Note: This page contains sample records for the topic advanced electrochemical oxidation from Science.gov.
While these samples are representative of the content of Science.gov,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of Science.gov
to obtain the most current and comprehensive results.
Last update: August 15, 2014.
1

Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes  

Microsoft Academic Search

Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly methods based on the destruction of organic pollutants in wastewaters with in situ electrogenerated hydroxyl radical. This species is formed in anodic oxidation (AO) from water oxidation at the anode and in indirect electro-oxidation methods like electro-Fenton (EF) and photoelectro-Fenton (PEF) also from reaction between catalytic Fe2+ and H2O2 continuously produced at

Marcel Skoumal; Conchita Arias; Pere Lluís Cabot; Francesc Centellas; José Antonio Garrido; Rosa María Rodríguez; Enric Brillas

2008-01-01

2

Mineralization of the biocide chloroxylenol by electrochemical advanced oxidation processes.  

PubMed

Electrochemical advanced oxidation processes (EAOPs) are environmentally friendly methods based on the destruction of organic pollutants in wastewaters with in situ electrogenerated hydroxyl radical. This species is formed in anodic oxidation (AO) from water oxidation at the anode and in indirect electro-oxidation methods like electro-Fenton (EF) and photoelectro-Fenton (PEF) also from reaction between catalytic Fe2+ and H2O2 continuously produced at the O2-diffusion cathode. The PEF method involves the irradiation of the treated solution with UVA light to enhance the photolysis of organics including Fe(III) complexes. In this work, the oxidation power of such EAOPs to decontaminate synthetic wastewaters of the biocide chloroxylenol (4-chloro-3,5-dimethylphenol) at pH 3.0 is comparatively examined with an undivided electrolytic cell containing a Pt or boron-doped diamond (BDD) anode and a stainless steel or O2-diffusion cathode. The initial chlorine is released as Cl(-) ion, which remains stable in the medium using Pt or is oxidized to Cl2 on BDD. The biocide solutions can be completely decontaminated using AO with a BDD anode, as well as PEF with a Pt or BDD anode. The PEF procedure with a BDD anode is the most powerful method leading to total mineralization in about 300 min, practically independent of current density. When current density rises, the degradation rate of processes increases, but they become less efficient due to the larger enhancement of waste reactions of oxidants. Chloroxylenol is much more rapidly removed in EF and PEF than in AO. 2,6-dimethylhydroquinone, 2,6-dimethyl-p-benzoquinone and 3,5-dimethyl-2-hydroxy-p-benzoquinone are identified as aromatic by-products, and maleic, malonic, pyruvic, acetic and oxalic acids are found as generated carboxylic acids. A general pathway for chloroxylenol mineralization by all EAOPs including the above by-products is proposed. PMID:18262595

Skoumal, Marcel; Arias, Conchita; Cabot, Pere Lluís; Centellas, Francesc; Garrido, José Antonio; Rodríguez, Rosa María; Brillas, Enric

2008-04-01

3

Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes  

Microsoft Academic Search

Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density

Xiuping Zhu; Jinren Ni; Peng Lai

2009-01-01

4

Electrochemical Advanced Oxidation Processes (EAOPs) for Environmental Applications  

Microsoft Academic Search

Conventional processes for water treatment are inefficient for the remediation of wastewaters containing toxic and biorecalcitrant organic pollutants. A large number of advanced oxidation processes (AOPs) have been successfully applied to degrade pollutants present in waters. These methods are based on the generation of a very powerful oxidizing agent such as hydroxyl radical ( • OH) in solution, able to

Mehmet A. Oturan; Enric Brillas

2007-01-01

5

Degradation of the fluoroquinolone enrofloxacin by electrochemical advanced oxidation processes based on hydrogen peroxide electrogeneration  

Microsoft Academic Search

Solutions of the veterinary fluoroquinolone antibiotic enrofloxacin in 0.05M Na2SO4 of pH 3.0 have been comparatively degraded by electrochemical advanced oxidation processes such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), photoelectro-Fenton (PEF) and solar photoelectro-Fenton (SPEF) at constant current density. The study has been performed using an undivided stirred tank reactor of 100ml and a batch recirculation flow

Elena Guinea; José Antonio Garrido; Rosa María Rodríguez; Pere-Lluís Cabot; Conchita Arias; Francesc Centellas; Enric Brillas

2010-01-01

6

Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process  

NASA Technical Reports Server (NTRS)

The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

1992-01-01

7

Advanced treatment of biologically pretreated coking wastewater by electrochemical oxidation using boron-doped diamond electrodes.  

PubMed

Electrochemical oxidation is a promising technology to treatment of bio-refractory wastewater. Coking wastewater contains high concentration of refractory and toxic compounds and the water quality usually cannot meet the discharge standards after conventional biological treatment processes. This paper initially investigated the electrochemical oxidation using boron-doped diamond (BDD) anode for advanced treatment of coking wastewater. Under the experimental conditions (current density 20-60mAcm(-2), pH 3-11, and temperature 20-60 degrees C) using BDD anode, complete mineralization of organic pollutants was almost achieved, and surplus ammonia-nitrogen (NH(3)-N) was further removed thoroughly when pH was not adjusted or at alkaline value. Moreover, the TOC and NH(3)-N removal rates in BDD anode cell were much greater than those in other common anode systems such as SnO(2) and PbO(2) anodes cells. Given the same target to meet the National Discharge Standard of China, the energy consumption of 64kWhkgCOD(-1) observed in BDD anode system was only about 60% as much as those observed in SnO(2) and PbO(2) anode systems. Further investigation revealed that, in BDD anode cell, organic pollutants were mainly degraded by reaction with free hydroxyl radicals and electrogenerated oxidants (S(2)O(8)(2-), H(2)O(2), and other oxidants) played a less important role, while direct electrochemical oxidation and indirect electrochemical oxidation mediated by active chlorine can be negligible. These results showed great potential of BDD anode system in engineering application as a final treatment of coking wastewater. PMID:19595422

Zhu, Xiuping; Ni, Jinren; Lai, Peng

2009-09-01

8

Solid Oxide Electrochemical Reactor Science.  

National Technical Information Service (NTIS)

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful infor...

A. Ambrosini C. J. Moyer E. B. Stechel N. P. Sullivan R. J. Kee

2010-01-01

9

Continuous determination of hydrogen peroxide formed in advanced oxidation and electrochemical processes  

Microsoft Academic Search

A hydrogen peroxide (H2O2) auto-analyzer was developed to continuously detect H2O2 present in water, using a flow injection analysis (FIA) technique, during several advanced oxidation processes (AOPs) involving H2O2, such as ozone\\/H2O2, UV\\/H2O2, and ozone\\/UV, and an electrochemical process. The analytical method was based on a fluorometric method, using the reaction of p-hydroxyphenyl acetic acid and H2O2 in the presence

Tae-Mun Hwang; Byung Soo Oh; Yeojoon Yoon; Minhwan Kwon; Joonwun Kang

2012-01-01

10

Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.  

PubMed

As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

2014-07-01

11

Efficient removal of insecticide "imidacloprid" from water by electrochemical advanced oxidation processes.  

PubMed

The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP)?=?1.23?×?10(9) L mol(-1) s(-1). The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94 % total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71 %. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl(-), NO3 (-), and NH4 (+). PMID:24671401

Turabik, Meral; Oturan, Nihal; Gözmen, Belgin; Oturan, Mehmet A

2014-07-01

12

Oxidation\\/mineralization of 2Nitrophenol in aqueous medium by electrochemical advanced oxidation processes using Pt\\/carbon-felt and BDD\\/carbon-felt cells  

Microsoft Academic Search

Electrochemical degradation of toxic and persistent organic pollutant 2-Nitrophenol (2-NP) in acidic medium of pH 3 has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) such as anodic oxidation using BDD anode (AO-BDD), electro-Fenton (EF-Pt) and anodic oxidation coupled to electro-Fenton (EF-BDD) processes under galvanostatic electrolysis conditions. The effect of current density and 2-NP initial concentration on the degradation

Nihal Oturan; Morched Hamza; Salah Ammar; Ridha Abdelhédi; Mehmet A. Oturan

2011-01-01

13

Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.  

PubMed

Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

2014-08-01

14

Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage.  

PubMed

Metal oxide nanostructures are promising electrode materials for lithium-ion batteries and supercapacitors because of their high specific capacity/capacitance, typically 2-3 times higher than that of the carbon/graphite-based materials. However, their cycling stability and rate performance still can not meet the requirements of practical applications. It is therefore urgent to improve their overall device performance, which depends on not only the development of advanced electrode materials but also in a large part "how to design superior electrode architectures". In the article, we will review recent advances in strategies for advanced metal oxide-based hybrid nanostructure design, with the focus on the binder-free film/array electrodes. These binder-free electrodes, with the integration of unique merits of each component, can provide larger electrochemically active surface area, faster electron transport and superior ion diffusion, thus leading to substantially improved cycling and rate performance. Several recently emerged concepts of using ordered nanostructure arrays, synergetic core-shell structures, nanostructured current collectors, and flexible paper/textile electrodes will be highlighted, pointing out advantages and challenges where appropriate. Some future electrode design trends and directions are also discussed. PMID:22912066

Jiang, Jian; Li, Yuanyuan; Liu, Jinping; Huang, Xintang; Yuan, Changzhou; Lou, Xiong Wen David

2012-10-01

15

Solid oxide electrochemical reactor science  

Microsoft Academic Search

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid

Neal P. Sullivan; Ellen Beth Stechel; Connor J. Moyer; Andrea Ambrosini; Robert J. Key

2010-01-01

16

Degradation of herbicide 4-chlorophenoxyacetic acid by advanced electrochemical oxidation methods.  

PubMed

The herbicide 4-chlorophenoxyacetic acid (4-CPA) has been degraded in aqueous medium by advanced electrochemical oxidation processes such as electro-Fenton and photoelectro-Fenton with UV light, using an undivided cell containing a Pt anode. In these environmentally clean methods, the main oxidant is the hydroxyl radical produced from Fenton's reaction between Fe2+ added to the medium and H2O2 electrogenerated from an 02-diffusion cathode. Solutions of a 4-CPA concentration <400 ppm within the pH range of 2.0-6.0 at 35 degrees C can be completely mineralized at low current by photoelectro-Fenton, while electro-Fenton leads to ca. 80% of mineralization. 4-CPA is much more slowly degraded by anodic oxidation in the absence and presence of electrogenerated H2O2. 4-Chlorophenol, 4-chlorocatechol, and hydroquinone are identified as aromatic intermediates by CG-MS and quantified by reverse-phase chromatography. Further oxidation of these chloroderivatives yields stable chloride ions. Generated carboxylic acids such as glycolic, glyoxylic, formic, malic, maleic, fumaric, and oxalic are followed by ion exclusion chromatography. The highest mineralization rate found for photoelectro-Fenton is accounted for by the fast photodecomposition of complexes of Fe3+ with such short-chain acids, mainly oxalic acid, under the action of UV light. PMID:12144282

Boye, Birame; Dieng, Momar M; Brillas, Enric

2002-07-01

17

Critical review of electrochemical advanced oxidation processes for water treatment applications.  

PubMed

Electrochemical advanced oxidation processes (EAOPs) have emerged as novel water treatment technologies for the elimination of a broad-range of organic contaminants. Considerable validation of this technology has been performed at both the bench-scale and pilot-scale, which has been facilitated by the development of stable electrode materials that efficiently generate high yields of hydroxyl radicals (OH?) (e.g., boron-doped diamond (BDD), doped-SnO2, PbO2, and substoichiometic- and doped-TiO2). Although a promising new technology, the mechanisms involved in the oxidation of organic compounds during EAOPs and the corresponding environmental impacts of their use have not been fully addressed. In order to unify the state of knowledge, identify research gaps, and stimulate new research in these areas, this review critically analyses published research pertaining to EAOPs. Specific topics covered in this review include (1) EAOP electrode types, (2) oxidation pathways of select classes of contaminants, (3) rate limitations in applied settings, and (4) long-term sustainability. Key challenges facing EAOP technologies are related to toxic byproduct formation (e.g., ClO4(-) and halogenated organic compounds) and low electro-active surface areas. These challenges must be addressed in future research in order for EAOPs to realize their full potential for water treatment. PMID:24549240

Chaplin, Brian P

2014-05-28

18

Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide  

Microsoft Academic Search

Solutions containing 164mgL?1 salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H2O2, electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O2-diffusion cathode. In

Elena Guinea; Conchita Arias; Pere Lluís Cabot; José Antonio Garrido; Rosa María Rodríguez; Francesc Centellas; Enric Brillas

2008-01-01

19

Solid oxide electrochemical reactor science.  

SciTech Connect

Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

2010-09-01

20

Mineralization of clofibric acid by electrochemical advanced oxidation processes using a boron-doped diamond anode and Fe 2+ and UVA light as catalysts  

Microsoft Academic Search

This work shows that aqueous solutions of clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid), the bioactive metabolite of various lipid-regulating drugs, up to saturation at pH 3.0 are efficiently and completely degraded by electrochemical advanced oxidation processes such as electro-Fenton and photoelectro-Fenton with Fe2+ and UVA light as catalysts using an undivided electrolytic cell with a boron-doped diamond (BDD) anode and an O2-diffusion

Ignasi Sirés; Francesc Centellas; José Antonio Garrido; Rosa María Rodríguez; Conchita Arias; Pere-Lluís Cabot; Enric Brillas

2007-01-01

21

Study of the toxicity of diuron and its metabolites formed in aqueous medium during application of the electrochemical advanced oxidation process “electro-Fenton”  

Microsoft Academic Search

Diuron (N?-[3,4-dichlorophenyl]-N,N-dimethylurea) is a herbicide belonging to the phenylurea family, widely used to destroy weeds on uncultivated surfaces. Because of its toxicity for aquatic organisms and suspicion of being carcinogenic for humans, diuron is the object of growing environmental concern. Therefore, we have developed the electro-Fenton method, an electrochemical advanced oxidation process (EAOP), to degrade diuron in aqueous medium, and

Nihal Oturan; Snezana Trajkovska; Mehmet A. Oturan; Michel Couderchet; Jean-Jacques Aaron

2008-01-01

22

ELECTROCHEMICAL METALLIZING OF ADVANCED MATERIALS  

Microsoft Academic Search

Electrochemical metallizing provides sound metallurgical coatings for maintenance and production applications. The technique involves tankless electroplating, using a brush-on procedure.Maintenance applications involve resizing, restoring, rebuilding or resurfacing worn, damaged, corroded, eroded or overmachined metal components. This paper deals with special production applications. The title may be a misnomer, since the paper deals with advanced materials, but also covers special unique

M. Rubinstein

1989-01-01

23

Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: A pilot plant approach.  

PubMed

The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant. PMID:24798899

Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

2014-07-29

24

Electrochemical oxidation of chlorinated phenols  

Microsoft Academic Search

Electrochemical oxidation has been proposed as a remediation method for chlorinated phenols but is hampered by anode fouling. In this work the authors explore the mechanism of anode fouling by chlorinated phenols, compare structure vs reactivity for phenols differing in the extent of chlorination, and relate the efficiency of oxidation to the mechanism of oxidation at different electrode types. Linear

James D. Rodgers; Wojciech Jedral; Nigel J. Bunce

1999-01-01

25

Electrochemical oxidation of wastewater - opportunities and drawbacks.  

PubMed

Electrochemical oxidation by means of boron-doped diamond (BDD) anodes generates a very efficient oxidizing environment by forming hydroxyl radicals, providing effective water purification for elimination of persistent pollutants. In this project the degradation rates of organic and inorganic substances are investigated. Experiments were performed in laboratory and pilot scale with synthetic and industrial wastewaters. Performance parameters were evaluated in terms of total organic carbon/chemical oxygen demand (COD) removal, specific energy consumption and current efficiency. The integration of this advanced oxidation technology combined with conventional technology was then applied in a wastewater treatment concept of landfill leachate. The raw leachate with a low biochemical oxygen demand/COD ratio was electrochemically oxidized to prepare the purified leachate for discharge into a sewage system or a receiving water body. The cost estimation regarding operation and capital costs addresses the economics for the treatment of heavily polluted effluents. PMID:24037171

Woisetschläger, D; Humpl, B; Koncar, M; Siebenhofer, M

2013-01-01

26

Kinetic behavior of anti-inflammatory drug ibuprofen in aqueous medium during its degradation by electrochemical advanced oxidation.  

PubMed

The electrochemical abatement of the drug ibuprofen (2-(4-isobutylphenyl)propionic acid) from aqueous solution has been carried out by anodic oxidation. The electrolyses have been performed at constant current using a small, undivided cell equipped with a Pt or thin-film boron-doped diamond (BDD) anode and a carbon-felt cathode. The results have shown that ibuprofen has been destroyed under all the conditions tested, following pseudo-first-order kinetics; however, BDD enables higher removal rates than Pt, because the former produces greater quantity of (•)OH. Using BDD anode, the pseudo-first-order rate constant increased with applied current and when NaCl replaced Na2SO4 as supporting electrolyte, while it is almost unaffected by ibuprofen concentration. Mineralization of ibuprofen aqueous solutions was followed by total organic carbon (TOC) measurements. After 8 h of electrolysis, TOC removal varied from 91% to 96% applying a current in the range of 50-500 mA. The reaction by-products were quantified by chromatographic techniques, and in particular, aliphatic acids (oxalic, glyoxylic, formic, acetic, and pyruvic) have been the main intermediates formed during the electrolyses. The absolute rate constant for the oxidative degradation of ibuprofen have also been determined, by competition kinetic method, as 6.41 × 10(9) M(-1) s(-1). PMID:22903814

Ambuludi, Silvia Loaiza; Panizza, Marco; Oturan, Nihal; Özcan, Ali; Oturan, Mehmet A

2013-04-01

27

Mineralization of salicylic acid in acidic aqueous medium by electrochemical advanced oxidation processes using platinum and boron-doped diamond as anode and cathodically generated hydrogen peroxide.  

PubMed

Solutions containing 164 mg L(-1) salicylic acid of pH 3.0 have been degraded by electrochemical advanced oxidation processes such as anodic oxidation, anodic oxidation with electrogenerated H(2)O(2), electro-Fenton, photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Their oxidation power has been comparatively studied in a one-compartment cell with a Pt or boron-doped diamond (BDD) anode and a graphite or O(2)-diffusion cathode. In the three latter procedures, 0.5mM Fe(2+) is added to the solution to form hydroxyl radical (()OH) from Fenton's reaction between Fe(2+) and H(2)O(2) generated at the O(2)-diffusion cathode. Total mineralization is attained for all methods with BDD and for photoelectro-Fenton and solar photoelectro-Fenton with Pt. The poor decontamination achieved in anodic oxidation and electro-Fenton with Pt is explained by the slow removal of most pollutants by ()OH formed from water oxidation at the Pt anode in comparison to their quick destruction with ()OH produced at BDD. ()OH generated from Fenton's reaction oxidizes rapidly all aromatic pollutants, but it cannot destroy final Fe(III)-oxalate complexes. Solar photoelectro-Fenton treatments always yield quicker degradation rate due to the very fast photodecarboxylation of these complexes by UVA irradiation supplied by solar light. The effect of current density on the degradation rate, efficiency and energy cost of all methods is examined. The salicylic acid decay always follows a pseudo-first-order kinetics. 2,3-Dihydroxybenzoic, 2,5-dihydroxybenzoic, 2,6-dihydroxybenzoic, alpha-ketoglutaric, glycolic, glyoxylic, maleic, fumaric, malic, tartronic and oxalic acids are detected as oxidation products. A general reaction sequence for salicylic acid mineralization considering all these intermediates is proposed. PMID:17692891

Guinea, Elena; Arias, Conchita; Cabot, Pere Lluís; Garrido, José Antonio; Rodríguez, Rosa María; Centellas, Francesc; Brillas, Enric

2008-01-01

28

Electrochemical oxidation of chlorinated phenols  

SciTech Connect

Electrochemical oxidation has been proposed as a remediation method for chlorinated phenols but is hampered by anode fouling. In this work the authors explore the mechanism of anode fouling by chlorinated phenols, compare structure vs reactivity for phenols differing in the extent of chlorination, and relate the efficiency of oxidation to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode at several concentrations, sweep rates, and pH were interpreted in terms of deposition of oligomers on the anode surface. Chronopotentiometry at Pt showed that the oxidation potentials of the chlorinated phenol congeners ranged from +0.6 to +1.3 V vs SHE in the pH range 2--12; four electrons are transferred for mono- and trichlorophenols and two for pentachlorophenol. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Seven chlorinated phenols were electrolyzed at PbO{sub 2}, SnO{sub 2}, and IrO{sub 2} anodes. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron-transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2} At current densities <0.1 mA cm{sup {minus}2}, current efficiencies >50% could be achieved with 4-chlorophenol at all three anodes.

Rodgers, J.D.; Jedral, W.; Bunce, N.J. [Univ. of Guelph, Ontario (Canada). Dept. of Chemistry and Biochemistry] [Univ. of Guelph, Ontario (Canada). Dept. of Chemistry and Biochemistry

1999-05-01

29

Mineralization of desmetryne by electrochemical advanced oxidation processes using a boron-doped diamond anode and an oxygen-diffusion cathode.  

PubMed

The mineralization of acidic aqueous solutions of the herbicide desmetryne has been studied by electrochemical advanced oxidation processes (EAOPs) such as anodic oxidation with electrogenerated H(2)O(2) (AO-H(2)O(2)), electro-Fenton (EF) and photoelectro-Fenton (PEF) with UVA light. Electrolyses were conducted in an open and cylindrical cell with a boron-doped diamond (BDD) anode and an O(2)-diffusion cathode for H(2)O(2) generation. The main oxidizing species are ()OH radicals formed at the BDD surface in all treatments and in the bulk from Fenton's reaction between added Fe(2+) and electrogenerated H(2)O(2) in EF and PEF. A poor mineralization was attained using AO-H(2)O(2) by the slow oxidation of persistent by-products with ()OH at the BDD surface. The synergistic action of ()OH in the bulk enhanced the degradation rate in EF, although almost total mineralization was only achieved in PEF due to the additional ()OH generation and photolysis of intermediates by UVA irradiation. The effect of current, pH and herbicide concentration on the mineralization degree and mineralization current efficiency of each EAOP was examined. Desmetryne decay always followed a pseudo first-order kinetics, being more rapidly destroyed in the sequence AO-H(2)O(2)oxidation with ()OH at the BDD surface is the predominant path for desmetryne degradation. The initial nitrogen of desmetryne yielded NO(3)(-) ion in low proportion and NH(4)(+) ion in much lesser extent, suggesting that its major part was lost as volatile N-derivatives. PMID:21996652

Borràs, Núria; Arias, Conchita; Oliver, Ramon; Brillas, Enric

2011-11-01

30

Solution synthesis of metal oxides for electrochemical energy storage applications  

NASA Astrophysics Data System (ADS)

This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

2014-04-01

31

Solution synthesis of metal oxides for electrochemical energy storage applications.  

PubMed

This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices. PMID:24696018

Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

2014-05-21

32

Electrochemical carbon dioxide concentrator advanced technology tasks  

NASA Technical Reports Server (NTRS)

Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

1975-01-01

33

DEVELOPMENT OF ELECTROCHEMICAL REDUCTION TECHNOLOGY FOR SPENT OXIDE FUELS  

SciTech Connect

The Advanced Spent Fuel Conditioning Process (ACP) has been under development at Korea Atomic Energy Research Institute (KAERI) since 1997. The concept is to convert spent oxide fuel into metallic form and to remove high heat-load fission products such as Cs and Sr from the spent fuel. The heat power, volume, and radioactivity of spent fuel can decrease by a factor of a quarter via this process. For the realization of ACP, a concept of electrochemical reduction of spent oxide fuel in Li2O-LiCl molten salt was proposed and several cold tests using fresh uranium oxides have been carried out. In this new electrochemical reduction process, electrolysis of Li2O and reduction of uranium oxide are taking place simultaneously at the cathode part of electrolysis cell. The conversion of uranium oxide to uranium metal can reach more than 99% ensuring the feasibility of this process.

Hur, Jin-Mok; Seo, Chung-Seok; Kim, Ik-Soo; Hong, Sun-Seok; Kang, Dae-Seung; Park, Seong-Won

2003-02-27

34

Electrochemical oxidation of cyclic polysilanes  

Microsoft Academic Search

During the past decade, the electrochemical properties of cyclic polysilane derivatives, namely [Mes2Si]3 (I), [t-Bu(Me)Si]4 (IIa), [Et2Si]4 (IIb), [(n-Pr)2Si]5 (IIIa), [Et2Si]5 (IIIb), [Me2Si]6 (IVa), [Et2Si]6 (IVb), [Et2Si]7 (V), [Me2Si]8 (VI), and [Me2Si]9 (VII), have been explored in our laboratory. Various parameters have been investigated, such as anodic peak potentials, the effect of anode material, nature of supporting electrolyte, atmosphere under

James Y Becker

2003-01-01

35

Ethanol biosensors and electrochemical oxidation of NADH.  

PubMed

Comparative studies of the electrochemical oxidation of reduced nicotinamide coenzyme (NADH) at the surfaces of chemically modified graphite paste electrodes (CMEs) are reported. Three different electroactive materials, tetracyanoquinodimethane (TCNQ), tetrathiafulvalene (TTF), and dimethyl ferrocene (dmFc), were used to construct three different chemically modified paste electrodes. The oxidation of NADH was examined on the basis of cyclic voltammetric measurements. The results show that all three mediators (TCNQ, TTF, and dmFc) behave as efficient mediators of the oxidation of NADH. The typical response curves of NADH at the CMEs surfaces are reported. Incorporating alcohol dehydrogenase and electroactive materials (TCNQ, TTF, and dmFc) within the graphite paste electrodes has led to the development of ethanol biosensors. Typical response curves for the ethanol analysis are reported. Comparative studies on the mediated electrochemical responses of the biosensors to ethanol are discussed. PMID:9657878

Pandey, P C; Upadhyay, S; Upadhyay, B C; Pathak, H C

1998-07-01

36

Fabrication of advanced electrochemical energy materials using sol-gel processing techniques  

NASA Astrophysics Data System (ADS)

Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

Chu, C. T.; Chu, Jay; Zheng, Haixing

1995-04-01

37

Fabrication of advanced electrochemical energy materials using sol-gel processing techniques  

NASA Technical Reports Server (NTRS)

Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

Chu, C. T.; Chu, Jay; Zheng, Haixing

1995-01-01

38

Landfill leachate treatment by electrochemical oxidation  

Microsoft Academic Search

This study investigated the electrochemical oxidation of stabilized leachate from Pulau Burung semi-aerobic sanitary landfill by conducting laboratory experiments with sodium sulfate Na2SO4 (as electrolyte) and graphite carbon electrodes. The control parameters were influent COD, current density and reaction time, while the responses were BOD removal, COD removal, BOD:COD ratio, color and pH. Na2SO4 concentration was 1g\\/L. Experiments were conducted

Mohammed J. K. Bashir; Mohamed Hasnain Isa; Shamsul Rahman Mohamed Kutty; Zarizi Bin Awang; Hamidi Abdul Aziz; Soraya Mohajeri; Izharul Haq Farooqi

2009-01-01

39

Mineralization of Drugs in Aqueous Medium by Advanced Oxidation Processes  

Microsoft Academic Search

At present chemical (AOPs) and electrochemical (EAOPs) advanced oxidation processes with ability to destroy organic pollutants in waters are being developed. These methods are based on the production of hydroxyl radical ( •OH) as oxidant. In AOPsOH radical can be obtained from Fenton's reaction between Fe 2+ and H 2O2 added to the medium, photoreduction of Fe 3+ species or

José Antonio Garrido; Enric Brillas; Pere Lluís Cabot; Francesc Centellas; Conchita Arias; Rosa María Rodríguez

2007-01-01

40

Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate  

Microsoft Academic Search

Treatment of a low BODCOD ratio landfill leachate was conducted by means of electrochemical oxidation process in this investigation. Under the operating conditions of 15 A\\/dm2 current density and 7500 mg\\/l additional chloride concentration, 92% of the COD in the landfall leachate was removed after electrolysis for 240 min with a ternary Sn?Pd?Ru oxide-coated titanium (SPR) anode. At the same

Li-Choung Chiang; Juu-En Chang; Ten-Chin Wen

1995-01-01

41

Solid oxide electrochemical cell fabrication process  

DOEpatents

A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

Dollard, Walter J. (Churchill Borough, PA); Folser, George R. (Lower Burrell, PA); Pal, Uday B. (Cambridge, MA); Singhal, Subhash C. (Murrysville, PA)

1992-01-01

42

Electrochemical oxidation as a final treatment of synthetic tannery wastewater.  

PubMed

Vegetable tannery wastewaters contain high concentrations of organics and other chemicals that inhibit the activity of microorganisms during biological oxidations, so biorefractory organics that are not removed by biological treatment must be eliminated by a tertiary or advanced wastewater treatment. In this paper, the applicability of electrochemical oxidation as a tertiary treatment of a vegetable tannery wastewater was investigated by performing galvanostatic electrolysis using lead dioxide (Ti/PbO2) and mixed titanium and ruthenium oxide (Ti/TiRuO2) as anodes under different experimental conditions. The experimental results showed that both the electrodes performed complete mineralization of the wastewater. In particular, the oxidation took place on the PbO2 anode by direct electron transfer and indirect oxidation mediated by active chlorine, while it occurred on the Ti/TiRuO2 anode only by indirect oxidation. Furthermore, the Ti/PbO2 gave a somewhat higher oxidation rate than that observed for the Ti/TiRuO2 anode. Although the Ti/TiRuO2 required almost the same energy consumption for complete COD removal, it was more stable and did not release toxic ions, so it was the best candidate for industrial applications. With the Ti/TiRuO2 anode, the rate of tannery wastewater oxidation increased with the current density, pH, and temperature of the solution. These results strongly indicate that electrochemical methods can be applied effectively as a final treatment of vegetable tannery wastewater allowing the complete removal of COD, tannin, and ammonium and decolorization. PMID:15543753

Panizza, Marco; Cerisola, Giacomo

2004-10-15

43

Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.  

PubMed

The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L?¹ of total organic carbon of each drug in 0.1 M Na?SO? with 0.5 mM Fe²? of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC?¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC?¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²? regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO?? was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH?? ion and volatile N-derivatives. PMID:21693380

Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

2011-08-01

44

Electrochemical and microstructural study of oxide films formed electrochemically at microcrystalline Al-Fe-V-Si alloys.  

PubMed

A recent advance in metallurgical technology has been the application of rapid solidification techniques to Al alloy production. FVS0812 is the designation given to a microcrystalline Al-based alloy consisting of 8 wt% Fe, 1 wt% V and 2 wt% Si. It is a two-phase alloy, consisting of ca. 27 vol percent of approximately spherical Fe-V-Si-rich dispersoids in an essentially pure Al matrix. The high strength, low density properties of this advanced material, and other related alloys, have not yet been realized, however, due, in part, to the inability of the alloy to form a thick, adherent, abrasion-resistant outer surface oxide film, a feature readily achieved at conventional Al alloys by normal anodizing methods. The present research has involved an electro-chemical study of oxide film growth at the 812 alloy, with the specific goals being to seek an understanding of the origin of the oxide film growth problem and ultimately to propose alternative approaches to the formation of a thick, stable oxide film at this material. The techniques used in this research have included electrochemical methodologies such as cyclic voltammetry and electrochemical impedance spectroscopy. Crucial information has been obtained through transmission electron microscopy (TEM) of ultramicrotomed specimens. Experiments were carried out initially in neutral borate solutions to characterize the compact barrier oxide film formed in this environment and expected to be present beneath the porous oxide film formed in the normal sulfuric acid anodizing medium.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7549001

Thomas, S C; Birss, V I; Steele, D; Tessier, D

1995-07-01

45

Technology advancement of the electrochemical CO2 concentrating process  

NASA Technical Reports Server (NTRS)

Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

1979-01-01

46

Electrochemical oxidation of phenol using graphite anodes  

SciTech Connect

The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

Awad, Y.M. [Arab Centre for Engineering Studies, Abu-Dhabi (United Arab Emirates)] [Arab Centre for Engineering Studies, Abu-Dhabi (United Arab Emirates); Abuzaid, N.S. [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Research Inst.] [King Fahd Univ. of Petroleum and Minerals, Dhahran (Saudi Arabia). Research Inst.

1999-02-01

47

Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.  

PubMed

Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed. PMID:24687789

Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

2014-07-01

48

Advanced Photochemical Oxidation Processes. Handbook.  

National Technical Information Service (NTIS)

This handbook discusses the applicability of advanced photochemical oxidation (APO) technologies for treatment of contaminated water, air, and solids (soil, sediment, and ash). The primary purpose of this handbook is to summarize commercial-scale APO syst...

K. Topudurtir S. Tay E. Monschein

1998-01-01

49

Interface evolution during electrochemical oxidation-dissolution  

NASA Astrophysics Data System (ADS)

We present results from an experimental study on the roughening of Al thin film during electrochemical oxidation reduction. The surface reaction occurred in two stages. Anodic alumina forms during oxidation of aluminum followed by immediate dissolution of alumina. The surface image using AFM showed randomly oriented grains with lateral feature size ˜280 nm at early stage (30 s) of oxidation-dissolution (OD). As farther dissolution of alumina (90 s) progressed, oriented rectangular grains were observed with lateral feature size ˜400 nm, indicating a disordered to ordered transition at the surface. The roughness exponent at the earlier stage found to be 0.44 ± 0.02, consistent with nonlinear KPZ equation. However, for the later case, roughness exponent increased to 0.84 ± 0.03, which is close to the value derived in continuum model. The value of dissolution exponent (growth exponent) ? found to be 0.47 ± 0.1. These values are slightly different from the theoretical values but they are consistent with the theoretical models within the experimental error. Shadow instability found to be a dominant feature in this experiment and contributed to the discrepancy. Interface instabilities are discussed in terms of local and non-local effects.

