture screening in multiple trauma patients at the ED.

    PubMed

    Bolandparvaz, Shahram; Moharamzadeh, Payman; Jamali, Kazem; Pouraghaei, Mahboob; Fadaie, Maryam; Sefidbakht, Sepideh; Shahsavari, Kavous

    2013-11-01

    Long bone fractures are currently diagnosed using radiography, but radiography has some disadvantages (radiation and being time consuming). The present study compared the diagnostic accuracy of bedside ultrasound and radiography in multiple trauma patients at the emergency department (ED). The study assessed 80 injured patients with multiple trauma from February 2011 to July 2012. The patients were older than 18 years and triaged to the cardiopulmonary resuscitation ward of the ED. Bedside ultrasound and radiography were conducted for them. The findings were separately and blindly assessed by 2 radiologists. Sensitivity, specificity, the positive and negative predictive value, and κ coefficient were measured to assess the accuracy and validity of ultrasound as compared with radiography. The sensitivity of ultrasound for diagnosis of limb bone fractures was not high enough and ranged between 55% and 75% depending on the fracture site. The specificity of this diagnostic method had an acceptable range of 62% to 84%. Ultrasound negative prediction value was higher than other indices under study and ranged between 73% and 83%, but its positive prediction value varied between 33.3% and 71%. The κ coefficient for diagnosis of long bone fractures of upper limb (κ = 0.58) and upper limb joints (κ = 0.47) and long bones of lower limb (κ = 0.52) was within the medium range. However, the value for diagnosing fractures of lower limb joints (κ = 0.47) was relatively low. Bedside ultrasound is not a reliable method for diagnosing fractures of upper and lower limb bones compared with radiography. © 2013 Elsevier Inc. All rights reserved.

  20. WE-AB-206-00: Diagnostic QA/QC Hands-On Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The involvement of medical physicists in diagnostic ultrasound imaging service is increasing due to QC and accreditation requirements. The goal of this ultrasound hands-on workshop is to demonstrate quality control (QC) testing in diagnostic ultrasound and to provide updates in ACR ultrasound accreditation requirements. The first half of this workshop will include two presentations reviewing diagnostic ultrasound QA/QC and ACR ultrasound accreditation requirements. The second half of the workshop will include live demonstrations of basic QC tests. An array of ultrasound testing phantoms and ultrasound scanners will be available for attendees to learn diagnostic ultrasound QC in a hands-on environmentmore » with live demonstrations and on-site instructors. The targeted attendees are medical physicists in diagnostic imaging. Learning Objectives: Gain familiarity with common elements of a QA/QC program for diagnostic ultrasound imaging dentify QC tools available for testing diagnostic ultrasound systems and learn how to use these tools Learn ACR ultrasound accreditation requirements Jennifer Walter is an employee of American College of Radiology on Ultrasound Accreditation.« less

  1. Diagnostic Criteria and Accuracy of Categorizing Malignant Thyroid Nodules by Ultrasonography and Ultrasound Elastography with Pathologic Correlation.

    PubMed

    Elsayed, Naglaa Mostafa; Elkhatib, Yasser Atta

    2016-03-01

    Thyroid nodules are a common medical and surgical concern. Thyroid ultrasound (US) is the primary imaging modality used for initial evaluation and assortment of nodules for fine needle aspiration (FNA) cytology/biopsy. Ultrasound elastography (USE) is believed to improve the diagnostic accuracy of US in distinguishing benign from malignant nodules. The aim of the work described here is to evaluate the diagnostic criteria and accuracy of US and USE in the diagnosis of malignant thyroid nodules. A prospective study of 88 patients who have thyroid nodules was performed. US, color Doppler, and USE were evaluated using a Philips iU22 equipped with a 5 to 12 MHz, linear transducer, followed by FNA of the each scanned nodule. The most sensitive US criteria for malignant nodules were a height-to-width ratio greater than one and the absence of a halo sign (sensitivity 0.875% and 1.000%, respectively). The most specific criteria for malignancy were a spiculated/blurred margin and the presence of microcalcifications (specificity 0.968% and 0.888%, respectively). The receiver operating characteristic curve showed that the cutoff diagnostic criteria of malignancy are two US characteristics and an elastography score of 4. The diagnostic accuracy of US for malignant thyroid nodules increases by combining US and USE. © The Author(s) 2015.

  2. Ultrasound in Space Medicine

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Sargsyan, A.E.

    2009-01-01

    This slide presentation reviews the use of ultrasound as a diagnostic tool in microgravity environments. The goals of research in ultrasound usage in space environments are: (1) Determine accuracy of ultrasound in novel clinical conditions. (2) Determine optimal training methodologies, (3) Determine microgravity associated changes and (4) Develop intuitive ultrasound catalog to enhance autonomous medical care. Also uses of Ultrasound technology in terrestrial applications are reviewed.

  3. Conditionally Increased Acoustic Pressures in Nonfetal Diagnostic Ultrasound Examinations Without Contrast Agents: A Preliminary Assessment

    PubMed Central

    Nightingale, Kathryn R.; Church, Charles C.; Harris, Gerald; Wear, Keith A.; Bailey, Michael R.; Carson, Paul L.; Jiang, Hui; Sandstrom, Kurt L.; Szabo, Thomas L.; Ziskin, Marvin C.

    2016-01-01

    The mechanical index (MI) has been used by the US Food and Drug Administration (FDA) since 1992 for regulatory decisions regarding the acoustic output of diagnostic ultrasound equipment. Its formula is based on predictions of acoustic cavitation under specific conditions. Since its implementation over 2 decades ago, new imaging modes have been developed that employ unique beam sequences exploiting higher-order acoustic phenomena, and, concurrently, studies of the bioeffects of ultrasound under a range of imaging scenarios have been conducted. In 2012, the American Institute of Ultrasound in Medicine Technical Standards Committee convened a working group of its Output Standards Subcommittee to examine and report on the potential risks and benefits of the use of conditionally increased acoustic pressures (CIP) under specific diagnostic imaging scenarios. The term “conditionally” is included to indicate that CIP would be considered on a per-patient basis for the duration required to obtain the necessary diagnostic information. This document is a result of that effort. In summary, a fundamental assumption in the MI calculation is the presence of a preexisting gas body. For tissues not known to contain preexisting gas bodies, based on theoretical predications and experimentally reported cavitation thresholds, we find this assumption to be invalid. We thus conclude that exceeding the recommended maximum MI level given in the FDA guidance could be warranted without concern for increased risk of cavitation in these tissues. However, there is limited literature assessing the potential clinical benefit of exceeding the MI guidelines in these tissues. The report proposes a 3-tiered approach for CIP that follows the model for employing elevated output in magnetic resonance imaging and concludes with summary recommendations to facilitate Institutional Review Board (IRB)-monitored clinical studies investigating CIP in specific tissues. PMID:26112617

  4. Diagnostic value of chest ultrasound after cardiac surgery: a comparison with chest X-ray and auscultation.

    PubMed

    Vezzani, Antonella; Manca, Tullio; Brusasco, Claudia; Santori, Gregorio; Valentino, Massimo; Nicolini, Francesco; Molardi, Alberto; Gherli, Tiziano; Corradi, Francesco

    2014-12-01

    Chest auscultation and chest x-ray commonly are used to detect postoperative abnormalities and complications in patients admitted to intensive care after cardiac surgery. The aim of the study was to evaluate whether chest ultrasound represents an effective alternative to bedside chest x-ray to identify early postoperative abnormalities. Diagnostic accuracy of chest auscultation and chest ultrasound were compared in identifying individual abnormalities detected by chest x-ray, considered the reference method. Cardiac surgery intensive care unit. One hundred fifty-one consecutive adult patients undergoing cardiac surgery. All patients included were studied by chest auscultation, ultrasound, and x-ray upon admission to intensive care after cardiac surgery. Six lung pathologic changes and endotracheal tube malposition were found. There was a highly significant correlation between abnormalities detected by chest ultrasound and x-ray (k = 0.90), but a poor correlation between chest auscultation and x-ray abnormalities (k = 0.15). Chest auscultation may help identify endotracheal tube misplacement and tension pneumothorax but it may miss most major abnormalities. Chest ultrasound represents a valid alternative to chest x-ray to detect most postoperative abnormalities and misplacements. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Ultrasound-guided greater occipital nerve blocks and pulsed radiofrequency ablation for diagnosis and treatment of occipital neuralgia.

    PubMed

    Vanderhoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-09-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves.

  6. Ultrasound-Guided Greater Occipital Nerve Blocks and Pulsed Radiofrequency Ablation for Diagnosis and Treatment of Occipital Neuralgia

    PubMed Central

    VanderHoek, Matthew David; Hoang, Hieu T; Goff, Brandon

    2013-01-01

    Occipital neuralgia is a condition manifested by chronic occipital headaches and is thought to be caused by irritation or trauma to the greater occipital nerve (GON). Treatment for occipital neuralgia includes medications, nerve blocks, and pulsed radiofrequency ablation (PRFA). Landmark-guided GON blocks are the mainstay in both the diagnosis and treatment of occipital neuralgia. Ultrasound is being utilized more and more in the chronic pain clinic to guide needle advancement when performing procedures; however, there are no reports of ultrasound used to guide a diagnostic block or PRFA of the GON. We report two cases in which ultrasound was used to guide diagnostic greater occipital nerve blocks and greater occipital nerve pulsed radiofrequency ablation for treatment of occipital neuralgia. Two patients with occipital headaches are presented. In Case 1, ultrasound was used to guide diagnostic blocks of the greater occipital nerves. In Case 2, ultrasound was utilized to guide placement of radiofrequency probes for pulsed radiofrequency ablation of the greater occipital nerves. Both patients reported immediate, significant pain relief, with continued pain relief for several months. Further study is needed to examine any difference in outcomes or morbidity between the traditional landmark method versus ultrasound-guided blocks and pulsed radiofrequency ablation of the greater occipital nerves. PMID:24282778

  7. Diagnostic accuracy of 3D-transvaginal ultrasound in detecting uterine cavity abnormalities in infertile patients as compared with hysteroscopy.

    PubMed

    Apirakviriya, Chayanis; Rungruxsirivorn, Tassawan; Phupong, Vorapong; Wisawasukmongchol, Wirach

    2016-05-01

    To assess diagnostic accuracy of 3D transvaginal ultrasound (3D-TVS) compared with hysteroscopy in detecting uterine cavity abnormalities in infertile women. This prospective observational cross-sectional study was conducted during the July 2013 to December 2013 study period. Sixty-nine women with infertility were enrolled. In the mid to late follicular phase of each subject's menstrual cycle, 3D transvaginal ultrasound and hysteroscopy were performed on the same day in each patient. Hysteroscopy is widely considered to be the gold standard method for investigation of the uterine cavity. Uterine cavity characteristics and abnormalities were recorded. Diagnostic accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and positive and negative likelihood ratios were evaluated. Hysteroscopy was successfully performed in all subjects. Hysteroscopy diagnosed pathological findings in 22 of 69 cases (31.8%). There were 18 endometrial polyps, 3 submucous myomas, and 1 septate uterus. Three-dimensional transvaginal ultrasound in comparison with hysteroscopy had 84.1% diagnostic accuracy, 68.2% sensitivity, 91.5% specificity, 79% positive predictive value, and 86% negative predictive value. The positive and negative likelihood ratios were 8.01 and 0.3, respectively. 3D-TVS successfully detected every case of submucous myoma and uterine anomaly. For detection of endometrial polyps, 3D-TVS had 61.1% sensitivity, 91.5% specificity, and 83.1% diagnostic accuracy. 3D-TVS demonstrated 84.1% diagnostic accuracy for detecting uterine cavity abnormalities in infertile women. A significant percentage of infertile patients had evidence of uterine cavity pathology. Hysteroscopy is, therefore, recommended for accurate detection and diagnosis of uterine cavity lesion. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Abdominal ultrasound (image)

    MedlinePlus

    Abdominal ultrasound is a scanning technique used to image the interior of the abdomen. Like the X-ray, MRI, ... it has its place as a diagnostic tool. Ultrasound scans use high frequency sound waves to produce ...

  9. Prenatal Sex Selection and Missing Girls in China: Evidence from the Diffusion of Diagnostic Ultrasound

    ERIC Educational Resources Information Center

    Chen, Yuyu; Li, Hongbin; Meng, Lingsheng

    2013-01-01

    How much of the increase in sex ratio (male to female) at birth since the early 1980s in China is attributed to increased prenatal sex selection? This question is addressed by exploiting the differential introduction of diagnostic ultrasound in the country during the 1980s, which significantly reduced the cost of prenatal sex selection. We…

  10. Advancing the research agenda for diagnostic error reduction.

    PubMed

    Zwaan, Laura; Schiff, Gordon D; Singh, Hardeep

    2013-10-01

    Diagnostic errors remain an underemphasised and understudied area of patient safety research. We briefly summarise the methods that have been used to conduct research on epidemiology, contributing factors and interventions related to diagnostic error and outline directions for future research. Research methods that have studied epidemiology of diagnostic error provide some estimate on diagnostic error rates. However, there appears to be a large variability in the reported rates due to the heterogeneity of definitions and study methods used. Thus, future methods should focus on obtaining more precise estimates in different settings of care. This would lay the foundation for measuring error rates over time to evaluate improvements. Research methods have studied contributing factors for diagnostic error in both naturalistic and experimental settings. Both approaches have revealed important and complementary information. Newer conceptual models from outside healthcare are needed to advance the depth and rigour of analysis of systems and cognitive insights of causes of error. While the literature has suggested many potentially fruitful interventions for reducing diagnostic errors, most have not been systematically evaluated and/or widely implemented in practice. Research is needed to study promising intervention areas such as enhanced patient involvement in diagnosis, improving diagnosis through the use of electronic tools and identification and reduction of specific diagnostic process 'pitfalls' (eg, failure to conduct appropriate diagnostic evaluation of a breast lump after a 'normal' mammogram). The last decade of research on diagnostic error has made promising steps and laid a foundation for more rigorous methods to advance the field.

  11. Computer-aided diagnostic system for detection of Hashimoto thyroiditis on ultrasound images from a Polish population.

    PubMed

    Acharya, U Rajendra; Sree, S Vinitha; Krishnan, M Muthu Rama; Molinari, Filippo; Zieleźnik, Witold; Bardales, Ricardo H; Witkowska, Agnieszka; Suri, Jasjit S

    2014-02-01

    Computer-aided diagnostic (CAD) techniques aid physicians in better diagnosis of diseases by extracting objective and accurate diagnostic information from medical data. Hashimoto thyroiditis is the most common type of inflammation of the thyroid gland. The inflammation changes the structure of the thyroid tissue, and these changes are reflected as echogenic changes on ultrasound images. In this work, we propose a novel CAD system (a class of systems called ThyroScan) that extracts textural features from a thyroid sonogram and uses them to aid in the detection of Hashimoto thyroiditis. In this paradigm, we extracted grayscale features based on stationary wavelet transform from 232 normal and 294 Hashimoto thyroiditis-affected thyroid ultrasound images obtained from a Polish population. Significant features were selected using a Student t test. The resulting feature vectors were used to build and evaluate the following 4 classifiers using a 10-fold stratified cross-validation technique: support vector machine, decision tree, fuzzy classifier, and K-nearest neighbor. Using 7 significant features that characterized the textural changes in the images, the fuzzy classifier had the highest classification accuracy of 84.6%, sensitivity of 82.8%, specificity of 87.0%, and a positive predictive value of 88.9%. The proposed ThyroScan CAD system uses novel features to noninvasively detect the presence of Hashimoto thyroiditis on ultrasound images. Compared to manual interpretations of ultrasound images, the CAD system offers a more objective interpretation of the nature of the thyroid. The preliminary results presented in this work indicate the possibility of using such a CAD system in a clinical setting after evaluating it with larger databases in multicenter clinical trials.

  12. Modulated Excitation Imaging System for Intravascular Ultrasound.

    PubMed

    Qiu, Weibao; Wang, Xingying; Chen, Yan; Fu, Qiang; Su, Min; Zhang, Lining; Xia, Jingjing; Dai, Jiyan; Zhang, Yaonan; Zheng, Hairong

    2017-08-01

    Advances in methodologies and tools often lead to new insights into cardiovascular diseases. Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides high-resolution images of the vessel wall and atherosclerotic plaques. High-frequency (>50 MHz) ultrasound enables the spatial resolution of IVUS to approach that of optical imaging methods. However, the penetration depth decreases when using higher imaging frequencies due to the greater acoustic attenuation. An imaging method that improves the penetration depth of high-resolution IVUS would, therefore, be of major clinical importance. Modulated excitation imaging is known to allow ultrasound waves to penetrate further. This paper presents an ultrasound system specifically for modulated-excitation-based IVUS imaging. The system incorporates a high-voltage waveform generator and an image processing board that are optimized for IVUS applications. In addition, a miniaturized ultrasound transducer has been constructed using a Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 single crystal to improve the ultrasound characteristics. The results show that the proposed system was able to provide increases of 86.7% in penetration depth and 9.6 dB in the signal-to-noise ratio for 60 MHz IVUS. In vitro tissue samples were also investigated to demonstrate the performance of the system.

  13. CUQI: cardiac ultrasound video quality index

    PubMed Central

    Razaak, Manzoor; Martini, Maria G.

    2016-01-01

    Abstract. Medical images and videos are now increasingly part of modern telecommunication applications, including telemedicinal applications, favored by advancements in video compression and communication technologies. Medical video quality evaluation is essential for modern applications since compression and transmission processes often compromise the video quality. Several state-of-the-art video quality metrics used for quality evaluation assess the perceptual quality of the video. For a medical video, assessing quality in terms of “diagnostic” value rather than “perceptual” quality is more important. We present a diagnostic-quality–oriented video quality metric for quality evaluation of cardiac ultrasound videos. Cardiac ultrasound videos are characterized by rapid repetitive cardiac motions and distinct structural information characteristics that are explored by the proposed metric. Cardiac ultrasound video quality index, the proposed metric, is a full reference metric and uses the motion and edge information of the cardiac ultrasound video to evaluate the video quality. The metric was evaluated for its performance in approximating the quality of cardiac ultrasound videos by testing its correlation with the subjective scores of medical experts. The results of our tests showed that the metric has high correlation with medical expert opinions and in several cases outperforms the state-of-the-art video quality metrics considered in our tests. PMID:27014715

  14. The Thrombolytic Effect of Diagnostic Ultrasound-Induced Microbubble Cavitation in Acute Carotid Thromboembolism.

    PubMed

    Porter, Thomas R; Xie, Feng; Lof, John; Powers, Jeffry; Vignon, Francois; Shi, William; White, Matthew

    2017-08-01

    Acute ischemic stroke is often due to thromboembolism forming over ruptured atherosclerotic plaque in the carotid artery (CA). The presence of intraluminal CA thrombus is associated with a high risk of thromboembolic cerebral ischemic events. The cavitation induced by diagnostic ultrasound high mechanical index (MI) impulses applied locally during a commercially available intravenous microbubble infusion has dissolved intravascular thrombi, especially when using longer pulse durations. The beneficial effects of this in acute carotid thromboembolism is not known. An oversized balloon injury was created in the distal extracranial common CA of 38 porcine carotid arteries. After this, a 70% to 80% stenosis was created in the mid common CA proximal to the injury site using partial balloon inflation. Acute thrombotic CA occlusions were created just distal to the balloon catheter by injecting fresh autologous arterial thrombi. After angiographic documentation of occlusion, the common carotid thrombosis was treated with either diagnostic low MI imaging alone (0.2 MI; Philips S5-1) applied through a tissue mimicking phantom (TMP) or intermittent diagnostic high MI stable cavitation (SC)-inducing impulses with a longer pulse duration (0.8 MI; 20 microseconds' pulse duration) or inertial cavitation (IC) impulses (1.2 MI; 20 microseconds' pulse duration). All treatment times were for 30 minutes. Intravenous ultrasound contrast (2% Definity; Lantheus Medical) was infused during the treatment period. Angiographic recanalization in 4 intracranial and extracranial vessels downstream from the CA occlusion (auricular, ascending pharyngeal, buccinator, and maxillary) was assessed with both magnetic resonance 3-dimensional time-of-flight and phase contrast angiography. All magnetic resonance images were interpreted by an independent neuroradiologist using the thrombolysis in cerebral infarction (TICI) scoring system. By phase contrast angiography, at least mild recanalization (TICI 2a

  15. [Occupational risk caused by ultrasound in medicine].

    PubMed

    Magnavita, N; Fileni, A

    1994-01-01

    Ultrasound (US) is extensively used in the medical field for its therapeutic and diagnostic applications. US units are commonly found in hospitals and clinics of all sizes, and a growing number of medical staff such as doctors and nurses are exposed to hand-transmitted ultrasound waves in their work-place. This review discusses the available information on the occupational risk of the operators using diagnostic and therapeutic ultrasound devices. The new occupational groups of medical workers who use ultrasound (diagnostic, surgical, sterilization, and physiotherapeutic) equipment are exposed to contact ultrasound waves. Contact ultrasound -- i.e., no airspace between the energy source and the biological tissue -- is much more hazardous than exposure to airborne ultrasound because air transmits less than one percent of this kind of energy. In spite of being a non-ionizing radiation with an excellent safety record, US is likely to induce some changes in the exposed organ. Recent Russian studies indicate that the hospital workers who have been long exposed to ultrasound at work may develop neurovascular dose-dependent disorders of the peripheral nervous system in the form of the angiodystonic syndrome of vegetative polyneuritis of the hands. In some Scandinavian studies, female physiotherapists (exposed to ultrasound and short waves) exhibit increased rate of spontaneous abortions and congenital malformations, but no definite conclusion can be drawn on the basis of these results alone. Trends in exposure for diagnostic ultrasound equipment over the last two decades show a continuous increase. While there is no reason for alarm, there is a growing need for avoiding unnecessary exposure to medical workers.

  16. Displacement analysis of diagnostic ultrasound backscatter: A methodology for characterizing, modeling, and monitoring high intensity focused ultrasound therapy

    PubMed Central

    Speyer, Gavriel; Kaczkowski, Peter J.; Brayman, Andrew A.; Crum, Lawrence A.

    2010-01-01

    Accurate monitoring of high intensity focused ultrasound (HIFU) therapy is critical for widespread clinical use. Pulse-echo diagnostic ultrasound (DU) is known to exhibit temperature sensitivity through relative changes in time-of-flight between two sets of radio frequency (RF) backscatter measurements, one acquired before and one after therapy. These relative displacements, combined with knowledge of the exposure protocol, material properties, heat transfer, and measurement noise statistics, provide a natural framework for estimating the administered heating, and thereby therapy. The proposed method, termed displacement analysis, identifies the relative displacements using linearly independent displacement patterns, or modes, each induced by a particular time-varying heating applied during the exposure interval. These heating modes are themselves linearly independent. This relationship implies that a linear combination of displacement modes aligning the DU measurements is the response to an identical linear combination of heating modes, providing the heating estimate. Furthermore, the accuracy of coefficient estimates in this approximation is determined a priori, characterizing heating, thermal dose, and temperature estimates for any given protocol. Predicted performance is validated using simulations and experiments in alginate gel phantoms. Evidence for a spatially distributed interaction between temperature and time-of-flight changes is presented. PMID:20649206

  17. New heights in ultrasound: first report of spinal ultrasound from the international space station.

    PubMed

    Marshburn, Thomas H; Hadfield, Chris A; Sargsyan, Ashot E; Garcia, Kathleen; Ebert, Douglas; Dulchavsky, Scott A

    2014-01-01

    Changes in the lumbar and sacral spine occur with exposure to microgravity in astronauts; monitoring these alterations without radiographic capabilities on the International Space Station (ISS) requires novel diagnostic solutions to be developed. We evaluated the ability of point-of-care ultrasound, performed by nonexpert-operator astronauts, to provide accurate anatomic information about the spine in long-duration crewmembers in space. Astronauts received brief ultrasound instruction on the ground and performed in-flight cervical and lumbosacral ultrasound examinations using just-in-time training and remote expert tele-ultrasound guidance. Ultrasound examinations on the ISS used a portable ultrasound device with real-time communication/guidance with ground experts in Mission Control. The crewmembers were able to obtain diagnostic-quality examinations of the cervical and lumbar spine that would provide essential information about acute or chronic changes to the spine. Spinal ultrasound provides essential anatomic information in the cervical and lumbosacral spine; this technique may be extensible to point-of-care situations in emergency departments or resource-challenged areas without direct access to additional radiologic capabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Ultrasound criteria and guided fine-needle aspiration diagnostic yields in small animal peritoneal, mesenteric and omental disease.

    PubMed

    Feeney, Daniel A; Ober, Christopher P; Snyder, Laura A; Hill, Sara A; Jessen, Carl R

    2013-01-01

    Peritoneal, mesenteric, and omental diseases are important causes of morbidity and mortality in humans and animals, although information in the veterinary literature is limited. The purposes of this retrospective study were to determine whether objectively applied ultrasound interpretive criteria are statistically useful in differentiating among cytologically defined normal, inflammatory, and neoplastic peritoneal conditions in dogs and cats. A second goal was to determine the cytologically interpretable yield on ultrasound-guided, fine-needle sampling of peritoneal, mesenteric, or omental structures. Sonographic criteria agreed upon by the authors were retrospectively and independently applied by two radiologists to the available ultrasound images without knowledge of the cytologic diagnosis and statistically compared to the ultrasound-guided, fine-needle aspiration cytologic interpretations. A total of 72 dogs and 49 cats with abdominal peritoneal, mesenteric, or omental (peritoneal) surface or effusive disease and 17 dogs and 3 cats with no cytologic evidence of inflammation or neoplasia were included. The optimized, ultrasound criteria-based statistical model created independently for each radiologist yielded an equation-based diagnostic category placement accuracy of 63.2-69.9% across the two involved radiologists. Regional organ-associated masses or nodules as well as aggregated bowel and peritoneal thickening were more associated with peritoneal neoplasia whereas localized, severely complex fluid collections were more associated with inflammatory peritoneal disease. The cytologically interpretable yield for ultrasound-guided fine-needle sampling was 72.3% with no difference between species, making this a worthwhile clinical procedure. © 2013 Veterinary Radiology & Ultrasound.

  19. Ultrasound in medical education: listening to the echoes of the past to shape a vision for the future.

    PubMed

    Lane, N; Lahham, S; Joseph, L; Bahner, D P; Fox, J C

    2015-10-01

    Ultrasound in medical education has seen a tremendous growth over the last 10-20 years but ultrasound technology has been around for hundreds of years and sound has an even longer scientific history. The development of using sound and ultrasound to understand our body and our surroundings has been a rich part of human history. From the development of materials to produce piezoelectric conductors, ultrasound has been used and improved in many industries and medical specialties. As diagnostic medical ultrasound has improved its resolution and become more portable, various specialties from radiology, cardiology, obstetrics and more recently emergency, critical care and proceduralists have found the added benefits of using ultrasound to safely help patients. The past advancements in technology have established the scaffold for the possibilities of diagnostic ultrasound's use in the present and future. A few medical educators have integrated ultrasound into medical school while a wealth of content exists online for learning ultrasound. Twenty-first century learners prefer blended learning where material can be reviewed online and personalize the education on their own time frame. This material combined with hands-on experience and mentorship can be used to develop learners' aptitude in ultrasound. As educators embrace this ultrasound technology and integrate it throughout the medical education journey, collaboration across specialties will synthesize a clear path forward when needs and resources are paired with vision and a strategic plan.

  20. [Diagnostic performance of biliary ultrasound vs. magnetic resonance cholangiogram in patients with recurrent biliary obstruction.].

    PubMed

    Chávez-Valencia, V; Espinosa-Ortega, H F; Espinoza-Peralta, D; Arce-Salinas, C A

    2009-01-01

    Obstructive jaundice in patients with previous cholecystectomy requires a precise diagnosis. In the diagnostic algorithm, biliary ultrasound (BUS) and magnetic resonance cholangiogram (MRC) are used, although the accuracy of each method is unknown in our setting. No previous comparison of US and MRC in subjects with cholecystectomy has been made. To determine diagnostic accuracy of BUS and MRC in patients with recurrent biliary obstruction. Patients with endoscopic retrograde cholangiopacreatography (ERCP) demonstrating recurrent biliary obstruction by stones were included. All patients underwent BUS and MRC. We determined the diagnostic performance of each image study compared with ERCP. Twenty-seven patients with a mean age of 62.9 +/- 17.3 years-old were included. Sensitivity and specificity of BUS were 0.12 and 0.58, respectively. Figures for MRC were 0.88 and 0.82. Diagnostic agreement between ERCP and MRC was k= 0.66 whereas BUS had a k of only 0.26. MRC had good diagnostic performance for recurrent choledocolithiasis. BUS demonstrated lower accuracy compared with previous reports, so should not be considered in the initial approach of recurrent choledocus obstruction.

  1. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey

    PubMed Central

    Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system. PMID:29687000

  2. Machine Learning in Ultrasound Computer-Aided Diagnostic Systems: A Survey.

    PubMed

    Huang, Qinghua; Zhang, Fan; Li, Xuelong

    2018-01-01

    The ultrasound imaging is one of the most common schemes to detect diseases in the clinical practice. There are many advantages of ultrasound imaging such as safety, convenience, and low cost. However, reading ultrasound imaging is not easy. To support the diagnosis of clinicians and reduce the load of doctors, many ultrasound computer-aided diagnosis (CAD) systems are proposed. In recent years, the success of deep learning in the image classification and segmentation led to more and more scholars realizing the potential of performance improvement brought by utilizing the deep learning in the ultrasound CAD system. This paper summarized the research which focuses on the ultrasound CAD system utilizing machine learning technology in recent years. This study divided the ultrasound CAD system into two categories. One is the traditional ultrasound CAD system which employed the manmade feature and the other is the deep learning ultrasound CAD system. The major feature and the classifier employed by the traditional ultrasound CAD system are introduced. As for the deep learning ultrasound CAD, newest applications are summarized. This paper will be useful for researchers who focus on the ultrasound CAD system.

  3. Point-of-Care Ultrasound: A Trend in Health Care.

    PubMed

    Buerger, Anita M; Clark, Kevin R

    2017-11-01

    To discuss the current and growing use of point-of-care (POC) ultrasound in the management and care of patients. Several electronic research databases were searched to find articles that emphasized the use of POC ultrasound by health care providers who manage and treat critically ill or injured patients. Thirty-five relevant peer-reviewed journal articles were selected for this literature review. Common themes identified in the literature included the use of POC ultrasound in emergency medicine, military medicine, and remote care; comparison of POC ultrasound to other medical imaging modalities; investigation of the education and training required for nonimaging health care professionals who perform POC ultrasound in their practices; and discussion of the financial implications and limitations of POC ultrasound. POC ultrasound provides clinicians with real-time information to better manage and treat critically ill or injured patients in emergency medicine, military medicine, and remote care. In addition to providing immediate bedside diagnostic information, use of POC ultrasound has increased because of concerns regarding radiation protection. Finally, the expansion of POC ultrasound to other specialty areas requires nonimaging health care professionals to perform bedside ultrasound examinations and interpret the resulting images. Because POC ultrasound is user-dependent, adequate training is essential for all who perform and interpret the examinations. Research involving POC ultrasound will continue as innovations and confidence in ultrasound applications advance. Future research should continue to examine the broad use of POC ultrasound in patient care and management. ©2017 American Society of Radiologic Technologists.

  4. Comparison of Inter-Observer Variability and Diagnostic Performance of the Fifth Edition of BI-RADS for Breast Ultrasound of Static versus Video Images.

    PubMed

    Youk, Ji Hyun; Jung, Inkyung; Yoon, Jung Hyun; Kim, Sung Hun; Kim, You Me; Lee, Eun Hye; Jeong, Sun Hye; Kim, Min Jung

    2016-09-01

    Our aim was to compare the inter-observer variability and diagnostic performance of the Breast Imaging Reporting and Data System (BI-RADS) lexicon for breast ultrasound of static and video images. Ninety-nine breast masses visible on ultrasound examination from 95 women 19-81 y of age at five institutions were enrolled in this study. They were scheduled to undergo biopsy or surgery or had been stable for at least 2 y of ultrasound follow-up after benign biopsy results or typically benign findings. For each mass, representative long- and short-axis static ultrasound images were acquired; real-time long- and short-axis B-mode video images through the mass area were separately saved as cine clips. Each image was reviewed independently by five radiologists who were asked to classify ultrasound features according to the fifth edition of the BI-RADS lexicon. Inter-observer variability was assessed using kappa (κ) statistics. Diagnostic performance on static and video images was compared using the area under the receiver operating characteristic curve. No significant difference was found in κ values between static and video images for all descriptors, although κ values of video images were higher than those of static images for shape, orientation, margin and calcifications. After receiver operating characteristic curve analysis, the video images (0.83, range: 0.77-0.87) had higher areas under the curve than the static images (0.80, range: 0.75-0.83; p = 0.08). Inter-observer variability and diagnostic performance of video images was similar to that of static images on breast ultrasonography according to the new edition of BI-RADS. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  5. Recent advances in diagnostic microbiology.

    PubMed

    Bravo, Lulette Tricia C; Procop, Gary W

    2009-07-01

    The past decade has seen a surge in the development of a variety of molecular diagnostics designed to rapidly identify or characterize medically important microorganisms. We briefly review important advances in molecular microbiology, and then discuss specific assays that have been implemented in clinical microbiology laboratories throughout the country. We also discuss emerging methods and technologies that will soon be more widely used for the prompt and accurate detection of the agents of infectious diseases.

  6. Diagnostic accuracy of central venous catheter confirmation by bedside ultrasound versus chest radiography in critically ill patients: A systematic review and meta-analysis

    PubMed Central

    Ablordeppey, Enyo A.; Drewry, Anne M.; Beyer, Alexander B.; Theodoro, Daniel L.; Fowler, Susan A.; Fuller, Brian M.; Carpenter, Christopher R.

    2016-01-01

    Objective We performed a systematic review and meta-analysis to examine the accuracy of bedside ultrasound for confirmation of central venous catheter position and exclusion of pneumothorax compared to chest radiography. Data Sources PubMed, EMBASE, Cochrane Central Register of Controlled Trials, reference lists, conference proceedings and ClinicalTrials.gov Study Selection Articles and abstracts describing the diagnostic accuracy of bedside ultrasound compared with chest radiography for confirmation of central venous catheters in sufficient detail to reconstruct 2×2 contingency tables were reviewed. Primary outcomes included the accuracy of confirming catheter positioning and detecting a pneumothorax. Secondary outcomes included feasibility, inter-rater reliability, and efficiency to complete bedside ultrasound confirmation of central venous catheter position. Data Extraction Investigators abstracted study details including research design and sonographic imaging technique to detect catheter malposition and procedure-related pneumothorax. Diagnostic accuracy measures included pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Data Synthesis 15 studies with 1553 central venous catheter placements were identified with a pooled sensitivity and specificity of catheter malposition by ultrasound of 0.82 [0.77, 0.86] and 0.98 [0.97, 0.99] respectively. The pooled positive and negative likelihood ratios of catheter malposition by ultrasound were 31.12 [14.72, 65.78] and 0.25 [0.13, 0.47]. The sensitivity and specificity of ultrasound for pneumothorax detection was nearly 100% in the participating studies. Bedside ultrasound reduced mean central venous catheter confirmation time by 58.3 minutes. Risk of bias and clinical heterogeneity in the studies were high. Conclusions Bedside ultrasound is faster than radiography at identifying pneumothorax after central venous catheter insertion. When a central venous catheter malposition

  7. Diagnostic Accuracy of Central Venous Catheter Confirmation by Bedside Ultrasound Versus Chest Radiography in Critically Ill Patients: A Systematic Review and Meta-Analysis.

    PubMed

    Ablordeppey, Enyo A; Drewry, Anne M; Beyer, Alexander B; Theodoro, Daniel L; Fowler, Susan A; Fuller, Brian M; Carpenter, Christopher R

    2017-04-01

    We performed a systematic review and meta-analysis to examine the accuracy of bedside ultrasound for confirmation of central venous catheter position and exclusion of pneumothorax compared with chest radiography. PubMed, Embase, Cochrane Central Register of Controlled Trials, reference lists, conference proceedings and ClinicalTrials.gov. Articles and abstracts describing the diagnostic accuracy of bedside ultrasound compared with chest radiography for confirmation of central venous catheters in sufficient detail to reconstruct 2 × 2 contingency tables were reviewed. Primary outcomes included the accuracy of confirming catheter positioning and detecting a pneumothorax. Secondary outcomes included feasibility, interrater reliability, and efficiency to complete bedside ultrasound confirmation of central venous catheter position. Investigators abstracted study details including research design and sonographic imaging technique to detect catheter malposition and procedure-related pneumothorax. Diagnostic accuracy measures included pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio. Fifteen studies with 1,553 central venous catheter placements were identified with a pooled sensitivity and specificity of catheter malposition by ultrasound of 0.82 (0.77-0.86) and 0.98 (0.97-0.99), respectively. The pooled positive and negative likelihood ratios of catheter malposition by ultrasound were 31.12 (14.72-65.78) and 0.25 (0.13-0.47). The sensitivity and specificity of ultrasound for pneumothorax detection was nearly 100% in the participating studies. Bedside ultrasound reduced mean central venous catheter confirmation time by 58.3 minutes. Risk of bias and clinical heterogeneity in the studies were high. Bedside ultrasound is faster than radiography at identifying pneumothorax after central venous catheter insertion. When a central venous catheter malposition exists, bedside ultrasound will identify four out of every five earlier than

  8. CT and Ultrasound Guided Stereotactic High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Wood, Bradford J.; Yanof, J.; Frenkel, V.; Viswanathan, A.; Dromi, S.; Oh, K.; Kruecker, J.; Bauer, C.; Seip, R.; Kam, A.; Li, K. C. P.

    2006-05-01

    To demonstrate the feasibility of CT and B-mode Ultrasound (US) targeted HIFU, a prototype coaxial focused ultrasound transducer was registered and integrated to a CT scanner. CT and diagnostic ultrasound were used for HIFU targeting and monitoring, with the goals of both thermal ablation and non-thermal enhanced drug delivery. A 1 megahertz coaxial ultrasound transducer was custom fabricated and attached to a passive position-sensing arm and an active six degree-of-freedom robotic arm via a CT stereotactic frame. The outer therapeutic transducer with a 10 cm fixed focal zone was coaxially mounted to an inner diagnostic US transducer (2-4 megahertz, Philips Medical Systems). This coaxial US transducer was connected to a modified commercial focused ultrasound generator (Focus Surgery, Indianapolis, IN) with a maximum total acoustic power of 100 watts. This pre-clinical paradigm was tested for ability to heat tissue in phantoms with monitoring and navigation from CT and live US. The feasibility of navigation via image fusion of CT with other modalities such as PET and MRI was demonstrated. Heated water phantoms were tested for correlation between CT numbers and temperature (for ablation monitoring). The prototype transducer and integrated CT/US imaging system enabled simultaneous multimodality imaging and therapy. Pre-clinical phantom models validated the treatment paradigm and demonstrated integrated multimodality guidance and treatment monitoring. Temperature changes during phantom cooling corresponded to CT number changes. Contrast enhanced or non-enhanced CT numbers may potentially be used to monitor thermal ablation with HIFU. Integrated CT, diagnostic US, and therapeutic focused ultrasound bridges a gap between diagnosis and therapy. Preliminary results show that the multimodality system may represent a relatively inexpensive, accessible, and simple method of both targeting and monitoring HIFU effects. Small animal pre-clinical models may be translated to large

  9. Formulation and acoustic studies of a new phase-shift agent for diagnostic and therapeutic ultrasound.

    PubMed

    Sheeran, Paul S; Luois, Samantha; Dayton, Paul A; Matsunaga, Terry O

    2011-09-06

    Recent efforts in the area of acoustic droplet vaporization with the objective of designing extravascular ultrasound contrast agents has led to the development of stabilized, lipid-encapsulated nanodroplets of the highly volatile compound decafluorobutane (DFB). We developed two methods of generating DFB droplets, the first of which involves condensing DFB gas (boiling point from -1.1 to -2 °C) followed by extrusion with a lipid formulation in HEPES buffer. Acoustic droplet vaporization of micrometer-sized lipid-coated droplets at diagnostic ultrasound frequencies and mechanical indices were confirmed optically. In our second formulation methodology, we demonstrate the formulation of submicrometer-sized lipid-coated nanodroplets based upon condensation of preformed microbubbles containing DFB. The droplets are routinely in the 200-300 nm range and yield microbubbles on the order of 1-5 μm once vaporized, consistent with ideal gas law expansion predictions. The simple and effective nature of this methodology allows for the development of a variety of different formulations that can be used for imaging, drug and gene delivery, and therapy. This study is the first to our knowledge to demonstrate both a method of generating ADV agents by microbubble condensation and formulation of primarily submicrometer droplets of decafluorobutane that remain stable at physiological temperatures. Finally, activation of DFB nanodroplets is demonstrated using pressures within the FDA guidelines for diagnostic imaging, which may minimize the potential for bioeffects in humans. This methodology offers a new means of developing extravascular contrast agents for diagnostic and therapeutic applications. © 2011 American Chemical Society

  10. Ultrasound-guided synovial biopsy

    PubMed Central

    Sitt, Jacqueline C M; Wong, Priscilla

    2016-01-01

    Ultrasound-guided needle biopsy of synovium is an increasingly performed procedure with a high diagnostic yield. In this review, we discuss the normal synovium, as well as the indications, technique, tissue handling and clinical applications of ultrasound-guided synovial biopsy. PMID:26581578

  11. Ultrasound Imaging System Video

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this video, astronaut Peggy Whitson uses the Human Research Facility (HRF) Ultrasound Imaging System in the Destiny Laboratory of the International Space Station (ISS) to image her own heart. The Ultrasound Imaging System provides three-dimension image enlargement of the heart and other organs, muscles, and blood vessels. It is capable of high resolution imaging in a wide range of applications, both research and diagnostic, such as Echocardiography (ultrasound of the heart), abdominal, vascular, gynecological, muscle, tendon, and transcranial ultrasound.

  12. Fincke performs an ultrasound bone scan on Padalka using the ADUM in the U.S. Lab during Expedition 9

    NASA Image and Video Library

    2004-08-10

    ISS009-E-17439 (10 August 2004) --- Astronaut Edward M. (Mike) Fincke (foreground), Expedition 9 NASA ISS science officer and flight engineer, performs an ultrasound bone scan on cosmonaut Gennady I. Padalka, commander representing Russia's Federal Space Agency. The two are using the Advanced Diagnostic Ultrasound in Micro-G (ADUM) in the Destiny laboratory of the International Space Station (ISS). The ADUM keyboard, flat screen display and front control panel are visible at right.

  13. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    PubMed

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  14. Non-invasive assessment of negative pressure wound therapy using high frequency diagnostic ultrasound: oedema reduction and new tissue accumulation.

    PubMed

    Young, Stephen R; Hampton, Sylvie; Martin, Robin

    2013-08-01

    Tissue oedema plays an important role in the pathology of chronic and traumatic wounds. Negative pressure wound therapy (NPWT) is thought to contribute to active oedema reduction, yet few studies have showed this effect. In this study, high frequency diagnostic ultrasound at 20 MHz with an axial resolution of 60 µm was used to assess the effect of NPWT at - 80 mmHg on pressure ulcers and the surrounding tissue. Wounds were monitored in four patients over a 3-month period during which changes in oedema and wound bed thickness (granulation tissue) were measured non-invasively. The results showed a rapid reduction of periwound tissue oedema in all patients with levels falling by a mean of 43% after 4 days of therapy. A 20% increase in the thickness of the wound bed was observed after 7 days due to new granulation tissue formation. Ultrasound scans through the in situ gauze NPWT filler also revealed the existence of macrodeformation in the tissue produced by the negative pressure. These preliminary studies suggest that non-invasive assessment using high frequency diagnostic ultrasound could be a valuable tool in clinical studies of NPWT. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.

  15. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-19

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and--most importantly--use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density.more » Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.« less

  16. Do Anesthetic Techniques Influence the Threshold for Glomerular Capillary Hemorrhage Induced in Rats by Contrast-Enhanced Diagnostic Ultrasound?

    PubMed

    Miller, Douglas L; Lu, Xiaofang; Fabiilli, Mario; Dou, Chunyan

    2016-02-01

    Glomerular capillary hemorrhage can be induced by ultrasonic cavitation during contrast-enhanced diagnostic ultrasound (US) exposure, an important nonthermal US bioeffect. Recent studies of pulmonary US exposure have shown that thresholds for another nonthermal bioeffect of US, pulmonary capillary hemorrhage, is strongly influenced by whether xylazine is included in the specific anesthetic technique. The objective of this study was to determine the influence of xylazine on contrast-enhanced diagnostic US-induced glomerular capillary hemorrhage. In this study, anesthesia with ketamine only was compared to ketamine plus xylazine for induction of glomerular capillary hemorrhage in rats by 1.6-MHz intermittent diagnostic US with a microsphere contrast agent (similar to Definity; Lantheus Medical Imaging, Inc, North Billerica, MA). Glomerular capillary hemorrhage was measured as a percentage of glomeruli with hemorrhage found in histologic sections for groups of rats scanned at different peak rarefactional pressure amplitudes. There was a significant difference between the magnitude of the glomerular capillary hemorrhage between the anesthetics at 2.3 MPa, with 45.6% hemorrhage for ketamine only, increasing to 63.2% hemorrhage for ketamine plus xylazine (P < .001). However, the thresholds for the two anesthetic methods were virtually identical at 1.0 MPa, based on linear regression of the exposure response data. Thresholds for contrast-enhanced diagnostic US-induced injury of the microvasculature appear to be minimally affected by anesthetic methods. © 2016 by the American Institute of Ultrasound in Medicine.

  17. Diagnostic yield of endobronchial ultrasound-guided transbronchial needle aspiration for mediastinal staging in lung cancer*

    PubMed Central

    Fernández-Bussy, Sebastián; Labarca, Gonzalo; Canals, Sofia; Caviedes, Iván; Folch, Erik; Majid, Adnan

    2015-01-01

    OBJECTIVE: Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive diagnostic test with a high diagnostic yield for suspicious central pulmonary lesions and for mediastinal lymph node staging. The main objective of this study was to describe the diagnostic yield of EBUS-TBNA for mediastinal lymph node staging in patients with suspected lung cancer. METHODS: Prospective study of patients undergoing EBUS-TBNA for diagnosis. Patients ≥ 18 years of age were recruited between July of 2010 and August of 2013. We recorded demographic variables, radiological characteristics provided by axial CT of the chest, location of the lesion in the mediastinum as per the International Association for the Study of Lung Cancer classification, and definitive diagnostic result (EBUS with a diagnostic biopsy or a definitive diagnostic method). RESULTS: Our analysis included 354 biopsies, from 145 patients. Of those 145 patients, 54.48% were male. The mean age was 63.75 years. The mean lymph node size was 15.03 mm, and 90 lymph nodes were smaller than 10.0 mm. The EBUS-TBNA method showed a sensitivity of 91.17%, a specificity of 100.0%, and a negative predictive value of 92.9%. The most common histological diagnosis was adenocarcinoma. CONCLUSIONS: EBUS-TBNA is a diagnostic tool that yields satisfactory results in the staging of neoplastic mediastinal lesions. PMID:26176519

  18. Technical Advances in Endoscopic Ultrasound (EUS)-Guided Tissue Acquisition for Pancreatic Cancers: How Can We Get the Best Results with EUS-Guided Fine Needle Aspiration?

    PubMed Central

    Kedia, Prashant; Gaidhane, Monica

    2013-01-01

    Endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) is one of the least invasive and most effective modality in diagnosing pancreatic adenocarcinoma in solid pancreatic lesions, with a higher diagnostic accuracy than cystic tumors. EUS-FNA has been shown to detect tumors less than 3 mm, due to high spatial resolution allowing the detection of very small lesions and vascular invasion, particularly in the pancreatic head and neck, which may not be detected on transverse computed tomography. Furthermore, this minimally invasive procedure is often ideal in the endoscopic procurement of tissue in patients with unresectable tumors. While EUS-FNA has been increasingly used as a diagnostic tool, most studies have collectively looked at all primary pancreatic solid lesions, including lymphomas and pancreatic neuroendocrine neoplasms, whereas very few studies have examined the diagnostic utility of EUS-FNA of pancreatic ductal carcinoma only. As with any novel and advanced endoscopic procedure that may incorporate several practices and approaches, endoscopists have adopted diverse techniques to improve the tissue procurement practice and increase diagnostic accuracy. In this article, we present a review of literature to date and discuss currently practiced EUS-FNA technique, including indications, technical details, equipment, patient selection, and diagnostic accuracy. PMID:24143320

  19. Comparison of Oral Contrast-Enhanced Transabdominal Ultrasound Imaging With Transverse Contrast-Enhanced Computed Tomography in Preoperative Tumor Staging of Advanced Gastric Carcinoma.

    PubMed

    He, Xuemei; Sun, Jing; Huang, Xiaoling; Zeng, Chun; Ge, Yinggang; Zhang, Jun; Wu, Jingxian

    2017-12-01

    This study assessed the diagnostic performance of transabdominal oral contrast-enhanced ultrasound (US) imaging for preoperative tumor staging of advanced gastric carcinoma by comparing it with transverse contrast-enhanced computed tomography (CT). This retrospective study included 42 patients with advanced gastric cancer who underwent laparoscopy, radical surgery, or palliative surgery because of serious complications and had a body mass index of less than 25 kg/m 2 . A cereal-based oral contrast agent was used for transabdominal oral contrast-enhanced US. Retrospective analyses were conducted using preoperative tumor staging data acquired by either transabdominal oral contrast-enhanced US or transverse contrast-enhanced CT. Both contrast-enhanced US and contrast-enhanced CT examinations were reviewed by 2 experienced radiologists independently for preoperative tumor staging according to the seventh edition of the TNM classification. The accuracy, sensitivity, and specificity were calculated by comparing the results of contrast-enhanced US and contrast-enhanced CT with pathologic findings. The overall accuracies of the imaging modalities were compared by the McNemar test. No significant difference was noted in the overall accuracy of transabdominal oral contrast-enhanced US (86% [36 of 42]) and transverse contrast-enhanced CT (83% [35 of 42] P > .999). For stage T2 to T4 gastric cancer, the accuracies of transabdominal oral contrast-enhanced US were 88%, 86%, and 98%, respectively, and those of transverse contrast-enhanced CT were 93%, 83%, and 90%. The overall accuracy of transabdominal oral contrast-enhanced US was comparable with that of transverse contrast-enhanced CT for preoperative tumor staging of advanced gastric cancer. © 2017 by the American Institute of Ultrasound in Medicine.

  20. Technical Note: Development of a combined molecular breast imaging/ultrasound system for diagnostic evaluation of MBI-detected lesions.

    PubMed

    O'Connor, Michael K; Morrow, Melissa M; Tran, Thuy; Hruska, Carrie B; Conners, Amy L; Hunt, Katie N

    2017-02-01

    The purpose of this study was to perform a pilot evaluation of an integrated molecular breast imaging/ultrasound (MBI/US) system designed to enable, in real-time, the registration of US to MBI and diagnostic evaluation of breast lesions detected on MBI. The MBI/US system was constructed by modifying an existing dual-head cadmium zinc telluride (CZT)-based MBI gamma camera. The upper MBI detector head was replaced with a mesh panel, which allowed an ultrasound probe to access the breast. An optical tracking system was used to monitor the location of the ultrasound transducer, referenced to the MBI detector. The lesion depth at which ultrasound was targeted was estimated from analysis of previously acquired dual-head MBI datasets. A software tool was developed to project the US field of view onto the current MBI image. Correlation of lesion location between both modalities with real-time MBI/US scanning was confirmed in a breast phantom model and assessed in 12 patients with a breast lesion detected on MBI. Combined MBI/US scanning allowed for registration of lesions detected on US and MBI as validated in phantom experiments. In patient studies, successful registration was achieved in 8 of 12 (67%) patients, with complete registration achieved in seven and partial registration achieved in one patient. In 4 of 12 (37%) patients, lesion registration was not achieved, partially attributed to uncertainty in lesion depth estimates from MBI. The MBI/US system enabled successful registration of US to MBI in over half of patients studied in this pilot evaluation. Future studies are needed to determine if real-time, registered US imaging of MBI-detected lesions may obviate the need to proceed to more expensive procedures such as contrast-enhanced breast MRI for diagnostic workup or biopsy of MBI findings. © 2016 American Association of Physicists in Medicine.

  1. Advances in sarcoma diagnostics and treatment

    PubMed Central

    Dancsok, Amanda R; Asleh-Aburaya, Karama; Nielsen, Torsten O

    2017-01-01

    The heterogeneity of sarcomas with regard to molecular genesis, histology, clinical characteristics, and response to treatment makes management of these rare yet diverse neoplasms particularly challenging. This review encompasses recent developments in sarcoma diagnostics and treatment, including cytotoxic, targeted, epigenetic, and immune therapy agents. In the past year, groups internationally explored the impact of adding mandatory molecular testing to histological diagnosis, reporting some changes in diagnosis and/or management; however, the impact on outcomes could not be adequately assessed. Transcriptome sequencing techniques have brought forward new diagnostic tools for identifying fusions and/or characterizing unclassified entities. Next-generation sequencing and advanced molecular techniques were also applied to identify potential targets for directed and epigenetic therapy, where preclinical studies reported results for agents active within the receptor tyrosine kinase, mTOR, Notch, Wnt, Hedgehog, Hsp90, and MDM2 signaling networks. At the level of clinical practice, modest developments were seen for some sarcoma subtypes in conventional chemotherapy and in therapies targeting the pathways activated by various receptor tyrosine kinases. In the burgeoning field of immune therapy, sarcoma work is in its infancy; however, elaborate protocols for immune stimulation are being explored, and checkpoint blockade agents advance from preclinical models to clinical studies. PMID:27732970

  2. Diagnostic ultrasound exposure in man.

    PubMed

    Gramiak, R

    1975-09-01

    In his review of the AAPM statement on ultrasound, the author feels that allowing "some" research or demonstration on normal persons in the face of cautionary statements on as yet unknown side effects is an inconsistent position. The use of videotapes and the development of simulators hacked by data banks are offered in place of tissue phantoms.

  3. Pregnant patients' risk perception of prenatal test results with uncertain fetal clinical significance: ultrasound versus advanced genetic testing.

    PubMed

    Richards, Elliott G; Sangi-Haghpeykar, Haleh; McGuire, Amy L; Van den Veyver, Ignatia B; Fruhman, Gary

    2015-12-01

    A common concern of utilizing prenatal advanced genetic testing is that a result of uncertain clinical significance will increase patient anxiety. However, prenatal ultrasound may also yield findings of uncertain significance, such as 'soft markers' for fetal aneuploidy, or findings with variable prognosis, such as mild ventriculomegaly. In this study we compared risk perception following uncertain test results from each modality. A single survey with repeated measures design was administered to 133 pregnant women. It included 'intolerance of uncertainty' questions, two hypothetical scenarios involving prenatal ultrasound or advanced genetic testing, and response questions. The primary outcome was risk perception score. Risk perception did not vary significantly between ultrasound and genetic scenarios (p = 0.17). The genetic scenario scored a higher accuracy (p = 0.04) but lower sense of empowerment (p = 0.01). Furthermore, patients were more likely to seek additional testing after an ultrasound than after genetic testing (p = 0.05). There were no differences in other secondary outcomes including perception of life-altering consequences and hypothetical worry, anxiety, confusion, or medical care decisions. Our data suggest that uncertain findings on prenatal genetic testing do not elicit a higher perception of risk or anxiety when compared to ultrasound findings of comparable uncertainty. © 2015 John Wiley & Sons, Ltd. © 2015 John Wiley & Sons, Ltd.

  4. [Basics of emergency ultrasound].

    PubMed

    Schellhaas, S; Breitkreutz, R

    2012-09-05

    Focused ultrasound is a key methodology of critical care medicine. By referencing few ultrasound differential diagnosis, it is possible to identifying in real-time the reason of the critical state of a patient. Therefore typical focused ultrasound protocols were developed. The well known Focused Assessment with Sonography for trauma (FAST) was incorporated into the Advanced Trauma Life Support (ATLS) for shock room. Focused echocardiographic evaluation in life support (FEEL) has been designed to be conformed with the universal Advanced Life Support (ALS) algorithm and to identify treatable conditions such as acute right ventricular pressure overload in pulmonary embolism, hypovolemia, or pericardial effusion/tamponade. Using lung ultrasound one can differentiate pulmonary edema, pleural effusion or pneumothorax.

  5. 4D Ultrasound - Medical Devices for Recent Advances on the Etiology of Cerebral Palsy

    PubMed Central

    Tomasovic, Sanja; Predojevic, Maja

    2011-01-01

    Children cerebral palsy (CCP) encompasses a group of nonprogessive and noninfectious conditions, which cause light, moderate, and severe deviations in neurological development. Diagnosis of CCP is set mostly by the age of 3 years. The fact that a large number of cerebral damage occurs prenatally and the fact that early intervention in cases of neurological damage is successful, prompted some researchers to explore the possibility of detecting neurologically damaged fetus in the uterus. This research was made possible thanks to the development of two-dimensional ultrasound technology in a real time, which enabled the display of the mobility of the fetus. Advancement of the ultrasound technology has enabled the development of 4D ultrasound where a spontaneous fetal movement can be observed almost in a real time. Estimate of the number and quality of spontaneous fetal movements and stitches on the head, the neurology thumb and a high palate were included in the prenatal neurological screening of the fetus. This raises the question, as to does the fetal behavior reflect, (which was revealed in 2D or 4D ultrasound), fetal neurological development in a manner that will allow the detection of the brain damage. PMID:23407920

  6. Endoscopic Ultrasound-guided Specimen Collection and Evaluation Techniques Affect Diagnostic Accuracy.

    PubMed

    Bang, Ji Young; Navaneethan, Udayakumar; Hasan, Muhammad K; Hawes, Robert; Varadarajulu, Shyam

    2018-03-11

    Outcomes of endoscopic ultrasound-guided fine needle aspiration (EUS-FNA) evaluation vary with technique, needles, and methods of specimen evaluation. We performed a direct comparison of diagnostic yields of EUS-FNA samples collected using different gauge needles (22- vs 25-gauge), with or without suction. We performed a randomized controlled study of 352 patients with suspected pancreatic masses, referred for EUS-FNA at a tertiary referral center. Patients were randomly assigned to 22-gauge needles with or without suction or 25-gauge needles with or without suction. Specimens were evaluated offsite by cell block and rapid onsite cytologic evaluation (ROSE). Final diagnoses were made based on histologic analyses or 12-month follow-up evaluations. The primary outcome was diagnostic adequacy of cell blocks. Secondary outcomes were operating characteristics of ROSE and EUS-FNA, number of passes required for accurate onsite diagnosis, and amount of blood in specimens. The final diagnoses were malignancy (81.5% of patients) and benign disease (17.0% of patients); 1.4% of patients were lost during follow up. Cell block, ROSE, and EUS-FNA led to diagnostic accuracies of 71.9%, 95.5%, and 96.6%, respectively. A 22-gauge needle with suction was associated with more passes for adequate onsite diagnosis (P = .003) and specimens contained more blood (P = .01). Diagnostic accuracy of specimens collected by transduodenal EUS-FNA was lower with 22-gauge needles with suction compared to other techniques (P = .004). In a randomized trial of patients undergoing EUS-FNA for pancreatic masses, samples collected with 22-gauge vs 25-gauge needles performed equally well for offsite specimen evaluation. Use of suction appears to increase number of passes needed and specimen bloodiness. Specimen collection techniques should be individualized based on method of evaluation. ClinicalTrials.gov no: NCT02424838. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. The Role of Anthropomorphic Phantoms in Diagnostic Ultrasound Imaging for Disease Characterization (abstract)

    NASA Astrophysics Data System (ADS)

    Cannon, L. M.; King, D. M.; Browne, J. E.

    2009-04-01

    An anthropomorhic phantom is an object that can mimic a region of the human anatomy. Anthropomorphic phantoms have a variety of roles in diagnostic ultrasound. These roles include quality assurance testing of ultrasound machines, calibration and testing of new imaging techniques, training of sonographers, and-most importantly-use as a tool to obtain a better understanding of disease progression in the relevant anatomy. To be anthropomorphic a phantom must accurately mimic the body in terms of its ultrasonic and mechanical properties, as well as anatomically. The acoustic properties are speed of sound, attenuation, and backscatter. The mechanical properties are elasticity and density. Phantoms are constructed from tissue-mimicking materials (TMMs). TMMs are prepared from a variety of ingredients, such as gelatine, agar, safflower oil, and glass beads. These ingredients are then boiled and cooled under controlled conditions to produce a solid TMM. To determine if the TMM has the correct acoustic properties, acoustic measurements are performed using a scanning acoustic macroscope. Mechanical measurements are also performed to test the elasticity and density properties. TMMs with the correct properties are subsequently put through a series of moulding procedures to produce the anthropomorphic phantom.

  8. Outcomes of ultrasound guided renal mass biopsies.

    PubMed

    Sutherland, Edward L; Choromanska, Agnieszka; Al-Katib, Sayf; Coffey, Mary

    2018-06-01

    The purpose of this study was to evaluate the rate of nondiagnostic ultrasound-guided renal mass biopsies (RMBs) at our institution and to determine what patient, procedural, and focal renal mass (FRM) factors were associated with nondiagnostic ultrasound-guided RMBs. Eighty-two ultrasound-guided renal mass biopsies performed between January 2014 and October 2016 were included in our study. Biopsy outcomes (diagnostic vs. nondiagnostic) and patient, procedural, and FRM characteristics were retrospectively reviewed and recorded. Univariate statistical analyses were performed to identify biopsy characteristics that were indicative of nondiagnostic biopsy. Ultrasound-guided RMBs were diagnostic in 70 out of 82 cases (85%) and non-diagnostic in 12 cases (15%). Among the diagnostic biopsies, 54 (77%) were malignant cases, 94% of which were renal cell carcinoma (RCC). Of the 12 nondiagnostic cases, the final diagnosis was RCC in 4 cases and angiomyolipoma in one case; seven of the nondiagnostic cases were lost to follow-up. A weak association (p = 0.04) was found between the number of needle passes and the biopsy outcome. None of the remaining collected RMB characteristics showed a significant correlation with a diagnostic or nondiagnostic RMB. Six patients (7%) experienced complications. Ultrasound-guided renal mass biopsy is a safe and effective method for the diagnosis of renal masses with a low rate of nondiagnostic outcomes. A nondiagnostic biopsy should not be treated as a surrogate for a diagnosis since a significant number of patients with nondiagnostic biopsies have subsequently been shown to have renal malignancies. Repeat biopsy should be considered in such cases.

  9. American Medical Society for Sports Medicine (AMSSM) position statement: interventional musculoskeletal ultrasound in sports medicine.

    PubMed

    Finnoff, Jonathan T; Hall, Mederic M; Adams, Erik; Berkoff, David; Concoff, Andrew L; Dexter, William; Smith, Jay

    2015-02-01

    The use of diagnostic and interventional ultrasound has significantly increased over the past decade. A majority of the increased utilisation is by non-radiologists. In sports medicine, ultrasound is often used to guide interventions such as aspirations, diagnostic or therapeutic injections, tenotomies, releases and hydrodissections. Critically review the literature related to the accuracy, efficacy and cost-effectiveness of ultrasound-guided injections (USGIs) in major, intermediate and small joints; and soft tissues. Systematic review of the literature. USGIs are more accurate than landmark-guided injections (LMGIs; strength of recommendation taxonomy (SORT) Evidence Rating=A). USGIs are more efficacious than LMGIs (SORT Evidence Rating=B). USGIs are more cost-effective than LMGIs (SORT Evidence Rating=B). Ultrasound guidance is required to perform many new procedures (SORT Evidence Rating=C). The findings of this position statement indicate there is strong evidence that USGIs are more accurate than LMGI, moderate evidence that they are more efficacious and preliminary evidence that they are more cost-effective. Furthermore, ultrasound-guided (USG) is required to perform many new, advanced procedures and will likely enable the development of innovative USG surgical techniques in the future. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. Quantitative diagnostic method for biceps long head tendinitis by using ultrasound.

    PubMed

    Huang, Shih-Wei; Wang, Wei-Te

    2013-01-01

    To investigate the feasibility of grayscale quantitative diagnostic method for biceps tendinitis and determine the cut-off points of a quantitative biceps ultrasound (US) method to diagnose biceps tendinitis. Design. Prospective cross-sectional case controlled study. Outpatient rehabilitation service. A total of 336 shoulder pain patients with suspected biceps tendinitis were recruited in this prospective observational study. The grayscale pixel data of the range of interest (ROI) were obtained for both the transverse and longitudinal views of the biceps US. A total of 136 patients were classified with biceps tendinitis, and 200 patients were classified as not having biceps tendinitis based on the diagnostic criteria. Based on the Youden index, the cut-off points were determined as 26.85 for the transverse view and 21.25 for the longitudinal view of the standard deviation (StdDev) of the ROI values, respectively. When the ROI evaluation of the US surpassed the cut-off point, the sensitivity was 68% and the specificity was 90% in the StdDev of the transverse view, and the sensitivity was 81% and the specificity was 73% in the StdDev of the longitudinal view to diagnose biceps tendinitis. For equivocal cases or inexperienced sonographers, our study provides a more objective method for diagnosing biceps tendinitis in shoulder pain patients.

  11. Sterile working in ultrasonography: the use of dedicated ultrasound covers and sterile ultrasound gel.

    PubMed

    Marhofer, Peter; Fritsch, Gerhard

    2015-01-01

    Ultrasound is currently an important tool for diagnostic and interventional procedures. Ultrasound imaging provides significant advantages as compared to other imaging methods. The widespread use of ultrasound also carries the risk of drawbacks such as cross-infections. A large body of literature reports this possibly life-threatening side effect and specific patient populations are particularly at risk (e.g., neonates). Various methods of ultrasound probe disinfection are described; however, none of the mechanical or chemical probe disinfection procedures is optimal and, in particular, disinfection with high concentration of alcohol might be associated with ultrasound probe damage. The preparation of ultrasound probes with dedicated probe covers is a useful alternative for sterile working conditions. One ultrasound probe cover discussed in this paper is directly glued on to the ultrasound probe without the use of ultrasound coupling gel. By the use of sterile ultrasound coupling gel at the outer surface, additional effects on aseptic working conditions can be obtained.

  12. Emergency physician perceptions of medically unnecessary advanced diagnostic imaging.

    PubMed

    Kanzaria, Hemal K; Hoffman, Jerome R; Probst, Marc A; Caloyeras, John P; Berry, Sandra H; Brook, Robert H

    2015-04-01

    The objective was to determine emergency physician (EP) perceptions regarding 1) the extent to which they order medically unnecessary advanced diagnostic imaging, 2) factors that contribute to this behavior, and 3) proposed solutions for curbing this practice. As part of a larger study to engage physicians in the delivery of high-value health care, two multispecialty focus groups were conducted to explore the topic of decision-making around resource utilization, after which qualitative analysis was used to generate survey questions. The survey was extensively pilot-tested and refined for emergency medicine (EM) to focus on advanced diagnostic imaging (i.e., computed tomography [CT] or magnetic resonance imaging [MRI]). The survey was then administered to a national, purposive sample of EPs and EM trainees. Simple descriptive statistics to summarize physician responses are presented. In this study, 478 EPs were approached, of whom 435 (91%) completed the survey; 68% of respondents were board-certified, and roughly half worked in academic emergency departments (EDs). Over 85% of respondents believe too many diagnostic tests are ordered in their own EDs, and 97% said at least some (mean = 22%) of the advanced imaging studies they personally order are medically unnecessary. The main perceived contributors were fear of missing a low-probability diagnosis and fear of litigation. Solutions most commonly felt to be "extremely" or "very" helpful for reducing unnecessary imaging included malpractice reform (79%), increased patient involvement through education (70%) and shared decision-making (56%), feedback to physicians on test-ordering metrics (55%), and improved education of physicians on diagnostic testing (50%). Overordering of advanced imaging may be a systemic problem, as many EPs believe a substantial proportion of such studies, including some they personally order, are medically unnecessary. Respondents cited multiple complex factors with several potential high

  13. Thermal effects of diagnostic ultrasound in an anthropomorphic skull model.

    PubMed

    Vyskocil, E; Pfaffenberger, S; Kollmann, C; Gleiss, A; Nawratil, G; Kastl, S; Unger, E; Aumayr, K; Schuhfried, O; Huber, K; Wojta, J; Gottsauner-Wolf, M

    2012-12-01

    Exposure to diagnostic ultrasound (US) can significantly heat biological tissue although conventional routine examinations are regarded as safe. The risk of unwanted thermal effects increases with a high absorption coefficient and extended insonation time. Certain applications of transcranial diagnostic US (TC-US) require prolonged exposure. An anthropomorphic skull model (ASM) was developed to evaluate thermal effects induced by TC-US of different modalities. The objective was to determine whether prolonged continuous TC-US application results in potentially harmful temperature increases. The ASM consists of a human skull with tissue mimicking material and exhibits acoustic and anatomical characteristics of the human skull and brain. Experiments are performed with a diagnostic US device testing four different US modalities: Duplex PW (pulsed wave) Doppler, PW Doppler, color flow Doppler and B-mode. Temperature changes are recorded during 180 minutes of insonation. All measurements revealed significant temperature increases during insonation independent of the US modality. The maximum temperature elevation of + 5.25° C (p < 0.001) was observed on the surface of the skull exposed to duplex PW Doppler. At the bone-brain border a maximum temperature increae of + 2.01 °C (p < 0.001) was noted. Temperature increases within the brain were < 1.23 °C (p = 0.001). The highest values were registered using the duplex PW Doppler modality. TC-US induces significant local heating effects in an ASM. An application duration that extends routine clinical periods causes potentially harmful heating especially in tissue close to bone. TC-US elevates the temperature in the brain mimicking tissue but is not capable of producing harmful temperature increases during routine examinations. However, the risk of thermal injury in brain tissue increases significantly after an exposure time of > 2 hours. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Utilization of bedside urogenital ultrasound in an austere combat setting: enterovesicular fistula case report.

    PubMed

    Lunceford, Nicole; Scherl, Robert J; Elliot, Jonathan; Bechtel, Brett F; Auten, Jonathan

    2013-03-01

    The role of bedside ultrasound by physicians with advanced ultrasound training, such as emergency medicine providers, has been clearly established in the austere setting of combat medicine. This highly mobile, noninvasive, and versatile imaging modality has a role in evaluating battle- and nonbattle-related presentations. This case report describes a U.S. Marine reporting to an austere medical facility with the chief complaint of abdominal pain. An ultrasound of the patient's urinary tract revealed abnormalities that suggested right bladder wall thickening and an echo dense layer of sediment as the potential source of his discomfort. These findings supported patient transfer to a higher echelon of care. Further diagnostic testing revealed Crohn's disease with an associated enterovesicular fistula. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.

  15. Diagnostic utility of three-dimensional power Doppler ultrasound for postmenopausal bleeding.

    PubMed

    Kim, Ari; Lee, Ji Young; Chun, Sungwook; Kim, Heung Yeol

    2015-06-01

    We evaluated the role of three-dimensional power Doppler ultrasound (3D PD-US) to detect endometrial lesions in women with postmenopausal endometrial bleeding. In this prospective observational study, from January 2009 to November 2012, we recruited 225 postmenopausal women with postmenopausal uterine bleeding who met the study criteria. Women who had hematologic disease, chronic medical diseases, or nonuterine pelvic diseases were excluded. Prior to endometrial biopsy, the patients underwent a baseline transvaginal ultrasound screening. The vascular indices and endometrial volumes were calculated with 3D PD-US and compared with the endometrial histopathology. Among the endometrial histopathologic findings of 174 women, atrophic endometrium was the most common finding (30.5%). Endometrial malignancy was confirmed in 28 cases (16.1%), and endometrial hyperplasia was diagnosed in 17 cases (9.8%). The prevalence of endometrial cancer was high in patients who had endometrial thickness >9.5 mm (p < 0.001) and volume greater than 4.05 mL (p < 0.001). For the endometrial carcinoma only, the cutoff values of vascular index, flow index, and vascular flow index for predicting malignancy were 13.070, 12.610, and 3.764, respectively. For endometrial hyperplasia, endometrial thickness and vascular flow index were significant findings. Endometrial vasculature and volume can be obtained using 3D PD-US. The diagnostic usefulness of 3D PD-US for endometrial diseases is promising in women with postmenopausal endometrial bleeding. Copyright © 2015. Published by Elsevier B.V.

  16. Hot topics in biomedical ultrasound: ultrasound therapy and its integration with ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Everbach, E. Carr

    2005-09-01

    Since the development of biomedical ultrasound imaging from sonar after WWII, there has been a clear divide between ultrasonic imaging and ultrasound therapy. While imaging techniques are designed to cause as little change as possible in the tissues through which ultrasound propagates, ultrasound therapy typically relies upon heating or acoustic cavitation to produce a desirable therapeutic effect. Concerns over the increasingly high acoustic outputs of diagnostic ultrasound scanners prompted the adoption of the Mechanical Index (MI) and Thermal Index (TI) in the early 1990s. Therapeutic applications of ultrasound, meanwhile, have evolved from deep tissue heating in sports medicine to include targeted drug delivery, tumor and plaque ablation, cauterization via high intensity focused ultrasound (HIFU), and accelerated dissolution of blood clots. The integration of ultrasonic imaging and therapy in one device is just beginning, but the promise of improved patient outcomes is balanced by regulatory and practical impediments.

  17. Role of ultrasound in colorectal diseases.

    PubMed

    Bor, Renáta; Fábián, Anna; Szepes, Zoltán

    2016-11-21

    Ultrasound is an undervalued non-invasive examination in the diagnosis of colonic diseases. It has been replaced by the considerably more expensive magnetic resonance imaging and computed tomography, despite the fact that, as first examination, it can usefully supplement the diagnostic process. Transabdominal ultrasound can provide quick information about bowel status and help in the choice of adequate further examinations and treatment. Ultrasonography, as a screening imaging modality in asymptomatic patients can identify several colonic diseases such as diverticulosis, inflammatory bowel disease or cancer. In addition, it is widely available, cheap, non-invasive technique without the use of ionizing radiation, therefore it is safe to use in childhood or during pregnancy, and can be repeated at any time. New ultrasound techniques such as elastography, contrast enhanced and Doppler ultrasound, mini-probes rectal and transperineal ultrasonography have broadened the indication. It gives an overview of the methodology of various ultrasound examinations, presents the morphology of normal bowel wall and the typical changes in different colonic diseases. We will pay particular attention to rectal and transperineal ultrasound because of their outstanding significance in the diagnosis of rectal and perineal disorders. This article seeks to overview the diagnostic impact and correct indications of bowel ultrasound.

  18. Reducing Unnecessary Shoulder MRI Examinations Within a Capitated Health Care System: A Potential Role for Shoulder Ultrasound.

    PubMed

    Sheehan, Scott E; Coburn, John A; Singh, Hardeep; Vanness, David J; Sittig, Dean F; Moberg, D Paul; Safdar, Nasia; Lee, Kenneth S; Brunner, Michael C

    2016-07-01

    MRI is frequently overused. The aim of this study was to analyze shoulder MRI ordering practices within a capitated health care system and explore the potential effects of shoulder ultrasound substitution. We reviewed medical records of 237 consecutive shoulder MRI examinations performed in 2013 at a Department of Veterans Affairs tertiary care hospital. Using advanced imaging guidelines, we assessed ordering appropriateness of shoulder MRI and estimated the proportion of examinations for which musculoskeletal ultrasound could have been an acceptable substitute, had it been available. We then reviewed MRI findings and assessed if ultrasound with preceding radiograph would have been adequate for diagnosis, based on literature reports of shoulder ultrasound diagnostic performance. Of the 237 examinations reviewed, 106 (45%) were deemed to be inappropriately ordered, most commonly because of an absent preceding radiograph (n = 98; 92%). Nonorthopedic providers had a higher frequency of inappropriate ordering (44%) relative to orthopedic specialists (17%) (P = .016; odds ratio = 3.15, 95% confidence interval = 1.24-8.01). In the 237 examinations, ultrasound could have been the indicated advanced imaging modality for 157 (66%), and most of these (133/157; 85%) could have had all relevant pathologies characterized when combined with radiographs. Regardless of indicated modality, ultrasound could have characterized 80% of all cases ordered by nonorthopedic providers and 50% of cases ordered by orthopedic specialists (P = .007). Advanced shoulder imaging is often not ordered according to published appropriateness criteria. While nonorthopedic provider orders were more likely to be inappropriate, inappropriateness persisted among orthopedic providers. A combined ultrasound and radiograph evaluation strategy could accurately characterize shoulder pathologies for most cases. Published by Elsevier Inc.

  19. Vascular applications of contrast-enhanced ultrasound imaging.

    PubMed

    Mehta, Kunal S; Lee, Jake J; Taha, Ashraf G; Avgerinos, Efthymios; Chaer, Rabih A

    2017-07-01

    Contrast-enhanced ultrasound (CEUS) imaging is a powerful noninvasive modality offering numerous potential diagnostic and therapeutic applications in vascular medicine. CEUS imaging uses microbubble contrast agents composed of an encapsulating shell surrounding a gaseous core. These microbubbles act as nearly perfect intravascular reflectors of ultrasound energy and may be used to enhance the overall contrast and quality of ultrasound images. The purpose of this narrative review is to survey the current literature regarding CEUS imaging and discuss its diagnostic and therapeutic roles in current vascular and selected nonvascular applications. The PubMed, MEDLINE, and Embase databases were searched until July 2016 using the PubMed and Ovid Web-based search engines. The search terms used included contrast-enhanced, microbubble, ultrasound, carotid, aneurysm, and arterial. The diagnostic and therapeutic utility of CEUS imaging has grown exponentially, particularly in the realms of extracranial carotid arterial disease, aortic disease, and peripheral arterial disease. Studies have demonstrated that CEUS imaging is diagnostically superior to conventional ultrasound imaging in identifying vessel irregularities and measuring neovascularization to assess plaque vulnerability and end-muscle perfusion. Groups have begun to use microbubbles as agents in therapeutic applications for targeted drug and gene therapy delivery as well as for the enhancement of sonothrombolysis. The emerging technology of microbubbles and CEUS imaging holds considerable promise for cardiovascular medicine and cancer therapy given its diagnostic and therapeutic utility. Overall, with proper training and credentialing of technicians, the clinical implications are innumerable as microbubble technology is rapidly bursting onto the scene of cardiovascular medicine. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. The effect of nonlinear propagation on heating of tissue: A numerical model of diagnostic ultrasound beams

    NASA Astrophysics Data System (ADS)

    Cahill, Mark D.; Humphrey, Victor F.; Doody, Claire

    2000-07-01

    Thermal safety indices for diagnostic ultrasound beams are calculated under the assumption that the sound propagates under linear conditions. A non-axisymmetric finite difference model is used to solve the KZK equation, and so to model the beam of a diagnostic scanner in pulsed Doppler mode. Beams from both a uniform focused rectangular source and a linear array are considered. Calculations are performed in water, and in attenuating media with tissue-like characteristics. Attenuating media are found to exhibit significant nonlinear effects for finite-amplitude beams. The resulting loss of intensity by the beam is then used as the source term in a model of tissue heating to estimate the maximum temperature rises. These are compared with the thermal indices, derived from the properties of the water-propagated beams.

  1. Advances in diagnostic and treatment modalities for intracranial tumors.

    PubMed

    Dickinson, P J

    2014-01-01

    Intracranial neoplasia is a common clinical condition in domestic companion animals, particularly in dogs. Application of advances in standard diagnostic and therapeutic modalities together with a broad interest in the development of novel translational therapeutic strategies in dogs has resulted in clinically relevant improvements in outcome for many canine patients. This review highlights the status of current diagnostic and therapeutic approaches to intracranial neoplasia and areas of novel treatment currently in development. Copyright © 2014 by the American College of Veterinary Internal Medicine.

  2. Conformal drug delivery and instantaneous monitoring based on an inverse synthesis method at a diagnostic ultrasound platform

    NASA Astrophysics Data System (ADS)

    Xu, Shanshan; Zong, Yujin; Liu, Xiaodong; Lu, Mingzhu; Wan, Mingxi

    2017-03-01

    In this paper, based on a programmable diagnostic ultrasound scanner, a combined approach was proposed, in which a variable-sized focal region wherein the acoustic pressure is above the ultrasound contrast agents (UCA) fragmentation threshold is synthesized by reasonably matching the excitation voltage and the transmit aperture of the linear array at 5MHz, the UCAs' temporal and spatial distribution before and after the microbubbles fragmentation is monitored using the plane-wave transmission and reception at 400Hz and, simultaneously, the broadband noise emission during the microbubbles fragmentation is extracted using the backscattering of focused release bursts (destruction pulse) themselves on the linear array. Then, acquired radio frequency (RF) data are processed to draw parameters which can be correlated with the indicator of broadband noise emission level, namely inertial cavitation dose (ICD) and microbubble fragmentation efficiency, namely decay rate of microbubbles.

  3. Critical Care Ultrasound: A Review for Practicing Nephrologists.

    PubMed

    Wilson, Jennifer G; Breyer, Kristine E W

    2016-05-01

    The use of point-of-care ultrasound in the intensive care unit, both for diagnostic and procedural purposes, has rapidly proliferated, and evidence supporting its use is growing. Conceptually, critical care ultrasound (CCUS) should be considered an extension of the physical examination and should not be considered a replacement for formal echocardiography or radiology-performed ultrasound. Several CCUS applications are of particular relevance to nephrologists, including focused renal ultrasound in patients at high risk for urinary tract obstruction, real-time ultrasound guidance and verification during the placement of central venous catheters, and ultrasound-augmented assessment of shock and volume status. Each of these applications has the capacity to improve outcomes in patients with acute kidney injury. Although robust evidence regarding long-term outcomes is lacking, existing data demonstrate that CCUS has the potential to improve diagnostic accuracy, expedite appropriate management, and increase safety for critically ill patients across a spectrum of pathologies. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  4. Incremental cancer detection of locoregional restaging with diagnostic mammography combined with whole breast and regional nodal ultrasound in women with newly-diagnosed breast cancer

    PubMed Central

    Candelaria, Rosalind P.; Huang, Monica L.; Adrada, Beatriz E.; Bassett, Roland; Hunt, Kelly K.; Kuerer, Henry M.; Smith, Benjamin D.; Chavez-MacGregor, Mariana; Yang, Wei Tse

    2016-01-01

    RATIONALE AND OBJECTIVES To determine if locoregional restaging with diagnostic mammography and ultrasound of the whole breast and regional nodes performed for quality assurance in women with newly-diagnosed breast cancer referred to a tertiary care center yields incremental cancer detection. MATERIALS AND METHODS An institutional review board-approved retrospective, single institution database review was performed on the first 1000 women referred to our center in 2010 with a provisional breast cancer diagnosis. Locoregional restaging consisted of diagnostic full-field digital mammography combined with ultrasound of the whole breast and regional nodal basins. Bilateral whole breast ultrasound was performed in women with contralateral mammographic abnormality or had heterogeneously or extremely dense parenchyma. Demographic, clinical and pathologic factors were analyzed. RESULTS Final analyses included 401 women. 34% (138/401) of women did not have their outside images available for review upon referral. Median age was 54 years, range 21–92; median tumor size was 2.9 cm, range 0.6–18, for women whose disease was upstaged and 2.2 cm, range 0.4–15, for women whose disease was not upstaged. Incremental cancer detection rates were 15.5% (62/401) in the ipsilateral breast and 3.9% (6/154) in the contralateral breast (p<0.0001). Total upstage rate was 25% (100/401). Surgical management changed from segmentectomy to mastectomy in 12% (50/401). Re-excision rate after segmentectomy was 19% (35/189). CONCLUSION Locoregional restaging with diagnostic mammography combined with whole breast and regional nodal ultrasound that is performed for standardization of the imaging workup for newly-diagnosed breast cancer patients can reduce underestimation of disease burden and impact therapeutic planning. PMID:27955877

  5. Classification and management of gynecomastia: defining the role of ultrasound-assisted liposuction.

    PubMed

    Rohrich, Rod J; Ha, Richard Y; Kenkel, Jeffrey M; Adams, William P

    2003-02-01

    Gynecomastia, or excessive male breast development, has an incidence of 32 to 65 percent in the male population. This condition has important physical and psychological impacts. Advances in elucidating the pathophysiology of gynecomastia have been made, though understanding remains limited. Recommendations for evaluation and workup have varied and are often arbitrary. A diagnostic algorithm is suggested, with emphasis on a comprehensive history, physical examination, and minimizing unnecessary diagnostic testing. Medical management has had limited success; surgical therapy, primarily through excisional techniques, has been the accepted standard. Although effective, excisional techniques subject patients to large, visible scars. Ultrasound-assisted liposuction has recently emerged as a safe and effective method for the treatment of gynecomastia. It is particularly efficient in the removal of the dense, fibrous male breast tissue while offering advantages in minimal external scarring. A new system of classification and graduated treatment is proposed, based on glandular versus fibrous hypertrophy and degree of breast ptosis (skin excess). The authors' series of 61 patients with gynecomastia from 1987 to 2000 at the University of Texas Southwestern Department of Plastic Surgery demonstrated an overall success rate of 86.9 percent using suction-assisted lipectomy (1987 to 1997) and ultrasound-assisted liposuction (1997 to 2000). The authors have found ultrasound-assisted liposuction to be effective in treating most grades of gynecomastia. Excisional techniques are reserved for severe gynecomastia with significant skin excess after attempted ultrasound-assisted liposuction.

  6. Diagnostic sensitivity of ultrasound, radiography and computed tomography for gender determination in four species of lizards.

    PubMed

    Di Ianni, Francesco; Volta, Antonella; Pelizzone, Igor; Manfredi, Sabrina; Gnudi, Giacomo; Parmigiani, Enrico

    2015-01-01

    Gender determination is frequently requested by reptile breeders, especially for species with poor or absent sexual dimorphism. The aims of the current study were to describe techniques and diagnostic sensitivities of ultrasound, radiography, and computed tomography for gender determination (identification of hemipenes) in four species of lizards. Nineteen lizards of known sex, belonging to four different species (Pogona vitticeps, Uromastyx aegyptia, Tiliqua scincoides, Gerrhosaurus major) were prospectively enrolled. With informed owner consent, ultrasound, noncontrast CT, contrast radiography, and contrast CT (with contrast medium administered into the cloaca) were performed in conscious animals. Imaging studies were reviewed by three different operators, each unaware of the gender of the animals and of the results of the other techniques. The lizard was classified as a male when hemipenes were identified. Nineteen lizards were included in the study, 10 females and nine males. The hemipenes were seen on ultrasound in only two male lizards, and appeared as oval hypoechoic structures. Radiographically, hemipenes filled with contrast medium appeared as spindle-shaped opacities. Noncontrast CT identified hemipenes in only two lizards, and these appeared as spindle-shaped kinked structures with hyperattenuating content consistent with smegma. Hemipenes were correctly identified in all nine males using contrast CT (accuracy of 100%). Accuracy of contrast radiography was excellent (94.7%). Accuracy of ultrasound and of noncontrast CT was poor (64.3% and 63.1%, respectively). Findings from the current study supported the use of contrast CT or contrast radiography for gender determination in lizards. © 2014 American College of Veterinary Radiology.

  7. Diagnostic evaluations of ultrasound and magnetic resonance imaging in mammary duct ectasia and breast cancer

    PubMed Central

    Song, Lei; Li, Liang; Liu, Bin; Yu, Dexin; Sun, Fengguo; Guo, Mingming; Ruan, Zhengmin; Zhang, Feixue

    2018-01-01

    The objective of the present study was to evaluate the diagnostic efficiency of ultrasound (US) and magnetic resonance imaging (MRI) in the diagnosis and differential diagnosis of mammary duct ectasia (MDE) and breast cancer. This retrospective study was performed on 35 patients with MDE and 105 patients with breast cancer using US and MRI. Imaging features, semi-quantitative and quantitative parameters were analyzed to determine their diagnostic value for MDE and breast cancer. The average age of patients with breast cancer was increased compared with that of patients with MDE. There were no significant differences in local packages with or without tenderness ratio (P=0.259) and grade of color Doppler flow imaging (P=0.273) between the two groups. However, the morphological changes were significantly increased in breast cancer compared with MDE. In addition, there were significant diagnostic differences in US and MRI between breast cancer and MDE, including resistance index, US elastography, time-signal intensity curve, apparent diffusion coefficient, early-stage enhancement ratio, peak-of-enhancement ratio and Tpeak (P<0.05). However, there were no observable significant diagnostic differences between US, MRI and US with MRI for MDE and breast cancer (P=0.103, P=0.263 and P=0.403 respectively). Diagnosis of MDE and breast cancer requires full evaluation of multiple parameters and morphological changes of US and MRI to increase the diagnostic efficiency. US, MRI and US with MRI were all of diagnostic value for MDE and breast cancer, while US with MRI had the highest efficacy. PMID:29434865

  8. 75 FR 15443 - Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-29

    ...] Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis; Public Workshop; Request for... workshop entitled ``Advancing the Development of Diagnostic Tests and Biomarkers for Tuberculosis (TB... Tuberculosis in the United States, Committee on the Elimination of Tuberculosis in the United States, Division...

  9. Advancing Diagnostics to Address Antibacterial Resistance: The Diagnostics and Devices Committee of the Antibacterial Resistance Leadership Group

    PubMed Central

    Tsalik, Ephraim L.; Petzold, Elizabeth; Kreiswirth, Barry N.; Bonomo, Robert A.; Banerjee, Ritu; Lautenbach, Ebbing; Evans, Scott R.; Hanson, Kimberly E.; Klausner, Jeffrey D.

    2017-01-01

    Abstract Diagnostics are a cornerstone of the practice of infectious diseases. However, various limitations frequently lead to unmet clinical needs. In most other domains, diagnostics focus on narrowly defined questions, provide readily interpretable answers, and use true gold standards for development. In contrast, infectious diseases diagnostics must contend with scores of potential pathogens, dozens of clinical syndromes, emerging pathogens, rapid evolution of existing pathogens and their associated resistance mechanisms, and the absence of gold standards in many situations. In spite of these challenges, the importance and value of diagnostics cannot be underestimated. Therefore, the Antibacterial Resistance Leadership Group has identified diagnostics as 1 of 4 major areas of emphasis. Herein, we provide an overview of that development, highlighting several examples where innovation in study design, content, and execution is advancing the field of infectious diseases diagnostics. PMID:28350903

  10. PREFACE AND CONFERENCE SUMMARY: Advanced Metrology for Ultrasound in Medicine, 27 28 April 2004

    NASA Astrophysics Data System (ADS)

    Shaw, Adam

    2004-01-01

    AMUM 2004 proved to be a great success and provided a fantastic opportunity for the world's ultrasound experts from medicine, industry and academia to explore the measurement challenges presented by new and emerging clinical ultrasound equipment. There were a total of 88 attendees. Of these 39 were from the UK, 22 from the rest of Europe, and 27 from outside Europe. 31 of the delegates were from industry, 22 were university-based, 18 from hospitals, 10 from other National Metrology Institutes and regulatory bodies, and 7 from NPL. Test your knowledge of the ultrasound community by trying to name all the faces in the group photograph! It was especially gratifying to see so many major medical equipment manufacturers represented—including Siemens, Philips, Esaote, Kontron, Pie Medical, G.E., Hitachi, Aloka and Imasonic—since it is essential that there is a good dialogue between industry and the measurement community. The presentations were split into 8 oral sessions—Hydrophones, Hydrophone measurements, Safety and thermal hazard, Measurement challenges for diagnostic ultrasound, Measurement of therapy fields, Tissue interaction, Novel measurement methods, and Measurement challenges for therapeutic ultrasound; and 3 poster sessions—Performance of diagnostic equipment, Measurement and safety, and Field modelling. It was always my hope that this conference would provide a framework for the development of measurement methods to meet the metrological challenges we face over the next decade. To this end, I have asked the Chairs of each oral and poster session to give their views of their own session and of the more general requirements in that topic area. The feedback I received both during and subsequent to the meeting was almost uniformly good; this was borne out by the returned questionnaires, with most categories being scored excellent or good. I was delighted at the high standard of the presentations and to see delegates of such reputation and experience in the

  11. Acoustic Radiation Force Elasticity Imaging in Diagnostic Ultrasound

    PubMed Central

    Doherty, Joshua R.; Trahey, Gregg E.; Nightingale, Kathryn R.; Palmeri, Mark L.

    2013-01-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo, elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed non-invasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods. PMID:23549529

  12. Acoustic radiation force elasticity imaging in diagnostic ultrasound.

    PubMed

    Doherty, Joshua R; Trahey, Gregg E; Nightingale, Kathryn R; Palmeri, Mark L

    2013-04-01

    The development of ultrasound-based elasticity imaging methods has been the focus of intense research activity since the mid-1990s. In characterizing the mechanical properties of soft tissues, these techniques image an entirely new subset of tissue properties that cannot be derived with conventional ultrasound techniques. Clinically, tissue elasticity is known to be associated with pathological condition and with the ability to image these features in vivo; elasticity imaging methods may prove to be invaluable tools for the diagnosis and/or monitoring of disease. This review focuses on ultrasound-based elasticity imaging methods that generate an acoustic radiation force to induce tissue displacements. These methods can be performed noninvasively during routine exams to provide either qualitative or quantitative metrics of tissue elasticity. A brief overview of soft tissue mechanics relevant to elasticity imaging is provided, including a derivation of acoustic radiation force, and an overview of the various acoustic radiation force elasticity imaging methods.

  13. Analysis of "dry" mesothelioma with ultrasound guided biopsies.

    PubMed

    Stigt, Jos A; Boers, James E; Groen, Harry J M

    2012-12-01

    Image-guided sampling of the thickened pleura is a sensitive approach in patients with malignant pleural mesothelioma with pleural effusion. Malignant pleural mesothelioma presenting without effusion however is more of a diagnostic challenge. In this study we report the diagnostic yield and complications of ultrasound-guided cutting needle biopsies in this particular category of patients. A retrospective database analysis from September 2007 until January 2012 was performed in 56 patients with malignant pleural mesothelioma. Clinical characteristics and results of diagnostic evaluations were analysed. Of the 56 patients with malignant pleural mesothelioma, 20 patients presented without pleural effusion of with locular effusion. Ultrasound-guided cutting needle biopsy was performed in 14/20 patients with a diagnostic accuracy of 80%. Only 1 patient had mild haemoptysis immediately following biopsies. Diagnosing patients with pleural thickenings suspect for malignant mesothelioma without pleural effusion or with loculated pleural effusion is effective and safe with ultrasound-guided cutting needle biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. Diagnostic Accuracy and Clinical Implications of Translabial Ultrasound for the Assessment of Levator Ani Defects and Levator Ani Biometry in Women With Pelvic Organ Prolapse: A Systematic Review.

    PubMed

    Notten, Kim J B; Vergeldt, Tineke F M; van Kuijk, Sander M J; Weemhoff, Mirjam; Roovers, Jan-Paul W R

    The aim of this study was to assess the diagnostic accuracy and clinical implications of translabial 3-dimensional (3D) ultrasound for the assessment of levator ani defects and biometry in women with pelvic organ prolapse (POP). We performed a systematic literature search through computerized databases including MEDLINE (via PubMed), EMBASE (via OvidSP), and the Cochrane Library using both medical subject headings and text terms from January 1, 2003, to December 25, 2015.We included articles that reported on POP status and diagnostic accuracy measurements with translabial 3D ultrasound or transperineal ultrasound for the detection of levator ani defects or for measuring pelvic floor biometry, that is, levator ani hiatus, or reported on the clinical relevance of using translabial 3D ultrasound for levator ani defects or measuring pelvic floor biometry in women with POP. Thirty-one articles were selected in accordance with parts of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines that can be applied to studies of diagnostic accuracy. Twenty-two articles (71%) are coauthored by 1 expert in this field. Detecting levator ani defects with translabial 3D ultrasound compared with magnetic resonance imaging showed a moderate to good agreement, whereas measuring hiatal biometry on translabial 3D ultrasound compared with magnetic resonance imaging showed a moderate to very good agreement.The interobserver agreement for diagnosing levator ani defects and measuring the levator hiatal area showed a moderate to very good agreement. Furthermore, levator ani defects increase the risk of cystocele and uterine prolapse, and levator ani defects are associated with recurrent POP.Finally, a larger hiatus was associated with POP and recurrent POP. Translabial 3D ultrasound is reproducible for diagnosing levator ani defects and ballooning hiatus. Both levator ani defects and a larger hiatal area are, in a selected population of patients with pelvic floor

  15. Diagnostic accuracy of point-of-care ultrasound for evaluation of early blood-induced joint changes: Comparison with MRI.

    PubMed

    Foppen, W; van der Schaaf, I C; Beek, F J A; Mali, W P T M; Fischer, K

    2018-05-23

    Recurrent joint bleeding is the hallmark of haemophilia. Synovial hypertrophy observed with Magnetic Resonance Imaging (MRI) is associated with an increased risk of future joint bleeding. The aim of this study was to investigate whether point-of-care ultrasound (POC-US) is an accurate alternative for MRI for the detection of early joint changes. In this single centre diagnostic accuracy study, bilateral knees and ankles of haemophilia patients with no or minimal arthropathy on X-rays were scanned using POC-US and 3 Tesla MRI. POC-US was performed by 1 medical doctor, blinded for MRI, according to the "Haemophilia Early Arthropathy Detection with Ultrasound" (HEAD-US) protocol. MRIs were independently scored by 2 radiologists, blinded for clinical data and ultrasound results. Diagnostic accuracy parameters were calculated with 95% confidence intervals (CI). Knees and ankles of 24 haemophilia patients (96 joints), aged 18-34, were studied. Synovial hypertrophy on MRI was observed in 20% of joints. POC-US for synovial tissue was correct (overall accuracy) in 97% (CI: 91-99) with a positive predictive value of 94% (CI: 73-100) and a negative predictive value of 97% (CI: 91-100). The overall accuracy of POC-US for cartilage abnormalities was 91% (CI: 83-96) and for bone surface irregularities 97% (CI: 91-99). POC-US could accurately assess synovial hypertrophy, bone surface irregularities and cartilage abnormalities in haemophilia patients with limited joint disease. As POC-US is an accurate and available alternative for MRI, it can be used for routine evaluation of early joint changes. © 2018 The Authors. Haemophilia published by John Wiley & Sons Ltd.

  16. Breast cancer: determining the genetic profile from ultrasound-guided percutaneous biopsy specimens obtained during the diagnostic workups.

    PubMed

    López Ruiz, J A; Zabalza Estévez, I; Mieza Arana, J A

    2016-01-01

    To evaluate the possibility of determining the genetic profile of primary malignant tumors of the breast from specimens obtained by ultrasound-guided percutaneous biopsies during the diagnostic imaging workup. This is a retrospective study in 13 consecutive patients diagnosed with invasive breast cancer by B-mode ultrasound-guided 12 G core needle biopsy. After clinical indication, the pathologist decided whether the paraffin block specimens seemed suitable (on the basis of tumor size, validity of the sample, and percentage of tumor cells) before sending them for genetic analysis with the MammaPrint® platform. The size of the tumors on ultrasound ranged from 0.6cm to 5cm. In 11 patients the preserved specimen was considered valid and suitable for use in determining the genetic profile. In 1 patient (with a 1cm tumor) the pathologist decided that it was necessary to repeat the core biopsy to obtain additional samples. In 1 patient (with a 5cm tumor) the specimen was not considered valid by the genetic laboratory. The percentage of tumor cells in the samples ranged from 60% to 70%. In 11/13 cases (84.62%) it was possible to do the genetic analysis on the previously diagnosed samples. In most cases, regardless of tumor size, it is possible to obtain the genetic profile from tissue specimens obtained with ultrasound-guided 12 G core biopsy preserved in paraffin blocks. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  17. Potential biomarker panels in overall breast cancer management: advancements by multilevel diagnostics.

    PubMed

    Girotra, Shantanu; Yeghiazaryan, Kristina; Golubnitschaja, Olga

    2016-09-01

    Breast cancer (BC) prevalence has reached an epidemic scale with half a million deaths annually. Current deficits in BC management include predictive and preventive approaches, optimized screening programs, individualized patient profiling, highly sensitive detection technologies for more precise diagnostics and therapy monitoring, individualized prediction and effective treatment of BC metastatic disease. To advance BC management, paradigm shift from delayed to predictive, preventive and personalized medical services is essential. Corresponding step forwards requires innovative multilevel diagnostics procuring specific panels of validated biomarkers. Here, we discuss current instrumental advancements including genomics, proteomics, epigenetics, miRNA, metabolomics, circulating tumor cells and cancer stem cells with a focus on biomarker discovery and multilevel diagnostic panels. A list of the recommended biomarker candidates is provided.

  18. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines.

  19. Ultrasound Elastography and MR Elastography for Assessing Liver Fibrosis: Part 2, Diagnostic Performance, Confounders, and Future Directions

    PubMed Central

    Tang, An; Cloutier, Guy; Szeverenyi, Nikolaus M.; Sirlin, Claude B.

    2016-01-01

    OBJECTIVE The purpose of the article is to review the diagnostic performance of ultrasound and MR elastography techniques for detection and staging of liver fibrosis, the main current clinical applications of elastography in the abdomen. CONCLUSION Technical and instrument-related factors and biologic and patient-related factors may constitute potential confounders of stiffness measurements for assessment of liver fibrosis. Future developments may expand the scope of elastography for monitoring liver fibrosis and predict complications of chronic liver disease. PMID:25905762

  20. A comparison of hepatic steatosis index, controlled attenuation parameter and ultrasound as noninvasive diagnostic tools for steatosis in chronic hepatitis B.

    PubMed

    Xu, Liang; Lu, Wei; Li, Ping; Shen, Feng; Mi, Yu-Qiang; Fan, Jian-Gao

    2017-08-01

    To evaluate the value of noninvasive tools for diagnosis of hepatic steatosis in patients with chronic hepatitis B (CHB). Consecutive treatment-naïve patients with CHB with body mass index less than 30kg/m 2 who underwent liver biopsy, ultrasound and FibroScan ® were enrolled. The diagnostic performance of controlled attenuation parameter (CAP), hepatic steatosis index (HSI) and ultrasound for hepatic steatosis compared with liver biopsy was assessed. The areas under receiver operating characteristics curves (AUROCs) were calculated to determine the diagnostic efficacy, with comparisons using the DeLong test. CAP and HSI accuracies were significantly higher than that of ultrasound to detect patients with biopsy-proven mild steatosis (S1, 65.3%, 56.5%, respectively, vs. 17.7%, χ 2 =46.305, 31.736, both P<0.05)and moderate-severe (S2-3) steatosis (92.3%, 100%, respectively, vs. 53.8%, χ 2 =4.887, 7.800, P=0.037, 0.007, respectively). Both CAP and HSI had lower underestimation rates of steatosis grade than ultrasound (12%, 14.8%, respectively, vs. 29.5%, χ 2 =9.765, 6.452; P<0.05 for both), but they exhibited higher overestimation rates (30.5%, 38.2%, respectively, vs. 12.4%, χ 2 =39.222, 70.986; both P<0.05). The AUROCs of CAP and HSI were 0.780 (95% confidence intervals [CIs] 0.735-0.822) and 0.655 (95%CI 0.604-0.704) for S ≥1, 0.932 (95%CI 0.902-0.956) and 0.755 (95%CI 0.707-0.799) for S ≥2, 0.990 (95%CI 0.974-0.998) and 0.786 (95% CI 0.740-0.827) for S3, respectively. CAP might be more accurate for detecting hepatic steatosis than HSI and ultrasound in patients with CHB, but further studies are needed to reduce the overestimation rates. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  1. Visualization of hepatic arteries with 3D ultrasound during intra-arterial therapies

    NASA Astrophysics Data System (ADS)

    Gérard, Maxime; Tang, An; Badoual, Anaïs.; Michaud, François; Bigot, Alexandre; Soulez, Gilles; Kadoury, Samuel

    2016-03-01

    Liver cancer represents the second most common cause of cancer-related mortality worldwide. The prognosis is poor with an overall mortality of 95%. Moreover, most hepatic tumors are unresectable due to their advanced stage at discovery or poor underlying liver function. Tumor embolization by intra-arterial approaches is the current standard of care for advanced cases of hepatocellular carcinoma. These therapies rely on the fact that the blood supply of primary hepatic tumors is predominantly arterial. Feedback on blood flow velocities in the hepatic arteries is crucial to ensure maximal treatment efficacy on the targeted masses. Based on these velocities, the intra-arterial injection rate is modulated for optimal infusion of the chemotherapeutic drugs into the tumorous tissue. While Doppler ultrasound is a well-documented technique for the assessment of blood flow, 3D visualization of vascular anatomy with ultrasound remains challenging. In this paper we present an image-guidance pipeline that enables the localization of the hepatic arterial branches within a 3D ultrasound image of the liver. A diagnostic Magnetic resonance angiography (MRA) is first processed to automatically segment the hepatic arteries. A non-rigid registration method is then applied on the portal phase of the MRA volume with a 3D ultrasound to enable the visualization of the 3D mesh of the hepatic arteries in the Doppler images. To evaluate the performance of the proposed workflow, we present initial results from porcine models and patient images.

  2. Advancing Diagnostics to Address Antibacterial Resistance: The Diagnostics and Devices Committee of the Antibacterial Resistance Leadership Group.

    PubMed

    Tsalik, Ephraim L; Petzold, Elizabeth; Kreiswirth, Barry N; Bonomo, Robert A; Banerjee, Ritu; Lautenbach, Ebbing; Evans, Scott R; Hanson, Kimberly E; Klausner, Jeffrey D; Patel, Robin

    2017-03-15

    Diagnostics are a cornerstone of the practice of infectious diseases. However, various limitations frequently lead to unmet clinical needs. In most other domains, diagnostics focus on narrowly defined questions, provide readily interpretable answers, and use true gold standards for development. In contrast, infectious diseases diagnostics must contend with scores of potential pathogens, dozens of clinical syndromes, emerging pathogens, rapid evolution of existing pathogens and their associated resistance mechanisms, and the absence of gold standards in many situations. In spite of these challenges, the importance and value of diagnostics cannot be underestimated. Therefore, the Antibacterial Resistance Leadership Group has identified diagnostics as 1 of 4 major areas of emphasis. Herein, we provide an overview of that development, highlighting several examples where innovation in study design, content, and execution is advancing the field of infectious diseases diagnostics. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  3. Establishment of ultrasound as a diagnostic aid in the referral of patients with abdominal pain in an emergency department – a pilot study

    PubMed Central

    Poulsen, Liv la Cour; Bækgaard, Emilie Stokholm; Istre, Per Grosen; Schmidt, Thomas Andersen; Larsen, Torben

    2015-01-01

    Purpose Ultrasonography is a noninvasive, cheap, and fast way of assessing abdominal pain in an emergency department. Many physicians working in emergency departments do not have pre-existing ultrasound experience. The purpose of this study was to investigate the ability of first-year internship doctors to perform a reliable ultrasound examination on patients with abdominal pain in an emergency setting. Materials and methods This study took place in an emergency department in Denmark. Following a 1-day ultrasound introduction course, three doctors without prior ultrasound experience scanned 45 patients during a 2-month period. The applicability of the examinations was evaluated by subsequent control examination: computed tomography, operation, or ultrasound by a trained radiologist or gynecologist or, in cases where the patient was immediately discharged, by ultrasound image evaluation. Results In 14 out of 21 patients with a control examination, there was diagnostic agreement between the project ultrasound examination and the control. Image evaluation of all patients showed useful images of the gallbladder, kidneys, liver, abdominal aorta, and urinary bladder, but no useful images for either the pancreas or colon. Conclusion With only little formal training, it is possible for first-year internship doctors to correctly visualize some abdominal organs with ultrasonography. However, a longer study time frame, including more patients, and an ultrasound course specifically designed for the purpose of use in an emergency department, is needed to enhance the results. PMID:27147884

  4. Ultrasound of the coracoclavicular ligaments in the acute phase of an acromioclavicular disjonction: Comparison of radiographic, ultrasound and MRI findings.

    PubMed

    Faruch Bilfeld, Marie; Lapègue, Franck; Chiavassa Gandois, Hélène; Bayol, Marie Aurélie; Bonnevialle, Nicolas; Sans, Nicolas

    2017-02-01

    Acromioclavicular joint injuries are typically diagnosed by clinical and radiographic assessment with the Rockwood classification, which is crucial for treatment planning. The purpose of this study was to describe how the ultrasound findings of acromioclavicular joint injury compare with radiography and MRI findings. Forty-seven patients with suspected unilateral acromioclavicular joint injury after acute trauma were enrolled in this prospective study. All patients underwent digital radiography, ultrasound and 3T MRI. A modified Rockwood classification was used to evaluate the coracoclavicular ligaments. The classifications of acromioclavicular joint injuries diagnosed with radiography, ultrasound and MRI were compared. MRI was used as the gold standard. The agreement between the ultrasound and MRI findings was very good, with a correlation coefficient of 0.83 (95 % CI: 0.72-0.90; p < 0.0001). Ultrasound detected coracoclavicular ligament injuries with a sensitivity of 88.9 %, specificity of 90.0 %, positive predictive value of 92.3 % and negative predictive value of 85.7 %. The agreement between the ultrasound and radiography findings was poor, with a correlation coefficient of 0.69 (95 % CI: 0.51-0.82; p < 0.0001). Ultrasound is an effective examination for the diagnostic work-up of lesions of the coracoclavicular ligaments in the acute phase of an acromioclavicular injury. • Ultrasound is appropriate for acute acromioclavicular trauma due to its accessibility. • Ultrasound contributes to the diagnostic work-up of acute lesions of the coracoclavicular ligaments. • Ultrasound is appropriate in patients likely to benefit from surgical treatment. • Ultrasound could be a supplement to standard radiography in acute acromioclavicular trauma.

  5. Evaluation of Computer-aided Strategies for Teaching Medical Students Prenatal Ultrasound Diagnostic Skills.

    PubMed

    Amesse, Lawrence S; Callendar, Ealena; Pfaff-Amesse, Teresa; Duke, Janice; Herbert, William N P

    2008-09-24

    To evaluate whether computer-based learning (CBL) improves newly acquired knowledge and is an effective strategy for teaching prenatal ultrasound diagnostic skills to third-year medical students when compared with instruction by traditional paper-based methods (PBM). We conducted a randomized, prospective study involving volunteer junior (3(rd) year) medical students consecutively rotating through the Obstetrics and Gynecology clerkship during six months of the 2005-2006 academic year. The students were randomly assigned to permuted blocks and divided into two groups. Half of the participants received instruction in prenatal ultrasound diagnostics using an interactive CBL program; the other half received instruction using equivalent material by the traditional PBM. Outcomes were evaluated by comparing changes in pre-tutorial and post instruction examination scores. All 36 potential participants (100%) completed the study curriculum. Students were divided equally between the CBL (n = 18) and PBM (n = 18) groups. Pre-tutorial exam scores (mean+/-s.d.) were 44%+/-11.1% for the CBL group and 44%+/-10.8% for the PBL cohort, indicating no statistically significant differences (p>0.05) between the two groups. After instruction, post-tutorial exam scores (mean+/-s.d.) were increased from the pre-tutorial scores, 74%+/-11% and 67%+/-12%, for students in the CBL and the PBM groups, respectively. The improvement in post-tutorial exam scores from the pre-test scores was considered significant (p<0.05). When post-test scores for the tutorial groups were compared, the CBL subjects achieved a score that was, on average, 7 percentage points higher than their PBM counterparts, a statistically significant difference (p < 0.05). Instruction by either CBL or PBM strategies is associated with improvements in newly acquired knowledge as reflected by increased post-tutorial examination scores. Students that received CBL had significantlyhigher post-tutorial exam scores than those in the

  6. Ultrasound mediated nanoparticle drug delivery

    NASA Astrophysics Data System (ADS)

    Mullin, Lee B.

    Ultrasound is not only a powerful diagnostic tool, but also a promising therapeutic technology that can be used to improve localized drug delivery. Microbubble contrast agents are micron sized encapsulated gas filled bubbles that are administered intravenously. Originally developed to enhance ultrasound images, microbubbles are highly echogenic due to the gas core that provides a detectable impedance difference from the surrounding medium. The core also allows for controlled response of the microbubbles to ultrasound pulses. Microbubbles can be pushed using acoustic radiation force and ruptured using high pressures. Destruction of microbubbles can increase permeability at the cellular and vascular level, which can be advantageous for drug delivery. Advances in drug delivery methods have been seen with the introduction of nanoparticles, nanometer sized objects often carrying a drug payload. In chemotherapy, nanoparticles can deliver drugs to tumors while limiting systemic exposure due to abnormalities in tumor vasculature such large gaps between endothelial cells that allow nanoparticles to enter into the interstitial space; this is referred to as the enhanced permeability and retention (EPR) effect. However, this effect may be overestimated in many tumors. Additionally, only a small percentage of the injected dose accumulates in the tumor, which most the nanoparticles accumulating in the liver and spleen. It is hypothesized that combining the acoustic activity of an ultrasound contrast agent with the high payload and extravasation ability of a nanoparticle, localized delivery to the tumor with reduced systemic toxicity can be achieved. This method can be accomplished by either loading nanoparticles onto the shell of the microbubble or through a coadministration method of both nanoparticles and microbubbles. The work presented in this dissertation utilizes novel and commercial nanoparticle formulations, combined with microbubbles and a variety of ultrasound systems

  7. Ultrasonographic diagnosis of early pregnancy in cattle using different ultrasound systems.

    PubMed

    Racewicz, Przemysław; Sickinger, Marlene; Włodarek, Jan; Jaśkowski, Jędrzej M

    2016-06-16

    To evaluate the efficiency of different ultrasound devices in achieving an early diagnosis of pregnancy in dairy herds. A total of 1976 Holstein Friesian cows and heifers were artificially inseminated (AI) according to the herd manager's regime. Pregnancy diagnostics were performed between day 26 and 35 after AI using six different types of ultrasound systems (linear vs. sector scanners). Manual rectal palpation between day 45 and 60 after AI was used as the gold standard for pregnancy diagnostics. Sensitivity (SENS), specificity (SPEC), positive (PPV) and negative predictive value (NPV) and diagnostic accuracy (ACC) of the diagnostic measures were determined. Average SENS was 82% (range 67.7-95.2%) with a mean SPEC of 73% (range 50.0-81.0%). ACC was 78.2% with a minimum of 64.6% and a maximum of 89.4%, depending on the ultrasound system. The PPV (ratio of the number of pregnant cows with a positive examination result to the number of cows actually pregnant) was 80.8% (range 59.1-88.1%), whereas the NPV (defined as the ratio of the number of cows correctly diagnosed negative to the number of cows actually open) was 74.4% (72.3-91.9%). Significant differences for these parameters were found depending on the ultrasound system used (p ≤ 0.01; Cramer's V. = 0.14). Regardless of the ultrasound device used, early pregnancy diagnostics between day 26 and 35 show a moderate diagnostic efficiency. Comparing the accuracy of the different devices, there may be a significant influence of type and technical parameters. Even though ultrasound systems with mechanical sector probes are not as convenient to use as systems with linear probes, according to this study, sector scanners are a reasonable alternative.

  8. Ultrasound for the Anesthesiologists: Present and Future

    PubMed Central

    Terkawi, Abdullah S.; Karakitsos, Dimitrios; Elbarbary, Mahmoud; Blaivas, Michael; Durieux, Marcel E.

    2013-01-01

    Ultrasound is a safe, portable, relatively inexpensive, and easily accessible imaging modality, making it a useful diagnostic and monitoring tool in medicine. Anesthesiologists encounter a variety of emergent situations and may benefit from the application of such a rapid and accurate diagnostic tool in their routine practice. This paper reviews current and potential applications of ultrasound in anesthesiology in order to encourage anesthesiologists to learn and use this useful tool as an adjunct to physical examination. Ultrasound-guided peripheral nerve blockade and vascular access represent the most popular ultrasound applications in anesthesiology. Ultrasound has recently started to substitute for CT scans and fluoroscopy in many pain treatment procedures. Although the application of airway ultrasound is still limited, it has a promising future. Lung ultrasound is a well-established field in point-of-care medicine, and it could have a great impact if utilized in our ORs, as it may help in rapid and accurate diagnosis in many emergent situations. Optic nerve sheath diameter (ONSD) measurement and transcranial color coded duplex (TCCD) are relatively new neuroimaging modalities, which assess intracranial pressure and cerebral blood flow. Gastric ultrasound can be used for assessment of gastric content and diagnosis of full stomach. Focused transthoracic (TTE) and transesophageal (TEE) echocardiography facilitate the assessment of left and right ventricular function, cardiac valve abnormalities, and volume status as well as guiding cardiac resuscitation. Thus, there are multiple potential areas where ultrasound can play a significant role in guiding otherwise blind and invasive interventions, diagnosing critical conditions, and assessing for possible anatomic variations that may lead to plan modification. We suggest that ultrasound training should be part of any anesthesiology training program curriculum. PMID:24348179

  9. Opto-acoustic breast imaging with co-registered ultrasound

    NASA Astrophysics Data System (ADS)

    Zalev, Jason; Clingman, Bryan; Herzog, Don; Miller, Tom; Stavros, A. Thomas; Oraevsky, Alexander; Kist, Kenneth; Dornbluth, N. Carol; Otto, Pamela

    2014-03-01

    We present results from a recent study involving the ImagioTM breast imaging system, which produces fused real-time two-dimensional color-coded opto-acoustic (OA) images that are co-registered and temporally inter- leaved with real-time gray scale ultrasound using a specialized duplex handheld probe. The use of dual optical wavelengths provides functional blood map images of breast tissue and tumors displayed with high contrast based on total hemoglobin and oxygen saturation of the blood. This provides functional diagnostic information pertaining to tumor metabolism. OA also shows morphologic information about tumor neo-vascularity that is complementary to the morphological information obtained with conventional gray scale ultrasound. This fusion technology conveniently enables real-time analysis of the functional opto-acoustic features of lesions detected by readers familiar with anatomical gray scale ultrasound. We demonstrate co-registered opto-acoustic and ultrasonic images of malignant and benign tumors from a recent clinical study that provide new insight into the function of tumors in-vivo. Results from the Feasibility Study show preliminary evidence that the technology may have the capability to improve characterization of benign and malignant breast masses over conventional diagnostic breast ultrasound alone and to improve overall accuracy of breast mass diagnosis. In particular, OA improved speci city over that of conventional diagnostic ultrasound, which could potentially reduce the number of negative biopsies performed without missing cancers.