Aurongzeb, Deeder

2005-11-01

50

Degradation of caffeine by conductive diamond electrochemical oxidation.  

PubMed

The use of Conductive-Diamond Electrochemical Oxidation (CDEO) and Sonoelectrochemical Oxidation (CDSEO) has been evaluated for the removal of caffeine of wastewater. Effects of initial concentration, current density and supporting electrolyte on the process efficiency are assessed. Results show that caffeine is very efficiently removed with CDEO and that depletion of caffeine has two stages depending on its concentration. At low concentrations, opposite to what it is expected in a mass-transfer controlled process, the efficiency increases with current density very significantly, suggesting a very important role of mediated oxidation processes on the removal of caffeine. In addition, the removal of caffeine is faster than TOC, indicating the formation of reaction intermediates. The number and relative abundance of them depend on the operating conditions and supporting electrolyte used. In chloride media, removal of caffeine is faster and more efficiently, although the occurrence of more intermediates takes place. CDSEO does not increase the efficiency of caffeine removal, but it affects to the formation of intermediates. A detailed characterization of intermediates by liquid chromatography time-of-flight mass spectrometry seems to indicate that the degradation of caffeine by CDEO follows an oxidation pathway similar to mechanism proposed by other advanced oxidation processes. PMID:23769468

Indermuhle, Chloe; Martín de Vidales, Maria J; Sáez, Cristina; Robles, José; Cañizares, Pablo; García-Reyes, Juan F; Molina-Díaz, Antonio; Comninellis, Christos; Rodrigo, Manuel A

2013-11-01

51

Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector  

Microsoft Academic Search

The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L?1 of total organic carbon of each drug in 0.1 M Na2SO4 with 0.5 mM Fe2+ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single

Eloy Isarain-Chávez; Rosa María Rodríguez; Pere Lluís Cabot; Francesc Centellas; Conchita Arias; José Antonio Garrido; Enric Brillas

2011-01-01

52

Advancement in electrochemical micro-machining  

Microsoft Academic Search

Electrochemical micro-machining (EMM) appears to be very promising as a future micro-machining technique, since in many areas of applications it offers several advantages, which include higher machining rate, better precision and control, and a wide range of materials that can be machined. In this paper, a review is presented on current research, development and industrial practice in micro-ECM. This paper

B. Bhattacharyya; J. Munda; M. Malapati

2004-01-01

53

Tutorial Review: Electrochemical Nitric Oxide Sensors for Physiological Measurements  

PubMed Central

Summary The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO-detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. Herein, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed.

Privett, Benjamin J.; Shin, Jae Ho; Schoenfisch, Mark H.

2013-01-01

54

Technology advancement of the electrochemical CO2 concentrating process  

NASA Technical Reports Server (NTRS)

The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

1978-01-01

55

Oxalic acid mineralization by electrochemical oxidation processes.  

PubMed

In this study, two electrochemical oxidation processes were utilized to mineralize oxalic acid which was a major intermediate compound in the oxidation of phenols and other aromatic compounds. The anode rod and cathode net were made of a titanium coated with RuO(2)/IrO(2) (Ti-DSA) and stainless steel (S.S. net, SUS304), respectively. First, the Fered-Fenton process, which used H(2)O(2) and Fe(2+) as additive reagents, achieved 85% of TOC removal. It proceeded with ligand-to-metal charge-transfer (LMCT), which was evidenced by the accumulation of metallic foil on the selected cathode. However, in the absence of H(2)O(2)/Fe(2+), it showed a higher TOC removal efficiency while using Cl(-) only as an additive reagent due to the formation of hypochlorite on the anode. It was also found that the mineralization of oxalic acid by electrolysis generated hypochlorite better than the dosage of commercial hypochlorite without electricity. Also, pH value was a major factor that affected the mineralization efficiency of the oxalic acid due to the chlorine chemistry. 99% TOC removal could be obtained by Cl(-) electrolysis in an acidic environment. PMID:21320749

Huang, Yao-Hui; Shih, Yu-Jen; Liu, Cheng-Hong

2011-04-15

56

Technology advancement of the electrochemical CO2 concentrating process  

NASA Technical Reports Server (NTRS)

A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

1977-01-01

57

Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells  

DOEpatents

An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

2000-01-01

58

Oxide modified air electrode surface for high temperature electrochemical cells  

DOEpatents

An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, Allegheny County, PA)

1992-01-01

59

Electrochemical oxidation of aniline at boron-doped diamond electrodes  

Microsoft Academic Search

The electrochemical oxidation of aniline at boron-doped diamond (BDD) electrodes was investigated by cyclic voltammetry, steady-state polarization measurements and bulk electrolysis under potentiostatic control. It was found that acidic media is suitable for efficient electrochemical oxidation of aniline, because at low pH, the potential required for avoiding electrode fouling is lower than in neutral and alkaline media. The results of

M. Mitadera; N. Spataru; A. Fujishima

2004-01-01

60

Electrochemical and partial oxidation of methane  

NASA Astrophysics Data System (ADS)

Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by in situ infrared spectroscopy combined with mass spectrometry and (ii) evaluating the perfo

Singh, Rahul

61

Electrochemical behavior of hydrated molybdenum oxides in rechargeable lithium batteries  

Microsoft Academic Search

Oxide-hydrates of molybdenum (OHM) are investigated as 3-volt cathode materials for rechargeable lithium batteries. These\\u000a materials with different water content showed a much better performance than that of MoO3 as cathode of the rechargeable lithium battery. We report the electrochemical characteristics of Li\\/\\/OHM batteries using\\u000a the oxides and oxide-hydrates of molybdenum which were synthesized from molybdic acid. The oxide has

B. Yebka; C. Julien; G. A. Nazri

1999-01-01

62

Electrochemical deposition under oxidizing conditions (EDOC): a new synthesis for nanocrystalline metal oxides  

Microsoft Academic Search

EDOC (Electrochemical Deposition under Oxidizing Conditions) is a new method for the electrochemical preparation of metal oxide nanoparticles. It is based on the reduction of metal ions; Coming from a sacrificial anode; In a non-aqueous medium. The formed metal clusters are immediately coated with stabilizers; Which prevent the particles from agglomeration and realize the nanocrystalline state. Thus we have prepared

A Dierstein; H Natter; F Meyer; H.-O Stephan; Ch Kropf; R Hempelmann

2001-01-01

63

Electrochemical oxidation of benzene on boron-doped diamond electrodes  

Microsoft Academic Search

This work presents an electrochemical investigation of the benzene oxidation process in aqueous solution on boron-doped diamond (BDD) electrodes. Additionally, in order to determine the main products generated during the oxidation process, electrolysis and high performance liquid chromatography experiments were carried out. The complete degradation of this compound was performed aiming to a further application in waste water treatment. The

Robson T. S. Oliveira; Giancarlo R. Salazar-Banda; Mauro C. Santos; Marcelo L. Calegaro; Douglas W. Miwa; Sergio A. S. Machado; Luis A. Avaca

2007-01-01

64

Oxidation of Triarylphosphines, Tetraaryldiphosphine and Cyclopolyphosphanes. Electrochemical and ESR Studies  

Microsoft Academic Search

Electrochemical oxidation of a series of triarylphosphines and tetraaryldiphosphines was investigated by pulse voltammetry and cyclic voltammetry. Phosphines and diphosphines bearing only very bulky aryl groups (Mesityl, Duryl, Xylyl) show a reversible one-electron oxidation process. The resultant cation radicals are very persistent and their ESR features are easily obtained at room temperature. Unlike their nitrogen analogs, triarylphosphoniumyl radicals and tetraaryldiphospine

M. Culcasi; G. Gronchi; P. Tordo

1987-01-01

65

Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application  

PubMed Central

Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5?A g?1, 739?F g?1) and cycling stability (704?F g?1 retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors.

Zhang, Youjuan; Liu, Yuanying; Chen, Jing; Guo, Qifei; Wang, Ting; Pang, Huan

2014-01-01

66

Fabrication of Advanced Electrochemical Energy Materials Using Sol-Gel Processing Techniques.  

National Technical Information Service (NTIS)

Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used i...

C. T. Chu J. Chu H. Zheng

1995-01-01

67

Electrochemical oxidation of textile wastewater and its reuse.  

PubMed

It is attempted in the present investigation to treat organic pollutant present in the textile effluent using an electrochemical treatment technique. Experiments are carried out in a batch electrochemical cell covering wide range in operating conditions. Due to the strong oxidizing potential of the chemicals produced, the effluent COD is reduced substantially in this treatment technique. The influence of effluent initial concentration, pH, supporting electrolyte concentration and the anode material on pollutant degradation has been critically examined. It is further attempted in the present investigation to reuse the treated wastewater for dyeing purpose. Several cycles of dyeing operations have been performed with the treated textile wastewater and the dye uptake and water quality have been critically examined at each cycle of dyeing process. The results indicate that the electrochemical method is a feasible technique for treatment of textile wastewater and electrochemically treated wastewater can be effectively reused for dyeing application. PMID:17336454

Mohan, N; Balasubramanian, N; Basha, C Ahmed

2007-08-17

68

Preparation and electrochemical performance of novel ruthenium–manganese oxide electrode materials for electrochemical capacitors  

Microsoft Academic Search

A series of novel ruthenium–manganese oxide (denoted as RunMn1?nOx) has been formed by oxidative co-precipitating. The precursor was obtained by mixing Mn(VII) (potassium permanganate), Mn(II) (manganese acetate) and Ru(III) (ruthenium chloride) in neutral aqueous solution at room temperature. The powder of RunMn1?nOx was obtained by calcinating the precursor at appropriate temperature. The crystalline structure and electrochemical performance of the powder

Jianguo Wen; Xiangyuan Ruan; Zhentao Zhou

2009-01-01

69

Corrosion and Electrochemical Oxidation of a Pyrite by Thiobacillus ferrooxidans  

PubMed Central

The oxidation of a pure pyrite by Thiobacillus ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved. Images

Mustin, C.; Berthelin, J.; Marion, P.; de Donato, P.

1992-01-01

70

Corrosion and electrochemical oxidation of a pyrite by Thiobacillus ferrooxidans  

SciTech Connect

The oxidation of a pure pyrite by Thiobacillus Ferrooxidans is not really a constant phenomenon; it must be considered to be more like a succession of different steps which need characterization. Electrochemical studies using a combination of a platinum electrode and a specific pyrite electrode (packed-ground-pyrite electrode) revealed four steps in the bioleaching process. Each step can be identified by the electrochemical behavior (redox potentials) of pyrite, which in turn can be related to chemical (leachate content), bacterial (growth), and physical (corrosion patterns) parameters of the leaching process. A comparison of the oxidation rates of iron and sulfur indicated the nonstoichiometric bacterial oxidation of a pure pyrite in which superficial phenomena, aqueous oxidation, and deep crystal dissolution are successively involved.

Mustin, C.; Berthelin, J. (Univ. de Nancy I, Notre-Dame-des-Pauvres (France)); Marion, P.; Donato, P. de (Environnement et Mineralurgie, Vandaeuvre-les-Nancy (France))

1992-04-01

71

Sol-gel Technology and Advanced Electrochemical Energy Storage Materials  

NASA Technical Reports Server (NTRS)

Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

Chu, Chung-tse; Zheng, Haixing

1996-01-01

72

Some chemical and electrochemical properties of graphite oxide  

Microsoft Academic Search

Graphite oxide is a very hygroscopic compound and can accommodate up to 12wt% of water in its structure. Specific treatments afforded derivatives that present definitely no affinity for water and in which the hydroxy\\/epoxy ratio may be modified according to the treatment. These graphite oxide derivatives were characterized by X-ray powder diffraction, and IR and NMR spectroscopies. Electrochemical measurements were

A. Hamwi; V. Marchand

1996-01-01

73

High-temperature and electrochemical oxidation of transition metal silicides  

Microsoft Academic Search

High-temperature and electrochemical oxidation of transition metal silicides, which are widely used in microelectronics as\\u000a ohmic contacts and protective coatings for high-temperature alloys, are discussed in this review. The process of oxide film\\u000a formation during annealing or anodizing is extremely important for both applications of silicides. It is discussed for three\\u000a disilicides: MoSi2, WSi2, and TiSi2. It has been shown

A. D. Chirkin; V. O. Lavrenko; V. M. Talash

2009-01-01

74

Method of electrode fabrication for solid oxide electrochemical cells  

DOEpatents

A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

Jensen, R.R.

1990-11-20

75

Method of electrode fabrication for solid oxide electrochemical cells  

DOEpatents

A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

Jensen, Russell R. (Murrysville, PA)

1990-01-01

76

Oxidation of Silicon Electrochemically Etched Microchannels Arrays  

Microsoft Academic Search

Macroporous silicon technology is an important method to fabricate microchannels on silicon. The formation of insulator layer on the sidewall of the channels is necessary for electrical isolation or passivation of the surface. Oxidation is one of the preferred options. In this paper we investigate the effect of various oxidation processes on the smoothness of the sidewalls of the high

Junxu Wu; Lianwei Wang; Xiaoming Chen; Mingjie Zheng; Weili Liu; Zhitang Song; P. M. Sarro

2006-01-01

77

The photoluminescence in electrochemically oxidized porous silicon  

Microsoft Academic Search

Some oxidized porous silicon samples exhibit an amorphous phase with the approximate composition SiO1.6. The particular features of the photoluminescence spectra were tentatively ascribed to the contribution of the interface between silicon and the non-stoichiometric oxide

M. Popescu; V. Chumash; I. Cojocaru; S. Zamfira; V. K. Jain; A. Gupta

1995-01-01

78

Solid oxide materials research accelerated electrochemical testing  

SciTech Connect

The objectives of this work were to develop methods for accelerated testing of cathode material for solid oxide fuel cells under selected operating conditions. The methods would be used to evaluate the performance of LSM cathode material.

Armstrong, T.R.; Windisch, C.; Arey, B.

1995-12-31

79

Direct electrochemical reduction of metal-oxides  

DOEpatents

A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

Redey, Laszlo I. (Downers Grove, IL); Gourishankar, Karthick (Downers Grove, IL)

2003-01-01

80

Degradation of conazole fungicides in water by electrochemical oxidation.  

PubMed

The electrochemical oxidation (EO) treatment in water of three conazole fungicides, myclobutanil, triadimefon and propiconazole, has been carried out at constant current using a BDD/SS system. First, solutions of each fungicide were electrolyzed to assess the effect of the experimental parameters such as current, pH and fungicide concentration on the decay of each compound and total organic carbon abatement. Then a careful analysis of the degradation by-products was made by high performance liquid chromatography, ion chromatography and gas chromatography coupled with mass spectrometry in order to provide a detailed discussion on the original reaction pathways. Thus, during the degradation of conazole fungicides by the electrochemical oxidation process, aromatic intermediates, aliphatic carboxylic acids and Cl(-) were detected prior to their complete mineralization to CO2 while NO3(-) anions remained in the treated solution. This is an essential preliminary step towards the applicability of the EO processes for the treatment of wastewater containing conazole fungicides. PMID:24140400

Urzúa, J; González-Vargas, C; Sepúlveda, F; Ureta-Zañartu, M S; Salazar, R

2013-11-01

81

The Electrochemical Displacement Reaction of Lithium with Metal Oxides  

Microsoft Academic Search

The electrochemical reaction of lithium with a-LiFeO2, b-Li5FeO4 , and CoO is studied by in situ X-ray diffraction and in situ Mossbauer measurements. The results of the measurements show that these metal oxides are immediately decomposed during discharge to form lithia and the reduced metal. This reaction proceeds through a single intermediate or surface phase. The reaction products are nanometer-sized,

M. N. Obrovac; R. A. Dunlap; R. J. Sanderson; J. R. Dahn

2001-01-01

82

Electrochemical evaluation and modification of commercial lithium cobalt oxide powders  

Microsoft Academic Search

As the cathode materials for rechargeable lithium batteries, five commercial lithium cobalt oxide powders have been investigated for a comparative study. The X-ray diffraction analysis indicates that all these powders exhibit the ?-NaFeO2 layered structure. The size distribution and morphology were analyzed by particle sedimentation method and scanning electron microscopy (SEM). Their electrochemical properties including cycleability and especially 3.6V plateau

J Zhang; Y. J Xiang; Y Yu; S Xie; G. S Jiang; C. H Chen

2004-01-01

83

Electrochemical oxidation of phenol at boron-doped diamond electrode  

Microsoft Academic Search

The electrochemical oxidation of phenol at synthetic boron-doped diamond thin film electrode (BDD) has been studied in acid media by cyclic voltammetry, chronoamperometry and bulk electrolysis. The results have shown that in the potential region of water stability (E<2.3 V vs. SHE) they can occur direct electron transfer reactions on BDD surface that results in electrode fouling due to the

J. Iniesta; P. A. Michaud; M. Panizza; G. Cerisola; A. Aldaz; Ch. Comninellis

2001-01-01

84

Electrochemical oxidation of carbonaceous materials dispersed in molten carbonate  

Microsoft Academic Search

To enhance the electrochemical reactivity of coal slurries by operating at high temperature, a molten carbonate electrolyte (ternary eutectic of lithium, sodium and potassium carbonate) was employed. Anodic oxidation took place at an inert gold electrode, which also served as a current collector. An alumina-sheathed carbon dioxide\\/oxygen\\/gold half-cell served as the reference electrode, and a shielded graphite rod served as

Vutetakis

1985-01-01

85

Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films  

Microsoft Academic Search

A simple method of electrochemical deposition was adopted to prepare conductive hydrophobic zinc oxide (ZnO) thin films. The surface structures were characterized by sanning electron microscopy (SEM) and atomic force microscopy (AFM). Wettability studies revealed that the surface of the as-prepared thin films showed a contact angle (CA) for water of 128.3 ( 1.7°, whereas the superhydrophobic surface with a

Mei Li; Jin Zhai; Huan Liu; Yanlin Song; Lei Jiang; Daoben Zhu

2003-01-01

86

Electrochemical oxidation of 5-hydroxytryptophol. I: Studies in acid solution.  

PubMed

The oxidation chemistry of the endogenous central nervous system indole 5-hydroxytryptophol (5-HTOL) has been studied at pH 2 using electrochemical methods. The first voltammetric oxidation peak (I) appears to involve an initial one-electron abstraction giving a transient radical cation that, in the rate-controlling step, deprotonates to give a neutral radical. A radical-substrate reaction then occurs to give a dimer radical which is further oxidized to yield three simple dimers (4,4'-,4,6'-, and 2,4'-linked). The neutral radical can be further oxidized (1e) to a quinone imine that, as a result of very fast follow-up chemistry and electrochemistry, yields tryptophol-4,5-dione (B) which has been isolated in pure form. Reactions between intermediate species also result in three dimers containing residues of 5-HTOL and B and an unusual oxygen-bridged trimer. PMID:2338638

Cheng, F C; Dryhurst, G

1990-03-01

87

An in situ second harmonic generation study of the electrochemical oxidation of silicon in fluoride media  

Microsoft Academic Search

The electrochemical oxidation of p-type Si in fluoride solutions has been studied by in situ second harmonic generation (SHG) with the SHG signal being recorded simultaneously with the cyclic voltammogram. The SHG signal is shown to change in tandem with the electrochemical response enabling the identification of transition points between different surface conditions such as hydrogen-terminated, hydrated oxide and oxide.

P. Hayes; A. G. Taylor; J. A. Levitt; C. P. Wilde

2003-01-01

88

Degradation of methyl orange waste water by electrochemical oxidation method  

NASA Astrophysics Data System (ADS)

Degradation of methyl orange (MO) waste water was conducted by electrochemical oxidation method with PbO2/Ti electrode as anode. PbO2/Ti electrode was fabricated by electrochemical deposition of PbO2 on Ti foil. The micrograph and crystal structure of PbO2 show that uniform coating of PbO2 on titanium foil was obtained and the dominant crystal structure was ?-PbO2. Degradation experiments of MO solution indicate that the degradation rate increased with cell voltage and solution conductivity. In addition, air aeration also improved the degradation of MO solution; but an increase in cell voltage or input energy decreased the energy efficiency of MO removal. The energy efficiency reached over 0.1mg kJ-1 under a cell voltage lower than 15V, and the removal rate could reach 90%.

Tian, Jingyi; Shang, Kefeng; Xue, Xiangxin; Yang, Lei

2013-03-01

89

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOEpatents

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Riley, B.; Szreders, B.E.

1988-04-26

90

Fabrication of solid oxide fuel cell by electrochemical vapor deposition  

DOEpatents

In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

1989-01-01

91

Hydrothermally enhanced electrochemical oxidation of high concentration refractory perfluorooctanoic acid.  

PubMed

A green hydrothermally enhanced electrochemical oxidation (HTEO) technique is developed to treat the high concentration refractory perfluorooctanoic acid (PFOA) wastewater on boron-doped diamond (BDD) film electrode. Results show that HTEO can demonstrate higher degradation efficiency for PFOA than the normal electrochemical oxidation (EO) process, with the removal of PFOA, total organic carbon (TOC), and organic fluorine in the HTEO process increasing by 1.1, 1.8, and 2.1 times, respectively. The kinetics study indicates that the degradation of PFOA follows a first-order reaction in the HTEO process with the apparent reaction rate constant 3.1 times higher than that in the EO process. The higher degradation efficiency of PFOA is due to the hydrothermal enhancement in electrochemical properties of the electrode and solution. Compared with EO, during the HTEO process, the conductivity and ionic migration rate of the solution is improved by 540% and 60%, respectively. In addition, the Tafel slope is increased to 343 from 279 mV dec(-1), indicating an inhibition effect of oxygen evolution reaction and a more effective oxidation of PFOA. In particular, the hydrothermal condition promotes a high formation rate of hydroxyl radical with the concentration almost 2 times of that in EO, which is considered the inner factor leading to the higher degradation efficiency. The density functional theory simulations demonstrate that the nonterminal C-C bonds in the main carbon chain can be easily destructed in the hydrothermal condition, as confirmed by the experimental detection of intermediates of C(5)F(11)COOH, C(4)F(9)COOH, C(3)F(7)COOH, C(2)F(5)COOH, CF(3)COOH, and some dicarboxylic acids. As a result, a reaction pathway is tentatively proposed. PMID:22013988

Xiao, Hanshuang; Lv, Baoying; Zhao, Guohua; Wang, Yujing; Li, Mingfang; Li, Dongming

2011-12-01

92

Corner heating in rectangular solid oxide electrochemical cell generators  

DOEpatents

Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

Reichner, Philip (Plum Boro, PA)

1989-01-01

93

A novel advanced oxidation process—wet electro-catalytic oxidation for high concentrated organic wastewater treatment  

Microsoft Academic Search

A novel advanced oxidation process—wet electrocatalytic oxidation (WEO) was studied with p-nitrophenol as model pollutant and ?-PbO2 electrode as the anode. Compared with the effect of the individual wet air oxidation (WAO) and electrochemical oxidation\\u000a (EO), the effect of WEO showed synergistic effect on COD removal under the conditions of temperature 160C, C=1000 mgL?1, \\u000a $$P_{N_2 } = 0.50$$\\u000a MPa, \\u000a $$P_{O_2

QiZhou Dai; MingHua Zhou; LeCheng Lei; XingWang Zhang

2007-01-01

94

Electrochemically tunable thermal conductivity of lithium cobalt oxide.  

PubMed

Using time-domain thermoreflectance, the thermal conductivity and elastic properties of a sputter deposited LiCoO2 film, a common lithium-ion cathode material, are measured as a function of the degree of lithiation. Here we report that via in situ measurements during cycling, the thermal conductivity of a LiCoO2 cathode reversibly decreases from ~5.4 to 3.7?W?m(-1)?K(-1), and its elastic modulus decreases from 325 to 225?GPa, as it is delithiated from Li1.0CoO2 to Li0.6CoO2. The dependence of the thermal conductivity on lithiation appears correlated with the lithiation-dependent phase behaviour. The oxidation-state-dependent thermal conductivity of electrolytically active transition metal oxides provides opportunities for dynamic control of thermal conductivity and is important to understand for thermal management in electrochemical energy storage devices. PMID:24892640

Cho, Jiung; Losego, Mark D; Zhang, Hui Gang; Kim, Honggyu; Zuo, Jianmin; Petrov, Ivan; Cahill, David G; Braun, Paul V

2014-01-01

95

Study of electrochemical reduced graphene oxide and MnO2 heterostructure for supercapacitor application  

NASA Astrophysics Data System (ADS)

In this paper we have shown enhanced supercapacitive property of electrochemically reduced graphene oxide (ERGO) and manganese dioxide (MnO2) based heterostructure over single MnO2 thin film grown by electrochemical deposition on indium tin oxide (ITO). ERGO improves the electrical conduction leading to decrease of the internal resistance of the heterostructure.

Jana, S. K.; Rao, V. P.; Banerjee, S.

2013-02-01

96

Electrochromic properties of intercrossing nickel oxide nanoflakes synthesized by electrochemically anodic deposition  

Microsoft Academic Search

Nanostructured nickel oxide film is synthesized directly onto a transparent and conducting indium tin oxide coated glass substrate by electrochemically anodic deposition from an aqueous solution. The deposited nickel oxide film has an intercrossing nanoflake and highly porous morphology. X-ray diffraction peaks of the film resemble closely to the cubic NiO structure. The deposited film oxidized\\/reduced electrochemically at 0.36 and

Mao-Sung Wu; Chung-Hsien Yang

2007-01-01

97

Electrochemical production of hydrogen coupled with the oxidation of arsenite.  

PubMed

The production of hydrogen accompanied by the simultaneous oxidation of arsenite (As(III)) was achieved using an electrochemical system that employed a BiOx-TiO2 semiconductor anode and a stainless steel (SS) cathode in the presence of sodium chloride (NaCl) electrolyte. The production of H2 was enhanced by the addition of As(III) during the course of water electrolysis. The synergistic effect of As(III) on H2 production can be explained in terms of (1) the scavenging of reactive chlorine species (RCS), which inhibit the production of H2 by competing with water molecules (or protons) for the electrons on the cathode, by As(III) and (2) the generation of protons, which are more favorably reduced on the cathode than water molecules, through the oxidation of As(III). The addition of 1.0 mM As(III) to the electrolyte at a constant cell voltage (E cell) of 3.0 V enhanced the production of H2 by 12% even though the cell current (I cell) was reduced by 5%. The net effect results in an increase in the energy efficiency (EE) for H2 production (?EE) by 17.5%. Furthermore, the value ?EE, which depended on As(III) concentration, also depended on the applied E cell. For example, the ?EE increased with increasing As(III) concentration in the micromolar range but decreased as a function of E cell. This is attributed to the fact that the reactions between RCS and As(III) are influenced by both RCS concentration depending on E cell and As(III) concentration in the solution. On the other hand, the ?EE decreased with increasing As(III) concentration in the millimolar range due to the adsorption of As(V) generated from the oxidation of As(III) on the semiconductor anode. In comparison to the electrochemical oxidation of certain organic compounds (e.g., phenol, 4-chlorophenol, 2-chlorophenol, salicylic acid, catechol, maleic acid, oxalate, and urea), the ?EE obtained during As(III) oxidation (17.5%) was higher than that observed during the oxidation of the above organic compounds (?EE = 3.0-15.3%) with the exception of phenol at 22.1%. The synergistic effect of As(III) on H2 production shows that an energetic byproduct can be produced during the remediation of a significant inorganic pollutant. PMID:24386985

Kim, Jungwon; Kwon, Daejung; Kim, Kitae; Hoffmann, Michael R

2014-02-01

98

Oxidation of alloys for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.

2005-01-01

99

Spectroscopic and electrochemical studies of electrochromic hydrated nickel oxide films  

SciTech Connect

The electrochromic properties of hydrated nickel oxide thin films electrochemically deposited by anodization onto doped tin oxide-coated glass have been studied by transmittance measurements, cyclic voltammetry, Fourier-transform infrared spectroscopy, and ion-backscattering spectrometry. The spectral transmittance is reported for films switched in both the bleached and colored states. The photopic transmittance (T/sub p/) can be switched from T/sub p/(bleached) = 0.77 to T/sub p/(colored) = 0.21, and the solar transmittance (T/sub S/) can be switched from T/sub S/(bleached) = 0.73 to T/sub S/(colored = 0.35. Also reported is the near-infrared transmittance (T/sub NIR/), which was found to switch from T/sub NIR/(bleached) = 0.72 to T/sub NIR/(colored) = 0.55 for a film thickness of 500 A. The bleached condition is noted to have very low solar absorption in both the visible and solar regions. Ion-backscattering spectrometry was performed on the hydrated nickel oxide film, yielding a composition of NiO/sub 1.0/ (dehydrated). Cyclic voltammetry showed that, for films in the bleached or colored state, the reversible reaction is Ni(OH)/sub 2/ ..-->.. NiOOH + H/sup +/ + e/sup -/. Voltammetry also showed that the switching of the film is controlled by the diffusion of protons, where OH/sup -/ plays a role in the reaction mechanism. Analysis of the hydrated nickel-oxide thin films by Fourier-transform infrared spectroscopy revealed that both the bleached and colored states contain lattice water and hydroxyl groups. The surface hydroxyl groups play an important role in the coloration and bleaching of the anodically deposited nickel oxide thin films.

Yu, P.C.; Nazri, G.; Lampert, C.M.

1986-07-01

100

Electrochemical oxidation of a textile dye wastewater using a Pt\\/Ti electrode  

Microsoft Academic Search

Textile dye wastewater (TDW) from a reactive azo dyeing process was treated by an electrochemical oxidation method using Ti\\/Pt as anode and stainless steel 304 as cathode. Due to the strong oxidizing potential of the chemicals produced (chlorine, oxygen, hydroxyl radicals and other oxidants) when the wastewater was passed through the electrolytic cell the organic pollutants were oxidized to carbon

A. G Vlyssides; M Loizidou; P. K Karlis; A. A Zorpas; D Papaioannou

1999-01-01

101

Mechanism of p-Substituted Phenol Oxidation at a Ti4O7 Reactive Electrochemical Membrane.  

PubMed

This research investigated the removal mechanisms of p-nitrophenol, p-methoxyphenol, and p-benzoquinone at a porous Ti4O7 reactive electrochemical membrane (REM) under anodic polarization. Cross-flow filtration experiments and density functional theory (DFT) calculations indicated that p-benzoquinone removal was primarily due to reaction with electrochemically formed OH(•), while the dominant removal mechanism of p-nitrophenol and p-methoxyphenol was a function of the anodic potential. At low anodic potentials (1.7-1.8 V/SHE), p-nitrophenol and p-methoxyphenol were removed primarily by an electrochemical adsorption/polymerization mechanism on the REM. Increasing anodic potentials (1.9-3.2 V/SHE) resulted in the electroassisted adsorption mechanism contributing far less to p-methoxyphenol removal compared to p-nitrophenol. DFT calculations indicated that an increase in anodic potential resulted in a shift in p-methoxyphenol removal from a 1e(-) direct electron transfer (DET) reaction that resulted in radical formation and significant adsorption/polymerization, to a 2e(-) DET reaction that formed nonadsorbing products (i.e., p-benzoquinone). However, the anodic potentials were too low for the 2e(-) DET reaction to be thermodynamically favorable for p-nitrophenol. The decreased COD adsorption for p-nitrophenol at higher anodic potentials was attributed to reaction of soluble/adsorbed organics with OH(•). These results provide the first mechanistic explanation for p-substituted phenolic compound removal during advanced electrochemical oxidation processes. PMID:24766505

Zaky, Amr M; Chaplin, Brian P

2014-05-20

102

Microwave-electrochemical formation of colloidal zinc oxide at fluorine doped tin oxide electrodes  

Microsoft Academic Search

Colloidal ZnO is obtained during microwave-enhanced electrochemical deposition experiments from an aqueous solution containing 0 1 M Zn(NO(3))(2) and 0 02 M H(2)O(2) via repetitive negative going potential cycles from 03 to 0 8 V vs SCE The effects of temperature and temperature gradients on ZnO electro formation at fluorine doped tin oxide (FTO) electrodes are investigated with both a

Liza Rassaei; Robben Jaber; Stephen E. Flower; Karen J. Edler; Richard G. Compton; Tony D. James; Frank Marken

2010-01-01

103

HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES  

EPA Science Inventory

The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

104

HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES  

EPA Science Inventory

This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

105

A reduced graphene oxide based electrochemical biosensor for tyrosine detection  

NASA Astrophysics Data System (ADS)

In this paper, a ‘green’ and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through ?-? interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 × 10-7 M to 2 × 10-5 M with a detection limitation of 7.5 × 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

2012-08-01

106

Electrochemical treatment of mixed and hazardous wastes; Oxidation of ethylene glycol and benzene by silver (II)  

Microsoft Academic Search

This paper reports that, in the future, mediated electrochemical oxidation (MEO) may be used for the ambient temperature destruction of hazardous waste and for the conversion of mixed waste to low-level radioactive waste. The authors have studied the MEO of ethylene glycol and benzene, two model compounds, in an electrochemical reactor. The reactor had a rotating-cylinder anode that was operated

Joseph C. Farmer; F. T. Wang; R. A. Hawley-Fedder; P. R. Lewis; L. J. Summers; L. Foiles

1992-01-01

107

Improved electrochemical biosensor response via metal oxide pre-oxidation of chemical interferents  

NASA Astrophysics Data System (ADS)

Typical biological samples are inherently complicated. They may contain a myriad of compounds that are electroactive at the same potential as that used in many electrochemical biosensors. Therefore, a biosensor design feature must be included that either eliminates or blocks the interferents from generating false positive signals. The ability to use an insoluble compound, that of MnO II, in order to oxidize interferents such as ascorbic acid, acetaminophen and uric acid, was investigated in a prototype sensor system at a bias potential of 0.6 V versus Ag/AgCl. Unlike previous work with these materials, a difference between the ability for the metal oxide to oxidize the interferents was observed. Most effective was the capability of MnO II to oxidize uric acid. Alternatively, the MnO II had little effect on acetaminophen. The study is both introduced and results are discussed within the context of an implantable glucose sensor.