  10. Thoracic ultrasound-assisted selection for pleural biopsy with Abrams needle.

    PubMed

    Botana-Rial, Maribel; Leiro-Fernández, Virginia; Represas-Represas, Cristina; González-Piñeiro, Ana; Tilve-Gómez, Amara; Fernández-Villar, Alberto

    2013-11-01

    Closed pleural biopsy (CPB) in patients with malignant pleural effusion is less sensitive than cytology. Ultrasound-assisted CPB allows biopsies to be performed in the lower thoracic parietal pleura, where secondary spread from pleural metastases is initially more likely to be found. We analyzed whether choosing the point of entry for CPB with thoracic ultrasound assistance influences the diagnostic yield in malignant pleural effusion. This prospective study included patients who underwent CPB performed by an experienced pulmonologist in 2008-2010 (group A) and thoracic ultrasound was used to select the biopsy site. The results were compared with a historical series of CPB performed by the same pulmonologist without the assistance of thoracic ultrasound (group B). An Abrams needle was used in all cases. We analyzed the obtaining of pleural tissue and the diagnostic yield. We included 114 CPBs from group A (23% tuberculous pleural effusion, 27% malignant pleural effusion) and 67 CPBs from group B (24% tuberculous pleural effusion, 30% malignant pleural effusion) (P = .70). Pleural tissue was obtained in 96.5% of the group A CPBs and 89.6% of the group B CPBs (P = .05). The diagnostic yields of CPB for tuberculous pleural effusion and malignant pleural effusion in group A were 89.5% and 77.4%, respectively, and 91.7% and 60%, respectively, in group B (P = .80 for tuberculous pleural effusion, and P = .18 for malignant pleural effusion). Selecting the point of entry for CPB using thoracic ultrasound increases the likelihood of obtaining pleural tissue and the diagnostic yield, but without statistical significance. We recommend ultrasound-assisted CPB to investigate pleural effusion, since the diagnostic yield of a pleural biopsy with an Abrams needle increased by > 17% in subjects with malignant pleural effusion.

  11. Diagnostic Value of Endorectal Ultrasound in Preoperative Assessment of Lymph Node Involvement in Colorectal Cancer: a Meta-analysis.

    PubMed

    Li, Li; Chen, Shi; Wang, Ke; Huang, Jiao; Liu, Li; Wei, Sheng; Gao, Hong-Yu

    2015-01-01

    Nodal invasion by colorectal cancer is a critical determinant in estimating patient survival and in choosing appropriate preoperative treatment. The present meta-analysis was designed to evaluate the diagnostic value of endorectal ultrasound (EUS) in preoperative assessment of lymph node involvement in colorectal cancer. We systematically searched PubMed, Web of Science, Embase, and China National Knowledge Infrastructure (CNKI) databases for relevant studies published on or before December 10th, 2014. The sensitivity, specificity, likelihood ratios, diagnostic odds ratio (DOR) and area under the summary receiver operating characteristics curve (AUC) were assessed to estimate the diagnostic value of EUS. Subgroup analysis and meta-regression were performed to explore heterogeneity across studies. Thirty-three studies covering 3,016 subjects were included. The pooled sensitivity and specificity were 0.69 (95%CI: 0.63-0.75) and 0.77 (95%CI: 0.73-0.82), respectively. The positive and negative likelihood ratios were 3.09 (95%CI: 2.52-3.78) and 0.39 (95%CI: 0.32-0.48), respectively. The DOR was 7.84 (95%CI: 5.56-11.08), and AUC was 0.80 (95%CI: 0.77-0.84). This meta-analysis indicated that EUS has moderate diagnostic value in preoperative assessment of lymph node involvement in colorectal cancer. Further refinements in technology and diagnostic criteria are necessary to improve the diagnostic accuracy of EUS.

  12. Advances in addressing technical challenges of point-of-care diagnostics in resource-limited settings

    PubMed Central

    Wang, ShuQi; Lifson, Mark A.; Inci, Fatih; Liang, Li-Guo; Sheng, Ye-Feng; Demirci, Utkan

    2016-01-01

    The striking prevalence of HIV, TB and malaria, as well as outbreaks of emerging infectious diseases, such as influenza A (H7N9), Ebola and MERS, poses great challenges for patient care in resource-limited settings (RLS). However, advanced diagnostic technologies cannot be implemented in RLS largely due to economic constraints. Simple and inexpensive point-of-care (POC) diagnostics, which rely less on environmental context and operator training, have thus been extensively studied to achieve early diagnosis and treatment monitoring in non-laboratory settings. Despite great input from material science, biomedical engineering and nanotechnology for developing POC diagnostics, significant technical challenges are yet to be overcome. Summarized here are the technical challenges associated with POC diagnostics from a RLS perspective and the latest advances in addressing these challenges are reviewed. PMID:26777725

  13. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application.

    PubMed

    Gong, Max M; Sinton, David

    2017-06-28

    Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.

  14. Recent advances in imaging technologies in dentistry.

    PubMed

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-10-28

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  15. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  16. Towards Dynamic Contrast Specific Ultrasound Tomography

    NASA Astrophysics Data System (ADS)

    Demi, Libertario; van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-10-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  17. Towards Dynamic Contrast Specific Ultrasound Tomography.

    PubMed

    Demi, Libertario; Van Sloun, Ruud J G; Wijkstra, Hessel; Mischi, Massimo

    2016-10-05

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast.

  18. Towards Dynamic Contrast Specific Ultrasound Tomography

    PubMed Central

    Demi, Libertario; Van Sloun, Ruud J. G.; Wijkstra, Hessel; Mischi, Massimo

    2016-01-01

    We report on the first study demonstrating the ability of a recently-developed, contrast-enhanced, ultrasound imaging method, referred to as cumulative phase delay imaging (CPDI), to image and quantify ultrasound contrast agent (UCA) kinetics. Unlike standard ultrasound tomography, which exploits changes in speed of sound and attenuation, CPDI is based on a marker specific to UCAs, thus enabling dynamic contrast-specific ultrasound tomography (DCS-UST). For breast imaging, DCS-UST will lead to a more practical, faster, and less operator-dependent imaging procedure compared to standard echo-contrast, while preserving accurate imaging of contrast kinetics. Moreover, a linear relation between CPD values and ultrasound second-harmonic intensity was measured (coefficient of determination = 0.87). DCS-UST can find clinical applications as a diagnostic method for breast cancer localization, adding important features to multi-parametric ultrasound tomography of the breast. PMID:27703251

  19. [Subclinical findings in the knees of taekwondo athletes: diagnostic ultrasound study].

    PubMed

    Martínez Hernández, Luis Enrique; Hernández Díaz, Cristina; Pegueros Pérez, Andrea; Franco Sánchez, José Gilberto; Pineda Villaseñor, Carlos

    2014-12-01

    Taekwondo is associated with an increased incidence of musculoskeletal injuries such as tendinopathy, synovitis, chondropathy, and ligament and meniscus injuries that may have an asymptomatic course in their initial stages, especially those located in the knee. To describe the presence of morphostructural abnormalities in asymptomatic taekwondo athletes' (TKD) knees through the use of diagnostic ultrasound (US). A cross-sectional, descriptive and comparative study. We evaluated 32 knees of 16 subjects (8 TKD and 8 recreational athletes). All subjects underwent sport-medical history and knee US. A variety of intra- and extra-articular morphostructural abnormalities were observed; the most frequent were synovitis, meniscal extrusion, and enthesopathy. The practice of Taekwondo abnormalities associated with an increased risk of knee injuries that may go unnoticed in the early stages. The use of US as an auxiliary tool in the diagnosis of these injuries and/or advisable since it can define in detail the anatomical structures subject to overuse, biomechanical stress, or repetitive trauma, and contribute to early detection of asymptomatic morphostructural alterations that may ensure timely preventive and therapeutic interventions.

  20. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Performance of a Method to Standardize Breast Ultrasound Interpretation Using Image Processing and Case-Based Reasoning

    NASA Astrophysics Data System (ADS)

    André, M. P.; Galperin, M.; Berry, A.; Ojeda-Fournier, H.; O'Boyle, M.; Olson, L.; Comstock, C.; Taylor, A.; Ledgerwood, M.

    Our computer-aided diagnostic (CADx) tool uses advanced image processing and artificial intelligence to analyze findings on breast sonography images. The goal is to standardize reporting of such findings using well-defined descriptors and to improve accuracy and reproducibility of interpretation of breast ultrasound by radiologists. This study examined several factors that may impact accuracy and reproducibility of the CADx software, which proved to be highly accurate and stabile over several operating conditions.

  2. A new method for tracking organ motion on diagnostic ultrasound images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kubota, Yoshiki, E-mail: y-kubota@gunma-u.ac.jp; Matsumura, Akihiko, E-mail: matchan.akihiko@gunma-u.ac.jp; Fukahori, Mai, E-mail: fukahori@nirs.go.jp

    2014-09-15

    Purpose: Respiratory-gated irradiation is effective in reducing the margins of a target in the case of abdominal organs, such as the liver, that change their position as a result of respiratory motion. However, existing technologies are incapable of directly measuring organ motion in real-time during radiation beam delivery. Hence, the authors proposed a novel quantitative organ motion tracking method involving the use of diagnostic ultrasound images; it is noninvasive and does not entail radiation exposure. In the present study, the authors have prospectively evaluated this proposed method. Methods: The method involved real-time processing of clinical ultrasound imaging data rather thanmore » organ monitoring; it comprised a three-dimensional ultrasound device, a respiratory sensing system, and two PCs for data storage and analysis. The study was designed to evaluate the effectiveness of the proposed method by tracking the gallbladder in one subject and a liver vein in another subject. To track a moving target organ, the method involved the control of a region of interest (ROI) that delineated the target. A tracking algorithm was used to control the ROI, and a large number of feature points and an error correction algorithm were used to achieve long-term tracking of the target. Tracking accuracy was assessed in terms of how well the ROI matched the center of the target. Results: The effectiveness of using a large number of feature points and the error correction algorithm in the proposed method was verified by comparing it with two simple tracking methods. The ROI could capture the center of the target for about 5 min in a cross-sectional image with changing position. Indeed, using the proposed method, it was possible to accurately track a target with a center deviation of 1.54 ± 0.9 mm. The computing time for one frame image using our proposed method was 8 ms. It is expected that it would be possible to track any soft-tissue organ or tumor with large

  3. Potential diagnostic performance of contrast-enhanced ultrasound and tumor markers in differentiating combined hepatocellular-cholangiocarcinoma from hepatocellular carcinoma and cholangiocarcinoma.

    PubMed

    Huang, Xiao-Wen; Huang, Yang; Chen, Li-da; Wang, Zhu; Yang, Zheng; Liu, Jin-Ya; Xie, Xiao-Yan; Lu, Ming-De; Shen, Shun-Li; Wang, Wei

    2018-04-01

    To evaluate the diagnostic performance of the combination of tumor markers [alpha-fetoprotein (AFP) and carbohydrate antigen 19-9 (CA19-9)] and imaging features in differentiating combined hepatocellular-cholangiocarcinoma (CHC) from hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). Forty consecutive patients with pathologically proven CHC were retrospectively evaluated with contrast-enhanced ultrasound (CEUS). Additionally, 40 HCC and 40 CC patients who were randomly selected from the same period served as a control group. Images were classified as HCC-like or CC-like pattern according to CEUS guidelines recommended by World and European Federation for Ultrasound in Medicine and Biology (WFUMB-EFSUMB). The diagnostic criteria of CHC were defined as follows: (1) both AFP and CA19-9 are simultaneously elevated (AFP > 20 ng/ml and CA19-9 > 100 units/ml); or (2) elevated AFP with a CC-like pattern on CEUS and without elevated CA19-9 level; or (3) elevated CA19-9 with an HCC-like pattern on CEUS and without elevated AFP level. The diagnostic tests were performed with calculation of the sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). For the 40 CHC patients, the rates of elevated AFP and CA19-9 serology were 55.0 and 30.0%, respectively. Twenty-three (57.5%) patients exhibited an HCC-like pattern, and 15 (37.5%) showed a CC-like pattern. After applying the above diagnostic criteria of CHC in the 120 patients, the sensitivity, specificity, PPV, NPV, accuracy, and AUC were 32.5, 93.8, 72.2, 73.5, 73.3, and 0.631%, respectively. When the actual prevalence rate (0.4-14.3%) was taken into account, the PPV and NPV were modified from 2.1 to 46.7% and 89.3 to 99.7%, respectively. The combination of enhancement patterns on CEUS and serum tumor markers (AFP and CA19-9) may be a potentially specific diagnostic method to differentiate CHC from HCC

  4. Ultrasound elastography-based assessment of the elasticity of the supraspinatus muscle in impingement syndrome: does elastography has any diagnostic value?

    PubMed

    Demirel, Adnan; Baykara, Murat; Koca, Tuba Tülay; Berk, Ejder

    2018-06-01

    Ultrasound elastography (UE) is a new ultrasound-based imaging technique that provides information about elasticity and stiffness of tissues. This cross-sectional study aimed to identify the diagnostic importance of UE in supraspinatus impingement syndrome. Forty-one subjects, aged 38-70 years, were included in the study. UE was used to determine the elasticity of the supraspinatus muscle. The strain ratio was calculated as the evaluation criteria to measure the elasticity of the muscle. High strain ratio indicated low elasticity. The measurements were made by the blinded radiologist while the patients sat with their shoulder in a neutral position. The diagnostic value of the strain ratio was evaluated using the receiver operating characteristic (ROC) analysis. The mean strain value of the supraspinatus muscle on the intact and pathological shoulders determined by UE was 0.74 ± 0.33 and 0.31 ± 0.24, respectively. A low strain ratio value in the supraspinatus muscle on the side with impingement syndrome was measured. When the test variable was evaluated as "strain ratio" according to ROC curve analysis, it was found to be above the reference line [0.849 (> 0.5)] (P = 0.00). When the cutoff value was selected as 0.495, the sensitivity and specificity were found to be 75.6 and 78% (the strain ratio value > 0.495), respectively. Measurement of strain ratio with UE can be used as a noninvasive, inexpensive, and practical diagnostic test for the shoulder impingement disease.

  5. Diagnostic accuracy of contrast-enhanced ultrasound for the differential diagnosis of hepatocellular carcinoma: ESCULAP versus CEUS-LI-RADS.

    PubMed

    Schellhaas, Barbara; Görtz, Ruediger S; Pfeifer, Lukas; Kielisch, Christian; Neurath, Markus F; Strobel, Deike

    2017-09-01

    A comparison is made of two contrast-enhanced ultrasound (CEUS) algorithms for the diagnosis of hepatocellular carcinoma (HCC) in high-risk patients: Erlanger Synopsis of Contrast-enhanced Ultrasound for Liver lesion Assessment in Patients at Risk (ESCULAP) and American College of Radiology Contrast-Enhanced Ultrasound-Liver Imaging Reporting and Data System (ACR-CEUS-LI-RADSv.2016). Focal liver lesions in 100 high-risk patients were assessed using both CEUS algorithms (ESCULAP and CEUS-LI-RADSv.2016) for a direct comparison. Lesions were categorized according to size and contrast enhancement in the arterial, portal venous and late phases.For the definite diagnosis of HCC, categories ESCULAP-4, ESCULAP-Tr and ESCULAP-V and CEUS-LI-RADS-LR-5, LR-Tr and LR-5-V were compared. In addition, CEUS-LI-RADS-category LR-M (definitely/probably malignant, but not specific for HCC) and ESCULAP-category C [intrahepatic cholangiocellular carcinoma (ICC)] were compared.Histology, CE-computed tomography and CE-MRI served as reference standards. The reference standard among 100 lesions included 87 HCCs, six ICCs and seven non-HCC-non-ICC-lesions. For the diagnosis of HCC, the diagnostic accuracy of CEUS was significantly higher with ESCULAP versus CEUS-LI-RADS (94.3%/72.4%; p<0.01). Sensitivity, specificity and positive predictive value (PPV) and negative predictive value for ESCULAP/CEUS-LI-RADS were 94.3%/72.4%; 61.5%/69.2%; 94.3%/94%; and 61.5%/27.3%, respectively.The diagnostic accuracy for ICC (LR-M/ESCULAP-C) was identical with both algorithms (50%), with higher PPV for ESCULAP-C versus LR-M (75 vs. 50%). CEUS-based algorithms contribute toward standardized assessment and reporting of HCC-suspect lesions in high-risk patients. ESCULAP shows significantly higher diagnostic accuracy, sensitivity and negative predictive value with no loss of specificity compared with CEUS-LI-RADS. Both algorithms have an excellent PPV. Arterial hyperenhancement is the key feature for the

  6. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-01-01

    The following sports ultrasound (SPORTS US) curriculum is a revision of the curriculum developed by the American Medical Society for Sports Medicine (AMSSM) in 2010. Several changes have been made to the curriculum with the primary aim of providing a pathway by which a sports medicine fellow can obtain sufficient SPORTS US training to become proficient in the core competencies of SPORTS US. The core competencies of SPORTS US are outlined in the learning objectives section of this document. The term "SPORTS US" was purposefully chosen rather than "musculoskeletal ultrasound" (MSK US) because it was recognized by the panel that the evolving field of SPORTS US encompasses non-MSK applications of ultrasound such as the FAST examination (focused assessment with sonography for trauma). Although the SPORTS US core competencies in this curriculum are all MSK in nature, they represent the minimum SPORTS US knowledge a sports medicine fellow should acquire during fellowship. However, additional training in more advanced MSK and non-MSK applications of ultrasound can be provided at the fellowship director's discretion. Completion of this SPORTS US curriculum fulfills the American Institute of Ultrasound in Medicine's (AIUM) requirements to perform an MSK US examination and the prerequisites for the American Registry for Diagnostic Medical Sonography's (ARDMS) MSK sonography certification examination.

  7. Ultrasound image-guided therapy enhances antitumor effect of cisplatin.

    PubMed

    Sasaki, Noboru; Kudo, Nobuki; Nakamura, Kensuke; Lim, Sue Yee; Murakami, Masahiro; Kumara, W R Bandula; Tamura, Yu; Ohta, Hiroshi; Yamasaki, Masahiro; Takiguchi, Mitsuyoshi

    2014-01-01

    The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 μg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 μl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

  8. The Role of Ultrasound Compared to Biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study.

    PubMed

    Luqmani, Raashid; Lee, Ellen; Singh, Surjeet; Gillett, Mike; Schmidt, Wolfgang A; Bradburn, Mike; Dasgupta, Bhaskar; Diamantopoulos, Andreas P; Forrester-Barker, Wulf; Hamilton, William; Masters, Shauna; McDonald, Brendan; McNally, Eugene; Pease, Colin; Piper, Jennifer; Salmon, John; Wailoo, Allan; Wolfe, Konrad; Hutchings, Andrew

    2016-11-01

    Giant cell arteritis (GCA) is a relatively common form of primary systemic vasculitis, which, if left untreated, can lead to permanent sight loss. We compared ultrasound as an alternative diagnostic test with temporal artery biopsy, which may be negative in 9-61% of true cases. To compare the clinical effectiveness and cost-effectiveness of ultrasound with biopsy in diagnosing patients with suspected GCA. Prospective multicentre cohort study. Secondary care. A total of 381 patients referred with newly suspected GCA. Sensitivity, specificity and cost-effectiveness of ultrasound compared with biopsy or ultrasound combined with biopsy for diagnosing GCA and interobserver reliability in interpreting scan or biopsy findings. We developed and implemented an ultrasound training programme for diagnosing suspected GCA. We recruited 430 patients with suspected GCA. We analysed 381 patients who underwent both ultrasound and biopsy within 10 days of starting treatment for suspected GCA and who attended a follow-up assessment (median age 71.1 years; 72% female). The sensitivity of biopsy was 39% [95% confidence interval (CI) 33% to 46%], which was significantly lower than previously reported and inferior to ultrasound (54%, 95% CI 48% to 60%); the specificity of biopsy (100%, 95% CI 97% to 100%) was superior to ultrasound (81%, 95% CI 73% to 88%). If we scanned all suspected patients and performed biopsies only on negative cases, sensitivity increased to 65% and specificity was maintained at 81%, reducing the need for biopsies by 43%. Strategies combining clinical judgement (clinician's assessment at 2 weeks) with the tests showed sensitivity and specificity of 91% and 81%, respectively, for biopsy and 93% and 77%, respectively, for ultrasound; cost-effectiveness (incremental net monetary benefit) was £485 per patient in favour of ultrasound with both cost savings and a small health gain. Inter-rater analysis revealed moderate agreement among sonographers (intraclass

  9. Recent advances in low-cost microfluidic platforms for diagnostic applications.

    PubMed

    Tomazelli Coltro, Wendell Karlos; Cheng, Chao-Min; Carrilho, Emanuel; de Jesus, Dosil Pereira

    2014-08-01

    The use of inexpensive materials and cost-effective manufacturing processes for mass production of microfluidic devices is very attractive and has spurred a variety of approaches. Such devices are particularly suited for diagnostic applications in limited resource settings. This review describes the recent and remarkable advances in the use of low-cost substrates for the development of microfluidic devices for diagnostics and clinical assays. Thus, a plethora of new and improved fabrication methods, designs, capabilities, detections, and applications of microfluidic devices fabricated with paper, plastic, and threads are covered. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Ethical analysis of non-medical fetal ultrasound.

    PubMed

    Leung, John Lai Yin; Pang, Samantha Mei Che

    2009-09-01

    Obstetric ultrasound is the well-recognized prenatal test used to visualize and determine the condition of a pregnant woman and her fetus. Apart from the clinical application, some businesses have started promoting the use of fetal ultrasound machines for nonmedical reasons. Non-medical fetal ultrasound (also known as 'keepsake' ultrasound) is defined as using ultrasound to view, take a picture, or determine the sex of a fetus without a medical indication. Notwithstanding the guidelines and warnings regarding ultrasound safety issued by governments and professional bodies, the absence of scientifically proven physical harm to fetuses from this procedure seems to provide these businesses with grounds for rapid expansion. However, this argument is too simplistic because current epidemiological evidence is not synchronous with advancing ultrasound technology. As non-medical fetal ultrasound has aroused very significant public attention, a thorough ethical analysis of this topic is essential. Using a multifaceted approach, we analyse the ethical perspective of non-medical fetal ultrasound in terms of the expectant mother, the fetus and health professionals. After applying four major theories of ethics and principles (the precautionary principle; theories of consequentialism and impartiality; duty-based theory; and rights-based theories), we conclude that obstetric ultrasound practice is ethically justifiable only if the indication for its use is based on medical evidence. Non-medical fetal ultrasound can be considered ethically unjustifiable. Nevertheless, the ethical analysis of this issue is time dependent owing to rapid advancements in ultrasound technology and the safety issue. The role of health professionals in ensuring that obstetric ultrasound is an ethically justifiable practice is also discussed.

  11. Ultrasound in athletes: emerging techniques in point-of-care practice.

    PubMed

    Yim, Eugene S; Corrado, Gianmichel

    2012-01-01

    Ultrasound offers sports medicine clinicians the potential to diagnose, treat, and manage a broad spectrum of conditions afflicting athletes. This review article highlights applications of ultrasound that hold promise as point-of-care diagnostics and therapeutic tools that can be used directly by clinicians to direct real-time management of athletes. Point-of-care ultrasound has been examined most in the context of musculoskeletal disorders in athletes, with attention given to Achilles tendinopathy, patellar tendinopathy, hip and thigh pathology, elbow tendinopathy, wrist pathology, and shoulder pain. More research has focused on therapeutic applications than diagnostic, but initial evidence has been generated in both. Preliminary evidence has been published also on abdominal ultrasound for splenic enlargement in mononucleosis, cardiopulmonary processes and hydration status, deep vein thrombosis, and bone mineral density. Further research will be required to validate these applications and to explore further applications of portable ultrasound that can be used in the care of athletes.

  12. Medical Ultrasound Technology Research and Development at the University of Washington Center for Industrial and Medical Ultrasound

    DTIC Science & Technology

    2003-10-02

    provide a world-class, advanced research center for bioengineering development and graduate education in high-intensity, focused ultrasound ( HIFU ). This...convenient, and robust. These technological enhancements have enabled the development of HIFU arrays and image-guided ultrasound systems for greater... Ultrasound (CIMU). The many disparate facilities and technical capabilities available to CIMU staff and students were integrated and enhanced to

  13. Characterization of controlled bone defects using 2D and 3D ultrasound imaging techniques.

    PubMed

    Parmar, Biren J; Longsine, Whitney; Sabonghy, Eric P; Han, Arum; Tasciotti, Ennio; Weiner, Bradley K; Ferrari, Mauro; Righetti, Raffaella

    2010-08-21

    Ultrasound is emerging as an attractive alternative modality to standard x-ray and CT methods for bone assessment applications. As of today, however, there is a lack of systematic studies that investigate the performance of diagnostic ultrasound techniques in bone imaging applications. This study aims at understanding the performance limitations of new ultrasound techniques for imaging bones in controlled experiments in vitro. Experiments are performed on samples of mammalian and non-mammalian bones with controlled defects with size ranging from 400 microm to 5 mm. Ultrasound findings are statistically compared with those obtained from the same samples using standard x-ray imaging modalities and optical microscopy. The results of this study demonstrate that it is feasible to use diagnostic ultrasound imaging techniques to assess sub-millimeter bone defects in real time and with high accuracy and precision. These results also demonstrate that ultrasound imaging techniques perform comparably better than x-ray imaging and optical imaging methods, in the assessment of a wide range of controlled defects both in mammalian and non-mammalian bones. In the future, ultrasound imaging techniques might provide a cost-effective, real-time, safe and portable diagnostic tool for bone imaging applications.

  14. Outcomes of an Advanced Ultrasound Elective: Preparing Medical Students for Residency and Practice.

    PubMed

    Prats, Michael I; Royall, Nelson A; Panchal, Ashish R; Way, David P; Bahner, David P

    2016-05-01

    Many medical specialties have adopted the use of ultrasound, creating demands for higher-quality ultrasound training at all levels of medical education. Little is known about the long-term benefit of integrating ultrasound training during undergraduate medical education. This study evaluated the effect of a longitudinal fourth-year undergraduate medical education elective in ultrasound and its impact on the future use of ultrasound in clinical practice. A cross-sectional survey of medical graduates from The Ohio State University College of Medicine (2006-2011) was done, comparing those who participated and those who did not participate in a rigorous ultrasound program for fourth-year medical students. A 38-item questionnaire queried graduates concerning ultrasound education in residency, their proficiency, and their current use of ultrasound in clinical practice. Surveys were completed by 116 respondents, for a return rate of 40.8% (116 of 284). The participants of the undergraduate medical education ultrasound elective (n = 61) reported more hours of ultrasound training after graduation (hands-on training, bedside scanning, and number of scans performed; P < .001), higher ultrasound proficiency (proficiency in using ultrasound for clinical decision making, use in emergency settings, and use of novel techniques; P< .001), and higher rates of ultrasound use in clinical practice (P < .001). The longitudinal undergraduate medical education ultrasound elective produced physicians who were more likely to seek additional training in residency, evaluate themselves as more proficient, and use ultrasound in their clinical practice. Early training in bedside ultrasound during undergraduate medical education yields physicians who are better prepared for integration of ultrasound into clinical practice. © 2016 by the American Institute of Ultrasound in Medicine.

  15. Medium-high frequency ultrasound and ozone based advanced oxidation for amoxicillin removal in water.

    PubMed

    Kıdak, Rana; Doğan, Şifa

    2018-01-01

    In this study, treatment of an antibiotic compound amoxicillin by medium-high frequency ultrasonic irradiation and/or ozonation has been studied. Ultrasonic irradiation process was carried out in a batch reactor for aqueous amoxicillin solutions at three different frequencies (575, 861 and 1141kHz). The applied ultrasonic power was 75W and the diffused power was calculated as 14.6W/L. The highest removal was achieved at 575kHz ultrasonic frequency (>99%) with the highest pseudo first order reaction rate constant 0.04min -1 at pH 10 but the mineralization achieved was around 10%. Presence of alkalinity and humic acid species had negative effect on the removal efficiency (50% decrease). To improve the poor outcomes, ozonation had been applied with or without ultrasound. Ozone removed the amoxicillin at a rate 50 times faster than ultrasound. Moreover, due to the synergistic effect, coupling of ozone and ultrasound gave rise to rate constant of 2.5min -1 (625 times higher than ultrasound). In the processes where ozone was used, humic acid did not show any significant effect because the rate constant was so high that ozone has easily overcome the scavenging effects of natural water constituents. Furthermore, the intermediate compounds, after the incomplete oxidation mechanisms, has been analyzed to reveal the possible degradation pathways of amoxicillin through ultrasonic irradiation and ozonation applications. The outcomes of the intermediate compounds experiments and the toxicity was investigated to give a clear explanation about the safety of the resulting solution. The relevance of all the results concluded that hybrid advanced oxidation system was the best option for amoxicillin removal. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Ultrasound-based elastography for the diagnosis of portal hypertension in cirrhotics

    PubMed Central

    Şirli, Roxana; Sporea, Ioan; Popescu, Alina; Dănilă, Mirela

    2015-01-01

    Progressive fibrosis is encountered in almost all chronic liver diseases. Its clinical signs are diagnostic in advanced cirrhosis, but compensated liver cirrhosis is harder to diagnose. Liver biopsy is still considered the reference method for staging the severity of fibrosis, but due to its drawbacks (inter and intra-observer variability, sampling errors, unequal distribution of fibrosis in the liver, and risk of complications and even death), non-invasive methods were developed to assess fibrosis (serologic and elastographic). Elastographic methods can be ultrasound-based or magnetic resonance imaging-based. All ultrasound-based elastographic methods are valuable for the early diagnosis of cirrhosis, especially transient elastography (TE) and acoustic radiation force impulse (ARFI) elastography, which have similar sensitivities and specificities, although ARFI has better feasibility. TE is a promising method for predicting portal hypertension in cirrhotic patients, but it cannot replace upper digestive endoscopy. The diagnostic accuracy of using ARFI in the liver to predict portal hypertension in cirrhotic patients is debatable, with controversial results in published studies. The accuracy of ARFI elastography may be significantly increased if spleen stiffness is assessed, either alone or in combination with liver stiffness and other parameters. Two-dimensional shear-wave elastography, the ElastPQ technique and strain elastography all need to be evaluated as predictors of portal hypertension. PMID:26556985

  17. Transperineal ultrasound compared to evacuation proctography for diagnosing enteroceles and intussusceptions.

    PubMed

    Weemhoff, M; Kluivers, K B; Govaert, B; Evers, J L H; Kessels, A G H; Baeten, C G

    2013-03-01

    This study concerns the level of agreement between transperineal ultrasound and evacuation proctography for diagnosing enteroceles and intussusceptions. In a prospective observational study, 50 consecutive women who were planned to have an evacuation proctography underwent transperineal ultrasound too. Sensitivity, specificity, positive (PPV) and negative predictive value, as well as the positive and negative likelihood ratio of transperineal ultrasound were assessed in comparison to evacuation proctography. To determine the interobserver agreement of transperineal ultrasound, the quadratic weighted kappa was calculated. Furthermore, receiver operating characteristic curves were generated to show the diagnostic capability of transperineal ultrasound. For diagnosing intussusceptions (PPV 1.00), a positive finding on transperineal ultrasound was predictive of an abnormal evacuation proctography. Sensitivity of transperineal ultrasound was poor for intussusceptions (0.25). For diagnosing enteroceles, the positive likelihood ratio was 2.10 and the negative likelihood ratio, 0.85. There are many false-positive findings of enteroceles on ultrasonography (PPV 0.29). The interobserver agreement of the two ultrasonographers assessed as the quadratic weighted kappa of diagnosing enteroceles was 0.44 and that of diagnosing intussusceptions was 0.23. An intussusception on ultrasound is predictive of an abnormal evacuation proctography. For diagnosing enteroceles, the diagnostic quality of transperineal ultrasound was limited compared to evacuation proctography.

  18. Endobronchial Ultrasound (EBUS) - Update 2017.

    PubMed

    Darwiche, Kaid; Özkan, Filiz; Wolters, Celina; Eisenmann, Stephan

    2018-02-01

    Endobronchial ultrasound (EBUS) has revolutionized the diagnosis of lung cancer over the last decade. This minimally invasive diagnostic method has also become increasingly important in the case of other diseases such as sarcoidosis, thereby helping to avoid unnecessary diagnostic interventions. This review article provides an update regarding EBUS and discusses current and future developments of this method. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience.

    PubMed

    Cantisani, Vito; Maceroni, Piero; D'Andrea, Vito; Patrizi, Gregorio; Di Segni, Mattia; De Vito, Corrado; Grazhdani, Hektor; Isidori, Andrea M; Giannetta, Elisa; Redler, Adriano; Frattaroli, Fabrizio; Giacomelli, Laura; Di Rocco, Giorgio; Catalano, Carlo; D'Ambrosio, Ferdinando

    2016-05-01

    To assess whether ultrasound elastography (USE) with strain ratio increases diagnostic accuracy of Doppler ultrasound in further characterisation of cytologically Thy3 thyroid nodules. In two different university diagnostic centres, 315 patients with indeterminate cytology (Thy3) in thyroid nodules aspirates were prospectively evaluated with Doppler ultrasound and strain ratio USE before surgery. Ultrasonographic features were analysed separately and together as ultrasound score, to assess sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Receiver operating characteristic (ROC) curves to identify optimal cut-off value of the strain ratio were also provided. Diagnosis on a surgical specimen was considered the standard of reference. Higher strain ratio values were found in malignant nodules, with an optimum strain ratio cut-off of 2.09 at ROC analysis. USE with strain ratio showed 90.6% sensitivity, 93% specificity, 82.8% PPV, 96.4% NPV, while US score yielded a sensitivity of 52.9%, specificity of 84.3%, PPV 55.6% and NPV 82.9%. The diagnostic gain with strain ratio was statistically significant as proved by ROC areas, which was 0.9182 for strain ratio and 0.6864 for US score. USE with strain ratio should be considered a useful additional tool to colour-Doppler US, since it improves characterisation of thyroid nodules with indeterminate cytology. • Strain ratio measurements improve differentiation of thyroid nodules with indeterminate cytology • Elastography with strain ratio is more reliable than ultrasound features and ultrasound score • Strain ratio may help to better select patients with Thy 3 nodules candidate for surgery.

  20. Longitudinal Ultrasound Education Track Curriculum Implemented Within an Emergency Medicine Residency Program.

    PubMed

    Boulger, Creagh; Adams, Daniel Z; Hughes, Daralee; Bahner, David P; King, Andrew

    2017-06-01

    Emergency Medicine residency programs offer ultrasound-focused curricula to address Accreditation Council for Graduate Medical Education (ACGME) milestones. Although some programs offer advanced clinical tracks in ultrasound, no standard curriculum exists. We sought to establish a well-defined ultrasound track curriculum to allow interested residents to develop advanced clinical skills and scholarship within this academic niche. The curriculum involves a greater number of clinical scans, ultrasound-focused scholarly and quality improvement projects, enhanced faculty-driven ultrasound focused didactics, and participation at a national ultrasound conference to receive certification. Successful ultrasound scholarly tracks can provide residents with the potential to obtain fellowships or competency beyond ACGME requirements. © 2017 by the American Institute of Ultrasound in Medicine.

  1. Breast Cancer Detection by B7-H3-Targeted Ultrasound Molecular Imaging.

    PubMed

    Bachawal, Sunitha V; Jensen, Kristin C; Wilson, Katheryne E; Tian, Lu; Lutz, Amelie M; Willmann, Jürgen K

    2015-06-15

    Ultrasound complements mammography as an imaging modality for breast cancer detection, especially in patients with dense breast tissue, but its utility is limited by low diagnostic accuracy. One emerging molecular tool to address this limitation involves contrast-enhanced ultrasound using microbubbles targeted to molecular signatures on tumor neovasculature. In this study, we illustrate how tumor vascular expression of B7-H3 (CD276), a member of the B7 family of ligands for T-cell coregulatory receptors, can be incorporated into an ultrasound method that can distinguish normal, benign, precursor, and malignant breast pathologies for diagnostic purposes. Through an IHC analysis of 248 human breast specimens, we found that vascular expression of B7-H3 was selectively and significantly higher in breast cancer tissues. B7-H3 immunostaining on blood vessels distinguished benign/precursors from malignant lesions with high diagnostic accuracy in human specimens. In a transgenic mouse model of cancer, the B7-H3-targeted ultrasound imaging signal was increased significantly in breast cancer tissues and highly correlated with ex vivo expression levels of B7-H3 on quantitative immunofluorescence. Our findings offer a preclinical proof of concept for the use of B7-H3-targeted ultrasound molecular imaging as a tool to improve the diagnostic accuracy of breast cancer detection in patients. ©2015 American Association for Cancer Research.

  2. Holistic ultrasound in trauma: An update.

    PubMed

    Saranteas, Theodosios; Mavrogenis, Andreas F

    2016-10-01

    Holistic ultrasound is a total body examination using an ultrasound device aiming to achieve immediate patient care and decision making. In the setting of trauma, it is one of the most fundamental components of care of the injured patients. Ground-breaking imaging software allows physicians to examine various organs thoroughly, recognize imaging signs early, and potentially foresee the onset or the possible outcome of certain types of injuries. Holistic ultrasound can be performed on a routine basis at the bedside of the patients, at admission and during the perioperative period. Trauma care physicians should be aware of the diagnostic and guidance benefits of ultrasound and should receive appropriate training for the optimal management of their patients. In this paper, the findings of holistic ultrasound in trauma patients are presented, with emphasis on the lungs, heart, cerebral circulation, abdomen, and airway. Additionally, the benefits of ultrasound imaging in interventional anaesthesia techniques such as ultrasound-guided peripheral nerve blocks and central vein catheterization are described. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Diagnostic accuracy of the Bedside Lung Ultrasound in Emergency protocol for the diagnosis of acute respiratory failure in spontaneously breathing patients*,**

    PubMed Central

    Dexheimer, Felippe Leopoldo; de Andrade, Juliana Mara Stormovski; Raupp, Ana Carolina Tabajara; Townsend, Raquel da Silva; Beltrami, Fabiana Gabe; Brisson, Hélène; Lu, Qin; Dalcin, Paulo de Tarso Roth

    2015-01-01

    Objective: Bedside lung ultrasound (LUS) is a noninvasive, readily available imaging modality that can complement clinical evaluation. The Bedside Lung Ultrasound in Emergency (BLUE) protocol has demonstrated a high diagnostic accuracy in patients with acute respiratory failure (ARF). Recently, bedside LUS has been added to the medical training program of our ICU. The aim of this study was to investigate the accuracy of LUS based on the BLUE protocol, when performed by physicians who are not ultrasound experts, to guide the diagnosis of ARF. Methods: Over a one-year period, all spontaneously breathing adult patients consecutively admitted to the ICU for ARF were prospectively included. After training, 4 non-ultrasound experts performed LUS within 20 minutes of patient admission. They were blinded to patient medical history. LUS diagnosis was compared with the final clinical diagnosis made by the ICU team before patients were discharged from the ICU (gold standard). Results: Thirty-seven patients were included in the analysis (mean age, 73.2 ± 14.7 years; APACHE II, 19.2 ± 7.3). LUS diagnosis had a good agreement with the final diagnosis in 84% of patients (overall kappa, 0.81). The most common etiologies for ARF were pneumonia (n = 17) and hemodynamic lung edema (n = 15). The sensitivity and specificity of LUS as measured against the final diagnosis were, respectively, 88% and 90% for pneumonia and 86% and 87% for hemodynamic lung edema. Conclusions: LUS based on the BLUE protocol was reproducible by physicians who are not ultrasound experts and accurate for the diagnosis of pneumonia and hemodynamic lung edema. PMID:25750675

  4. Evaluation of Human Research Facility Ultrasound With the ISS Video System

    NASA Technical Reports Server (NTRS)

    Melton, Shannon; Sargsyan, Ashot

    2003-01-01

    Most medical equipment on the International Space Station (ISS) is manifested as part of the U.S. or the Russian medical hardware systems. However, certain medical hardware is also available as part of the Human Research Facility. The HRF and the JSC Medical Operations Branch established a Memorandum of Agreement for joint use of certain medical hardware, including the HRF ultrasound system, the only diagnostic imaging device currently manifested to fly on ISS. The outcome of a medical contingency may be changed drastically, or an unnecessary evacuation may be prevented, if clinical decisions are supported by timely and objective diagnostic information. In many higher-probability medical scenarios, diagnostic ultrasound is a first-choice modality or provides significant diagnostic information. Accordingly, the Clinical Care Capability Development Project is evaluating the HRF ultrasound system for its utility in relevant clinical situations on board ISS. For effective management of these ultrasound-supported ISS medical scenarios, the resulting data should be available for viewing and interpretation on the ground, and bidirectional voice communication should be readily available to allow ground experts (sonographers, physicians) to provide guidance to the Crew Medical Officer. It may also be vitally important to have the capability of real-time guidance via video uplink to the CMO-operator during an exam to facilitate the diagnosis in a timely fashion. In this document, we strove to verify that the HRF ultrasound video output is compatible with the ISS video system, identify ISS video system field rates and resolutions that are acceptable for varying clinical scenaiios, and evaluate the HRF ultrasound video with a commercial, off-the-shelf video converter, and compare it with the ISS video system.

  5. WE-A-18C-01: Emerging and Innovative Ultrasound Technology in Diagnosis and Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emelianov, S; Oraevsky, A; Stafford, R

    The application of new ultrasound-based technologies in medicine has expanded in recent years. One area of rapid growth has been the combination of ultrasound with other methods of image generation and imaging modalities to produce hybrid approaches for diagnostic imaging and noninvasive therapeutic intervention. The presentations associated with this session will provide an overview of two emerging technologies that are currently being developed and implemented to enhance ultrasound-related diagnostic imaging and therapy: the utilization of optically-induced ultrasound imaging (optoacoustic / photoacoustic imaging) and the use of magnetic resonance imaging to guide the use of high-intensity focused ultrasound for therapeutic applications.more » Learning Objectives: Develop a general understanding of the underlying technologies associated with optoacoustic / photoacoustic tomography and MRguided high-intensity focused ultrasound. Develop an understanding of the current methods of these new ultrasound-based technologies in preclinical research and clinical applications.« less

  6. [Diagnostic imaging of breast cancer : An update].

    PubMed

    Funke, M

    2016-10-01

    Advances in imaging of the female breast have substantially influenced the diagnosis and probably also the therapy and prognosis of breast cancer in the past few years. This article gives an overview of the most important imaging modalities in the diagnosis of breast cancer. Digital mammography is considered to be the gold standard for the early detection of breast cancer. Digital breast tomosynthesis can increase the diagnostic accuracy of mammography and is used for the assessment of equivocal or suspicious mammography findings. Other modalities, such as ultrasound and contrast-enhanced magnetic resonance imaging (MRI) play an important role in the diagnostics, staging and follow-up of breast cancer. Percutaneous needle biopsy is a rapid and minimally invasive method for the histological verification of breast cancer. New breast imaging modalities, such as contrast-enhanced spectral mammography, diffusion-weighted MRI and MR spectroscopy can possibly further improve breast cancer diagnostics; however, further studies are necessary to prove the advantages of these methods so that they cannot yet be recommended for routine clinical use.

  7. Point-of-care ultrasound leads to diagnostic shifts in patients with undifferentiated hypotension.

    PubMed

    Shokoohi, Hamid; Boniface, Keith S; Zaragoza, Michelle; Pourmand, Ali; Earls, James P

    2017-12-01

    To assess the impact of an ultrasound hypotension protocol in identifying life-threatening diagnoses that were missed in the initial evaluation of patients with hypotension and shock. A subset of cases from a previously published prospective study of hypotensive patients who presented at the Emergency Department in a single, academic tertiary care hospital is described. An ultrasound-trained emergency physician performed an ultrasound on each patient using a standardized hypotension protocol. In each case, the differential diagnosis and management plan was solicited from the treating physician immediately before and after the ultrasound. This is a case series of patients with missed diagnoses in whom ultrasound led to a dramatic shift in diagnosis and management by detecting life threatening pathologies. Following a published prospective study of the effect on an ultrasound protocol in 118 hypotensive patients, we identified a series of cases that ultrasound protocol unexpectedly determined serious life threatening diagnoses such as Takotsubo cardiomyopathy, pulmonary embolism, pericardial effusion with tamponade physiology, abdominal aortic aneurysm and perforated viscus resulting in proper diagnoses and management. These hypotensive patients had completely unsuspected but critical diagnoses explaining their hypotension, who in every case had their management altered to target the newly identified life-threatening condition. A hypotension protocol is an optimal use of ultrasound that exemplifies "right time, right place", and impacts decision-making at the bedside. In cases with undifferentiated hypotension, ultrasound is often the most readily available option to ensure that the most immediate life-threatening conditions are quickly identified and addressed in the order of their risk potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Point-of-care ultrasound in aerospace medicine: known and potential applications.

    PubMed

    Wagner, Michael S; Garcia, Kathleen; Martin, David S

    2014-07-01

    Since its initial introduction into the bedside assessment of the trauma patient via the Focused Assessment with Sonography for Trauma (FAST) exam, the use of point-of-care ultrasound has expanded rapidly. A growing body of literature demonstrates ultrasound can be used by nonradiologists as an extension of the physical exam to accurately diagnose or exclude a variety of conditions. These conditions include, but are not limited to, hemoperitoneum, pneumothorax, pulmonary edema, long-bone fracture, deep vein thrombosis, and elevated intracranial pressure. As ultrasound machines have become more compact and portable, their use has extended outside of hospitals to places where the physical exam and diagnostic capabilities may be limited, including the aviation environment. A number of studies using focused sonography have been performed to meet the diagnostic challenges of space medicine. The following article reviews the available literature on portable ultrasound use in aerospace medicine and highlights both known and potential applications of point-of-care ultrasound for the aeromedical clinician.

  9. Filterscope diagnostic system on the Experimental Advanced Superconducting Tokamak (EAST)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z.; Wu, C. R.; Yao, X. J.

    2016-11-15

    A filterscope diagnostic system has been mounted to observe the line emission and visible bremsstrahlung emission from plasma on the experimental advanced superconducting tokamak during the 2014 campaign. By this diagnostic system, multiple wavelengths including D{sub α} (656.1 nm), D{sub γ} (433.9 nm), He II (468.5 nm), Li I (670.8 nm), Li II (548.3 nm), C III (465.0 nm), O II (441.5 nm), Mo I (386.4 nm), W I (400.9 nm), and visible bremsstrahlung radiation (538.0 nm) are monitored with corresponding wavelength filters. All these multi-channel signals are digitized at up to 200 kHz simultaneously. This diagnostic plays a crucialmore » role in studying edge localized modes and H-mode plasmas, due to the high temporal resolution and spatial resolution that have been designed into it.« less

  10. Diagnostic accuracy of a noninvasive hepatic ultrasound score for non-alcoholic fatty liver disease (NAFLD) in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil).

    PubMed

    Goulart, Alessandra Carvalho; Oliveira, Ilka Regina Souza de; Alencar, Airlane Pereira; Santos, Maira Solange Camara dos; Santos, Itamar Souza; Martines, Brenda Margatho Ramos; Meireles, Danilo Peron; Martines, João Augusto dos Santos; Misciagna, Giovanni; Benseñor, Isabela Martins; Lotufo, Paulo Andrade

    2015-01-01

    Noninvasive strategies for evaluating non-alcoholic fatty liver disease (NAFLD) have been investigated over the last few decades. Our aim was to evaluate the diagnostic accuracy of a new hepatic ultrasound score for NAFLD in the ELSA-Brasil study. Diagnostic accuracy study conducted in the ELSA center, in the hospital of a public university. Among the 15,105 participants of the ELSA study who were evaluated for NAFLD, 195 individuals were included in this sub-study. Hepatic ultrasound was performed (deep beam attenuation, hepatorenal index and anteroposterior diameter of the right hepatic lobe) and compared with the hepatic steatosis findings from 64-channel high-resolution computed tomography (CT). We also evaluated two clinical indices relating to NAFLD: the fatty liver index (FLI) and the hepatic steatosis index (HSI). Among the 195 participants, the NAFLD frequency was 34.4%. High body mass index, high waist circumference, diabetes and hypertriglyceridemia were associated with high hepatic attenuation and large anteroposterior diameter of the right hepatic lobe, but not with the hepatorenal index. The hepatic ultrasound score, based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe, presented the best performance for NAFLD screening at the cutoff point ≥ 1 point; sensitivity: 85.1%; specificity: 73.4%; accuracy: 79.3%; and area under the curve (AUC 0.85; 95% confidence interval, CI: 0.78-0.91)]. FLI and HSI presented lower performance (AUC 0.76; 95% CI: 0.69-0.83) than CT. The hepatic ultrasound score based on hepatic attenuation and the anteroposterior diameter of the right hepatic lobe has good reproducibility and accuracy for NAFLD screening.

  11. Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area pyroelectric sensor

    NASA Astrophysics Data System (ADS)

    Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.

    2012-06-01

    A systematic study of the application of a novel pyroelectric technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the pyroelectric properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a pyroelectric output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the pyroelectric membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power

  12. Driving delivery vehicles with ultrasound

    PubMed Central

    Ferrara, Katherine W.

    2009-01-01

    Therapeutic applications of ultrasound have been considered for over 40 years, with the mild hyperthermia and associated increases in perfusion produced by ultrasound harnessed in many of the earliest treatments. More recently, new mechanisms for ultrasound-based or ultrasound-enhanced therapies have been described, and there is now great momentum and enthusiasm for the clinical translation of these techniques. This dedicated issue of Advanced Drug Delivery Reviews, entitled “Ultrasound for Drug and Gene Delivery,” addresses the mechanisms by which ultrasound can enhance local drug and gene delivery and the applications that have been demonstrated at this time. In this commentary, the identified mechanisms, delivery vehicles, applications and current bottlenecks for translation of these techniques are summarized. PMID:18479775

  13. Advances in ultrasound-targeted microbubble-mediated gene therapy for liver fibrosis.

    PubMed

    Huang, Cuiyuan; Zhang, Hong; Bai, Ruidan

    2017-07-01

    Hepatic fibrosis develops as a wound-healing scar in response to acute and chronic liver inflammation and can lead to cirrhosis in patients with chronic hepatitis B and C. The condition arises due to increased synthesis and reduced degradation of extracellular matrix (ECM) and is a common pathological sequela of chronic liver disease. Excessive deposition of ECM in the liver causes liver dysfunction, ascites, and eventually upper gastrointestinal bleeding as well as a series of complications. However, fibrosis can be reversed before developing into cirrhosis and has thus been the subject of extensive researches particularly at the gene level. Currently, therapeutic genes are imported into the damaged liver to delay or prevent the development of liver fibrosis by regulating the expression of exogenous genes. One technique of gene delivery uses ultrasound targeting of microbubbles combined with therapeutic genes where the time and intensity of the ultrasound can control the release process. Ultrasound irradiation of microbubbles in the vicinity of cells changes the permeability of the cell membrane by its cavitation effect and enhances gene transfection. In this paper, recent progress in the field is reviewed with emphasis on the following aspects: the types of ultrasound microbubbles, the construction of an ultrasound-mediated gene delivery system, the mechanism of ultrasound microbubble-mediated gene transfer and the application of ultrasound microbubbles in the treatment of liver fibrosis.

  14. Nonlinear Effects in Ultrasound Fields of Diagnostic-type Transducers Used for Kidney Stone Propulsion: Characterization in Water

    PubMed Central

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2016-01-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher transducer output to provide stronger pushing force; however, nonlinear acoustic saturation effect can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match low power pressure beam scans. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging. PMID:27087711

  15. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    NASA Astrophysics Data System (ADS)

    Karzova, M.; Cunitz, B.; Yuldashev, P.; Andriyakhina, Y.; Kreider, W.; Sapozhnikov, O.; Bailey, M.; Khokhlova, V.

    2015-10-01

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however, nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.

  16. Abdominal ultrasound and medical education.

    PubMed

    García de Casasola Sánchez, G; Torres Macho, J; Casas Rojo, J M; Cubo Romano, P; Antón Santos, J M; Villena Garrido, V; Diez Lobato, R

    2014-04-01

    Ultrasound is a very versatile diagnostic modality that permits real-time visualization of multiple internal organs. It is of invaluable help for the physical examination of the patients. To assess if ultrasound can be incorporated into medical education and if the students can perform a basic abdominal ultrasound examination without the necessity of a long period of training. Twelve medical students were trained in basic abdominal ultrasound during a 15-h training program including a 5-h theoretical and practical course and supervised practice in 20 selected patients. Subsequently, we conducted an evaluation test that assessed the ability of students to obtain the ultrasound views and to detect various pathologies in five different patients. The students were able to correctly identify the abdominal views more than 90% of the times. This percentage was only lower (80%) in the right subcostal view to locate the gallbladder. The accuracy or global efficiency of the ultrasound for the diagnosis of relevant pathological findings of the patients was greater than 90% (91.1% gallstones, abdominal aortic aneurysm 100%; splenomegaly 98.3%, ascites 100%; dilated inferior vena cava 100%; acute urinary retention 100%). The ultrasound may be a feasible learning tool in medical education. Ultrasound can help students to improve the physical examination. Copyright © 2013 Elsevier España, S.L. All rights reserved.

  17. Impact of antepartum diagnostic amnioinfusion on targeted ultrasound imaging of pregnancies presenting with severe oligo- and anhydramnios: An analysis of 61 cases.

    PubMed

    Vikraman, Seneesh Kumar; Chandra, Vipin; Balakrishnan, Bijoy; Batra, Meenu; Sethumadhavan, Sreeja; Patil, Swapneel Neelkanth; Nair, Sabila; Kannoly, Gopinathan

    2017-05-01

    The primary objective our study was to assess the role of diagnostic antepartum amnioinfusion on the yield from targeted ultrasounds performed in pregnancies with severe oligo- and anhydramnios. This was a retrospective and descriptive study, conducted in the fetal medicine units of two private tertiary care referral centers in south India. The details of all the cases of diagnostic amnioinfusion performed at these two centers from January 2009 to June 2016 were collected and analyzed. Inclusion criteria were pregnancies between 17 and 26 weeks of gestational age with severe oligo- or anhydramnios. Pregnancies with obvious preterm premature rupture of membranes (PPROM) were excluded. The primary outcome measure was the improvement in diagnostic information pertaining to cause of severe oligo- and anhydramnios, and the nature of such anomalies. A total of 61 cases of were identified. The median gestational age at performance of the procedure was 22 weeks [IQR, 19.5-23]. The mean volume of normal saline infused was 314±54ml. A significant increase in the single vertical pocket (SVP) was observed following the procedure (pre-procedure SVP=0.6±0.9cm, post procedure SVP=3.4±1.7; paired t test, p<0.001). In 37 cases (37/61, 60.7%), there were no pre-procedure ultrasound findings. There was significant overall detection of abnormalities post procedure (mean pre-procedure findings=0.39±0.49, mean post procedure findings=1.59±1.24; paired t test, p<0.001). The most frequent group of anomalies/abnormalities were renal (36/61, 59%), followed by PPROM (13/61, 21.3%) and finally fetal growth restriction (11/61, 18%). Antepartum amnioinfusion is a valuable ancillary technique in prenatal diagnosis as it increases the diagnostic yield from pregnancies presenting with severe oligo- and anhydramnios. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer.

    PubMed

    Strunk, H M; Henseler, J; Rauch, M; Mücke, M; Kukuk, G; Cuhls, H; Radbruch, L; Zhang, L; Schild, H H; Marinova, M

    2016-07-01

    Evaluation of ultrasound-guided high-intensity focused ultrasound (HIFU) used for the first time in Germany in patients with inoperable pancreatic cancer for reduction of tumor volume and relief of tumor-associated pain. 15 patients with locally advanced inoperable pancreatic cancer and tumor-related pain symptoms were treated by HIFU (n = 6 UICC stage III, n = 9 UICC stage IV). 13 patients underwent simultaneous standard chemotherapy. Ablation was performed using the JC HIFU system (Chongqing, China HAIFU Company) with an ultrasonic device for real-time imaging. Imaging follow-up (US, CT, MRI) and clinical assessment using validated questionnaires (NRS, BPI) was performed before and up to 15 months after HIFU. Despite biliary or duodenal stents (4/15) and encasement of visceral vessels (15/15), HIFU treatment was performed successfully in all patients. Treatment time and sonication time were 111 min and 1103 s, respectively. The applied total energy was 386 768 J. After HIFU ablation, contrast-enhanced imaging showed devascularization of treated tumor regions with a significant average volume reduction of 63.8 % after 3 months. Considerable pain relief was achieved in 12 patients after HIFU (complete or partial pain reduction in 6 patients). US-guided HIFU with a suitable acoustic pathway can be used for local tumor control and relief of tumor-associated pain in patients with locally advanced pancreatic cancer. • US-guided HIFU allows an additive treatment of unresectable pancreatic cancer.• HIFU can be used for tumor volume reduction.• Using HIFU, a significant reduction of cancer-related pain was achieved.• HIFU provides clinical benefit in patients with pancreatic cancer. Citation Format: • Strunk HM, Henseler J, Rauch M et al. Clinical Use of High-Intensity Focused Ultrasound (HIFU) for Tumor and Pain Reduction in Advanced Pancreatic Cancer. Fortschr Röntgenstr 2016; 188: 662 - 670. © Georg Thieme Verlag KG

  19. Advances in in vitro diagnostics in allergy, asthma, and immunology in 2012.

    PubMed

    Renz, Harald

    2013-12-01

    Laboratory tests play an increasing role in risk assessment, diagnostics, and disease monitoring. Great advances have been achieved lately, particularly in the field of clinical immunology and allergy. These include neonatal screening of immunodeficiencies and asthma biomarkers and investigation into the role of recombinant allergens in in vitro testing. The latter area has implications for the diagnostics of food allergy, pollen-induced allergies, asthma, and insect allergies. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  20. Emerging Non-Cancer Applications of Therapeutic Ultrasound

    PubMed Central

    O’Reilly, Meaghan A.; Hynynen, Kullervo

    2015-01-01

    Ultrasound therapy has been investigated for over half a century. Ultrasound can act on tissue through a variety of mechanisms, including thermal, shockwave and cavitation mechanisms, and through these can elicit different responses. Ultrasound therapy can provide a non-invasive or minimally invasive treatment option, and ultrasound technology has advanced to the point where devices can be developed to investigate a wide range of applications. This review focuses on non-cancer, clinical applications of therapeutic ultrasound, with an emphasis on treatments that have recently reached clinical investigations, and preclinical research programs that have great potential to impact patient care. PMID:25792225

  1. Comparison of the diagnostic efficacy between ultrasound elastography and magnetic resonance imaging for breast masses

    PubMed Central

    Cheng, Rong; Li, Jing; Ji, Li; Liu, Huining; Zhu, Limin

    2018-01-01

    The present study compared the efficacy of ultrasound elastography (UE), magnetic resonance imaging (MRI) and the combination of the two methods (UE+MRI) in the differential diagnosis of benign and malignant breast tumors. In total, 86 patients with breast masses were recruited and evaluated by UE, MRI and UE+MRI. Strain ratios of UE were calculated for the breast mass and adjacent normal tissues. In addition, the receiver operating characteristic (ROC) curve was obtained, while the sensitivity and specificity were calculated to determine the optimal cut-off point for the differential diagnosis. The area under the ROC curve (AUC) was also calculated to evaluate the diagnostic performance of these methods. The results indicated that the diagnostic accuracy of UE+MRI was significantly higher compared with the UE or MRI methods in the differential diagnosis of invasive ductal, invasive lobular, intraductal papillary, medullary and mucinous carcinomas (all P<0.05). The optimal cut-off points of ROC curve of the Strain Ratio in the diagnosis of breast lesions were 2.81, 3.76 and 3.42 for UE, MRI and UE+MRI, respectively. Furthermore, the AUC values were 86.7, 79.2 and 91.4%, while the diagnostic accuracy rates were 82.5, 75.5 and 95.3%, for UE, MRI and UE+MRI, respectively. Accuracy rate differences between UE and MRI or between UE and UE+MRI were statistically significant (P<0.05), whereas no significant difference existed between MRI and UE+MRI (P>0.05). Finally, the diagnostic consistency of the UE+MRI method with the pathological diagnosis was higher compared with UE or MRI alone. In conclusion, the combination of UE and MRI is superior to the use of UE or MRI alone in the differential diagnosis of benign and malignant breast masses. PMID:29456656

  2. Diagnostic and Therapeutic Advances: Distal Symmetric Polyneuropathy

    PubMed Central

    Callaghan, Brian C.; Price, Raymond S.; Feldman, Eva L.

    2016-01-01

    Importance Peripheral neuropathy is a highly prevalent and morbid condition affecting 2–7% of the population. Patients frequently suffer from pain and are at risk of falls, ulcerations, and amputations. We aimed to review recent diagnostic and therapeutic advances in peripheral neuropathy in distal symmetric polyneuropathy, the most common subtype of peripheral neuropathy. Observations and Advances Current evidence supports limited routine laboratory testing in patients with distal symmetric polyneuropathy. Patients without a known cause should have a complete blood count, comprehensive metabolic panel, B12, serum protein electrophoresis with immunofixation, fasting glucose, and a glucose tolerance test. The presence of atypical features such as asymmetry, non-length-dependence, motor predominance, acute or subacute onset, and/or prominent autonomic involvement should prompt a consultation with a neurologist or neuromuscular specialist. Electrodiagnostic tests and magnetic resonance imaging of the neuroaxis are the main drivers of the cost of the diagnostic evaluation, but evidence supporting their use is lacking. Strong evidence supports the use of tricyclic antidepressants, serotonin and norepinephrine reuptake inhibitors, and voltage-gated calcium channel ligands in the treatment of neuropathic pain. More intensive glucose control substantially reduces the incidence of distal symmetric polyneuropathy in patients with type 1 diabetes, but does not in type 2 diabetes. Conclusions and Relevance The opportunity exists to improve guideline concordant testing in distal symmetric polyneuropathy patients. Moreover, the role of electrodiagnostic tests needs to be further defined, and interventions to reduce magnetic resonance imaging use in this population are needed. Even though several efficacious medications exist for neuropathic pain treatment, pain is still under-recognized and undertreated. New disease modifying medications are needed to prevent and treat

  3. Ultrasound-guided venous access for pacemakers and defibrillators.

    PubMed

    Seto, Arnold H; Jolly, Aaron; Salcedo, Jonathan

    2013-03-01

    Ultrasound guidance is widely recommended to reduce the risk of complications during central venous catheter placement. However, ultrasound guidance is not commonly utilized for implanting leads for cardiac rhythm management devices. We describe our technique of ultrasound-guided pacemaker implantation, including a novel pull-through technique that allows percutaneous guidewire insertion prior to the first incision. We review the literature and recent advances in ultrasound imaging technology that may facilitate the adoption of ultrasound guidance. Ultrasound guidance provides a safe and rapid technique for extrathoracic subclavian or axillary venous lead placement. © 2012 Wiley Periodicals, Inc.

  4. Evaluation of Chest Ultrasound Integrated Teaching of Respiratory System Physiology to Medical Students

    ERIC Educational Resources Information Center

    Paganini, Matteo; Bondì, Michela; Rubini, Alessandro

    2017-01-01

    Ultrasound imaging is a widely used diagnostic technique, whose integration in medical education is constantly growing. The aim of this study was to evaluate chest ultrasound usefulness in teaching respiratory system physiology, students' perception of chest ultrasound integration into a traditional lecture in human physiology, and short-term…

  5. "Anterior convergent" chest probing in rapid ultrasound transducer positioning versus formal chest ultrasonography to detect pneumothorax during the primary survey of hospital trauma patients: a diagnostic accuracy study.

    PubMed

    Ziapour, Behrad; Haji, Houman Seyedjavady

    2015-01-01

    Occult pneumothorax represents a diagnostic pitfall during the primary survey of trauma patients, particularly if these patients require early positive pressure ventilation. This study investigated the accuracy of our proposed rapid model of ultrasound transducer positioning during the primary survey of trauma patients after their arrival at the hospital. This diagnostic trial was conducted over 12 months and was based on the results of 84 ultrasound (US) exams performed on patients with severe multiple trauma. Our index test (US) was used to detect pneumothorax in four pre-defined locations on the anterior of each hemi-thorax using the "Anterior Convergent" approach, and its performance was limited to the primary survey. Consecutively, patients underwent chest-computed tomography (CT) with or without chest radiography. The diagnostic findings of both chest radiography and chest ultrasounds were compared to the gold-standard test (CT). The diagnostic sensitivity was 78 % for US and 36.4 % for chest radiography (p < 0.001); the specificity was 92 % for US and 98 % for chest radiography (not significant); the positive predictive values were 74 % for US and 80 % for chest radiography (not significant); the negative predictive values were 94 % for US and 87 % for chest radiography (not significant); the positive likelihood ratio was 10 for US and 18 for chest radiography (p = 0.007); and the negative likelihood ratio was 0.25 for US and 0.65 for chest radiography (p = 0.001). The mean required time for performing the new method was 64 ± 10 s. An absence of the expected diffused dynamic view among ultrasound images obtained from patients with pneumothorax was also observed. We designated this phenomenon "Gestalt Lung Recession." "Anterior convergent" chest US probing represents a brief but efficient model that provides clinicians a safe and accurate exam and adequate resuscitation during critical minutes of the primary survey without

  6. Ultrasound of the thyroid and parathyroid glands.

    PubMed

    Barraclough, B M; Barraclough, B H

    2000-02-01

    The superficial position of thyroid and parathyroid glands facilitates the use of diagnostic ultrasound (US) as an imaging technique. Techniques of image acquisition and interpretation are described in detail. Size and morphology of glands can be defined easily. The most important use of US guided biopsy in relation to thyroid and parathyroid glands is to increase diagnostic accuracy.

  7. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.

  8. Usefulness of emergency ultrasound in nontraumatic cardiac arrest.

    PubMed

    Volpicelli, Giovanni

    2011-02-01

    Treatment of nontraumatic cardiac arrest in the hospital setting depends on the recognition of heart rhythm and differential diagnosis of the underlying condition while maintaining a constant oxygenated blood flow by ventilation and chest compression. Diagnostic process relies only on patient's history, physical findings, and active electrocardiography. Ultrasound is not currently scheduled in the resuscitation guidelines. Nevertheless, the use of real-time ultrasonography during resuscitation has the potential to improve diagnostic accuracy and allows the physician a greater confidence in deciding aggressive life-saving therapeutic procedures. This article reviews the current opinions and literature about the use of emergency ultrasound during resuscitation of nontraumatic cardiac arrest. Cardiac and lung ultrasound have a great potential in identifying the reversible mechanical causes of pulseless electrical activity or asystole. Brief examination of the heart can even detect a real cardiac standstill regardless of electrical activity displayed on the monitor, which is a crucial prognostic indicator. Moreover, ultrasound can be useful to verify and monitor the tracheal tube placement. Limitation to the use of ultrasound is the need to minimize the no-flow intervals during mechanical cardiopulmonary resuscitation. However, real-time ultrasound can be successfully applied during brief pausing of chest compression and first pulse-check. Finally, lung sonographic examination targeted to the detection of signs of pulmonary congestion has the potential to allow hemodynamic noninvasive monitoring before and after mechanical cardiopulmonary maneuvers. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Assessment of articular disc displacement of temporomandibular joint with ultrasound.

    PubMed

    Razek, Ahmed Abdel Khalek Abdel; Al Mahdy Al Belasy, Fouad; Ahmed, Wael Mohamed Said; Haggag, Mai Ahmed

    2015-06-01

    To assess pattern of articular disc displacement in patients with internal derangement (ID) of temporomandibular joint (TMJ) with ultrasound. Prospective study was conducted upon 40 TMJ of 20 patients (3 male, 17 female with mean age of 26.1 years) with ID of TMJ. They underwent high-resolution ultrasound and MR imaging of TMJ. The MR images were used as the gold standard for calculating sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), and negative likelihood ratio (NLR) of ultrasound for diagnosis of anterior or sideway displacement of the disc. The anterior displaced disc was seen in 26 joints at MR and 22 joints at ultrasound. The diagnostic efficacy of ultrasound for anterior displacement has sensitivity of 79.3 %, specificity of 72.7 %, accuracy of 77.5 %, PPV of 88.5 %, NPV of 57.1 %, PLR of 2.9 and NLR of 0.34. The sideway displacement of disc was seen in four joints at MR and three joints at ultrasound. The diagnostic efficacy of ultrasound for sideway displacement has a sensitivity of 75 %, specificity of 63.6 %, accuracy of 66.7 %, PPV of 42.8, NPV of 87.5 %, PLR of 2.06, and NLR of 0.39. We concluded that ultrasound is a non-invasive imaging modality used for assessment of anterior and sideway displacement of the articular disc in patients with ID of TMJ.

  10. Antenatal diagnosis of anophthalmia by three-dimensional ultrasound: a novel application of the reverse face view.

    PubMed

    Wong, H S; Parker, S; Tait, J; Pringle, K C

    2008-07-01

    The prenatal diagnosis of anophthalmia can be made on the demonstration of absent eye globe and lens on the affected side(s) on two-dimensional ultrasound examination, but when the fetal head position is unfavorable three-dimensional (3D) ultrasound may reveal additional diagnostic sonographic features, including sunken eyelids and small or hypoplastic orbit on the affected side(s). We present two cases of isolated anophthalmia diagnosed on prenatal ultrasound examination in which 3D ultrasound provided additional diagnostic information. The reverse face view provides valuable information about the orbits and the eyeballs for prenatal diagnosis and assessment of anophthalmia.

  11. Emergency ultrasound-based algorithms for diagnosing blunt abdominal trauma.

    PubMed

    Stengel, Dirk; Bauwens, Kai; Rademacher, Grit; Ekkernkamp, Axel; Güthoff, Claas

    2013-07-31

    Ultrasonography is regarded as the tool of choice for early diagnostic investigations in patients with suspected blunt abdominal trauma. Although its sensitivity is too low for definite exclusion of abdominal organ injury, proponents of ultrasound argue that ultrasound-based clinical pathways enhance the speed of primary trauma assessment, reduce the number of computed tomography scans and cut costs. To assess the effects of trauma algorithms that include ultrasound examinations in patients with suspected blunt abdominal trauma. We searched the Cochrane Injuries Group's Specialised Register, CENTRAL (The Cochrane Library), MEDLINE (OvidSP), EMBASE (OvidSP), CINAHL (EBSCO), publishers' databases, controlled trials registers and the Internet. Bibliographies of identified articles and conference abstracts were searched for further elligible studies. Trial authors were contacted for further information and individual patient data. The searches were updated in February 2013. randomised controlled trials (RCTs) and quasi-randomised trials (qRCTs). patients with blunt torso, abdominal or multiple trauma undergoing diagnostic investigations for abdominal organ injury. diagnostic algorithms comprising emergency ultrasonography (US). diagnostic algorithms without ultrasound examinations (for example, primary computed tomography [CT] or diagnostic peritoneal lavage [DPL]). mortality, use of CT and DPL, cost-effectiveness, laparotomy and negative laparotomy rates, delayed diagnoses, and quality of life. Two authors independently selected trials for inclusion, assessed methodological quality and extracted data. Where possible, data were pooled and relative risks (RRs), risk differences (RDs) and weighted mean differences, each with 95% confidence intervals (CIs), were calculated by fixed- or random-effects modelling, as appropriate. We identified four studies meeting our inclusion criteria. Overall, trials were of moderate methodological quality. Few trial authors responded to

  12. Idiopathic granulomatous mastitis: a diagnostic dilemma for the breast radiologist.

    PubMed

    Sripathi, Smiti; Ayachit, Anurag; Bala, Archana; Kadavigere, Rajagopal; Kumar, Sandeep

    2016-08-01

    Idiopathic granulomatous mastitis is a chronic inflammatory disease of the breast, which is often difficult to differentiate both clinically and radiologically from infectious aetiologies such as tuberculosis, fungal infections, and also from malignancy, thus posing a diagnostic dilemma. We present a pictorial review of the commonly encountered imaging findings in idiopathic granulomatous mastitis on mammography and ultrasound. Mammographic and ultrasound findings of histopathologically proven cases of granulomatous mastitis are discussed. Idiopathic granulomatous mastitis has varied and non-specific appearances on ultrasound and mammography. Histopathology is essential to establish diagnosis. • Idiopathic granulomatous mastitis often poses a diagnostic dilemma for the radiologist by mimicking malignancy. • It has varied and non-specific appearances on mammography and ultrasound. • Histopathology is mandatory to establish the diagnosis and decide management.

  13. Endoscopic Ultrasound Elastography: Current Clinical Use in Pancreas.

    PubMed

    Mondal, Utpal; Henkes, Nichole; Patel, Sandeep; Rosenkranz, Laura

    2016-08-01

    Elastography is a newer technique for the assessment of tissue elasticity using ultrasound. Cancerous tissue is known to be stiffer (hence, less elastic) than corresponding healthy tissue, and as a result, could be identified in an elasticity-based imaging. Ultrasound elastography has been used in the breast, thyroid, and cervix to differentiate malignant from benign neoplasms and to guide or avoid unnecessary biopsies. In the liver, elastography has enabled a noninvasive and reliable estimate of fibrosis. Endoscopic ultrasound has become a robust diagnostic and therapeutic tool for the management of pancreatic diseases. The addition of elastography to endoscopic ultrasound enabled further characterization of pancreas lesions, and several European and Asian studies have reported encouraging results. The current clinical role of endoscopic ultrasound elastography in the management of pancreas disorders and related literature are reviewed.

  14. [Recent advances in prenatal diagnostics].

    PubMed

    Lapaire, O; Holzgreve, W; Miny, P; Hösli, I; Hahn, S; Tercanli, S

    2006-11-01

    During the last years, technical improvements have increased the possibilities in prenatal ultrasound. During the eighties and nineties, fetal malformations were increasingly detected and specified. Since a few years, the measurement of the fetal nuchal translucency between 11 and 14 weeks of gestation has been implemented to calculate the individual risk, in combination with most recent biochemical markers. Today, the sonographic measurement of the nuchal translucency is regarded as a valuable screening tool for chromosomal anomalies in prenatal medicine. Beside standardized examinations, a profound information and counseling of the pregnant women should be emphasized. With the improvement of the specific maternal risk calculation, using the sonographic measurement of the nuchal translucency, the biochemical markers and the maternal age, unnecessary invasive examinations may be prevented and their overall number can significantly be reduced. The same trend is seen in the whole field of prenatal medicine, illustrated by the detection of the fetal rhesus D status from the maternal blood and the use of Doppler ultrasound in the management of fetal anemia.

  15. Ultrasound Fracture Diagnosis in Space

    NASA Technical Reports Server (NTRS)

    Dulchavsky, Scott A.; Amponsah, David; Sargsyan, Ashot E.; Garcia, Kathleen M.; Hamilton, Douglas R.; vanHolsbeeck, Marnix

    2010-01-01

    Introduction: This ground-based investigation accumulated high-level clinical evidence on the sensitivity and specificity of point of care ultrasound performed by expert and novice users for the rapid diagnosis of musculoskeletal (MSK) injuries. We developed preliminary educational methodologies to provide just-in-time training of novice users by creating multi-media training tools and imaging procedures for non expert operators and evaluated the sensitivity and specificity of non-expert performed musculoskeletal ultrasound to diagnose acute injuries in a Level 1 Trauma Center. Methods: Patients with potential MSK injuries were identified in the emergency room. A focused MSK ultrasound was performed by expert operators and compared to standard radiographs. A repeat examination was performed by non-expert operators who received a short, just-in-time multimedia education aid. The sensitivity and specificity of the expert and novice ultrasound examinations were compared to gold standard radiography. Results: Over 800 patients were enrolled in this study. The sensitivity and specificity of expert performed ultrasound exceeded 98% for MSK injuries. Novice operators achieved 97% sensitivity and 99% specificity for targeted examinations with the greatest error in fractures involving the hand and foot. Conclusion: Point of care ultrasound is a sensitive and specific diagnostic test for MSK injury when performed by experts and just-in-time trained novice operators.

  16. Musculoskeletal ultrasound: how to treat calcific tendinitis of the rotator cuff by ultrasound-guided single-needle lavage technique.

    PubMed

    Lee, Kenneth S; Rosas, Humberto G

    2010-09-01

    The purpose of this video article is to illustrate the ultrasound appearance of calcium deposition in the rotator cuff and provide a detailed step-by-step protocol for performing the ultrasound-guided single-needle lavage technique for the treatment of calcific tendinitis with emphasis on patient positioning, necessary supplies, real-time lavage technique, and steroid injection into the subacromial subdeltoid bursa. Musculoskeletal ultrasound is well established as a safe, cost-effective imaging tool in diagnosing and treating common musculoskeletal disorders. Calcific tendinitis of the rotator cuff is a common disabling cause of shoulder pain. Although most cases are self-limiting, a subset of patients is refractory to conservative therapy and requires treatment intervention. Ultrasound-guided lavage is an effective and safe minimally-invasive treatment not readily offered in the United States as an alternative to surgery, perhaps because of the limited prevalence of musculoskeletal ultrasound programs and limited training. On completion of this video article, the participant should be able to develop an appropriate diagnostic and therapeutic algorithm for the treatment of calcific tendinitis of the rotator cuff using ultrasound.

  17. Impedance-controlled ultrasound probe

    NASA Astrophysics Data System (ADS)

    Gilbertson, Matthew W.; Anthony, Brian W.

    2011-03-01

    An actuated hand-held impedance-controlled ultrasound probe has been developed. The controller maintains a prescribed contact state (force and velocity) between the probe and a patient's body. The device will enhance the diagnostic capability of free-hand elastography and swept-force compound imaging, and also make it easier for a technician to acquire repeatable (i.e. directly comparable) images over time. The mechanical system consists of an ultrasound probe, ball-screw-driven linear actuator, and a force/torque sensor. The feedback controller commands the motor to rotate the ball-screw to translate the ultrasound probe in order to maintain a desired contact force. It was found that users of the device, with the control system engaged, maintain a constant contact force with 15 times less variation than without the controller engaged. The system was used to determine the elastic properties of soft tissue.

  18. Nonlinear effects in ultrasound fields of diagnostic-type transducers used for kidney stone propulsion: Characterization in water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karzova, M., E-mail: masha@acs366.phys.msu.ru; Physics Faculty, Moscow State University, Leninskie Gory, 119991 Moscow; Cunitz, B.

    Newer imaging and therapeutic ultrasound technologies require higher in situ pressure levels compared to conventional diagnostic values. One example is the recently developed use of focused ultrasonic radiation force to move kidney stones and residual fragments out of the urinary collecting system. A commercial diagnostic 2.3 MHz C5-2 array probe is used to deliver the acoustic pushing pulses. The probe comprises 128 elements equally spaced at the 55 mm long convex cylindrical surface with 38 mm radius of curvature. The efficacy of the treatment can be increased by using higher intensity at the focus to provide stronger pushing force; however,more » nonlinear acoustic saturation can be a limiting factor. In this work nonlinear propagation effects were analyzed for the C5-2 transducer using a combined measurement and modeling approach. Simulations were based on the 3D Westervelt equation; the boundary condition was set to match the focal geometry of the beam as measured at a low power output. Focal waveforms simulated for increased output power levels were compared with the fiber-optic hydrophone measurements and were found in good agreement. It was shown that saturation effects do limit the acoustic pressure in the focal region of the transducer. This work has application to standard diagnostic probes and imaging.« less

  19. Impact of new society of radiologists in ultrasound early first-trimester diagnostic criteria for nonviable pregnancy.

    PubMed

    Hu, Maowen; Poder, Liina; Filly, Roy A

    2014-09-01

    New early first-trimester diagnostic criteria for nonviable pregnancy recommended by the Society of Radiologists in Ultrasound via a multispecialty consensus panel extended the diagnostic size criteria of crown-rump length from 5 to 7 mm for embryos without a heartbeat and mean sac diameter from 16 to 25 mm for "empty" sacs. Our study assessed the potential impact of the new criteria on the number of additional follow-up sonograms these changes would engender. A retrospective study of all first-trimester sonograms in women with first trimester bleeding from 1999 to 2008 was conducted. Everyone included in the study had a visible gestational sac in the uterus. There were no pregnancies of unknown location or ectopic pregnancies included in this study cohort. Pregnancy of unknown location was used to describe cases in which there were no signs of pregnancy inside or outside the uterus on transvaginal sonography despite a positive pregnancy test result. A total of 1013 patients met the inclusion criteria. Seven hundred fifty-two patients (74%) had identifiable embryos, and 261 (26%) did not. Of those with an identifiable embryo, 286 (38%) had no detectable embryonic cardiac activity. The breakdown of crown-rump lengths in this group was as follows: 100 measuring less than 5 mm, 36 measuring 5 to 7 mm, and 150 measuring 7 mm or greater. The breakdown of mean sac diameters in those without a visible embryo was as follows: 120 measuring less than 16 mm, 90 measuring 16 to 25 mm, and 51 measuring 25 mm or greater. When diagnosing a failed pregnancy, there can be no room for error. Only 126 of 1013 early pregnancies threatening to abort (12%) fell into the more conservative zones defined by the new compared to the former size criteria (crown-rump length, 5-7 mm; mean sac diameter, 16-25 mm). Therefore, the potential impact of the new guidelines on follow-up sonograms does not appear inordinate. © 2014 by the American Institute of Ultrasound in Medicine.

  20. Ultrasound and the IRB

    ERIC Educational Resources Information Center

    Epstein, Melissa A.

    2005-01-01

    The purpose of this paper is to assist researchers in writing their research protocols and subject consent forms so that both the Institutional Review Board (IRB) and subjects are assured of the minimal risk associated with diagnostic B-scan ultrasound as it is used in speech research. There have been numerous epidemiological studies on fetal…

  1. Nonlinear Acoustics in Ultrasound Metrology and other Selected Applications.

    PubMed

    Lewin, Peter A

    2010-01-01

    A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of "point-receiver" hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard "biofilm" that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.

  2. Nonlinear acoustics in ultrasound metrology and other selected applications

    NASA Astrophysics Data System (ADS)

    Lewin, Peter A.

    2010-01-01

    A succinct background explaining why, initially, both the scientific community and industry were skeptical about the existence of the nonlinear (NL) wave propagation in tissue will be given and the design of an adequately wideband piezoelectric polymer hydrophone probe that was eventually used to verify that the 1-5 MHz probing wave then used in diagnostic ultrasound imaging was undergoing nonlinear distortion and generated harmonics in tissue will be discussed. The far-reaching implications of the advent of the piezoelectric PVDF polymer material will be reviewed and the advances in ultrasound metrology prompted by the regulatory agencies such as US Food and Drug Administration (FDA) and International Electrotechnical Commission (IEC) will be presented. These advances include the development of absolute calibration techniques for hydrophones along with the methods of accounting for spatial averaging corrections up to 100 MHz and the development of 'point-receiver' hydrophone probes utilizing acousto-optic sensors. Next, selected therapeutic applications of nonlinear ultrasonics (NLU), including lithotripters will be briefly discussed. Also, the use of shock waves as pain relief tool and in abating penicillin resistant bacteria that develop rock hard 'biofilm' that can be shattered by the finite amplitude wave will also be mentioned. The growing applications of NLU in cosmetic industry where it is used for redistribution and reduction of fatty tissue within the body will be briefly reviewed, and, finally, selected examples of NLU applications in retail and entertainment industry will also be pointed out.

  3. Integrated diagnostics

    NASA Technical Reports Server (NTRS)

    Hunthausen, Roger J.

    1988-01-01

    Recently completed projects in which advanced diagnostic concepts were explored and/or demonstrated are summarized. The projects begin with the design of integrated diagnostics for the Army's new gas turbine engines, and advance to the application of integrated diagnostics to other aircraft subsystems. Finally, a recent project is discussed which ties together subsystem fault monitoring and diagnostics with a more complete picture of flight domain knowledge.

  4. Clinical review: Bedside lung ultrasound in critical care practice

    PubMed Central

    Bouhemad, Bélaïd; Zhang, Mao; Lu, Qin; Rouby, Jean-Jacques

    2007-01-01

    Lung ultrasound can be routinely performed at the bedside by intensive care unit physicians and may provide accurate information on lung status with diagnostic and therapeutic relevance. This article reviews the performance of bedside lung ultrasound for diagnosing pleural effusion, pneumothorax, alveolar-interstitial syndrome, lung consolidation, pulmonary abscess and lung recruitment/derecruitment in critically ill patients with acute lung injury. PMID:17316468

  5. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    PubMed

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  6. Preliminary assessment of the diagnostic performances of a new rapid diagnostic test for the serodiagnosis of human cystic echinococcosis.

    PubMed

    Vola, Ambra; Tamarozzi, Francesca; Noordin, Rahmah; Yunus, Muhammad Hafiznur; Khanbabaie, Sam; De Silvestri, Annalisa; Brunetti, Enrico; Mariconti, Mara

    2018-04-14

    Rapid diagnostic tests for cystic echinococcosis (CE) are convenient to support ultrasound diagnosis in uncertain cases, especially in resource-limited settings. We found comparable diagnostic performances of the experimental Hyd Rapid Test and the commercial VIRapid HYDATIDOSIS Test, used in our diagnostic laboratory, using samples from well-characterized hepatic CE cases. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ultrasound assisted evaluation of chest pain in the emergency department.

    PubMed

    Colony, M Deborah; Edwards, Frank; Kellogg, Dylan

    2018-04-01

    Chest pain is a commonly encountered emergency department complaint, with a broad differential including several life-threatening possible conditions. Ultrasound-assisted evaluation can potentially be used to rapidly and accurately arrive at the correct diagnosis. We propose an organized, ultrasound assisted evaluation of the patient with chest pain using a combination of ultrasound, echocardiography and clinical parameters. Basic echo techniques which can be mastered by residents in a short time are used plus standardized clinical questions and examination. Information is kept on a checklist. We hypothesize that this will result in a quicker, more accurate evaluation of chest pain in the ED leading to timely treatment and disposition of the patient, less provider anxiety, a reduction in the number of diagnostic errors, and the removal of false assumptions from the diagnostic process. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy.

    PubMed

    Nemec, Ursula; Nemec, Stefan F; Novotny, Clemens; Weber, Michael; Czerny, Christian; Krestan, Christian R

    2012-06-01

    To investigate the diagnostic accuracy, through quantitative analysis, of contrast-enhanced ultrasound (CEUS), using a microbubble contrast agent, in the differentiation of thyroid nodules. This prospective study enrolled 46 patients with solitary, scintigraphically non-functional thyroid nodules. These patients were scheduled for surgery and underwent preoperative CEUS with pulse-inversion harmonic imaging after intravenous microbubble contrast medium administration. Using histology as a standard of reference, time-intensity curves of benign and malignant nodules were compared by means of peak enhancement and wash-out enhancement relative to the baseline intensity using a mixed model ANOVA. ROC analysis was performed to assess the diagnostic accuracy in the differentiation of benign and malignant nodules on CEUS. The complete CEUS data of 42 patients (31/42 [73.8%] benign and 11/42 [26.2%] malignant nodules) revealed a significant difference (P < 0.001) in enhancement between benign and malignant nodules. Furthermore, based on ROC analysis, CEUS demonstrated sensitivity of 76.9%, specificity of 84.8% and accuracy of 82.6%. Quantitative analysis of CEUS using a microbubble contrast agent allows the differentiation of benign and malignant thyroid nodules and may potentially serve, in addition to grey-scale and Doppler ultrasound, as an adjunctive tool in the assessment of patients with thyroid nodules. • Contrast-enhanced ultrasound (CEUS) helps differentiate between benign and malignant thyroid nodules. • Quantitative CEUS analysis yields sensitivity of 76.9% and specificity of 84.8%. • CEUS may be a potentially useful adjunct in assessing thyroid nodules.

  9. [Polymeric drug carriers activated by ultrasounds energy].

    PubMed

    Kik, Krzysztof; Lwow, Felicja; Szmigiero, Leszek

    2007-01-01

    In the last two decades an extensive research on the employment of ultrasounds in anticancer therapy has been noticed. So far ultrasounds have been widely used in medicine for diagnostic purposes (ultrasonography), but their great therapeutic potential and the development of polymer based antineoplastic drug carriers have persuaded many investigators to start research on the employment of ultrasounds in anticancer therapy. A new therapeutic concept based on the controlled drug's molecules release from their transporting polymer carriers has been proposed. Cavitation, a phenomenon characteristic for the action of ultrasounds, is used to destroy polymeric drug carriers and for drug release in target sites. The sonodynamic therapy (SDT) which utilizes ultrasonic waves for "acoustic drug activation" leading to the enhancement of cytotoxic activity of some drugs has also been developed. Furthermore, a long standing research on ultrasounds resulted in a new concept based on hyperthermia. This method of cancer treatment does not require any chemotherapeutic agent to be applied.

  10. [Future perspectives for diagnostic imaging in urology: from anatomic and functional to molecular imaging].

    PubMed

    Macis, Giuseppe; Di Giovanni, Silvia; Di Franco, Davide; Bonomo, Lorenzo

    2013-01-01

    The future approach of diagnostic imaging in urology follows the technological progress, which made the visualization of in vivo molecular processes possible. From anatomo-morphological diagnostic imaging and through functional imaging molecular radiology is reached. Based on molecular probes, imaging is aimed at assessing the in vivo molecular processes, their physiology and function at cellular level. The future imaging will investigate the complex tumor functioning as metabolism, aerobic glycolysis in particular, angiogenesis, cell proliferation, metastatic potential, hypoxia, apoptosis and receptors expressed by neoplastic cells. Methods for performing molecular radiology are CT, MRI, PET-CT, PET-MRI, SPECT and optical imaging. Molecular ultrasound combines technological advancement with targeted contrast media based on microbubbles, this allowing the selective registration of microbubble signal while that of stationary tissues is suppressed. An experimental study was carried out where the ultrasound molecular probe BR55 strictly bound to prostate tumor results in strong enhancement in the early phase after contrast, this contrast being maintained in the late phase. This late enhancement is markedly significant for the detection of prostatic cancer foci and to guide the biopsy sampling. The 124I-cG250 molecular antibody which is strictly linked to cellular carbonic anhydrase IX of clear cell renal carcinoma, allows the acquisition of diagnostic PET images of clear cell renal carcinoma without biopsy. This WG-250 (RENCAREX) antibody was used as a therapy in metastatic clear cell renal carcinoma. Future advancements and applications will result in early cancer diagnosis, personalized therapy that will be specific according to the molecular features of cancer and leading to the development of catheter-based multichannel molecular imaging devices for cystoscopy-based molecular imaging diagnosis and intervention.

  11. Ultrasound for diagnosing radiographically occult scaphoid fracture.

    PubMed

    Kwee, Robert M; Kwee, Thomas C

    2018-04-04

    To systematically review the literature on the performance of ultrasound in diagnosing radiographically occult scaphoid fracture. A systematic search was performed in the MEDLINE and Embase databases. Original studies investigating the performance of ultrasound in diagnosing radiographically occult scaphoid fracture in more than 10 patients were eligible for inclusion. Studies that included both radiographically apparent and occult scaphoid fractures (at initial radiography) were only included if independent data on radiographically occult fractures were reported. Methodological quality of the studies included was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) tool. Accuracy data were extracted. Sensitivity and specificity were pooled with a bivariate random-effects model. The inclusion criteria were met by 7 studies; total sample size comprised 314 patients. All studies, except 1, included cortical disruption of the scaphoid in their diagnostic criteria. The sensitivity and specificity of ultrasound in diagnosing radiographically occult scaphoid fracture ranged from 77.8% to 100% and from 71.4% to 100% respectively, with pooled estimates of 85.6% (95% CI: 73.9%, 92.6%) and 83.3% % (95% CI: 72.0%, 90.6%) respectively. Exclusion of two studies with a high risk of bias in any QUADAS-2 domain did not affect the pooled results. Ultrasound can diagnose radiographically occult scaphoid fracture with a fairly high degree of accuracy. Because of its relatively low costs and fairly high sensitivity, ultrasound seems more cost-effective than empiric cast immobilization and may be used when CT and MRI are not readily available.

  12. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focussing on the diagnostic reliability.

    PubMed

    Bruyn, George A W; Hanova, Petra; Iagnocco, Annamaria; d'Agostino, Maria-Antonietta; Möller, Ingrid; Terslev, Lene; Backhaus, Marina; Balint, Peter V; Filippucci, Emilio; Baudoin, Paul; van Vugt, Richard; Pineda, Carlos; Wakefield, Richard; Garrido, Jesus; Pecha, Ondrej; Naredo, Esperanza

    2014-11-01

    To develop the first ultrasound scoring system of tendon damage in rheumatoid arthritis (RA) and assess its intraobserver and interobserver reliability. We conducted a Delphi study on ultrasound-defined tendon damage and ultrasound scoring system of tendon damage in RA among 35 international rheumatologists with experience in musculoskeletal ultrasound. Twelve patients with RA were included and assessed twice by 12 rheumatologists-sonographers. Ultrasound examination for tendon damage in B mode of five wrist extensor compartments (extensor carpi radialis brevis and longus; extensor pollicis longus; extensor digitorum communis; extensor digiti minimi; extensor carpi ulnaris) and one ankle tendon (tibialis posterior) was performed blindly, independently and bilaterally in each patient. Intraobserver and interobserver reliability were calculated by κ coefficients. A three-grade semiquantitative scoring system was agreed for scoring tendon damage in B mode. The mean intraobserver reliability for tendon damage scoring was excellent (κ value 0.91). The mean interobserver reliability assessment showed good κ values (κ value 0.75). The most reliable were the extensor digiti minimi, the extensor carpi ulnaris, and the tibialis posterior tendons. An ultrasound reference image atlas of tenosynovitis and tendon damage was also developed. Ultrasound is a reproducible tool for evaluating tendon damage in RA. This study strongly supports a new reliable ultrasound scoring system for tendon damage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  13. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  14. Halo current diagnostic system of experimental advanced superconducting tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, D. L.; Shen, B.; Sun, Y.

    2015-10-15

    The design, calibration, and installation of disruption halo current sensors for the Experimental Advanced Superconducting Tokamak are described in this article. All the sensors are Rogowski coils that surround conducting structures, and all the signals are analog integrated. Coils with two different cross-section sizes have been fabricated, and their mutual inductances are calibrated. Sensors have been installed to measure halo currents in several different parts of both the upper divertor (tungsten) and lower divertor (graphite) at several toroidal locations. Initial measurements from disruptions show that the halo current diagnostics are working well.

  15. Tissue Bioeffects during Ultrasound-mediated Drug Delivery

    NASA Astrophysics Data System (ADS)

    Sutton, Jonathan

    Ultrasound has been developed as both a valuable diagnostic tool and a potent promoter of beneficial tissue bioeffects for the treatment of cardiovascular disease. Vascular effects can be mediated by mechanical oscillations of circulating microbubbles, or ultrasound contrast agents, which may also encapsulate and shield a therapeutic agent in the bloodstream. Oscillating microbubbles can create stresses directly on nearby tissue or induce fluid effects that effect drug penetration into vascular tissue, lyse thrombi, or direct drugs to optimal locations for delivery. These investigations have spurred continued research into alternative therapeutic applications, such as bioactive gas delivery. This dissertation addresses a fundamental hypothesis in biomedical ultrasound: ultrasound-mediated drug delivery is capable of increasing the penetration of drugs across different physiologic barriers within the cardiovascular system, such as the vascular endothelium, blood clots, and smooth muscle cells.

  16. [Relevance of contrast ultrasound with microbubbles in vascular medecine].

    PubMed

    Erdmann, Andreas; Ney, Barbara; Alatri, Adriano; Calanca, Luca; Mazzolai, Lucia

    2016-12-07

    Application of ultrasound contrast media has become a standard in diagnostic imaging in cardiology and in the characterization of focal lesions in multiple organs, especially of the liver. In the past years there was a growing body of evidence for their usefulness in vascular medicine. The development of contrast media, microbubbles with a stabilizing envelope and filled with gaz, small enough to pass through pulmonary capillaries made real-time imaging of organ perfusion possible. Ultrasound contrast media are rapidly eliminated by exhalation and can safely be administered to patients with renal failure. The objective of this review is to describe the basic principles of ultrasound contrast imaging and to inform about vascular applications of contrast ultrasound.

  17. Might telesonography be a new useful diagnostic tool aboard merchant ships? A pilot study.

    PubMed

    Nikolić, Nebojsa; Mozetić, Vladimir; Modrcin, Bob; Jaksić, Slaven

    2006-01-01

    Developments of new, ultra-light diagnostic ultrasound systems (UTS) and modern satellite telecommunication networks are opening new potential applications for diagnostic sonography. One such area is maritime medicine. It is our belief that ship officers can be trained to use diagnostic ultrasound systems with the aim to generate ultrasound images of sufficient quality to be interpreted by medical professionals qualified to read sonograms. To test our thesis we included lectures and hands on scanning practice to the current maritime medicine curriculum at the Faculty of Maritime Studies at the University of Rijeka. Following the didactic and practical training all participating students examined several patients, some with pathology some without. Images obtained by students were then submitted for interpretation to a qualified physician (specialist of general surgery trained in UTS) who was unaware of the patient's pathology. In total, 37 students performed 37 examinations and made 45 ultrasound images, on 3 patients. In this paper, results on this pilot study are presented. It is possible to teach ship officers to produce diagnostically usable ultrasound pictures aboard ships at sea. But before reaching final conclusion about applicability of telesonography on board merchant ships, further studies are necessary, that would include studies of economic feasibility, and on validity of introducing such a diagnostic tool to the maritime medical practice.

  18. American Medical Society for Sports Medicine recommended sports ultrasound curriculum for sports medicine fellowships.

    PubMed

    Finnoff, Jonathan T; Berkoff, David; Brennan, Fred; DiFiori, John; Hall, Mederic M; Harmon, Kimberly; Lavallee, Mark; Martin, Sean; Smith, Jay; Stovak, Mark

    2015-02-01

    The American Medical Society for Sports Medicine (AMSSM) developed a musculoskeletal ultrasound curriculum for sports medicine fellowships in 2010. As the use of diagnostic and interventional ultrasound in sports medicine has evolved, it became clear that the curriculum needed to be updated. Furthermore, the name 'musculoskeletal ultrasound' was changed to 'sports ultrasound' (SPORTS US) to reflect the broad range of diagnostic and interventional applications of ultrasound in sports medicine. This document was created to outline the core competencies of SPORTS US and to provide sports medicine fellowship directors and others interested in SPORTS US education with a guide to create a SPORTS US curriculum. By completing this SPORTS US curriculum, sports medicine fellows and physicians can attain proficiency in the core competencies of SPORTS US required for the practice of sports medicine. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Sonographic physical diagnosis 101: teaching senior medical students basic ultrasound scanning skills using a compact ultrasound system.

    PubMed

    Angtuaco, Teresita L; Hopkins, Robert H; DuBose, Terry J; Bursac, Zoran; Angtuaco, Michael J; Ferris, Ernest J

    2007-06-01

    This project was designed to test the feasibility of introducing ultrasound to senior medical students as a primary diagnostic tool in the evaluation of patients. Specifically, its aim was to determine if it is possible for medical students untrained in sonography to gain basic competence in performing abdominal ultrasound with limited didactic and hands-on instructions. Registered sonographers provided the students with hands-on instructions on the use of a compact ultrasound system. They were likewise shown how to evaluate specific organs and perform measurements. The results of the student measurements and those obtained by the sonographers were compared. There was close correlation between the results obtained by sonographers and students on both normal and abnormal findings. This supports the concept that medical students can be taught basic ultrasound skills with limited didactic and hands-on instructions with the potential of using these skills in the patient clinics as an adjunct to routine physical diagnosis.

  20. Application of Ultrasound Energy as a New Drug Delivery System

    NASA Astrophysics Data System (ADS)

    Tachibana, Katsuro; Tachibana, Shunro

    1999-05-01

    Ultrasound has been in use for the last three decades as amodality for diagnostic imaging in medicine. Recently, there have beennumerous reports on the application of nonthermal ultrasound energyfor targeting or controlling drug release. This new concept oftherapeutic ultrasound combined with drugs has led to much excitementin various medical fields. Ultrasound energy can enhance the effectsof thrombolytic agents such as urokinase. Therapeutic ultrasoundcatheters are currently being developed for treatment ofcardiovascular diseases. Devices with ultrasound transducers implantedin transdermal drug patches are also being evaluated for possibledelivery of insulin through the skin. Chemical activation of drugs byultrasound energy for treatment of cancers is another new fieldrecently termed “Sonodynamic Therapy”. Various examples of ultrasoundapplication are under investigation which could lead to revolutionarydrug delivery systems in the future.

  1. Diagnostic Performance and Confidence of Contrast-Enhanced Ultrasound in the Differential Diagnosis of Cystic and Cysticlike Liver Lesions.

    PubMed

    Corvino, Antonio; Catalano, Orlando; Corvino, Fabio; Sandomenico, Fabio; Petrillo, Antonella

    2017-09-01

    The aims of this study were to assess the diagnostic performance of contrast-enhanced ultrasound (CEUS) in the characterization of atypical cystic and cysticlike focal liver lesions in comparison with conventional US and to determine whether the use of CEUS can reduce the need for further diagnostic workup. In a 3-year period 48 patients with 50 atypical cystic and cysticlike lesions found at conventional US underwent CEUS. Diagnostic confirmation was obtained in cytohistopathologic examinations, with other imaging modalities, and in follow-up. Overall, there were 24 cystic lesions and 26 cysticlike solid lesions, specifically 32 benign and 18 malignant lesions. The conventional US and CEUS images and cine loops were reviewed by two blinded readers independently. Sensitivity, specificity, area under the ROC curve (A z ), and interobserver agreement were calculated. Diagnostic performance improved after review of CEUS examinations by both readers (conventional US A z = 0.781 vs 0.972; CEUS A z = 0.734 vs 0.957). Interreader agreement increased, although slightly (conventional US weighted κ = 0.894; CEUS weighted κ = 0.953). In terms of differential diagnosis, the occurrence of correctly characterized lesions increased after CEUS for both readers (reader 1, 62% to 98%; reader 2, 56% to 96%). The development of low-acoustic-power CEUS has made it possible to identify several imaging features of cystic and cysticlike focal liver lesions that, in association with history and clinical findings, may help to correctly characterize them. Our data indicate the usefulness of CEUS in the evaluation of patients with these lesions.

  2. Transcranial Doppler: Techniques and advanced applications: Part 2

    PubMed Central

    Sharma, Arvind K.; Bathala, Lokesh; Batra, Amit; Mehndiratta, Man Mohan; Sharma, Vijay K.

    2016-01-01

    Transcranial Doppler (TCD) is the only diagnostic tool that can provide continuous information about cerebral hemodynamics in real time and over extended periods. In the previous paper (Part 1), we have already presented the basic ultrasound physics pertaining to TCD, insonation methods, and various flow patterns. This article describes various advanced applications of TCD such as detection of right-to-left shunt, emboli monitoring, vasomotor reactivity (VMR), monitoring of vasospasm in subarachnoid hemorrhage (SAH), monitoring of intracranial pressure, its role in stoke prevention in sickle cell disease, and as a supplementary test for confirmation of brain death. PMID:27011639

  3. Endoscopic ultrasound-guided transesophageal thoracentesis for minimal pleural effusion.

    PubMed

    Rana, Surinder Singh; Sharma, Ravi; Gupta, Rajesh

    2018-06-19

    Pleural effusion is a common finding both in patients with benign and malignant diseases of pleura and lung with diagnostic thoracentesis establishing the diagnosis in the majority of cases. The diagnostic thoracentesis can be done either blindly or under the guidance of ultrasound or computed tomography. However, minimal pleural effusion is difficult to sample even under image guidance. Endoscopic ultrasound (EUS) is known to detect smaller volume of pleural effusion and, thus, can help in guiding thoracentesis. To analyze the safety and efficacy of EUS-guided diagnostic thoracentesis in patients with undiagnosed minimal pleural effusion retrospectively. Retrospective analysis of the data of patients with minimal pleural effusion, who underwent EUS-guided transesophageal diagnostic thoracentesis over last 2 years, was performed. Thirteen patients (11 male; mean age 46.7 ± 16.2 years) with undiagnosed minimal pleural effusion underwent successful EUS-guided transesophageal diagnostic thoracentesis using a 22-G needle. Seven (53%) patients had fever on presentation whereas two presented with cough and loss of appetite. Eight to 54 mL fluid was aspirated with an attempt to completely empty the pleural cavity. There were no complications of the procedure. EUS-guided diagnostic thoracentesis is a safe and effective alternative for evaluating patients with minimal pleural effusion.

  4. An open access thyroid ultrasound image database

    NASA Astrophysics Data System (ADS)

    Pedraza, Lina; Vargas, Carlos; Narváez, Fabián.; Durán, Oscar; Muñoz, Emma; Romero, Eduardo

    2015-01-01

    Computer aided diagnosis systems (CAD) have been developed to assist radiologists in the detection and diagnosis of abnormalities and a large number of pattern recognition techniques have been proposed to obtain a second opinion. Most of these strategies have been evaluated using different datasets making their performance incomparable. In this work, an open access database of thyroid ultrasound images is presented. The dataset consists of a set of B-mode Ultrasound images, including a complete annotation and diagnostic description of suspicious thyroid lesions by expert radiologists. Several types of lesions as thyroiditis, cystic nodules, adenomas and thyroid cancers were included while an accurate lesion delineation is provided in XML format. The diagnostic description of malignant lesions was confirmed by biopsy. The proposed new database is expected to be a resource for the community to assess different CAD systems.

  5. Peripheral nerve ultrasound scoring systems: benchmarking and comparative analysis.

    PubMed

    Grimm, Alexander; Rattay, Tim W; Winter, Natalie; Axer, Hubertus

    2017-02-01

    Ultrasound of the nerves is an additive diagnostic tool to evaluate polyneuropathy. Recently, the need for standardized scoring systems has widely been discussed; different scores are described so far. Therefore, 327 patients with polyneuropathy were analyzed by ultrasound in our laboratory. Consequently, several ultrasound scoring tools were applied, i.e., the nerve pattern classification according to Padua et al. in all patients with CIDP and variants, the Bochum ultrasound score (BUS) and the neuritis ultrasound protocol in immune-mediated neuritis, the ultrasound pattern sum score, the homogeneity score, and the nerve enlargement distribution score in all neuropathies if possible. For all scores good accuracy was found. Most patients with CIDP revealed hypoechoic enlarged nerves (Class 1), the BUS/NUP was useful to identify GBS (sensitivity >85%), MMN (100%) and CIDP (>70%), while the UPSS showed high sensitivity and positive/negative predictive values (N/PPV) in the diagnosis of GBS (>70%), CIDP (>85%) and axonal non-inflammatory neuropathies (>90%). Homogeneous nerves were found in most CMT1 patients (66.7%), while immune-mediated neuropathies mostly show regional nerve enlargement. The HS was suitable to identify CMT patients with an HS ≥5 points. All scores were easily applicable with high accuracy. The former-reported results could be similarly confirmed. However, all sores have some incompleteness concerning unselected polyneuropathy population, particularly rare and focal types. Scoring systems are useful and easily applicable. They show high accuracy in certain neuropathies, but also offer some gaps and can, therefore, only be used in addition to standard diagnostic routines such as electrophysiology.

  6. Ultrasound imaging in the management of bleeding and pain in early pregnancy.

    PubMed

    Knez, Jure; Day, Andrea; Jurkovic, Davor

    2014-07-01

    Bleeding and pain are experienced by 20% of women during the first trimester of pregnancy. Although most pregnancies complicated by pain and bleeding tend to progress normally, these symptoms are distressing for woman, and they are also associated with an increased risk of miscarriage and ectopic pregnancy. Ultrasound is the first and often the only diagnostic modality that is used to determine location of early pregnancy and to assess its health. Ultrasound is an accurate, safe, painless and relatively inexpensive diagnostic tool, which all contributed to its widespread use in early pregnancy. Pain and bleeding in early pregnancy are sometimes caused by concomitant gynaecological, gastrointestinal, and urological problems, which could also be detected on ultrasound scan. In women with suspected intra-abdominal bleeding, ultrasound scan can be used to detect the presence of blood and provide information about the extent of bleeding. In this chapter, we comprehensively review the use of ultrasound in the diagnosis and management of early pregnancy complications. We include information about the diagnosis of gynaecological and other pelvic abnormalities, which could cause pain or bleeding in pregnancy. We also provide a summary of the current views on the safety of ultrasound in early pregnancy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. How ultrasound first came to new England.

    PubMed Central

    Kohorn, Ernest I.

    2003-01-01

    Diagnostic ultrasound came to Yale in the 1960s and was first developed in Glasgow and London. This story tells us that ultrasound was well-established in the Department of Obstetrics and Gynecology at Yale University School of Medicine in the Yale-New Haven Hospital by 1970. By then it had caught up with the pioneers in New York, Denver, and even Glasgow. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:15482653

  8. Endobronchial ultrasound elastography: a new method in endobronchial ultrasound-guided transbronchial needle aspiration.

    PubMed

    Jiang, Jun-Hong; Turner, J Francis; Huang, Jian-An

    2015-12-01

    TBNA through the flexible bronchoscope is a 37-year-old technology that utilizes a TBNA needle to puncture the bronchial wall and obtain specimens of peribronchial and mediastinal lesions through the flexible bronchoscope for the diagnosis of benign and malignant diseases in the mediastinum and lung. Since 2002, the Olympus Company developed the first generation ultrasound equipment for use in the airway, initially utilizing an ultrasound probe introduced through the working channel followed by incoroporation of a fixed linear ultrasound array at the distal tip of the bronchoscope. This new bronchoscope equipped with a convex type ultrasound probe on the tip was subsequently introduced into clinical practice. The convex probe (CP)-EBUS allows real-time endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) of mediastinal and hilar lymph nodes. EBUS-TBNA is a minimally invasive procedure performed under local anesthesia that has been shown to have a high sensitivity and diagnostic yield for lymph node staging of lung cancer. In 10 years of EBUS development, the Olympus Company developed the second generation EBUS bronchoscope (BF-UC260FW) with the ultrasound image processor (EU-M1), and in 2013 introduced a new ultrasound image processor (EU-M2) into clinical practice. FUJI company has also developed a curvilinear array endobronchial ultrasound bronchoscope (EB-530 US) that makes it easier for the operator to master the operation of the ultrasonic bronchoscope. Also, the new thin convex probe endobronchial ultrasound bronchoscope (TCP-EBUS) is able to visualize one to three bifurcations distal to the current CP-EBUS. The emergence of EBUS-TBNA has also been accompanied by innovation in EBUS instruments. EBUS elastography is, then, a new technique for describing the compliance of structures during EBUS, which may be of use in the determination of metastasis to the mediastinal and hilar lymph nodes. This article describes these new EBUS

  9. Ultrasound for fetal assessment in early pregnancy

    PubMed Central

    Whitworth, Melissa; Bricker, Leanne; Neilson, James P; Dowswell, Therese

    2014-01-01

    Background Diagnostic ultrasound is a sophisticated electronic technology, which utilises pulses of high frequency sound to produce an image. Diagnostic ultrasound examination may be employed in a variety of specific circumstances during pregnancy such as after clinical complications, or where there are concerns about fetal growth. Because adverse outcomes may also occur in pregnancies without clear risk factors, assumptions have been made that routine ultrasound in all pregnancies will prove beneficial by enabling earlier detection and improved management of pregnancy complications. Routine screening may be planned for early pregnancy, late gestation, or both. The focus of this review is routine early pregnancy ultrasound. Objectives To assess whether routine early pregnancy ultrasound for fetal assessment (i.e. its use as a screening technique) influences the diagnosis of fetal malformations, multiple pregnancies, the rate of clinical interventions, and the incidence of adverse fetal outcome when compared with the selective use of early pregnancy ultrasound (for specific indications). Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (September 2009). Selection criteria Published, unpublished, and ongoing randomised controlled trials that compared outcomes in women who experienced routine versus selective early pregnancy ultrasound (i.e. less than 24 weeks’ gestation). We have included quasi-randomised trials. Data collection and analysis Two review authors independently extracted data for each included study. We used the Review Manager software to enter and analyse data. Main results Routine/revealed ultrasound versus selective ultrasound/concealed: 11 trials including 37505 women. Ultrasound for fetal assessment in early pregnancy reduces the failure to detect multiple pregnancy by 24 weeks’ gestation (risk ratio (RR) 0.07, 95% confidence interval (CI) 0.03 to 0.17). Routine scan is associated with a reduction in

  10. Magnetic resonance imaging-guided focused ultrasound treatment of symptomatic uterine fibroids: impact of technology advancement on ablation volumes in 115 patients.

    PubMed

    Trumm, Christoph G; Stahl, Robert; Clevert, Dirk-André; Herzog, Peter; Mindjuk, Irene; Kornprobst, Sabine; Schwarz, Christina; Hoffmann, Ralf-Thorsten; Reiser, Maximilian F; Matzko, Matthias

    2013-06-01

    The aim of this study was to assess the impact of the advanced technology of the new ExAblate 2100 system (Insightec Ltd, Haifa, Israel) for magnetic resonance imaging (MRI)-guided focused ultrasound surgery on treatment outcomes in patients with symptomatic uterine fibroids, as measured by the nonperfused volume ratio. This is a retrospective analysis of 115 women (mean age, 42 years; range, 27-54 years) with symptomatic fibroids who consecutively underwent MRI-guided focused ultrasound treatment in a single center with the new generation ExAblate 2100 system from November 2010 to June 2011. Mean ± SD total volume and number of treated fibroids (per patient) were 89 ± 94 cm and 2.2 ± 1.7, respectively. Patient baseline characteristics were analyzed regarding their impact on the resulting nonperfused volume ratio. Magnetic resonance imaging-guided focused ultrasound treatment was technically successful in 115 of 123 patients (93.5%). In 8 patients, treatment was not possible because of bowel loops in the beam pathway that could not be mitigated (n = 6), patient movement (n = 1), and system malfunction (n = 1). Mean nonperfused volume ratio was 88% ± 15% (range, 38%-100%). Mean applied energy level was 5400 ± 1200 J, and mean number of sonications was 74 ± 27. No major complications occurred. Two cases of first-degree skin burn resolved within 1 week after the intervention. Of the baseline characteristics analyzed, only the planned treatment volume had a statistically significant impact on nonperfused volume ratio. With technological advancement, the outcome of MRI-guided focused ultrasound treatment in terms of the nonperfused volume ratio can be enhanced with a high safety profile, markedly exceeding results reported in previous clinical trials.

  11. Visualization of the diaphragm muscle with ultrasound improves diagnostic accuracy of phrenic nerve conduction studies.

    PubMed

    Johnson, Nicholas E; Utz, Michael; Patrick, Erica; Rheinwald, Nicole; Downs, Marlene; Dilek, Nuran; Dogra, Vikram; Logigian, Eric L

    2014-05-01

    Evaluation of phrenic neuropathy (PN) with phrenic nerve conduction studies (PNCS) is associated with false negatives. Visualization of diaphragmatic muscle twitch with diaphragm ultrasound (DUS) when performing PNCS may help to solve this problem. We performed bilateral, simultaneous DUS-PNCS in 10 healthy adults and 12 patients with PN. The amplitude of the diaphragm compound muscle action potential (CMAP) (on PNCS) and twitch (on DUS) was calculated. Control subjects had <38% side-to-side asymmetry in twitch amplitude (on DUS) and 53% asymmetry in phrenic CMAP (on PCNS). In the 12 patients with PN, 12 phrenic neuropathies were detected. Three of these patients had either significant side-to-side asymmetry or absolute reduction in diaphragm movement that was not detected with PNCS. There were no cases in which the PNCS showed an abnormality but the DUS did not. The addition of DUS to PNCS enhances diagnostic accuracy in PN. Copyright © 2013 Wiley Periodicals, Inc.

  12. [Novel dianostics and therapeutics with ultrasound technologies and nanotechnologies].

    PubMed

    Suzuki, Ryo; Oda, Yusuke; Omata, Daiki; Sawaguchi, Yoshikazu; Negishi, Yoichi; Maruyama, Kazuo

    2013-01-01

    Ultrasound is a good tool for theranostics due to have multi-potency both of diagnostics with sonography and therapeutics with high intensity focused ultrasound (HIFU). In addition, microbubbles and nanobubbles are utilized as not only contrast imaging agent but also enhancer of drug and gene delivery by combination of ultrasound. Recently, we developed novel liposomal nanobubbles (Bubble liposomes) which were containing perfluoropropane. Bubble liposomes induced jet stream by low intensity ultrasound exposure and resulted in enhancing permeability of cell membrane. This phenomenon has been utilized as driving force for drug and gene delivery. On the other hand, the combination of Bubble liposomes and high intensity ultrasound induces strong jet stream and increase temperature. This condition can directly damage to tumor cells, we are applying this for cancer therapy. Therefore, their combination has potency for various cancer therapies such as gene therapy, immunotherapy and hyperthermia. In this review, we discuss about cancer therapy by the combination of Bubble liposomes and ultrasound.

  13. Ultrasound: From Earth to Space

    PubMed Central

    Law, Jennifer; Macbeth, Paul. B.

    2011-01-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper. PMID:22399873

  14. Ultrasound: from Earth to space.

    PubMed

    Law, Jennifer; Macbeth, Paul B

    2011-06-01

    Ultrasonography is a versatile imaging modality that offers many advantages over radiography, computed tomography, and magnetic resonance imaging. On Earth, the use of ultrasound has become standard in many areas of medicine including diagnosis of medical and surgical diseases, management of obstetric and gynecologic conditions, assessment of critically ill patients, and procedural guidance. Advances in telecommunications have enabled remotely-guided ultrasonography for both geographically isolated populations and astronauts aboard the International Space Station. While ultrasound has traditionally been used in spaceflight to study anatomical and physiological adaptations to microgravity and evaluate countermeasures, recent years have seen a growth of applications adapted from terrestrial techniques. Terrestrial, remote, and space applications for ultrasound are reviewed in this paper.

  15. Utilization of diagnostic ultrasound and intravenous lipid-encapsulated perfluorocarbons in non-invasive targeted cardiovascular therapeutics.

    PubMed

    Porter, Thomas R; Choudhury, Songita A; Xie, Feng

    2016-01-01

    Diagnostic ultrasound (DUS) pressures have the ability to induce inertial cavitation (IC) of systemically administered microbubbles; this bioeffect has many diagnostic and therapeutic implications in cardiovascular care. Diagnostically, commercially available lipid-encapsulated perfluorocarbons (LEP) can be utilized to improve endocardial and vascular border delineation as well as assess myocardial perfusion. Therapeutically, the liquid jets induced by IC can alter endothelial function and dissolve thrombi within the immediate vicinity of the cavitating microbubbles. The cavitating LEP can also result in the localized release of any bound therapeutic substance at the site of insonation. DUS-induced IC has been tested in pre-clinical studies to determine what effect it has on acute vascular and microvascular thrombosis as well as nitric oxide (NO) release. These pre-clinical studies have consistently shown that DUS-induced IC of LEP is effective in restoring coronary vascular and microvascular flow in acute ST segment elevation myocardial infarction (STEMI), with microvascular flow improving even if upstream large vessel flow has not been achieved. The initial clinical trials examining the efficacy of short pulse duration DUS high mechanical index impulses in patients with STEMI are underway, and preliminary studies have suggested that earlier epicardial vessel recanalization can be achieved prior to arriving in the cardiac catheterization laboratory. DUS high mechanical index impulses have also been effective in pre-clinical studies for targeting DNA delivery that has restored islet cell function in type I diabetes and restored vascular flow in the extremities downstream from a peripheral vascular occlusion. Improvements in this technique will come from three dimensional arrays for therapeutic applications, more automated delivery techniques that can be applied in the field, and use of submicron-sized acoustically activated LEP droplets that may better permeate the

  16. Ultrasound-guided peripheral nerve blockade.

    PubMed

    Chin, Ki Jinn; Chan, Vincent

    2008-10-01

    The use of ultrasound for peripheral nerve blockade is becoming popular. Although the feasibility of ultrasound-guided nerve blockade is now clear, it is uncertain at this time whether it represents the new standard for regional anesthesia in terms of efficacy and safety. The ability to visualize nerve location, needle advancement, needle-nerve interaction, and local anesthetic spread makes ultrasound-guided nerve block an attractive option. Study results indicate that these advantages can improve the ease of block performance, block success rates, and complications. At the same time there is evidence that ultrasound-guided regional anesthesia is a unique skill in its own right, and that proficiency in it requires training and experience. Ultrasound is a valuable tool that is now available to the regional anesthesiologist, and it is fast becoming a standard part of practice. It promises to be of especial value to the less experienced practitioner. Ultrasound does not in itself, however, guarantee the efficacy and safety of peripheral nerve blockade. Proper training in its use is required and we can expect to see the development of formal standards and guidelines in this regard.