Houseknecht, Jamie G.; Tapsak, Mark A.

2007-09-01

108

Photoelectron studies of electrochemical diffusion of conducting polymer\\/transparent conductive metal oxide film interfaces  

Microsoft Academic Search

X-ray photoelectron spectroscopy (XPS) investigations of conducting polymer polythiophene (PT)\\/indium tin oxide (ITO) and PT\\/SnO2 interfaces have been conducted. Interfacial electrochemical diffusion of the metal oxide substrate species has been observed in both cases through electrochemical reduction process. XPS investigation has focused on the core-level energies and spectral profiles of the diffused substrate species into polymer matrix. A larger part

S. Takemura; H Kato; Y Nakajima

1999-01-01

109

In situ spectro-electrochemical studies on the oxidation mechanism of brass  

Microsoft Academic Search

The oxidation mechanism of brass has been studied with in-situ spectro-electrochemical techniques. The results indicate that the brass corrosion mechanism may be interpreted as being composed of dissolution chemistries of zinc and copper, except that the oxidation potential of zinc in brass is more positive than that of pure zinc. After zinc is oxidized, copper oxidizes to Cu(I) hydroxide\\/oxide in

B.-S. Kim; T. Piao; S. N. Hoier; S.-M. Park

1995-01-01

110

Influence of heat-treatment and physicochemical properties on the electrochemical oxidation of carbon blacks in phosphoric acid  

SciTech Connect

Studies on the electrochemical oxidation of carbon blacks in concentrated phosphoric acid at 135 to 160/sup 0/C will be reviewed. The objective of the paper is to provide some understanding of the electrochemical-oxidation mechanism and the influence of physicochemical properties on the oxidation rate of carbon blacks. The effects of heat-treatment on the surface area and crystal structure of carbon black and electrochemical-oxidation rate will be discussed.

Kinoshita, K.

1983-08-01

111

Oxidation of Alloys for Advanced Steam Turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include power generation from coal at 60% efficiency, which requires steam temperatures of up to 760°C. This research examines the steam oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Ziomek-Moroz, M.E.; Alman, D.E.

2006-09-01

112

Solid-phase electrochemical reduction of graphene oxide films in alkaline solution  

PubMed Central

Graphene oxide (GO) film was evaporated onto graphite and used as an electrode to produce electrochemically reduced graphene oxide (ERGO) films by electrochemical reduction in 6 M KOH solution through voltammetric cycling. Fourier transformed infrared and Raman spectroscopy confirmed the presence of ERGO. Electrochemical impedance spectroscopy characterization of ERGO and GO films in ferrocyanide/ferricyanide redox couple with 0.1 M KCl supporting electrolyte gave results that are in accordance with previous reports. Based on the EIS results, ERGO shows higher capacitance and lower charge transfer resistance compared to GO.

2013-01-01

113

Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors.  

PubMed

Electrochemical supercapacitors can deliver high levels of electrical power and offer long operating lifetimes, but their energy storage density is too low for many important applications. Pseudocapacitive transition-metal oxides such as MnO(2) could be used to make electrodes in such supercapacitors, because they are predicted to have a high capacitance for storing electrical charge while also being inexpensive and not harmful to the environment. However, the poor conductivity of MnO(2) (10(-5)-10(-6) S cm(-1)) limits the charge/discharge rate for high-power applications. Here, we show that hybrid structures made of nanoporous gold and nanocrystalline MnO(2) have enhanced conductivity, resulting in a specific capacitance of the constituent MnO(2) (~1,145 F g(-1)) that is close to the theoretical value. The nanoporous gold allows electron transport through the MnO(2), and facilitates fast ion diffusion between the MnO(2) and the electrolytes while also acting as a double-layer capacitor. The high specific capacitances and charge/discharge rates offered by such hybrid structures make them promising candidates as electrodes in supercapacitors, combining high-energy storage densities with high levels of power delivery. PMID:21336267

Lang, Xingyou; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

2011-04-01

114

Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles  

SciTech Connect

Cuprous oxide (Cu{sub 2}O) nanoparticles of 35 nm in crystal size have been successfully synthesized via electrochemical method in alkali NaCl solutions with copper as electrodes and K{sub 2}Cr{sub 2}O{sub 7} as additive. Photocatalytic degradation of methyl orange (MeO) in aqueous Cu{sub 2}O solution was investigated under either ultraviolet (UV) light or sunlight. X-ray diffraction (XRD), transmission electron microscopy (SEM), Fourier transformation infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis) and X-ray photoelectron spectroscopy (XPS) were introduced to characterize the samples. The results indicate that electric current shows no obvious effect on the growth of Cu{sub 2}O nanocrystals and that 97% of MeO can be decolorized under UV irradiation for 2 h or under sunlight for 3 h when amount of Cu{sub 2}O is 2 g/L. Recycling use of the catalyst revealed that Cu{sub 2}O still has a high photocatalytic efficiency when repeatedly used for four times. Cu{sub 2}O nanoparticles still kept its cubic crystal phase, but fractionally oxidized to be CuO after the photocatalysis. Compared with the original Cu{sub 2}O nanoparticles, there has 1 eV shift of Cu 2p electron and 1.6 eV shift of Cu Auger signals for the Cu{sub 2}O powders after four times photocatalysis. Some new peaks can also be observed at 401.1, 237.4 and 170.2 eV in the Cu{sub 2}O powders after photocatalysis.

Yang Huaming [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China)]. E-mail: hmyang@mail.csu.edu.cn; Ouyang Jing [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Tang Aidong [Institute of Functional Materials, School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Xiao Yu [Department of Inorganic Materials, School of Resources Processing and Bioengineering, Central South University, Changsha 410083 (China); Li Xianwei [Institute of Resources and Environmental Engineering, Technology Centre, Baoshan Iron and Steel Co. Ltd., Shanghai 201900 (China); Dong Xiaodan [Institute of Resources and Environmental Engineering, Technology Centre, Baoshan Iron and Steel Co. Ltd., Shanghai 201900 (China); Yu Yongmei [Institute of Resources and Environmental Engineering, Technology Centre, Baoshan Iron and Steel Co. Ltd., Shanghai 201900 (China)

2006-07-13

115

Electrochemical oxidation of textile industry wastewater by graphite electrodes.  

PubMed

In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2 g/L and electrolysis time (t): 10-130 min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators. PMID:24766597

Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

2014-07-01

116

Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices  

Microsoft Academic Search

This paper reviews the various classes of ionic liquids (ILs) in view of their established and expected applications in advanced electrochemical devices, such as lithium batteries, fuel cells, and supercapacitors. In this respect, particular attention is devoted to aprotic and protic ILs, with a related discussion in terms of their thermal and transport properties. In addition, the role in the

A. Fernicola; B. Scrosati; H. Ohno

2006-01-01

117

Advanced oxidation protein products as a novel marker of oxidative stress in uremia  

Microsoft Academic Search

Advanced oxidation protein products as a novel marker of oxidative stress in uremia. Evidence suggests an imbalance between antioxidant and oxidant-generating systems resulting in oxidative stress in uremic patients. As plasma proteins are critical targets for oxidants, we developed a novel spectrophotometric assay which allows to detect advanced oxidation protein products (AOPP) in uremic plasma. By size-exclusion chromatography AOPP are

Véronique Witko-Sarsat; Miriam Friedlander; Chantal Capeillère-Blandin; Thao Nguyen-Khoa; Anh Thu Nguyen; Johanna Zingraff; Paul Jungers; Béatrice Descamps-Latscha

1996-01-01

118

Electronic Defects and Interface Potentials for A1 Oxide Films on A1 and Their Relationship to Electrochemical Properties.  

National Technical Information Service (NTIS)

The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic A1 oxides on A1. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measur...

J. P. Sullivan R. G. Dunn J. C. Barbour F. D. Wall N. A. Missert R. G. Buchheit

2000-01-01

119

A bioactive polymer grafted on titanium oxide layer obtained by electrochemical oxidation. Improvement of cell response.  

PubMed

The anchorage failure of titanium implants in human body is mainly due to biointegration problem. The proposed solution is to graft a bioactive polymer at the surface of the implant in order to improve and control the interactions with the living system. In this paper, we describe the grafting of poly sodium styrene sulfonate on titanium surface by using a silanization reaction. The key point is to increase the TiOH content at the surface of the implant which can react with methoxy silane groups of 3-methacryloxypropyltrimethoxysilane (MPS). Two procedures were used: chemical oxidation and electrochemical oxidation. The last oxidation procedure was carried out in two different electrolytes: oxalic acid and methanol. These different oxidation methods allow controlling the roughness and the depth of the oxide layer. The methacryloyl group of MPS grafted at the titanium surface by silanization reaction is copolymerized with sodium styrene sulfonate using a thermal initiator able to produce radicals by heating. Colorimetric method, ATR-FTIR, XPS techniques and contact angle measurements were applied to characterize the surfaces. MG63 osteoblastic cell response was studied on polished, oxidized and grafted titanium samples. Cell adhesion, Alkaline Phosphatase activity and calcium nodules formation were significantly enhanced on grafted titanium surfaces compared to un-modified surfaces. PMID:19842019

Hélary, Gérard; Noirclère, Flavie; Mayingi, Josselin; Bacroix, Brigitte; Migonney, Véronique

2010-02-01

120

Magnesium-doped zinc oxide electrochemically grown on fluorine-doped tin oxide substrate.  

PubMed

Nanostructures of magnesium (Mg) doped Zinc oxide (ZnO) were successfully deposited on conducting fluorine-doped tin oxide (FTO) coated glass plates by cathodic electrochemical deposition method at different potentials and temperature conditions. The deposited samples were characterized by XRD and SEM techniques to confirm their structures, morphologies and optical properties. These measurements show that Mg doped ZnO has a wurtzite structure and that the strongest intensity of the (002) peak is found at 60 degrees C and -1.0 V. Tunable transmittance of Mg doped ZnO has a band gap energy from 3.45 eV to 3.82 eV, which is the direct evidence of doping. PMID:22849195

Han, Q F; Jeong, Y I; Heo, J H; Shin, C M; Ryu, H; Park, M S; Lee, W J; Yoon, J H; Yang, J E; Choi, H

2012-04-01

121

Structural and electrochemical behavior of Mn–V oxide synthesized by a novel precipitation method  

Microsoft Academic Search

Manganese–vanadium oxide had been synthesized by a novel simple precipitation technique. Scanning electron microscopy, X-ray\\u000a diffraction, Brunauer–Emmett–Teller, thermogravimetric analysis\\/differential scanning calorimetry, and X-ray photoelectron\\u000a spectroscopy were used to characterize Mn–V binary oxide and ?-MnO2. Electrochemical capacitive behavior of the synthesized Mn–V binary oxide and ?-MnO2 was investigated by cyclic voltammetry, galvanostic charge–discharge curve, and electrochemical impedance spectroscope methods.\\u000a The results

Xiaoying Xie; Wenwen Liu; Luyang Zhao; Chengde Huang

2010-01-01

122

Electrochemical oxidation of the effluent from anaerobic digestion of dairy manure.  

PubMed

The electrochemical oxidation of the digested effluent from anaerobic digestion of dairy manure was investigated in this study. The digested effluent sample containing with suspended solids was pretreated by filtration for the electrochemical experiment. The influence of direct anodic oxidation and indirect oxidation was evaluated through the use of dimensionally stable anode (DSA) and Ti/PbO2 as anode. The decreasing rate of chemical oxygen demand (COD) was higher at lead dioxide coated titanium (Ti/PbO2) electrode than at DSA, however the DSA was preferred anode for the decrease of ammonium nitrogen (NH4-N) due to the control of ammonium nitrate (NO3-N) accumulation. The results showed that the filtration of suspended solids as a pretreatment and addition of NaCl could improve the whole removing efficiency of NH4-N in the digested effluent on electrochemical oxidation. PMID:16125931

Ihara, Ikko; Umetsu, Kazutaka; Kanamura, Kiyoshi; Watanabe, Tsuneo

2006-08-01

123

Decolorization of Amaranth by advanced oxidation processes  

Microsoft Academic Search

Summary This investigation examines the decolorization of Amaranth in water by advanced oxidation processes (AOPs) - UV\\/TiO2, O3, UV\\/O3 and UV\\/TiO2\\/O3.  The rates of decolorization of Amaranth in UV\\/TiO2 followed the order pH 4 > pH 7 > pH 10; however, those for Amaranth in O3-based systems followed the order pH 10 > pH 7 > pH 4.

Chung-Hsin Wu; Chung-Liang Chang; Chao-Yin Kuo

2005-01-01

124

Electrochemical degradation of anthraquinone dye Alizarin Red S by anodic oxidation on boron-doped diamond  

Microsoft Academic Search

The electrochemical oxidation of Anthraquinone dye (Alizarin Red S) has been studied on boron-doped diamond (BDD) electrodes on acid medium by cyclic voltammetry and bulk electrolysis. Galvanostatic electrolyses cause complex oxidation reactions that lead to the incineration of Alizarin Red S. The analyses of the chemical oxygen demand (COD) and the total organic carbon (TOC) during the galvanostatic electrolyses at

Ahmadi Mohamed Faouzi; Bensalah Nasr; Gadri Abdellatif

2007-01-01

125

Influence of Experimental Parameters in the Treatment of Distillery Effluent by Electrochemical Oxidation  

Microsoft Academic Search

The electrochemical oxidation of distillery effluent was studied in a batch reactor in the presence of supporting electrolyte NaCl using Mixed Metal Oxide (MMO) electrode. The effect of operating parameters such as current density, initial pH and initial electrolyte concentration on percentage of Chemical Oxygen Demand (COD) removal, power consumption and current efficiency were studied. The maximum percentage removal of

P. Asaithambi; Lakshminarayana Garlanka; N. Anantharaman; Manickam Matheswaran

2011-01-01

126

Influence of Experimental Parameters in the Treatment of Distillery Effluent by Electrochemical Oxidation  

Microsoft Academic Search

The electrochemical oxidation of distillery effluent was studied in a batch reactor in the presence of supporting electrolyte NaCl using Mixed Metal Oxide (MMO) electrode. The effect of operating parameters such as current density, initial pH, and initial electrolyte concentration on the percentage of Chemical Oxygen Demand (COD) removal, power consumption, and current efficiency were studied. The maximum percentage removal

P. Asaithambi; Lakshminarayana Garlanka; N. Anantharaman; Manickam Matheswaran

2012-01-01

127

Induced effects of advanced oxidation processes  

NASA Astrophysics Data System (ADS)

Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

2014-02-01

128

Synthesis of reduced graphene oxide and its electrochemical sensing of 4-nitrophenol  

NASA Astrophysics Data System (ADS)

Reduced graphene oxide (RGO) nanosheets were synthesized by chemical reduction followed by Hummer's method. The synthesized RGO nanosheets were characterized by XRD, HR-TEM and FT-IR spectroscopy. Cyclic voltammetry (CV) was used to study the electrochemical sensing of 4-nitrophenol (4-NP). The as synthesized RGO nanosheets modified glassy carbon electrode (RGO/GCE) showed a good electrochemical sensing property when compared with bare GCE.

Giribabu, K.; Suresh, R.; Manigandan, R.; Vijayalakshmi, L.; Stephen, A.; Narayanan, V.

2013-02-01

129

Synthesis of non-stoichiometric lithium nickel cobalt oxides and their structural and electrochemical characterization  

Microsoft Academic Search

Non-stoichiometric phases of lithium nickel cobalt oxides were synthesized by a sol–gel method using oxalic acid as a chelating agent. The structural properties have been examined using X-ray diffraction techniques. Electrochemical coin cell studies showed materials with excess lithium stoichiometry had interesting properties of improved capacity and cyclability. Of all the compositions with excess lithium stoichiometry, Li1.1Ni0.8Co0.2O2, showed better electrochemical

G Ting-Kuo Fey; V Subramanian; Jian-Ging Chen

2001-01-01

130

Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes  

Microsoft Academic Search

The electrochemical oxidation of several phenolic aqueous wastes has been studied using a bench-scale plant with a single-compartment electrochemical flow cell. Boron-doped diamond materials were used as the anode. Complete mineralization of the waste was obtained in the treatment of phenols not substituted with chlorine or nitrogen. Chlorinated phenolic compounds were transformed into carbon dioxide; volatile organochlorinated compounds and nitro-substituted

P. Cañizares; J. Lobato; R. Paz; M. A. Rodrigo; C. Sáez

2005-01-01

131

Electrochemical oxidation of poly[(hexamethyltrisilanylene)oligo(2,5-thienylene)] films  

Microsoft Academic Search

Electrochemistry of ?–?-conjugated polymers, poly[(hexamethyltrisilanylene)oligo(2,5-thienylene)] has been investigated in acetonitrile by using cyclic voltammetric and spectroelectrochemical techniques. Cyclic voltammograms of these polymers films display generally two pairs of main redox peaks, indicating the doping and dedoping processes of the polymers. The electrochemical oxidation of the polymer films results in their partial decomposition, besides the doping, which is shown by electrochemical

Lihua Zhu; Heqing Tang; Yutaka Harima; Kazuo Yamashita; Atsuhiro Takata; Joji Ohshita; Atsutaka Kunai

1999-01-01

132

Evaluating the electrochemical capacitance of surface-charged nanoparticle oxide coatings.  

PubMed

While transition metal oxides have been thoroughly investigated as coatings for electrochemical capacitors due to their pseudocapacitance, little work has been done investigating other oxide coatings. There exists a whole class of nanoporous oxides typically synthesized by sol-gel chemistry techniques that have very high differential capacitance. This high differential capacitance has been attributed to the surface potential of these materials and the close approach of counterions near the surface of these oxides. This study focuses on investigating the electrochemical capacitance of non-transition metal oxide nanoparticle coatings when deposited on supporting electrodes. Here, we show that, by adding coatings of SiO(2), AlOOH, TiO(2), and ZrO(2) nanoparticles to graphite support electrodes, we can increase the electrochemical capacitance. We also show that the measured electrochemical capacitance of these oxide-coated electrodes directly relates to the electrophoretic mobility of these materials with the lowest values in capacitance occurring at or near the respective isoelectric pH (pH(IEP)) of each oxide. PMID:22428877

Leonard, Kevin C; Suyama, Wendy E; Anderson, Marc A

2012-04-17

133

Development of Advanced Electrochemical Sensors for DNA Detection at the Point of Care  

NASA Astrophysics Data System (ADS)

In the post-genomic era, ever-advancing capabilities in DNA detection and analysis have become vital to the detection of infectious diseases and the diagnosis of genetic abnormalities and inheritable diseases. The benefit of such capabilities, however, has yet to reach patients outside of centralized facilities. There thus exists an increasing need to decentralize DNA detection methods and to administer such diagnostics at the "point of care." Electrochemical-based DNA sensors present a compelling approach, but have yet to deliver satisfactory sensitivity, specificity, miniaturization, and real-time monitoring capability to meet the demand of point-of-care diagnostics. Motivated by their potential and their current limitations, in this dissertation, we present a series of strategies that we have undertaken in order to address the key shortcomings of electrochemical DNA sensors and advance them toward point-of-care applications. First, we report a single-step, single reagent, label-free, isothermal electrochemical DNA sensor based on the phenomenon of enzyme catalyzed target recycling amplification. Using this technique, we achieve improved detection limit in comparison to hybridization-based sensors without amplification. We also demonstrate greater than 16-fold amplification of signal at low target concentrations. Next, we present a novel electrochemical DNA sensor that detects single-nucleotide mismatched targets with unprecedented "polarity-switching" responses. This "bipolar" sensor employs a surface-bound and redox-modified (methylene blue) DNA probe architecture, and outputs a decreased Faradaic current when hybridized to a perfectly matched (PM) target, but conversely reports an increased Faradaic current when hybridized to a single-base mismatched (SM) target. Third, we describe the microfluidic electrochemical dynamic allele specific hybridization (microE-DASH) platform for versatile and rapid detection of single-nucleotide polymorphisms. Implementing electrochemical-based melting curve analysis within the microfluidic device, this platform directly detects PCR amplicon-like targets and distinguishes perfectly matched target from single-base mismatched target and heterozygote combination of both targets in 20 minutes. Finally, we present the microfluidic electrochemical quantitative loop-mediated isothermal amplification (MEQ-LAMP) platform for rapid, sensitive, and quantitative detection of pathogen genomic DNA at the point of care. DNA amplification is electrochemically monitored in real time within a monolithic microfluidic device, enabling the detection of as few as 16 copies of Salmonella genomic DNA via a single-step process in under an hour.

Hsieh, Kuangwen

134

ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER  

EPA Science Inventory

This paper presents information on two pilot-field applications of advanced oxidation technologies for contaminated groundwater with organics. he two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidation Systems, Inc. of Tucson...

135

ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER  

EPA Science Inventory

This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

136

Electrochemical self-assembly of oriented zinc oxide film from polyethylene oxide containing electrolyte.  

PubMed

Oriented nanopillar ZnO crystals were firstly fabricated by the potentiostatic cathodic electrodeposition technique on conducting glass substrates from polyethylene oxide (PEO) containing zinc nitrate solutions at low temperature (343 K). The mechanism for PEO-assisted electrochemical growth of ZnO hexagonal columus was proposed and confirmed by scanning electron microscopy, X-ray diffraction and UV-visible spectrophotometer measurements. It was observed that the concentration of PEO played an important role in the morphology and size of ZnO crystals. The structure and optical studies indicated that the addition of PEO not only influenced crystal growth habit but also improve the optical properties of ZnO. PMID:19435038

Ju, Xiaohui; Feng, Wei; Fujii, Akihiko; Ozaki, Masanori

2009-03-01

137

Anodic oxidation of tungsten in nonaqueous electrolyte; II. Electrochemical coloring and bleaching of the oxide film  

SciTech Connect

This paper reports that ellipsometric and electrochemical measurements are used to determine the mechanisms by which anodic oxide films on tungsten are reduced (colored) and reoxidized (bleached) in acetic acid electrolyte. In the reduction process, a layer of HWO{sub 3} forms on the outer surface of the oxide, and, as reduction proceeds, a phase boundary between HWO{sub 3} and WO{sub 3} moves inward toward the substrate. Competition from hydrogen evolution limits the depth to which the boundary penetrates, but films up to 50 nm in thickness can be reduced completely to HWO{sub 3} with an appropriate sequence of cycles. The highly absorbing HWO{sub 3} layer is readily distinguished from the anisotropic transparent oxide. The boundary process begins with the formation of a layer of WO{sub 3} on the outer surface of the HWO{sub 3} and again a phase boundary moves inward across the film. A field on the order of the anodizing field is required to move hydrogen to the electrolyte through the outer reoxidized layer, and this field also moves oxygen into the outer layer, where it combines with mobile hydrogen cations to form H{sub 2}O groups within the WO{sub 3}. The buildup of H{sub 2}O enables hydrogen to penetrate more deeply into the film on subsequent cycles.

Ord, J.L.; De Smet, D.J. (Dept. of Physics, Univ. of Waterloo, Waterloo, Ontario N2L 3G1 (CA))

1992-03-01

138

Theoretical calculations on dipyridamole structure allow to explain experimental properties associated to electrochemical oxidation and protonation  

NASA Astrophysics Data System (ADS)

PM3 calculations of charge distributions for dipyridamole (DIP) in the neutral, single- and double-ionized states allowed to estimate the first and second ionization potentials. Results are compared with electrochemical oxidation, a sequential two-step process. Single ionization produces a cation radical, the electron being removed from the nitrogen atoms in the substituent positions 2,4,6,8 with participation of the carbons in the pyrimido-pyrimidine ring. Protonation of one of the nitrogens is allowed energetically while a second protonation is forbidden due to the high energy required. Our calculations allow to explain some interesting experimental results related to electrochemical oxidation and protonation of the drug.

Alves, C. N.; Castilho, M.; Mazo, L. H.; Tabak, M.; da Silva, A. B. F.

2001-11-01

139

Simultaneous electrochemical and 3D optical imaging of silver nanoparticle oxidation  

NASA Astrophysics Data System (ADS)

The oxidation of AgNPs at a thin-film gold electrode is simultaneously investigated via digital holography and electrochemistry. The use of holography allows, for the first time, the 3D visualization of the electrochemical interfacial region at a relatively high acquisition rate. It is demonstrated how the coupling of these two techniques provides complementary chemical information. The ensemble response of the oxidation of surface-adsorbed silver nanoparticles to AgCl is monitored electrochemically, whereas this process is difficult to observe optically. Conversely, the subsequent chemical dissolution of individual AgCl nanocrystals can be tracked optically due to the associated decrease in the scattered light intensity.

Batchelor-McAuley, Christopher; Martinez-Marrades, Ariadna; Tschulik, Kristina; Patel, Anisha N.; Combellas, Catherine; Kanoufi, Frédéric; Tessier, Gilles; Compton, Richard G.

2014-03-01

140

Electrochemical oxidation of a silole: 1,1-bis(trimethylsilyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene  

Microsoft Academic Search

The electrochemical oxidation of 1,1-bis(trimethylsilyl)-2,3,4,5-tetraphenyl-1-silacyclopentadiene has been investigated under different conditions. The effect of electrolyte, electrode material and atmosphere on the outcome of its electrochemical oxidation are discussed. Under all conditions studied, the silole derivative studied undergoes ring-opening, sometimes with the extrusion of the silicon moiety.

Zeng-Rong Zhang; James Y. Becker; Robert West

2001-01-01

141

Electrochemical oxidation of wine polyphenols in the presence of sulfur dioxide.  

PubMed

Electrochemical oxidation of three representative wine polyphenols (catechin, caffeic acid, and quercetin) in the presence of sulfur dioxide in a model wine solution (pH = 3.3) was investigated. The oxidation was undertaken using chronoamperometry at a rotating glassy carbon rod electrode, and the reaction products were characterized by HPLC-MS. The mechanism of electrochemical oxidation of polyphenols in the presence of sulfur dioxide was proposed to be an ECEC mechanism. The polyphenols first underwent a one-electron oxidation to a semiquinone radical, which can be reduced back to the original polyphenol by sulfur dioxide, or further oxidized to the quinone form. In the cases of caffeic acid and catechin, the quinone combined with sulfur dioxide and produced new derivatives. The quercetin quinone underwent further chemical transformations, producing several new compounds. The proposed mechanisms were confirmed by digital simulation of cyclic voltammograms. PMID:23692398

Makhotkina, Olga; Kilmartin, Paul A

2013-06-12

142

Application of advanced oxidation processes for TNT removal: A review.  

PubMed

Nowadays, there are increasingly stringent regulations requiring drastic treatment of 2,4,6-trinitrotoluene (TNT) contaminated waters to generate treated waters which could be easily reused or released into the environment without any harmful effects. TNT is among the most highly suspected explosive compounds that interfere with groundwater system due to its high toxicity and low biodegradability. The present work is an overview of the literature on TNT removal from polluted waters and soils and, more particularly, its treatability by advanced oxidation processes (AOPs). Among the remediation technologies, AOPs constitute a promising technology for the treatment of wastewaters containing non-easily biodegradable organic compounds. Data concerning the degradation of TNT reported during the period 1990-2009 are evaluated in this review. Among the AOPs, the following techniques are successively debated: processes based on hydrogen peroxide (H(2)O(2)+UV, Fenton, photo-Fenton and Fenton-like processes), photocatalysis, processes based on ozone (O(3), O(3)+UV) and electrochemical processes. Kinetic constants related to TNT degradation and the different mechanistic degradation pathways are discussed. Possible future treatment strategies, such as, coupling AOP with biological treatment is also considered as a mean to improve TNT remediation efficiency and kinetic. PMID:20347218

Ayoub, Kaidar; van Hullebusch, Eric D; Cassir, Michel; Bermond, Alain

2010-06-15

143

Mediated electrochemical oxidation of organic wastes without electrode separators  

DOEpatents

An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

1996-05-14

144

Ultra-thin films on transparent conductor oxides for the development of spectro-electrochemical transducers  

NASA Astrophysics Data System (ADS)

Transparent C, Au and Pt films with thickness in the 5-10 nm range have been deposited by a DC magnetron sputtering system on commercial ITO (indium tin oxide) coated glass substrate for evaluation as electrode of spectro-electrochemical transducer. The transmission, over the investigated spectral range, is superior to 55% with the best transmission values obtained for C films (higher than 80%). The deposited films have been characterized by AFM, XPS and electrochemical methods. Results showed a low roughness, improved in comparison with uncoated electrodes. Electrochemical properties of the Au and Pt films evidenced a metallic behavior, which allowed qualifying them as conductive optically transparent electrodes for spectro-electrochemical devices.

Grigore, E.; Delacôte, C.; Thobie-Gautier, C.; Boujtita, M.; Tessier, P. Y.

2013-07-01

145

Design and Fabrication of Complementary Metal-Oxide-Semiconductor Sensor Chip for Electrochemical Measurement  

NASA Astrophysics Data System (ADS)

An electrochemical sensor has been developed on a single chip in which potentiostat and sensor electrodes are integrated. Sensor chips were fabricated using 5.0 ?m complementary metal-oxide-semiconductor (CMOS) technology. All processes including the CMOS process, postprocessing for fabricating sensor electrodes and passivation layers, and packaging were performed at Toyohashi University of Technology. The integration makes it possible to measure electrochemical signals without having to use a bulky external electrochemical system. The potential between the working electrode and the reference electrode was controlled using an on-chip potentiostat composed of CMOS transistors. The chip characteristics were verified by electrochemical measurement, namely, by cyclic voltammetry. Potassium ferricyanide solution was measured to obtain results that fit well to the theoretical formula. A clear proportional relationship between peak height and the concentration of the sample solution was obtained using the proposed sensor chip, and the dynamic range obtained was 0.10 to 8.0 mM.

Tomoyuki Yamazaki,; Takaaki Ikeda,; Yoshiko Kano,; Hidekuni Takao,; Makoto Ishida,; Kazuaki Sawada,

2010-04-01

146

Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.  

PubMed

The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs. PMID:22460594

Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

2012-04-21

147

Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries  

NASA Astrophysics Data System (ADS)

The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO2), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO2), where lithium ions are inserted/deinserted into/out of the TiO2 crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs.

Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Wen (David) Lou, Xiong

2012-03-01

148

Electrochemical oxidation of hydroquinone, resorcinol, and catechol on boron-doped diamond anodes.  

PubMed

The electrochemical oxidation of aqueous wastes polluted with hydroquinone, resorcinol, or catechol on boron-doped diamond electrodes has been studied. The complete mineralization of the organic waste has been obtained independently of the nature of each isomer. No aromatic intermediates were found during the treatment, and solely aliphatic intermediates (carboxylic acids C4 and C2, mainly) were detected in the three cases. Although as from the bulk electrolyses study no differences in the electrochemical oxidation of dihydroxybenzenes seem to exist, different voltammetric behavior between resorcinol and the other two isomers was obtained in the voltammetric study. Catechol and hydroquinone have a reversible quinonic form, and a cathodic reduction peak appears in their voltammograms. The characterization of the first steps in the electrochemical oxidation of the three dihydroxybenzenes showed the formation of a larger number of intermediates in the oxidation of catechol, although no carbon dioxide was detected in its oxidation. Conversely, the oxidation of resorcinol and hydroquinone lead to the formation of important concentrations of carbon dioxide. The nondetection of aromatic intermediates, even if small quantities of charge are passed, confirms that the oxidation must be carried out directly on the electrode surface or by hydroxyl radicals generated by decomposition of water. PMID:16201653

Nasr, Bensalah; Abdellatif, Gadri; Cañizares, Pablo; Sáez, Cristina; Lobato, Justo; Rodrigo, Manuel A

2005-09-15

149

Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate  

SciTech Connect

Highlights: ? Growth of long amorphous tungsten oxide nanorods on a substrate. ? Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ? High electrochemical pseudocapacitance of 2.8 mF cm{sup ?2}. ? Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup ?2} at the voltage scan rate of 20 mV s{sup ?1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

Park, Sun Hwa [Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)] [Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)] [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Park, Hyun Min [Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of) [Department of Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Song, Jae Yong, E-mail: jysong@kriss.re.kr [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Department of Nano Science, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

2012-11-15

150

Evaluation of electrochemical oxidation techniques for degradation of dye effluents--a comparative approach.  

PubMed

The high energy cost of an electrochemical method is the fatal drawback that hinders its large scale application in wastewater treatment. The traditional single-chamber electrochemical method used in the waste water treatment mainly focused on anodic oxidation, but hydrogen produced on the cathode and indirect electrochemical treatment involves application of an electrical current to the wastewater containing chloride to convert into chlorine/hypochlorite. The two-compartment electrolytic cell, separated by an anion exchange membrane, has been developed in this work. In the new reactor, indirect oxidation at anode, indirect oxidation by hydrogen peroxide and ultraviolet/hydrogen peroxide (UV/H(2)O(2)) at cathode can occur simultaneously. The electrochemically produced hydrogen peroxide at the cathode by reduction of oxygen is affected by passing atmospheric air. Therefore "dual electrochemical oxidation" in one electrochemical reactor was achieved successfully. Compared to a traditional one-cell reactor, this reactor reduces the energy cost approximately by 25-40%, and thus the present work becomes significant in wastewater treatment. Experiments were carried out at different current densities using Ti/RuO(2)/IrO(2) as anode and carbon felt gas diffusion electrode used as a cathode fed with oxygen containing gases to produce hydrogen peroxide. During the various stages of electrolysis, the parameters such as, effect of pH, chemical oxygen demand (COD), colour, energy consumption were monitored. UV-vis spectrometry, Fourier transform infrared spectroscopy (FTIR), high-performance liquid chromatography (HPLC) studies were carried out to assess efficiencies of dye degradation. PMID:19592159

Raghu, S; Lee, Chang Woo; Chellammal, S; Palanichamy, S; Basha, C Ahmed

2009-11-15

151

Chemical and electrochemical oxidation of C8-arylamine adducts of 2?-deoxyguanosine  

PubMed Central

The electrochemical and chemical oxidation of a series of C8-arylamine adducts of 2?-deoxyguanosine has been examined. The oxidations were found to be reversible by cyclic and square-wave voltammetry in both aqueous buffer and aprotic organic solvent. The mechanism of the oxidation in protic media was either one- or two-electron depending on the aryl group. The chemical oxidation resulted in guanidinohydantoin and spiroiminodihydantoin rearrangement products similar to those observed for 8-oxo-7,8-dihydro-2?-deoxyguanosine.

Stover, James S.; Ciobanu, Madalina; Cliffel, David E.; Rizzo, Carmelo J.

2008-01-01

152

Synergistically enhanced electrochemical (ORR) activity of graphene oxide using boronic acid as an interlayer spacer.  

PubMed

Herein, boronic acid is incorporated into a graphene oxide (GO) structure in order to synthesise a graphene organic framework (GOF) with enhanced electrochemical performance. The results obtained indicate that the GOF favours a 4e(-) reduction pathway in the oxygen reduction reaction (ORR). PMID:24141877

Pourazadi, Ehsan; Haque, Enamul; Zhang, Weimin; Harris, Andrew T; Minett, Andrew I

2013-12-01

153

Written-in conductive patterns on robust graphene oxide biopaper by electrochemical microstamping.  

PubMed

The silk road: By employing silk fibroin as a binder between graphene oxide films and aluminum foil for a facile, highly localized reduction process, conductive paper is reinvented. The flexible, robust biographene papers have high toughness and electrical conductivity. This electrochemical written-in approach is readily applicable for the fabrication of conductive patterned papers with complex circuitries. PMID:24214828

Hu, Kesong; Tolentino, Lorenzo S; Kulkarni, Dhaval D; Ye, Chunhong; Kumar, Satish; Tsukruk, Vladimir V

2013-12-16

154

Electrochemical oxidation of benzoic acid at boron-doped diamond electrodes  

Microsoft Academic Search

The electrochemical oxidation of benzoic acid (BA) has been studied on boron-doped diamond electrodes on acid medium by cyclic voltammetry and bulk electrolysis. The results showed that in the potential region where the supporting electrolyte is stable, reactions occur, resulting in the loss of activity due to electrode fouling. Electrolysis at high anodic potentials in the region of electrolyte decomposition

F Montilla; P. A Michaud; E Morallón; J. L Vázquez; Ch Comninellis

2002-01-01

155

Indirect electrochemical oxidation of reverse osmosis membrane concentrates at boron-doped diamond electrodes  

Microsoft Academic Search

The treatment or disposal of concentrates generated from the filtrative treatment of water is rapidly becoming a factor of major environmental concern. This preliminary study discusses a novel approach in the abatement of reverse osmosis membrane retentate i.e. electrochemical oxidation. The recalcitrant organic constituents as well as the ammonia nitrogen in the retentate could be readily oxidised using boron-doped diamond

K. Van Hege; M. Verhaege; W. Verstraete

2002-01-01

156

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

Microsoft Academic Search

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided

Grant L. Hawkes; James E. OBrien; Greg Tao

2011-01-01

157

High-volumetric performance aligned nano-porous microwave exfoliated graphite oxide-based electrochemical capacitors.  

PubMed

Ultra-high volumetric performance electrochemical double layer capacitors based on high density aligned nano-porous microwave exfoliated graphite oxide have been studied. Elimination of macro-, meso-, and larger micro-pores from electrodes and controlling the nano-morphology results in very high volumetric capacitance, energy, and power density values. PMID:23946189

Ghaffari, Mehdi; Zhou, Yue; Xu, Haiping; Lin, Minren; Kim, Tae Young; Ruoff, Rodney S; Zhang, Q M

2013-09-20

158

Production of a reactive metabolite of troglitazone by electrochemical oxidation performed in nonaqueous medium  

Microsoft Academic Search

In order to confirm the existence of reactive metabolites by LC-MS\\/MS analysis, they should be modified into stable compounds, because some reactive metabolites generated by biotransformation induce drug toxicity; however, they are unstable, with very short lives, and cannot be detected in their intact forms. To overcome these problems, electrochemical oxidation of troglitazone was performed in nonaqueous medium, since such

Kayoko Tahara; Takashi Nishikawa; Yutaka Hattori; Shiro Iijima; Yukiko Kouno; Yoshihiro Abe

2009-01-01

159

New effects in the kinetics of the electrochemical oxidation of silicon  

Microsoft Academic Search

The present work describes new effects in the kinetics of the electrochemical oxidation of silicon observed recently by the author. One is the observation of very large oscillations of anodic potential during anodization of silicon in H3PO4\\/HF electrolyte and another is the effect of externally applied mechanical stress onto the kinetics of the Si anodization in concentrated and diluted HF.

Vitali Parkhutik

2000-01-01

160

Continuous treatment of textile wastewater by combined coagulation, electrochemical oxidation and activated sludge  

Microsoft Academic Search

Treatment of text wastewaters from a large dyeing and finishing mill by a continuous process of combined chemical coagulation, electrochemical oxidation and activated sludge treatment is investigated. The experimental results are assessed in terms of COD and color (turbidity) reductions to determine the overall treatment efficiency of the combined process. Operating variables, such as the wastewater flow rate, conductivity, pH,

Sheng H. Lin; Chi F. Peng

1996-01-01

161

Direct electrochemical characterization of superoxide anion production and its reactivity toward nitric oxide in solution  

Microsoft Academic Search

We report in this study, and for the first time the direct and simultaneous electrochemical measurements of both nitric oxide and superoxide anion evolution and reactivity in solution. For this purpose, we have combined the use of two electrodes: a previously developed NO-sensor for the amperometric determination of NO and a carbon microelectrode for the amperometric detection of superoxide anion.

Christelle Privat; Stéphane Trevin; Fethi Bedioui; Jacques Devynck

1997-01-01

162

Characteristics of sealed plasma electrolytic oxidation coatings with electrochemical impedance spectroscopy  

Microsoft Academic Search

Plasma electrolytic oxidation (PEO) coatings are prepared on aluminium with graphite powders added into the electrolyte. The scanning electron microscopy (SEM) coupled with an energy dispersive x-ray analysis system (EDX) is used to characterize the surface and the cross-section morphologies of the coatings. The electrochemical impedance spectroscopy (EIS) is used not only to evaluate the corrosion resistance but also to

Guo-Hua Lü; Huan Chen; Xing-Quan Wang; Hua Pang; Gu-Ling Zhang; Bin Zou; Heon-Ju Lee; Si-Ze Yang

2010-01-01

163

Enhanced electricity generation for microbial fuel cell by using electrochemical oxidation to modify carbon cloth anode  

NASA Astrophysics Data System (ADS)

Different types of treatment methods for anode materials are reported to enhance power production in microbial fuel cells (MFCs). Here we report a simple, cost-effective and environmentally friendly electrochemical oxidation technique that is used to modify the carbon cloth for the improvement of MFC performance. Carbon cloth is immersed in a 5% NH4HCO3 solution and then the solution is oxidized at different set currents. Optimal performance is obtained at 14 mA cm-2 with an oxidation time of 2 min, based on production of a maximum power density of 939 ± 7 mW m-2 in MFC tests, which is 14.2% higher than that of the untreated carbon cloth control. This treatment method increases the electrochemical active surface area by 2.9 times (from 11.2 to 44.1 cm2), and improves the exchange current density by 41% (from 4.79 × 10-4 to 6.76 × 10-4 A m-2). XPS analysis indicates that electrochemical oxidation in this solution introduced amide groups onto the electrode surface, which likely improves bacterial adsorption and current production. These results show that simple electrochemical treatment method can increase active surface area and alter carbon cloth anodes in ways that increase power production of the MFC.

Liu, Jia; Liu, Junfeng; He, Weihua; Qu, Youpeng; Ren, Nanqi; Feng, Yujie

2014-11-01

164

Electrochemically Induced Oxidative Precipitation of Fe(II) for As(III) Oxidation and Removal in Synthetic Groundwater.  

PubMed

Mobilization of Arsenic in groundwater is primarily induced by reductive dissolution of As-rich Fe(III) oxyhydroxides under anoxic conditions. Creating a well-controlled artificial environment that favors oxidative precipitation of Fe(II) and subsequent oxidation and uptake of aqueous As can serve as a remediation strategy. We reported a proof of concept study of a novel iron-based dual anode system for As(III) oxidation and removal in synthetic groundwater. An iron anode was used to produce Fe(II) under iron-deficient conditions, and another inert anode was used to generate O2 for oxidative precipitation of Fe(II). For 30 min's treatment, 6.67 ?M (500 ?g/L) of As(III) was completely oxidized and removed from the solution during the oxidative precipitation process when a total current of 60 mA was equally partitioned between the two anodes. The current on the inert anode determined the rate of O2 generation and was linearly related to the rates of Fe(II) oxidation and of As oxidation and removal, suggesting that the process could be manipulated electrochemically. The composition of Fe precipitates transformed from carbonate green rust to amorphous iron oxyhydroxide as the inert anode current increased. A conceptual model was proposed for the in situ application of the electrochemically induced oxidative precipitation process for As(III) remediation. PMID:24708303

Tong, Man; Yuan, Songhu; Zhang, Peng; Liao, Peng; Alshawabkeh, Akram N; Xie, Xianjun; Wang, Yanxin

2014-05-01

165

SOLUBILIZATION STUDIES OF RARE EARTH OXIDES AND OXOHALIDES. APPLICATION OF ELECTROCHEMICAL TECHNIQUES IN PYROCHEMICAL PROCESSES  

Microsoft Academic Search

Chemical and electrochemical properties of rare earths (La, Ce, Pr and Y) chloride solutions in the eutectic LiCl-KCl and the equimolar CaCl2-NaCl mixture were studied at 450 and 550 0 C respectively. The stability of the oxidation states of rare-earths and the standard potential of the different redox couples have been determined. The solubility product of oxides and oxychlorides were

C. Caravaca; P. Díaz Arocas; J. A. Serrano; C. González; R. Bermejo; M. Vega; A. Martínez; Y. Castrillejo

166

CO oxidation on stepped-Pt(111) under electrochemical conditions: insights from theory and experiment.  

PubMed

The co-adsorption of CO and OH on two Pt stepped surfaces vicinal to the (111) orientation has been evaluated by means of density functional theory (DFT) calculations. Focusing on Pt(533) and Pt(221), which contain (100) and (111)-steps, respectively, we find that (111)-steps should be more reactive towards CO oxidation than surfaces containing (100)-steps. The DFT results are compared with electrochemical experiments on the CO adsorption and oxidation on these vicinal surfaces. PMID:24072258

Busó-Rogero, C; Herrero, E; Bandlow, J; Comas-Vives, A; Jacob, Timo

2013-11-14

167

Preparation and physicochemical and electrochemical characterization of exfoliated graphite oxide  

Microsoft Academic Search

Exfoliated graphite oxide (EGO) is prepared by oxidizing exfoliated graphite (EG) using a mixture of KMnO4\\/H2SO4. The physicochemical characterization of the EGO has been carried out using FT-Raman, FT-IR, XPS, NMR, and diffraction techniques. Colloidal form of EGO is subsequently prepared by ultrasonicating EGO in water. Thin films of EGO on a glassy carbon\\/gold surface are formed and the electrochemical

P Ramesh; S Bhagyalakshmi; S Sampath

2004-01-01

168

Effects of natural and electrochemical oxidation processes on acoustic waves in porous silicon films  

Microsoft Academic Search

Brillouin scattering has been performed to study the effects of natural and electrochemical oxidation on the surface and bulk acoustic mode properties of porous silicon films. The acoustic mode frequencies are observed to decrease with increasing oxidation time and this is attributed to the progressive transformation of silicon–silicon bonds on the inner pore walls into SiO2. The dependence of the

H. J. Fan; M. H. Kuok; S. C. Ng; H. S. Lim; N. N. Liu; R. Boukherroub; D. J. Lockwood

2003-01-01

169

A direct electrochemical route from oxides to Ti–Si intermetallics  

Microsoft Academic Search

The titanium silicide intermetallics have been directly prepared from the mixture of titanium oxide (TiO2) and silicon oxide (SiO2) powder by using the solid-oxygen-ion-conducting membrane (SOM) electrolysis process. The electrochemical process was carried out in a molten flux CaCl2 at 950°C with a potential of 3.5–4.0V. The effects of the stoichiometry of the initial mixture on the electrolysis characteristics and

Xingli Zou; Xionggang Lu; Chonghe Li; Zhongfu Zhou

2010-01-01

170

Effects of natural and electrochemical oxidation processes on acoustic waves in porous silicon films  

Microsoft Academic Search

Brillouin scattering has been performed to study the effects of natural and electrochemical oxidation on the surface and bulk acoustic mode properties of porous silicon films. The acoustic mode frequencies are observed to decrease with increasing oxidation time and this is attributed to the progressive transformation of silicon-silicon bonds on the inner pore walls into SiO2. The dependence of the

H. J. Fan; M. H. Kuok; S. C. Ng; H. S. Lim; N. N. Liu; R. Boukherroub; D. J. Lockwood

2003-01-01

171

Chemical surface characterization of electrochemically and thermally oxidized boron-doped diamond film electrodes  

Microsoft Academic Search

In situ Cyclic Voltammetric analysis and ex situ X-ray Photoelectron Spectroscopy investigations have been carried out on highly boron-doped diamond film electrodes subjected to different oxidative treatments. Both the electrochemical and thermal oxidation modify, at different extent, the qualitative and quantitative chemical surface composition of the as prepared samples by partially converting the non diamond carbon species, for instance graphitic-like

Sergio Ferro; Maurizio Dal Colle; Achille De Battisti

2005-01-01

172

Indirect electrochemical oxidation of cyanide by hydrogen peroxide generated at a carbon cathode  

Microsoft Academic Search

The oxidation of cyanide was performed in aqueous sodium hydroxide solutions. Cyanide was oxidized over 90% to cyanate by hydrogen peroxide electrochemically generated at a 60ppi reticulated vitreous carbon electrode from oxygen reduction. Cyanide depletion was recorded as a function of time from the analysis of cyanide based on the titration procedure using silver nitrate with p-dimethylamino-benzal-rhodanine indicator. Cyanate was

Carlos Antonio Pineda Arellano; Susana Silva Martínez

2007-01-01

173

Chemical and electrochemical study of fabrics coated with reduced graphene oxide  

NASA Astrophysics Data System (ADS)

Polyester fabrics coated with reduced graphene oxide (RGO) have been obtained and later characterized by means of chemical and electrochemical techniques. X-ray photoelectron spectroscopy showed a decrease of the oxygen content as well as an increase of the sp2 fraction after chemical reduction of graphene oxide (GO). The electrical conductivity was measured by electrochemical impedance spectroscopy (EIS) and showed a decrease of 5 orders of magnitude in the resistance (?) when GO was reduced to RGO. The phase angle also changed from 90° for PES-GO (capacitative behavior) to 0° for RGO coated fabrics (resistive behavior). In general an increase in the number of RGO layers produced an increase of the conductivity of the fabrics. EIS measurements in metal/sample/electrolyte configuration showed better electrocatalytic properties and faster diffusion rate for RGO specimens. Scanning electrochemical microscopy was employed to test the electroactivity of the different fabrics obtained. The sample coated with GO was not conductive since negative feedback was obtained. When GO was reduced to RGO the sample behaved like a conducting material since positive feedback was obtained. Approach curves indicated that the redox mediator had influence on the electrochemical response. The Fe(CN)63-/4- redox mediator produced a higher electrochemical response than Ru(NH3)63+/2+ one.

Molina, J.; Fernández, J.; del Río, A. I.; Bonastre, J.; Cases, F.

2013-08-01

174

Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation.  

PubMed

Due to their resistance to biological wastewater treatment, iodinated X-ray contrast media (ICM) have been detected in municipal wastewater effluents at relatively high concentrations (i.e., up to 100 ?g L(-1)), with hospitals serving as their main source. To provide a new approach for reducing the concentrations of ICMs in wastewater, electrochemical reduction at three-dimensional graphite felt and graphite felt doped with palladium nanoparticles was examined as a means for deiodination of the common ICM diatrizoate. The presence of palladium nanoparticles significantly enhanced the removal of diatrizoate and enabled its complete deiodination to 3,5-diacetamidobenzoic acid. When the system was employed in the treatment of hospital wastewater, diatrizoate was reduced, but the extent of electrochemical reduction decreased as a result of competing reactions with solutes in the matrix. Following electrochemical reduction of diatrizoate to 3,5-diacetamidobenzoic acid, electrochemical oxidation with boron-doped diamond (BDD) anodes was employed. 3,5-Diacetamidobenzoic acid disappeared from solution at a rate that was similar to that of diatrizoate, but it was more readily mineralized than the parent compound. When electrochemical reduction and oxidation were coupled in a three-compartment reactor operated in a continuous mode, complete deiodination of diatrizoate was achieved at an applied cathode potential of -1.7 V vs SHE, with the released iodide ions electrodialyzed in a central compartment with 80% efficiency. The resulting BDD anode potential (i.e., +3.4-3.5 V vs SHE) enabled efficient oxidation of the products of the reductive step. The presence of other anions (e.g., chloride) was likely responsible for a decrease in I(-) separation efficiency when hospital wastewater was treated. Reductive deiodination combined with oxidative degradation provides benefits over oxidative treatment methods because it does not produce stable iodinated intermediates. Nevertheless, the process must be further optimized for the conditions encountered in hospital wastewater to improve the separation efficiency of halide ions prior to the electrooxidation step. PMID:24261992

Radjenovic, Jelena; Flexer, Victoria; Donose, Bogdan C; Sedlak, David L; Keller, Jurg

2013-12-01

175

Electrochemical formation of ternary oxide films—an EQCM approach to galvanostatic deposition of alkali earth metal tungstates and molybdates  

Microsoft Academic Search

Galvanostatic deposition of barium and strontium tungstates and molybdates on tungsten and molybdenum electrodes in alkaline media (pH?12) was studied by means of Electrochemical Quartz Crystal Microbalance (EQCM). Formation of surface ternary oxide layers proceeds via dissolution and precipitation mechanism when the initial electrochemical formation of tungsten\\/molybdenum oxides is followed by the oxide dissolution and tungstate\\/molybdate precipitation. Mass change signals

Petr Krtil; Shigenori Nishimura; Masahiro Yoshimura

1999-01-01

176

Influence of heat-treatment and physicochemical properties on the electrochemical oxidation of carbon blacks in phosphoric acid  

SciTech Connect

Studies on the electrochemical oxidation of carbon blacks in concentrated phosphoric acid at 135-160/sup 0/C will be reviewed. The objective of the paper is to provide some understanding of the electrochemicaloxidation mechanism and the influence of physicochemical properties on the oxidation rate of carbon blacks. The effects of heat-treatment on the surface area and crystal structure of carbon black and electrochemical-oxidation rate are discussed.

Kinushita, K.

1983-08-01

177

Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices  

DOEpatents

The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

Rieke, Peter C. (Pasco, WA) [Pasco, WA; Coffey, Gregory W. (Richland, WA) [Richland, WA; Pederson, Larry R. (Kennewick, WA) [Kennewick, WA; Marina, Olga A. (Richland, WA) [Richland, WA; Hardy, John S. (Richland, WA) [Richland, WA; Singh, Prabhaker (Richland, WA) [Richland, WA; Thomsen, Edwin C. (Richland, WA) [Richland, WA

2010-07-20

178

Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices  

DOEpatents

The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

2010-03-02

179

Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices  

DOEpatents

The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

2010-11-23

180

Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.  

PubMed

Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics. PMID:23763302

Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

2013-07-16

181

Advanced oxidation technologies for chemical demilitarization  

SciTech Connect

This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. The main project objective was to establish a technical basis for future program development in the area of chemical warfare agent destruction using a Los Alamos-developed advanced oxidation process: a two-stage device consisting of thermal packed-bed reactor (PBR) and a nonthermal plasma (NTP) reactor. Various compounds were evaluated as potential surrogates for chemical warfare (CW) agents. Representative effluent mass balances were projected for future comparisons with incinerators. The design and construction of lab-scale PBR/NTP reactors (consisting of a liquid injection and metering system, electric furnace, condensers, chemical traps, plasma reactors, power supplies, and chemical diagnostics) has been completed. This equipment, the experience gained from chemical-processing experiments, process modeling, and an initial demonstration of the feasibility of closed-loop operation, have provided a technical basis for further demonstrations and program development efforts.

Rosocha, L.A.; Korzekwa, R.A.; Monagle, M.; Coogan, J.J.; Tennant, R.A.; Brown, L.F.; Currier, R.P.

1996-12-31

182

Advanced materials for solid oxide fuel cells  

SciTech Connect

Purpose of the research is to improve the properties of current state- of-the-art materials used for SOFCs. The project includes interconnect development, high-performance cathode, electrochemical testing, and accelerated testing. This document reports results of mechanical tests (bend strength, elastic modulus, fracture strength) of acceptor-substituted lanthanum chromite (interconnect material).

Armstrong, T.R.; Stevenson, J.; Paulik, S.

1996-12-31

183

A disposable immunosensor for Enterobacter sakazakii based on an electrochemically reduced graphene oxide-modified electrode.  

PubMed

A disposable immunosensor based on electrochemically reduced graphene oxide (ERGO) was developed for the detection of Enterobacter sakazakii. First, the graphene was deposited on a screen-printed carbon electrode (SPCE) by an electrochemical method. Second, the horseradish peroxidase-labeled bacteria-specific antibody was assembled onto the modified electrode to enhance the sensitivity of the immunosensor. The immunosensor constructed in this study can sensitively and rapidly detect E. sakazakii, and this method may contribute to further foodborne pathogen detection. In addition, this ERGO-modified SPCE could also provide new insights into the development of immunosensors for other bacteria to facilitate rapid detection. PMID:23219558

Hu, Xue; Dou, Wenchao; Fu, Linglin; Zhao, Guangying

2013-03-15

184

Electrochemical preparation of cuprous oxid powder: Part II. Process conditions  

Microsoft Academic Search

Practical electrosynthesis of cuprous oxide powder was carried out on a laboratory scale in a cell specially constructed both with and without a diaphragm under the various operating conditions guided by the authors' previous research. The electrolysis was appraised in terms of the quality of the cuprous oxide product, the electrodissolution of the copper anode, and the SEM microstructure of

J. Ji

1990-01-01

185

Vanadium oxide nanodisks: Synthesis, characterization, and electrochemical properties  

SciTech Connect

Highlights: Black-Right-Pointing-Pointer Highly crystallined VO{sub 1.6}{center_dot}H{sub 2}O nanodisks have been synthesized by using a novel solid-solution-solid growth process. Black-Right-Pointing-Pointer The nanodisks are assembled from nanoparticles. Black-Right-Pointing-Pointer PEG-4000 plays an important role for the formation of the nanodisks. Black-Right-Pointing-Pointer The as-synthesized nanodisks exhibit good electrochemical behavior. -- Abstract: Highly crystallined VO{sub 1.6}{center_dot}H{sub 2}O nanodisks assembled from nanoparticles have been successfully fabricated under hydrothermal conditions by using bulk V{sub 2}O{sub 5} and Na{sub 2}S{sub 2}O{sub 3} as the starting materials in the presence of surfactant polyethylene glycol 4000 (PEG-4000). The nanodisks have a diameter of 200 nm and thickness of 40 nm. Hollow nanodisks are occasionally observed, which is similar to Chinese ancient copper coins. The formation of nanodisks can be ascribed to a novel solid-solution-solid growth mechanism. Compared with other methods, the solid state transformation method is simple and economic. In addition, the nanodisks exhibit good electrochemical behavior and promising to be used in lithium-ion battery.

Ren, Ling [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)] [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Cao, Minhua, E-mail: caomh@bit.edu.cn [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)] [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China); Shi, Shufeng [Department of Chemistry, Northeast Normal University, Changchun 13324 (China)] [Department of Chemistry, Northeast Normal University, Changchun 13324 (China); Hu, Changwen [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)] [Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081 (China)

2012-01-15

186

Thermo-electrochemical modeling of ammonia-fueled solid oxide fuel cells considering ammonia thermal decomposition in the anode  

Microsoft Academic Search

Ammonia (NH3) is a promising hydrogen carrier and a possible fuel for use in Solid Oxide Fuel Cells (SOFCs). In this study, a 2D thermo-electrochemical model is developed to investigate the heat\\/mass transfer, chemical (ammonia thermal decomposition) and electrochemical reactions in a planar SOFC running on ammonia. The model integrates three sub-models: (1) an electrochemical model relating the current density–voltage

Meng Ni

2011-01-01

187

Catalytic activity of NiMnO3 for visible light-driven and electrochemical water oxidation.  

PubMed

NiMnO3 was found to be an efficient catalyst for light-driven water oxidation using [Ru(bpy)3](2+) and S2O8(2-) as a photosensitiser and a sacrificial oxidant, respectively. NiMnO3 exhibited remarkably high catalytic activity in comparison with manganese oxides and nickel oxide. For electrochemical water oxidation, the highest catalytic current was also obtained with NiMnO3 among the manganese oxides. PMID:24113542

Hong, Dachao; Yamada, Yusuke; Nomura, Akifumi; Fukuzumi, Shunichi

2013-11-28

188

Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water.  

PubMed

The presence of layered cobalt oxides has been identified experimentally in Co-based anodes under oxygen-evolving conditions. In this work, we report the results of theoretical investigations of the relative stability of layered and spinel bulk phases of Co oxides, as well as the stability of selected surfaces as a function of applied potential and pH. We then study the oxygen evolution reaction (OER) on these surfaces and obtain activity trends at experimentally relevant electro-chemical conditions. Our calculated volume Pourbaix diagram shows that ?-CoOOH is the active phase where the OER occurs in alkaline media. We calculate relative surface stabilities and adsorbate coverages of the most stable low-index surfaces of ?-CoOOH: (0001), (0112), and (1014). We find that at low applied potentials, the (1014) surface is the most stable, while the (0112) surface is the more stable at higher potentials. Next, we compare the theoretical overpotentials for all three surfaces and find that the (1014) surface is the most active one as characterized by an overpotential of ? = 0.48 V. The high activity of the (1014) surface can be attributed to the observation that the resting state of Co in the active site is Co(3+) during the OER, whereas Co is in the Co(4+) state in the less active surfaces. Lastly, we demonstrate that the overpotential of the (1014) surface can be lowered further by surface substitution of Co by Ni. This finding could explain the experimentally observed enhancement in the OER activity of Ni(y)Co(1-y)O(x) thin films with increasing Ni content. All energetics in this work were obtained from density functional theory using the Hubbard-U correction. PMID:23944254

Bajdich, Michal; García-Mota, Mónica; Vojvodic, Aleksandra; Nørskov, Jens K; Bell, Alexis T

2013-09-11

189

Modified cermet fuel electrodes for solid oxide electrochemical cells  

SciTech Connect

An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

1991-01-01

190

Electrochemical oxidation of adenine on graphene-platinum nanoparticles modified electrode  

NASA Astrophysics Data System (ADS)

Nanocomposite based on graphene and platinum nanoparticles was prepared by Radio Frequency catalytic Chemical Vapour Deposition (RF-cCVD) method over a Pt/MgO catalytic system (x=1 wt.%). This composite was used for modification of a platinum electrode, and next employed to investigate the electrochemical behaviour of adenine by Linear Sweep Voltammetry (LCV). The results showed that the modified electrode had a good electro-catalytic activity towards the oxidation of adenine. The electrochemical characteristics of the modified electrode were also investigated by Electrochemical Impedance Spectroscopy (EIS). A theoretical model was developed based on an electrical equivalent circuit which contained: the solution resistance (Rs), the charge transfer resistance (Rct), the Warburg impedance (Zw) and the double layer capacitance (Cdl).

Berghian-Grosan, C.; Biris, A. R.; Pruneanu, S.; Lazar, M. D.; Pogacean, F.; Watanabe, F.; Biris, A. S.

2013-11-01

191

Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes  

PubMed Central

Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strategy based on magneto-electrochemical immunoassay which combines the advantages of carbon nanotube and reduced graphene oxide together with electrochemical bursting of magnetic nanoparticles into a large number of metal ions. Sensitive detection was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. We confirmed the ultrahigh sensitivity of this method for a new generation herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The novel immune-detection platform showed the excellent potential applicability in rapid and sensitive screening of environmental pollutants or toxins in samples.

Sharma, Priyanka; Bhalla, Vijayender; Dravid, Vinayak; Shekhawat, Gajendera; Jinsong-Wu, J W; Prasad, E. Senthil; Suri, C. Raman

2012-01-01

192

Enhancing electrochemical detection on graphene oxide-CNT nanostructured electrodes using magneto-nanobioprobes  

NASA Astrophysics Data System (ADS)

Graphene and related materials have come to the forefront of research in electrochemical sensors during recent years due to the promising properties of these nanomaterials. Further applications of these nanomaterials have been hampered by insufficient sensitivity offered by these nanohybrids for the type of molecules requiring lower detection ranges. Here, we report a signal amplification strategy based on magneto-electrochemical immunoassay which combines the advantages of carbon nanotube and reduced graphene oxide together with electrochemical bursting of magnetic nanoparticles into a large number of metal ions. Sensitive detection was achieved by precisely designing the nanohybrid and correlating the available metal ions with analyte concentration. We confirmed the ultrahigh sensitivity of this method for a new generation herbicide diuron and its analogues up to sub-picomolar concentration in standard water samples. The novel immune-detection platform showed the excellent potential applicability in rapid and sensitive screening of environmental pollutants or toxins in samples.

Sharma, Priyanka; Bhalla, Vijayender; Dravid, Vinayak; Shekhawat, Gajendera; Jinsong-Wu; Prasad, E. Senthil; Suri, C. Raman

2012-11-01

193

The Investigation of Propane Oxidation Using Electrochemical Mass Spectrometry.  

National Technical Information Service (NTIS)

A theoretical analysis of the porous electrode used in previous propane oxidation studies was undertaken. The model transport through the porous platinum layer, porous Teflon membrane and the fritted glass support on the vacuum side of the interface is di...

J. K. Comeau R. J. Smythe S. Bruckenstein

1973-01-01

194

Conducting Polymer Electrochemically Generated Via Anodic Oxidation of Toluene.  

National Technical Information Service (NTIS)

As opposed to the much harsher conditions demanded in homogeneous solutions, a conducting polymer of toluene is readily formed by anodic oxidation of acetonitrile solutions containing the precursor. The fabrication of new conductive polymers is of interes...

D. B. Parry J. M. Harris K. Ashley S. Pons

1988-01-01

195

Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes  

SciTech Connect

Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

Gan Y. X.; Zhang L.; Gan B.J.

2011-10-01

196

Electrochemical degradation of clofibric acid in water by anodic oxidation  

Microsoft Academic Search

Aqueous solutions containing the metabolite clofibric acid (2-(4-chlorophenoxy)-2-methylpropionic acid) up to close to saturation in the pH range 2.0–12.0 have been degraded by anodic oxidation with Pt and boron-doped diamond (BDD) as anodes. The use of BDD leads to total mineralization in all media due to the efficient production of oxidant hydroxyl radical (OH). This procedure is then viable for

Ignasi Sirés; Pere Lluís Cabot; Francesc Centellas; José Antonio Garrido; Rosa María Rodríguez; Conchita Arias; Enric Brillas

2006-01-01

197

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste  

SciTech Connect

The principal goals of this project are to develop advanced electrochemical emission spectroscopic (EES) methods for monitoring the corrosion of carbon steel in simulated DOE liquid waste and to develop a better understanding of the mechanisms of the corrosion of metals (e.g. iron, nickel, and chromium) and alloys (carbon steel, low alloy steels, stainless steels) in thes e environments. During the first two years of this project, significant advances have been made in developing a better understanding of the corrosion of iron in aqueous solutions as a function of pH, on developing a better understanding of the growth of passive films on metal surfaces, and on developing EES techniques for corrosion monitoring. This report summarizes work on beginning the third year of the 3-year project.

Macdonald, Digby; Liu, Jun; Liu, Sue; Al-Rifaie, Mohammed; Sikora; Elzbieta

2000-06-01

198

Electrochemically regenerable metabolic CO2 and moisture control system for an advanced EMU application  

NASA Technical Reports Server (NTRS)

Regenerable CO2 and moisture removal techniques that reduce expendables and logistics requirements are needed to sustain people undertaking extravehicular activities for the Space Station. NASA has been investigating ways to advance the Electrochemically Regenerable CO2 and Moisture Absorption (ERCA) technology to replace the nonregenerable solid lithium hydroxide absorber for the advanced Portable Life Support System (PLSS). The ERCA technology, due to its use of liquid absorbent, has the ability to effectively satisfy the high metabolic CO2 and moisture removal requirements of PLSS applications. This paper defines the ERCA technology concept and its advantages for the PLSS application, reviews breadboard and subscale testdata and presents the results of design concepts for a prototype Absorber Module of improved performance and the physical characteristics of the projected flight hardware.