  17. Ultrasound Imaging of DNA-Damage Effects in Live Cultured Cells and in Brain Tissue.

    PubMed

    Tadayyon, Hadi; Gangeh, Mehrdad J; Vlad, Roxana; Kolios, Michael C; Czarnota, Gregory J

    2017-01-01

    High-frequency ultrasound (>20 MHz) spectroscopy can be used to detect noninvasively DNA damage in cell samples in vitro, and in live tissue both ex vivo and in vivo. This chapter focuses on the former two aspects. Experimental evidence suggests that morphological changes that occur in cells undergoing apoptosis result in changes in frequency-dependent ultrasound backscatter. With advances in research, ultrasound spectroscopy is advancing the boundaries of fast, label-free, noninvasive DNA damage detection technology with potential use in personalized medicine and early therapy response monitoring. Depending on the desired resolution, parametric ultrasound images can be computed and displayed within minutes to hours after ultrasound examination for cell death.

  18. Development of a Cancer Treatment with the Concomitant Use of Low-Intensity Ultrasound: Entering the Age of Simultaneous Diagnosis and Treatment

    PubMed Central

    Emoto, Makoto

    2014-01-01

    In recent years, studies using ultrasound energy for cancer treatment have advanced, thus revealing the enhancement of drug effects by employing low-intensity ultrasound. Furthermore, anti-angiogenesis against tumors is now attracting attention as a new cancer treatment. Therefore, we focused on the biological effects and the enhancement of drug effects brought by this low-intensity ultrasound energy and reported on the efficacy against a uterine sarcoma model, by implementing the basic studies, for the first time, including the concomitant use of low-intensity ultrasound irradiation, as an expected new antiangiogenic therapy for cancer treatment. Furthermore, we have succeeded in simultaneously utilizing low-intensity ultrasound in both diagnosis and treatment, upon real time evaluation of the anti-tumor effects and anti-angiogenesis effects using color Doppler ultrasound imaging. Although the biological effects of ultrasound have not yet been completely clarified, transient stomas were formed (Sonoporation) in cancer cells irradiated by low-intensity ultrasound and it is believed that the penetration effect of drugs is enhanced due to the drug being more charged inside the cell through these stomas. Furthermore, it has become clear that the concomitant therapy of anti-angiogenesis drugs and low-intensity ultrasound blocks the angiogenic factor VEGF produced by cancer cells, inhibits the induction of circulating endothelial progenitor cells in the bone marrow, and expedites angiogenic inhibitor TSP-1. Based on research achievements in recent years, we predict that the current diagnostic device for color Doppler ultrasound imaging will be improved in the near future, bringing with it the arrival of an age of “low-intensity ultrasound treatment that simultaneously enables diagnosis and treatment of cancer in real time.” PMID:26852677

  19. Neonatal Cranial Ultrasound: Are Current Safety Guidelines Appropriate?

    PubMed

    Lalzad, Assema; Wong, Flora; Schneider, Michal

    2017-03-01

    Ultrasound can lead to thermal and mechanical effects in interrogated tissues. We reviewed the literature to explore the evidence on ultrasound heating on fetal and neonatal neural tissue. The results of animal studies have suggested that ultrasound exposure of the fetal or neonatal brain may lead to a significant temperature elevation at the bone-brain interface above current recommended safety thresholds. Temperature increases between 4.3 and 5.6°C have been recorded. Such temperature elevations can potentially affect neuronal structure and function and may also affect behavioral and cognitive function, such as memory and learning. However, the majority of these studies were carried out more than 25 y ago using non-diagnostic equipment with power outputs much lower than those of modern machines. New studies to address the safety issues of cranial ultrasound are imperative to provide current clinical guidelines and safety recommendations. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  20. Enabling the mission through trans-atlantic remote mentored musculoskeletal ultrasound: case report of a portable hand-carried tele-ultrasound system for medical relief missions.

    PubMed

    Kirkpatrick, Andrew W; Blaivas, Michael; Sargsyan, Ashot E; McBeth, Paul B; Patel, Chirag; Xiao, Zhengwen; Pian, Linping; Panebianco, Nova; Hamilton, Douglas R; Ball, Chad G; Dulchavsky, Scott A

    2013-07-01

    Modern medical practice has become extremely dependent upon diagnostic imaging technologies to confirm the results of clinical examination and to guide the response to therapies. Of the various diagnostic imaging techniques, ultrasound is the most portable modality and one that is repeatable, dynamic, relatively cheap, and safe as long as the imaging provided is accurately interpreted. It is, however, the most user-dependent, a characteristic that has prompted the development of remote guidance techniques, wherein remote experts guide distant users through the use of information technologies. Medical mission work often brings specialist physicians to less developed locations, where they wish to provide the highest levels of care but are often bereft of diagnostic imaging resources on which they depend. Furthermore, if these personnel become ill or injured, their own care received may not be to the standard they have left at home. We herein report the utilization of a compact hand-carried remote tele-ultrasound system that allowed real-time diagnosis and follow-up of an acutely torn adductor muscle by a team of ultrasonographers, surgeons, and physicians. The patient was one of the mission surgeons who was guided to self-image. The virtual network of supporting experts was located across North America, whereas the patient was in Lome, Togo, West Africa. The system consisted of a hand-carried ultrasound, the output of which was digitized and streamed to the experts within standard voice-over-Internet-protocol software with an embedded simultaneous videocamera image of the ultrasonographer's hands using a customized graphical user interface. The practical concept of a virtual tele-ultrasound support network was illustrated through the clinical guidance of multiple physicians, including National Aeronautics and Space Administration Medical Operations remote guiders, Olympic team-associated surgeons, and ultrasound-focused emergentologists.

  1. Results of vardenafil mediated power Doppler ultrasound, contrast enhanced ultrasound and systematic random biopsies to detect prostate cancer.

    PubMed

    Morelli, Girolamo; Pagni, Riccardo; Mariani, Chiara; Minervini, Riccardo; Morelli, Andrea; Gori, Francesco; Ferdeghini, Ezio Maria; Paterni, Marco; Mauro, Eva; Guidi, Elisa; Armillotta, Nicola; Canale, Domenico; Vitti, Paolo; Caramella, Davide; Minervini, Andrea

    2011-06-01

    We evaluated the ability of the phosphodiesterase-5 inhibitor vardenafil to increase prostate microcirculation during power Doppler ultrasound. We also evaluated the results of contrast and vardenafil enhanced targeted biopsies compared to those of standard 12-core random biopsies to detect cancer. Between May 2008 and January 2010, 150 consecutive patients with prostate specific antigen more than 4 ng/ml at first diagnosis with negative digital rectal examination and transrectal ultrasound, and no clinical history of prostatitis underwent contrast enhanced power Doppler ultrasound (bolus injection of 2.4 ml SonoVue® contrast agent), followed by vardenafil enhanced power Doppler ultrasound (1 hour after oral administration of vardenafil 20 mg). All patients underwent standard 12-core transrectal ultrasound guided random prostate biopsy plus 1 further sampling from each suspected hypervascular lesion detected by contrast and vardenafil enhanced power Doppler ultrasound. Prostate cancer was detected in 44 patients (29.3%). Contrast and vardenafil enhanced power Doppler ultrasound detected suspicious, contrast enhanced and vardenafil enhanced areas in 112 (74.6%) and 110 patients (73.3%), and was diagnostic for cancer in 32 (28.5%) and 42 (38%), respectively. Analysis of standard technique, and contrast and vardenafil enhanced power Doppler ultrasound findings by biopsy core showed significantly higher detection using vardenafil vs contrast enhanced power Doppler ultrasound and standard technique (41.2% vs 22.7% and 8.1%, p <0.005 and <0.001, respectively). The detection rate of standard plus contrast or vardenafil enhanced power Doppler ultrasound was 10% and 11.7% (p not significant). Vardenafil enhanced power Doppler ultrasound enables excellent visualization of the microvasculature associated with cancer and can improve the detection rate compared to contrast enhanced power Doppler ultrasound and the random technique. Copyright © 2011 American Urological

  2. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines

    PubMed Central

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A.; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-01-01

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid–based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. PMID:26409271

  3. Development of the Fetal Vermis: New Biometry Reference Data and Comparison of 3 Diagnostic Modalities-3D Ultrasound, 2D Ultrasound, and MR Imaging.

    PubMed

    Katorza, E; Bertucci, E; Perlman, S; Taschini, S; Ber, R; Gilboa, Y; Mazza, V; Achiron, R

    2016-07-01

    Normal biometry of the fetal posterior fossa rules out most major anomalies of the cerebellum and vermis. Our aim was to provide new reference data of the fetal vermis in 4 biometric parameters by using 3 imaging modalities, 2D ultrasound, 3D ultrasound, and MR imaging, and to assess the relation among these modalities. A retrospective study was conducted between June 2011 and June 2013. Three different imaging modalities were used to measure vermis biometry: 2D ultrasound, 3D ultrasound, and MR imaging. The vermian parameters evaluated were the maximum superoinferior diameter, maximum anteroposterior diameter, the perimeter, and the surface area. Statistical analysis was performed to calculate centiles for gestational age and to assess the agreement among the 3 imaging modalities. The number of fetuses in the study group was 193, 172, and 151 for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. The mean and median gestational ages were 29.1 weeks, 29.5 weeks (range, 21-35 weeks); 28.2 weeks, 29.05 weeks (range, 21-35 weeks); and 32.1 weeks, 32.6 weeks (range, 27-35 weeks) for 2D ultrasound, 3D ultrasound, and MR imaging, respectively. In all 3 modalities, the biometric measurements of the vermis have shown a linear growth with gestational age. For all 4 biometric parameters, the lowest results were those measured by MR imaging, while the highest results were measured by 3D ultrasound. The inter- and intraobserver agreement was excellent for all measures and all imaging modalities. Limits of agreement were considered acceptable for clinical purposes for all parameters, with excellent or substantial agreement defined by the intraclass correlation coefficient. Imaging technique-specific reference data should be used for the assessment of the fetal vermis in pregnancy. © 2016 by American Journal of Neuroradiology.

  4. A New Era in Diagnostic Ultrasound, Superb Microvascular Imaging: Preliminary Results in Pediatric Hepato-Gastrointestinal Disorders.

    PubMed

    Ohno, Yasuharu; Fujimoto, Tamotsu; Shibata, Yukari

    2017-02-01

    Introduction  Superb microvascular imaging is a new ultrasound image processing technique that uses advanced clutter suppression to extract flow signals from vessels and which helps us visualize very small vascular structures that were not previously visible without the use of a contrast agent. We herein analyzed the usefulness of superb microvascular imaging in the diagnosis of hepato-gastrointestinal disorders in pediatric patients. Materials and Methods  Fifty-six pediatric patients who underwent a total of 81 superb microvascular imaging examinations with an Aplio 300 ultrasound system (Toshiba Medical Systems, Tokyo, Japan) were enrolled in this study. The subjects underwent conventional ultrasound examinations, including Doppler imaging followed by superb microvascular imaging. The superb microvascular imaging findings and standard imaging were compared. All of the examinations were performed without sedation. Results  The average age of the patients (male, n  = 38; female, n  = 18) was 4 years. The clinical diagnoses included hepatobiliary disorders ( n  = 29), acute appendicitis ( n  = 10), and other intestinal disorders ( n  = 17). The target organs for superb microvascular imaging were the liver, appendix, rectum, intestine, gallbladder, and lymph node. In most of the patients, superb microvascular imaging achieved the excellent visualization of microvascular structures, revealing abnormal vasculature in 21 out of 46 (45.7%) examinations of the liver, 9/9 (100%) examinations of the appendix, 0/11 (0%) examinations of the rectum, 9/11 (81.8%) examinations of the intestine, 0/1 (0%) examinations of the gallbladder, and 3/3 (100%) examinations of the lymph nodes. Superb microvascular imaging was superior to Doppler imaging for depicting the microvascular structures. Conclusions  Superb microvascular imaging is especially useful for depicting the microvascular flow and can aid in the diagnosis and treatment planning for pediatric

  5. The potential of ultrasound in cardiac pacing and rhythm modulation.

    PubMed

    Kohut, Andrew R; Vecchio, Christopher; Adam, Dan; Lewin, Peter A

    2016-09-01

    This review examines the potential for ultrasound to induce or otherwise influence cardiac pacing and rhythm modulation. Of particular interest is the possibility of developing new, truly non-invasive, nonpharmacological, acute and chronic, ultrasound-based arrhythmia treatments. Such approaches would not depend upon implanted or indwelling devices of any kind and would use ultrasound at diagnostic exposure levels (so as not to harm the heart or surrounding tissues). It is known that ultrasound can cause cardiomyocyte depolarization and a variety of underlying mechanisms have been proposed. Expert commentary: Questions still remain regarding the effect of exposure parameters and work will also be necessary to identify the optimal target regions within the heart if ultrasound energy is to be used to induce safe and reliable pacing in a clinical setting.

  6. Musculoskeletal ultrasound and other imaging modalities in rheumatoid arthritis.

    PubMed

    Ohrndorf, Sarah; Werner, Stephanie G; Finzel, Stephanie; Backhaus, Marina

    2013-05-01

    This review refers to the use of musculoskeletal ultrasound in patients with rheumatoid arthritis (RA) both in clinical practice and research. Furthermore, other novel sensitive imaging modalities (high resolution peripheral quantitative computed tomography and fluorescence optical imaging) are introduced in this article. Recently published ultrasound studies presented power Doppler activity by ultrasound highly predictive for later radiographic erosions in patients with RA. Another study presented synovitis detected by ultrasound being predictive of subsequent structural radiographic destruction irrespective of the ultrasound modality (grayscale ultrasound/power Doppler ultrasound). Further studies are currently under way which prove ultrasound findings as imaging biomarkers in the destructive process of RA. Other introduced novel imaging modalities are in the validation process to prove their impact and significance in inflammatory joint diseases. The introduced imaging modalities show different sensitivities and specificities as well as strength and weakness belonging to the assessment of inflammation, differentiation of the involved structures and radiological progression. The review tries to give an answer regarding how to best integrate them into daily clinical practice with the aim to improve the diagnostic algorithms, the daily patient care and, furthermore, the disease's outcome.

  7. Standardized ultrasound templates for diagnosing appendicitis reduce annual imaging costs.

    PubMed

    Nordin, Andrew B; Sales, Stephen; Nielsen, Jason W; Adler, Brent; Bates, David Gregory; Kenney, Brian

    2018-01-01

    Ultrasound is preferred over computed tomography (CT) for diagnosing appendicitis in children to avoid undue radiation exposure. We previously reported our experience in instituting a standardized appendicitis ultrasound template, which decreased CT rates by 67.3%. In this analysis, we demonstrate the ongoing cost savings associated with using this template. Retrospective chart review for the time period preceding template implementation (June 2012-September 2012) was combined with prospective review through December 2015 for all patients in the emergency department receiving diagnostic imaging for appendicitis. The type of imaging was recorded, and imaging rates and ultrasound test statistics were calculated. Estimated annual imaging costs based on pretemplate ultrasound and CT utilization rates were compared with post-template annual costs to calculate annual and cumulative savings. In the pretemplate period, ultrasound and CT rates were 80.2% and 44.3%, respectively, resulting in a combined annual cost of $300,527.70. Similar calculations were performed for each succeeding year, accounting for changes in patient volume. Using pretemplate rates, our projected 2015 imaging cost was $371,402.86; however, our ultrasound rate had increased to 98.3%, whereas the CT rate declined to 9.6%, yielding an annual estimated cost of $224,853.00 and a savings of $146,549.86. Since implementation, annual savings have steadily increased for a cumulative cost savings of $336,683.83. Standardizing ultrasound reports for appendicitis not only reduces the use of CT scans and the associated radiation exposure but also decreases annual imaging costs despite increased numbers of imaging studies. Continued cost reduction may be possible by using diagnostic algorithms. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Secondary Signs May Improve the Diagnostic Accuracy of Equivocal Ultrasounds for Suspected Appendicitis in Children

    PubMed Central

    Partain, Kristin N.; Patel, Adarsh; Travers, Curtis; McCracken, Courtney; Loewen, Jonathan; Braithwaite, Kiery; Heiss, Kurt F.; Raval, Mehul V.

    2016-01-01

    Introduction Ultrasound (US) is the preferred imaging modality for evaluating appendicitis. Our purpose was to determine if including secondary signs (SS) improves diagnostic accuracy in equivocal US studies. Methods Retrospective review identified 825 children presenting with concern for appendicitis and with a right lower quadrant (RLQ) US. Regression models identified which SS were associated with appendicitis. Test characteristics were demonstrated. Results 530 patients (64%) had equivocal US reports. Of 114 (22%) patients with equivocal US undergoing CT, those with SS were more likely to have appendicitis (48.6% vs 14.6%, p<0.001). Of 172 (32%) patients with equivocal US admitted for observation, those with SS were more likely to have appendicitis (61.0% vs 33.6%, p<0.001). SS associated with appendicitis included fluid collection (adjusted odds ratio (OR) 13.3, 95% Confidence Interval (CI) 2.1–82.8), hyperemia (OR=2.0, 95%CI 1.5–95.5), free fluid (OR=9.8, 95%CI 3.8–25.4), and appendicolith (OR=7.9, 95%CI 1.7–37.2). Wall thickness, bowel peristalsis, and echogenic fat were not associated with appendicitis. Equivocal US that included hyperemia, a fluid collection, or an appendicolith had 96% specificity and 88% accuracy. Conclusion Use of SS in RLQ US assists in the diagnostic accuracy of appendicitis. SS may guide clinicians and reduce unnecessary CT and admissions. PMID:27039121

  9. Ultrasound applications in mass casualties and extreme environments.

    PubMed

    Ma, O John; Norvell, Jeffrey G; Subramanian, Srikala

    2007-05-01

    A mass-casualty incident is one in which the number of patients with injuries exceeds the available medical resources to care for them in a timely manner. In such a situation, the numerous advantages of ultrasonography make it an ideal triage tool for helping clinicians rapidly screen patients. Experiences during the 1988 Armenian earthquake and the 1999 Turkish earthquake demonstrated the proficiency of ultrasound in providing rapid clinical data to the physicians caring for the mass-casualty patients. Wireless and satellite transmission of ultrasound images also has been shown to be feasible and may be applied to mass-casualty situations. In addition, ultrasound applications have been demonstrated to aid in the diagnosis of various conditions, including pneumothorax, in the International Space Station. Ultrasound's portability, reproducibility, accuracy, and ease of use will make it an important diagnostic instrument for future space missions.

  10. Ultrasound in the investigation of posterior compartment vaginal prolapse and obstructed defecation.

    PubMed

    Dietz, H P; Beer-Gabel, M

    2012-07-01

    Recent developments in diagnostic imaging have made gynecologists, colorectal surgeons and gastroenterologists realize as never before that they share a common interest in anorectal and pelvic floor dysfunction. While we often may be using different words to describe the same phenomenon (e.g. anismus/vaginismus) or attributing different meanings to the same words (e.g. rectocele), we look after patients with problems that transcend the borders of our respective specialties. Like no other diagnostic modality, imaging helps us understand each other and provides new insights into conditions we all need to learn to investigate better in order to improve clinical management. In this review we attempt to show what modern ultrasound imaging can contribute to the diagnostic work-up of patients with posterior vaginal wall prolapse, obstructed defecation and rectal intussusception/prolapse. In summary, it is evident that translabial/perineal ultrasound can serve as a first-line diagnostic tool in women with such complaints, replacing defecation proctography and MR proctography in a large proportion of female patients. This is advantageous for the women themselves because ultrasound is much better tolerated, as well as for healthcare systems since sonographic imaging is much less expensive. However, there is a substantial need for education, which currently remains unmet. Copyright © 2012 ISUOG. Published by John Wiley & Sons, Ltd.

  11. Contrast-enhanced ultrasound in diagnosis of gallbladder adenoma.

    PubMed

    Yuan, Hai-Xia; Cao, Jia-Ying; Kong, Wen-Tao; Xia, Han-Sheng; Wang, Xi; Wang, Wen-Ping

    2015-04-01

    Gallbladder adenoma is a pre-cancerous neoplasm and needs surgical resection. It is difficult to differentiate adenoma from other gallbladder polyps using imaging examinations. The study aimed to illustrate characteristics of contrast-enhanced ultrasound (CEUS) and its diagnostic value in gallbladder adenoma. Thirty-seven patients with 39 gallbladder adenomatoid lesions (maximal diameter ≥10 mm and without metastasis) were enrolled in this study. Lesion appearances in conventional ultrasound and CEUS were documented. The imaging features were compared individually among gallbladder cholesterol polyp, gallbladder adenoma and malignant lesion. Adenoma lesions showed iso-echogenicity in ultrasound, and an eccentric enhancement pattern, "fast-in and synchronous-out" contrast enhancement pattern and homogeneous at peak-time enhancement in CEUS. The homogenicity at peak-time enhancement showed the highest diagnostic ability in differentiating gallbladder adenoma from cholesterol polyps. The sensitivity, specificity, positive predictive value, negative predictive value, accuracy and Youden index were 100%, 90.9%, 92.9%, 100%, 95.8% and 0.91, respectively. The characteristic of continuous gallbladder wall shown by CEUS had the highest diagnostic ability in differentiating adenoma from malignant lesion (100%, 86.7%, 86.7%, 100%, 92.9% and 0.87, respectively). The characteristic of the eccentric enhancement pattern had the highest diagnostic ability in differentiating adenoma from cholesterol polyp and malignant lesion, with corresponding indices of 69.2%, 88.5%, 75.0%, 85.2%, 82.1% and 0.58, respectively. CEUS is valuable in differentiating gallbladder adenoma from other gallbladder polyps (≥10 mm in diameter). Homogeneous echogenicity on peak-time enhancement, a continuous gallbladder wall, and the eccentric enhancement pattern are important indicators of gallbladder adenoma on CEUS.

  12. Value of mammography and breast ultrasound in male patients with nipple discharge.

    PubMed

    Muñoz Carrasco, Rafaela; Álvarez Benito, Marina; Rivin del Campo, Eleonor

    2013-03-01

    To assess the contribution of mammography and ultrasound in men with nipple discharge. All men with nipple discharge who underwent mammography and/or ultrasound between 1993 and 2011 in our hospital were retrospectively evaluated. Radiological findings were classified according to BI-RADS lexicon. The final diagnosis was made based on histopathological results or clinical-radiological follow-up. The diagnostic performance of physical examination, mammography and ultrasound was calculated and compared. 26 men with 21 mammograms and 19 ultrasounds were reviewed. The final diagnoses were: 6 carcinomas (23.1%), 10 gynaecomastias, 2 pseudogynaecomastias and 8 normal breast tissues. Mammograms and ultrasounds performed on all five patients with infiltrating carcinoma showed a mass (categories 4 and 5). In all these patients except one, a breast mass was also noted and the physical examination was positive or suspected malignancy. In the patient with carcinoma in situ, the only conspicuous clinical sign was bloody nipple discharge and the mammography showed calcifications (category 4) that were not visible on ultrasound. Radiological findings of all patients without malignancy were classified as categories 1 and 2. The diagnostic performance of physical examination was lower than mammography and ultrasound (P>0.05). Mammography was more sensitive than ultrasound (100% vs. 83.3%). Both techniques showed the same specificity (100%). Men with nipple discharge have a high incidence of breast carcinoma. Nipple discharge may be the only clinical sign of carcinoma in situ. Mammography and ultrasound are useful in the evaluation of men with nipple discharge, diagnosing carcinoma in initial stages, avoiding unnecessary biopsies. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  13. [Differential diagnostic value of real-time tissue elastography and three dimensional ultrasound imaging in breast lumps].

    PubMed

    Li, M H; Liu, Y; Liu, L S; Li, P X; Chen, Q

    2016-05-24

    To investigate the real-time tissue elastography and 3D contrast-enhanced ultrasonography(CEUS) in breast lumps differential diagnostic value. A total of 126 patients (180 lumps) with breast mass were retrospectively analyzed from December 2012 to December 2014 in Tumor Hospital Affiliated To Xinjiang Medical University.All patients were divided into three groups by using stratified random method.Each group was detected by real-time tissue elastography, 3D CEUS and two joint inspection.Each group of 42 cases (60 lumps) was confirmed by the pathological results as gold standard.Diagnostic sensitivity, specificity and coincidence rate of different methods were compared. The benign masses of ultrasound contrast showed the punctate, linear and nodular enhancement, and the border of enhancement was smooth.The malignant tumors were mainly dominated by uneven and high enhancement. There was no statistical difference in sensitivity, specificity and coincidence rate between elastography group and 3D CEUS group (64.7% vs 73.5%, 69.2% vs 76.9%, 66.7% vs 75.0%, all P>0.05). The sensitivity, specificity and coincidence rate of two joint inspection group were higher than those of elastography group and 3D CEUS group, the differences were statistically significant (97.1%, 92.3% and 98.3% , all P<0.05). 3D CEUS combined with real-time tissue elastography is of high value in the diagnosis of breast masses.

  14. Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging

    PubMed Central

    Matsunaga, Terry O.; Sheeran, Paul S.; Luois, Samantha; Streeter, Jason E.; Mullin, Lee B.; Banerjee, Bhaskar; Dayton, Paul A.

    2012-01-01

    Recent efforts using perfluorocarbon (PFC) nanoparticles in conjunction with acoustic droplet vaporization has introduced the possibility of expanding the diagnostic and therapeutic capability of ultrasound contrast agents to beyond the vascular space. Our laboratories have developed phase-change nanoparticles (PCNs) from the highly volatile PFCs decafluorobutane (DFB, bp =-2 °C) and octafluoropropane (OFP, bp =-37 °C ) for acoustic droplet vaporization. Studies with commonly used clinical ultrasound scanners have demonstrated the ability to vaporize PCN emulsions with frequencies and mechanical indices that may significantly decrease tissue bioeffects. In addition, these contrast agents can be formulated to be stable at physiological temperatures and the perfluorocarbons can be mixed to modulate the balance between sensitivity to ultrasound and general stability. We herein discuss our recent efforts to develop finely-tuned diagnostic/molecular imaging agents for tissue interrogation. We discuss studies currently under investigation as well as potential diagnostic and therapeutic paradigms that may emerge as a result of formulating PCNs with low boiling point PFCs. PMID:23382775

  15. Diagnostic accuracy of integrated intravascular ultrasound and optical coherence tomography (IVUS-OCT) system for coronary plaque characterization

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Ma, Teng; Mohar, Dilbahar; Correa, Adrian; Minami, Hataka; Jing, Joseph; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2014-03-01

    Intravascular ultrasound (IVUS) imaging and optical coherence tomography (OCT), two commonly used intracoronary imaging modalities, play important roles in plaque evaluation. The combined use of IVUS (to visualize the entire plaque volume) and OCT (to quantify the thickness of the plaque cap, if any) is hypothesized to increase plaque diagnostic accuracy. Our group has developed a fully-integrated dual-modality IVUS-OCT imaging system and 3.6F catheter for simultaneous IVUS-OCT imaging with a high resolution and deep penetration depth. However, the diagnostic accuracy of an integrated IVUS-OCT system has not been investigated. In this study, we imaged 175 coronary artery sites (241 regions of interest) from 20 cadavers using our previous reported integrated IVUS-OCT system. IVUS-OCT images were read by two skilled interventional cardiologists. Each region of interest was classified as either calcification, lipid pool or fibrosis. Comparing the diagnosis by cardiologists using IVUSOCT images with the diagnosis by the pathologist, we calculated the sensitivity and specificity for characterization of calcification, lipid pool or fibrosis with this integrated system. In vitro imaging of cadaver coronary specimens demonstrated the complementary nature of these two modalities for plaques classification. A higher accuracy was shown than using a single modality alone.

  16. Ultrasound imaging diagnostics: healthcare risks for urologists.

    PubMed

    Martino, Tilde; Massaro, Tommaso; Martino, Paolo; Martino, Pasquale

    2010-12-01

    The objectives of this study are: 1) assessing if Ultrasound (US) used during US scans can represent a risk for the healthcare of urologists; 2) verifying the frequency of Carpal Tunnel Syndrome (CTS) symptoms and musculoskeletal disorders (MSD), trying to assess the possible correlation with job load and US scanning procedures; 3) assessing the role of individual factors like age, gender and physical activity in determining such disorders. A group of 35 voluntary urologists carrying out ultrasound scans were selected: 13 were working for the 1 degrees Teaching Hospital Urology, 11 for the 2 degrees Teaching Hospital Urology, 2 for the Hospitalization Urology of the Policlinico of Bari and 9 for Urology of Public Corporation Di Venere of Bari. A questionnaire, divided in two parts, was administered to the sample: the first aimed at collecting demographic data and at describing the operators' workload and the second focused on the possible presence of CTS and MSD symptoms. 32 urologists over 35 performed more than 5 scans per week and more than 5 scans per day. On average the specialists were carrying out this activity since 18 years wheras for post-graduate students, this time was about 4 years. Twenty-six subjects (74%) showed no symptoms, 8 subjects (23%) showed from 1 to 4 symptoms which can be associated to the presence of CTS; only one subject presents more than 5 symptoms. As regards MSD, 6 urologists (17%) did not present disorders, 24 subjects (69%) showed from 1 to 4 symptoms and 5 subjects (14%) presented more than 5 symptoms. The use of US scan examination is completely safe both for the healthcare of the patients and the operator. For what concerns healthcare risks, it is highly recommended to adopt a correct posture when performing the examination and to use the provided chair.

  17. The Feasibility of Classifying Breast Masses Using a Computer-Assisted Diagnosis (CAD) System Based on Ultrasound Elastography and BI-RADS Lexicon.

    PubMed

    Fleury, Eduardo F C; Gianini, Ana Claudia; Marcomini, Karem; Oliveira, Vilmar

    2018-01-01

    To determine the applicability of a computer-aided diagnostic system strain elastography system for the classification of breast masses diagnosed by ultrasound and scored using the criteria proposed by the breast imaging and reporting data system ultrasound lexicon and to determine the diagnostic accuracy and interobserver variability. This prospective study was conducted between March 1, 2016, and May 30, 2016. A total of 83 breast masses subjected to percutaneous biopsy were included. Ultrasound elastography images before biopsy were interpreted by 3 radiologists with and without the aid of computer-aided diagnostic system for strain elastography. The parameters evaluated by each radiologist results were sensitivity, specificity, and diagnostic accuracy, with and without computer-aided diagnostic system for strain elastography. Interobserver variability was assessed using a weighted κ test and an intraclass correlation coefficient. The areas under the receiver operating characteristic curves were also calculated. The areas under the receiver operating characteristic curve were 0.835, 0.801, and 0.765 for readers 1, 2, and 3, respectively, without computer-aided diagnostic system for strain elastography, and 0.900, 0.926, and 0.868, respectively, with computer-aided diagnostic system for strain elastography. The intraclass correlation coefficient between the 3 readers was 0.6713 without computer-aided diagnostic system for strain elastography and 0.811 with computer-aided diagnostic system for strain elastography. The proposed computer-aided diagnostic system for strain elastography system has the potential to improve the diagnostic performance of radiologists in breast examination using ultrasound associated with elastography.

  18. Diagnostic utility of abdominal ultrasonography in dogs with chronic diarrhea.

    PubMed

    Leib, M S; Larson, M M; Grant, D C; Monroe, W E; Troy, G C; Panciera, D L; Rossmeisl, J H; Werre, S R

    2012-01-01

    Chronic diarrhea is common in dogs and has many causes. Ultrasonographic descriptions of many gastrointestinal diseases have been published, but the diagnostic utility of ultrasonography in dogs with chronic diarrhea has not been investigated. Diagnostic utility of abdominal ultrasound will be highest in dogs with GI neoplasia and lowest in those with inflammatory disorders. 87 pet dogs with chronic diarrhea. Prospective study in which medical records were reviewed and contribution of abdominal ultrasound toward making diagnosis was scored. In 57/87 (66%) of dogs, the same diagnosis would have been reached without ultrasonography. In 13/87 (15%) of dogs, the ultrasound examination was vital or beneficial to making the diagnosis. Univariable analysis identified that increased diagnostic utility was associated with weight loss (P = .0086), palpation of an abdominal or rectal mass (P = .0031), diseases that commonly have mass lesions visible on ultrasound examination (P < .0001), and a final diagnosis of GI neoplasia. Multivariable regression indicated that utility of abdominal ultrasonography would be 30 times more likely to be high in dogs in which an abdominal or rectal mass was palpated (odds ratio 30.5, 95% CI 5.5-169.6) (P < .0001) versus dogs without a palpable mass. In 15/87 (17%) of dogs, additional benefits of ultrasonography to case management, independent of the contribution to the diagnosis of diarrhea, were identified. Overall, the diagnostic utility of abdominal ultrasonography was low in dogs with chronic diarrhea. Identification of factors associated with high diagnostic utility is an indication to perform abdominal ultrasonography in dogs with chronic diarrhea. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  19. Ultrasound determination of rotator cuff tear repairability

    PubMed Central

    Tse, Andrew K; Lam, Patrick H; Walton, Judie R; Hackett, Lisa

    2015-01-01

    Background Rotator cuff repair aims to reattach the torn tendon to the greater tuberosity footprint with suture anchors. The present study aimed to assess the diagnostic accuracy of ultrasound in predicting rotator cuff tear repairability and to assess which sonographic and pre-operative features are strongest in predicting repairability. Methods The study was a retrospective analysis of measurements made prospectively in a cohort of 373 patients who had ultrasounds of their shoulder and underwent rotator cuff repair. Measurements of rotator cuff tear size and muscle atrophy were made pre-operatively by ultrasound to enable prediction of rotator cuff repairability. Tears were classified following ultrasound as repairable or irreparable, and were correlated with intra-operative repairability. Results Ultrasound assessment of rotator cuff tear repairability has a sensitivity of 86% (p < 0.0001) and a specificity of 67% (p < 0.0001). The strongest predictors of rotator cuff repairability were tear size (p < 0.001) and age (p = 0.004). Sonographic assessments of tear size ≥4 cm2 or anteroposterior tear length ≥25 mm indicated an irreparable rotator cuff tear. Conclusions Ultrasound assessment is accurate in predicting rotator cuff tear repairability. Tear size or anteroposterior tear length and age were the best predictors of repairability. PMID:27582996

  20. Diagnostic utility of abdominal ultrasonography in dogs with chronic vomiting.

    PubMed

    Leib, M S; Larson, M M; Panciera, D L; Troy, G C; Monroe, W E; Rossmeisl, J H; Forrester, S D; Herring, E S

    2010-01-01

    Chronic vomiting is a common problem in dogs that has many causes. Ultrasonographic descriptions of many gastrointestinal (GI) diseases have been published. However, diagnostic utility of ultrasonography in dogs with chronic vomiting has not been investigated. Diagnostic utility of abdominal ultrasound will be highest in dogs with GI neoplasia and lowest in those with inflammatory disorders. Eighty-nine pet dogs with chronic vomiting. Medical records were reviewed and the contribution of abdominal ultrasound to the clinical diagnosis was subjectively scored. In 68.5% of dogs, the reviewers thought that the same diagnosis would have been reached without performing ultrasonography. In 22.5% of dogs, the ultrasound examination was considered to be vital or beneficial to the diagnosis. Univariable analysis identified that increased diagnostic utility was associated with increasing age, a greater number of vomiting episodes per week, presence of weight loss, a greater percentage of lost body weight, and a final diagnosis of GI lymphoma or gastric adenocarcinoma. However, multivariate analysis only identified increasing age and a final diagnosis of gastric adenocarcinoma or GI lymphoma to be associated with increased diagnostic utility. In 12.4% of dogs, additional benefits of ultrasonography to case management, excluding the contribution to the vomiting problem, were identified. The diagnostic utility of abdominal ultrasonography was high in 27% of dogs. The presence of factors that are associated with high diagnostic utility is an indication to perform abdominal ultrasonography in dogs with chronic vomiting.

  1. A PILOT STUDY OF DIAGNOSTIC NEUROMUSCULAR ULTRASOUND IN BELL'S PALSY

    PubMed Central

    TAWFIK, EMAN A.; WALKER, FRANCIS O.; CARTWRIGHT, MICHAEL S.

    2015-01-01

    Background and purpose Neuromuscular ultrasound of the cranial nerves is an emerging field which may help in the assessment of cranial neuropathies. The aim of this study was to evaluate the role of neuromuscular ultrasound in Bell's palsy. A second objective was to assess the possibility of any associated vagus nerve abnormality. Methods Twenty healthy controls and 12 Bell's palsy patients were recruited. The bilateral facial nerves, vagus nerves, and frontalis muscles were scanned using an 18 MHz linear array transducer. Facial nerve diameter, vagus nerve cross-sectional area, and frontalis thickness were measured. Results Mean facial nerve diameter was 0.8 ± 0.2 mm in controls and 1.1 ± 0.3 mm in patients group. The facial nerve diameter was significantly larger in patients than controls (p = 0.006, 95% CI for the difference between groups of 0.12-0.48), with a significant side-to-side difference in patients as well (p = 0.004, 95% CI for side-to-side difference of 0.08-0.52). ROC curve analysis of the absolute facial nerve diameter revealed a sensitivity of 75 % and a specificity of 70 %. No significant differences in vagus nerve cross-sectional area or frontalis thickness were detected between patients and controls. Conclusions Ultrasound can detect facial nerve enlargement in Bell's palsy and may have a role in assessment, or follow-up, of Bell's palsy and other facial nerve disorders. The low sensitivity of the current technique precludes its routine use for diagnosis, however, this study demonstrates its validity and potential for future research. PMID:26076910

  2. X-ray Diffraction and Multi-Frame Phase Contrast Imaging Diagnostics for IMPULSE at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iverson, Adam; Carlson, Carl; Young, Jason

    2013-07-08

    The diagnostic needs of any dynamic loading platform present unique technical challenges that must be addressed in order to accurately measure in situ material properties in an extreme environment. The IMPULSE platform (IMPact system for Ultrafast Synchrotron Experiments) at the Advanced Photon Source (APS) is no exception and, in fact, may be more challenging, as the imaging diagnostics must be synchronized to both the experiment and the 60 ps wide x-ray bunches produced at APS. The technical challenges of time-resolved x-ray diffraction imaging and high-resolution multi-frame phase contrast imaging (PCI) are described in this paper. Example data from recent IMPULSEmore » experiments are shown to illustrate the advances and evolution of these diagnostics with a focus on comparing the performance of two intensified CCD cameras and their suitability for multi-frame PCI. The continued development of these diagnostics is fundamentally important to IMPULSE and many other loading platforms and will benefit future facilities such as the Dynamic Compression Sector at APS and MaRIE at Los Alamos National Laboratory.« less

  3. Fluorescence lifetime intravascular ultrasound (FLIm-IVUS) and the quest to discriminate between early and advanced lipid cores in atherosclerosis (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Phipps, Jennifer E.; Bec, Julien; Vela, Deborah; Buja, L. Maximilian; Southard, Jeffrey A.; Margulies, Kenneth B.; Marcu, Laura

    2017-02-01

    FL-IVUS combines intravascular ultrasound with fluorescence lifetime imaging to obtain morphologic and biochemical details from the arterial wall. Ultrasound measurements alone provide morphologic information (plaque burden, remodeling index and presence of calcium). Fluorescence lifetime can determine the presence of a thick fibrous cap, macrophage infiltration, and lipid cores beneath thin fibrous caps. These details are important to assess plaque vulnerability. In this study, we focused on the ability of FL-IVUS to differentiate between early and advanced lipid cores-advanced cores are vulnerable to rupture. We imaged N=12 ex vivo human coronary arteries and performed hematoxylin and eosin, Movat's pentachrome and CD68 immunohistochemistry at 500 micron intervals throughout the length of the vessels. We found only N=1 thin-capped fibroatheroma (TCFA) with an advanced necrotic core and N=7 cases of foam cell infiltration, early lipid cores or deep necrotic cores. IVUS was able to observe the increased plaque burden and calcification of the advanced and deep necrotic cores, but could not identify early lipid cores, foam cell infiltration or discriminate between deep necrotic cores and TCFA. The addition of FLIm to IVUS allowed the TCFA to be discriminated from early lipid accumulation, particularly at 542+/-50 nm (355 nm pulsed excitation): 7.6 +/- 0.5 ns compared to 6.6 +/- 0.4 ns, respectively (P<0.001 by ANOVA analysis). These differences need to be validated in a larger cohort, but exist due to specific lipid content in the necrotic core as well as increased extracellular matrix in early lesions.

  4. Point-of-care diagnostics: an advancing sector with nontechnical issues.

    PubMed

    Huckle, David

    2008-11-01

    The particular reasons for the relative lack in development of point-of-care (PoC) diagnostics in a business context were discussed in our sister journal, Expert Review of Medical Devices, over 2 years ago. At that time, it could be seen that the concept of PoC testing was being revisited for at least the fifth time in the last 20 years. There had been important advances in technology but, with changes in global healthcare structures and funding, the overall in vitro diagnostics sector has had sluggish growth. Only molecular diagnostics and PoC testing are growing strongly. PoC testing is now a quarter of the total global in vitro diagnostics market, but largely due to use in diabetes monitoring. An increased focus on areas other than glucose self-testing has created a disturbance in the market. An implementation issue from this disturbance is that of control between central laboratories and the proposed sites for PoC testing. Evidence is presented to show that the first step is likely to be increased use in clinics and outpatient facilities closely linked with the laboratory. The aim will be to control the quality of the test, maintenance of equipment and provide support for the clinician in interpretation. The major problem for effective PoC implementation will be the significant changes to patient pathways that are required. The changes will benefit the patient and clinical outcomes but will require healthcare professionals to change their work patterns. This will be an uphill task!

  5. Ultrasound-enhanced drug delivery for cancer.

    PubMed

    Mo, Steven; Coussios, Constantin-C; Seymour, Len; Carlisle, Robert

    2012-12-01

    Ultrasound, which has traditionally been used as a diagnostic tool, is increasingly being used in non-invasive therapy and drug delivery. Of particular interest to this review is the rapidly accumulating evidence that ultrasound may have a key role to play both in improving the targeting and the efficacy of drug delivery for cancer. Currently available ultrasound-triggerable vehicles are first described, with particular reference to the ultrasonic mechanism that can activate release and the suitability of the size range of the vehicle used for drug delivery. Further mechanical and thermal effects of ultrasound that can enhance extravasation and drug distribution following release are then critically reviewed. Acoustic cavitation is found to play a potentially key role both in achieving targeted drug release and enhanced extravasation at modest pressure amplitudes and acoustic energies, whilst simultaneously enabling real-time monitoring of the drug delivery process. The next challenge in ultrasound-enhanced drug delivery will thus be to develop a new generation of drug-carrying nanoparticles which are of the right size range for delivery to tumours, yet still capable of achieving initiation of cavitation activity and drug release at modest acoustic pressures and energies that have no safety implications for the patient.

  6. Diagnostic value of stool DNA testing for multiple markers of colorectal cancer and advanced adenoma: a meta-analysis.

    PubMed

    Yang, Hua; Xia, Bing-Qing; Jiang, Bo; Wang, Guozhen; Yang, Yi-Peng; Chen, Hao; Li, Bing-Sheng; Xu, An-Gao; Huang, Yun-Bo; Wang, Xin-Ying

    2013-08-01

    The diagnostic value of stool DNA (sDNA) testing for colorectal neoplasms remains controversial. To compensate for the lack of large-scale unbiased population studies, a meta-analysis was performed to evaluate the diagnostic value of sDNA testing for multiple markers of colorectal cancer (CRC) and advanced adenoma. The PubMed, Science Direct, Biosis Review, Cochrane Library and Embase databases were systematically searched in January 2012 without time restriction. Meta-analysis was performed using a random-effects model using sensitivity, specificity, diagnostic OR (DOR), summary ROC curves, area under the curve (AUC), and 95% CIs as effect measures. Heterogeneity was measured using the χ(2) test and Q statistic; subgroup analysis was also conducted. A total of 20 studies comprising 5876 individuals were eligible. There was no heterogeneity for CRC, but adenoma and advanced adenoma harboured considerable heterogeneity influenced by risk classification and various detection markers. Stratification analysis according to risk classification showed that multiple markers had a high DOR for the high-risk subgroups of both CRC (sensitivity 0.759 [95% CI 0.711 to 0.804]; specificity 0.883 [95% CI 0.846 to 0.913]; AUC 0.906) and advanced adenoma (sensitivity 0.683 [95% CI 0.584 to 0.771]; specificity 0.918 [95% CI 0.866 to 0.954]; AUC 0.946) but not for the average-risk subgroups of either. In the methylation subgroup, sDNA testing had significantly higher DOR for CRC (sensitivity 0.753 [95% CI 0.685 to 0.812]; specificity 0.913 [95% CI 0.860 to 0.950]; AUC 0.918) and advanced adenoma (sensitivity 0.623 [95% CI 0.527 to 0.712]; specificity 0.926 [95% CI 0.882 to 0.958]; AUC 0.910) compared with the mutation subgroup. There was no significant heterogeneity among studies for subgroup analysis. sDNA testing for multiple markers had strong diagnostic significance for CRC and advanced adenoma in high-risk subjects. Methylation makers had more diagnostic value than mutation

  7. Auscultation versus Point-of-care Ultrasound to Determine Endotracheal versus Bronchial Intubation: A Diagnostic Accuracy Study.

    PubMed

    Ramsingh, Davinder; Frank, Ethan; Haughton, Robert; Schilling, John; Gimenez, Kimberly M; Banh, Esther; Rinehart, Joseph; Cannesson, Maxime

    2016-05-01

    Unrecognized malposition of the endotracheal tube (ETT) can lead to severe complications in patients under general anesthesia. The focus of this double-blinded randomized study was to assess the accuracy of point-of-care ultrasound in verifying the correct position of the ETT and to compare it with the accuracy of auscultation. Forty-two adult patients requiring general anesthesia with ETT were consented. Patients were randomized to right main bronchus, left main bronchus, or tracheal intubation. After randomization, the ETT was placed via fiber-optic visualization. Next, the location of the ETT was assessed using auscultation by a separate blinded anesthesiologist, followed by an ultrasound performed by a third blinded anesthesiologist. Ultrasound examination included assessment of tracheal dilation via cuff inflation with air and evaluation of pleural lung sliding. Statistical analysis included sensitivity, specificity, positive predictive value, negative predictive value, and interobserver agreement for the ultrasound examination (95% CI). In differentiating tracheal versus bronchial intubations, auscultation showed a sensitivity of 66% (0.39 to 0.87) and a specificity of 59% (0.39 to 0.77), whereas ultrasound showed a sensitivity of 93% (0.66 to 0.99) and specificity of 96% (0.79 to 1). Identification of tracheal versus bronchial intubation was 62% (26 of 42) in the auscultation group and 95% (40 of 42) in the ultrasound group (P = 0.0005) (CI for difference, 0.15 to 0.52), and the McNemar comparison showed statistically significant improvement with ultrasound (P < 0.0001). Interobserver agreement of ultrasound findings was 100%. Assessment of trachea and pleura via point-of-care ultrasound is superior to auscultation in determining the location of ETT.

  8. Initial results of the FUSION-X-US prototype combining 3D automated breast ultrasound and digital breast tomosynthesis.

    PubMed

    Schaefgen, Benedikt; Heil, Joerg; Barr, Richard G; Radicke, Marcus; Harcos, Aba; Gomez, Christina; Stieber, Anne; Hennigs, André; von Au, Alexandra; Spratte, Julia; Rauch, Geraldine; Rom, Joachim; Schütz, Florian; Sohn, Christof; Golatta, Michael

    2018-06-01

    To determine the feasibility of a prototype device combining 3D-automated breast ultrasound (ABVS) and digital breast tomosynthesis in a single device to detect and characterize breast lesions. In this prospective feasibility study, the FUSION-X-US prototype was used to perform digital breast tomosynthesis and ABVS in 23 patients with an indication for tomosynthesis based on current guidelines after clinical examination and standard imaging. The ABVS and tomosynthesis images of the prototype were interpreted separately by two blinded experts. The study compares the detection and BI-RADS® scores of breast lesions using only the tomosynthesis and ABVS data from the FUSION-X-US prototype to the results of the complete diagnostic workup. Image acquisition and processing by the prototype was fast and accurate, with some limitations in ultrasound coverage and image quality. In the diagnostic workup, 29 solid lesions (23 benign, including three cases with microcalcifications, and six malignant lesions) were identified. Using the prototype, all malignant lesions were detected and classified as malignant or suspicious by both investigators. Solid breast lesions can be localized accurately and fast by the Fusion-X-US system. Technical improvements of the ultrasound image quality and ultrasound coverage are needed to further study this new device. The prototype combines tomosynthesis and automated 3D-ultrasound (ABVS) in one device. It allows accurate detection of malignant lesions, directly correlating tomosynthesis and ABVS data. The diagnostic evaluation of the prototype-acquired data was interpreter-independent. The prototype provides a time-efficient and technically reliable diagnostic procedure. The combination of tomosynthesis and ABVS is a promising diagnostic approach.

  9. Ultrasound Enhanced Matrix Metalloproteinase-9 Triggered Release of Contents from Echogenic Liposomes

    PubMed Central

    Nahire, Rahul; Paul, Shirshendu; Scott, Michael D.; Singh, Raushan K.; Muhonen, Wallace W.; Shabb, John; Gange, Kara N.; Srivastava, D. K.; Sarkar, Kausik; Mallik, Sanku

    2012-01-01

    The extracellular enzyme matrix metalloproteinase-9 (MMP-9) is overexpressed in atherosclerotic plaques and in metastatic cancers. The enzyme is responsible for rupture of the plaques and for the invasion and metastasis of a large number of cancers. The ability of ultrasonic excitation to induce thermal and mechanical effects has been used to release drugs from different carriers. However, majority of these studies were performed with low frequency ultrasound (LFUS) at kHz frequencies. Clinical usage of LFUS excitations will be limited due to harmful biological effects. Herein, we report our results on the release of encapsulated contents from substrate lipopeptide incorporated echogenic liposomes triggered by recombinant human MMP-9. The contents release was further enhanced by the application of diagnostic frequency (3 MHz) ultrasound. The echogenic liposomes were successfully imaged employing a medical ultrasound transducer (4 – 15 MHz). The conditioned cell culture media from cancer cells (secreting MMP-9) released the encapsulated dye from the liposomes (30 – 50%) and this release is also increased (50 – 80%) by applying diagnostic frequency ultrasound (3 MHz) for 3 minutes. With further developments, these liposomes have the potential to serve as multimodal carriers for triggered release and simultaneous ultrasound imaging. PMID:22849291

  10. A REVIEW OF LOW-INTENSITY ULTRASOUND FOR CANCER THERAPY

    PubMed Central

    WOOD, ANDREW K. W.; SEHGAL, CHANDRA M.

    2015-01-01

    The literature describing the use of low-intensity ultrasound in four major areas of cancer therapy was reviewed - sonodynamic therapy, ultrasound mediated chemotherapy, ultrasound mediated gene delivery and antivascular ultrasound therapy. Each technique consistently resulted in the death of cancer cells and the bioeffects of ultrasound were primarily attributed to thermal actions and inertial cavitation. In each therapeutic modality, theranostic contrast agents composed of microbubbles played a role in both therapy and vascular imaging. The development of these agents is important as it establishes a therapeutic-diagnostic platform which can monitor the success of anti-cancer therapy. Little attention, however, has been given to either the direct assessment of the underlying mechanisms of the observed bioeffects or to the viability of these therapies in naturally occurring cancers in larger mammals; if such investigations provided encouraging data there could be a prompt application of a therapy technique in treating cancer patients. PMID:25728459

  11. Obstetric and Gynecologic Resident Ultrasound Education Project: Is the Current Level of Gynecologic Ultrasound Training in Canada Meeting the Needs of Residents and Faculty?

    PubMed

    Green, Jessica; Kahan, Meldon; Wong, Suzanne

    2015-09-01

    Ultrasound is a critical diagnostic imaging tool in obstetrics and gynecology (Ob/Gyn). Obstetric ultrasound is taught during residency, but we suspected a gap in Gyn ultrasound education. Proficiency in Gyn ultrasound allows real-time interpretation and management of pelvic disease and facilitates technical skill development for trainees learning blinded procedures. This study sought to evaluate ultrasound education in Canada's Ob/Gyn residency programs and assess whether residents and physicians perceived a need for a formalized Gyn ultrasound curriculum. We distributed a needs assessment survey to residents enrolled in Canadian Ob/Gyn residency programs and to all obstetrician/gynecologists registered as members of the Society of Obstetricians and Gynaecologists of Canada. Residents were asked to specify their current training in ultrasound and to rate the adequacy of their curriculum. All respondents rated the importance of proficiency in pelvic ultrasound for practicing obstetrician/gynecologists as well as the perceived need for formalized ultrasound training in Ob/Gyn residency programs. Eighty-two residents and 233 physicians completed the survey. Extents and types of ultrasound training varied across residency programs. Most residents reported inadequate exposure to Gyn ultrasound, and most residents and physicians agreed that it is important for obstetrician/gynecologists to be proficient in Gyn ultrasound and that the development of a standardized Gyn ultrasound curriculum for residency programs is important. Current ultrasound education in Ob/Gyn varies across Canadian residency programs. Training in Gyn ultrasound is lacking, and both trainees and physicians confirmed the need for a standardized Gyn ultrasound curriculum for residency programs in Canada. © 2015 by the American Institute of Ultrasound in Medicine.

  12. Catheter-based ultrasound hyperthermia with HDR brachytherapy for treatment of locally advanced cancer of the prostate and cervix

    NASA Astrophysics Data System (ADS)

    Diederich, Chris J.; Wootton, Jeff; Prakash, Punit; Salgaonkar, Vasant; Juang, Titania; Scott, Serena; Chen, Xin; Cunha, Adam; Pouliot, Jean; Hsu, I. C.

    2011-03-01

    A clinical treatment delivery platform has been developed and is being evaluated in a clinical pilot study for providing 3D controlled hyperthermia with catheter-based ultrasound applicators in conjunction with high dose rate (HDR) brachytherapy. Catheter-based ultrasound applicators are capable of 3D spatial control of heating in both angle and length of the devices, with enhanced radial penetration of heating compared to other hyperthermia technologies. Interstitial and endocavity ultrasound devices have been developed specifically for applying hyperthermia within HDR brachytherapy implants during radiation therapy in the treatment of cervix and prostate. A pilot study of the combination of catheter based ultrasound with HDR brachytherapy for locally advanced prostate and cervical cancer has been initiated, and preliminary results of the performance and heating distributions are reported herein. The treatment delivery platform consists of a 32 channel RF amplifier and a 48 channel thermocouple monitoring system. Controlling software can monitor and regulate frequency and power to each transducer section as required during the procedure. Interstitial applicators consist of multiple transducer sections of 2-4 cm length × 180 deg and 3-4 cm × 360 deg. heating patterns to be inserted in specific placed 13g implant catheters. The endocavity device, designed to be inserted within a 6 mm OD plastic tandem catheter within the cervix, consists of 2-3 transducers × dual 180 or 360 deg sectors. 3D temperature based treatment planning and optimization is dovetailed to the HDR optimization based planning to best configure and position the applicators within the catheters, and to determine optimal base power levels to each transducer section. To date we have treated eight cervix implants and six prostate implants. 100 % of treatments achieved a goal of >60 min duration, with therapeutic temperatures achieved in all cases. Thermal dosimetry within the hyperthermia target

  13. Remote Control of Intact Mammalian Brain Circuits Using Pulsed Ultrasound

    DTIC Science & Technology

    2012-12-31

    our work is that we have begun to gain an understanding of what properties of ultrasound waveforms make them effective for neuromodulation . The next...our work is that we have begun to gain an understanding of what properties of ultrasound waveforms make them effective for neuromodulation . The next...ultrasound for neuromodulation based in part upon our advancements made. We expect an additional one or two manuscripts will be published in the

  14. Has 4D transperineal ultrasound additional value over 2D transperineal ultrasound for diagnosing obstructed defaecation syndrome?

    PubMed

    van Gruting, I M A; Kluivers, K; Sultan, A H; De Bin, R; Stankiewicz, A; Blake, H; Thakar, R

    2018-06-08

    To establish the diagnostic test accuracy of both two-dimensional (2D) and four-dimensional (4D) transperineal ultrasound, to assess if 4D ultrasound imaging provides additional value in the diagnosis of posterior pelvic floor disorders in women with obstructed defaecation syndrome. In this prospective cohort study, 121 consecutive women with obstructed defaecation syndrome were recruited. Symptoms of obstructed defaecation and signs of pelvic organ prolapse were assessed using validated methods. All women underwent both 2D transperineal ultrasound (Pro-focus, 8802 transducer, BK-medical) and 4D transperineal ultrasound (Voluson i, RAB4-8-RS transducer, GE). Imaging analysis was performed by two blinded observers. Pelvic floor disorders were dichotomised into presence or absence according pre-defined cut-off values. In the absence of a reference standard a composite reference standard was created from a combination of results of evacuation proctogram, magnetic resonance imaging and endovaginal ultrasound. Primary outcome measures were diagnostic test characteristics of 2D and 4D transperineal ultrasound for diagnosis or rectocele, enterocele, intussusception and anismus. Secondary outcome measures were interobserver agreement, agreement between the two techniques and correlation of signs and symptoms to imaging findings. For diagnosis of all four posterior pelvic floor disorders there was no difference in sensitivity and specificity between 2D and 4D TPUS (p= 0.131 - 1.000). A good agreement between 2D and 4D TPUS was found for the diagnosis of rectocele (ĸ 0.675) and a moderate agreement for diagnosis of enterocele, intussusception and anismus (ĸ 0.465 - 0.545). There was no difference in rectocele depth measurements between both TPUS techniques (19.9 mm vs 19.0 mm, p=0.802). Inter-observer agreement was comparable for both techniques, however 2D TPUS had an excellent interobserver agreement for diagnosis of enterocele and rectocele depth measurements. Diagnosis

  15. Survey of the prevalence and methodology of quality assurance for B-mode ultrasound image quality among veterinary sonographers.

    PubMed

    Hoscheit, Larry P; Heng, Hock Gan; Lim, Chee Kin; Weng, Hsin-Yi

    2018-05-01

    Image quality in B-mode ultrasound is important as it reflects the diagnostic accuracy and diagnostic information provided during clinical scanning. Quality assurance programs for B-mode ultrasound systems/components are comprised of initial quality acceptance testing and subsequent regularly scheduled quality control testing. The importance of quality assurance programs for B-mode ultrasound image quality using ultrasound phantoms is well documented in the human medical and medical physics literature. The purpose of this prospective, cross-sectional, survey study was to determine the prevalence and methodology of quality acceptance testing and quality control testing of image quality for ultrasound system/components among veterinary sonographers. An online electronic survey was sent to 1497 members of veterinary imaging organizations: the American College of Veterinary Radiology, the Veterinary Ultrasound Society, and the European Association of Veterinary Diagnostic Imaging, and a total of 167 responses were received. The results showed that the percentages of veterinary sonographers performing quality acceptance testing and quality control testing are 42% (64/151; 95% confidence interval 34-52%) and 26% (40/156: 95% confidence interval 19-33%) respectively. Of the respondents who claimed to have quality acceptance testing or quality control testing of image quality in place for their ultrasound system/components, 0% have performed quality acceptance testing or quality control testing correctly (quality acceptance testing 95% confidence interval: 0-6%, quality control testing 95% confidence interval: 0-11%). Further education and guidelines are recommended for veterinary sonographers in the area of quality acceptance testing and quality control testing for B-mode ultrasound equipment/components. © 2018 American College of Veterinary Radiology.