Lee, M. C.; Beckstrom, P. S.; Cusick, R. J.

1988-01-01

199

Fundamental studies of electrochemically controlled surface oxidation and hydrophobicity of natural enargite.  

PubMed

The surface oxidation and hydrophobicity of natural enargite (Cu(3)AsS(4)) and the formation of oxidation species at the mineral surface have been examined by a novel experimental approach that combines electrochemical techniques and atomic force microscopy (AFM). This approach allows for in-situ, synchronized electrochemical control and examination of the oxidative surface morphology of enargite. Combined with ex-situ cryo X-ray photoelectron spectroscopy surface analysis, the surface speciation of enargite surface oxidation has been obtained, comparing the newly fractured natural enargite surface with those that have been electrochemically oxidized at pHs 4 and 10. At pH 4, surface layer formations consisting of metal-deficient sulfide and elemental sulfur were identified, associated with a limited increase in root-mean-square (rms) roughness (1.228 to 3.143 nm) and apparent heterogeneous distribution of surface products as demonstrated by AFM imaging. A mechanism of initial rapid dissolution of Cu followed by diffusion-limited surface layer deposition was identified. At pH 10, a similar mechanism was identified although the differences between the initial and diffusion-limited phases were less definitive. Surface species were identified as copper sulfate and copper hydroxide. A significant increase in surface roughness was found as rms roughness increased from 0.795 to 9.723 nm. Dynamic (receding) contact angle measurements were obtained by a droplet evaporation method. No significant difference in the contact angle on a surface oxidized at pH 10 and the freshly polished surface was found. A significant difference was found between the polished surface and that oxidized at pH 4, with an increase in contact angle of about 13° (46° to 59°) after oxidation. Competing effects of hydrophilic (copper oxides and hydroxides) and hydrophobic (elemental sulfur) species on the mineral surface under oxidizing conditions at pH 4 and the change in surface roughness at pH 10 may contribute to the observed effects of electrochemically controlled oxidation on enargite hydrophobicity. PMID:23331095

Plackowski, Chris; Hampton, Marc A; Nguyen, Anh V; Bruckard, Warren J

2013-02-19

200

Peptide methionine sulfoxide reductase A (MsrA): direct electrochemical oxidation on carbon electrodes.  

PubMed

The direct electrochemical behaviour of peptide methionine sulfoxide reductase A (MsrA) adsorbed on glassy carbon and boron doped diamond electrodes surface, was studied over a wide pH range by cyclic and differential pulse voltammetry. MsrA oxidation mechanism occurs in three consecutive, pH dependent steps, corresponding to the oxidation of tyrosine, tryptophan and histidine amino acid residues. At the glassy carbon electrode, the first step corresponds to the oxidation of tyrosine and tryptophan residues and occurs for the same potential. The advantage of boron doped diamond electrode was to enable the separation of tyrosine and tryptophan oxidation peaks. On the second step occurs the histidine oxidation, and on the third, at higher potentials, the second tryptophan oxidation. MsrA adsorbs on the hydrophobic carbon electrode surface preferentially through the three hydrophobic domains, C1, C2 and C3, which contain the tyrosine, tryptophan and histidine residues, and tryptophan exists only in these regions, and undergo electrochemical oxidation. PMID:22967951

Enache, T A; Oliveira-Brett, A M

2013-02-01

201

Microfluidic Electrochemical Sensor for On-line Monitoring of Aerosol Oxidative Activity  

PubMed Central

Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species (ROS) in and around human tissues, leading to oxidative stress. We report here, a system employing a microfluidic electrochemical sensor coupled directly to a Particle-into-Liquid-Sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol assay (DTT assay) where after oxidized by PM, the remaining reduced DTT was analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Cobalt (II) phthalocyanine (CoPC)-modified carbon paste was used as the working electrode material allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R2 from 0.86–.97) with a time-resolution of approximately 3 minutes.

Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S.

2012-01-01

202

Electronic structure and morphology of dark oxides on zinc generated by electrochemical treatment.  

PubMed

Oxides formed by electrochemical treatment of metals frequently have properties and structures very different from the respective bulk oxides. Here, electronic structure and chemical composition were investigated for the oxide formed on polycrystalline zinc after electrochemical oxidation, and after subsequent reduction, in a Na2CO3 electrolyte. Photoluminescence and spectroscopic ellipsometry show the presence of states deep in the ZnO band gap in the oxidized sample, which consists of a highly disordered oxide. These states determine the absorption of light in the visible spectral range. After reduction, the characteristics of the ZnO electronic structure have disappeared, leaving a defect-dominated material with a band gap of ~1.8 eV. Complementary detailed analysis of the morphology of the resulting surfaces shows hexagon-shaped metallic Zn-"nanoplates" to be formed in the reduction step. The optical appearance of the surfaces is dark, because of their efficient extinction of light over a large part of the visible spectrum. The optical appearance is a result of changed surface morphology and electronic structure of the oxide film. Such materials may possess interesting applications in photocatalysis or photoelectrochemistry. PMID:23676866

Chen, Ying; Schneider, Paul; Liu, Bi-Ju; Borodin, Sergiy; Ren, Bin; Erbe, Andreas

2013-06-28

203

Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells.  

PubMed

Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) ? H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) ? H2O + 2e(-)) at ?700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions. PMID:23822749

Zhang, Chunjuan; Yu, Yi; Grass, Michael E; Dejoie, Catherine; Ding, Wuchen; Gaskell, Karen; Jabeen, Naila; Hong, Young Pyo; Shavorskiy, Andrey; Bluhm, Hendrik; Li, Wei-Xue; Jackson, Gregory S; Hussain, Zahid; Liu, Zhi; Eichhorn, Bryan W

2013-08-01

204

SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING  

EPA Science Inventory

This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

205

Demonstrating Advanced Oxidation Coupled With Biodegradation For Removal of Carbamazepine  

EPA Science Inventory

Carbamazepine is an anthropogenic pharmaceutical found in wastewater effluents that is quite resistant to removal by conventional wastewater treatment processes. Hydroxyl radical-based advanced oxidation processes can transform carbamazepine into degradation products but cannot m...

206

Chemical and electrochemical oxidation of small organic molecules  

NASA Astrophysics Data System (ADS)

Direct oxidation fuel cells using proton-exchange membrane electrolytes have long been recognized as being an attractive mode of power generation. The current work addresses the electro-oxidation characteristics of a number of potential fuels on Pt-based electrodes which can be used in direct oxidation fuel cells, including hydrocarbons and oxygenated molecules, such as alcohols, formates, ethers, and acetals. Promising alternative fuels which were identified, such as trimethoxymethane and dimethoxymethane, were then investigated in liquid-feed PEM-based fuel cells. In addition to investigating the nature of the anodic electro-oxidation of organic fuels, effort was also devoted to developing novel polymer electrolyte membranes which have low permeability to organic molecules, such as methanol. This research was initiated with the expectation of reducing the extent of fuel crossover from the anode to the cathode in the liquid-feed design fuel cell which results in lower fuel efficiency and performance. Other work involving efforts to improve the performance of direct oxidation fuel cell includes research focused upon improving the kinetics of oxygen reduction. There is continued interest in the identification of new, safe, non-toxic, and inexpensive reagents which can be used in the oxidation of organic compounds. Urea-hydrogen peroxide (UHP), a hydrogen bonded adduct, has been shown to serve as a valuable source of hydrogen peroxide in a range of reactions. UHP has been shown to be ideal for the monohydroxylation of aromatics, including toluene, ethylbenzene, p-xylene, m-xylene, and mesitylene, as well as benzene, in the presence of trifluoromethanesulfonic acid. It was also found that aniline was converted to a mixture containing primarily azobenzene, azoxybenzene and nitrobenzene when reacted with UHP in glacial acetic acid. A number of aniline derivatives have been investigated and it was observed that the corresponding azoxybenzene derivatives could be generated as the major products in good to excellent yields. The oxidation of other organic substrates was also investigated using urea-hydrogen peroxide as an oxidation reagent, including cyclohexylamine, 1-adamantaneamine, and adamantane.

Smart, Marshall C.

207

3D CFD Electrochemical and Heat Transfer Model of an Internally Manifolded Solid Oxide Electrolysis Cell, IMECE 2011.  

National Technical Information Service (NTIS)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. Thi...

G. G. Tao G. L. Hawkes J. E. O'Brien

2011-01-01

208

Synthesis and Microstructural Characterization of Manganese Oxide Electrodes for Application as Electrochemical Supercapacitors  

NASA Astrophysics Data System (ADS)

The aim of this thesis work was to synthesize Mn-based oxide electrodes with high surface area structures by anodic electrodeposition for application as electrochemical capacitors. Rod-like structures provide large surface areas leading to high specific capacitances. Since templated electrosynthesis of rods is not easy to use in practical applications, it is more desirable to form rod-like structures without using any templates. In this work, Mn oxide electrodes with rod-like structures (˜1.5 µm in diameter) were synthesized from a solution of 0.01 M Mn acetate under galvanostatic control without any templates, on Au coated Si substrates. The electrochemical properties of the synthesized nanocrystalline electrodes were investigated to determine the effect of morphology, chemistry and crystal structure on the corresponding electrochemical behavior of Mn oxide electrodes. Mn oxides prepared at different current densities showed a defective antifluoritetype crystal structure. The rod-like Mn oxide electrodes synthesized at low current densities (5 mAcm.2) exhibited a high specific capacitance due to their large surface areas. Also, specific capacity retention after 250 cycles in an aqueous solution of 0.5 M Na2SO4 at 100 mVs -1 was about 78% of the initial capacity (203 Fg-1 ). To improve the electrochemical capacitive behavior of Mn oxide electrodes, a sequential approach and a one-step method were adopted to synthesize Mn oxide/PEDOT electrodes through anodic deposition on Au coated Si substrates from aqueous solutions. In the former case, free standing Mn oxide rods (about 10 µm long and less than 1.5 µm in diameter) were first synthesized, then coated by electro-polymerization of a conducting polymer (PEDOT) giving coaxial rods. The one-step, co-electrodeposition method produced agglomerated Mn oxide/PEDOT particles. The electrochemical behavior of the deposits depended on the morphology and crystal structure of the fabricated electrodes, which were affected by the composition and pH of the electrolyte, temperature, current density and polymer deposition time. Mn oxide/PEDOT coaxial core/shell rods consisted of MnO2 with an antifluorite-type structure coated with amorphous PEDOT. The Mn oxide/PEDOT coaxial core/shell electrodes prepared by the sequential method showed significantly better specific capacity and redox performance properties relative to both uncoated Mn oxide rods and co- electrodeposited Mn oxide/PEDOT electrodes. The best specific capacitance for Mn oxide/PEDOT rods produced sequentially was ˜295 F g-1 with ˜92% retention after 250 cycles in 0.5 M Na2SO4 at 100 mV s-1. To further improve the electrochemical capacitive behavior of Mn oxide electrodes, Co-doped and Fe-doped Mn oxide electrodes with a rod-like morphology and antifluorite-type crystal structure were synthesized by anodic electrodeposition, on Au coated Si substrates, from dilute solutions of Mn acetate and Co sulphate and Mn acetate and Fe chloride. Also, Mn-Co oxide/PEDOT coaxial core/shell rods were synthesized by applying a shell of PEDOT on Mn-Co oxide electrodes. Mn-Co oxide/PEDOT electrodes consisted of MnO2, with partial Co 2+ and Co3+ ion substitution for Mn4+, and amorphous PEDOT. Mn-Fe oxide electrodes consisted of MnO2, with partial Fe2+ and Fe3+ ion substitution for Mn4+. Electrochemical analysis showed that the capacitance values for all deposits increased with increasing scan rate to 100 mVs -1, and then decreased after 100 mVs-1. The Mn-Co oxide/PEDOT electrodes showed improved specific capacity and electrochemical cyclability relative to uncoated Mn-Co oxides and Mn-Fe oxides. Mn-Co oxide/PEDOT electrodes with rod-like structures had high capacitances (up to 310 Fg -1) at a scan rate of 100 mVs-1 and maintained their capacitance after 500 cycles in 0.5 M Na2SO4 (91% retention). Capacitance reduction for the deposits was mainly due to the loss of Mn ions by dissolution in the electrolyte solution. To better understand the nucleation and growth mechanisms of Mn oxide electrodes, the effects of supersaturation ratio on the

Babakhani, Banafsheh

209

Electrochemical and electrochromic behavior of reactively sputtered nickel oxide  

Microsoft Academic Search

Nickel oxide thin films were deposited by reactive sputtering in a 20% oxygen\\/argon atmosphere for use as oxygen evolution catalysts in the photoelectrochemical production of hydrogen. The optical properties of the films were also characterized to evaluate their application as window layers. The polycrystalline films deposited at residual gas pressures of 6 or 10 mTorr exhibited moderate activity for oxygen

Eric L. Miller; R. E. Rocheleau

1997-01-01

210

Online electrochemical monitoring of nitric oxide during photodynamic therapy  

Microsoft Academic Search

Photodynamic therapy (PDT), as a novel treatment modality, is based on the use of a photosensitizing agent with an excitation light source for the treatment of various malignancies. Its effect is mediated through reactive oxygen species and nitric oxide (NO), which are shown to be present in apoptosis. Individual differences among patients and even in different areas of the same

Tayfun Dalbasti; Sedat Cagli; Emrah Kilinc; Nezih Oktar; Mehmet Ozsoz

2002-01-01

211

Rational synthesis of silver vanadium oxides/polyaniline triaxial nanowires with enhanced electrochemical property.  

PubMed

We designed and successfully synthesized the silver vanadium oxides/polyaniline (SVO/PANI) triaxial nanowires by combining in situ chemical oxidative polymerization and interfacial redox reaction based on ?-AgVO(3) nanowires. The ?-AgVO(3) core and two distinct layers can be clearly observed in single triaxial nanowire. Fourier transformed infrared spectroscopic and energy dispersive X-ray spectroscopic investigations indicate that the outermost layer is PANI and the middle layer is Ag(x)VO((2.5+0.5x)) (x < 1), which may result from the redox reaction of Ag(+) and aniline monomers at the interface. The presence of the Ag particle in a transmission electron microscopy image confirms the occurrence of the redox reaction. The triaxial nanowires exhibit enhanced electrochemical performance. This method is shown to be an effective and facile technique for improving the electrochemical performance and stability of nanowire electrodes for applications in Li ion batteries. PMID:21988235

Mai, Liqiang; Xu, Xu; Han, Chunhua; Luo, Yanzhu; Xu, Lin; Wu, Yimin A; Zhao, Yunlong

2011-11-01

212

Electrochemical impedance spectroscopy studies of lithium diffusion in doped manganese oxide  

SciTech Connect

Cathode performance is critical to lithium ion rechargeable battery performance; effects of doping lithium manganese oxide cathode materials on cathode performance are being investigated. In this paper, Li diffusion in Al-doped LiMn{sub 2}O{sub 4} was studied and found to be controlled by the quantity of Al dopant. Electrochemical cycling was conducted at 0.5mA/cm{sub 2}; electrochemical impedance spectra were taken at open circuit potential, with impedance being measured at 65 kHz-0.01 Hz. As the Al dopant level was increased, the Li diffusion rate decreased; this was attributed to the decreased lattice parameter of the doped oxide.

Johnson, B.J.; Doughty, D.H.; Voigt, J.A.; Boyle, T.J.

1996-06-01

213

Platinum catalyst on ordered mesoporous carbon with controlled morphology for methanol electrochemical oxidation  

NASA Astrophysics Data System (ADS)

Ordered mesoporous carbons CMK-3 with various morphologies are synthesized by using various mesoporous silica SBA-15 as template and then support to prepare Pt/CMK-3 catalyst. The obtained catalysts are compared in terms of the electrocatalytic activity for methanol oxidation in sulfuric acidic solutions. The structure characterizations and electrochemical analysis reveal that Pt catalysts with the CMK-3 support of large particle size and long channel lengths possess larger electrochemical active surface area (ECSA) and higher activity toward methanol oxidation than those with the other two supports. The better performance of Pt/CMK-3 catalyst may be due to the larger area of electrode/electrolyte interface and larger ECSA value of Pt catalyst, which will provide better structure in favor of the mass transport and the electron transport.

Kong, Ling-Bin; Li, Heng; Zhang, Jing; Luo, Yong-Chun; Kang, Long

2010-09-01

214

Electrochemically deposited gallium oxide nanostructures on silicon substrates.  

PubMed

We report a synthesis of ?-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. ?-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

Ghazali, Norizzawati Mohd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

2014-01-01

215

Electrochemically deposited gallium oxide nanostructures on silicon substrates  

PubMed Central

We report a synthesis of ?-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. ?-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method.

2014-01-01

216

Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA  

Microsoft Academic Search

Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste,

Christian Durante; Marco Cuscov; Abdirisak Ahmed Isse; Giancarlo Sandonà; Armando Gennaro

2011-01-01

217

Electrochemical behavior of graphite highly fluorinated by high oxidation state complex fluorides and elemental fluorine  

Microsoft Academic Search

Highly fluorinated graphites have been synthesized by using elemental fluorine under pressure and high oxidation state complex fluoride, K2NiF6 or KAgF4 in anhydrous hydrogen fluoride. Their electrochemical discharge as a cathode of primary lithium battery has been investigated in organic electrolyte solution. Main products were stage 1 compounds or the stage 1 involving stage 2 and 3 phases as minor

T Nakajima; M Koh; V Gupta; B Žemva; K Lutar

2000-01-01

218

Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte  

DOEpatents

An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

Balazs, G.B.; Lewis, P.R.

1999-07-06

219

Surfactant effects on the microstructure and electrochemical properties of emulsion-derived lithium cobalt oxide powders  

Microsoft Academic Search

The surfactant effects on the microstructure and electrochemical properties of lithium cobalt oxide (LiCoO2) powders prepared from emulsion-derived precursors have been investigated in this study. The single-phase LiCoO2 powders with R3?m structure are successfully prepared. The crystallinity and particle size of the obtained powders are varied with the amount of the surfactant used for preparing the emulsion solution. Reducing the

Chung-Hsin Lu; Po-Ying Yeh

2001-01-01

220

Structural and electrochemical investigation of lithium insertion into a new vanadium oxide, V 6O 14  

Microsoft Academic Search

A new form of vanadium oxide with the formula V6O14 has been synthesized in aqueous media from the parent material V6O13. The material was characterized by X-ray diffraction, thermal and chemical analysis. After dehydration, the material was found to be isostructural to V6O13. Electrochemical measurements conducted in half cells with V6O14 as the cathode material and lithium metal as the

M. Y. Saïdi; R. Koksbang; E. S. Saïdi; J. Barker

1997-01-01

221

The Electrochemical Oxidation and Dissolution of Silicon in AN Acetonitrile-Hydrogen Fluoride Electrolyte  

Microsoft Academic Search

The electrochemical characteristics of both n -Si and p-Si were investigated. The etch rate and photocurrent for n-Si in an anhydrous, HF-acetonitrile solution were directly proportional to light intensity. Four electrons were transferred per silicon oxidized with a quantum yield (the number of electrons measured in the external circuit per photon absorbed) greater than 3.3 due to electron injection. The

Eric Keith Propst

1994-01-01

222

One step hydrothermal synthesis of a carbon nanotube/cerium oxide nanocomposite and its electrochemical properties  

NASA Astrophysics Data System (ADS)

A carbon nanotube (CNT)/cerium oxide composite was prepared by a one-pot hydrothermal reaction in the presence of KOH and capping agent polyvinylpyrrolidone. The nanocomposite displayed pronounced capacitive behaviour with very small diffusion resistance. The electrochemical performance of the composite electrode in a symmetric supercapacitor displayed a high energy density of 35.9 Wh kg-1 corresponding to a specific capacitance of 289 F g-1. These composite electrodes also demonstrated a long cycle life with better capacity retention.

Kalubarme, Ramchandra S.; Kim, Yong-Han; Park, Chan-Jin

2013-09-01

223

Electrochemically oxidized electronic and ionic conducting nanostructured block copolymers for lithium battery electrodes.  

PubMed

Block copolymers that can simultaneously conduct electronic and ionic charges on the nanometer length scale can serve as innovative conductive binder material for solid-state battery electrodes. The purpose of this work is to study the electronic charge transport of poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-PEO) copolymers electrochemically oxidized with lithium bis(trifluoromethanesulfonyl) imide (LiTFSI) salt in the context of a lithium battery charge/discharge cycle. We use a solid-state three-terminal electrochemical cell that enables simultaneous conductivity measurements and control over electrochemical doping of P3HT. At low oxidation levels (ratio of moles of electrons removed to moles of 3-hexylthiophene moieties in the electrode), the electronic conductivity (?e,ox) increases from 10(-7) S/cm to 10(-4) S/cm. At high oxidation levels, ?e,ox approaches 10(-2) S/cm. When P3HT-PEO is used as a conductive binder in a positive electrode with LiFePO4 active material, P3HT is electrochemically active within the voltage window of a charge/discharge cycle. The electronic conductivity of the P3HT-PEO binder is in the 10(-4) to 10(-2) S/cm range over most of the potential window of the charge/discharge cycle. This allows for efficient electronic conduction, and observed charge/discharge capacities approach the theoretical limit of LiFePO4. However, at the end of the discharge cycle, the electronic conductivity decreases sharply to 10(-7) S/cm, which means the "conductive" binder is now electronically insulating. The ability of our conductive binder to switch between electronically conducting and insulating states in the positive electrode provides an unprecedented route for automatic overdischarge protection in rechargeable batteries. PMID:23789816

Patel, Shrayesh N; Javier, Anna E; Balsara, Nitash P

2013-07-23

224

Treatment of bactericide wastewater by combined process chemical coagulation, electrochemical oxidation and membrane bioreactor.  

PubMed

Bactericide wastewater (BIW) contains isothiazolin-ones, high salinity, toxicity and non-biodegradable organic concentrations. In order to enhance biodegradable capacity, chemical coagulation and electrochemical oxidation were applied to pretreatment processes. FeSO(4).7H2O, pH 12 and 20 mmol/l were determined as optimal chemical coagulation condition; and 15 mA/cm2 of current density, 10 ml/min of flow rate and pH 7 were chosen for the most efficient electrochemical oxidation condition at combined treatment. The wastewater which consisted mainly of isothiazolin-ones and sulfide was efficiently treated by chemical coagulation and electrochemical oxidation. The optimal pretreatment processes showed 60.9% of chemical oxygen demand (COD), 99.5% of S(2-) and 96.0% of isothiazolin-ones removal efficiency. A biological treatment system using membrane bioreactor (MBR) adding powder-activated carbon (PAC) was also investigated. COD of the wastewater which was disposed using a MBR was lower than 100 mg/l. PMID:17662522

Han, Wei-Qing; Wang, Lian-Jun; Sun, Xiu-Yun; Li, Jian-Sheng

2008-03-01

225

Oxidation-Reduction Resistance of Advanced Copper Alloys  

NASA Technical Reports Server (NTRS)

Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.

Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.

2003-01-01

226

Electrochemical oxidation of cyanide in the hydrocyclone cell  

SciTech Connect

A diluted electroplating cyanide rinse water has been used to test the use of the hydrocyclone cell (HCC) in batch recycle mode of operation for the simultaneous oxidation of cyanide during the electrodeposition of silver. The results obtained in this work with regard to the final products, current efficiency and the number of transferred electrons per CN{sup {minus}} helped to establish a probable reaction scheme. According to this, the process occurs mainly with one-electron transfer, through cyanate and cyanogen as intermediate species. Meanwhile, under conditions where the electrolyte circulates in an open bath and flows successively through the cathodic and the anodic compartments, as in the case of the HCC system, the cyanate could be produced by the direct oxidation through air and/or generated peroxide and CN could be lost as HCN (g).

Dhamo, N. [TU Berlin (Germany). Inst. fuer Metallurgie] [TU Berlin (Germany). Inst. fuer Metallurgie

1996-12-31

227

Electrochemical preparation of cuprous oxide powder: Part I. Basic electrochemistry  

Microsoft Academic Search

The preferred process for the production of cuprous oxide powder is via the anodic dissolution of copper in alkaline solution of sodium chloride. The principal reactions are as follows:\\u000a$$\\\\begin{gathered} Cu + nCl^ - = CuCl_n^{1 - n} (n = 2, 3) \\\\hfill \\\\\\\\ 2H_2 O + 2e = H_2 \\\\uparrow + 2OH^ - \\\\hfill \\\\\\\\ 2CuCl_n^{1 - n} +

J. Ji

1990-01-01

228

Electrochemical nitric oxide microsensors: sensitivity and selectivity characterisation  

Microsoft Academic Search

In this study, we have prepared two nitric oxide (NO) microsensors using two combinations of nickel tetrasulfonated phthalocyanine (NiTSPc), o-phenylenediamine (o-PD) and Nafion® based layers to modify the surface of 8?m diameter carbon fiber electrodes. We have compared the performances of the obtained composite microsensors (carbon\\/NiTSPc\\/Nafion®, and carbon\\/Nafion®\\/o-PD, respectively) in our home made operating conditions. We have developed the sessile

Maxime Pontié; Cédric Gobin; Thierry Pauporté; Féthi Bedioui; Jacques Devynck

2000-01-01

229

Advanced oxidation processes (AOP) for water purification and recovery  

Microsoft Academic Search

All advanced oxidation processes (AOP) are characterised by a common chemical feature: the capability of exploiting the high reactivity of HO radicals in driving oxidation processes which are suitable for achieving the complete abatement and through mineralization of even less reactive pollutants. The different AOP are considered and critically presented according to their specific features with reference, whenever possible, to

Roberto Andreozzi; Vincenzo Caprio; Amedeo Insola; Raffaele Marotta

1999-01-01

230

Electrochemical oxidation and protein adduct formation of aniline: a liquid chromatography/mass spectrometry study.  

PubMed

Historically, skin sensitization tests are typically based on in vivo animal tests. However, for substances used in cosmetic products, these tests have to be replaced according to the European Commission regulation no. 1223/2009. Modification of skin proteins by electrophilic chemicals is a key process associated with the induction of skin sensitization. The present study investigates the capabilities of a purely instrumental setup to determine the potential of commonly used non-electrophilic chemicals to cause skin sensitization by the generation of electrophilic species from the parent compound. In this work, the electrophiles were generated by the electrochemical oxidation of aniline, a basic industrial chemical which may also be released from azo dyes in cosmetics. The compound is a known sensitizer and was oxidized in an electrochemical thin-layer cell which was coupled online to electrospray ionization-mass spectrometry. The electrochemical oxidation was performed on a boron-doped diamond working electrode, which is able to generate hydroxyl radicals in aqueous solutions at high potentials. Without any pretreatment, the oxidation products were identified by electrospray ionization/time-of-flight mass spectrometry (ESI-ToF-MS) using their exact masses. A mass voltammogram was generated by plotting the obtained mass spectra against the applied potential. Oligomerization states with up to six monomeric units in different redox states of aniline were observed using this setup. This approach was extended to generate adducts between the oxidation products of aniline and the tripeptide glutathione. Two adducts were identified with this trapping experiment. Protein modification was carried out subsequently: Aniline was oxidized at a constant potential and was allowed to react with ?-lactoglobulin A (?-LGA) or human serum albumin (HSA), respectively. The generated adducts were analyzed by liquid chromatography coupled to ESI-ToF-MS. For both ?-LGA and HSA, aniline adducts were successfully generated and identified. PMID:22227746

Melles, Daniel; Vielhaber, Torsten; Baumann, Anne; Zazzeroni, Raniero; Karst, Uwe

2012-04-01

231

Electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices  

NASA Astrophysics Data System (ADS)

The focus of this dissertation is the electrodeposition and electrochemical reduction of epitaxial metal oxide thin films and superlattices. The electrochemical reduction of metal oxides to metals has been studied for decades as an alternative to pyrometallurgical processes for the metallurgy industry. However, the previous work was conducted on bulk polycrystalline metal oxides. Paper I in this dissertation shows that epitaxial face-centered cubic magnetite (Fe3O4 ) thin films can be electrochemically reduced to epitaxial body-centered cubic iron (Fe) thin films in aqueous solution on single-crystalline Au substrates at room temperature. This technique opens new possibilities to produce special epitaxial metal/metal oxide heterojunctions and a wide range of epitaxial metallic alloy films from the corresponding mixed metal oxides. Electrodeposition, like biomineralization, is a soft solution processing method which can produce functional materials with special properties onto conducting or semiconducting solid surfaces. Paper II in this dissertation presents the electrodeposition of cobalt-substituted magnetite (CoxFe3-xO4, 0 of cobalt-substituted magnetite (CoxFe3-xO4, 0oxide (Co3O4) thin films on stainless steel and Au single-crystalline substrates. The crystalline Co3O4 thin films exhibit high catalytic activity towards the oxygen evolution reaction in an alkaline solution. A possible application of the electrodeposited Co 3O4 is the fabrication of highly active and low-cost photoanodes for photoelectrochemical water-splitting cells.

He, Zhen

232

Electrochemical sensing of nitric oxide with functionalized graphene electrodes.  

PubMed

The intrinsic electrocatalytic properties of functionalized graphene sheets (FGSs) in nitric oxide (NO) sensing are determined by cyclic voltammetry with FGS monolayer electrodes. The degrees of reduction and defectiveness of the FGSs are varied by employing different heat treatments during their fabrication. FGSs with intermediate degrees of reduction and high Raman ID to IG peak ratios exhibit an NO oxidation peak potential of 794 mV (vs 1 M Ag/AgCl), closely matching values obtained with a platinized Pt control (791 mV) as well as recent results from the literature on porous or biofunctionalized electrodes. We show that the peak potential obtained with FGS electrodes can be further reduced to 764 mV by incorporation of electrode porosity using a drop-casting approach, indicating a stronger apparent electrocatalytic effect on porous FGS electrodes as compared to platinized Pt. Taking into consideration effects of electrode morphology, we thereby demonstrate that FGSs are intrinsically as catalytic toward NO oxidation as platinum. The lowered peak potential of porous FGS electrodes is accompanied by a significant increase in peak current, which we attribute either to pore depletion effects or an amplification effect due to subsequent electrooxidation reactions. Our results suggest that the development of sensor electrodes with higher sensitivity and lower detection limits should be feasible with FGSs. PMID:24206401

Liu, Yifei M; Punckt, Christian; Pope, Michael A; Gelperin, Alan; Aksay, Ilhan A

2013-12-11

233

Electrochemical oxidation of the carbide wastes of hard alloys using alternating current  

NASA Astrophysics Data System (ADS)

The electrochemical oxidation of the carbide wastes of a W-Co alloy has been studied by gas, electron-probe microanalysis, and X-ray diffraction analyses. The experiments are carried out using halfwave sinusoidal alternating current. It is established that a CO2 + CO mixture forms under such conditions in a gaseous phase in volumetric ratio of 2: 1 and that a tungsten deposit forms in an anode sludge mainly in the form of hydrated tungsten oxide WO2(OH)2. Marketable products are obtained in the form of pure CO3O4 and WO3.

Bryukvin, V. A.; Palant, A. A.; Levchuk, O. M.; Tsybin, O. I.

2012-03-01

234

Free Radical and Electrochemically Induced Oxidation of Organic Sulfur, Selenium and Phosphorus-Compounds  

Microsoft Academic Search

A series of MeS(CH2), SMe, MeS(CH2)n SeMe, MeSe(CH2)n SeMe (with n = 1?5), and RS(CH2), PEt2 (n = 2?4) have been investigated with respect to their radiation chemical one-electron and electrochemical two-electron oxidations. The results essentially confirm an interaction of the two respective heteroatoms in these compounds already in the unoxidized state. Oxidation is thus achieved by removal of antibonding

Thomas Tobien; Hartmut Hungerbühler; Klaus-Dieter Asmus

1994-01-01

235

Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol  

NASA Astrophysics Data System (ADS)

In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

Han, Kun; Miao, Peng; Tong, Hui; Liu, Tao; Cheng, Wenbo; Zhu, Xiaoli; Tang, Yuguo

2014-02-01

236

Three-dimensional self-supported metal oxides for advanced energy storage.  

PubMed

The miniaturization of power sources aimed at integration into micro- and nano-electronic devices is a big challenge. To ensure the future development of fully autonomous on-board systems, electrodes based on self-supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self-supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li-ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self-supported electrodes fabricated using template, lithography, anodization and self-organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability. PMID:24700719

Ellis, Brian L; Knauth, Philippe; Djenizian, Thierry

2014-06-01

237

Formation and electrochemical characterization of anodic ZrO2-WO3 mixed oxide nanotubular arrays  

NASA Astrophysics Data System (ADS)

ZrO2-WO3 mixed oxide nanotubes were synthesized by a simple electrochemical anodization route. The oxide nanotubes contained a mixture of metastable hexagonal WO3 and monoclinic (and orthorhombic) ZrO2 phases, as well as a mixed-oxide ZrW2O8 phase that showed a metastable tetragonal symmetry. Evaluation of photo-activity of the materials showed generation of photo-potentials of -85 mV and -230 mV in the as-anodized and annealed conditions. Because of the mismatch in the band edge positions of the WO3 and ZrO2 phases and the resultant relaxation of photo-generated charge carriers, no significant photo-current density could be observed. The arrays of oxide nanotubes are considered for electrochemical capacitor application because of their morphology-assisted fast charge/discharge kinetics and large surface area. Presence of a large concentration of charge defects (on the order of 1021 cm-3) and the reported high proton conductivity of the ZrO2-WO3 mixed oxide rendered high capacitance, which decreased with an increase in the scan rate of cyclic voltammetry. The highest measured capacitance was 40.03 mF/cm2 at a scan rate of 10 mV/s and the lowest was 1.93 mF/cm2 at 1 V/s in 1 M sulfuric acid solution.

Whitman, Stuart R.; Raja, Krishnan S.

2014-06-01

238

An electrochemical biosensor for the detection of tyrosine oxidation induced by Fenton reaction.  

PubMed

A simple and sensitive electrochemical biosensor was used to detect tyrosine oxidation induced by hydroxyl radicals generated by Fenton reaction (Fe(2+)/H(2)O(2)). Poly(glu, tyr) (4:1) peptides were immobilized on indium tin oxide (ITO) electrode surface via layer-by-layer assembly technique, and Os(bpy)(3)(2+)-mediated tyrosine oxidation current was employed as the signal reporter of the biosensor. It was found that the electrochemical signal of the peptide decreased markedly after incubation with Fenton reagents. Interestingly, L-dopa, the oxidation product of tyrosine, was likely to form complexes with Fe(III), which could suppress the electro-oxidation of L-dopa and resulted in decrease of current response. Our results indicate that the peptide damage involved two steps and was a second-order reaction. X-ray photoelectron spectroscopy was used to quantitatively determine nitrogen elemental percentage on peptide-coated electrode surface, which eliminated the possibility that signal decrease was caused by peptide backbone cleavage. Moreover, the lowest concentration of Fenton reagents that could be detected was 10 ?M Fe(2+) or H(2)O(2), similar to the level in vivo. We suggest that the biosensor can be used to detect protein damage induced by Fenton reaction. PMID:21036029

Qu, Na; Guo, Liang-Hong; Zhu, Ben-Zhan

2011-01-15

239

Surface functionalization of fluorine-doped tin oxide samples through electrochemical grafting.  

PubMed

Transparent conductive oxides are emerging materials in several fields, such as photovoltaics, photoelectrochemistry, and optical biosensing. Their high chemical inertia, which ensured long-term stability on one side, makes challenging the surface modification of transparent conductive oxides; long-term robust modification, high yields, and selective surface modifications are essential prerequisite for any further developments. In this work, we aim at inducing chemical functionality on fluorine-doped tin oxide surfaces (one of the most inexpensive transparent conductive oxide) by means of electrochemical grafting of aryl diazonium cations. The grafted layers are fully characterized by photoemission spectroscopy, cyclic voltammetry, and atomic force microscopy showing linear correlation between surface coverage and degree of modification. The electrochemical barrier effect of modified surfaces was studied at different pH to characterize the chemical nature of the coating. We showed immuno recognition of biotin complex built onto grafted fluorine-doped tin oxides, which opens the perspective of integrating FTO samples with biological-based devices. PMID:24171474

Lamberti, F; Agnoli, S; Brigo, L; Granozzi, G; Giomo, M; Elvassore, N

2013-12-26

240

Advanced Oxidation Process Mid-year Report.  

National Technical Information Service (NTIS)

The design of new, high efficiency and cleaner burning engines is strongly coupled with the removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from fuels. Oxidative desulfurization (ODS) wherein these dibenzothiophene derivative...

C. P. Horwitz T. J. Collins

2003-01-01

241

Combinatorial electrochemical synthesis and screening of Pt-WO3 catalysts for electro-oxidation of methanol  

NASA Astrophysics Data System (ADS)

An automated system for high-throughput electrochemical synthesis and screening of fuel cell electro-oxidation catalysts is described. This system consists of an electrode probe that contains counter and reference electrodes that can be positioned inside an array of electrochemical cells created within a polypropylene block. The electrode probe is attached to an automated of X-Y-Z motion system. An externally controlled potentiostat is used to apply the electrochemical potential to the catalyst substrate. The motion and electrochemical control are integrated using a user-friendly software interface. During automated synthesis the deposition potential and/or current may be controlled by a pulse program triggered by the software using a data acquisition board. The screening includes automated experiments to obtain cyclic voltammograms. As an example, a platinum-tungsten oxide (Pt-WO3) library was synthesized and characterized for reactivity towards methanol electro-oxidation.

Jayaraman, Shrisudersan; Baeck, Sung-Hyeon; Jaramillo, Thomas F.; Kleiman-Shwarsctein, Alan; McFarland, Eric W.

2005-06-01

242

Electrochemically-Controlled Compositional Oscillations of Oxide Surfaces  

SciTech Connect

Perovskite oxides can exhibit a wide range of interesting characteristics such as being catalytically active and electronically and/or ionically conducting, and thus they have been used in a number of solid-state devices such as solid oxide fuel cells and sensors. As the surface compositions of perovskites can greatly influence the catalytic properties, knowing and controlling their surface chemistries is crucial to enhance device performance. In this study, we demonstrate that the surface strontium (Sr) and cobalt (Co) concentrations of perovskite-based thin films can be controlled reversibly at elevated temperatures by applying small electrical potential biases. The surface chemistry changes of La0.8Sr0.2CoO3 (LSC113), LaSrCoO4 (LSC214), and LSC214-decorated LSC113 films (LSC113/214) were investigated in situ by utilizing synchrotron-based X-ray photoelectron spectroscopy (XPS), where the largest changes of surface Sr was found for the LSC113/214 surface. These findings offer the potential of reversibly controlling the surface functionality of perovskites.

Mutoro, Eva [Massachusetts Institute of Technology (MIT); Crumlin, Ethan [Massachusetts Institute of Technology (MIT); Pöpke, Hendrik [Institute of Physical Chemistry, Justus-Liebig-University Giessen; Luerssen, Bjoern [Institute of Physical Chemistry, Justus-Liebig-University Giessen; Amati, Matteo [Sincrotrone Trieste Elettra; Abyaneh, Majid [Sincrotrone Trieste, Basovizza, Italy; Biegalski, Michael D [ORNL; Christen, Hans M [ORNL; Gregoratti, Luca [Sincrotrone Trieste, Basovizza, Italy; Janek, Jürgen [Institute of Physical Chemistry, Justus-Liebig-University Giessen; Shao-Horn, Yang [Massachusetts Institute of Technology (MIT)

2012-01-01

243

Solar-powered electrochemical oxidation of organic compounds coupled with the cathodic production of molecular hydrogen.  

PubMed

A Bi-doped TiO2 anode, which is prepared from a mixed metal oxide coating deposited on Ti metal, is shown to be efficient for conventional water splitting. In this hybrid photovoltaic-electrochemical system, a photovoltaic (PV) cell is used to convert solar light to electricity, which is then used to oxidize a series of phenolic compounds at the semiconductor anode to carbon dioxide with the simultaneous production of molecular hydrogen from water/proton reduction at the stainless steel cathode. Degradation of phenol in the presence of a background NaCl electrolyte produces chlorinated phenols as reaction intermediates, which are subsequently oxidized completely to carbon dioxide and low-molecular weight carboxylic acids. The anodic current efficiency for the complete oxidation of phenolic compounds ranges from 3% to 17%, while the cathodic current efficiency and the energy efficiency for hydrogen gas generation range from 68% to 95% and 30% to 70%, respectively. PMID:18656909

Park, Hyunwoong; Vecitis, Chad D; Hoffmann, Michael R

2008-08-21

244

Charge Transport Properties of P3HT-PEO block copolymers that are Electrochemically Oxidized in the Solid-State  

NASA Astrophysics Data System (ADS)

We report on the relationship between morphology and electronic/ionic charge transport of Poly(3-hexylthiophene)-b-Poly(ethylene oxide) (P3HT-b-PEO) and lithium bis-(trifluoromethanesulfonyl) imide (LiTFSI) mixtures. Using ac impedance spectroscopy, we show that P3HT-b-PEO/LiTFSI mixtures can conduct electronic and ionic charges simultaneously. The electronic resistance of P3HT-b-PEO can be controlled through the electrochemical oxidation of P3HT with LiTFSI. We designed an all solid-state electrochemical cell with three terminals to measure the electronic conductivity of P3HT-b-PEO under applied potentials. The addition of a third terminal within the P3HT-b-PEO layer allows for the in-situ measurement of the electronic conductivity as a function of the P3HT electrochemical oxidation level. Our experimental setup is unique in that electrochemical oxidation occurs in the presence of solid-polymer electrolyte. Previous studies on the electrochemical oxidation of polythiophenes have been done in the presence of a liquid electrolyte. The results of the in-situ electronic conductivity measurements as a function of electrochemical doping level and block copolymer composition will be presented.

Patel, Shrayesh; Javier, Anna; Balsara, Nitash

2013-03-01

245

In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode.  

PubMed

In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals has been directly demonstrated on a boron-doped diamond electrode. The DNA-electrochemical biosensor incorporates immobilized double-stranded DNA (dsDNA) as molecular recognition element on the electrode surface, and measures in situ specific binding processes with dsDNA, as it is a complementary tool for the study of bimolecular interaction mechanisms of compounds binding to DNA and enabling the screening and evaluation of the effect caused to DNA by radicals and health hazardous compounds. Oxidants, particularly reactive oxygen species (ROS), play an important role in dsDNA oxidative damage which is strongly related to mutagenesis, carcinogenesis, autoimmune inflammatory, and neurodegenerative diseases. The hydroxyl radical is considered the main contributing ROS to endogenous oxidation of cellular dsDNA causing double-stranded and single-stranded breaks, free bases, and 8-oxoguanine occurrence. The dsDNA-electrochemical biosensor was used to study the interaction between dsDNA immobilized on a boron-doped diamond electrode surface and in situ electrochemically generate hydroxyl radicals. Non-denaturing agarose gel-electrophoresis of the dsDNA films on the electrode surface after interaction with the electrochemically generated hydroxyl radicals clearly showed the occurrence of in situ dsDNA oxidative damage. The importance of the dsDNA-electrochemical biosensor in the evaluation of the dsDNA-hydroxyl radical interactions is clearly demonstrated. PMID:22335175

Oliveira, S Carlos B; Oliveira-Brett, Ana Maria

2012-03-13

246

Advanced launch system. Advanced development oxidizer turbopump program  

NASA Technical Reports Server (NTRS)

On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.

1993-01-01

247

Development of an Electrochemical Oxidation Method for Probing Higher Order Protein Structure with Mass Spectrometry  

SciTech Connect

We report here the novel use of electrochemistry to generate covalent oxidative labels on intact proteins in both non-native and physiologically relevant solutions as a surface mapping probe of higher order protein structure. Two different electrodes were tested across a range of experimental parameters including voltage, flow rate, and solution electrolyte composition to affect the extent of oxidation on intact proteins, as measured both on-line and off-line with mass spectrometry. Oxidized proteins were collected off-line for proteolytic digestion followed by LC-MS/MS analysis. Peptide MS/MS data were searched with the InsPecT scoring algorithm for forty-six oxidative mass shifts previously reported in the literature. Preliminary data showed agreement between solvent accessibility and the oxidation status of many ubiquitin residues in aqueous buffer, while more buried residues were found to be oxidized in non-native solution. Our results indicate that electrochemical oxidation using a boron-doped diamond electrode has the potential to become a useful and easily accessible tool for conducting oxidative surface mapping experiments.

McClintock, Carlee [ORNL; Kertesz, Vilmos [ORNL; Hettich, Robert {Bob} L [ORNL

2008-01-01

248

Tetradentate Schiff base ligands and their complexes: Synthesis, structural characterization, thermal, electrochemical and alkane oxidation  

NASA Astrophysics Data System (ADS)

Three Schiff base ligands (H2L1-H2L3) with N2O2 donor sites were synthesized by condensation of 1,5-diaminonapthalene with benzaldehyde derivatives. A series of Cu(II), Co(II), Ni(II), Mn(II) and Cr(III) complexes were prepared and characterized by spectroscopic and analytical methods. Thermal, electrochemical and alkane oxidation reactions of the ligands and their metal complexes were investigated. Extensive application of 1D (1H, 13C NMR) and 2D (COSY, HETCOR, HMBC and TOSCY) NMR techniques were used to characterize the structures of the ligands and establish the 1H and 13C resonance assignments of the three ligands. Ligands H2L1 and H2L3 were obtained as single crystals from THF solution and characterized by X-ray diffraction. Both molecules are centrosymmetric and asymmetric unit contains one half of the molecule. Catalytic alkane oxidation reactions with the transition metal complexes investigated using cyclohexane and cyclooctane as substrates. The Cu(II) and Cr(III) complexes showed good catalytic activity in the oxidation of cyclohexane and cyclooctane to desired oxidized products. Electrochemical and thermal properties of the compounds were also investigated.

Ceyhan, Gökhan; Köse, Muhammet; McKee, Vickie; Uru?, Serhan; Gölcü, Ay?egül; Tümer, Mehmet

249

Tetradentate Schiff base ligands and their complexes: synthesis, structural characterization, thermal, electrochemical and alkane oxidation.  

PubMed

Three Schiff base ligands (H(2)L(1)-H(2)L(3)) with N(2)O(2) donor sites were synthesized by condensation of 1,5-diaminonapthalene with benzaldehyde derivatives. A series of Cu(II), Co(II), Ni(II), Mn(II) and Cr(III) complexes were prepared and characterized by spectroscopic and analytical methods. Thermal, electrochemical and alkane oxidation reactions of the ligands and their metal complexes were investigated. Extensive application of 1D ((1)H, (13)C NMR) and 2D (COSY, HETCOR, HMBC and TOSCY) NMR techniques were used to characterize the structures of the ligands and establish the (1)H and (13)C resonance assignments of the three ligands. Ligands H(2)L(1) and H(2)L(3) were obtained as single crystals from THF solution and characterized by X-ray diffraction. Both molecules are centrosymmetric and asymmetric unit contains one half of the molecule. Catalytic alkane oxidation reactions with the transition metal complexes investigated using cyclohexane and cyclooctane as substrates. The Cu(II) and Cr(III) complexes showed good catalytic activity in the oxidation of cyclohexane and cyclooctane to desired oxidized products. Electrochemical and thermal properties of the compounds were also investigated. PMID:22571942

Ceyhan, Gökhan; Köse, Muhammet; McKee, Vickie; Uru?, Serhan; Gölcü, Ay?egül; Tümer, Mehmet

2012-09-01

250

Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin  

NASA Astrophysics Data System (ADS)

A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 ?M for AC and 0.06 to 10 ?M for PCT with high sensitivities of 54 295.82 ?A mM-1 cm2 for AC and 21 344.66 ?A mM-1 cm2 for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry.A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 ?M for AC and 0.06 to 10 ?M for PCT with high sensitivities of 54 295.82 ?A mM-1 cm2 for AC and 21 344.66 ?A mM-1 cm2 for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03620k

Jiang, Lin; Gu, Shuqing; Ding, Yaping; Jiang, Feng; Zhang, Zhen

2013-12-01

251

Influence of synthesis conditions on the electrochemical properties of nanostructured amorphous manganese oxide cryogels  

NASA Astrophysics Data System (ADS)

Amorphous manganese oxides have received increasing attention in recent years as intercalation cathodes for rechargeable lithium batteries. The sol-gel method is a versatile method for achieving nanostructured amorphous oxides. In this paper, two different sol-gel routes are investigated, where nanostructured amorphous manganese oxide cryogels are obtained via freeze drying Mn(IV) oxide hydrogels formed in situ. In one route the hydrogels are formed by reaction between a solution of sodium permanganate and a solution of disodium fumarate, and in the other route by reaction between a solution of sodium permanganate and solid fumaric acid. Highly homogeneous monolithic manganese oxide hydrogels are obtained from both synthesis routes with precursor concentrations between 0.1 and 0.2 M. The freeze drying method proves to be an efficient method for obtaining nanostructured amorphous manganese oxide cryogels out of the hydrogels. Depending on the synthesis conditions of the hydrogels, the resultant cryogels can yield very high specific capacities for lithium intercalation and excellent rate performance. The cryogel with the best performance exhibits 289 mAh/g at a C/100 rate and 174 mAh/g at a 2 C rate. Strong dependence of electrochemical properties of the cryogels on the synthesis conditions of the parent hydrogels has been observed. The different electrochemical properties are believed to be due to different surface areas and local structures of the cryogels derived from hydrogels synthesized under different conditions. This strong dependence gives rise to the possibility of achieving promising intercalation materials through tailoring the surface area and the local structure of amorphous manganese oxides by adjusting sol-gel synthesis conditions.

Yang, Jingsi; Xu, Jun John

252

Electroless Deposition of Conformed Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage  

SciTech Connect

We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO{sub x}) coatings are generated at the interior and exterior surfaces of macroscopically thick ({approx}90 {micro}m) carbon nanofoam paper substrates via redox reaction with aqueous K{sub 2}FeO{sub 4}. The resulting FeO{sub x}-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li{sub 2}SO{sub 4}), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g{sup -1}, 121 F cm{sup -3}, and 0.85 F cm{sup -2}, respectively, even at modest FeO{sub x} loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO{sub x} coating, delivering specific capacitance >300 F g{sup -1} normalized to the content of FeO{sub x} as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li{sub 2}SO{sub 4} electrolyte effectively suppresses the electrochemical dissolution of the FeO{sub x} coating, resulting in <20% capacitance fade over 1000 consecutive cycles.

Sassin, M.; Mansour, A; Pettigrew, K; Rolison, D; Long, J

2010-01-01

253

Methylene blue intercalated into calcium phosphate - Electrochemical properties and an ascorbic acid oxidation study  

NASA Astrophysics Data System (ADS)

Methylene blue (MB) was intercalated inside the cavity of a layered calcium phosphate host. The dye is strongly retained and not easily leached from the matrix. The intercalated dye material was incorporated into a carbon paste electrode and by means of cyclic voltammetry and amperometry, its electrochemical properties were investigated. In various electrolyte solutions, on changing the pH between 3 and 9, the midpoint potential remained practically constant at -0.15 V. This is not the usual behavior for MB, since it is known that in the solution phase the midpoint potential changes considerably with pH, indicating that, in the present case, methylene blue is a guest molecule intercalated inside the lamellar structure of the calcium phosphate. An electrode made with this material was used to study the electrochemical oxidation of ascorbic acid and then applied to commercial samples, with excellent agreement within the 95% confidence level.

Lazarin, Angélica M.; Airoldi, Claudio

2008-09-01

254

Production of a reactive metabolite of troglitazone by electrochemical oxidation performed in nonaqueous medium.  

PubMed

In order to confirm the existence of reactive metabolites by LC-MS/MS analysis, they should be modified into stable compounds, because some reactive metabolites generated by biotransformation induce drug toxicity; however, they are unstable, with very short lives, and cannot be detected in their intact forms. To overcome these problems, electrochemical oxidation of troglitazone was performed in nonaqueous medium, since such reactive compounds are stable in the absence of water. Troglitazone, an antidiabetic agent, was withdrawn from the market because of serious hepatotoxicity in some patients. It has been considered that one or more reactive metabolites are involved in hepatotoxicity, although the mechanism of the adverse reaction is unclear. Using our method of electrochemical oxidation in nonaqueous medium, we obtained a product of troglitazone derivative that may be a clue to clarify the mechanism of toxicity. The product in the reaction mixture was separated by HPLC without chemical modification and detected using UV and ESI-MS. The mass spectrum of its molecular ion showed that it was an o-quinone methide derivative of troglitazone and identified as a reactive metabolite generated by liver microsome oxidation of the drug. The product was stable over 24 h at room temperature in anhydrous acetonitrile, but it reacted with N-(tert-butoxycarbonyl)-L-cystein methylester to produce an adduct that could be identified by its m/z value. Thus, the method of electrochemical oxidation in nonaqueous medium is considered to be useful to prepare and predict reactive metabolites of drugs that are unstable in aqueous medium or in vivo. PMID:19581066

Tahara, Kayoko; Nishikawa, Takashi; Hattori, Yutaka; Iijima, Shiro; Kouno, Yukiko; Abe, Yoshihiro

2009-12-01

255

Sequential treatment of diluted olive pomace leachate by digestion in a pilot scale UASB reactor and BDD electrochemical oxidation.  

PubMed

The efficiency of the anaerobic treatment of olive pomace leachate (OPL) at mesophilic conditions was investigated. Daily and cumulative biogas production was measured during the operational period. The maximum biogas flowrate was 65 L/d, of which 50% was methane. In addition, the applicability of electrochemical oxidation as an advanced post-treatment method for the complete removal of chemical oxygen demand (COD) from the anaerobically treated OPL was evaluated. The diluted OPL, having a pH of 6.5 and a total COD of 5 g/L, was first treated in a 600 L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 71 days at mesophilic conditions (32 ± 2 °C) in a temperature-controlled environment at a hydraulic retention time of 3 days, and organic loading rates (OLR) between 0.33 and 1.67 g COD/(L.d). The UASB process led to a COD removal efficiency between 35 and 70%, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 18 A and in the presence of 0.17% NaCl as the supporting electrolyte, complete removal of COD was attained after 7 h of treatment predominantly through total oxidation reactions. During electrochemical experiments, three groups of organo-chlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs) and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, along with the residual chlorine are thought to increase the matrix ecotoxicity to Artemia salina. PMID:24704905

Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

2014-06-15

256

Development of a Silver-Copper Oxide Braze for Joining Metallic and Ceramic Components in Electrochemical Devices  

Microsoft Academic Search

One of the challenges in manufacturing solid-state electrochemical devices, such as planar solid oxide fuel cells (pSOFC) and oxygen generators, is in hermetically sealing the ceramic and metallic components such that the resulting joint remains rugged and stable under continuous high temperature operation in an oxidizing atmosphere. A well proven method of joining dissimilar materials is by brazing. Unfortunately many

K. Scott Weil; John S. Hardy; Jin Yong Y. Kim

2003-01-01

257

Development of a Silver-Copper Oxide Braze for Joining Metallic and Ceramic Components in Electrochemical Devices  

Microsoft Academic Search

One of the challenges in manufacturing solid-state electrochemical devices, such as planar solid oxide fuel cells (pSOFC), is in joining the ceramic and metallic components such that the resulting joint is rugged and stable under continuous high temperature operation in an oxidizing atmosphere. A well proven method of joining dissimilar materials is by brazing. Unfortunately many of the commercially available

K. Scott Weil; John S. Hardy; Jin Yong Kim

2003-01-01

258

Selective electrochemical oxidation of heteroatom compounds having both silicon and tin on the same carbon as electroauxiliaries  

Microsoft Academic Search

The selective electrochemical oxidation of heteroatom compounds having two different electroauxiliaries, i.e. silicon and tin, on the same ?-carbon was examined. The oxidation potentials of such compounds were found to be similar to those of the corresponding compounds having only tin, indicating the predominant role of tin over that of silicon. The HOMO levels obtained by the molecular orbital calculations

Jun-ichi Yoshida; Mitsuru Watanabe; Hideaki Toshioka; Masayuki Imagawa; Seiji Suga

2001-01-01

259

Evaluation by electrochemical impedance spectroscopy of a process of removal of iron oxides deposited on a heat exchanger tubing  

Microsoft Academic Search

The formation of iron oxides layers over the tubes of a heat exchanger is a phenomenon that can make heat transfer difficult. A chemical process has been proposed for removing these iron oxides layers formed on Inconel 600 tubes. Electrochemical impedance spectroscopy is used as a tool for studying the different experimental conditions of this process. In this paper, the

J AbellÀ; J BarcelÓ; L Victori

1998-01-01

260

Electrochemical and spectrophotometric study of the behavior of electropolymerized nickel porphyrin films in the determination of nitric oxide in solution  

Microsoft Academic Search

We describe in this paper an electrochemical and spectrophotometric study of the behavior of an electropolymerized nickel porphyrin film as a sensor for the determination of nitric oxide (NO) in aqueous solution. Our results show that the anodic oxidation of NO at the modified electrode may not be the result of a catalytic effect induced by the porphyrinic complex. However,

Stéphane Trevin; Fethi Bedioui; Jacques Devynck

1996-01-01

261

Polyoxometalate-reduced graphene oxide hybrid catalyst: synthesis, structure, and electrochemical properties.  

PubMed

The deposition of polyoxometalate (POM) on chemically reduced graphene oxide sheets was carried out through electron transfer interaction and electrostatic interaction between POM and graphene sheets to make a heterogeneous catalyst in aqueous media. Well dispersed individual phosphomolybdic acid (PMo) clusters were observed by electron microscopy and atomic force microscopy measurements. The interaction between polyoxometalate and the graphene sheet was confirmed by using various spectroscopic methods such as FT-IR, UV-vis, and Raman. The UV-visible, IR, and cyclic voltammetry results revealed alteration of the electronic structure of deposited PMo as a result of strong interaction with the graphene oxide surface. Electrochemical properties of the PMo-rGO catalyst were investigated in an aqueous acidic electrolyte. The hybrid catalyst showed enhanced electro-oxidation of nitrite compared with pure homogeneous PMo and rGO. PMID:24168268

Kim, Yong; Shanmugam, Sangaraju

2013-11-27

262

Immobilization of methylviologen between well-ordered multilayers of manganese oxide during their electrochemical assembly.  

PubMed

Methylviologen dications (MV2+) were immobilized between layers of manganese oxide during their electrochemical assembly by an anodic route in a homogeneous aqueous Mn2+ solution. This approach yielded a well-ordered multilayer film on a platinum substrate as a result of dense packing of planar MV2+ molecules to stabilize the layered framework. A grazing angle in-plane X-ray diffraction study revealed that the manganese oxide sheets and the molecular planes of inserted MV2+ ions are oriented parallel to the electrode surface. Cyclic voltammetry of the product film indicated an electron transfer from the underlying Pt substrate to inserted methylviologen ions through the manganese oxide sheets. PMID:17279786

Nakayama, Masaharu; Hoyashita, Ryo; Komatsu, Hiroyuki; Muneyama, Etsuhiro; Shoda, Kaoru; Kunishige, Atsuhiro

2007-03-13

263

Cobalt (hydro)oxide electrodes under electrochemical conditions: a first principle study  

NASA Astrophysics Data System (ADS)

There is currently much interest in photoelectrochemical water splitting as a promising pathway towards sustainable energy production. A major issue of such photoelectrochemical devices is the limited efficiency of the anode, where the oxygen evolution reaction (OER) takes place. Cobalt (hydro)oxides, particularly Co3O4 and Co(OH)2, have emerged as promising candidates for use as OER anode materials. Interestingly, recent in-situ Raman spectroscopy studies have shown that Co3O4 electrodes undergo progressive oxidation and transform into oxyhydroxide, CoO(OH), under electrochemical working conditions. (Journal of the American Chemical Society 133, 5587 (2011))Using first principle electronic structure calculations, we provide insight into these findings by presenting results on the structural, thermodynamic, and electronic properties of cobalt oxide, hydroxide and oxydroxide CoO(OH), and on their relative stabilities when in contact with water under external voltage.

Chen, Jia; Selloni, Annabella

2013-03-01

264

Steam Oxidation of Advanced Steam Turbine Alloys  

Microsoft Academic Search

Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650°C to 800°C) to steam at 34.5 MPa (650°C to 760°C). Parabolic scale growth coupled

Gordon R. Holcomb; Gordon R

2008-01-01

265

Treatment of gasoline-contaminated waters by advanced oxidation processes  

Microsoft Academic Search

In this study, the efficiency of advanced oxidative processes (AOPs) was investigated toward the degradation of aqueous solutions containing benzene, toluene and xylenes (BTX) and gasoline-contaminated waters. The results indicated that BTX can be effectively oxidized by near UV-assisted photo-Fenton process. The treatment permits almost total degradation of BTX and removal of more than 80% of the phenolic intermediates at

Elaine Regina Lopes Tiburtius; Patricio Peralta-Zamora; Alexandre Emmel

2005-01-01

266

Electrochemical deposition of gold–platinum alloy nanoparticles on an indium tin oxide electrode and their electrocatalytic applications  

Microsoft Academic Search

Gold–platinum (Au–Pt) hybrid nanoparticles (Au–PtNPs) were successfully deposited on an indium tin oxide (ITO) surface using a direct electrochemical method. The resulting nanoparticles were characterized by scanning electron microscopy (SEM), UV–vis spectroscopy, X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and electrochemical methods. It was found that the size of the Au–PtNPs depends on the number of electrodeposition cycles. Au–PtNPs obtained

Yan Song; Yuting Ma; Yuan Wang; Junwei Di; Yifeng Tu

2010-01-01

267

Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy  

Microsoft Academic Search

The electrochemical degradation of a silicate- and a phosphate-based plasma electrolytic oxidation (PEO) coated AM50 magnesium alloy obtained using a pulsed DC power supply was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in NaCl solutions of different chloride ion concentrations viz., 0.01M, 0.1M, 0.5M and 1M. The surface of the PEO coated specimens after 50h of immersion\\/EIS testing

J. Liang; P. Bala Srinivasan; C. Blawert; W. Dietzel

2010-01-01

268

Influence of laser-generated surface structures on electrochemical performance of lithium cobalt oxide  

NASA Astrophysics Data System (ADS)

The further development of energy storage devices especially of lithium-ion batteries plays an important role in the ongoing miniaturization process towards lightweight, flexible mobile devices. To improve mechanical stability and to increase the power density of electrode materials while maintaining the same footprint area, a three-dimensional battery design is necessary. In this study different designs of three-dimensional cathode materials are investigated with respect to the electrochemical performance. Lithium cobalt oxide is considered as a standard cathode material, since it has been in use since the first commercialization of lithium-ion batteries. Various electrode designs were manufactured in lithium cobalt oxide electrodes via laser micro-structuring. Laser ablation experiments in ambient air were performed to obtain hierarchical and high aspect surface structures. Laser structuring using mask techniques as well as the formation of self-organized conical surface structures were studied in detail. In the latter case a density of larger than twenty million microstructures per square centimeter was obtained with a significant increase of active surface area. Laser annealing was applied for the control of the average grain size and the adjustment of a crystalline phase which exhibits electrochemical capacities in the range of the practical capacity known for lithium cobalt oxide. An investigation of cycling stability with respect to annealing parameters such as annealing time and temperature was performed using a diode laser operating at 940 nm. Information on the phase and crystalline structure were obtained using Raman spectroscopy and X-ray diffraction analysis. The electrochemical performance of the laser modified cathodes was studied via cyclic voltammetry and galvanostatic testing using a lithium anode and a standard liquid electrolyte.

Kohler, R.; Proell, J.; Ulrich, S.; Przybylski, M.; Seifert, H. J.; Pfleging, W.

2012-02-01

269

Synthesis mechanisms of lithium cobalt oxide prepared by hydrothermal–electrochemical method  

Microsoft Academic Search

Thermodynamic calculation method was adopted to predict the reaction mechanism of LiCoO2 prepared by hydrothermal–electrochemical process. It was found that in the Co–LiOH–H2O system, Co was oxidized to HCoO2?, Co(OH)2 (100°C) or CoO (150°C), CoOOH in sequence with the increase of electrode potential, then the ion-exchange reaction of CoOOH and lithium ion occurred and LiCoO2 came into being. The optimum

Ying Tao; Baojun Zhu; Zhenhua Chen

2007-01-01

270

Oscillations and period-doubling bifurcations in the electrochemical oxidation of thiourea  

NASA Astrophysics Data System (ADS)

The electrochemical oxidation of thiourea on a Pt electrode was found to exhibit both simple and period-doubled oscillations. Measurements of the potentiostatic I/Ø behavior and impedance spectra suggest that the studied system belongs to the hidden negative differential resistance (HNDR) oscillator. The dependence of complex oscillations on initial compositions of the reaction mixture and temperature has also been characterized, which showed that: (1) lowering the reaction temperature facilitates the occurrence of complex oscillations; (2) the frequency of oscillation increases linearly with respect to the temperature; and (3) hydrochloric acid exhibits stronger influence on the reaction behavior than nitric acid.

Xu, Liangqin; Gao, Qingyu; Feng, Jiamin; Wang, Jichang

2004-10-01

271

Modelling temporal kinetic oscillations for electrochemical oxidation of formic acid on Pt  

NASA Astrophysics Data System (ADS)

A model is presented which suitably reproduces the observed kinetic potential oscillations for the electrochemical oxidation of formic acid on Pt. Coupled ordinary differential equations are formulated concerning three variables: the electrode potential and the amounts of adsorbed water and carbon monoxide. Two points prove to be essential in this model to an obtain oscillation behavior similar to the observed behavior: the interaction between the two adsorbed species increases with the electrode potential and the saturation surface coverage of the adsorbed carbon monoxide is less than 1. These two points are consistent with experimental observations.

Okamoto, Hiroshi; Tanaka, Naoki; Naito, Masayoshi

1996-01-01

272

Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties  

Microsoft Academic Search

The electrochemistry of mixed-valent-containing vanadium-oxide nanotubes (VOx-NTs) is first reported. Using dodecylamine and hexadecylamine as templates, two kinds of VOx-NTs were synthesized and characterized. Both VOx-NTs contain V2O3, VO2 and V2O5 species. Dodecylamine-templated VOx-NTs (C12-VOx-NTs) are much more stable than hexadecylamine-templated VOx-NTs (C16-VOx-NTs). C12-VOx-NTs demonstrate stable redox behavior at ??0.2V, which is arising from the electrochemical transfer between V(III) and

Aihua Liu; Masaki Ichihara; Itaru Honma; Haoshen Zhou

2007-01-01

273

A kinetic, structural and compositional study of electrochemically-formed hydrous iridium oxide films  

NASA Astrophysics Data System (ADS)

The Ir(+III)/Ir(+IV) charge transfer reaction of electrochemically formed (hydrous) Ir oxide films has been investigated in acidic solutions of low pH (ca 0.5 to 1.5). These films have been grown and studied in a range of acidic solutions, including HClOsb4,\\ Hsb2SOsb4,\\ HNOsb3, Hsb3POsb4, TsOH and NDSAH. All films show very similar thermodynamic characteristics in slow sweep cyclic voltammetry (CV) experiments and yield an excellent low frequency capacitance. The differing acid/base characteristics of the reduced vs. the oxidized states of the Ir oxide film result in a super-Nernstian mV/pH response, supported by in-situ electrochemical quartz crystal microbalance (EQCM) measurements of the film mass changes accompanying the redox reaction. In the case of Hsb2SOsb4, the -68 mV/pH unit dependence, smaller than suggested in previous literature, suggests that 0.15 moles of HSOsb4sp{-} are injected/expelled per Ir site during film reduction/oxidation. Hsb2O exchange also occurs, as indicated by the EQCM data. These Ir oxide films are believed to be very porous, allowing the facile expulsion/injection of counter anions, and for the first time, clear field emission scanning electron microscopy (FESEM) evidence for the existence of film nanoporosity is presented. The oxide morphology is found to be relevant to the Ir(+III)/Ir(+IV) charge transfer kinetics, which can be altered by up to 100 times by the potential pulsing times and the solution used during film growth. Further, the redox kinetics of the entire oxide film appear to be dictated by Ir sites located deep in the oxide film. An irreversible aging phenomenon, seen by the loss of the kinetic advantages and of the film stability has also been studied. Film aging reflects the detachment of oxide fragments from the Ir substrate and/or extensive cracking within the oxide film. Several factors influence the propensity of these films to aging, such as the anion of the growth and test solutions and the potential limits and pulsing times used to grow and study the films. Film aging can be prevented altogether through the selection of the appropriate conditions for film growth and study.