  16. PROGRESS AND PROBLEMS IN THE APPLICATION OF FOCUSED ULTRASOUND FOR BLOOD-BRAIN BARRIER DISRUPTION

    PubMed Central

    Vykhodtseva, Natalia; McDannold, Nathan; Hynynen, Kullervo

    2008-01-01

    Advances in neuroscience have resulted in the development of new diagnostic and therapeutic agents for potential use in the central nervous system (CNS). However, the ability to deliver the majority of these agents to the brain is limited by the blood–brain barrier (BBB), a specialized structure of the blood vessel wall that hampers transport and diffusion from the blood to the brain. Many CNS disorders could be treated with drugs, enzymes, genes, or large-molecule biotechnological products such as recombinant proteins, if they could cross the BBB. This article reviews the problems of the BBB presence in treating the vast majority of CNS diseases and the efforts to circumvent the BBB through the design of new drugs and the development of more sophisticated delivery methods. Recent advances in the development of noninvasive, targeted drug delivery by MRI-guided ultrasound-induced BBB disruption are also summarized. PMID:18511095

  17. Diagnostic performances of shear wave elastography: which parameter to use in differential diagnosis of solid breast masses?

    PubMed

    Lee, Eun Jung; Jung, Hae Kyoung; Ko, Kyung Hee; Lee, Jong Tae; Yoon, Jung Hyun

    2013-07-01

    To evaluate which shear wave elastography (SWE) parameter proves most accurate in the differential diagnosis of solid breast masses. One hundred and fifty-six breast lesions in 139 consecutive women (mean age: 43.54 ± 9.94 years, range 21-88 years), who had been scheduled for ultrasound-guided breast biopsy, were included. Conventional ultrasound and SWE were performed in all women before biopsy procedures. Ultrasound BI-RADS final assessment and SWE parameters were recorded. Diagnostic performance of each SWE parameter was calculated and compared with those obtained when applying cut-off values of previously published data. Performance of conventional ultrasound and ultrasound combined with each parameter was also compared. Of the 156 breast masses, 120 (76.9 %) were benign and 36 (23.1 %) malignant. Maximum stiffness (Emax) with a cut-off of 82.3 kPa had the highest area under the receiver operating characteristics curve (Az) value compared with other SWE parameters, 0.860 (sensitivity 88.9 %, specificity 77.5 %, accuracy 80.1 %). Az values of conventional ultrasound combined with each SWE parameter showed lower (but not significantly) values than with conventional ultrasound alone. Maximum stiffness (82.3 kPa) provided the best diagnostic performance. However the overall diagnostic performance of ultrasound plus SWE was not significantly better than that of conventional ultrasound alone. • SWE offers new information over and above conventional breast ultrasound • Various SWE parameters were explored regarding distinction between benign and malignant lesions • An elasticity of 82.3 kPa appears optimal in differentiating solid breast masses • However, ultrasound plus SWE was not significantly better than conventional ultrasound alone.

  18. Medical ultrasound - From inner space to outer space

    NASA Technical Reports Server (NTRS)

    Rooney, J. A.

    1984-01-01

    During the last decade, medical ultrasound has rapidly become a widely accepted imaging modality used in many medical specialties. It has the advantages that it is noninvasive, does not use ionizing radiation, is relatively inexpensive and is easy to use. Future trends in ultrasound include expanded areas of use, advanced signal processing and digital image analysis including tissue characterization and three-dimensional reconstructions.

  19. Diagnostic accuracy of 22/25-gauge core needle in endoscopic ultrasound-guided sampling: systematic review and meta-analysis.

    PubMed

    Oh, Hyoung-Chul; Kang, Hyun; Lee, Jae Young; Choi, Geun Joo; Choi, Jung Sik

    2016-11-01

    To compare the diagnostic accuracy of endoscopic ultrasound-guided core needle aspiration with that of standard fine-needle aspiration by systematic review and meta-analysis. Studies using 22/25-gauge core needles, irrespective of comparison with standard fine needles, were comprehensively reviewed. Pooled sensitivity, specificity, diagnostic odds ratio (DOR), and summary receiver operating characteristic curves for the diagnosis of malignancy were used to estimate the overall diagnostic efficiency. The pooled sensitivity, specificity, and DOR of the core needle for the diagnosis of malignancy were 0.88 (95% confidence interval [CI], 0.84 to 0.90), 0.99 (95% CI, 0.96 to 1), and 167.37 (95% CI, 65.77 to 425.91), respectively. The pooled sensitivity, specificity, and DOR of the standard needle were 0.84 (95% CI, 0.79 to 0.88), 1 (95% CI, 0.97 to 1), and 130.14 (95% CI, 34.00 to 495.35), respectively. The area under the curve of core and standard needle in the diagnosis of malignancy was 0.974 and 0.955, respectively. The core and standard needle were comparable in terms of pancreatic malignancy diagnosis. There was no significant difference in procurement of optimal histologic cores between core and standard needles (risk ratio [RR], 0.545; 95% CI, 0.187 to 1.589). The number of needle passes for diagnosis was significantly lower with the core needle (standardized mean difference, -0.72; 95% CI, -1.02 to -0.41). There were no significant differences in overall complications (RR, 1.26; 95% CI, 0.34 to 4.62) and technical failure (RR, 5.07; 95% CI, 0.68 to 37.64). Core and standard needles were comparable in terms of diagnostic accuracy, technical performance, and safety profile.

  20. Ultrasound-guided synovial Tru-cut biopsy: indications, technique, and outcome in 111 cases.

    PubMed

    Sitt, Jacqueline C M; Griffith, James F; Lai, Fernand M; Hui, Mamie; Chiu, K H; Lee, Ryan K L; Ng, Alex W H; Leung, Jason

    2017-05-01

    To investigate the diagnostic performance of ultrasound-guided synovial biopsy. Clinical notes, pathology and microbiology reports, ultrasound and other imaging studies of 100 patients who underwent 111 ultrasound-guided synovial biopsies were reviewed. Biopsies were compared with the final clinical diagnosis established after synovectomy (n = 43) or clinical/imaging follow-up (n = 57) (mean 30 months). Other than a single vasovagal episode, no complication of synovial biopsy was encountered. One hundred and seven (96 %) of the 111 biopsies yielded synovium histologically. Pathology ± microbiology findings for these 107 conclusive biopsies comprised synovial tumour (n = 30, 28 %), synovial infection (n = 18, 17 %), synovial inflammation (n = 45, 42 %), including gouty arthritis (n = 3), and no abnormality (n = 14, 13 %). The accuracy, sensitivity, and specificity of synovial biopsy was 99 %, 97 %, and 100 % for synovial tumour; 100 %, 100 %, and 100 % for native joint infection; and 78 %, 45 %, and 100 % for prosthetic joint infection. False-negative synovial biopsy did not seem to be related to antibiotic therapy. Ultrasound-guided Tru-cut synovial biopsy is a safe and reliable technique with a high diagnostic yield for diagnosing synovial tumour and also, most likely, for joint infection. Regarding joint infection, synovial biopsy of native joints seems to have a higher diagnostic yield than that for infected prosthetic joints. • Ultrasound-guided Tru-cut synovial biopsy has high accuracy (99 %) for diagnosing synovial tumour. • It has good accuracy, sensitivity, and high specificity for diagnosis of joint infection. • Synovial biopsy of native joints works better than biopsy of prosthetic joints. • A negative synovial biopsy culture from a native joint largely excludes septic arthritis. • Ultrasound-guided Tru-cut synovial biopsy is a safe and well-tolerated procedure.

  1. Ultrasound-guided drug delivery in cancer

    PubMed Central

    2017-01-01

    Recent advancements in ultrasound and microbubble (USMB) mediated drug delivery technology has shown that this approach can improve spatially confined delivery of drugs and genes to target tissues while reducing systemic dose and toxicity. The mechanism behind enhanced delivery of therapeutics is sonoporation, the formation of openings in the vasculature, induced by ultrasound-triggered oscillations and destruction of microbubbles. In this review, progress and challenges of USMB mediated drug delivery are summarized, with special focus on cancer therapy. PMID:28607323

  2. Advanced EUS Guided Tissue Acquisition Methods for Pancreatic Cancer

    PubMed Central

    Kandel, Pujan; Wallace, Michael B.

    2018-01-01

    Pancreas cancer is a lethal cancer as the majority patients are diagnosed at an advanced incurable stage. Despite improvements in diagnostic modalities and management strategies, including surgery and chemotherapies, the outcome of pancreas cancer remains poor. Endoscopic ultrasound (EUS) is an important imaging tool for pancreas cancer. For decades, resected pancreas cancer and other cancer specimens have been used to identify tissue biomarkers or genomics for precision therapy; however, only 20% of patients undergo surgery, and thus, this framework is not useful for unresectable pancreas cancer. With advancements in needle technologies, tumor specimens can be obtained at the time of tissue diagnosis. Tumor tissue can be used for development of personalized cancer treatment, such as performing whole exome sequencing and global genomic profiling of pancreas cancer, development of tissue biomarkers, and targeted mutational assays for precise chemotherapy treatment. In this review, we discuss the recent advances in tissue acquisition of pancreas cancer. PMID:29463004

  3. Point of Care Ultrasound Diagnosis of Empyema.

    PubMed

    Nelson, Mathew; Stankard, Brendon; Greco, Jeffrey; Okumura, Yoshito

    2016-08-01

    Emergency ultrasonography is an efficient and cost effective tool for patients who are in respiratory distress. Chest radiographs can yield limited information for these patients. Computed tomography scans have long been the criterion standard for advanced imaging in patients with respiratory complaints, but point of care ultrasound (POCUS) can be performed at bedside, does not expose the patient to radiation, and at times may provide more information than a computed tomography scan. A 60-year-old man with a medical history of hypertension presented to the emergency department complaining of a productive cough associated with fever, weakness, and progressively worsening dyspnea on exertion over the previous 1 to 2 weeks. The physical examination was remarkable for rhonchi in the right upper lobe and diminished breath sounds throughout the right lung. POCUS was performed, and the results revealed severe atelectasis and hepatization of the right lung parenchyma with visualized air bronchograms. Complex hypoechoic material with a posterior spine sign was noted, which increased concern for complex consolidation and effusion. The diagnosis of pneumonia with empyema was made. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: POCUS has become a much more commonly used imaging modality within many emergency departments. Ultrasound is more sensitive than chest radiographs for identifying pathologies such as pneumothorax and simple effusions. This case shows how well POCUS can diagnose empyema even in the setting of diagnostic uncertainty of computed tomographic imaging. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Advanced diagnostic imaging in privately insured patients: recent trends in utilization and payments.

    PubMed

    Horný, Michal; Burgess, James F; Horwitt, Jedediah; Cohen, Alan B

    2014-07-01

    Recent studies have reported that the rate of growth in utilization of noninvasive diagnostic imaging has slowed, with a concomitant reduction in total payments to providers in the Medicare Part B fee-for-service population. Utilization and payment growth trends in commercially insured populations, however, are not as well understood. We used the Truven Health Analytics MarketScan® Commercial Claims and Encounters database containing more than 29 million individuals to investigate commercially insured population trends in utilization of and payments for CT, MRI, PET, and ultrasound procedures in the years 2007-2011. We found that imaging use--after a brief downturn in 2010--rose again in 2011, coupled with substantial increases in adjusted payments for all four imaging modalities, raising concerns about future efforts to stem growth in imaging use and associated spending. Copyright © 2014 American College of Radiology. All rights reserved.

  5. Molecular Testing for Targeted Therapy in Advanced Non-Small Cell Lung Cancer: Suitability of Endobronchial Ultrasound Transbronchial Needle Aspiration.

    PubMed

    Casadio, Chiara; Guarize, Juliana; Donghi, Stefano; Di Tonno, Clementina; Fumagalli, Caterina; Vacirca, Davide; Dell'Orto, Patrizia; De Marinis, Filippo; Spaggiari, Lorenzo; Viale, Giuseppe; Barberis, Massimo

    2015-10-01

    Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is a minimally invasive procedure that has revolutionized the diagnosis and staging of lung cancer. The goal of the present study was to investigate the yield and applicability of molecular testing in the specimens obtained by EBUS-TBNA from patients with advanced non-small cell lung cancer (NSCLC), comparing the results with a series of patients who underwent diagnostic surgical procedures in the same institution. The study followed 306 consecutive patients with clinically diagnosed primary lung cancer who had the EBUS-TBNA procedure. EGFR and KRAS mutations were evaluated on cytologic specimens by Sanger sequencing and Cobas real-time polymerase chain reaction, whereas ALK rearrangement was tested by fluorescence in situ hybridization. The results were compared with those obtained from a series of 1,000 NSCLC surgical samples routinely analyzed. Molecular testing was possible in 96.9% of the samples obtained by EBUS-TBNA. EGFR (exons 18-21) mutations were found in 16.9%, KRAS mutation (exons 2-3) in 31.6%, and ALK rearrangement in 3.9% of the cases. In the surgical series, the mutations' distribution were 14.8%, 29.0%, and 3.4%, respectively. There were no statistical differences between the two series. Our study demonstrates that EBUS-TBNA can be effectively used not just for diagnosis but also for complete mutational testing. Copyright© by the American Society for Clinical Pathology.

  6. Ocular examination for trauma; clinical ultrasound aboard the International Space Station.

    PubMed

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E; Melton, Shannon; Hamilton, Douglas R; McFarlin, Kellie; Dulchavsky, Scott A

    2005-05-01

    Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using

  7. Ocular examination for trauma; clinical ultrasound aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager

  8. [Ultrasound biomicroscopy of conjunctival lesions].

    PubMed

    Buchwald, Hans-Jürgen; Müller, Andreas; Spraul, Christoph W; Lang, Gerhard K

    2003-01-01

    The value of ultrasound biomicroscopy in the diagnosis of conjunctival lesions is not well established. For the examination of conjunctival lesions, we used an ultrasound biomicroscope (Humphrey, Zeiss, Oberkochen) with a high frequency transducer (30 MHz). Between January 2000 and August 2001, 28 patients (16 female, 12-male) with conjunctival lesions, aged 9 to 81 years, were available for this study. Histological examination of the excised tissue displayed the presence of a compound naevus (8/28), cysts (6/28), inflammatory processes (3/28), granulomatous processes (2/28), lymphomas (2/28), foreign bodies (2/28), a pterygium (2/28), a malignant melanoma (1/28), a primary acquired melanosis (1/28), and a conjunctival amyloidosis (1/28). Using ultrasound biomicroscopy we were able to demonstrate a cystic tumour in the six patients (21 %) with a cyst of the conjunctiva. In patients suffering from solid tumours of the conjunctiva the definite diagnosis could not be made with ultrasound biomicroscopy alone. The eight patients with compound naevus displayed a somewhat heterogeneous sonographic structure within the tumour. In the patient with a foreign body we were able to demonstrate posterior shadowing of the underlying tissue. For evaluation of conjunctival lesions caused by a cyst or a solid tumour, ultrasound biomicroscopy may be an additional diagnostic tool, e. g. for assessing the margins of the tumour. However, up to now it is not possible to differentiate between different lesions solely by means of ultrasonography.

  9. Ultrasound Use in Urinary Stones: Adapting Old Technology for a Modern-Day Disease.

    PubMed

    Tzou, David T; Usawachintachit, Manint; Taguchi, Kazumi; Chi, Thomas

    2017-04-01

    Ultrasound has become a mainstay tool in urologists' armamentarium for the diagnosis and management of nephrolithiasis. From starting as a rudimentary form of imaging, it has come to play a more prominent role over time, paralleling evolution in ultrasound technology. Throughout the medical community there is a growing emphasis on reducing the amount of ionizing radiation delivered to patients during routine imaging. As such there has been a resurgence of interest in ultrasound given its lack of associated radiation exposure and proven effectiveness as a diagnostic and therapeutic imaging modality. Herein, we provide a review of the history of ultrasound, how the use of ultrasound is expanding in both diagnosis and treatment of urinary stone disease, and finally how promising applications of ultrasound are shaping the future of kidney stone management.

  10. Ultrasound Use in Urinary Stones: Adapting Old Technology for a Modern-Day Disease

    PubMed Central

    Tzou, David T.; Usawachintachit, Manint; Taguchi, Kazumi

    2017-01-01

    Abstract Ultrasound has become a mainstay tool in urologists' armamentarium for the diagnosis and management of nephrolithiasis. From starting as a rudimentary form of imaging, it has come to play a more prominent role over time, paralleling evolution in ultrasound technology. Throughout the medical community there is a growing emphasis on reducing the amount of ionizing radiation delivered to patients during routine imaging. As such there has been a resurgence of interest in ultrasound given its lack of associated radiation exposure and proven effectiveness as a diagnostic and therapeutic imaging modality. Herein, we provide a review of the history of ultrasound, how the use of ultrasound is expanding in both diagnosis and treatment of urinary stone disease, and finally how promising applications of ultrasound are shaping the future of kidney stone management. PMID:27733052

  11. Development of ultrasound bioprobe for biological imaging

    PubMed Central

    Shekhawat, Gajendra S.; Dudek, Steven M.; Dravid, Vinayak P.

    2017-01-01

    We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale. PMID:29075667

  12. [Ultrasound diagnosis of aneurysm of the vein of Galen in children].

    PubMed

    Gazikalović, S; Kosutić, J; Komar, P; Vukomanović, V; Mogić, M

    2001-01-01

    Aneurysm of the vein of Galen is rare and complex vascular disorder that develops during embriogenesis and provokes significant haemodynamic changes. Boys are more frequently involved. During the foetal period Ballantyne syndrome may develop, and postnatal clinical presentation vary with ages. Serious haemodynamic changes are followed by congestive heart failure and, if not treated, with lethal exitus. Fast and correct diagnosis is very important. Ultrasound examination of central nervous system supported with Duplex-Doppler and Colour-Doppler examination of the head and heart enables the diagnosis. This text comments ultrasound presentation of the malformation and ultrasound diagnostic possibilities.

  13. Balanced Expertise Distribution in Remote Ultrasound Imaging Aboard The International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Sargsyan, Ashot; Dulchavsky, Scott; Hamilton, Douglas; Melton, Shannon; Martin, David

    2004-01-01

    Astronaut training for ISS operations usually ensures independent performance. With small crew size same crews also conduct all science work onboard. With diverse backgrounds, a good "match" between the existing and required skills can only be anecdotal. Furthermore, full proficiency in most of the complex tasks can be attained only through long training and practice, which may not be justified and may be impossible given the scarcity of training time. To enable a number of operational and science advancements, authors have developed a new approach to expertise distribution in time and among the space and ground personnel. Methods: As part of NASA Operational Ultrasound Project (1998-2003) and the NASA-solicited experiment "Advanced Diagnostic Ultrasound in Microgravity-ADUM" (P.I. -S.D., ongoing), the authors have created a "Balanced Expertise Distribution" approach to perform complex ultrasound imaging tasks on ISS for both operational and science use. The four components of expertise are a) any pre-existing pertinent expertise; b) limited preflight training c) adaptive onboard proficiency enhancement tools; d) real-time ' guidance from the ground. Throughout the pre-flight training and flight time preceding the experiments, the four components are shaped in a dynamic fashion to meet in an optimum combination during the experiment sessions. Results: Procedure validation sessions and feasibility studies have given encouraging results. While several successful real-time remote guidance sessions have been conducted on ISS, Expedition 8 is the first to use an "on-orbit proficiency enhancement" tool. Conclusions: In spite of severely limited training time, daring peer-reviewed research and operational enhancements are feasible through a balanced distribution of expertise in time, as well as among the crewmembers and ground personnel. This approach shows great promise for biomedical research, but may be applicable for other areas of micro gravity-based science

  14. Development of ultrasound focusing discrete array for air-coupled ultrasound generation

    NASA Astrophysics Data System (ADS)

    Korobov, Alexander I.; Izosimova, Maria Y.; Toschov, Sergey A.

    2010-01-01

    The technique and results of synthesis of ultrasound focusing discrete arrays for air-coupled ultrasound generation are presented. One of the arrays is an antenna 22 cm in diameter. It consists of 60 transmitters of Murata Company. The resonant frequency of each transmitter is 40 kHz, diameter is 16 mm. The transmitters were placed in first four Fresnel zones. Each of the zones was emitting with anti-phases. Position data and pressure field in focus were calculated using Rayleigh integral. Parameters of made array were measured using method of air-coupled vibrometry with laser scanning vibrometer. Measured parameters (operating frequency is 40 ± 1 kHz, focal distance is 308 mm, size of focal spot is 16.3 mm, and pressure in focus is about 150 dB) are in good agreement with calculated data. The examples of use of designed arrays for noncontact non-destructive diagnostics of some structural materials are reported. Work supported by RFBR.

  15. Computer-Aided Diagnosis of Different Rotator Cuff Lesions Using Shoulder Musculoskeletal Ultrasound.

    PubMed

    Chang, Ruey-Feng; Lee, Chung-Chien; Lo, Chung-Ming

    2016-09-01

    The lifetime prevalence of shoulder pain approaches 70%, which is mostly attributable to rotator cuff lesions such as inflammation, calcific tendinitis and tears. On clinical examination, shoulder ultrasound is recommended for the detection of lesions. However, there exists inter-operator variability in diagnostic accuracy because of differences in the experience and expertise of operators. In this study, a computer-aided diagnosis (CAD) system was developed to assist ultrasound operators in diagnosing rotator cuff lesions and to improve the practicality of ultrasound examination. The collected cases included 43 cases of inflammation, 30 cases of calcific tendinitis and 26 tears. For each case, the lesion area and texture features were extracted from the entire lesions and combined in a multinomial logistic regression classifier for lesion classification. The proposed CAD achieved an accuracy of 87.9%. The individual accuracy of this CAD system was 88.4% for inflammation, 83.3% for calcific tendinitis and 92.3% for tears. Cohen's k was 0.798. On the basis of its diagnostic performance, clinical use of this CAD technique has promise. Copyright © 2016 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  16. Diagnostic and therapeutic management of hepatocellular carcinoma

    PubMed Central

    Bellissimo, Francesco; Pinzone, Marilia Rita; Cacopardo, Bruno; Nunnari, Giuseppe

    2015-01-01

    Hepatocellular carcinoma (HCC) is an increasing health problem, representing the second cause of cancer-related mortality worldwide. The major risk factor for HCC is cirrhosis. In developing countries, viral hepatitis represent the major risk factor, whereas in developed countries, the epidemic of obesity, diabetes and nonalcoholic steatohepatitis contribute to the observed increase in HCC incidence. Cirrhotic patients are recommended to undergo HCC surveillance by abdominal ultrasounds at 6-mo intervals. The current diagnostic algorithms for HCC rely on typical radiological hallmarks in dynamic contrast-enhanced imaging, while the use of α-fetoprotein as an independent tool for HCC surveillance is not recommended by current guidelines due to its low sensitivity and specificity. Early diagnosis is crucial for curative treatments. Surgical resection, radiofrequency ablation and liver transplantation are considered the cornerstones of curative therapy, while for patients with more advanced HCC recommended options include sorafenib and trans-arterial chemo-embolization. A multidisciplinary team, consisting of hepatologists, surgeons, radiologists, oncologists and pathologists, is fundamental for a correct management. In this paper, we review the diagnostic and therapeutic management of HCC, with a focus on the most recent evidences and recommendations from guidelines. PMID:26576088

  17. Ultrasound imaging beyond the vasculature with new generation contrast agents.

    PubMed

    Perera, Reshani H; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan; Exner, Agata A

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 µm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. © 2015 Wiley Periodicals, Inc.

  18. Ultrasound Imaging Beyond the Vasculature with New Generation Contrast Agents

    PubMed Central

    Perera, Reshani H.; Hernandez, Christopher; Zhou, Haoyan; Kota, Pavan; Burke, Alan

    2015-01-01

    Current commercially available ultrasound contrast agents are gas-filled, lipid- or protein-stabilized microbubbles larger than 1 μm in diameter. Because the signal generated by these agents is highly dependent on their size, small yet highly echogenic particles have been historically difficult to produce. This has limited the molecular imaging applications of ultrasound to the blood pool. In the area of cancer imaging, microbubble applications have been constrained to imaging molecular signatures of tumor vasculature and drug delivery enabled by ultrasound-modulated bubble destruction. Recently, with the rise of sophisticated advancements in nanomedicine, ultrasound contrast agents, which are an order of magnitude smaller (100-500 nm) than their currently utilized counterparts, have been undergoing rapid development. These agents are poised to greatly expand the capabilities of ultrasound in the field of targeted cancer detection and therapy by taking advantage of the enhanced permeability and retention phenomenon of many tumors and can extravasate beyond the leaky tumor vasculature. Agent extravasation facilitates highly sensitive detection of cell surface or microenvironment biomarkers, which could advance early cancer detection. Likewise, when combined with appropriate therapeutic agents and ultrasound-mediated deployment on demand, directly at the tumor site, these nanoparticles have been shown to contribute to improved therapeutic outcomes. Ultrasound's safety profile, broad accessibility and relatively low cost make it an ideal modality for the changing face of healthcare today. Aided by the multifaceted nano-sized contrast agents and targeted theranostic moieties described herein, ultrasound can considerably broaden its reach in future applications focused on the diagnosis and staging of cancer. PMID:25580914

  19. Combined use of late phase dimercapto-succinic acid renal scintigraphy and ultrasound as first line screening after urinary tract infection in children.

    PubMed

    Quirino, Isabel G; Silva, Jose Maria P; Diniz, Jose S; Lima, Eleonora M; Rocha, Ana Cristina S; Simões e Silva, Ana Cristina; Oliveira, Eduardo A

    2011-01-01

    The aim of this study was to evaluate the diagnostic accuracy of dimercapto-succinic acid renal scintigraphy and renal ultrasound in identifying high grade vesicoureteral reflux in children after a first episode of urinary tract infection. A total of 533 children following a first urinary tract infection were included in the analysis. Patients were assessed by 3 diagnostic imaging studies, renal ultrasound, dimercapto-succinic acid scan and voiding cystourethrography. The main event of interest was the presence of high grade (III to V) vesicoureteral reflux. The combined and separate diagnostic accuracy of screening methods was assessed by calculation of diagnostic OR, sensitivity, specificity, positive predictive value, negative predictive value and likelihood ratio. A total of 246 patients had reflux, of whom 144 (27%) had high grade (III to V) disease. Sensitivity, negative predictive value and diagnostic OR of ultrasound for high grade reflux were 83.3%, 90.8% and 7.9, respectively. Dimercapto-succinic acid scan had the same sensitivity as ultrasound but a higher negative predictive value (91.7%) and diagnostic OR (10.9). If both tests were analyzed in parallel by using the OR rule, ie a negative diagnosis was established only when both test results were normal, sensitivity increased to 97%, negative predictive value to 97% and diagnostic OR to 25.3. Only 9 children (6.3%) with dilating reflux had an absence of alterations in both tests. Our findings support the idea that ultrasound and dimercapto-succinic acid scan used in combination are reliable predictors of dilating vesicoureteral reflux. Copyright © 2011 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  20. Misuse of ultrasound for palpable undescended testis by primary care providers: A prospective study

    PubMed Central

    Wong, Nathan C.; Bansal, Rahul K.; Lorenzo, Armando J.; DeMaria, Jorge; Braga, Luis H.

    2015-01-01

    Introduction: Although previous evidence has shown that ultrasound is unreliable to diagnose undescended testis, many primary care providers (PCP) continue to misuse it. We assessed the performance of ultrasound as a diagnostic tool for palpable undescended testis, as well as the diagnostic agreement between PCP and pediatric urologists. Methods: We performed a prospective observational cohort study between 2011 and 2013 for consecutive boys referred with a diagnosis of undescended testis to our tertiary pediatric hospital. Patients referred without an ultrasound and those with non-palpable testes were excluded. Data on referring diagnosis, pediatric urology examination and ultrasound reports were analyzed. Results: Our study consisted of 339 boys. Of these, patients without an ultrasound (n = 132) and those with non-palpable testes (n = 38) were excluded. In the end, there were 169 pateints in this study. Ultrasound was performed in 50% of referred boys showing 256 undescended testis. The mean age at time of referral was 45 months. When ultrasound was compared to physical examination by the pediatric urologist, agreement was only 34%. The performance of ultrasound for palpable undescended testis was: sensitivity = 100%; specificity = 16%; positive predictive value = 34%; negative predictive value = 100%; positive likelihood ratio = 1.2; and negative likelihood ratio = 0. Diagnosis of undescended testis by PCP was confirmed by physical examination in 30% of cases, with 70% re-diagnosed with normal or retractile testes. Conclusion: Ultrasound performed poorly to assess for palpable undescended testis in boys and should not be used. Although the study has important limitations, there is an increasing need for education and evidence-based guidelines for PCP in the management of undescended testis. PMID:26788226

  1. Interactive multimedia for prenatal ultrasound training.

    PubMed

    Lee, W; Ault, H; Kirk, J S; Comstock, C H

    1995-01-01

    This demonstration project examines the utility of interactive multimedia for prenatal ultrasound training. A laser-disc library was linked to a three-dimensional (3-D) heart model and other computer-based training materials through interactive multimedia. A testing module presented ultrasound anomalies and related questions to house-staff physicians through the image library. Users were asked to evaluate these training materials on the basis of perceived instructional value, question content, subjects covered, graphics interface, and ease of use; users were also asked for their comments. House-staff physicians indicated that they consider interactive multimedia to be a helpful adjunct to their core fetal imaging rotation. During a 9-month period, 16 house-staff physicians correctly diagnosed 78 +/- 4% of unknown cases presented through the testing module. The 3-D heart model was also perceived to be a useful teaching aid for spatial orientation skills. Our findings suggest that interactive multimedia and volume visualization models can be used to supplement traditional prenatal ultrasound training. The system provides a broad exposure to ultrasound anomalies, increases opportunities for postnatal correlation, emphasizes motion video for ultrasound training, encourages development of independent diagnostic ability, and helps physicians understand anatomic orientation. We hypothesize that interactive multimedia-based tutorials provide a better overall training experience for house-staff physicians. However, these supplementary methods will require formal evaluation of effectiveness to better understand their potential educational impact.

  2. Ergonomic design and evaluation of a diagnostic ultrasound transducer holder.

    PubMed

    Ghasemi, Mohamad Sadegh; Hosseinzadeh, Payam; Zamani, Farhad; Ahmadpoor, Hossein; Dehghan, Naser

    2017-12-01

    Work-related musculoskeletal disorders (WMSDs) are injuries and disorders that affect the body's movement and musculoskeletal system. Awkward postures represent one of the major ergonomic risk factors that cause WMSDs among sonographers while working with an ultrasound transducer. This study aimed to design and evaluate a new holder for the ultrasound transducer. In the first phase a new holder was designed for the transducer, considering design principles. Evaluation of the new holder was then carried out by electrogoniometry and a locally perceived discomfort (LPD) scale. The application of design principles to the new holder resulted in an improvement of wrist posture and comfort. Wrist angles in extension, flexion, radial deviation and ulnar deviation were lower with utilization of the new holder. The severity of discomfort based on the LPD method in the two modes of work with and without the new holder was reported with values of 1.3 and 1.8, respectively (p < 0.05). Overall, this study indicated that applying ergonomics design principles was effective in minimizing wrist deviation and increasing comfort while working with the new holder.

  3. Point-of-care cardiac ultrasound techniques in the physical examination: better at the bedside.

    PubMed

    Kimura, Bruce J

    2017-07-01

    The development of hand-carried, battery-powered ultrasound devices has created a new practice in ultrasound diagnostic imaging, called 'point-of-care' ultrasound (POCUS). Capitalising on device portability, POCUS is marked by brief and limited ultrasound imaging performed by the physician at the bedside to increase diagnostic accuracy and expediency. The natural evolution of POCUS techniques in general medicine, particularly with pocket-sized devices, may be in the development of a basic ultrasound examination similar to the use of the binaural stethoscope. This paper will specifically review how POCUS improves the limited sensitivity of the current practice of traditional cardiac physical examination by both cardiologists and non-cardiologists. Signs of left ventricular systolic dysfunction, left atrial enlargement, lung congestion and elevated central venous pressures are often missed by physical techniques but can be easily detected by POCUS and have prognostic and treatment implications. Creating a general set of repetitive imaging skills for these entities for application on all patients during routine examination will standardise and reduce heterogeneity in cardiac bedside ultrasound applications, simplify teaching curricula, enhance learning and recollection, and unify competency thresholds and practice. The addition of POCUS to standard physical examination techniques in cardiovascular medicine will result in an ultrasound-augmented cardiac physical examination that reaffirms the value of bedside diagnosis. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic.

    PubMed

    Zang, Qing; Hsieh, C L; Zhao, Junyu; Chen, Hui; Li, Fengjuan

    2013-09-01

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T(e)) gradient and low electron density (n(e)). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasing stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.

  5. High-Intensity Focused Ultrasound for the Treatment of Localized and Locally Advanced Hormone-Resistant Prostate Cancer: 2,5 Year Outcome

    NASA Astrophysics Data System (ADS)

    Solovov, V. A.; Dvoynikov, S. Y.; Vozdvizhenskiy, M. O.

    2011-09-01

    Introduction & Objectives: High-Intensity Focused Ultrasound (HIFU) has been shown to be a successful treatment for localised prostate cancer (PC). Here we have explored the effectiveness of the HIFU treatment for hormone-resistant prostate cancer (HRPC). Materials & Methods: 341 patients were treated in our center between September 2007 and December 2009; all of them showed treatment failure following hormone ablation. The median time before hormone-resistance was 20 (3-48) months. In the group with localised PC: number of patients 237, Gleason score ≤7, stage T1-2N0M0, age 69 (60-89) years, mean PSA before treatment 40,0 (5,8-92,9) ng/ml, mean prostate volume—39,3 (28-92) cc; in the group with locally advanced PC: number of patients 104, Gleason score ≤9, stage T2-3N0M0, age 72 (52-83) years, PSA before treatment 30,3 (20,1-60) ng/ml, mean prostate volume—41,2 (25-198) cc. HIFU was delivered under spinal anesthesia using the Ablatherm HIFU device (EDAP, France). Pre HIFU transurethral resection of the prostate (TURP) was performed for all patients. Mean follow-up time 18 months (3-30). Results: The median PSA level 12 months after HIFU treatment was 0,04 (0-2,24) ng/ml—localised PC, and for locally advanced disease—0,05 (0-48,4) ng/ml, at 18 months after HIFU treatment this was 0,2 (0,02-2,0) ng/ml for localised PC, and for locally advanced disease 0,18 (0,04-7,45) ng/ml. Patients with localised PC has 4,5% recurrence, those with locally advanced PC 20%. Kaplan-Meir analyses of the total group indicated that the risk of recurrence after 1 year follow-up was 10%, the risk of recurrence was 19% after 2 years of follow-up. Conclusions: Our initial experience shows that ultrasound ablation is safe, minimally invasive and effective as a treatment for localised and locally advanced hormone-resistant prostate cancer.

  6. Does the Use of Diagnostic Technology Reduce Fetal Mortality?

    PubMed

    Grytten, Jostein; Skau, Irene; Sørensen, Rune; Eskild, Anne

    2018-01-19

    To examine the effect that the introduction of new diagnostic technology in obstetric care has had on fetal death. The Medical Birth Registry of Norway provided detailed medical information for approximately 1.2 million deliveries from 1967 to 1995. Information about diagnostic technology was collected directly from the maternity units, using a questionnaire. The data were analyzed using a hospital fixed-effects regression with fetal mortality as the outcome measure. The key independent variables were the introduction of ultrasound and electronic fetal monitoring at each maternity ward. Hospital-specific trends and risk factors of the mother were included as control variables. The richness of the data allowed us to perform several robustness tests. The introduction of ultrasound caused a significant drop in fetal mortality rate, while the introduction of electronic fetal monitoring had no effect on the rate. In the population as a whole, ultrasound contributed to a reduction in fetal deaths of nearly 20 percent. For post-term deliveries, the reduction was well over 50 percent. The introduction of ultrasound made a major contribution to the decline in fetal mortality at the end of the last century. © Health Research and Educational Trust.

  7. Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy.

    PubMed

    Stride, E P; Coussios, C C

    2010-01-01

    Microbubbles and cavitation are playing an increasingly significant role in both diagnostic and therapeutic applications of ultrasound. Microbubble ultrasound contrast agents have been in clinical use now for more than two decades, stimulating the development of a range of new contrast-specific imaging techniques which offer substantial benefits in echocardiography, microcirculatory imaging, and more recently, quantitative and molecular imaging. In drug delivery and gene therapy, microbubbles are being investigated/developed as vehicles which can be loaded with the required therapeutic agent, traced to the target site using diagnostic ultrasound, and then destroyed with ultrasound of higher intensity energy burst to release the material locally, thus avoiding side effects associated with systemic administration, e.g. of toxic chemotherapy. It has moreover been shown that the motion of the microbubbles increases the permeability of both individual cell membranes and the endothelium, thus enhancing therapeutic uptake, and can locally increase the activity of drugs by enhancing their transport across biologically inaccessible interfaces such as blood clots or solid tumours. In high-intensity focused ultrasound (HIFU) surgery and lithotripsy, controlled cavitation is being investigated as a means of increasing the speed and efficacy of the treatment. The aim of this paper is both to describe the key features of the physical behaviour of acoustically driven bubbles which underlie their effectiveness in biomedical applications and to review the current state of the art.

  8. Combination of two-dimensional shear wave elastography with ultrasound breast imaging reporting and data system in the diagnosis of breast lesions: a new method to increase the diagnostic performance.

    PubMed

    Li, Dan-Dan; Xu, Hui-Xiong; Guo, Le-Hang; Bo, Xiao-Wan; Li, Xiao-Long; Wu, Rong; Xu, Jun-Mei; Zhang, Yi-Feng; Zhang, Kun

    2016-09-01

    To evaluate the diagnostic performance of a new method of combined two-dimensional shear wave elastography (i.e. virtual touch imaging quantification, VTIQ) and ultrasound (US) Breast Imaging Reporting and Data System (BI-RADS) in the differential diagnosis of breast lesions. From September 2014 to December 2014, 276 patients with 296 pathologically proven breast lesions were enrolled in this study. The conventional US images were interpreted by two independent readers. The diagnosis performances of BI-RADS and combined BI-RADS and VTIQ were evaluated, including the area under the receiver operating characteristic curve (AUROC), sensitivity and specificity. Observer consistency was also evaluated. Pathologically, 212 breast lesions were benign and 84 were malignant. Compared with BI-RADS alone, the AUROCs and specificities of the combined method for both readers increased significantly (AUROC: 0.862 vs. 0.693 in reader 1, 0.861 vs. 0.730 in reader 2; specificity: 91.5 % vs. 38.7 % in reader 1, 94.8 % vs. 47.2 % in reader 2; all P < .05). The Kappa value between the two readers for BI-RADS assessment was 0.614, and 0.796 for the combined method. The combined VTIQ and BI-RADS had a better diagnostic performance in the diagnosis of breast lesions in comparison with BI-RADS alone. • Combination of conventional ultrasound and elastography distinguishes breast cancers more effectively. • Combination of conventional ultrasound and elastography increases observer consistency. • BI-RADS weights more than the 2D-SWE with an increase in malignancy probability.

  9. Non-invasive vascular radial/circumferential strain imaging and wall shear rate estimation using video images of diagnostic ultrasound.

    PubMed

    Wan, Jinjin; He, Fangli; Zhao, Yongfeng; Zhang, Hongmei; Zhou, Xiaodong; Wan, Mingxi

    2014-03-01

    The aim of this work was to develop a convenient method for radial/circumferential strain imaging and shear rate estimation that could be used as a supplement to the current routine screening for carotid atherosclerosis using video images of diagnostic ultrasound. A reflection model-based correction for gray-scale non-uniform distribution was applied to B-mode video images before strain estimation to improve the accuracy of radial/circumferential strain imaging when applied to vessel transverse cross sections. The incremental and cumulative radial/circumferential strain images can then be calculated based on the displacement field between consecutive B-mode images. Finally, the transverse Doppler spectra acquired at different depths along the vessel diameter were used to construct the spatially matched instantaneous wall shear values in a cardiac cycle. Vessel phantom simulation results revealed that the signal-to-noise ratio and contrast-to-noise ratio of the radial and circumferential strain images were increased by 2.8 and 5.9 dB and by 2.3 and 4.4 dB, respectively, after non-uniform correction. Preliminary results for 17 patients indicated that the accuracy of radial/circumferential strain images was improved in the lateral direction after non-uniform correction. The peak-to-peak value of incremental strain and the maximum cumulative strain for calcified plaques are evidently lower than those for other plaque types, and the echolucent plaques had higher values, on average, than the mixed plaques. Moreover, low oscillating wall shear rate values, found near the plaque and stenosis regions, are closely related to plaque formation. In conclusion, the method described can provide additional valuable results as a supplement to the current routine ultrasound examination for carotid atherosclerosis and, therefore, has significant potential as a feasible screening method for atherosclerosis diagnosis in the future. Copyright © 2014 World Federation for Ultrasound in

  10. Integrated photoacoustic, ultrasound and fluorescence platform for diagnostic medical imaging-proof of concept study with a tissue mimicking phantom.

    PubMed

    James, Joseph; Murukeshan, Vadakke Matham; Woh, Lye Sun

    2014-07-01

    The structural and molecular heterogeneities of biological tissues demand the interrogation of the samples with multiple energy sources and provide visualization capabilities at varying spatial resolution and depth scales for obtaining complementary diagnostic information. A novel multi-modal imaging approach that uses optical and acoustic energies to perform photoacoustic, ultrasound and fluorescence imaging at multiple resolution scales from the tissue surface and depth is proposed in this paper. The system comprises of two distinct forms of hardware level integration so as to have an integrated imaging system under a single instrumentation set-up. The experimental studies show that the system is capable of mapping high resolution fluorescence signatures from the surface, optical absorption and acoustic heterogeneities along the depth (>2cm) of the tissue at multi-scale resolution (<1µm to <0.5mm).

  11. Electromagnetic-Tracked Biopsy under Ultrasound Guidance: Preliminary Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakime, Antoine, E-mail: thakime@yahoo.com; Deschamps, Frederic; Marques De Carvalho, Enio Garcia

    2012-08-15

    Purpose: This study was designed to evaluate the accuracy and safety of electromagnetic needle tracking for sonographically guided percutaneous liver biopsies. Methods: We performed 23 consecutive ultrasound-guided liver biopsies for liver nodules with an electromagnetic tracking of the needle. A sensor placed at the tip of a sterile stylet (18G) inserted in a coaxial guiding trocar (16G) used for biopsy was localized in real time relative to the ultrasound imaging plane, thanks to an electromagnetic transmitter and two sensors on the ultrasound probe. This allows for electronic display of the needle tip location and the future needle path overlaid onmore » the real-time ultrasound image. Distance between needle tip position and its electronic display, number of needle punctures, number of needle pull backs for redirection, technical success (needle positioned in the target), diagnostic success (correct histopathology result), procedure time, and complication were evaluated according to lesion sizes, depth and location, operator experience, and 'in-plane' or 'out-of-plane' needle approach. Results: Electronic display was always within 2 mm from the real position of the needle tip. The technical success rate was 100%. A single needle puncture without repuncture was used in all patients. Pull backs were necessary in six patients (26%) to obtain correct needle placement. The overall diagnostic success rate was 91%. The overall true-positive, true-negative, false-negative, and failure rates of the biopsy were 100% (19/19) 100% (2/2), 0% (0/23), and 9% (2/23). The median total procedure time from the skin puncture to the needle in the target was 30 sec (from 5-60 s). Lesion depth and localizations, operator experience, in-plane or out-of-plane approach did not affect significantly the technical, diagnostic success, or procedure time. Even when the tumor size decreased, the procedure time did not increase. Conclusions: Electromagnetic-tracked biopsy is accurate to

  12. Neonatal respiratory distress syndrome: Chest X-ray or lung ultrasound? A systematic review

    PubMed Central

    Culpan, Anne-Marie; Watts, Catriona; Munyombwe, Theresa; Wolstenhulme, Stephen

    2017-01-01

    Background and aim Neonatal respiratory distress syndrome is a leading cause of morbidity in preterm new-born babies (<37 weeks gestation age). The current diagnostic reference standard includes clinical testing and chest radiography with associated exposure to ionising radiation. The aim of this review was to compare the diagnostic accuracy of lung ultrasound against the reference standard in symptomatic neonates of ≤42 weeks gestation age. Methods A systematic search of literature published between 1990 and 2016 identified 803 potentially relevant studies. Six studies met the review inclusion criteria and were retrieved for analysis. Quality assessment was performed before data extraction and meta-analysis. Results Four prospective cohort studies and two case control studies included 480 neonates. All studies were of moderate methodological quality although heterogeneity was evident across the studies. The pooled sensitivity and specificity of lung ultrasound were 97% (95% confidence interval [CI] 94–99%) and 91% (CI: 86–95%) respectively. False positive diagnoses were made in 16 cases due to pneumonia (n = 8), transient tachypnoea (n = 3), pneumothorax (n = 1) and meconium aspiration syndrome (n = 1); the diagnoses of the remaining three false positive results were not specified. False negatives diagnoses occurred in nine cases, only two were specified as air-leak syndromes. Conclusions Lung ultrasound was highly sensitive for the detection of neonatal respiratory distress syndrome although there is potential to miss co-morbid air-leak syndromes. Further research into lung ultrasound diagnostic accuracy for neonatal air-leak syndrome and economic modelling for service integration is required before lung ultrasound can replace chest radiography as the imaging component of the reference standard. PMID:28567102

  13. Recent advances in diagnostic testing for gastroesophageal reflux disease.

    PubMed

    Naik, Rishi D; Vaezi, Michael F

    2017-06-01

    Gastroesophageal reflux disease (GERD) has a large economic burden with important complications that include esophagitis, Barrett's esophagus, and adenocarcinoma. Despite endoscopy, validated patient questionnaires, and traditional ambulatory pH monitoring, the diagnosis of GERD continues to be challenging. Areas covered: This review will explore the difficulties in diagnosing GERD with a focus on new developments, ranging from basic fundamental changes (histology and immunohistochemistry) to direct patient care (narrow-band imaging, impedance, and response to anti-reflux surgery). We searched PubMed using the noted keywords. We included data from full-text articles published in English. Further relevant articles were identified from the reference lists of review articles. Expert commentary: Important advances in novel parameters in intraluminal impedance monitoring such as baseline impedance monitoring has created some insight into alternative diagnostic strategies in GERD. Recent advances in endoscopic assessment of esophageal epithelial integrity via mucosal impedance measurement is questioning the paradigm of prolonged ambulatory testing for GERD. The future of reflux diagnosis may very well be without the need for currently employed technologies and could be as simple as assessing changes in epithelia integrity as a surrogate marker for GERD. However, future studies must validate such an approach.

  14. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines.

    PubMed

    Schito, Marco; Migliori, Giovanni Battista; Fletcher, Helen A; McNerney, Ruth; Centis, Rosella; D'Ambrosio, Lia; Bates, Matthew; Kibiki, Gibson; Kapata, Nathan; Corrah, Tumena; Bomanji, Jamshed; Vilaplana, Cris; Johnson, Daniel; Mwaba, Peter; Maeurer, Markus; Zumla, Alimuddin

    2015-10-15

    Despite concerted efforts over the past 2 decades at developing new diagnostics, drugs, and vaccines with expanding pipelines, tuberculosis remains a global emergency. Several novel diagnostic technologies show promise of better point-of-care rapid tests for tuberculosis including nucleic acid-based amplification tests, imaging, and breath analysis of volatile organic compounds. Advances in new and repurposed drugs for use in multidrug-resistant (MDR) or extensively drug-resistant (XDR) tuberculosis have focused on development of several new drug regimens and their evaluation in clinical trials and now influence World Health Organization guidelines. Since the failure of the MVA85A vaccine 2 years ago, there have been no new tuberculosis vaccine candidates entering clinical testing. The current status quo of the lengthy treatment duration and poor treatment outcomes associated with MDR/XDR tuberculosis and with comorbidity of tuberculosis with human immunodeficiency virus and noncommunicable diseases is unacceptable. New innovations and political and funder commitment for early rapid diagnosis, shortening duration of therapy, improving treatment outcomes, and prevention are urgently required. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. A Single Center Evaluation of the Diagnostic Accuracy of Multiparametric Magnetic Resonance Imaging against Transperineal Prostate Mapping Biopsy: An Analysis of Men with Benign Histology and Insignificant Cancer following Transrectal Ultrasound Biopsy.

    PubMed

    Pal, Raj P; Ahmad, Ros; Trecartan, Shaun; Voss, James; Ahmed, Shaista; Bazo, Alvaro; Lloyd, Jon; Walton, Thomas J

    2018-03-01

    In this study we evaluated the diagnostic performance of transrectal ultrasound guided biopsy and multiparametric magnetic resonance imaging to detect prostate cancer against transperineal prostate mapping biopsy as the reference test. Transrectal ultrasound guided biopsy, multiparametric magnetic resonance imaging and transperineal prostate mapping biopsy were performed in 426 patients between April 2012 and January 2016. Patients initially underwent systematic 12 core transrectal ultrasound guided biopsy followed 3 months later by 1.5 Tesla, high resolution T2, diffusion-weighted, dynamic contrast enhanced multiparametric magnetic resonance imaging. Two specialist uroradiologists blinded to the results of transperineal prostate mapping biopsy allocated a PI-RADS™ (Prostate Imaging-Reporting and Data System) score to each multiparametric magnetic resonance imaging study. Transperineal prostate mapping biopsy with 5 mm interval sampling, which was performed within 6 months of multiparametric magnetic resonance imaging, served as the reference test. Transrectal ultrasound guided biopsy identified 247 of 426 patients with prostate cancer and 179 of 426 with benign histology. Transperineal prostate mapping biopsy detected prostate cancer in 321 of 426 patients. On transperineal prostate mapping biopsy 94 of 179 patients with benign transrectal ultrasound guided biopsy had prostate cancer and 95 of 247 with prostate cancer on transrectal ultrasound guided biopsy were identified with cancer of higher grade. Using a multiparametric magnetic resonance imaging PI-RADS score of 3 or greater to detect significant prostate cancer, defined as any core containing Gleason 4 + 3 or greater prostate cancer on transperineal prostate mapping biopsy, the ROC AUC was 0.754 (95% CI 0.677-0.819) with 87.0% sensitivity (95% CI 77.3-97.0), 55.3% specificity (95% CI 50.2-60.4) and 97.1% negative predictive value (95% CI 94.8-99.4). Multiparametric magnetic resonance imaging is a more

  16. Ultrasound Elastography: Review of Techniques and Clinical Applications

    PubMed Central

    Sigrist, Rosa M.S.; Liau, Joy; Kaffas, Ahmed El; Chammas, Maria Cristina; Willmann, Juergen K.

    2017-01-01

    Elastography-based imaging techniques have received substantial attention in recent years for non-invasive assessment of tissue mechanical properties. These techniques take advantage of changed soft tissue elasticity in various pathologies to yield qualitative and quantitative information that can be used for diagnostic purposes. Measurements are acquired in specialized imaging modes that can detect tissue stiffness in response to an applied mechanical force (compression or shear wave). Ultrasound-based methods are of particular interest due to its many inherent advantages, such as wide availability including at the bedside and relatively low cost. Several ultrasound elastography techniques using different excitation methods have been developed. In general, these can be classified into strain imaging methods that use internal or external compression stimuli, and shear wave imaging that use ultrasound-generated traveling shear wave stimuli. While ultrasound elastography has shown promising results for non-invasive assessment of liver fibrosis, new applications in breast, thyroid, prostate, kidney and lymph node imaging are emerging. Here, we review the basic principles, foundation physics, and limitations of ultrasound elastography and summarize its current clinical use and ongoing developments in various clinical applications. PMID:28435467

  17. Ultrasensitive plano-concave optical microresonators for ultrasound sensing

    NASA Astrophysics Data System (ADS)

    Guggenheim, James A.; Li, Jing; Allen, Thomas J.; Colchester, Richard J.; Noimark, Sacha; Ogunlade, Olumide; Parkin, Ivan P.; Papakonstantinou, Ioannis; Desjardins, Adrien E.; Zhang, Edward Z.; Beard, Paul C.

    2017-11-01

    Highly sensitive broadband ultrasound detectors are needed to expand the capabilities of biomedical ultrasound, photoacoustic imaging and industrial ultrasonic non-destructive testing techniques. Here, a generic optical ultrasound sensing concept based on a novel plano-concave polymer microresonator is described. This achieves strong optical confinement (Q-factors > 105) resulting in very high sensitivity with excellent broadband acoustic frequency response and wide directivity. The concept is highly scalable in terms of bandwidth and sensitivity. To illustrate this, a family of microresonator sensors with broadband acoustic responses up to 40 MHz and noise-equivalent pressures as low as 1.6 mPa per √Hz have been fabricated and comprehensively characterized in terms of their acoustic performance. In addition, their practical application to high-resolution photoacoustic and ultrasound imaging is demonstrated. The favourable acoustic performance and design flexibility of the technology offers new opportunities to advance biomedical and industrial ultrasound-based techniques.

  18. Development of advanced diagnostics for characterization of burning droplets in microgravity

    NASA Technical Reports Server (NTRS)

    Sankar, Subramanian; Buermann, Dale H.; Bachalo, William D.

    1995-01-01

    Diagnostic techniques currently used for microgravity research are generally not as advanced as those used in earth based gravity experiments. Diagnostic techniques for measuring the instantaneous radial temperature profile (or temperature gradients) within the burning droplet do not exist. Over the past few years, Aerometrics has been researching and developing a rainbow thermometric technique for measuring the droplet temperatures of burning droplets. This technique has recently been integrated with the phase Doppler interferometric technique to yield a diagnostic instrument that can be used to simultaneously measure the size, velocity, and temperature of burning droplets in complex spray flames. Also, the rainbow thermometric technique has been recently integrated with a point-diffraction interferometric technique for measuring the instantaneous gas phase temperature field surrounding a burning droplet. These research programs, apart from being very successful, have also helped us identify other innovative techniques for the characterization of burning droplets. For example, new techniques have been identified for measuring the instantaneous regression rate of burning droplets. Also, there is the possibility of extracting the instantaneous radial temperature distribution or the temperature gradients within a droplet during transient heating. What is important is that these diagnostic techniques have the potential for making use of inexpensive, light-weight, and rugged devices such as diode lasers and linear CCD arrays. As a result, they can be easily packaged for incorporation into microgravity drop-test and flight-test facilities. Furthermore, with the use of linear CCD arrays, data rates as high as 10-100 kHz can be easily achieved. This data rate is orders of magnitude higher than what is currently achievable. In this research and development program, a compact and rugged diagnostic system will be developed that can be used to measure instantaneous fuel

  19. Smart Ultrasound Remote Guidance Experiment (SURGE)- Concept of Operations Evaluation for Using Remote Guidance Ultrasound for Planetary Space Flight

    NASA Technical Reports Server (NTRS)

    Hurst, Victor, IV; Peterson, Sean; Garcia, Kathleen; Sargsyan, Ashot; Ebert, Douglas; Ham, David; Amponsah, David; Dulchavsky, Scott

    2010-01-01

    Introduction Use of remote guidance (RG) techniques aboard the International Space Station (ISS) has enabled astronauts to collect diagnostic-level ultrasound images. Exploration class missions will require this cohort of (typically) non-formally trained sonographers to operate with greater autonomy given the longer communication delays (2 seconds for ISS vs. >6 seconds for missions beyond the Moon) and communication blackouts. To determine the feasibility and training requirements for autonomous ultrasound image collection by non-expert ultrasound operators, ultrasound images were collected from a similar cohort using three different image collection protocols: RG only, RG with a computer-based learning tool (LT), and autonomous image collection with LT. The groups were assessed for both image quality and time to collect the images. Methods Subjects were randomized into three groups: RG only, RG with LT, and autonomous with LT. Each subject received 10 minutes of standardized training before the experiment. The subjects were tasked with making the following ultrasound assessments: 1) bone fracture and 2) focused assessment with sonography in trauma (FAST) to assess a patient s abdomen. Human factors-related questionnaire data were collected immediately after the assessments. Results The autonomous group did not out-perform the two groups that received RG. The mean time for the autonomous group to collect images was less than the RG groups, however the mean image quality for the autonomous group was less compared to both RG groups. Discussion Remote guidance continues to produce higher quality ultrasound images than autonomous ultrasound operation. This is likely due to near-instant feedback on image quality from the remote guider. Expansion in communication time delays, however, diminishes the capability to provide this feedback, thus requiring more autonomous ultrasound operation. The LT has the potential to be an excellent training and coaching component for

  20. [Contemporary methods for preterm labor diagnostics].

    PubMed

    Kolev, N; Kovachev, E; Ivanov, S; Kornovski, Y; Tsvetkov, K; Angelova, M; Tsonev, A; Ismail, E

    2013-01-01

    Authors track current trends in preterm labor diagnostics. The emphasis is laid on biochemical tests for examination of fibronectin (fFN) and insulin-like growth factor-binding protein (IGFBP-1) in cervical and vaginal secretions, as well as ultrasound assessment of cervical length.

  1. Endoscopic ultrasound: state-of-the-art GI tumor staging

    NASA Astrophysics Data System (ADS)

    Trowers, Eugene A.

    1999-06-01

    Videoendoscopy has truly enlarged the scope of diagnostic and therapeutic gastroenterology. However, videoendoscopic examinations are limited to the mucosal surface. Endoscopic ultrasound allows the endoscopist a view beyond the intestinal wall which opens the door to a variety of new gastroenterologic techniques. The evaluation of plain images in combination with contrast-enhanced imags has been found to be helpful when applied to CT and MRI. A similar advantage may be found for endoscopic ultrasound (EUS) studies. The efficacy of EUS with and without contrast enhancement is critically reviewed.

  2. Advanced devices for photoacoustic imaging to improve cancer and cerebrovascular medicine

    NASA Astrophysics Data System (ADS)

    Montilla Marien, Leonardo Gabriel

    Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information for breast cancer staging. Despite these promising studies, PAI remains an unfeasible option for clinics due to the cost to implement, the required large modification in user conduct and the inflexibility of the hardware to accommodate other applications for the incremental enhancement in diagnostic information. The research described in this dissertation addresses these issues by designing attachments to clinical ultrasound probes and incorporating custom detectors into commercial ultrasound scanners. The ultimate benefit of these handheld devices is to expand the capability of current ultrasound systems and facilitate the translation of PAI to enhance cancer diagnostics and neurosurgical outcomes. Photoacoustic enabling devices (PEDs) were designed as attachments to two clinical ultrasound probes optimized for breast cancer diagnostics. PAI uses pulsed laser excitation to create transient heating (<1°C) and thermoelastic expansion that is detected as an ultrasonic emission. These ultrasonic emissions are remotely sensed to construct noninvasive images with optical contrast at depths much greater than other optical modalities. The PEDs are feasible in terms of cost, user familiarity and flexibility for various applications. Another possible application for PAI is in assisting neurosurgeons treating aneurysms. Aneurysms are often treated by placing a clip to prevent blood flow into the aneurysm. However, this procedure has risks associated with damaging nearby vessels. One of the developed PEDs demonstrated the feasibility to three-dimensionally image tiny microvasculature (<0.3mm) beyond large blood occlusions (>2.4mm) in a phantom model. The capability to use this during surgery would suggest decreasing the risks associated with these treatments. However, clinical ultrasound arrays are not clinically feasible for microsurgical applications due to

  3. Predicting need for additional CT scan in children with a non-diagnostic ultrasound for appendicitis in the emergency department.