Bock, Christina

274

Characterization of electro-oxidation catalysts using scanning electrochemical and mass spectral methods  

NASA Astrophysics Data System (ADS)

Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur more slowly than the methanol oxidation reaction. Addition of 22%--40% Ru to the Pt electrode was found to increase the current densities and lower the onset potentials. The reaction was found to occur though a parallel path mechanism, which was confirmed by the detection of ethanol and acetic acid apart from CO2.

Jambunathan, Krishnakumar

275

Materials for electrochemical capacitors.  

PubMed

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices. PMID:18956000

Simon, Patrice; Gogotsi, Yury

2008-11-01

276

Materials for electrochemical capacitors  

NASA Astrophysics Data System (ADS)

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

Simon, Patrice; Gogotsi, Yury

2008-11-01

277

Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.  

PubMed

Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions. PMID:24553414

Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

2014-05-21

278

Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples.  

PubMed

An electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE) was used as a new voltammetric sensor for the determination of ferulic acid (FA). The morphology and microstructure of the modified electrodes were characterized by scanning electron microscopy (SEM) and Raman spectroscopy analysis, and the electrochemical effective surface areas of the modified electrodes were also calculated by chronocoulometry method. Sensing properties of the electrochemical sensor were investigated by means of cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that ERGO was electrodeposited on the surface of GCE by using potentiostatic method. The proposed electrode exhibited electrocatalytic activity to the redox of FA because of excellent electrochemical properties of ERGO. The transfer electron number (n), electrode reaction rate constant (ks) and electron-transfer coefficient (?) were calculated as 1.12, 1.24s(-1), and 0.40, respectively. Under the optimized conditions, the oxidation peak current was proportional to FA concentration at 8.49×10(-8)molL(-1) to 3.89×10(-5)molL(-1) with detection limit of 2.06×10(-8)molL(-1). This fabricated sensor also displayed acceptable reproducibility, long-term stability, and high selectivity with negligible interferences from common interfering species. The voltammetric sensor was successfully applied to detect FA in A. sinensis and biological samples with recovery values in the range of 99.91%-101.91%. PMID:25063114

Liu, Linjie; Gou, Yuqiang; Gao, Xia; Zhang, Pei; Chen, Wenxia; Feng, Shilan; Hu, Fangdi; Li, Yingdong

2014-09-01

279

Facile and novel electrochemical preparation of a graphene-transition metal oxide nanocomposite for ultrasensitive electrochemical sensing of acetaminophen and phenacetin.  

PubMed

A facile and novel preparation strategy based on electrochemical techniques for the fabrication of electrodeposited graphene (EGR) and zinc oxide (ZnO) nanocomposite was developed. The morphology and structure of the EGR-based nanocomposite were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (XPS) and Raman spectroscopy. Meanwhile, the electrochemical performance of the nanocomposite was demonstrated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Due to the synergistic effect of EGR and ZnO nanoparticles, an ultrasensitive electrochemical sensor for acetaminophen (AC) and phenacetin (PCT) was successfully fabricated. The linearity ranged from 0.02 to 10 ?M for AC and 0.06 to 10 ?M for PCT with high sensitivities of 54,295.82 ?A mM(-1) cm(2) for AC and 21,344.66 ?A mM(-1) cm(2) for PCT, respectively. Moreover, the practical applicability was validated to be reliable and desirable in pharmaceutical detections. The excellent results showed the promise of the proposed preparation strategy of EGR-transition metal oxide nanocomposite in the field of electroanalytical chemistry. PMID:24201458

Jiang, Lin; Gu, Shuqing; Ding, Yaping; Jiang, Feng; Zhang, Zhen

2014-01-01

280

Surface-modified reduced graphene oxide electrodes for capacitors by ionic liquids and their electrochemical properties  

NASA Astrophysics Data System (ADS)

In this work, reduced graphene oxide (rGO)/ionic liquids (IL) composites with different weight ratios of IL to rGO were synthesized by a simple method. In these composites, IL contributed to the exfoliation of rGO sheets and to the improvement of the electrochemical properties of the resulting composites by enhancing the ion diffusion and charge transport. The structure of the composites was examined by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. The TEM images showed that IL was coated on the surface of rGO in a translucent manner. The electrochemical analysis of the prepared composites was carried out by performing cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy (EIS). Among the prepared composites, the one with a weight ratio of rGO to IL of 1:7 showed the highest specific capacitance of 147.5 F g-1 at a scan rate of 10 mV s-1. In addition, the rate capability and cycle performance of the composites were enhanced compared to pristine rGO. These enhanced properties make the composites suitable as electrode materials for the better performance supercapacitors.

Kim, Jieun; Kim, Seok

2014-03-01

281

Mineralization of citric acid wastewater by photo-electrochemical chlorine oxidation.  

PubMed

This work demonstrates a novel chloride photo-electrochemical method for mineralizing citric acid. The electrolytic reactor with a length of 12 cm, a width of 12 cm and a height of 30 cm held 2.5 L of solution, which was involved in the batch reaction. Both anode and cathode were made of titanium coated with RuO2/IrO2. The results revealed that the solution pH dominated the production of hypochlorous acid (HOCl) oxidant in the presence of NaCl as direct current electricity was used. The chloride electrochemical process at pH 5.5 removed 59% of total organic carbon (TOC) in 4 h (NaCl = 200 mM, current = 5 A). UV irradiation (254 nm) in the reactor induced the photo-electrochemical reaction, increasing the TOC removal from 59% to 99.4%. Finally, the reaction pathway for citric acid mineralization was discussed with reference to the detection of intermediates using a liquid chromatography-mass spectrometry (LC-MS). PMID:23500176

Chen, Kuan-Hsiang; Shih, Yu-Jen; Huang, Yao-Hui

2013-05-30

282

Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.  

PubMed

The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.0×10(-20) to 1.0×10(-14)M with the lower detection limit of 3.2×10(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. PMID:24632459

Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

2014-08-15

283

Effects of Potential and Mechanical Stimulation on Oxidation of Tantalum During Electrochemical Mechanical Polishing  

NASA Astrophysics Data System (ADS)

Metal oxidation under stress plays a significant role in many industrial applications, particularly in chemical mechanical polishing (CMP). Here we report effects of mechanical stimulation on tantalum (Ta) oxidation during CMP. A tantalum surface was polished at various anodic potentials and under different mechanical forces. A potentiostat was used to measure the anodic reaction current during electrochemical mechanical polishing (ECMP). The material removal rate (MRR) measured using atomic force microscopy (AFM) was compared with that calculated using Faraday's law. Relationship was linked (or established) between the anodic potential and a mechanical force. The MRR was a second-order polynomial function of potential at constant mechanical force, followed by a logarithmic function. It was found that more suboxides were present at extreme potentials (low and high), while substantial pentoxide was generated under intermediate potentials. A model is proposed to explain the oxidation process of Ta during ECMP. The oxidation of Ta was a function of the anodic potential and mechanical force. The ex situ method used in this study fulfilled the in situ observation on Ta oxidation in polishing. Additionally, this technique can be used to investigate oxidation of other metals.

Gao, F.; Liang, Hong

2012-03-01

284

Electrochemical characterization of transition metal oxide aerogels for secondary lithium batteries  

NASA Astrophysics Data System (ADS)

The ability of transition metals to exist in multiple valence states, along with the fact that many transition metal oxides have a layered structure, has made transition metal oxides prime candidates as electrodes for the emerging technology of secondary lithium batteries. Traditionally, the electrochemical behavior of these materials is considered to be intrinsic to the material. In order to obtain different electrochemical performance needs, different materials need to be selected. The principal objective of this dissertation is to correlate electrochemical behavior with the microstructure of a material, allowing a material to meet different application requirements through the control of its microstructure. In this research, three different studies are used to explore the interrelationship between microstructure and electrochemical behavior. Sol-gel chemistry is used exclusively to prepare the electrochemically active materials as this process enables one to control the resulting microstructure and morphology. The first study looks at the influence of the degree of crystallinity in MoO3 aerogels on lithium capacity. The degree of crystallinity is controlled through heat treatment and observed to affect the lithium capacity. The nanocrystalline MoO3 aerogel exhibited higher lithium capacity (1.5 Li/Mo) compared to both the amorphous (1.1 Li/Mo) and crystalline (1.1 Li/Mo) samples. The second study involves the synthesis of organic/inorganic hybrids, achieved by simultaneously polymerizing the polypyrrole network within the Mo-O-Mo network. The addition of the conducting polymer phase increases both the electrical conductivity (4 x 10-3 S/cm) and the lithium capacity (1.7 Li/Mo) compared to that of MoO3 aerogels. The third study emphasizes the use of the "sticky carbon" electrode to study the effects of high surface area and pore size on the lithium intercalation properties of V2O5 aerogels. A series of V2O 5 aerogels with varying surface areas (10 to 280 m2/g) is prepared through the ambient drying process for this study. The sticky carbon method, combined with the open structure of the aerogel, allow better lithium ion accessibility to the V2O5 aerogel cathode, leading to a much higher lithium capacity (˜6 Li/V2O5 ) compared to using the traditional composite cathode (3--4 LiV 2O5). A pseudocapacitive behavior (˜2000 F/g) is also observed in addition to the lithium intercalation.

Dong, Winny

285

Advanced Oxidation Processes In The Degradation Of Cyanazine  

Microsoft Academic Search

The use of two Advanced Oxidation Processes, constituted by the combinations of ozone and UV radiation, and hydrogen peroxide and UV radiation, in the destruction of the herbicide cyanazine is presented. In both cases, the influence of the operating variables (initial herbicide concentration, ozone partial pressure or initial hydrogen peroxide concentration, temperature and pH) is discussed, and a comparison is

F. Javier Benitez; Jesus Beltrán-Heredia; Teresa Gonzalez; J. Luis Acero

1995-01-01

286

Oxidation-Reduction Resistance of Advanced Copper Alloys.  

National Technical Information Service (NTIS)

Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS...

L. Greenbauer-Seng L. Thomas-Ogbuji D. L. Humphrey J. A. Setlock

2003-01-01

287

Advanced oxidation processes with coke plant wastewater treatment.  

PubMed

The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities. PMID:24804662

Krzywicka, A; Kwarciak-Koz?owska, A

2014-01-01

288

Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions  

DOEpatents

This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

Balachandran, Uthamalingam (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Udovich, Carl A. (Joliet, IL)

1994-01-01

289

Synthesis and optimizable electrochemical performance of reduced graphene oxide wrapped mesoporous TiO2 microspheres  

NASA Astrophysics Data System (ADS)

A facile microwave solvothermal process is developed to prepare an anatase TiO2 anode material that maintains multiple properties including high surface area, high crystallinity, uniform mesoporous, perfect microspheres and uniform particle size. Using this fine anatase TiO2 product, a TiO2/RGO (RGO: reduced graphene oxide) hybrid material is prepared under UV-light irradiation. Incorporation of RGO improves the electrochemical kinetics of the TiO2 microspheres, which results in superior electrochemical performance in terms of specific capacity, rate capability and cycle stability. The material shows a discharge capacity of 155.8 mA h g-1 at the 5 C rate. Even at the 60 C rate, a high discharge capacity of 83.6 mA h g-1 is still obtained which is two times higher than that of pristine mesoporous TiO2.A facile microwave solvothermal process is developed to prepare an anatase TiO2 anode material that maintains multiple properties including high surface area, high crystallinity, uniform mesoporous, perfect microspheres and uniform particle size. Using this fine anatase TiO2 product, a TiO2/RGO (RGO: reduced graphene oxide) hybrid material is prepared under UV-light irradiation. Incorporation of RGO improves the electrochemical kinetics of the TiO2 microspheres, which results in superior electrochemical performance in terms of specific capacity, rate capability and cycle stability. The material shows a discharge capacity of 155.8 mA h g-1 at the 5 C rate. Even at the 60 C rate, a high discharge capacity of 83.6 mA h g-1 is still obtained which is two times higher than that of pristine mesoporous TiO2. Electronic supplementary information (ESI) available: TGA of TiO2/RGO sample, XPS and AFM of the graphene oxide, SEM of TiO2 nanoparticles, SEM of the TiO2 and TiO2/RGO after cycles, rate performance of RGO, rate performance of TiO2/RGO with different contents of RGO. See DOI: 10.1039/c3nr06393c

Yan, Xiao; Li, Yanjuan; Du, Fei; Zhu, Kai; Zhang, Yongquan; Su, Anyu; Chen, Gang; Wei, Yingjin

2014-03-01

290

Advanced Oxidation Protein Products, Ferrous Oxidation in Xylenol Orange, and Malondialdehyde Levels in Thyroid Cancer  

Microsoft Academic Search

Aims and Background  The oxidation of protein plays an essential role in the pathogenesis of an important number of degenerative and cancer diseases,\\u000a which is now widely recognized. The aim is to examine advanced oxidation protein products (AOPPs), lipid peroxidation products\\u000a malondialdehyde (MDA), and ferrous oxidation in xylenol orange (FOX) in blood samples of papillary thyroid cancer patients\\u000a compared with healthy

Funda Kosova; Bahad?r Çetin; Melih Ak?nc?; Sabahattin Aslan; Zeki Ar?; Aylin Sepici; Nilgün Altan; Abdullah Çetin

2007-01-01

291

Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries  

SciTech Connect

Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

2009-10-01

292

A Non-Oxidative Approach towards Chemically and Electrochemically Functionalizing Si(111)  

PubMed Central

A general method for the non-oxidative functionalization of single-crystal silicon (111) surfaces is described. The silicon surface is fully acetylenylated using two-step chlorination/alkylation chemistry. A benzoquinone-masked primary amine is attached to this surface via Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition (“click” chemistry). The benzoquinone is electrochemically reduced, resulting in quantitative cleavage of the molecule and exposing the amine terminus. Molecules presenting a carboxylic acid have been immobilized to the exposed amine sites. X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV), and contact angle goniometry were utilized to characterize and quantitate each step in the functionalization process. This work represents a strategy for providing a general platform that can incorporate organic and biological molecules on Si(111) with minimal oxidation of the silicon surface.

Rohde, Rosemary D.; Agnew, Heather D.; Yeo, Woon-Seok; Bailey, Ryan C.; Heath, James R.

2013-01-01

293

Laboratory and pilot plant scale study on the electrochemical oxidation of landfill leachate.  

PubMed

Kinetic data regarding COD oxidation were measured in a laboratory scale cell and used to scale-up an electro-oxidation process for landfill leachate treatment by means of boron-doped diamond anodes. A pilot-scale reactor with a total BDD anode area of 1.05 m(2) was designed. Different electrode gaps in the laboratory and pilot plant cells resulted in dissimilar reactor hydrodynamics. Consequently, generalised dimensionless correlations concerning mass transfer were developed in order to define the mass transfer conditions in both electrochemical systems. These correlations were then used in the design equations to validate the scale-up procedure. A series of experiments with biologically pre-treated landfill leachate were done to accomplish this goal. The evolution of ammonia and COD concentration could be well predicted. PMID:20542632

Anglada, Angela; Urtiaga, Ana M; Ortiz, Inmaculada

2010-09-15

294

Electrochemical and electrochromic properties of niobium oxide thin films fabricated by pulsed laser deposition  

SciTech Connect

Niobium oxide thin films have been successfully fabricated on the indium-tin oxide coated glasses by pulsed laser deposition in an O{sub 3}/O{sub 2} gas mixture. Films are characterized by X-ray diffraction and Raman spectrometry. Electrochemical and electrochromic properties of Nb{sub 2}O{sub 5} films are examined by cyclic voltammogram and potential step coupled with an in situ charge-coupled device spectrophotometer. The unique characteristics of absorption spectra of Nb{sub 2}O{sub 5} films are observed for the first time, and the optical absorption from the trapped electrons in the surface states plays an important role in the electrochromic phenomenon.

Fu, Z.W.; Kong, J.J.; Qin, Q.Z.

1999-10-01

295

Great diversity in stability of perovskite-type oxides studied by electrochemical hydrogen charging  

Microsoft Academic Search

Single crystals of 0.91Pb(Zn1\\/3Nb2\\/3)O3-0.09PbTiO3, SrTiO3 and BaTiO3, and ceramic pellets of CaCu3Ti4O12 and BiFeO3 have been studied and compared through electrochemical hydrogen charging, in which the oxides were coated with silver electrodes\\u000a to electrolyze water as the cathode. Great diversity has been observed in the stability of the oxides: 0.91Pb(Zn1\\/3Nb2\\/3)O3-0.09PbTiO3 was quickly decomposed; hydrogen could enter the lattice of the

Yuchong Pei; Wanping Chen

2011-01-01

296

Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan  

NASA Technical Reports Server (NTRS)

The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

Ferlita, F.

1989-01-01

297

High-throughput synthesis and electrochemical screening of a library of modified electrodes for NADH oxidation.  

PubMed

We report the combinatorial preparation and high-throughput screening of a library of modified electrodes designed to catalyze the oxidation of NADH. Sixty glassy carbon electrodes were covalently modified with ruthenium(II) or zinc(II) complexes bearing the redox active 1,10-phenanthroline-5,6-dione (phendione) ligand by electrochemical functionalization using one of four different linkers, followed by attachment of one of five different phendione metal complexes using combinatorial solid-phase synthesis methodology. This gave a library with three replicates of each of 20 different electrode modifications. This library was electrochemically screened in high-throughput (HTP) mode using cyclic voltammetry. The members of the library were evaluated with regard to the surface coverage, midpeak potential, and voltammetric peak separation for the phendione ligand, and their catalytic activity toward NADH oxidation. The surface coverage was found to depend on the length and flexibility of the linker and the geometry of the metal complex. The choices of linker and metal complex were also found to have significant impact on the kinetics of the reaction between the 1,10-phenanthroline-5,6-dione ligand and NADH. The rate constants for the reaction were obtained by analyzing the catalytic currents as a function of NADH concentration and scan rate, and the influence of the surface molecular architecture on the kinetics was evaluated. PMID:23046387

Pinczewska, Aleksandra; Sosna, Maciej; Bloodworth, Sally; Kilburn, Jeremy D; Bartlett, Philip N

2012-10-31

298

Electrochemical oxidation of polyethylene glycol in electroplating solution using paraffin composite copper hexacyanoferrate modified (PCCHM) anode.  

PubMed

Electrochemical oxidation of polyethylene glycol (PEG) in an acidic (pH 0.18 to 0.42) and high ionic strength electroplating solution was investigated. The electroplating solution is a major source of wastewater in the printing wiring board industry. A paraffin composite copper hexacyanoferrate modified (PCCHM) electrode was used as the anode and a bare graphite electrode was used as the cathode. The changes in PEG and total organic carbon (TOC) concentrations during the course of the reaction were monitored. The efficiency of the PCCHM anode was compared with bare graphite anode and it was found that the former showed significant electrocatalytic property for PEG and TOC removal. Chlorides present in the solution were found to contribute significantly in the overall organic removal process. Short chain organic compounds like acetic acid, oxalic acid, formic acid and ethylene glycol formed during electrolysis were identified by HPLC method. Anode surface area and applied current density were found to influence the electro-oxidation process, in which the former was found to be dominating. Investigations of the kinetics for the present electrochemical reaction suggested that the two stage first-order kinetic model provides a much better representation of the overall mechanism of the process if compared to the generalized kinetic model. PMID:15559827

Bejankiwar, Rajesh S; Basu, Abir; Cementi, Max

2004-01-01

299

Removal of colour and COD from wastewater containing acid blue 22 by electrochemical oxidation.  

PubMed

Electrochemical oxidation of synthetic wastewater containing acid blue 22 on a boron-doped diamond electrode (BDD) was studied, using cyclic voltammetry and bulk electrolysis. The influence of current density, dye concentration, flow rate, and temperature was investigated, in order to find the best conditions for COD and colour removal. It was found that, during oxidation, a polymeric film, causing BDD deactivation, was formed in the potential region of water stability, and that it was removed by anodic polarisation at high potentials in the region of O(2) evolution. Bulk electrolysis results showed that the electrochemical process was suitable for completely removing COD and effectively decolourising wastewaters, due to the production of hydroxyl radicals on the diamond surface. In particular, under optimal experimental conditions of flow rates (i.e. 300 dm(3) h(-1)) and current density (i.e. 20 mA cm(-2)), 97% of COD was removed in 12h electrolysis, with 70 kWh m(-3) energy consumption. PMID:17869416

Panizza, Marco; Cerisola, Giacomo

2008-05-01

300

Bioactive plasma electrolytic oxidation coatings--the role of the composition, microstructure, and electrochemical stability.  

PubMed

A Plasma electrolytic oxidation (PEO) process was used to produce bioactive coatings on Ti. PEO coatings with Ca/P atomic ratio of 1.7 and 4.0 were fabricated and characterized with respect to their morphology, composition, and microstructure. AC and DC electrochemical tests were used to evaluate the effect of (i) organic additives (amino acids, proteins, vitamins, and antibiotics) in alpha-minimum essential medium (?-MEM) on electrochemical stability of noncoated and PEO-coated Ti and (ii) coating composition, microstructure, and corrosion behavior on the cell response in ?-MEM. PEO-coated Ti showed higher corrosion resistance than the noncoated Ti in MEM with and without organic additives by an order of magnitude. The corrosion resistance in ?-MEM decreased with time for nonmodified Ti and increased for PEO-coated Ti; the latter was because of the adsorption of the proteins in the coating pores which increased the diffusion resistance. The presence of Ca and P in titanium oxide coating at the Ca/P ratio exceeding that of any stoichiometric Ca-P-O and Ca-P-O-H compounds facilitates faster osteoblast cell adhesion. PMID:23744783

Mohedano, M; Guzman, R; Arrabal, R; López Lacomba, J-L; Matykina, E

2013-11-01

301

Amine functionalized graphene oxide/CNT nanocomposite for ultrasensitive electrochemical detection of trinitrotoluene.  

PubMed

Binding of electron-deficient trinitrotoluene (TNT) to the electron rich amine groups on a substrate form specific charge-transfer Jackson-Meisenheimer (JM) complex. In the present work, we report formation of specific JM complex on amine functionalized reduced graphene oxide/carbon nanotubes- (a-rGO/CNT) nanocomposite leading to sensitive detection of TNT. The CNT were dispersed using graphene oxide that provides excellent dispersion by attaching to CNT through its hydrophobic domains and solubilizes through the available OH and COOH groups on screen printed electrode (SPE). The GO was reduced electrochemically to form reduced graphene that remarkably increases electrochemical properties owing to the intercalation of high aspect CNT on graphene flakes as shown by TEM micrograph. The surface amine functionalization of dropcasted and rGO/CNT was carried out using a bi-functional cross linker ethylenediamine. The extent of amine functionalization on modified electrodes was confirmed using energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS) and confocal microscopy. The FTIR and Raman spectra further suggested the formation of JM complex between amine functionalized electrodes and TNT leading to a shift in peak intensity together with peak broadening. The a-rGO/CNT nanocomposite prepared electrode surface leads to ultra-trace detection of TNT upto 0.01 ppb with good reproducibility (n=3). The a-rGO/CNT sensing platform could be an alternate for sensitive detection of TNT explosive for various security and environmental applications. PMID:23416475

Sablok, Kavita; Bhalla, Vijayender; Sharma, Priyanka; Kaushal, Roohi; Chaudhary, Shilpa; Suri, C Raman

2013-03-15

302

Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes.  

PubMed

In order to investigate nitro-substitutent's effect on degradation of phenols at boron-doped diamond (BDD) anodes, cyclic voltammetries of three nitrophenol isomers: 2-nitrophenol (2NP), 3-nitrophenol (3NP) and 4-nitrophenol (4NP) were studied, and their bulk electrolysis results were compared with phenol's (Ph) under alkaline condition. The voltammetric study showed nitrophenols could be attacked by hydroxyl radicals and nitro-group was released from the aromatic ring. Results of bulk electrolysis showed degradation of all phenols were fit to a pseudo first-order equation and followed in this order: 2NP>4NP>3NP>Ph. Molecular structures, especially carbon atom charge, significantly influenced the electrochemical oxidation of these isomers. Intermediates were analyzed during the electrolysis process, and were mainly catechol, resorcinol, hydroquinone, and carboxylic acids, such as acetic acid and oxalic acid. A simple degradation pathway was proposed. Moreover, a linear increasing relationship between degradation rates and Hammett constants of the studied phenols was observed, which demonstrated that electrochemical oxidation of these phenols was mainly initiated by electrophilic attack of hydroxyl radicals at BDD anodes. PMID:20060999

Jiang, Yi; Zhu, Xiuping; Li, Hongna; Ni, Jinren

2010-02-01

303

Composite electrodes for advanced electrochemical applications. Quarterly report for the period July 1 - September 30, 1999  

SciTech Connect

The electrochemical industry is one of the most highly energy-intensive industries today. However, there have been no significant advances in the electrodes that these industries use. The dimensionally stable anode (DSA), which ELTECH introduced under a license agreement, has been the industry standard for the past twenty-five years. But, DSAs are nearing the end of their technological prevalence. The principal problems with DSAs include high capital and operating cost, and the proprietary nature of the technology. In addition, DSAs experience problems that include contamination of the process solution by anode materials, failure when the electrocatalytic coating peels from under attack, generally low anode performance due to inherent limitations in operating current density, and short anode lifetime because of corrosion. The proposed innovation combines the low electrical resistance of copper with the corrosion resistance of electrically conductive diamond to achieve energy-efficient, long-lifetime electrodes for electrochemistry. The proposed work will ultimately develop a composite electrode that consists of a copper substrate, a conductive diamond coating, and a catalytic precious metal coating. The scope of the current work includes preparation, testing, and evaluation of diamond-coated titanium electrodes.

Kovach, Chris

1999-10-01

304

Pilot treatment of olive pomace leachate by vertical-flow constructed wetland and electrochemical oxidation: an efficient hybrid process.  

PubMed

A hybrid process comprising biological degradation in a vertical-flow constructed wetland (CW) and electrochemical oxidation over boron-doped diamond electrodes to decolorize, mineralize and detoxify a leachate from olive pomace processing (OPL) was investigated. Two alternative treatment schemes were compared: According to the first treatment scheme, OPL was treated by electrochemical oxidation followed by treatment in a constructed wetland pilot unit (CW-A). The second scheme comprised of treatment in a constructed wetland followed by electrochemical treatment (CW-B). The constructed wetlands units were planted with Phragmites australis (reeds) and were fed intermittently at organic loadings between 5 and 15 g COD m(-2) d(-1) and a residence time of 3 d. Electrochemical oxidation (EO) was performed for 360 min at 20 A. Treatment of OPL in the wetland at 15 g COD m(-2) d(-1) led to mean COD and color reduction of 86% and 77%, respectively; the wetland effluent with a COD of about 800 mg L(-1) was polished electrochemically for 360 min after which the overall COD and color removal of the combined process (i.e. CW-B/EO) was around 95%, while the final effluent was not toxic against the marine bacteria Vibrio fischeri. Electrochemical oxidation of the original OPL at COD values between 6250 and 14 100 mg L(-1) led to moderate COD and color reduction (i.e. less than 40%) through zero order kinetics. When this was coupled to constructed wetland post-treatment (i.e. EO/CW-A), the overall COD and color removal was 81% and 58%, respectively. The decreased efficiency may be assigned to the increased toxicity of the electrochemically treated effluent which was only partially removed in the natural treatment system. PMID:20199791

Grafias, Petros; Xekoukoulotakis, Nikolaos P; Mantzavinos, Dionissios; Diamadopoulos, Evan

2010-05-01

305

Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites.  

PubMed

In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10(-5) M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 5×10(-6) to 5×10(-3) M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

2014-01-01

306

HPLC separation of flavonols, flavones and oxidized flavonols with UV-, DAD-, electrochemical and ESI-ion trap MS detection.  

PubMed

The cation-induced or electrochemical oxidation of flavonols has been reported to yield 2-(hydroxybenzoyl)-2-hydroxy-3(2H)-benzofuranone. Two new gradient reversed phase HPLC methods are presented which allow the determination of those oxidized flavonols simultaneously with flavonols and flavones. UV and electrochemical detection are used because of their high sensitivity. Qualitative detection together with quantification of all compounds is achieved with photodiode-array detection. An electrospray ionization ion trap mass spectrometric method is presented for unique identification of the benzofuranones after HPLC separation. PMID:11221931

Jungbluth, G; Ternes, W

2000-08-01

307

Nanoporous zeolite and solid-state electrochemical devices for nitrogen-oxide sensing  

NASA Astrophysics Data System (ADS)

Solid-state electrochemical gas sensing devices composed of stabilized-zirconia electrolyte have used extensively in the automobile and chemical industry. Two types of electrochemical devices, potentiometric and amperometric, were developed in this thesis for total NOx (NO + NO2) detection in harsh environments. In potentiometric devices, Pt covered with Pt containing zeolite Y (PtY) and WO3 were examined as the two electrode materials. Significant reactivity differences toward NOx between PtY and WO 3 led to the difference in non-electrochemical reactions and resulted in a electrode potential. With gases passing through a PtY filter, it was possible to remove interferences from 2000 ppm CO, 800 ppm propane, 10 ppm NH3, as well as to minimize effects of 1˜13% O2, CO2, and H2O. Total NOx concentration was measured by maintaining a temperature difference between the filter and the sensor. The sensitivity was significantly improved by connecting sensors in series. Amperometic devices were also developed to detect NOx passing through the PtY filter. By applying a low anodic potential of 80 mV, NO in the NOx equilibrated mixture can be oxidized at a Pt working electrode on the YSZ electrolyte at 500°C. The PtY can be held separate from the YSZ or coated onto the YSZ as a film. This design was demonstrated to exhibit total-NOx detection capability, a low NOx detection limit (< 1 ppm), high NOx selectivity relative to CO and oxygen, and linear dependence on NOx concentration. The non-electrochemical reactions around the triple-phase boundary were studied to understand the origin of the superior performance of WO3 on potentiometric NOx sensing. From TPD, DRIFTS, XRD, Raman, and catalytic activity measurements, the interfacial reactions between WO 3 and YSZ were found to dramatically reduce the NOx catalytic activity of YSZ. WO3 reacted with surface Y2O3 on YSZ and formed less catalytically active yttrium tungsten oxides and monoclinic ZrO2, which suppressed the non-electrochemical reactions around the triple-phase boundary. These two products also decreased the oxygen vacancy density around the triple-phase boundary, slowed down the electrochemical oxygen reduction reaction, and in turn increased the NOx signal. The surface nanostructure of electrodes was modified by wet chemical processes to change the non-electrochemical NOx reactions. A thin WO3 coating prepared from the peroxytungstate solution with well-defined triple-phase boundaries resulted in higher sensitivity and better response times than the electrode fabricated from commercial WO3 powders. The electrodeposited porous Pt layer greatly increased the surface area and led to a similar catalytic activity with PtY on NOx sensing. The modified electrodes demonstrated the importance of the surface nanostructure and interfacial species for potentiometric NOx sensing. The sensors composed of tungsten/H2O2 deposited sensing electrodes and more hydrothermal stable Pt-loaded siliceous zeolite Y (PtSY) reference electrodes have stable NO2 signal at 5-10% water in 600°C.