    PubMed

    Nishizawa, Takuya; Maeda, Shigenobu; Goldman, Ran D; Hayashi, Hiroyuki

    2018-01-01

    This study aimed to determine which children with suspected appendicitis should be considered for a computerized tomography (CT) scan after a non-diagnostic ultrasound (US) in the Emergency Department (ED). We retrospectively reviewed patients 0-18year old, who presented to the ED with complaints of abdominal pain, during 2011-2015 and while in the hospital had both US and CT. We recorded demographic and clinical data and outcomes, and used univariate and multivariate methods for comparing patients who did and didn't have appendicitis on CT after non-diagnostic US. Multivariate analysis was performed using logistic regression to determine what variables were independently associated with appendicitis. A total of 328 patients were enrolled, 257 with non-diagnostic US (CT: 82 had appendicitis, 175 no-appendicitis). Younger children and those who reported vomiting or had right lower abdominal quadrant (RLQ) tenderness, peritoneal signs or White Blood Cell (WBC) count >10,000 in mm 3 were more likely to have appendicitis on CT. RLQ tenderness (Odds Ratio: 2.84, 95%CI: 1.07-7.53), peritoneal signs (Odds Ratio: 11.37, 95%CI: 5.08-25.47) and WBC count >10,000 in mm 3 (Odds Ratio: 21.88, 95%CI: 7.95-60.21) remained significant after multivariate analysis. Considering CT with 2 or 3 of these predictors would have resulted in sensitivity of 94%, specificity of 67%, positive predictive value of 57% and negative predictive value of 96% for appendicitis. Ordering CT should be considered after non-diagnostic US for appendicitis only when children meet at least 2 predictors of RLQ tenderness, peritoneal signs and WBC>10,000 in mm 3 . Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Ultrasound capsule endoscopy: sounding out the future

    PubMed Central

    Stewart, Fraser; Lay, Holly; Cummins, Gerard; Newton, Ian P.; Desmulliez, Marc P. Y.; Steele, Robert J. C.; Näthke, Inke; Cochran, Sandy

    2017-01-01

    Video capsule endoscopy (VCE) has been of immense benefit in the diagnosis and management of gastrointestinal (GI) disorders since its introduction in 2001. However, it suffers from a number of well recognized deficiencies. Amongst these is the limited capability of white light imaging, which is restricted to analysis of the mucosal surface. Current capsule endoscopes are dependent on visual manifestation of disease and limited in regards to transmural imaging and detection of deeper pathology. Ultrasound capsule endoscopy (USCE) has the potential to overcome surface only imaging and provide transmural scans of the GI tract. The integration of high frequency microultrasound (µUS) into capsule endoscopy would allow high resolution transmural images and provide a means of both qualitative and quantitative assessment of the bowel wall. Quantitative ultrasound (QUS) can provide data in an objective and measurable manner, potentially reducing lengthy interpretation times by incorporation into an automated diagnostic process. The research described here is focused on the development of USCE and other complementary diagnostic and therapeutic modalities. Presently investigations have entered a preclinical phase with laboratory investigations running concurrently. PMID:28567381

  5. PVT Degradation Studies: Acoustic Diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Tucker, Brian J.; Kouzes, Richard T.

    Under certain environmental conditions, polyvinyl toluene (PVT) plastic scintillator has been observed to undergo internal fogging. This document reports on a study of acoustic techniques to determine whether they can provide a diagnostic for the fogging of PVT. Different ultrasound techniques were employed for detecting the level of internal fogging in PVT, including wave velocity measurements, attenuation, nonlinear acoustics, and acoustic microscopy. The results indicate that there are linear relations between the wave velocity and wave attenuation with the level of internal fogging. The effects of fogging on ultrasound wave attenuation is further verified by acoustic microscopy imaging, where regionsmore » with fog in the specimen demonstration higher levels of attenuation compared to clear regions. Results from the nonlinear ultrasound measurements were inconclusive due to high sensitivities to transducer coupling and fixture variabilities.« less

  6. Portable Bladder Ultrasound

    PubMed Central

    2006-01-01

    Executive Summary Objective The aim of this review was to assess the clinical utility of portable bladder ultrasound. Clinical Need: Target Population and Condition Data from the National Population Health Survey indicate prevalence rates of urinary incontinence are 2.5% in women and 1.4 % in men in the general population. Prevalence of urinary incontinence is higher in women than men and prevalence increases with age. Identified risk factors for urinary incontinence include female gender, increasing age, urinary tract infections (UTI), poor mobility, dementia, smoking, obesity, consuming alcohol and caffeine beverages, physical activity, pregnancy, childbirth, forceps and vacuum-assisted births, episiotomy, abdominal resection for colorectal cancer, and hormone replacement therapy. For the purposes of this review, incontinence populations will be stratified into the following; the elderly, urology patients, postoperative patients, rehabilitation settings, and neurogenic bladder populations. Urinary incontinence is defined as any involuntary leakage of urine. Incontinence can be classified into diagnostic clinical types that are useful in planning evaluation and treatment. The major types of incontinence are stress (physical exertion), urge (overactive bladder), mixed (combined urge and stress urinary incontinence), reflex (neurological impairment of the central nervous system), overflow (leakage due to full bladder), continuous (urinary tract abnormalities), congenital incontinence, and transient incontinence (temporary incontinence). Postvoid residual (PVR) urine volume, which is the amount of urine in the bladder immediately after urination, represents an important component in continence assessment and bladder management to provide quantitative feedback to the patient and continence care team regarding the effectiveness of the voiding technique. Although there is no standardized definition of normal PVR urine volume, measurements greater than 100 mL to 150 m

  7. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  8. Diagnostic Efficacy of Cell Block Immunohistochemistry, Smear Cytology, and Liquid-Based Cytology in Endoscopic Ultrasound-Guided Fine-Needle Aspiration of Pancreatic Lesions: A Single-Institution Experience

    PubMed Central

    Qin, Shan-yu; Zhou, You; Li, Ping; Jiang, Hai-xing

    2014-01-01

    Background The diagnostic efficiency of endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) cytology varies widely depending on the treatment method of the specimens. The present study aimed to evaluate the diagnostic efficacy of cell block (CB) immunohistochemistry, smear cytology (SC), and liquid-based cytology (LBC) in patients with pancreatic lesions without consulting an on-site cytopathologist. Methods This study prospectively enrolled 72 patients with pancreatic lesions. The EUS-FNA specimens were examined by SC, LBC, and CB immunohistochemistry. The diagnostic efficacy of the 3 methods was then compared. Patients’ final diagnosis was confirmed by surgical resection specimens, diagnostic imaging, and clinical follow-up. Results Our results included 60 malignant and 12 benign pancreatic lesions. The diagnostic sensitivity (90%), negative predictive value (66.7%), and accuracy (91.7%) of CB immunohistochemistry were significantly higher than those of SC (70.0%, 30.0%, and 75.0%, respectively) and LBC (73.3%, 31.6%, and 77.8%, respectively) (all P<0.05). The combination of CB and SC, or CB and LBC, did not significantly increase the efficacy compared to CB immunohistochemistry alone. Conclusion Our findings suggest that in the absence of an on-site cytopathologist, CB immunohistochemistry on EUS-FNA specimens offers a higher diagnostic efficacy in patients with pancreatic lesions than does SC and LBC. PMID:25259861

  9. Bone Composition Diagnostics: Photoacoustics Versus Ultrasound

    NASA Astrophysics Data System (ADS)

    Yang, Lifeng; Lashkari, Bahman; Mandelis, Andreas; Tan, Joel W. Y.

    2015-06-01

    Ultrasound (US) backscatter from bones depends on the mechanical properties and the microstructure of the interrogated bone. On the other hand, photoacoustics (PA) is sensitive to optical properties of tissue and can detect composition variation. Therefore, PA can provide complementary information about bone health and integrity. In this work, a comparative study of US backscattering and PA back-propagating signals from animal trabecular bones was performed. Both methods were applied using a linear frequency modulation chirp and matched filtering. A 2.2 MHz ultrasonic transducer was employed to detect both signals. The use of the frequency domain facilitates spectral analysis. The variation of signals shows that in addition to sensitivity to mineral changes, PA exhibits sensitivity to changes in the organic part of the bone. It is, therefore, concluded that the combination of both modalities can provide complementary detailed information on bone health than either method separately. In addition, comparison of PA and US depthwise images shows the higher penetration of US. Surface scan images exhibit very weak correlation between US and PA which could be caused by the different signal generation origins in mechanical versus optical properties, respectively.

  10. Contrast-enhanced and targeted ultrasound.

    PubMed

    Postema, Michiel; Gilja, Odd Helge

    2011-01-07

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested.

  11. Contrast-enhanced and targeted ultrasound

    PubMed Central

    Postema, Michiel; Gilja, Odd Helge

    2011-01-01

    Ultrasonic imaging is becoming the most popular medical imaging modality, owing to the low price per examination and its safety. However, blood is a poor scatterer of ultrasound waves at clinical diagnostic transmit frequencies. For perfusion imaging, markers have been designed to enhance the contrast in B-mode imaging. These so-called ultrasound contrast agents consist of microscopically small gas bubbles encapsulated in biodegradable shells. In this review, the physical principles of ultrasound contrast agent microbubble behavior and their adjustment for drug delivery including sonoporation are described. Furthermore, an outline of clinical imaging applications of contrast-enhanced ultrasound is given. It is a challenging task to quantify and predict which bubble phenomenon occurs under which acoustic condition, and how these phenomena may be utilized in ultrasonic imaging. Aided by high-speed photography, our improved understanding of encapsulated microbubble behavior will lead to more sophisticated detection and delivery techniques. More sophisticated methods use quantitative approaches to measure the amount and the time course of bolus or reperfusion curves, and have shown great promise in revealing effective tumor responses to anti-angiogenic drugs in humans before tumor shrinkage occurs. These are beginning to be accepted into clinical practice. In the long term, targeted microbubbles for molecular imaging and eventually for directed anti-tumor therapy are expected to be tested. PMID:21218081

  12. Quantitative Ultrasound for Nondestructive Characterization of Engineered Tissues and Biomaterials

    PubMed Central

    Dalecki, Diane; Mercado, Karla P.; Hocking, Denise C.

    2015-01-01

    Non-invasive, non-destructive technologies for imaging and quantitatively monitoring the development of artificial tissues are critical for the advancement of tissue engineering. Current standard techniques for evaluating engineered tissues, including histology, biochemical assays and mechanical testing, are destructive approaches. Ultrasound is emerging as a valuable tool for imaging and quantitatively monitoring the properties of engineered tissues and biomaterials longitudinally during fabrication and post-implantation. Ultrasound techniques are rapid, non-invasive, non-destructive and can be easily integrated into sterile environments necessary for tissue engineering. Furthermore, high-frequency quantitative ultrasound techniques can enable volumetric characterization of the structural, biological, and mechanical properties of engineered tissues during fabrication and post-implantation. This review provides an overview of ultrasound imaging, quantitative ultrasound techniques, and elastography, with representative examples of applications of these ultrasound-based techniques to the field of tissue engineering. PMID:26581347

  13. Application of Ultrasound-Guided Core Biopsy to Minimal-Invasively Diagnose Supraclavicular Fossa Tumors and Minimize the Requirement of Invasive Diagnostic Surgery

    PubMed Central

    Chen, Chun-Nan; Lin, Che-Yi; Chi, Fan-Hsiang; Chou, Chen-Han; Hsu, Ya-Ching; Kuo, Yen-Lin; Lin, Chih-Feng; Chen, Tseng-Cheng; Wang, Cheng-Ping; Lou, Pei-Jen; Ko, Jenq-Yuh; Hsiao, Tzu-Yu; Yang, Tsung-Lin

    2016-01-01

    Abstract Tumors of the supraclavicular fossa (SC) is clinically challenging because of anatomical complexity and tumor pathological diversity. Because of varied diseases entities and treatment choices of SC tumors, making the accurate decision among numerous differential diagnoses is imperative. Sampling by open biopsy (OB) remains the standard procedure for pathological confirmation. However, complicated anatomical structures of SC always render surgical intervention difficult to perform. Ultrasound-guided core biopsy (USCB) is a minimally invasive and office-based procedure for tissue sampling widely applied in many diseases of head and neck. This study aims to evaluate the clinical efficacy and utility of using USCB as the sampling method of SC tumors. From 2009 to 2014, consecutive patients who presented clinical symptoms and signs of supraclavicular tumors and were scheduled to receive sampling procedures for diagnostic confirmation were recruited. The patients received USCB or OB respectively in the initial tissue sampling. The accurate diagnostic rate based on pathological results was 90.2% for USCB, and 93.6% for OB. No significant difference was noted between USCB and OB groups in terms of diagnostic accuracy and the percentage of inadequate specimens. All cases in the USCB group had the sampling procedure completed within 10 minutes, but not in the OB group. No scars larger than 1 cm were found in USCB. Only patients in the OB groups had the need to receive general anesthesia and hospitalization and had scars postoperatively. Accordingly, USCB can serve as the first-line sampling tool for SC tumors with high diagnostic accuracy, minimal invasiveness, and low medical cost. PMID:26825877

  14. Feasibility of dynamic cardiac ultrasound transmission via mobile phone for basic emergency teleconsultation.

    PubMed

    Lim, Tae Ho; Choi, Hyuk Joong; Kang, Bo Seung

    2010-01-01

    We assessed the feasibility of using a camcorder mobile phone for teleconsulting about cardiac echocardiography. The diagnostic performance of evaluating left ventricle (LV) systolic function was measured by three emergency medicine physicians. A total of 138 short echocardiography video sequences (from 70 subjects) was selected from previous emergency room ultrasound examinations. The measurement of LV ejection fraction based on the transmitted video displayed on a mobile phone was compared with the original video displayed on the LCD monitor of the ultrasound machine. The image quality was evaluated using the double stimulation impairment scale (DSIS). All observers showed high sensitivity. There was an improvement in specificity with the observer's increasing experience of cardiac ultrasound. Although the image quality of video on the mobile phone was lower than that of the original, a receiver operating characteristic (ROC) analysis indicated that there was no significant difference in diagnostic performance. Immediate basic teleconsulting of echocardiography movies is possible using current commercially-available mobile phone systems.

  15. Mammographic density is the main correlate of tumors detected on ultrasound but not on mammography.

    PubMed

    Häberle, Lothar; Fasching, Peter A; Brehm, Barbara; Heusinger, Katharina; Jud, Sebastian M; Loehberg, Christian R; Hack, Carolin C; Preuss, Caroline; Lux, Michael P; Hartmann, Arndt; Vachon, Celine M; Meier-Meitinger, Martina; Uder, Michael; Beckmann, Matthias W; Schulz-Wendtland, Rüdiger

    2016-11-01

    Although mammography screening programs do not include ultrasound examinations, some diagnostic units do provide women with both mammography and ultrasonography. This article is concerned with estimating the risk of a breast cancer patient diagnosed in a hospital-based mammography unit having a tumor that is visible on ultrasound but not on mammography. A total of 1,399 women with invasive breast cancer from a hospital-based diagnostic mammography unit were included in this retrospective study. For inclusion, mammograms from the time of the primary diagnosis had to be available for computer-assisted assessment of percentage mammographic density (PMD), as well as Breast Imaging Reporting and Data System (BIRADS) assessment of mammography. In addition, ultrasound findings were available for the complete cohort as part of routine diagnostic procedures, regardless of any patient or imaging characteristics. Logistic regression analyses were conducted to identify predictors of mammography failure, defined as BIRADS assessment 1 or 2. The probability that the visibility of a tumor might be masked at diagnosis was estimated using a regression model with the identified predictors. Tumors were only visible on ultrasound in 107 cases (7.6%). PMD was the strongest predictor for mammography failure, but age, body mass index and previous breast surgery also influenced the risk, independently of the PMD. Risk probabilities ranged from 1% for a defined low-risk group up to 40% for a high-risk group. These findings might help identify women who should be offered ultrasound examinations in addition to mammography. © 2016 UICC.

  16. Ultrasound-guided trans-rectal high-intensity focused ultrasound (HIFU) for advanced cervical cancer ablation is feasible: a case report.

    PubMed

    Abel, M; Ahmed, H; Leen, E; Park, E; Chen, M; Wasan, H; Price, P; Monzon, L; Gedroyc, W; Abel, P

    2015-01-01

    High-intensity focused ultrasound (HIFU) is an ablative treatment undergoing assessment for the treatment of benign and malignant disease. We describe the first reported intracavitary HIFU ablation for recurrent, unresectable and symptomatic cervical cancer. A 38 year old woman receiving palliative chemotherapy for metastatic cervical adenocarcinoma was offered ablative treatment from an intracavitary trans-rectal HIFU device (Sonablate® 500). Pre-treatment symptoms included vaginal bleeding and discharge that were sufficient to impede her quality of life. No peri-procedural adverse events occurred. Symptoms resolved completely immediately post-procedure, reappeared at 7 days, increasing to pre-procedural levels by day 30. This first time experience of intracavitary cervical HIFU suggests that it is feasible for palliation of advanced cervical cancer, with no early evidence of unexpected toxicity. Ethical approval had also been granted for the use of per-vaginal access if appropriate. This route, alone or in combination with the rectal route, may provide increased accessibility in future patients with a redesigned device more suited to trans-vaginal ablations. Intracavitary HIFU is a potentially safe procedure for the treatment of cervical cancer and able to provide symptomatic improvement in the palliative setting.

  17. Incidental Fetal Ultrasound Findings: Interpretation and Management.

    PubMed

    Kaplan, Rebekah; Adams, Sharon

    2018-05-01

    Ultrasonography is a common component of prenatal care worldwide and is often used in early pregnancy to determine gestational age, number of fetuses, fetal cardiac activity, and placental location. Patients and their families may also consider ultrasonography a social event, as it provides confirmation and reassurance of a normal pregnancy. Ultrasound screening is typically scheduled in the second trimester to visualize fetal anatomy and confirm gestational age. Most ultrasound examinations are reassuring, but some incidentally identify structural anomalies and soft markers for aneuploidy, making it necessary for health care providers to correctly interpret these findings. The health care provider's ability to prepare patients prior to the ultrasound and deliver the necessary information needed to make informed decisions regarding any follow-up screening or diagnostic testing is critical to reducing parental anxiety. Preparation for the anatomic survey should include counseling for normal and abnormal findings. The ethical concepts of patient autonomy and shared decision making are used as a guide in providing this critical information and enabling informed choices during follow-up for incidental ultrasound findings. © 2018 by the American College of Nurse-Midwives.

  18. The value of the first trimester ultrasound in the era of cell free DNA screening.

    PubMed

    Rao, Rashmi R; Valderramos, Stephanie G; Silverman, Neil S; Han, Christina S; Platt, Lawrence D

    2016-12-01

    To describe the clinically relevant findings detected by the first trimester ultrasound (FTU) and to determine the additional value of the FTU compared to cell free DNA (cfDNA) alone. Retrospective cohort study of patients undergoing a FTU at a maternal-fetal medicine referral practice. Fetal, gynecologic, and placental findings detected by ultrasound were analyzed with available cfDNA and diagnostic testing results. A subgroup analysis of positive ultrasound findings and cfDNA results was performed to assess the additional benefit of ultrasound evaluation in FT prenatal screening. There were 1906 FTU between 1 October 2013 and 1 October 2014. CfDNA results were available for 959 (50%) patients. FTU detected: 42 fetal (2.2%), 286 gynecologic (15.0%), and 317 placental (16.6%) findings. CfDNA results were discordant with invasive testing results in 8/61 cases (13%) and with ultrasound findings in 18/42 (42%) cases. There were six false positive and two false negative cfDNA results confirmed by diagnostic testing. Subgroup analysis revealed that cfDNA as the sole method of prenatal screening in the FT would miss 95% of the fetal findings detected with ultrasound. The comprehensive FTU provides valuable clinical information about fetal and maternal anatomy that cannot be detected with cfDNA alone. © 2016 John Wiley & Sons, Ltd. © 2016 John Wiley & Sons, Ltd.

  19. Diagnostic imaging of posterior fossa anomalies in the fetus.

    PubMed

    Robinson, Ashley James; Ederies, M Ashraf

    2016-10-01

    Ultrasound and magnetic resonance imaging are the two imaging modalities used in the assessment of the fetus. Ultrasound is the primary imaging modality, whereas magnetic resonance is used in cases of diagnostic uncertainty. Both techniques have advantages and disadvantages and therefore they are complementary. Standard axial ultrasound views of the posterior fossa are used for routine scanning for fetal anomalies, with additional orthogonal views directly and indirectly obtainable using three-dimensional ultrasound techniques. Magnetic resonance imaging allows not only direct orthogonal imaging planes, but also tissue characterization, for example to search for blood breakdown products. We review the nomenclature of several posterior fossa anomalies using standardized criteria, and we review cerebellar abnormalities based on an etiologic classification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Human toxocariasis: current advances in diagnostics, treatment, and interventions.

    PubMed

    Moreira, Gustavo Marçal Schmidt Garcia; Telmo, Paula de Lima; Mendonça, Marcelo; Moreira, Angela Nunes; McBride, Alan John Alexander; Scaini, Carlos James; Conceição, Fabricio Rochedo

    2014-09-01

    Toxocariasis is a neglected zoonosis caused by the nematodes Toxocara canis and Toxocara cati. This disease is widespread in many countries, reaching high prevalence independently of the economic conditions. However, the true number of cases of toxocariasis is likely to be underestimated owing to the lack of adequate surveillance programs. Although some diagnostic tests are available, their sensitivity and specificity need to be improved. In addition, treatment options for toxocariasis are limited and are non-specific. Toxocariasis is listed as one of the five most important neglected diseases by the CDC. This review presents recent advances related to the control of toxocariasis, including new immunodiagnostics, therapies, and drug formulations, as well as novel interventions using DNA vaccines, immunomodulators, and probiotics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Sonothrombolysis of Intra-Catheter Aged Venous Thrombi Using Microbubble Enhancement and Guided Three Dimensional Ultrasound Pulses

    PubMed Central

    Kutty, Shelby; Xie, Feng; Gao, Shunji; Drvol, Lucas K; Lof, John; Fletcher, Scott E; Radio, Stanley J; Danford, David A; Hammel, James M; Porter, Thomas R

    2010-01-01

    Central venous and arterial catheters are a major source of thrombo-embolic disease in children. We hypothesized that guided high mechanical index (MI) impulses from diagnostic three-dimensional (3D) ultrasound during an intravenous microbubble infusion could dissolve these thrombi. An in vitro system simulating intra-catheter thrombi was created and then treated with guided high MI impulses from 3D ultrasound, utilizing low MI microbubble sensitive imaging pulse sequence schemes to detect the microbubbles (Perflutren Lipid Microsphere, Definity®, Lantheus). Ten aged thrombi over 24 hours old were tested using 3D ultrasound coupled with a continuous diluted microbubble infusion (Group A), and ten with 3D ultrasound alone (Group B). Mean thrombus age was 28.6 hours (range 26.6–30.3). Groups A exhibited a 55 ± 19 % reduction in venous thrombus size, compared to 31±10 % for Group B (p=0.008). Feasibility testing was performed in 4 pigs, establishing a model to further investigate the efficacy. Sonothrombolysis of aged intra-catheter venous thrombi can be achieved with commercially available microbubbles and guided high MI ultrasound from a diagnostic 3D transducer. PMID:20696549

  2. Applications of ultrasound in dentistry.

    PubMed

    Walmsley, A D

    1988-01-01

    An ultrasonic descaler working at kHz frequencies is used in dentistry to remove attached deposits from the teeth. Such devices offer many advantages over conventional hand instruments by reducing both the work and time involved in the clinical descaling process. Although it is a recognised clinical instrument, there has been little attempt to standardise its acoustic power output. A parameter which may characterise adequately the acoustic emission from these instruments is the displacement amplitude of the probe tip. Modification of the ultrasonic descaler generator has led to the further use of the instrument in other dental areas. Diagnostic applications of MHz ultrasound is limited by the structure and arrangement of the dental tissues. Therapeutic ultrasound has been used to treat a variety of dentally related ailments, and ultrasonic cleaning baths are used to clean both dental instruments and materials.

  3. Diagnostic Systems Plan for the Advanced Light Source Top-OffUpgrade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barry, Walter; Chin, Mike; Robin, David

    2005-05-10

    The Advanced Light Source (ALS) will soon be upgraded to enable top-off operations [1], in which electrons are quasi-continuously injected to produce constant stored beam current. The upgrade is structured in two phases. First, we will upgrade our injector from 1.5 GeV to 1.9 GeV to allow full energy injection and will start top-off operations. In the second phase, we will upgrade the Booster Ring (BR) with a bunch cleaning system to allow high bunch purity top-off injection. A diagnostics upgrade will be crucial for success in both phases of the top-off project, and our plan for it is describedmore » in this paper. New booster ring diagnostics will include updated beam position monitor (BPM) electronics, a tune monitoring system, and a new scraper. Two new synchrotron light monitors and a beam stop will be added to the booster-to-storage ring transfer line (BTS), and all the existing beam current monitors along the accelerator chain will be integrated into a single injection efficiency monitoring application. A dedicated bunch purity monitor will be installed in the storage ring (SR). Together, these diagnostic upgrades will enable smooth commissioning of the full energy injector and a quick transition to high quality top-off operation at the ALS.« less

  4. The circuit of polychromator for Experimental Advanced Superconducting Tokamak edge Thomson scattering diagnostic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zang, Qing; Zhao, Junyu; Chen, Hui

    2013-09-15

    The detector circuit is the core component of filter polychromator which is used for scattering light analysis in Thomson scattering diagnostic, and is responsible for the precision and stability of a system. High signal-to-noise and stability are primary requirements for the diagnostic. Recently, an upgraded detector circuit for weak light detecting in Experimental Advanced Superconducting Tokamak (EAST) edge Thomson scattering system has been designed, which can be used for the measurement of large electron temperature (T{sub e}) gradient and low electron density (n{sub e}). In this new circuit, a thermoelectric-cooled avalanche photodiode with the aid circuit is involved for increasingmore » stability and enhancing signal-to-noise ratio (SNR), especially the circuit will never be influenced by ambient temperature. These features are expected to improve the accuracy of EAST Thomson diagnostic dramatically. Related mechanical construction of the circuit is redesigned as well for heat-sinking and installation. All parameters are optimized, and SNR is dramatically improved. The number of minimum detectable photons is only 10.« less

  5. Ultrasound pregnancy

    MedlinePlus

    Pregnancy sonogram; Obstetric ultrasonography; Obstetric sonogram; Ultrasound - pregnancy; IUGR - ultrasound; Intrauterine growth - ultrasound; Polyhydramnios - ultrasound; Oligohydramnios - ultrasound; Placenta previa - ultrasound; Multiple pregnancy - ultrasound; ...

  6. Ultrasound elastography in diagnosis and follow-up for patients with chronic recurrent parotitis.

    PubMed

    Zengel, Pamela; Reichel, Christoph Andreas; Vincek, Teresa; Clevert, Dirk André

    2017-01-01

    Chronic recurrent parotitis (CRP) is a non-obstructive disease with episodes characterized by painful swelling of the parotid gland. It presents in both a juvenile and an adult form, with no clear information on its actual origin. Diagnosis is based on patient medical history and ultrasound examination but is frequently not correctly identified. Acoustic Radiation Force Impulse Imaging (ARFI) is a novel ultrasound elastography technology that has recently been implemented in the diagnostic work-up of patients with malignancies. This study aimed to answer whether ARFI can reasonably be employed in the initial examination and follow-up during therapy in patients with CRP. Mechanical tissue properties of the salivary glands were analyzed by ARFI in 37 parotid glands of patients with CRP. Having integrated ARFI into our diagnostic protocol for CRP, affected parotid glands were found to exhibit lower tissue elasticity compared to both healthy contralateral glands in the same individuals as well as those of healthy individuals. Most importantly, this method enabled us to quantitatively assess the patient benefit of therapy regarding the recovery of the glands' diseased parenchyma. ARFI provides a quick, easy, and reliable diagnostic tool for the assessment of disease severity and progression in patients with CRP that can be seamlessly implemented into preexisting ultrasound protocols.

  7. High Intensity Focused Ultrasound Tumor Therapy System and Its Application

    NASA Astrophysics Data System (ADS)

    Sun, Fucheng; He, Ye; Li, Rui

    2007-05-01

    At the end of last century, a High Intensity Focused Ultrasound (HIFU) tumor therapy system was successfully developed and manufactured in China, which has been already applied to clinical therapy. This article aims to discuss the HIFU therapy system and its application. Detailed research includes the following: power amplifiers for high-power ultrasound, ultrasound transducers with large apertures, accurate 3-D mechanical drives, a software control system (both high-voltage control and low-voltage control), and the B-mode ultrasonic diagnostic equipment used for treatment monitoring. Research on the dosage of ultrasound required for tumour therapy in multiple human cases has made it possible to relate a dosage formula, presented in this paper, to other significant parameters such as the volume of thermal tumor solidification, the acoustic intensity (I), and the ultrasound emission time (tn). Moreover, the HIFU therapy system can be applied to the clinical treatment of both benign and malignant tumors in the pelvic and abdominal cavity, such as uterine fibroids, liver cancer and pancreatic carcinoma.

  8. The impact of new trends in POCTs for companion diagnostics, non-invasive testing and molecular diagnostics.

    PubMed

    Huckle, David

    2015-06-01

    Point-of-care diagnostics have been slowly developing over several decades and have taken on a new importance in current healthcare delivery for both diagnostics and development of new drugs. Molecular diagnostics have become a key driver of technology change and opened up new areas in companion diagnostics for use alongside pharmaceuticals and in new clinical approaches such as non-invasive testing. Future areas involving smartphone and other information technology advances, together with new developments in molecular biology, microfluidics and surface chemistry are adding to advances in the market. The focus for point-of-care tests with molecular diagnostic technologies is focused on advancing effective applications.

  9. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound.

    PubMed

    Webb, Sara Jane; Garrison, Michelle M; Bernier, Raphael; McClintic, Abbi M; King, Bryan H; Mourad, Pierre D

    2017-03-01

    Current research suggests that incidence and heterogeneity of autism spectrum disorder (ASD) symptoms may arise through a variety of exogenous and/or endogenous factors. While subject to routine clinical practice and generally considered safe, there exists speculation, though no human data, that diagnostic ultrasound may also contribute to ASD severity, supported by experimental evidence that exposure to ultrasound early in gestation could perturb brain development and alter behavior. Here we explored a modified triple hit hypothesis [Williams & Casanova, ] to assay for a possible relationship between the severity of ASD symptoms and (1) ultrasound exposure (2) during the first trimester of pregnancy in fetuses with a (3) genetic predisposition to ASD. We did so using retrospective analysis of data from the SSC (Simon's Simplex Collection) autism genetic repository funded by the Simons Foundation Autism Research Initiative. We found that male children with ASD, copy number variations (CNVs), and exposure to first trimester ultrasound had significantly decreased non-verbal IQ and increased repetitive behaviors relative to male children with ASD, with CNVs, and no ultrasound. These data suggest that heterogeneity in ASD symptoms may result, at least in part, from exposure to diagnostic ultrasound during early prenatal development of children with specific genetic vulnerabilities. These results also add weight to on-going concerns expressed by the FDA about non-medical use of diagnostic ultrasound during pregnancy. Autism Res 2017, 10: 472-484. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  10. Potential effect of ultrasound on carbohydrates.

    PubMed

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Endoscopic ultrasound-guided pancreaticobiliary intervention in patients with surgically altered anatomy and inaccessible papillae: A review of current literature

    PubMed Central

    Martin, Aaron; Kistler, Charles Andrew; Wrobel, Piotr; Yang, Juliana F.; Siddiqui, Ali A.

    2016-01-01

    The management of pancreaticobiliary disease in patients with surgically altered anatomy is a growing problem for gastroenterologists today. Over the years, endoscopic ultrasound (EUS) has emerged as an important diagnostic and therapeutic modality in the treatment of pancreaticobiliary disease. Patient anatomy has become increasingly complex due to advances in surgical resection of pancreaticobiliary disease and EUS has emerged as the therapy of choice when endoscopic retrograde cholangiopancreatography failed cannulation or when the papilla is inaccessible such as in gastric obstruction or duodenal obstruction. The current article gives a comprehensive review of the current literature for EUS-guided intervention of the pancreaticobiliary tract in patients with altered surgical anatomy. PMID:27386471

  12. Mesoporous silica nanoparticles as a breast cancer targeting contrast agent for ultrasound imaging

    NASA Astrophysics Data System (ADS)

    Milgroom, Andrew Carson

    Current clinical use of ultrasound for breast cancer diagnostics is strictly limited to a role as a supplementary detection method to other modalities, such as mammography or MRI. A major reason for ultrasound’s role as a secondary method is its inability to discern between cancerous and non-cancerous bodies of similar density, like dense calcifications or benign fibroadenomas. Its detection capabilities are further diminished by the variable density of the surrounding breast tissue with the progression of age. Preliminary studies suggest that mesoporous silica nanoparticles (MSNs) are a good candidate as an in situ contrast agent for ultrasound. By tagging the silica particle surface with the cancer-targeting antibody trastuzumab (Herceptin), suspect regions of interest can be better identified in real time with standard ultrasound equipment. Once the silica-antibody conjugate is injected into the bloodstream and enters the cancerous growth’s vasculature, the antibody arm will bind to HER2, a cell surface receptor known to be dysfunctional or overexpressed in certain types of breast cancer. As more particles aggregate at the cell surface, backscatter of the ultrasonic waves increases as a result of the higher porous silica concentration. This translates to an increased contrast around the lesion boundary. Tumor detection through ultrasound contrast enhancement provides a tremendous advantage over current cancer diagnostics because is it significantly cheaper and can be monitored in real time. Characterization of MCM-41 type MSNs suggests that these particles have sufficient stability and particle size distribution to penetrate through fenestrated tumor vasculature and accumulate in HER2+ breast cancer cells through the enhanced permeation and retention (EPR) effect. A study of acoustic properties showed that particle concentration is linearly correlated to image contrast in clinical frequency-range ultrasound, although less pronounced than typical microbubble

  13. Point-of-care ultrasound diagnosis and treatment of posterior shoulder dislocation.

    PubMed

    Beck, Sierra; Chilstrom, Mikaela

    2013-02-01

    Acute traumatic posterior shoulder dislocations are rare. The diagnosis is often missed or delayed, as radiologic abnormalities can be subtle. We report a case of a 37-year-old man who presented to the emergency department with severe right shoulder pain and inability to move his arm after a motor vehicle collision. Based on examination, he was initially thought to have an anterior dislocation; however, point-of-care (POC) ultrasound clearly demonstrated a posterior shoulder dislocation. Real-time ultrasound-guided intra-articular local anesthetic injection facilitated closed reduction in the emergency department without procedural sedation, and POC ultrasound confirmed successful reduction at the bedside after the procedure. This case demonstrates that POC ultrasound can be a useful diagnostic tool in the rapid assessment and treatment for patients with suspected posterior shoulder dislocation. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Bowel Thickening in Crohn's Disease: Fibrosis or Inflammation? Diagnostic Ultrasound Imaging Tools.

    PubMed

    Coelho, Rosa; Ribeiro, Helena; Maconi, Giovanni

    2017-01-01

    The high frequency of intestinal strictures in patients with Crohn's disease and the different treatment approaches specific for each type of stenosis make the differentiation between fibrotic and inflammatory strictures crucial in management of the disease. However, there is no standardized approach to evaluate and discriminate intestinal strictures, and until now, there was no established cross-sectional imaging modality to detect fibrosis. New techniques, such as contrast-enhanced ultrasound and sonoelastography allow the assessment of vascularization and mechanical properties of stenotic bowel tissue, respectively. These techniques have shown great potential to characterize strictures in Crohn's disease. The aim of this review is to sum up the current knowledge on bowel ultrasound tools to discriminate inflammatory from fibrotic stenosis in Crohn's disease considering the most recent published studies in the field.

  15. Advancements in the Design and Fabrication of Ultrasound Transducers for Extreme Temperatures

    NASA Astrophysics Data System (ADS)

    Bosyj, Christopher

    An ultrasound transducer for operation from room temperature to 800 °C is developed. The device includes a lithium niobate piezoelectric crystal, a porous zirconia attenuative backing layer, and a quarter wavelength matching layer. The manufacturing procedure for porous zirconia is optimized by adjusting pore size and forming pressure to yield good acoustic performance and mechanical integrity. Several acoustic coupling methods are evaluated. A novel silver-copper braze and an aluminum-based braze are found to be suitable at elevated temperatures. Several materials are evaluated for their performance as a quarter wavelength matching layer in the transducer stack. The use of either a nickel-chromium or stainless steel matching layer is established in place of ceramic components. Equipment limitations prevent evaluation at 800 °C, though ultrasound transmission is theoretically achievable with the devices established by this study. Reliable high-amplitude, wide-bandwidth ultrasound transmission is achieved from room temperature to 600 °C with two transducer variants.

  16. Standards of the Polish Ultrasound Society - update. Ultrasound examination of the kidneys, ureters and urinary bladder.

    PubMed

    Tyloch, Janusz F; Woźniak, Magdalena Maria; Wieczorek, Andrzej Paweł

    2013-09-01

    The paper presents the principles of performing proper ultrasound examinations of the urinary tract. The following are discussed: preparation of patients, type of optimal apparatus, technique of examination and conditions which its description should fulfill. Urinary track examination in adults and in children constitutes an integral part of each abdominal examination. Such examinations should be performed with fasting patients or several hours after the last meal, with filled urinary bladder. Ultrasound examinations in children and infants are performed using transducers with the frequency of 5.0-9.0 MHz and in adults - with the frequency of 2.0-6.0 MHz. Doppler options are desirable since they improve diagnostic capacity of sonography in terms of differentiation between renal focal lesions. Renal examinations are performed with the patients in the supine position. The right kidney is examined in the right hypochondriac region using the liver as the ultrasound "window." The left kidney is examined in the left hypochondriac region, preferably in the posterior axillary line. Ultrasound examinations of the upper segment of the ureters are performed after renal examination when the pelvicalyceal system is dilated. A condition necessary for a proper examination of the perivesical portion of the ureter is full urinary bladder. The scans of the urinary bladder are performed in transverse, longitudinal and oblique planes when the bladder is filled. The description should include patient's personal details, details of the referring unit, of the unit in which the examination is performed, examining physician's details, type of ultrasound apparatus and transducers as well as the description proper.

  17. Diagnostic Accuracy of Ultrasound, Contrast-enhanced CT, and Conventional MRI for Differentiating Leiomyoma From Leiomyosarcoma.

    PubMed

    Gaetke-Udager, Kara; McLean, Karen; Sciallis, Andrew P; Alves, Timothy; Maturen, Katherine E; Mervak, Benjamin M; Moore, Andreea G; Wasnik, Ashish P; Erba, Jake; Davenport, Matthew S

    2016-10-01

    This study aimed to determine whether uterine leiomyoma can be distinguished from uterine leiomyosarcoma on ultrasound (US), computed tomography (CT), and/or magnetic resonance imaging (MRI) without diffusion-weighted imaging. Institutional review board approval was obtained and informed consent was waived for this Health Insurance Portability and Accountability Act-compliant retrospective case-control diagnostic accuracy study. All subjects with resected uterine leiomyosarcoma diagnosed over a 17-year period (1998-2014) at a single institution for whom pre-resection US (n = 10), CT (n = 11), or MRI (n = 7) was available were matched by tumor size and imaging modality with 28 subjects with resected uterine leiomyoma. Six blinded radiologists (three attendings, three residents) assigned 5-point Likert scores for the following features: (1) margins, (2) necrosis, (3) hemorrhage, (4) vascularity, (5) calcifications, (6) heterogeneity, and (7) likelihood of malignancy (primary end point). Mean suspicion scores were calculated and receiver operating characteristic curves were generated. The ability of individual morphologic features to predict malignancy was assessed with logistic regression. Mean suspicion scores were 2.5 ± 1.2 (attendings) and 2.4 ± 1.3 (residents) for leiomyoma, and 2.7 ± 1.3 (attendings) and 2.7 ± 1.4 (residents) for leiomyosarcoma. The areas under the receiver operating characteristic curves (range: 0.330-0.685) were not significantly different from chance, either overall (P = .36-.88) or by any modality (P = .28-.96), for any reader. Reader experience had no effect on diagnostic accuracy. No morphologic parameter was significantly predictive of malignancy (P = .10-.97). Uterine leiomyoma cannot be differentiated accurately from leiomyosarcoma on US, CT, or MRI without diffusion-weighted imaging. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  18. Breast cancer screening and problem solving using mammography, ultrasound, and magnetic resonance imaging.

    PubMed

    Hooley, Regina J; Andrejeva, Liva; Scoutt, Leslie M

    2011-03-01

    Although mammography is the mainstay of early breast cancer detection, it has known limitations, particularly in women with dense breasts. As a result, additional imaging modalities, including ultrasound and contrast-enhanced magnetic resonance imaging, are also being used to supplement mammography in the early detection of occult breast cancer. This article reviews the indications and efficacy of mammography, ultrasound, and magnetic resonance imaging as both screening and diagnostic tools.

  19. Transvaginal ultrasound

    MedlinePlus

    Endovaginal ultrasound; Ultrasound - transvaginal; Fibroids - transvaginal ultrasound; Vaginal bleeding - transvaginal ultrasound; Uterine bleeding - transvaginal ultrasound; Menstrual bleeding - transvaginal ultrasound; ...

  20. Diagnostic accuracy of contrast enhanced ultrasound in patients with blunt abdominal trauma presenting to the emergency department: a systematic review and meta-analysis.

    PubMed

    Zhang, Zhongheng; Hong, Yucai; Liu, Ning; Chen, Yuhao

    2017-06-30

    We aimed to investigate the diagnostic accuracy of contrast-enhanced ultrasound (CEUS) in evaluating blunt abdominal trauma for patients presenting to the emergency department. Electronic search of Scopus and Pubmed was performed from inception to September 2016. Human studies investigating the diagnostic accuracy of CEUS in identifying abdominal solid organ injuries were included. Risk of bias was assessed using the QUADAS tool. A total of 10 studies were included in the study and 9 of them were included for meta-analysis. The log(DOR) values ranged from 3.80 (95% CI: 2.81-4.79) to 8.52 (95% CI: 4.58-12.47) in component studies. The combined log(DOR) was 6.56 (95% CI: 5.66-7.45). The Cochran's Q was 11.265 (p = 0.793 with 16 degrees of freedom), and the Higgins' I 2 was 0%. The CEUS had a sensitivity of 0.981 (95% CI: 0.868-0.950) and a false positive rate of 0.018 (95% CI: 0.010-0.032) for identifying parenchymal injuries, with an AUC of 0.984. CEUS performed at emergency department had good diagnostic accuracy in identifying abdominal solid organ injuries. CEUS can be recommended in monitoring solid organ injuries, especially for patients managed with non-operative strategy.

  1. Comparison of barium swallow and ultrasound in diagnosis of gastro-oesophageal reflux in children.

    PubMed Central

    Naik, D R; Bolia, A; Moore, D J

    1985-01-01

    Fifty one infants and older children with suspected gastro-oesophageal reflux entered a study comparing the diagnostic accuracy of a standard barium swallow examination with that of ultrasound scanning. All children were examined by both techniques. In 40 cases there was unequivocal agreement between the examinations. Of the remaining patients, four had definite reflux by ultrasonic criteria but showed no evidence of reflux on barium swallow examination, four had positive findings on ultrasound but showed only minimal reflux on barium swallow, and one showed minimal reflux on ultrasound but had a negative barium meal result. In two children the ultrasound study was inconclusive. Ultrasound has an important role in the diagnosis and follow up of patients under the age of 5 years with gastro-oesophageal reflux. Images FIG 1 FIG 2 PMID:3924317

  2. Lumbar ultrasound: useful gadget or time-consuming gimmick?

    PubMed

    Gambling, D R

    2011-10-01

    Despite widespread enthusiasm for using lumbar ultrasound in obstetrics, there are some who believe it is expensive and time-consuming, with undetermined risks and uncertain benefits. For decades, anesthesiologists have striven to perfect the identification and cannulation of the epidural space using skills learned during training and early clinical practice. These skills include knowledge of the relevant anatomy and detection of subtle tactile clues that aid successful placement of an epidural catheter. Indeed, obstetric anesthesiologists have managed to do this with great success without using imaging techniques. There is a long learning curve associated with lumbar ultrasound and it is unclear from the literature if the success rates associated with its use are superior to clinical skill alone. Is it only a matter of time before regulators insist that lumbar ultrasound is used before inserting an epidural? Indeed, this has already happened for central vein catheters. The United States spent $2.2 trillion on health care in 2007, nearly twice the average of other developed nations. If rapid health cost growth persists, one out of every four dollars in the US national economy will be tied up in the health system by 2025. Do obstetric anesthesiologists want to add to these costs by using unnecessary and expensive equipment? Although many feel that diagnostic ultrasound in obstetrics is safe, some argue that we have yet to perform an appropriate risk analysis for lumbar ultrasound during pregnancy. The issue of ultrasound bio-safety needs to be considered before we all jump on the ultrasound bandwagon. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Normative calcaneal quantitative ultrasound data for the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon.

    PubMed

    Madimenos, Felicia C; Snodgrass, J Josh; Blackwell, Aaron D; Liebert, Melissa A; Cepon, Tara J; Sugiyama, Lawrence S

    2011-01-01

    Minimal data on bone mineral density changes are available from populations in developing countries. Using calcaneal quantitative ultrasound (QUS) techniques, the current study contributes to remedying this gap in the literature by establishing a normative data set on the indigenous Shuar and non-Shuar Colonos of the Ecuadorian Amazon. The paucity of bone mineral density (BMD) data from populations in developing countries partially reflects the lack of diagnostic resources in these areas. Portable QUS techniques now enable researchers to collect bone health data in remote field-based settings and to contribute normative data from developing regions. The main objective of this study is to establish normative QUS data for two Ecuadorian Amazonian populations-the indigenous Shuar and non-Shuar Colonos. The effects of ethnic group, sex, age, and body size on QUS parameters are also considered. A study cohort consisting of 227 Shuar and 261 Colonos (15-91 years old) were recruited from several small rural Ecuadorian communities in the Upano River Valley. Calcaneal QUS parameters were collected on the right heel of each participant using a Sahara bone sonometer. Three ultrasound generated parameters were employed: broadband ultrasound attenuation (BUA), speed of sound (SOS), and calculated heel BMD (hBMD). In both populations and sexes, all QUS values were progressively lower with advancing age. Shuar have significantly higher QUS values than Colonos, with most pronounced differences found between pre-menopausal Shuar and Colono females. Multiple regression analyses show that age is a key predictor of QUS while weight alone is a less consistent determinant. Both Shuar males and females display comparatively greater QUS parameters than other reference populations. These normative data for three calcaneal QUS parameters will be useful for predicting fracture risk and determining diagnostic QUS criteria of osteoporosis in non-industrialized populations in South America and

  4. PREFACE: Advanced Metrology for Ultrasound in Medicine12-14 May 2010

    NASA Astrophysics Data System (ADS)

    Shaw, Adam

    2011-02-01

    Conference logo AMUM 2010 is the successor to the first AMUM conference held in 2004, which was the conference featured in the very first issue of the Journal of Physics: Conference Series (http://iopscience.iop.org/1742-6596/1/1). Like its predecessor, AMUM 2010 proved to be very successful and provided a fantastic opportunity for the world's ultrasound experts from medicine, industry and academia to explore the measurement challenges presented by new and emerging clinical ultrasound equipment. 2010 was a very difficult year economically for much of the world, and then air travel over Europe was thrown into chaos by prolonged ash clouds from the Icelandic volcano Eyjafjallajökull in April. So it was something of a relief to see such good attendance; this is a clear indication of the need for this conference with its focus on metrology in medical ultrasound. There were a total of 70 attendees: of these 34 were from the UK, 16 from the rest of Europe, and 20 from outside Europe. National Metrology Institutes from no fewer than nine different countries were represented, some of them very new to the field, some with a recent growth of interest in ultrasound, and others with a well-established reputation. I was particularly pleased to see younger researchers from those NMIs new to ultrasound attend and have the chance to mix with such a wide grouping of their peers and present their work. There was also a strong attendance by industry including the major imaging companies such as GE Healthcare, Siemens, Philips Healthcare, Hitachi Medical, Aloka, Medison and the newer Supersonic Imagine; and more specialist companies such as Imasonic, Onda Corporation, Unisyn Medical Technologies, and Polytec and Precision Acoustics, our partner in organizing the event. The conference was spread over 3 days with plenty of time for discussions over coffee; the afternoon of the 3rd day was dedicated to laboratory visits within NPL. We were fortunate to have some excellent Keynote

  5. [Ultrasound in complex of radiological studies in diagnosis of ankle joint medial aspect pathologies].

    PubMed

    Gurgenidze, T; Mizandari, M

    2011-10-01

    The aim of the research is to study sonosemiotics of ankle joint pathology by means of ultrasound in order to optimize the diagnostic process and improve the treatment. 130 patients (age ranges from 5 to 70 years) underwent the radiological study of ankle joint medial aspect. Pathology types: degenerative-dystrophic diseases - 39 (30%), inflammatory pathology - 21 (16.2%), traumatic injuries - 20 (15.2%), vascular pathologies - 26 (20%), neurogenic problems -7 (5.4%), soft tissue neoplasms - 5 (3.8%), congenital anomalies - 7 (5.4%) and vertebral pathology - 5 (4.0%). The diagnostic studies include: a) Ultrasound, performed on digital ultrasound system using high frequency (7.5-12.0 MHz) linear probe with Doppler capability (all patients); b) X-Ray filming in antero-posterior and lateral projections (6 patients- 4.5%); c) MRI - T1 and T2 weighted images in saggital and transverse planes 10 patients (10.0%) and d) CT - 2 patients (1.5%); To 2 (1.5%) patient biopsy has been performed. This study showed that ultrasound was successful in ankle joint medial aspect pathology diagnosis in 108 cases (84.0%); It was ineffective in osseous pathology definition. In final diagnosis of impingment syndrom MRI was required in 4 (3.6%) cases. It is concluded that ultrasound should be used as a Gold Standard in diagnosis of localized pain and swelling in the ankle joint.

  6. Ultrasound versus liver function tests for diagnosis of common bile duct stones.

    PubMed

    Gurusamy, Kurinchi Selvan; Giljaca, Vanja; Takwoingi, Yemisi; Higgie, David; Poropat, Goran; Štimac, Davor; Davidson, Brian R

    2015-02-26

    Ultrasound and liver function tests (serum bilirubin and serum alkaline phosphatase) are used as screening tests for the diagnosis of common bile duct stones in people suspected of having common bile duct stones. There has been no systematic review of the diagnostic accuracy of ultrasound and liver function tests. To determine and compare the accuracy of ultrasound versus liver function tests for the diagnosis of common bile duct stones. We searched MEDLINE, EMBASE, Science Citation Index Expanded, BIOSIS, and Clinicaltrials.gov to September 2012. We searched the references of included studies to identify further studies and systematic reviews identified from various databases (Database of Abstracts of Reviews of Effects, Health Technology Assessment, Medion, and ARIF (Aggressive Research Intelligence Facility)). We did not restrict studies based on language or publication status, or whether data were collected prospectively or retrospectively. We included studies that provided the number of true positives, false positives, false negatives, and true negatives for ultrasound, serum bilirubin, or serum alkaline phosphatase. We only accepted studies that confirmed the presence of common bile duct stones by extraction of the stones (irrespective of whether this was done by surgical or endoscopic methods) for a positive test result, and absence of common bile duct stones by surgical or endoscopic negative exploration of the common bile duct, or symptom-free follow-up for at least six months for a negative test result as the reference standard in people suspected of having common bile duct stones. We included participants with or without prior diagnosis of cholelithiasis; with or without symptoms and complications of common bile duct stones, with or without prior treatment for common bile duct stones; and before or after cholecystectomy. At least two authors screened abstracts and selected studies for inclusion independently. Two authors independently collected data from

  7. Unusual Applications of Ultrasound in Industry

    NASA Astrophysics Data System (ADS)

    Keilman, George

    The application of physical acoustics in industry has been accelerated by increased understanding of the physics of industrial processes, coupled with rapid advancements in transducers, microelectronics, data acquisition, signal processing, and related software fields. This has led to some unusual applications of ultrasound to improve industrial processes.

  8. Ultrasound

    MedlinePlus

    ... community Home > Pregnancy > Prenatal care > Ultrasound during pregnancy Ultrasound during pregnancy E-mail to a friend Please ... you. What are some reasons for having an ultrasound? Your provider uses ultrasound to do several things, ...

  9. Technical characterization of an ultrasound source for noninvasive thermoablation by high-intensity focused ultrasound.

    PubMed

    Köhrmann, K U; Michel, M S; Steidler, A; Marlinghaus, E; Kraut, O; Alken, P

    2002-08-01

    To develop a generator for high-intensity focused ultrasound (HIFU, a method of delivering ultrasonic energy with resultant heat and tissue destruction to a tight focus at a selected depth within the body), designed for extracorporeal coupling to allow various parenchymal organs to be treated. The ultrasound generated by a cylindrical piezo-ceramic element is focused at a depth of 10 cm using a parabolic reflector with a diameter of 10 cm. A diagnostic B-mode ultrasonographic transducer is integrated into the source to allow the focus to be located in the target area. The field distribution of the sound pressure was measured in degassed water using a needle hydrophone. An ultrasound-force balance was used to determine the acoustic power. These measurements allowed the spatially averaged sound intensity to be calculated. The morphology and extent of tissue necrosis induced by HIFU was examined on an ex-vivo kidney model. The two-dimensional field distribution resulted in an approximately ellipsoidal focus of 32 x 4 mm (- 6 dB). The spatially maximum averaged sound intensity was 8591 W/cm2 at an electrical power of 400 W. The lesion caused to the ex-vivo kidney at this maximum generator power with a pulse duration of 2 s was a clearly delineated ellipsoidal coagulation necrosis up to 8.8 x 2.3 mm (length x width) and with central liquefied necrosis of 7.9 x 1.9 mm. This newly developed ultrasound generator with a focal length of 10 cm can induce clear necrosis in parenchymal tissue. Because of its specific configuration and the available power range of the ultrasound generator, there is potential for therapeutic noninvasive ablation of tissue deep within a patient's body.

  10. Prospects for telediagnosis using ultrasound.

    PubMed

    Dewey, C F; Thomas, J D; Kunt, M; Hunter, I W

    1996-01-01

    Ultrasound imaging is currently used as a primary diagnostic tool in cardiology, abdominal disorders, pulmonary medicine, trauma, and obstetrics. Because of its relatively low capital and operating costs as well as its growth potential, it represents one of the major diagnostic modalities of future health care. However, the use of ultrasonography as a mobile and powerful modality is controlled by the availability of a highly skilled technician to acquire the images and an experienced physician to interpret them. This paper discusses the technology required to increase the availability of a diagnosing physician by employing telerobotics. With this technology, the physician can guide the motion of the transducer by the technician from a remote location. Thus, the physician controls the examination and renders the diagnosis. It is shown that communication lines at 1.5 Mbits/s (T-1 speed) can, with appropriate compression, support both real-time viewing of the ultrasound images and telerobotic manipulation of the transducer. The incremental costs of telediagnosis for an examination are estimated to be a small fraction of the base charges and significantly less than the expense of bringing a physician to a remote location or transporting a patient to a regional medical center. Telediagnosis can, in addition, provide benefits from immediate interpretation and consultation that cannot be duplicated using store-and-forward scenarios.

  11. Optical Detection of Ultrasound in Photoacoustic Imaging

    PubMed Central

    Dong, Biqin; Sun, Cheng; Zhang, Hao F.

    2017-01-01

    Objective Photoacoustic (PA) imaging emerges as a unique tool to study biological samples based on optical absorption contrast. In PA imaging, piezoelectric transducers are commonly used to detect laser-induced ultrasonic waves. However, they typically lack adequate broadband sensitivity at ultrasonic frequency higher than 100 MHz while their bulky size and optically opaque nature cause technical difficulties in integrating PA imaging with conventional optical imaging modalities. To overcome these limitations, optical methods of ultrasound detection were developed and shown their unique applications in photoacoustic imaging. Methods We provide an overview of recent technological advances in optical methods of ultrasound detection and their applications in PA imaging. A general theoretical framework describing sensitivity, bandwidth, and angular responses of optical ultrasound detection is also introduced. Results Optical methods of ultrasound detection can provide improved detection angle and sensitivity over significantly extended bandwidth. In addition, its versatile variants also offer additional advantages, such as device miniaturization, optical transparency, mechanical flexibility, minimal electrical/mechanical crosstalk, and potential noncontact PA imaging. Conclusion The optical ultrasound detection methods discussed in this review and their future evolution may play an important role in photoacoustic imaging for biomedical study and clinical diagnosis. PMID:27608445

  12. Pancreatic cystic neoplasms: Review of current knowledge, diagnostic challenges, and management options

    PubMed Central

    Jana, Tanima; Shroff, Jennifer; Bhutani, Manoop S.

    2015-01-01

    Pancreatic cystic lesions are being detected with increasing frequency, largely due to advances in cross-sectional imaging. The most common neoplasms include serous cystadenomas, mucinous cystic neoplasms, intraductal papillary mucinous neoplasms, solid pseudopapillary neoplasms, and cystic pancreatic endocrine neoplasms. Computed tomography (CT), magnetic resonance imaging (MRI), and endoscopic ultrasound (EUS) are currently used as imaging modalities. EUS-guided fine needle aspiration has proved to be a useful diagnostic tool, and enables an assessment of tumor markers, cytology, chemistries, and DNA analysis. Here, we review the current literature on pancreatic cystic neoplasms, including classification, diagnosis, treatment, and recommendations for surveillance. Data for this manuscript was acquired via searching the literature from inception to December 2014 on PubMed and Ovid MEDLINE. PMID:25821410

  13. A Standard Mammography Unit - Standard 3D Ultrasound Probe Fusion Prototype: First Results.

    PubMed

    Schulz-Wendtland, Rüdiger; Jud, Sebastian M; Fasching, Peter A; Hartmann, Arndt; Radicke, Marcus; Rauh, Claudia; Uder, Michael; Wunderle, Marius; Gass, Paul; Langemann, Hanna; Beckmann, Matthias W; Emons, Julius

    2017-06-01

    The combination of different imaging modalities through the use of fusion devices promises significant diagnostic improvement for breast pathology. The aim of this study was to evaluate image quality and clinical feasibility of a prototype fusion device (fusion prototype) constructed from a standard tomosynthesis mammography unit and a standard 3D ultrasound probe using a new method of breast compression. Imaging was performed on 5 mastectomy specimens from patients with confirmed DCIS or invasive carcinoma (BI-RADS ™ 6). For the preclinical fusion prototype an ABVS system ultrasound probe from an Acuson S2000 was integrated into a MAMMOMAT Inspiration (both Siemens Healthcare Ltd) and, with the aid of a newly developed compression plate, digital mammogram and automated 3D ultrasound images were obtained. The quality of digital mammogram images produced by the fusion prototype was comparable to those produced using conventional compression. The newly developed compression plate did not influence the applied x-ray dose. The method was not more labour intensive or time-consuming than conventional mammography. From the technical perspective, fusion of the two modalities was achievable. In this study, using only a few mastectomy specimens, the fusion of an automated 3D ultrasound machine with a standard mammography unit delivered images of comparable quality to conventional mammography. The device allows simultaneous ultrasound - the second important imaging modality in complementary breast diagnostics - without increasing examination time or requiring additional staff.

  14. Out of hospital point of care ultrasound: current use models and future directions.

    PubMed

    Nelson, B P; Sanghvi, A

    2016-04-01

    Ultrasound has evolved from a modality that was once exclusively reserved to certain specialities of its current state, in which its portability and durability lend to its broadly increasing applications. This review describes portable ultrasound in the hospital setting and its comparison to gold standard imaging modalities. Also, this review summarizes current literature describing portable ultrasound use in prehospital, austere and remote environments, highlighting successes and barriers to use in these environments. Prehospital ultrasound has the ability to increase diagnostic ability and allow for therapeutic intervention in the field. In austere environments, ultrasound may be the only available imaging modality and thus can guide diagnosis, therapeutics and determine which patients may need emergent transfer to a healthcare facility. The most cutting edge applications of portable ultrasound employ telemedicine to obtain and transmit ultrasound images. This technology and ability to transmit images via satellite and cellular transmission can allow for even novice users to obtain interpretable images in austere environments. Portable ultrasound uses have steadily grown and will continue to do so with the introduction of more portable and durable technologies. As applications continue to grow, certain technologic considerations and future directions are explored.

  15. Non-Thermal High-Intensity Focused Ultrasound for Breast Cancer Therapy

    DTIC Science & Technology

    2013-07-01

    ultrasound for breast cancer therapy PRINCIPAL INVESTIGATOR: Chang Ming (Charlie) Ma, Ph.D...TITLE AND SUBTITLE 5a. CONTRACT NUMBER Non-thermal high-intensity focused ultrasound for breast cancer therapy 5b. GRANT NUMBER W81XWH-11-1-0341...treatment systems for small animal models. Advanced imaging systems will be required to determine the gross tumor volume, to plan the HIFU treatment, to

  16. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  17. Diagnostic accuracy of fundal height and handheld ultrasound-measured abdominal circumference to screen for fetal growth abnormalities

    PubMed Central

    Haragan, Adriane F.; Hulsey, Thomas C.; Hawk, Angela F.; Newman, Roger B.; Chang, Eugene Y.

    2015-01-01

    OBJECTIVE We sought to compare fundal height and handheld ultrasound–measured fetal abdominal circumference (HHAC) for the prediction of fetal growth restriction (FGR) or large for gestational age. STUDY DESIGN This was a diagnostic accuracy study in nonanomalous singleton pregnancies between 24 and 40 weeks’ gestation. Patients underwent HHAC and fundal height measurement prior to formal growth ultrasound. FGR was defined as estimated fetal weight less than 10%, whereas large for gestational age was defined as estimated fetal weight greater than 90%. Sensitivity and specificity were calculated and compared using methods described elsewhere. RESULTS There were 251 patients included in this study. HHAC had superior sensitivity and specificity for the detection of FGR (sensitivity, 100% vs 42.86%) and (specificity, 92.62% vs 85.24%). HHAC had higher specificity but lower sensitivity when screening for LGA (specificity, 85.66% vs 66.39%) and (sensitivity, 57.14% vs 71.43%). CONCLUSION HHAC could prove to be a valuable screening tool in the detection of FGR. Further studies are needed in a larger population. PMID:25818672

  18. Survey of ultrasound practice amongst podiatrists in the UK.

    PubMed

    Siddle, Heidi J; Patience, Aimie; Coughtrey, James; Mooney, Jean; Fox, Martin; Cherry, Lindsey

    2018-01-01

    Ultrasound in podiatry practice encompasses musculoskeletal ultrasound imaging, vascular hand-held Doppler ultrasound and therapeutic ultrasound. Sonography practice is not regulated by the Health and Care Professions Council (HCPC), with no requirement to hold a formal qualification. The College of Podiatry does not currently define ultrasound training and competencies.This study aimed to determine the current use of ultrasound, training received and mentorship received and/or provided by podiatrists using ultrasound. A quantitative study utilising a cross-sectional, on-line, single-event survey was undertaken within the UK. Completed surveys were received from 284 podiatrists; 173 (70%) use ultrasound as part of their general practice, 139 (49%) for musculoskeletal problems, 131 (46%) for vascular assessment and 39 (14%) to support their surgical practice. Almost a quarter ( n  = 62) worked for more than one organisation; 202 (71%) were employed by the NHS and/or private sector ( n  = 118, 41%).Nearly all (93%) respondents report using a hand-held vascular Doppler in their daily practice; 216 (82%) to support decisions regarding treatment options, 102 (39%) to provide diagnostic reports for other health professionals, and 34 (13%) to guide nerve blocks.Ultrasound imaging was used by 104 (37%) respondents primarily to aid clinical decision making ( n  = 81) and guide interventions (steroid injections n  = 67; nerve blocks n  = 39). Ninety-three percent stated they use ultrasound imaging to treat their own patients, while others scan at the request of other podiatrists ( n  = 28) or health professionals ( n  = 18). Few use ultrasound imaging for research ( n  = 7) or education ( n  = 2).Only 32 (11%) respondents ( n  = 20 private sector) use therapeutic ultrasound to treat patients presenting with musculoskeletal complaints, namely tendon pathologies.Few respondents (18%) had completed formal post-graduate CASE (Consortium

  19. The diagnostic performance of leak-plugging automated segmentation versus manual tracing of breast lesions on ultrasound images.

    PubMed

    Xiong, Hui; Sultan, Laith R; Cary, Theodore W; Schultz, Susan M; Bouzghar, Ghizlane; Sehgal, Chandra M

    2017-05-01

    To assess the diagnostic performance of a leak-plugging segmentation method that we have developed for delineating breast masses on ultrasound images. Fifty-two biopsy-proven breast lesion images were analyzed by three observers using the leak-plugging and manual segmentation methods. From each segmentation method, grayscale and morphological features were extracted and classified as malignant or benign by logistic regression analysis. The performance of leak-plugging and manual segmentations was compared by: size of the lesion, overlap area ( O a ) between the margins, and area under the ROC curves ( A z ). The lesion size from leak-plugging segmentation correlated closely with that from manual tracing ( R 2 of 0.91). O a was higher for leak plugging, 0.92 ± 0.01 and 0.86 ± 0.06 for benign and malignant masses, respectively, compared to 0.80 ± 0.04 and 0.73 ± 0.02 for manual tracings. Overall O a between leak-plugging and manual segmentations was 0.79 ± 0.14 for benign and 0.73 ± 0.14 for malignant lesions. A z for leak plugging was consistently higher (0.910 ± 0.003) compared to 0.888 ± 0.012 for manual tracings. The coefficient of variation of A z between three observers was 0.29% for leak plugging compared to 1.3% for manual tracings. The diagnostic performance, size measurements, and observer variability for automated leak-plugging segmentations were either comparable to or better than those of manual tracings.

  20. Image-Capture Devices Extend Medicine's Reach

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Johnson Space Center, Henry Ford Hospital in Detroit, and Houston-based Wyle Laboratories collaborated on NASA's Advanced Diagnostic Ultrasound in Microgravity (ADUM) experiment, which developed revolutionary medical ultrasound diagnostic techniques for long-distance use. Mediphan, a Canadian company with U.S. operations in Springfield, New Jersey drew on NASA expertise to create frame-grabber and data archiving technology that enables ultrasound users with minimal training to send diagnostic-quality ultrasound images and video to medical professionals via the Internet in near real time allowing patients as varied as professional athletes, Olympians, and mountain climbers to receive medical attention as soon as it is needed.

  1. Applications of Ultrasound in the Resection of Brain Tumors

    PubMed Central

    Sastry, Rahul; Bi, Wenya Linda; Pieper, Steve; Frisken, Sarah; Kapur, Tina; Wells, William; Golby, Alexandra J.

    2016-01-01

    Neurosurgery makes use of pre-operative imaging to visualize pathology, inform surgical planning, and evaluate the safety of selected approaches. The utility of pre-operative imaging for neuronavigation, however, is diminished by the well characterized phenomenon of brain shift, in which the brain deforms intraoperatively as a result of craniotomy, swelling, gravity, tumor resection, cerebrospinal fluid (CSF) drainage, and many other factors. As such, there is a need for updated intraoperative information that accurately reflects intraoperative conditions. Since 1982, intraoperative ultrasound has allowed neurosurgeons to craft and update operative plans without ionizing radiation exposure or major workflow interruption. Continued evolution of ultrasound technology since its introduction has resulted in superior imaging quality, smaller probes, and more seamless integration with neuronavigation systems. Furthermore, the introduction of related imaging modalities, such as 3-dimensional ultrasound, contrast-enhanced ultrasound, high-frequency ultrasound, and ultrasound elastography have dramatically expanded the options available to the neurosurgeon intraoperatively. In the context of these advances, we review the current state, potential, and challenges of intraoperative ultrasound for brain tumor resection. We begin by evaluating these ultrasound technologies and their relative advantages and disadvantages. We then review three specific applications of these ultrasound technologies to brain tumor resection: (1) intraoperative navigation, (2) assessment of extent of resection, and (3) brain shift monitoring and compensation. We conclude by identifying opportunities for future directions in the development of ultrasound technologies. PMID:27541694

  2. Hyperechogenicity during high intensity focused ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Bailey, Michael; Rabkin, Brian; Khokhlova, Vera; Vaezy, Shahram

    2005-09-01

    Ultrasound guidance of HIFU therapy is attractive because of its portability, low cost, real-time image processing, simple integration with HIFU instruments, and the extensive availability of diagnostic ultrasound; however, the use of ultrasound visualization for the guidance and monitoring of HIFU therapy often relies on the appearance of a hyperechoic region in the ultrasound image. It is often assumed that the formation of a hyperechoic region at the HIFU treatment site results from bubble activity generated during HIFU exposure. However, it has been determined that this region can be generated with relatively short bursts of HIFU (on the order of 30 ms), bursts so short that negligible temperature elevations are expected to occur. In examining the histology associated with these hyperechoes, there is little evidence of traditional cavitation damage; rather, it appears as if there are many bubbles generated within the individuals cells, suggesting a thermal mechanism. Thermocouple measurements of the temperature elevation were inaccurate due to the short insonation period, but showed only a few-degree temperature rise. These anomalous results will be presented, along with additional data on HIFU hyperechogenicity, and a hypothesis given for the phenomenological origins of this effect. [Work supported in part by the NSBRI, U.S. Army, and the NIH.

  3. Scanned focussed ultrasound hyperthermia: initial clinical results.

    PubMed

    Shimm, D S; Hynynen, K H; Anhalt, D P; Roemer, R B; Cassady, J R

    1988-11-01

    Between November 1986 and July, 1987, a preliminary study to determine the feasibility of scanned focussed ultrasound for clinical hyperthermia at various sites was conducted. Fourteen patient (17 tumors) have been treated using a microprocessor-controlled apparatus developed at the University of Arizona by modifying a commercially available diagnostic ultrasound unit. We have treated nine pelvic tumors, four extremity tumors, two brain tumors, and two extracranial head and neck tumors for a total of 42 treatments. Multipoint thermometry was achieved for all patients, with 2-25 (mean = 10) points monitored during each treatments within the scanned tumor volume. Average maximum temperature within the scanned tumor volume was 44.2, 44.7, 44.8, and 42.0 degrees C for pelvic, extremity brain, and extracranial head and neck tumors, respectively; similarly, 55%, 45%, 71%, and 0 of monitored points exceeded 42.5 degrees C. Pain limited applied power in 15 of 42 treatments, and bone pain with a periodicity similar to the scanning periodicity was seen in 11 treatments. A non-randomized comparison of temperatures achieved using scanned focussed ultrasound to those achieved using the microwave annular array and the CDRH Helix suggests that scanned focussed ultrasound may have promise and potential advantages in heating selected pelvic tumors.

  4. Classification of breast cancer in ultrasound imaging using a generic deep learning analysis software: a pilot study.

    PubMed

    Becker, Anton S; Mueller, Michael; Stoffel, Elina; Marcon, Magda; Ghafoor, Soleen; Boss, Andreas

    2018-02-01

    To train a generic deep learning software (DLS) to classify breast cancer on ultrasound images and to compare its performance to human readers with variable breast imaging experience. In this retrospective study, all breast ultrasound examinations from January 1, 2014 to December 31, 2014 at our institution were reviewed. Patients with post-surgical scars, initially indeterminate, or malignant lesions with histological diagnoses or 2-year follow-up were included. The DLS was trained with 70% of the images, and the remaining 30% were used to validate the performance. Three readers with variable expertise also evaluated the validation set (radiologist, resident, medical student). Diagnostic accuracy was assessed with a receiver operating characteristic analysis. 82 patients with malignant and 550 with benign lesions were included. Time needed for training was 7 min (DLS). Evaluation time for the test data set were 3.7 s (DLS) and 28, 22 and 25 min for human readers (decreasing experience). Receiver operating characteristic analysis revealed non-significant differences (p-values 0.45-0.47) in the area under the curve of 0.84 (DLS), 0.88 (experienced and intermediate readers) and 0.79 (inexperienced reader). DLS may aid diagnosing cancer on breast ultrasound images with an accuracy comparable to radiologists, and learns better and faster than a human reader with no prior experience. Further clinical trials with dedicated algorithms are warranted. Advances in knowledge: DLS can be trained classify cancer on breast ultrasound images high accuracy even with comparably few training cases. The fast evaluation speed makes real-time image analysis feasible.

  5. Evaluation of diagnostic value of CT scan, physical examination and ultrasound based on pathological findings in patients with pelvic masses.

    PubMed

    Firoozabadi, Razieh Dehghani; Karimi Zarchi, Mojgan; Mansurian, Hamid Reza; Moghadam, Bita Rafiei; Teimoori, Soraya; Naseri, Ali

    2011-01-01

    Because benign and malignant cervical and ovarian masses occur with different percentages in different age groups, the importance of primary diagnosis and selection of a suitable surgical procedure is underlined. Diagnosis of pelvic masses is carried out using ultrasound, physical examination, CT scan and MRI. The objective of this study is to evaluate the diagnostic value of CT scan in pelvic masses in comparison with physical examination-ultrasound based on pathology of the lesion in patients undergoing laparotomic surgery. This analytic-descriptive study focused on age, sonographic findings, physical examinations, CT scan and pathological findings in 139 patients with pelvic mass, gathered with questionnaires and statistically analayzed using the SPSS software programme. Of 139 patients with pelvic mass (patients aged from 17 to 75 years old), 62 (44%) cases were diagnosed as benign and 77 (55.4%) as malignant; among them malignant tratoma serocyst adenocarsinoma with 33 (23.7%) cases and benign myoma with 21 (15.2%) cases comprised the most frequent cases. The sensitivity and specificity of sonography-physical examination were 51.9% and 87.9% respectively and the sensitivity and specificity of CT scan images were 79.2% and 91.6% respectively. It was shown that CT scan images were more consistant with pathological findings in predicting appropriate surgical procedures than do sonography-physical examinations. The sensitivity of CT scan is far higher than that of sonography-physical examination in the diagnosis of pelvic mass malignancy.

  6. Contrast Enhanced Diagnostic Ultrasound Causes Renal Tissue Damage in a Porcine Model

    PubMed Central

    Miller, Douglas L.; Dou, Chunyan; Wiggins, Roger C.

    2010-01-01

    Objective Glomerular capillary hemorrhage (GCH) has been reported and confirmed as a consequence of contrast-enhanced diagnostic ultrasound (CEDUS) of rat kidney. This study assessed renal tissue injury in the larger porcine model. Methods The right kidneys of anesthetized pigs were imaged in 8 groups of 4 pigs. A Vingmed System Five (General Electric Co. Cincinnati OH) was used at 1.5 MHz in B-mode to intermittently scan the kidney at 4 s intervals. A Sequoia 512 (Acuson, Mountain View CA) was used in the 1.5 MHz Cadence CPS mode with intermittent agent-clearance bursts at 4 s intervals. Kidneys were scanned transabdominally, or after laparotomy through a saline standoff. The Sequoia 512 probe was placed in contact with the kidney for one group. Definity (Lantheus Medical Imaging, N. Billerica, MA) was infused at 4 μl/kg/min (diluted 33:1 in saline) for 4 min during scanning. Results Blood-filled urinary tubules were evident on the kidney surface for all groups, except for the group with the probe in contact with the kidney. GCH was found by histology in 31.7 % ± 9.8 % of glomeruli in the center of the scan plane for 1.7 MPa transabdominal scanning and 1.5 % ± 2.9 % of glomeruli in sham samples (P<0.05). In addition, hematuria was detected after scanning, and tubular obstruction occurred in some nephrons. Conclusion Renal tissue damage was induced by CEDUS in the porcine model. This result, together with previous studies in rats, support an hypothesis that GCH would occur in humans from similar CEDUS. PMID:20876892

  7. [Diagnostic imaging and acute abdominal pain].

    PubMed

    Liljekvist, Mads Svane; Pommergaard, Hans-Christian; Burcharth, Jakob; Rosenberg, Jacob

    2015-01-19

    Acute abdominal pain is a common clinical condition. Clinical signs and symptoms can be difficult to interpret, and diagnostic imaging may help to identify intra-abdominal disease. Conventional X-ray, ultrasound (US) and computed tomography (CT) of the abdomen vary in usability between common surgical causes of acute abdominal pain. Overall, conventional X-ray cannot confidently diagnose or rule out disease. US and CT are equally trustworthy for most diseases. US with subsequent CT may enhance diagnostic precision. Magnetic resonance seems promising for future use in acute abdominal imaging.

  8. Musculoskeletal ultrasound for interventional physiatry.

    PubMed

    De Muynck, M; Parlevliet, T; De Cock, K; Vanden Bossche, L; Vanderstraeten, G; Özçakar, L

    2012-12-01

    More and more physiatrists are interested in learning how to use musculoskeletal ultrasonography in their clinical practice. The possibility of high resolution, dynamic, comparative and repeatable imaging makes it an important diagnostic tool for soft tissue pathology. There is also growing interest to use sonography for guiding interventions such as aspirations and infiltrations. In daily practice these are often done blindly or palpation-guided. To improve the accuracy of interventions, fluoroscopy or computed tomography were traditionally used for guidance. Since sonography is non-ionizing, readily available and relatively low cost, it has become the first choice to guide many musculoskeletal interventions. Ultrasound allows real-time imaging of target and needle as well as surrounding vulnerable structures such as vessels and nerves. Many different techniques are proposed in the literature. Interventions under ultrasound guidance have been proven to be more accurate than unguided ones. Further studies are required to prove better clinical results and fewer complications. Infection is the most dreaded complication. This review wants to highlight technical aspects of ultrasound guidance of interventions and give a survey of different interventions that have been introduced, with emphasis on applications in Physical Medicine and Rehabilitation. Results and complications are discussed. Finally training requirements and modalities are presented.

  9. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines: Traditional ultrasound: This uses sound waves that bounce off blood vessels to create pictures. Doppler ultrasound: This ...

  10. "Filarial dance sign" real-time ultrasound diagnosis of filarial oophoritis.

    PubMed

    Panditi, Surekha; Shelke, Ashwini G; Thummalakunta, Laxmi Narasimha Praveen

    2016-10-01

    Filariasis is a parasitic disease caused by Filarial nematodes (Wuchereria bancrofti, Brugia malayi, and Brugia timori) that commonly causes lymphatic obstruction resulting in edema and increase in the size of the affected organ. Filariasis is diagnosed by identifying microfilariae on Giemsa stain. The immunochromatographic card test is diagnostic. Ultrasound is the imaging modality of choice for detecting adult filarial worms/microfilaria in the lymphatic system, which are responsible for the classic "filarial dance sign" caused by twirling movements of the microfilariae. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 44:500-501, 2016. © 2016 Wiley Periodicals, Inc.

  11. Going beyond a First Reader: A Machine Learning Methodology for Optimizing Cost and Performance in Breast Ultrasound Diagnosis.

    PubMed

    Venkatesh, Santosh S; Levenback, Benjamin J; Sultan, Laith R; Bouzghar, Ghizlane; Sehgal, Chandra M

    2015-12-01

    The goal of this study was to devise a machine learning methodology as a viable low-cost alternative to a second reader to help augment physicians' interpretations of breast ultrasound images in differentiating benign and malignant masses. Two independent feature sets consisting of visual features based on a radiologist's interpretation of images and computer-extracted features when used as first and second readers and combined by adaptive boosting (AdaBoost) and a pruning classifier resulted in a very high level of diagnostic performance (area under the receiver operating characteristic curve = 0.98) at a cost of pruning a fraction (20%) of the cases for further evaluation by independent methods. AdaBoost also improved the diagnostic performance of the individual human observers and increased the agreement between their analyses. Pairing AdaBoost with selective pruning is a principled methodology for achieving high diagnostic performance without the added cost of an additional reader for differentiating solid breast masses by ultrasound. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  12. [Obstetrical ultrasound: can the fetus hear the wave and feel the heat?].

    PubMed

    Abramowicz, J S; Kremkau, F W; Merz, E

    2012-06-01

    "Fetuses can hear ultrasound and the sound is as loud as a subway train entering a station." This statement originates in a single report in a non-peer reviewed journal, despite its name 1, of a presentation at a scientific meeting by researchers who reported measuring the sound intensity in the uterus of pregnant women and being able to demonstrate the above. This was later published in a peer-review journal 2 probably not very widely read by clinicians or the general public. From time to time, the popular press or various pregnancy-related websites repeat the assertion or a worried pregnant patient inquires about the truthfulness of this statement. A second, oft-quoted concern is that ultrasound leads to heating of the amniotic fluid. These two assertions may be very concerning to expectant parents and merit scientific scrutiny. In this editorial, we shall examine the known facts about the physical properties of ultrasound as they relate to these two issues. Diagnostic ultrasound employs a pulsed sound wave with positive and negative pressures and the Mayo team, quoted in the New Scientist, predicted that the pulsing would translate into a "tapping" effect 1. According to their report, they placed a tiny hydrophone inside a woman's uterus while she was undergoing an ultrasound examination. They stated that they picked up a hum at around the frequency of the pulsing generated when the ultrasound is switched on and off. The sound was similar to the highest notes on a piano. They also indicated that when the ultrasound probe was pointed right at the hydrophone, it registered a level of 100 decibels, as loud as a subway train coming into a station. Sound levels in decibels are defined for audible frequencies with the reference level being the threshold for hearing at a given frequency. Although the operating frequencies used in sonography are inaudible, it is possible for the pulsing rate (pulse repetition frequency, PRF) to be heard, thus falling in the audible

  13. Fatty liver disease in severe obese patients: Diagnostic value of abdominal ultrasound

    PubMed Central

    de Moura Almeida, Alessandro; Cotrim, Helma Pinchemel; Barbosa, Daniel Batista Valente; de Athayde, Luciana Gordilho Matteoni; Santos, Adimeia Souza; Bitencourt, Almir Galvão Vieira; de Freitas, Luiz Antonio Rodrigues; Rios, Adriano; Alves, Erivaldo

    2008-01-01

    AIM: To evaluate the sensitivity and specificity of abdominal ultrasound (US) for the diagnosis of hepatic steatosis in severe obese subjects and its relation to histological grade of steatosis. METHODS: A consecutive series of obese patients, who underwent bariatric surgery from October 2004 to May 2005, was selected. Ultrasonography was performed in all patients as part of routine preoperative time and an intraoperative wedge biopsy was obtained at the beginning of the bariatric surgery. The US and histological findings of steatosis were compared, considering histology as the gold standard. RESULTS: The study included 105 patients. The mean age was 37.2 ± 10.6 years and 75.2% were female. The histological prevalence of steatosis was 89.5%. The sensitivity and specificity of US in the diagnosis of hepatic steatosis were, respectively, 64.9% (95% CI: 54.9-74.3) and 90.9% (95% CI: 57.1-99.5). The positive predictive value and negative predictive value were, respectively, 98.4% (95% CI: 90.2-99.9) and 23.3% (95% CI: 12.3-39.0). The presence of steatosis on US was associated to advanced grades of steatosis on histology (P = 0.016). CONCLUSION: Preoperative abdominal US in our series has not shown to be an accurate method for the diagnosis of hepatic steatosis in severe obese patients. Until another non-invasive method demonstrates better sensitivity and specificity values, histological evaluation may be recommended to these patients undergoing bariatric surgery. PMID:18322958

  14. Radiation Protection of the Child from Diagnostic Imaging.

    PubMed

    Leung, Rebecca S

    2015-01-01

    In recent years due to the technological advances in imaging techniques, which have undoubtedly improved diagnostic accuracy and resulted in improved patient care, the utilization of ionizing radiation in diagnostic imaging has significantly increased. Computed tomography is the major contributor to the radiation burden, but fluoroscopy continues to be a mainstay in paediatric radiology. The rise in the use of ionizing radiation is of particular concern with regard to the paediatric population, as they are up to 10 times more sensitive to the effects of radiation than adults, due to their increased tissue radiosensitivity, increased cumulative lifetime radiation dose and longer lifetime in which to manifest the effects. This article will review the estimated radiation risk to the child from diagnostic imaging and summarise the various methods through which both the paediatrician and radiologist can practice the ALARA (As Low As Reasonably Achievable) principle, which underpins the safe practice of radiology. Emphasis is on the justification for an examination, i.e. weighing of benefits versus radiation risk, on the appropriate utilization of other, non-ionizing imaging modalities such as ultrasound and magnetic resonance imaging, and on optimisation of a clinically indicated examination. It is essential that the paediatrician and radiologist work together in this decision making process for the mutual benefit of the patient. The appropriate practical application of ALARA in the workplace is crucial to the radiation safety of our paediatric patients.

  15. Rodent wearable ultrasound system for wireless neural recording.

    PubMed

    Piech, David K; Kay, Joshua E; Boser, Bernhard E; Maharbiz, Michel M

    2017-07-01

    Advances in minimally-invasive, distributed biological interface nodes enable possibilities for networks of sensors and actuators to connect the brain with external devices. The recent development of the neural dust sensor mote has shown that utilizing ultrasound backscatter communication enables untethered sub-mm neural recording devices. These implanted sensor motes require a wearable external ultrasound interrogation device to enable in-vivo, freely-behaving neural interface experiments. However, minimizing the complexity and size of the implanted sensors shifts the power and processing burden to the external interrogator. In this paper, we present an ultrasound backscatter interrogator that supports real-time backscatter processing in a rodent-wearable, completely wireless device. We demonstrate a generic digital encoding scheme which is intended for transmitting neural information. The system integrates a front-end ultrasonic interface ASIC with off-the-shelf components to enable a highly compact ultrasound interrogation device intended for rodent neural interface experiments but applicable to other model systems.

  16. Congenital Adrenal Neuroblastoma With and Without Cystic Change: Differentiating Features With an Emphasis on the of Value of Ultrasound.

    PubMed

    Hwang, Sook Min; Yoo, So-Young; Kim, Ji Hye; Jeon, Tae Yeon

    2016-11-01

    The purpose of this study was to compare the features of congenital adrenal neuroblastomas with and without cystic changes and to emphasize the value of ultrasound in the diagnostic evaluation of cystic congenital adrenal neuroblastoma. A total of 41 patients with surgically confirmed congenital adrenal neuroblastoma were enrolled. We divided the patients into two groups according to presence or absence of cystic change in the tumor, as determined from the initial ultrasound findings. Clinical and laboratory findings, disease stage, and patient outcome were investigated with a statistical comparison between the two groups. The imaging findings for cystic congenital adrenal neuroblastoma were reviewed to compare the additional diagnostic value of CT and MRI when paired with ultrasound. There were 22 patients (54%) in the group without cystic changes and 19 patients (46%) in the group with cystic changes. Prenatal detection and absence of metastasis were significantly more common in the cystic group than in the noncystic group (p < 0.05). Sensitivities of tumor marker levels were also significantly lower in the cystic group. Patient outcome was excellent, and there was no significant difference between the groups. With regard to imaging of cystic congenital adrenal neuroblastoma, in the 15 cases in which CT or MRI was paired with ultrasound, no additional diagnostic information was discerned with CT or MRI. Nearly one-half of congenital adrenal neuroblastomas are cystic, and these tumors have clinical and laboratory features that distinguish them from noncystic congenital adrenal neuroblastoma. Diagnostic tests, including CT, MRI, and assessment of tumor markers, have low diagnostic value in the evaluation of cystic congenital adrenal neuroblastoma.

  17. Analysis of utilization patterns and associated costs of the breast imaging and diagnostic procedures after screening mammography.

    PubMed

    Vlahiotis, Anna; Griffin, Brian; Stavros, A Thomas; Margolis, Jay

    2018-01-01

    Little data exist on real-world patterns and associated costs of downstream breast diagnostic procedures following an abnormal screening mammography or clinical exam. To analyze the utilization patterns in real-world clinical settings for breast imaging and diagnostic procedures, including the frequency and volume of patients and procedures, procedure sequencing, and associated health care expenditures. Using medical claims from 2011 to 2015 MarketScan Commercial and Medicare Databases, adult females with breast imaging/diagnostic procedures (diagnostic mammography, ultrasound, molecular breast imaging, tomosynthesis, magnetic resonance imaging, or biopsy) other than screening mammography were selected. Continuous health plan coverage without breast diagnostic procedures was required for ≥13 months before the first found breast diagnostic procedure (index event), with a 13-month post-index follow-up period. Key outcomes included diagnostic procedure volumes, sequences, and payments. Results reported descriptively were projected to provide US national patient and procedure volumes. The final sample of 875,526 patients was nationally projected to 12,394,432 patients annually receiving 8,732,909 diagnostic mammograms (53.3% of patients), 6,987,399 breast ultrasounds (42.4% of patients), and 1,585,856 biopsies (10.3% of patients). Following initial diagnostic procedures, 49.4% had second procedures, 20.1% followed with third procedures, and 10.0% had a fourth procedure. Mean (SD) costs for diagnostic mammograms of US$349 ($493), ultrasounds US$132 ($134), and biopsies US$1,938 ($2,343) contributed US$3.05 billion, US$0.92 billion, and US$3.07 billion, respectively, to annual diagnostic breast expenditures estimated at US$7.91 billion. The volume and expense of additional breast diagnostic testing, estimated at US$7.91 billion annually, underscores the need for technological improvements in the breast diagnostic landscape.

  18. Thoracic ultrasound: Potential new tool for physiotherapists in respiratory management. A narrative review.

    PubMed

    Le Neindre, Aymeric; Mongodi, Silvia; Philippart, François; Bouhemad, Bélaïd

    2016-02-01

    The use of diagnostic ultrasound by physiotherapists is not a new concept; it is frequently performed in musculoskeletal physiotherapy. Physiotherapists currently lack accurate, reliable, sensitive, and valid measurements for the assessment of the indications and effectiveness of chest physiotherapy. Thoracic ultrasound may be a promising tool for the physiotherapist and could be routinely performed at patients' bedsides to provide real-time and accurate information on the status of pleura, lungs, and diaphragm; this would allow for assessment of lung aeration from interstitial syndrome to lung consolidation with much better accuracy than chest x-rays or auscultation. Diaphragm excursion and contractility may also be assessed by ultrasound. This narrative review refers to lung and diaphragm ultrasound semiology and describes how physiotherapists could use this tool in their clinical decision-making processes in various cases of respiratory disorders. The use of thoracic ultrasound semiology alongside typical examinations may allow for the guiding, monitoring, and evaluating of chest physiotherapy treatments. Thoracic ultrasound is a potential new tool for physiotherapists. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Hybrid Optical-Ultrasonic Technique for Biomedical Diagnostics

    PubMed Central

    Marcu, L.; Sun, Y.; Stephens, D.; Park, J.; Farwell, D. G.; Shung, K. K.

    2010-01-01

    We report the development of a diagnostic system combining time-resolved fluorescence spectroscopy and ultrasound backscatter microscopy and its application in diagnosis of tumors and atherosclerotic disease. This system allows for concurrent evaluation of distinct compositional, functional, and micro-anatomical features of normal and diseased tissues. PMID:21918737

  20. Which imaging modality is most effective for identifying pseudotumours in metal-on-metal hip resurfacings requiring revision: ultrasound or MARS-MRI or both?

    PubMed

    Matharu, G S; Mansour, R; Dada, O; Ostlere, S; Pandit, H G; Murray, D W

    2016-01-01

    The aims of this study were to compare the diagnostic test characteristics of ultrasound alone, metal artefact reduction sequence MRI (MARS-MRI) alone, and ultrasound combined with MARS-MRI for identifying intra-operative pseudotumours in metal-on-metal hip resurfacing (MoMHR) patients undergoing revision surgery. This retrospective diagnostic accuracy study involved 39 patients (40 MoMHRs). The time between imaging modalities was a mean of 14.6 days (0 to 90), with imaging performed at a mean of 5.3 months (0.06 to 12) before revision. The prevalence of intra-operative pseudotumours was 82.5% (n = 33). Agreement with the intra-operative findings was 82.5% (n = 33) for ultrasound alone, 87.5% (n = 35) for MARS-MRI alone, and 92.5% (n = 37) for ultrasound and MARS-MRI combined. The diagnostic characteristics for ultrasound alone and MARS-MRI alone reached similar sensitivities (90.9% vs 93.9%) and positive predictive values (PPVs; 88.2% vs 91.2%), but higher specificities (57.1% vs 42.9%) and negative predictive values (NPVs; 66.7% vs 50.0%) were achieved with MARS-MRI. Ultrasound and MARS-MRI combined produced 100% sensitivity and 100% NPV, whilst maintaining both specificity (57.1%) and PPV (91.7%). For the identification of a pseudotumour, which was confirmed at revision surgery, agreement was substantial for ultrasound and MARS-MRI combined (κ = 0.69), moderate for MARS-MRI alone (κ = 0.54), and fair for ultrasound alone (κ = 0.36). These findings suggest that ultrasound and/or MARS-MRI have a role when assessing patients with a MoMHR, with the choice dependent on local financial constraints and the availability of ultrasound expertise. However in patients with a MoMHR who require revision, combined imaging was most effective. Combined imaging with ultrasound and MARS-MRI always identified intra-operative pseudotumours if present. Furthermore, if neither imaging modality showed a pseudotumour, one was not found intra-operatively. ©2016 The British Editorial

  1. Processing ultrasound backscatter to monitor high-intensity focused ultrasound (HIFU) therapy

    NASA Astrophysics Data System (ADS)

    Kaczkowski, Peter J.; Anand, Ajay; Bailey, Michael R.

    2005-09-01

    The development of new noninvasive surgical methods such as HIFU for the treatment of cancer and internal bleeding requires simultaneous development of new sensing approaches to guide, monitor, and assess the therapy. Ultrasound imaging using echo amplitude has long been used to map tissue morphology for diagnostic interpretation by the clinician. New quantitative ultrasonic methods that rely on amplitude and phase processing for tissue characterization are being developed for monitoring of ablative therapy. We have been developing the use of full wave ultrasound backscattering for real-time temperature estimation, and to image changes in tissue backscatter spectrum as therapy progresses. Both approaches rely on differential processing of the backscatter signal in time, and precise measurement of phase differences. Noise and artifacts from motion and nonstationary speckle statistics are addressed by constraining inversions for tissue parameters with physical models. We present results of HIFU experiments with static point and scanned HIFU exposures in which temperature rise can be accurately mapped using a new heat transfer equation (HTE) model-constrained inverse approach. We also present results of a recently developed spectral imaging method that elucidates microbubble-mediated nonlinearity not visible as a change in backscatter amplitude. [Work supported by Army MRMC.

  2. Pulse-encoded ultrasound imaging of the vitreous with an annular array.

    PubMed

    Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Lloyd, Harriet O; Filoux, Erwan; Coleman, D Jackson

    2012-01-01

    The vitreous body is nearly transparent both optically and ultrasonically. Conventional 10- to 12-MHz diagnostic ultrasound can detect vitreous inhomogeneities at high gain settings, but has limited resolution and sensitivity, especially outside the fixed focal zone near the retina. To improve visualization of faint intravitreal fluid/gel interfaces, the authors fabricated a spherically curved 20-MHz five-element annular array ultrasound transducer, implemented a synthetic-focusing algorithm to extend the depth-of-field, and used a pulse-encoding strategy to increase sensitivity. The authors evaluated a human subject with a recent posterior vitreous detachment and compared the annular array with conventional 10-MHz ultrasound and spectral-domain optical coherence tomography. With synthetic focusing and chirp pulse-encoding, the array allowed visualization of the formed and fluid components of the vitreous with improved sensitivity and resolution compared with the conventional B-scan. Although optical coherence tomography allowed assessment of the posterior vitreoretinal interface, the ultrasound array allowed evaluation of the entire vitreous body. Copyright 2012, SLACK Incorporated.

  3. Pharmacokinetics of quercetin-loaded nanodroplets with ultrasound activation and their use for bioimaging

    PubMed Central

    Chang, Li-Wen; Hou, Mei-Ling; Hung, Shuo-Hui; Lin, Lie-Chwen; Tsai, Tung-Hu

    2015-01-01

    Bubble formulations have both diagnostic and therapeutic applications. However, research on nanobubbles/nanodroplets remains in the initial stages. In this study, a nanodroplet formulation was prepared and loaded with a novel class of chemotherapeutic drug, ie, quercetin, to observe its pharmacokinetic properties and ultrasonic bioimaging of specific sites, namely the abdominal vein and bladder. Four parallel groups were designed to investigate the effects of ultrasound and nanodroplets on the pharmacokinetics of quercetin. These groups were quercetin alone, quercetin triggered with ultrasound, quercetin-encapsulated in nanodroplets, and quercetin encapsulated in nanodroplets triggered with ultrasound. Spherical vesicles with a mean diameter of 280 nm were formed, and quercetin was completely encapsulated within. In vivo ultrasonic imaging confirmed that the nanodroplets could be treated by ultrasound. The results indicate that the initial 5-minute serum concentration, area under the concentration–time curve, elimination half-life, and clearance of quercetin were significantly enhanced by nanodroplets with or without ultrasound. PMID:25945049

  4. PLUS: open-source toolkit for ultrasound-guided intervention systems.

    PubMed

    Lasso, Andras; Heffter, Tamas; Rankin, Adam; Pinter, Csaba; Ungi, Tamas; Fichtinger, Gabor

    2014-10-01

    A variety of advanced image analysis methods have been under the development for ultrasound-guided interventions. Unfortunately, the transition from an image analysis algorithm to clinical feasibility trials as part of an intervention system requires integration of many components, such as imaging and tracking devices, data processing algorithms, and visualization software. The objective of our paper is to provide a freely available open-source software platform-PLUS: Public software Library for Ultrasound-to facilitate rapid prototyping of ultrasound-guided intervention systems for translational clinical research. PLUS provides a variety of methods for interventional tool pose and ultrasound image acquisition from a wide range of tracking and imaging devices, spatial and temporal calibration, volume reconstruction, simulated image generation, and recording and live streaming of the acquired data. This paper introduces PLUS, explains its functionality and architecture, and presents typical uses and performance in ultrasound-guided intervention systems. PLUS fulfills the essential requirements for the development of ultrasound-guided intervention systems and it aspires to become a widely used translational research prototyping platform. PLUS is freely available as open source software under BSD license and can be downloaded from http://www.plustoolkit.org.

  5. [The value of bedside lung ultrasound in emergency-plus protocol for the assessment of lung consolidation and atelectasis in critical patients].

    PubMed

    Wang, Xiao-ting; Liu, Da-wei; Zhang, Hong-min; He, Huai-wu; Liu, Ye; Chai, Wen-zhao; Du, Wei

    2012-12-01

    To investigate the effect of the bedside lung ultrasound in emergency(BLUE)-plus lung ultrasound protocol on lung consolidation and atelectasis of critical patients. All patients who need to receive mechanical ventilation for more than 48 hours in ICU from June 2010 to December 2011 in Peking Union Medical College Hospital were included in the study. BLUE-plus and BLUE lung ultrasound, bedside X-ray, lung CT examination were performed on all patients at the same time. The condition of lung consolidation and atelectasis discovered by BLUE-plus lung ultrasound protocol was recorded and compared with bedside X-ray or lung CT. The difference in assessment of lung consolidation and atelectasis between BLUE-plus lung ultrasound protocol and BLUE protocol was compared. A total of 78 patients were finally enrolled in the study. The lung CT found 70 cases (89.74%) had different degrees of lung consolidation and atelectasis. The sensitivity, specificity and diagnostic accuracy of lung consolidation and atelectasis by the bedside chest X-ray were 31.29%, 75.00% and 38.46%, respectively. BLUE-plus lung ultrasound protocol found 68 cases with lung consolidation and atelectasis, and its sensitivity, specificity, and diagnostic accuracy were 95.71%, 87.50% and 94.87%, respectively, which were significantly higher than those of lung CT. BLUE protocol found 48 cases of lung consolidation and atelectasis, and its sensitivity, specificity, and diagnostic accuracy were 65.71%, 75.00% and 66.67%, respectively. The position of lung consolidation and atelectasis which hadn't been found by BLUE protocol was mainly proved to be located in the basement of lung by lung CT. The incidence of lung consolidation and atelectasis in critical patients who received mechanical ventilation is high. The BLUE-plus lung ultrasound protocol has a relatively higher sensitivity, specificity and diagnostic accuracy for consolidation and atelectasis, which can find majority of consolidation and atelectasis

  6. Three-dimensional ultrasound and image-directed surgery: implications for operating room personnel.

    PubMed

    Macedonia, C

    1997-04-01

    The proliferation of new imaging technologies is having a profound impact on all surgical specialties. New means of surgical visualization are allowing more surgeries to be performed less invasively. Three-dimensional ultrasound is a technology that has potential as a diagnostic tool, as a presurgical planning simulator, and as an adjunct to image-directed surgery. This article describes how three-dimensional ultrasound is being used by the United States Department of Defense and how it may change the role of the perioperative nurse in the near future.

  7. Efficient Sample Delay Calculation for 2-D and 3-D Ultrasound Imaging.

    PubMed

    Ibrahim, Aya; Hager, Pascal A; Bartolini, Andrea; Angiolini, Federico; Arditi, Marcel; Thiran, Jean-Philippe; Benini, Luca; De Micheli, Giovanni

    2017-08-01

    Ultrasound imaging is a reference medical diagnostic technique, thanks to its blend of versatility, effectiveness, and moderate cost. The core computation of all ultrasound imaging methods is based on simple formulae, except for those required to calculate acoustic propagation delays with high precision and throughput. Unfortunately, advanced three-dimensional (3-D) systems require the calculation or storage of billions of such delay values per frame, which is a challenge. In 2-D systems, this requirement can be four orders of magnitude lower, but efficient computation is still crucial in view of low-power implementations that can be battery-operated, enabling usage in numerous additional scenarios. In this paper, we explore two smart designs of the delay generation function. To quantify their hardware cost, we implement them on FPGA and study their footprint and performance. We evaluate how these architectures scale to different ultrasound applications, from a low-power 2-D system to a next-generation 3-D machine. When using numerical approximations, we demonstrate the ability to generate delay values with sufficient throughput to support 10 000-channel 3-D imaging at up to 30 fps while using 63% of a Virtex 7 FPGA, requiring 24 MB of external memory accessed at about 32 GB/s bandwidth. Alternatively, with similar FPGA occupation, we show an exact calculation method that reaches 24 fps on 1225-channel 3-D imaging and does not require external memory at all. Both designs can be scaled to use a negligible amount of resources for 2-D imaging in low-power applications and for ultrafast 2-D imaging at hundreds of frames per second.

  8. 78 FR 59701 - Medicare Program; Approval of Accrediting Organization for Suppliers of Advanced Diagnostic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... imaging services, including services described in section 1848(b)(4)(B) (excluding X-ray, ultrasound, and... imaging services,'' including x-ray, ultrasound (including echocardiography), nuclear medicine (including...

  9. Multi-channel pre-beamformed data acquisition system for research on advanced ultrasound imaging methods.

    PubMed

    Cheung, Chris C P; Yu, Alfred C H; Salimi, Nazila; Yiu, Billy Y S; Tsang, Ivan K H; Kerby, Benjamin; Azar, Reza Zahiri; Dickie, Kris

    2012-02-01

    The lack of open access to the pre-beamformed data of an ultrasound scanner has limited the research of novel imaging methods to a few privileged laboratories. To address this need, we have developed a pre-beamformed data acquisition (DAQ) system that can collect data over 128 array elements in parallel from the Ultrasonix series of research-purpose ultrasound scanners. Our DAQ system comprises three system-level blocks: 1) a connector board that interfaces with the array probe and the scanner through a probe connector port; 2) a main board that triggers DAQ and controls data transfer to a computer; and 3) four receiver boards that are each responsible for acquiring 32 channels of digitized raw data and storing them to the on-board memory. This system can acquire pre-beamformed data with 12-bit resolution when using a 40-MHz sampling rate. It houses a 16 GB RAM buffer that is sufficient to store 128 channels of pre-beamformed data for 8000 to 25 000 transmit firings, depending on imaging depth; corresponding to nearly a 2-s period in typical imaging setups. Following the acquisition, the data can be transferred through a USB 2.0 link to a computer for offline processing and analysis. To evaluate the feasibility of using the DAQ system for advanced imaging research, two proof-of-concept investigations have been conducted on beamforming and plane-wave B-flow imaging. Results show that adaptive beamforming algorithms such as the minimum variance approach can generate sharper images of a wire cross-section whose diameter is equal to the imaging wavelength (150 μm in our example). Also, planewave B-flow imaging can provide more consistent visualization of blood speckle movement given the higher temporal resolution of this imaging approach (2500 fps in our example).

  10. Nonspherical dynamics and shape mode stability of ultrasound contrast agent microbubbles

    NASA Astrophysics Data System (ADS)

    Calvisi, Michael

    2016-11-01

    Ultrasound contrast agents (UCAs) are shell encapsulated microbubbles developed originally for ultrasound imaging enhancement. UCAs are more recently being exploited for therapeutic applications, such as for drug delivery, gene therapy, and tissue ablation. Ultrasound transducer pulses can induce spherical (radial) UCA oscillations, translation, and nonspherical shape oscillations, the dynamics of which are highly coupled. If driven sufficiently strongly, the ultrasound can induce breakup of UCAs, which can facilitate drug or gene delivery but should be minimized for imaging purposes to increase residence time and maximize diagnostic effect. Therefore, an understanding of the interplay between the acoustic driving and nonspherical shape mode stability of UCAs is essential for both diagnostic and therapeutic applications. In this work, we use both analytical and numerical methods to analyze shape mode stability for cases of small and large nonspherical oscillations, respectively. To analyze shape mode stability in the limit of small nonspherical perturbations, we couple a radial model of a lipid-coated microbubble with a model for bubble translation and nonspherical shape oscillation. This hybrid model is used to predict shape mode stability for ultrasound driving frequencies and pressure amplitudes of clinical interest. In addition, calculations of the stability of individual shape modes, residence time, maximum radius, and translation are provided with respect to acoustic driving parameters and compared to an unshelled bubble. The effects of shell elasticity, shell viscosity, and initial radius on stability are investigated. Furthermore, the well-established boundary element method (BEM) is used to investigate the dynamics and shape stability of large amplitude nonspherical oscillations of an ultrasonically-forced, polymer-coated microbubble near a rigid boundary. Different instability modes are identified based on the degree of jetting and proximity to the

  11. Three dimensional full-wave nonlinear acoustic simulations: Applications to ultrasound imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinton, Gianmarco

    Characterization of acoustic waves that propagate nonlinearly in an inhomogeneous medium has significant applications to diagnostic and therapeutic ultrasound. The generation of an ultrasound image of human tissue is based on the complex physics of acoustic wave propagation: diffraction, reflection, scattering, frequency dependent attenuation, and nonlinearity. The nonlinearity of wave propagation is used to the advantage of diagnostic scanners that use the harmonic components of the ultrasonic signal to improve the resolution and penetration of clinical scanners. One approach to simulating ultrasound images is to make approximations that can reduce the physics to systems that have a low computational cost.more » Here a maximalist approach is taken and the full three dimensional wave physics is simulated with finite differences. This paper demonstrates how finite difference simulations for the nonlinear acoustic wave equation can be used to generate physically realistic two and three dimensional ultrasound images anywhere in the body. A specific intercostal liver imaging scenario for two cases: with the ribs in place, and with the ribs removed. This configuration provides an imaging scenario that cannot be performed in vivo but that can test the influence of the ribs on image quality. Several imaging properties are studied, in particular the beamplots, the spatial coherence at the transducer surface, the distributed phase aberration, and the lesion detectability for imaging at the fundamental and harmonic frequencies. The results indicate, counterintuitively, that at the fundamental frequency the beamplot improves due to the apodization effect of the ribs but at the same time there is more degradation from reverberation clutter. At the harmonic frequency there is significantly less improvement in the beamplot and also significantly less degradation from reverberation. It is shown that even though simulating the full propagation physics is computationally

  12. Childhood obesity-related endothelial dysfunction: an update on pathophysiological mechanisms and diagnostic advancements.

    PubMed

    Bruyndonckx, Luc; Hoymans, Vicky Y; Lemmens, Katrien; Ramet, José; Vrints, Christiaan J

    2016-06-01

    Childhood obesity jeopardizes a healthy future for our society's children as it is associated with increased cardiovascular morbidity and mortality later on in life. Endothelial dysfunction, the first step in the development of atherosclerosis, is already present in obese children and may well represent a targetable risk factor. Technological advancements in recent years have facilitated noninvasive measurements of endothelial homeostasis in children. Thereby this topic ultimately starts to get the attention it deserves. In this paper, we aim to summarize the latest insights on endothelial dysfunction in childhood obesity. We discuss methodological advancements in peripheral endothelial function measurement and newly identified diagnostic markers of vascular homeostasis. Finally, future challenges and perspectives are set forth on how to efficiently tackle the catastrophic rise in cardiovascular morbidity and mortality that will be inflicted on obese children if they are not treated optimally.

  13. Ultrasound in twin pregnancies.

    PubMed

    Morin, Lucie; Lim, Kenneth

    2011-06-01

    To review the literature with respect to the use of diagnostic ultrasound in the management of twin pregnancies. To make recommendations for the best use of ultrasound in twin pregnancies. Reduction in perinatal mortality and morbidity and short- and long-term neonatal morbidity in twin pregnancies. Optimization of ultrasound use in twin pregnancies. Published literature was retrieved through searches of PubMed and the Cochrane Library in 2008 and 2009 using appropriate controlled vocabulary (e.g., twin, ultrasound, cervix, prematurity) and key words (e.g., acardiac, twin, reversed arterial perfusion, twin-to-twin transfusion syndrome, amniotic fluid). Results were restricted to systematic reviews, randomized control trials/controlled clinical trials, and observational studies. There were no date restrictions. Studies were restricted to those with available English or French abstracts or text. Searches were updated on a regular basis and incorporated into the guideline to September 2009. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology assessment-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The evidence collected was reviewed by the Diagnostic Imaging Committee of the Society of Obstetricians and Gynaecologists of Canada, with input from members of the Maternal Fetal Medicine Committee and the Genetics Committee of the SOGC. The recommendations were made according to the guidelines developed by The Canadian Task Force on Preventive Health Care (Table 1). The benefit expected from this guideline is facilitation and optimization of the use of ultrasound in twin pregnancy. SUMMARY STATEMENTS: 1. There are insufficient data to make recommendations on repeat anatomical assessments in twin pregnancies. Therefore, a complete anatomical survey at each scan may not be needed following a complete

  14. Ultrasound-guided core needle biopsy in diagnosis of abdominal and pelvic neoplasm in pediatric patients.

    PubMed

    Wang, Hailing; Li, Fangxuan; Liu, Juntian; Zhang, Sheng

    2014-01-01

    Ultrasound-guided core needle biopsy of abdominal and pelvic masses in adults has gained tremendous popularity. However, the application of the same treatment in children is not as popular because of apprehensions regarding inadequate tissues for the biopsy and accidental puncture of vital organs. Data of the application of ultrasound-guided core needle biopsy in 105 pediatric patients with clinically or ultrasound-diagnosed abdominopelvic masses were reviewed. Diagnostic procedures were conducted in our institution from May 2011 to May 2013. The biopsies were conducted on 86 malignant lesions and 19 benign lesions. 86 malignant tumors comprised neuroblastomas (30 cases), hepatoblastomas (15 cases), nephroblastomas (11 cases), and primitive neuroectodermal tumors/malignant small round cells (6 cases). Among malignant tumor cases, only a pelvic primitive neuroectodermal tumor did not receive a pathological diagnosis. Therefore, the biopsy accuracy was 98.8 % in malignant tumor. However, the biopsies for one neuroblastomas and one malignant small round cell tumor were inadequate for cytogenetic analysis. Therefore, 96.5 % of the malignant tumor patients received complete diagnosis via biopsy. 19 benign tumors comprised mature teratoma (10 cases), hemangioendothelioma (3 cases), paraganglioma (2 cases), and infection (2 cases). The diagnostic accuracy for benign neoplasm was 100 %. Five patients experienced postoperative complications, including pain (2 patients), bleeding from the biopsy site (2 patients), and wound infection (1 patient). Ultrasound-guided core needle biopsy is an efficient, minimally invasive, accurate, and safe diagnostic method that can be applied in the management of abdominal or pelvic mass of pediatric patients.

  15. Elasticity-based three dimensional ultrasound real-time volume rendering

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Matinfar, Mohammad; Ahmad, Omar; Rivaz, Hassan; Choti, Michael; Taylor, Russell H.

    2009-02-01

    Volumetric ultrasound imaging has not gained wide recognition, despite the availability of real-time 3D ultrasound scanners and the anticipated potential of 3D ultrasound imaging in diagnostic and interventional radiology. Their use, however, has been hindered by the lack of real-time visualization methods that are capable of producing high quality 3D rendering of the target/surface of interest. Volume rendering is a known visualization method, which can display clear surfaces out of the acquired volumetric data, and has an increasing number of applications utilizing CT and MRI data. The key element of any volume rendering pipeline is the ability to classify the target/surface of interest by setting an appropriate opacity function. Practical and successful real-time 3D ultrasound volume rendering can be achieved in Obstetrics and Angio applications where setting these opacity functions can be done rapidly, and reliably. Unfortunately, 3D ultrasound volume rendering of soft tissues is a challenging task due to the presence of significant amount of noise and speckle. Recently, several research groups have shown the feasibility of producing 3D elasticity volume from two consecutive 3D ultrasound scans. This report describes a novel volume rendering pipeline utilizing elasticity information. The basic idea is to compute B-mode voxel opacity from the rapidly calculated strain values, which can also be mixed with conventional gradient based opacity function. We have implemented the volume renderer using GPU unit, which gives an update rate of 40 volume/sec.

  16. The role of contrast-enhanced ultrasound in imaging carotid arterial diseases.

    PubMed

    Clevert, Dirk A; Paprottka, Philipp; Sommer, Wieland H; Helck, Andreas; Reiser, Maximilian F; Zengel, Pamela

    2013-06-01

    The standard of care for the initial diagnosis of carotid artery bifurcation diseases is carotid duplex ultrasound. Carotid abnormalities or difficult examinations may represent a diagnostic challenge in patients with clinical symptoms as well as in the follow-up after carotid endarterectomy, carotid artery stenting or other interventions. A promising new method in the diagnosis and follow-up of pathologic carotid diseases is contrast-enhanced ultrasound (CEUS). In comparison with magnetic resonance imaging or computed tomography, the contrast agents used for CEUS remain within the vascular space and hence can be used to study vascular disease and could provide additional information on carotid arterial diseases. This review describes the current carotid duplex ultrasound examination and compares the pathologic findings with CEUS. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Italian chapter of the International Society of cardiovascular ultrasound expert consensus document on training requirements for noncardiologists using hand-carried ultrasound devices.

    PubMed

    Pelliccia, Francesco; Palmiero, Pasquale; Maiello, Maria; Losi, Maria-Angela

    2012-07-01

    Hand-carried ultrasound devices (HCDs), also named personal use echo, are pocket-size, compact, and battery-equipped echocardiographic systems. They have limited technical capabilities but offer some advantages compared with standard echocardiographic devices due to their simplicity of use, immediate availability at the patient's bedside, transportability, and relatively low cost. Current HCDs are considered as screening tools and are used to complement the physical examination by cardiologists. Many noncardiologic subspecialists, however, have adopted this technologic advancement rapidly raising the concern of an inappropriate use of HCD by health professionals who do not have any specific training. In keeping with the mission of the International Society of Cardiovascular Ultrasound to advance the science and art of cardiovascular ultrasound and encourage the knowledge of this subject, the purpose of this Expert Consensus document is to focus on the training for all health care professionals considering the use of HCD. Accordingly, this paper summarizes general aspects of HCD, such as technical characteristics and clinical indications, and then details the specific training requirements for noncardiologists (i.e., training program, minimum case load, duration, and certification of competence). © 2012, Wiley Periodicals, Inc.

  18. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  19. High-resolution chromosomal microarrays in prenatal diagnosis significantly increase diagnostic power.

    PubMed

    Oneda, Beatrice; Baldinger, Rosa; Reissmann, Regina; Reshetnikova, Irina; Krejci, Pavel; Masood, Rahim; Ochsenbein-Kölble, Nicole; Bartholdi, Deborah; Steindl, Katharina; Morotti, Denise; Faranda, Marzia; Baumer, Alessandra; Asadollahi, Reza; Joset, Pascal; Niedrist, Dunja; Breymann, Christian; Hebisch, Gundula; Hüsler, Margaret; Mueller, René; Prentl, Elke; Wisser, Josef; Zimmermann, Roland; Rauch, Anita

    2014-06-01

    The objective of this study was to determine for the first time the reliability and the diagnostic power of high-resolution microarray testing in routine prenatal diagnostics. We applied high-resolution chromosomal microarray testing in 464 cytogenetically normal prenatal samples with any indication for invasive testing. High-resolution testing revealed a diagnostic yield of 6.9% and 1.6% in cases of fetal ultrasound anomalies and cases of advanced maternal age (AMA), respectively, which is similar to previous studies using low-resolution microarrays. In three (0.6%) additional cases with an indication of AMA, an aberration in susceptibility risk loci was detected. Moreover, one case (0.2%) showed an X-linked aberration in a female fetus, a finding relevant for future family planning. We found the rate of cases, in which the parents had to be tested for interpretation of unreported copy number variants (3.7%), and the rate of remaining variants of unknown significance (0.4%) acceptably low. Of note, these findings did not cause termination of pregnancy after expert genetic counseling. The 0.4% rate of confined placental mosaicism was similar to that observed by conventional karyotyping and notably involved a case of placental microdeletion. High-resolution prenatal microarray testing is a reliable technique that increases diagnostic yield by at least 17.3% when compared with conventional karyotyping, without an increase in the frequency of variants of uncertain significance. © 2014 John Wiley & Sons, Ltd.

  20. Medical and non-medical protection standards for ultrasound and infrasound.

    PubMed

    Duck, Francis A

    2007-01-01

    Protection from inappropriate or hazardous exposure to ultrasound is controlled through international standards and national regulations. IEC standard 60601 part 1 establishes requirements for the mechanical, electrical, chemical and thermal safety for all electro-medical equipment. The associated part 2 standard for diagnostic medical ultrasonic equipment sets no upper limits on ultrasonic exposure. Instead, safety indices are defined that are intended to advise users on the degree of thermal and mechanical hazard. At present the display of these safety indices satisfies regulatory requirements in both the USA and Europe. Nevertheless there are reservations about the effectiveness of this approach to protection management. In the USA, there are national regulatory limits on diagnostic exposure, based on acoustic output from clinical equipment in use over 20 years ago. The IEC 60601 part 2 standard for therapeutic equipment sets 3 W cm(-2) as the limit on acoustic intensity. Transducer surface temperature is controlled for both diagnostic and therapy devices. For airborne ultrasound, interim guidelines on limits of human exposure published by the IRPA are now 2 decades old. A limit on sound pressure level of 100 dB for the general population is recommended. The absence of protection standards for infrasound relates to difficulties in measurement at these low frequencies.