Yang, Jiun-Chan

308

Electrochemical measurements bearing on the oxidation state of the Skaergaard Layered Intrusion  

NASA Astrophysics Data System (ADS)

The oxygen fugacities (fO2's) of magnetically-concentrated fractions (MCF) of three rock samples from the Skaergaard Layered Intrusion were measured between 800 1150° C using oxygen-specific, solid zirconia electrolytes at atmospheric pressure. Two of the bulk rock samples (an oxide cumulate and an oxide-bearing gabbro) are from the Middle Zone (MZ) and the other (an olivine plagioclase orthocumulate) is from the Lower Zone (LZ). All MCF define fO2 versus T arrays that lie 1.5 0.5 log units above the fayalite-magnetite-quartz (FMQ) buffer. Experiments with different cell-imposed initial redox states (one from a reduced direction and one from an oxidized direction) were run on each sample in an attempt to achieve experimental reversibility. This was accomplished by imposing a known redox memory on the galvanic cell prior to loading each sample. Reversibility for each sample agreed to better than 0.2 of a log unit. Irreversible autoreduction of 0.2 of a log unit was observed on the two MZ samples at temperatures exceeding 1065° C. Scanning electron microscope and electron microprobe study of pre- and post-run products shows that reaction and textural re-equilibration occurred among the oxide phase assemblages under the experimental conditions employed. Careful characterization of pre- and post-run assemblages is clearly necessary before adequate interpretation of the experimental results can be made in these types of electrochemical studies. Different approaches to investigations of the fO2 of the Skaergaard Intrusion, be it thermodynamic calculations or experimental methods, should yield concordant results or at least understandable discrepancies. Calculated fO2's using thermobarometry applied to the ilmenite-magnetite pairs in the post-experimental assemblages agree with the experimentally determined fO2's to within one log unit at a given temperature. These results are also consistent with previously calculated fO2 values (Buddington and Lindsley 1964; Morse et al. 1980), but are considerably more oxidized than a previous electrolyte-based fO2 study of a different sample suite from the Skaergaard (Sato and Valenza 1980) that include values close to the iron-wustite (IW) buffer from both MZ and LZ oxide separates. Differences between this electrochemical study and that of Sato and Valenza (1980) may be due to variations in the level of indigenous (or curatorially-introduced) carbon in the samples studied. Despite a number of experimental difficulties, electrochemical cells can provide an accurate and precise method of determining the oxygen fugacity of naturally occurring, complex oxide assemblages. Tight experimental reversals and reproducible values obtained in heating and cooling cycles are an indication of the precision and accuracy of the data recoverable with electrochemical cells.

Kersting, Annie B.; Arculus, Richard J.; Delano, John W.; Loureiro, Daniel

1989-07-01

309

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste  

SciTech Connect

The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

2005-07-28

310

A comparative study on direct and indirect electrochemical oxidation of polyaromatic compounds.  

PubMed

This study has been performed to investigate the treatment of an industrial wastewater containing naphthalene- and anthraquinone-sulfonic acids, by direct and indirect electrolyses. The direct electrochemical oxidation has been carried out using boron-doped diamond and lead dioxide anodes, while the indirect electrolyses has been mediated by active chlorine electrogenerated on a platinum anode, or by hydrogen peroxide electrogenerated on a graphite felt cathode. For each type of electrolyses the effects of operating parameters, such as anode material, current density, chloride concentration, ferrous ions concentrations have been also investigated. Measurements of Chemical Oxygen Demand (COD) and colour fading have been used to compare the results of different electrolyses. Experimental data showed that the complete COD and colour removals have been obtained only by direct oxidation or by active chlorine mediated electrolyses. On the contrary using electrogenerated hydrogen peroxide the solution has been presented a residual COD and colour. In particular, it found that faster oxidation rate has been obtained by direct oxidation using a boron-doped diamond anodes at low current density. PMID:14756253

Panizza, Marco; Cerisola, Giacomo

2003-12-01

311

Influences of graphene oxide support on the electrochemical performances of graphene oxide-MnO2 nanocomposites  

PubMed Central

MnO2 supported on graphene oxide (GO) made from different graphite materials has been synthesized and further investigated as electrode materials for supercapacitors. The structure and morphology of MnO2-GO nanocomposites are characterized by X-ray diffraction, X-ray photoemission spectroscopy, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and Nitrogen adsorption-desorption. As demonstrated, the GO fabricated from commercial expanded graphite (denoted as GO(1)) possesses more functional groups and larger interplane gap compared to the GO from commercial graphite powder (denoted as GO(2)). The surface area and functionalities of GO have significant effects on the morphology and electrochemical activity of MnO2, which lead to the fact that the loading amount of MnO2 on GO(1) is much higher than that on GO(2). Elemental analysis performed via inductively coupled plasma optical emission spectroscopy confirmed higher amounts of MnO2 loading on GO(1). As the electrode of supercapacitor, MnO2-GO(1) nanocomposites show larger capacitance (307.7 F g-1) and better electrochemical activity than MnO2-GO(2) possibly due to the high loading, good uniformity, and homogeneous distribution of MnO2 on GO(1) support.

2011-01-01

312

Electrochemical Characterization of a Solid Oxide Membrane Electrolyzer for Production of High-Purity Hydrogen  

NASA Astrophysics Data System (ADS)

A laboratory-scale solid oxide membrane (SOM) steam electrolyzer that can potentially use energy value in waste or any source of carbon or hydrocarbon to produce high-purity hydrogen has been fabricated and evaluated. The SOM electrolyzer comprises an oxygen-ion-conducting yttria-stabilized zirconia (YSZ) electrolyte with a Ni-YSZ cermet cathode coated on one side and liquid-metal anode on the other side. The SOM electrolyzer is operated at 1000 °C by providing a steam-rich gas feed to the Ni-YSZ cermet cathode and feeding a reductant source into the liquid-metal anode. The steam is reduced over the cathode, and oxygen ions are transported through the YSZ electrolyte and are oxidized at the molten metal electrode by the reductant feed. The advantage of SOM electrolyzer over the state-of-the-art solid oxide electrolyzer is its ability to use solid, liquid, and gaseous reductant feed in the liquid-metal anode to reduce the oxygen chemical potential and drive the reaction for hydrogen production. In this study, an electrochemical process model for a SOM electrolyzer was developed. The condition of the liquid-metal anode with reductant was simulated by bubbling humidified hydrogen (3 pct H2O) in the liquid metal, and the electrochemical performance of the SOM electrolyzer was modeled. The experimental data were curve-fitted into the model to identify the various polarization losses. It showed that the performance of the SOM electrolyzer was dominated by the ohmic resistance of the YSZ membrane. Based on the results of this study, future work is needed toward increasing the performance efficiency of the SOM electrolyzer.

Pati, Soobhankar; Yoon, Kyung Joong; Gopalan, Srikanth; Pal, Uday B.

2009-12-01

313

Fabrication of cobalt porphyrin. Electrochemically reduced graphene oxide hybrid films for electrocatalytic hydrogen evolution in aqueous solution.  

PubMed

Here we report on an experimental study of an electrocatalyst for the hydrogen evolution reaction (HER) based on cobalt porphyrin and electrochemically reduced graphene oxide (ERGO) functional multilayer films, which are prepared by the alternating layer-by-layer (LBL) assembly of negatively charged graphene oxide (GO) and positively charged [tetrakis (N-methylpyridyl) porphyrinato] cobalt (CoTMPyP) in combination with an electrochemical reduction procedure. The resulting [ERGO@CoTMPyP]n multilayer films display relatively high electrocatalytic activity and superior stability toward HER in alkaline media. Electrochemical studies indicate that CoTMPyP in the multilayer films is the active catalyst for the reduction of protons to dihydrogen. PMID:24856539

Huang, Dekang; Lu, Jianfeng; Li, Shaohui; Luo, Yanping; Zhao, Chen; Hu, Bin; Wang, Mingkui; Shen, Yan

2014-06-17

314

The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation  

NASA Astrophysics Data System (ADS)

Rate data available in the literature have been compiled for the reaction of pyrite with dissolved oxygen (DO) to produce a rate law that is applicable over four orders of magnitude in DO concentration over the pH range 2-10. The valid rate law is ? where r is the rate of pyrite destruction in units of mol m -2 s -1. A series of batch and mixed flow reactor experiments were performed to determine the effect of SO 42-, Cl -, ionic strength, and dissolved oxygen on the rate of reaction of pyrite with ferric iron. Of these, only dissolved oxygen was found to have any appreciable effect. Experimental results of the present study were combined with kinetic data reported in the literature to formulate rate laws that are applicable over a six order of magnitude range in Fe 3+ and Fe 2+ concentration for the pH range ~0.5-3.0. In N 2-purged solution, the rate law is ? and when dissolved oxygen is present, ? where r is the rate of pyrite destruction in mol m -2 s -1. Experiments were also performed in which a single pyrite sample was repeatedly reacted with ferric iron solutions of the same composition and identical surface area to mass of solution ratio ( A/ M). For each subsequent experiment, the rate of reaction slowed and the original behavior of the pyrite could not be reestablished by washing the pyrite with concentrated HNO 3 or EDTA. This behavior was interpreted as representative of a change in the electrochemical properties of the solid pyrite. Pretreating pyrite samples with aqueous solutions of ferrous iron and EDTA did not change the reaction rate with ferric iron; however, pretreatment with hydroxylamine hydrochloride lowered the rate significantly. The data presented are best modeled by a nonsite-specific Freundlich multilayer isotherm. Good correlation was found between Eh and rate for the aqueous oxidation of pyrite with DO and ferric iron. Because the fractional orders of reaction are difficult to explain with a purely molecular-based mechanism, a cathodic-anodic electrochemical mechanism is favored to explain the transfer of the electron from pyrite to the aqueous oxidant. Mechanistically, the results of this study suggest a nonsite specific interaction between dissolved oxidants and the pyrite surface. Rate correlates strongly with Eh ( Fe 3+/Fe 2+ ratio or DO concentration) and is consistent with an electrochemical mechanism where anodic and cathodic reactions occur at different places on the pyrite surface.

Williamson, Mark A.; Rimstidt, J. Donald

1994-12-01

315

Advanced treatment of sodium acetate in water by ozone oxidation.  

PubMed

Ozone oxidation is an advanced oxidation process for treatment of organic and inorganic wastewater. In this paper, sodium acetate (according to chemical oxygen demand [COD]) was selected as the model pollutant in water, and the degradation efficiencies and mechanism of sodium acetate in water by ozone oxidation were investigated. The results showed that the ozone oxidation was an effective treatment technology for advanced treatment of sodium acetate in water; the COD removal rate obtained the maximum value of 45.89% from sodium acetate solution when the pH value was 10.82, ozone concentration was 100 mg/L, reaction time was 30 minutes, and reaction temperature was 25 degrees C. The COD removal rate increased first and decreased subsequently with the bicarbonate (HCO3-) concentration from 0 to 200 mg/L, the largest decline being 20.35%. The COD removal rate declined by 25.38% with the carbonate (CO3(2-)) concentration from 0 to 200 mg/L; CO3(2-) has a more obvious scavenging effect to inhibit the formation of hydroxyl free radicals than HCO3-. Calcium chloride (CaCl2) and calcium hydroxide (Ca(OH)2) could enhance the COD removal rate greatly; they could reach 77.35 and 96.53%, respectively, after a reaction time of 30 minutes, which was increased by 31.46 and 50.64%, respectively, compared with only ozone oxidation. It was proved that the main ozone oxidation product of sodium acetate was carbon dioxide (CO2), and the degradation of sodium acetate in the ozone oxidation process followed the mechanism of hydroxyl free radicals. PMID:24645544

Yang, De-Min; Yuan, Jian-Mei

2014-02-01

316

Electrochemical oxidation of 3-methylpyridine at a boron-doped diamond electrode: application to electroorganic synthesis and wastewater treatment  

Microsoft Academic Search

The electrochemical oxidation of 3-methylpyridine (3-MP) at synthetic boron-doped diamond (BDD) thin film electrode has been studied in acid media by cyclic voltammetry and bulk electrolysis. The results have shown that in the potential region of water stability there can occur direct electron transfer reactions on BDD surface that result in electrode fouling due to the formation of a polymeric

J. Iniesta; P. A. Michaud; M. Panizza; Ch. Comninellis

2001-01-01

317

Electrochemical sensing of nitric oxide for biological systems: methodological approach and new insights in examining interfering compounds.  

PubMed

We report here on the appropriate analysis of some examples of interfering compounds that should be done to assess the specificity of the electrochemical sensing of nitric oxide in solution. To do so, we describe the design of a nickel porphyrin and Nafion(R)-coated carbon microfibre and discuss the methodological approach in examining interfering compounds. PMID:18969162

Brunet, Annie; Pailleret, Alain; Devynck, Marie Aude; Devynck, Jacques; Bedioui, Fethi

2003-09-30

318

Electrochemical sensing of nitric oxide for biological systems: methodological approach and new insights in examining interfering compounds  

Microsoft Academic Search

We report here on the appropriate analysis of some examples of interfering compounds that should be done to assess the specificity of the electrochemical sensing of nitric oxide in solution. To do so, we describe the design of a nickel porphyrin and Nafion®-coated carbon microfibre and discuss the methodological approach in examining interfering compounds.

Annie Brunet; Alain Pailleret; Marie Aude Devynck; Jacques Devynck; Fethi Bedioui

2003-01-01

319

An electrochemical analysis of AZ91 Mg alloy processed by plasma electrolytic oxidation followed by static annealing  

Microsoft Academic Search

In this study, the effect of subsequent annealing on the electrochemical response of AZ91 Mg alloy coated via plasma electrolytic oxidation (PEO) was investigated. PEO coating was carried out on the Mg alloy under AC condition in an alkaline silicate electrolyte, and the PEO-coated samples underwent several subsequent annealing treatments at three different temperatures of 100, 150, and 200°C. The

Y. G. Ko; K. M. Lee; B. U. Lee; D. H. Shin

2011-01-01

320

Electrochemical study of growth behaviour of plasma electrolytic oxidation coating on Ti6Al4V: Effects of the additive  

Microsoft Academic Search

The growth behaviour of plasma electrolytic oxidation (PEO) coating on Ti6Al4V was studied by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test, focusing on effects of the electrolyte additive – calcium hypophosphite. The EIS analysis of the outer layer of the PEO coating provided insight into the structure of the coating, which was confirmed by SEM

X. L. Zhang; Zh. H. Jiang; Zh. P. Yao; Zh. D. Wu

2010-01-01

321

Oxidation of alloys targeted for advanced steam turbines  

SciTech Connect

Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

2006-03-12

322

Advanced Oxidation Processes for Wastewater Treatment: State of the Art  

Microsoft Academic Search

The protection and conservation of natural resources is one of the main priorities of modern society. Water is perhaps our\\u000a most valuable resource, and thus should be recycled. Many of the current recycling techniques for polluted water only concentrate\\u000a the pollutant without degrading it or eliminating it. In this sense, advanced oxidation processes are possibly one of the\\u000a most effective

J. M. Poyatos; M. M. Muñio; M. C. Almecija; J. C. Torres; E. Hontoria; F. Osorio

2010-01-01

323

Evaluation of advanced oxidation process for the treatment of groundwater  

Microsoft Academic Search

An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the

S. B. II Garland; G. R. Peyton; L. E. Rice

1990-01-01

324

Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors  

NASA Astrophysics Data System (ADS)

Fractional exhaled nitric oxide (FENO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring FENO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 1?10-9) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO®, Aerocrine AB, Sweden). FENO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

Mandon, Julien; Högman, Marieann; Merkus, Peter J. F. M.; van Amsterdam, Jan; Harren, Frans J. M.; Cristescu, Simona M.

2012-01-01

325

Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control.  

PubMed

The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360?meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis. PMID:25007942

Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

2014-01-01

326

Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control  

PubMed Central

The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360?meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis.

Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

2014-01-01

327

Electrochemical incineration of dimethyl phthalate by anodic oxidation with boron-doped diamond electrode.  

PubMed

The anodic oxidation of aqueous solutions containing dimethyl phthalate (DMP) up to 125 mg/L with sodium sulfate (Na2SO4) as supporting electrolyte within the pH range 2.0-10.0 was studied using a one-compartment batch reactor employing a boron-doped diamond (BDD) as anode. Electrolyses were carried out at constant current density (1.5-4.5 mA/cm2). Complete mineralization was always achieved owing to the great concentration of hydroxyl radical (*OH) generated at the BDD surface. The effects of pH, apparent current density and initial DMP concentration on the degradation rate of DMP, the specific charge required for its total mineralization and mineralization current efficiency were investigated systematically. The mineralization rate of DMP was found to be pH-independent and to increase with increasing applied current density. Results indicated that this electrochemical process was subjected, at least partially, to the mass transfer of organics onto the BDD surface. Kinetic analysis of the temporal change of DMP concentration during electrolysis determined by High Performance Liquid Chromatography (HPLC) revealed that DMP decay under all tested conditions followed a pseudo first-order reaction. Aromatic intermediates and generated carboxylic acids were identified by Gas Chromatography-Mass Spectrometry (GC-MS) and a general pathway for the electrochemical incineration of DMP on BDD was proposed. PMID:19999984

Hou, Yining; Qu, Jiuhui; Zhao, Xu; Liu, Huijuan

2009-01-01

328

Detection of the damage caused to DNA by a thiophene- S-oxide using an electrochemical DNA-biosensor  

Microsoft Academic Search

The electrochemistry of 3,4-dibenzyl-2,5-dimethylthiophene-S-oxide was investigated as well as its interaction with dsDNA. The electrochemical study of the thiophene-S-oxide was performed at different pH values, in a mixed solvent and by solid state voltammetry, and showed that the molecule is reduced at a very negative potential, and the reduction is pH dependent. A glassy carbon electrode modified with a thick

Ana Maria Oliveira Brett; Luis Antônio da Silva; Hideki Fujii; Shuntaro Mataka; Thies Thiemann

2003-01-01

329

Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation  

Microsoft Academic Search

Although TiN has hitherto been the most extensively investigated hard coating, other binary and ternary nitrides are the subject of ever-increasing interest. In this work the behaviour of TiN, ZrN and CrN coatings is compared, concentrating on the mechanism of their oxidation. The sequence of the processes included in the electrochemical and thermal oxidation was followed by X-ray photoelectron spectroscopy

I. Milošev; H.-H. Strehblow; B. Navinsek

1997-01-01

330

High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes.  

PubMed

Oxidation of anthraquinonic dye Acid Blue 62 by electrolysis with conductive-diamond electrodes is studied in this work. COD, TOC, and color have been selected to monitor the degradation of the molecule as a function of several operating inputs (current density, pH, temperature, and NaCl concentration). Results show that the electrochemical oxidation of this model of large molecules follows a first order kinetics in all the conditions assessed, and it does not depend on the pH and temperature. The occurrence of chloride ions in wastewaters increases the rate of color and COD removal as a consequence of the mediated oxidation promoted by the chlorinated oxidizing species. However, chloride occurrence does not have an influence on the mineralization rate. First-order kinetic-constants for color depletion (attack to chromophores groups), oxidation (COD removal), and mineralization (TOC removal) were found to depend on the current density and to increase significantly with its value. A single model was proposed to explain these changes in terms of the mediated oxidation processes. Rate of mineralization remained very close to that expected for a purely mass transfer-controlled process. This was explained assuming that mediated oxidation does not have a significant influence on the mineralization in spite it has some effect on intermediate oxidation stages. The efficiency of the oxidation was found to depend mainly on the concentration of COD being negligible the effect of the other inputs assessed except for the occurrence of chloride ions. Opposite, the efficiency of mineralization depends on concentration of TOC and current density and it did not depend on the chloride occurrence. This observation was found to have an important influence on the power required to remove a given percentage of the initial TOC or COD. To decrease COD efficiently, the occurrence of chloride in the solution is very important, while to remove TOC efficiently, it is more important to work at low current densities and chloride effect is negligible. Energy consumption could be decreased by folds using the proper conditions. PMID:24652577

Aquino, José Mario; Rocha-Filho, Romeu C; Sáez, Cristina; Cañizares, Pablo; Rodrigo, Manuel A

2014-07-01

331

The growth and electrochemical properties of metal-oxide thin films: lithium intercalation  

NASA Astrophysics Data System (ADS)

Transition-metal oxides such as MoO 3 and V 6O 13 can undergo reversible lithium intercalation at ambient temperature and are used as cathode materials for secondary lithium batteries. Thin films of these compounds have been prepared by employing flash and thermal evaporation techniques. The films are systematically characterized by studying structural, optical and electrical properties in relation with the growth conditions. Electrochemical properties of lithium galvanic thin film cells of 100 ?A h capacity are investigated. Thermodynamic data show that microbatteries fabricated with films formed at moderate temperature exhibit a monotonous discharge voltage indicating that the material remains in the single phase even for large intercalation ratio. The lithium diffusivity increases with the temperature Ts of preparation of the film and reaches a value of 10 -11 cm 2 s -1 in Li xMoO 3 and 10 -9 cm 2 s -1 in Li xV 6 O 13 for Ts = 250°C.

Julien, C.; El-Farh, L.; Balkanski, M.; Hussain, O. M.; Nazri, G. A.

1993-03-01

332

Nanocrystalline indium tin oxide fabricated via sol-gel combustion for electrochemical luminescence cells.  

PubMed

Nanoporous indium tin oxide (ITO) was synthesized via a sol-gel combustion hybrid method using Ketjenblack as a fuel. The effects of the sol-gel combustion conditions on the structures and morphology of the ITO particles were studied. The size of the nanoporous powder was found to be 20-30 nm in diameter. The layer of the nanoporous ITO electrode (-10 microm thickness) with large surface area (-360 m2/g) was fabricated for an electrochemical luminescence (ECL) cell. At 4 V bias, the ECL efficiency of the cell consisting of the nanoporous ITO layer was approximately 1050 cd/m2, which is significantly higher than the cell using only the FTO electrode (450 cd/m2). The nanoporous ITO layer was effective in increasing the ECL intensities. PMID:22849163

Chaoumead, Accarat; Kim, Tae-Woo; Park, Min-Woo; Sung, Youl-Moon

2012-04-01

333

SOLID OXIDE FUEL CELL CATHODES: Polarization Mechanisms and Modeling of the Electrochemical Performance  

NASA Astrophysics Data System (ADS)

Several recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.

Fleig, Jurgen

2003-08-01

334

Electrochemical regeneration of sodium hypochlorite in the absorption-oxidation method of desorbing waste gases  

SciTech Connect

The electrochemical synthesis of sodium hypochlorite from a solution with a reduced concentration of sodium chloride is efficiently carried out with the use of ruthenium oxide-titanium anodes (ROTA). In this context they investigated the electrolysis of a solution of sodium chloride with concentrations equal to 20 and 50 kg/m/sup 3/ in a single cell flow-type electrolyzer with an ROTA and, for comparison, with a graphite anode under laboratory conditions. A flow-type electrolyzer was selected in view of the fact that it most closely satisfies the purposes of gas purification. The current efficiency with respect to sodium hypochlorite was almost two times higher, and the specific consumption of electrical energy was 1.6-1.8 times lower in the case of the ROTA than in the case of the graphite electrode. The yield of sodium chlorate remained on the same level in both cases.

Znamenskii, Yu.D.; Perchugov, G.Ya.

1988-07-10

335

Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review  

NASA Astrophysics Data System (ADS)

High temperature water electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising solution to produce directly pure hydrogen. However, degradation issues occurring during operation still represent a scientific and technological barrier in view of its development at an industrial scale. Electrochemical Impedance Spectroscopy (EIS) is a powerful in-situ fundamental tool adapted to the study of SOEC systems. Hence, after a quick presentation of EIS principle and data analysis methods, this review demonstrates how EIS can be used: (i) to characterize the performance and mechanisms of SOEC electrodes; (ii) as a complementary tool to study SOEC degradation processes for different cell configurations, in addition to post-test tools such as scanning electron microscopy (SEM) or X-ray diffraction (XRD). The use of EIS to establish a systematic SOEC analysis is introduced as well.

Nechache, A.; Cassir, M.; Ringuedé, A.

336

Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.  

PubMed

Uniform and aligned Nickel Oxide (NiO) nanotube bundles have been synthesized by a template process. Individual nanotubes are 60 microm long with a 200 nm outer diameter and wall thickness of 20-30 nm. The synthesis involved forming Ni(OH)2 nanotubes that were subsequently heated to 350 degrees C in order to fully convert the product to NiO nanotubes. NiO nanotube powder was used in lithium-ion cells for assessment of lithium storage ability and electrochemical performance. Discharge capacity of the NiO nanotube electrode was in excess of 30% higher than that of the standard NiO nanocrystalline powder electrode after 20 cycles. Impedance data suggests the NiO nanotube electrode provides more controlled and sustainable Li diffusion when compared to the NiO reference powder electrode system. PMID:16573073

Needham, S A; Wang, G X; Liu, H K; Yang, L

2006-01-01

337

Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells  

PubMed Central

We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000?h in a solar simulator, 100?mW cm?2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices.

Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Gratzel, Michael

2013-01-01

338

Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells.  

PubMed

We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000?h in a solar simulator, 100?mW cm(-2)) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M; Grätzel, Michael

2013-01-01

339

Scanning electrochemical microscopy. Application to polymer and thin metal oxide films  

SciTech Connect

Scanning electrochemical microscopy (SECM) in the feedback mode, where the steady-state faradaic current at a microdisk electrode tip is measured as the tip is scanned close to a surface, was used to investigate several different polymer films on electrode surfaces: poly(vinylferrocene), N,N{prime}-bis(3-(trimethoxysilyl)propyl)-4,4{prime}-bipyridinium dibromide, and Naflon containing Os(bpy){sub 3}{sup 2+}. The tip response (i.e., positive or negative feedback) depends upon the nature of the polymer, the substrate electrode potential, the identity of the solution redox species, and the tip potential. Studies carried out with polymer films on interdigitated array (IDA) electrodes with different redox species in the cell solution demonstrate that the SECM images can be used to distinguish chemically different sites on a substrate surface. It was also possible with similar methods to distinguish Au and oxide-covered Cr electrodes in an IDA.

Lee, Chongmok; Bard, A.J. (Univ. of Texas, Austin (USA))

1990-09-15

340

An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base.  

PubMed

The oxygen evolution reaction at multi-cycled iron oxy-hydroxide films in aqueous alkaline solution is discussed. Steady-state Tafel plot analysis and electrochemical impedance spectroscopy have been used to elucidate the kinetics and mechanism of oxygen evolution. Tafel slopes of ca. 60 mV dec(-1) and 40 mV dec(-1) are found at low overpotentials depending on the oxide growth conditions, with an apparent Tafel slope of ca. 120 mV dec(-1) at high overpotentials. Reaction orders of ca. 0.5 and 1.0 are observed at low and high overpotentials, again depending on the oxide growth conditions. A mechanistic scheme involving the active participation of octahedrally coordinated anionic iron oxyhydroxide surfaquo complexes, which form the porous hydrous layer, is proposed. The latter structure contains considerable quantities of water molecules which facilitate hydroxide ion discharge at the metal site during active oxygen evolution. This work brings together current research in heterogeneous electrocatalysis and homogeneous molecular catalysis for water oxidation. PMID:23348122

Doyle, Richard L; Lyons, Michael E G

2013-04-14

341

Electrochemical synthesis of new magnetic mixed oxides of Sr and Fe: Composition, magnetic properties, and microstructure  

SciTech Connect

An electrochemical method for the preparation of magnetic nanoparticles of new Sr-Fe oxides is presented in this work. It consists of the electrolysis of nitrate or chloride solutions with Sr{sup 2+} and Fe{sup 3+} salts using commercial Fe electrodes. Magnetic materials are collected as precipitates from nitrate media in the pH range 1-3 and from chloride media within the pH range 1--12. The presence of 100--300 ppm aniline in acidic nitrate media yields a decrease in energy cost and particle size. Inductively coupled plasma analysis of materials and energy-dispersive X-ray spectrometry of single particles confirm that they are composed of mixed oxides of Sr and Fe. All synthesized materials crystallize as inverse cubic spinels, usually with intermediate structures between magnetite and maghemite. They are formed by nanoparticles with average sizes from 2 nm to {approximately} 50 nm, as observed by scanning electron microscopy. The electrogenerated mixed oxides have higher saturation magnetization, but lower remanent magnetization and coercive field, than commercial strontium hexaferrite with micrometric particle size.

Amigo, R.; Asenjo, J.; Krotenko, E.; Torres, F.; Tejada, J.; Brillas, E.

2000-02-01

342

Oxidant\\/anti-oxidant dynamics in patients with advanced cervical cancer: correlation with treatment response  

Microsoft Academic Search

Cervical cancer is the most common cancer in Indian women. Oxidative stress is potentially harmful to cells and ROS are involved\\u000a in multistage carcinogenesis, in initiation and promotion. The aim was to study the alterations in the circulating pro-\\/anti-oxidants\\u000a in advanced cervical cancer patients, before and after neoadjuvant chemoradiation and to assess the relevance of the variation\\u000a in the levels

Alpana Sharma; Medha Rajappa; Abhigyan Satyam; Manoj Sharma

2010-01-01

343

Chiral conducting surfaces via electrochemical oxidation of L-leucine-oligothiophenes.  

PubMed

Polythiophenes bearing a specific chiral center such as L-leucine have been prepared via the electrochemical oxidation of a series of L-leucine functionalized oligothiophenes (monothiophenes and terthiophenes). These oligothiophenes have been prepared through the condensation of L-leucine methyl ester and the corresponding thiophene monomers in the presence of hydroxybenzotriazole (HOBt) and N,N'-dicyclohexylcarbodiimide (DCC) followed by hydrolysis of the esters. The electroactive polymers are electrochemically stable and exhibit excellent adhesive properties on electrode surfaces (platinum, gold, and glassy carbon) as well as interesting optical properties in both doped and undoped states. Hydrogen bonds between a free amino acid (L-leucine, D-leucine, L-alanine, D-alanine, and D/L-alanine) and the L-leucine based polythiophenes (chiral conducting surface) were probed using cyclic voltammetry. Preliminary results show that the capacitive current of a modified L-leucine-polythiophene electrode decreases as a result of the formation of a hydrogen bond barrier on the surface of the chiral conducting surface accompanied with a shift of the oxidation potential. Cyclic voltammetry responses resulting from the interaction of the chiral conducting surface with L and Dfree amino acid isomers are similar. The formation of hydrogen bonds between the chiral conducting surfaces and the free amino acids was characterized by (1)H NMR. A chemical shift was observed for the N-H group in monomer 6 as a result of the hydrogen bond formation between the L-leucine methyl ester (D-leucine methyl ester, D/L-leucine methyl ester) and monomer 6. PMID:20718451

McTiernan, Christopher D; Omri, Karim; Chahma, M'hamed

2010-09-17

344

Effect of preadsorbed sulfur on the electrochemical reduction of nitric oxide  

SciTech Connect

The effect of adsorbed sulfur on platinum black/Teflon gas diffusion electrodes has been studied. The controlled deposition and characterization of intermediate coverages of sulfur (fractional sulfur coverages, {Theta}, between 0 and 1.0, based on the total number of Pt surface sites) was first studied, followed by an investigation of the effects of this preadsorbed sulfur on the electrogenerative (i.e. galvanic) reduction of pure and dilute (3%) NO feeds. These effects are discussed in terms of possible applications for electrogenerative NO reduction, especially hydroxylamine production and flue gas scrubbing applications. Sulfur was deposited through electrochemical reduction of sulfur dioxide which had bene previously adsorbed from SO{sub 2}-containing aqueous sulfuric acid solutions. The sulfur layers deposited in this manner were electrochemically characterized using linear sweep and cyclic voltammetry. Sulfur/hydrogen coadsorption coverage plots constructed from coulometric measurements were studied and yielded evidence that a sulfur bilayer is formed on the electrode. In the presence of adsorbed sulfur (0.2 < {Theta} < 1.0) the current generated by the nitric oxide-hydrogen electrogenerative cell was diminished. This effect was more pronounced with pure NO feeds. The decreased cell current involved not only diminished NO conversion, but also a change in product distribution brought about by adsorbed sulfur. At low sulfur coverages and low cell potentials ammonia is the predominant product, but at higher sulfur coverages selectivity shifts to favor hydroxylamine production. Nitrous oxide is formed only at high cell potentials at all sulfur coverages, and nitrogen formation is allowed at lower sulfur coverages but inhibited at higher coverages.

Foral, M.J.

1988-01-01

345

Mechanical and electrochemical characterization of intermediate temperature micro-tubular solid oxide fuel cell  

NASA Astrophysics Data System (ADS)

Solid oxide fuel cells (SOFCs) are attributed for being highly efficient in their energy conversion capabilities and fuel flexibility. The primary objective of this study was to develop an operating solid oxide fuel cell using innovative and cost-effective fabrication techniques. The secondary objective of this research aimed at improving mechanical and electrochemical properties of the cell through utilization of electrode materials characterized by different morphology. The system studied was a micro-tubular, anode supported SOFC operated on both hydrogen and internally-reformed methane at the temperature range of 800-850°C. The research studied different anode poreformers and the utilization of anode powders with different morphologies. Anode supports, fabricated using an extrusion process, were based on a standard composition of 50/50 vol% of NiO/8YSZ powder. Procedures were developed to deposit a 2-5 mum thin and dense 8YSZ electrolyte film via a quick and cost-effective vacuum infiltration process. Two different materials were utilized to fabricate anode supports. The first anode powder consisted of small, nano-size, particles, while the second powder was a sub-micron size powder. Vastly improved power density and redox cycling results were observed from a fuel cell fabricated using a fine powder. For example a power density of >0.5 W cm-2 at 800°C was observed. The performance data of an SOFC operating on internally-reformed methane is presented. A response of the fuel cell set up using two different sealing designs, a cold-seal design and a hot-seal design, is also explained. The electrochemical activity of Gd0.5Sr0.5CoO 3-x cathode fabricated using a standard glycine-nitrate pyrolysis technique and a technique allowing direct deposition of cathode material on top of electrolyte powder was tested. The thesis concludes with recommendations for further work.

Pusz, Jakub

346

3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

Grant L. Hawkes; James E. O'Brien; Greg Tao

2011-11-01

347

Compressor Blade Manufacture by Electrochemical Machining. Advanced Turbine Engine Gas Generator.  

National Technical Information Service (NTIS)

Compressor blades for the ATEGG GE14 engine manufactured using electrochemical machining to form the airfoils. Elaborate dimensional inspections were performed on the as-machined surfaces. The blades were tested for frequency, nodal patterns, and fatigue ...

W. I. Westphal A. Lingen

1977-01-01

348

Electrochemical behaviour of metal hexacyanoferrate converted to metal hydroxide films immobilized on indium tin oxide electrodes—Catalytic ability towards alcohol oxidation in alkaline medium  

Microsoft Academic Search

In this work, we demonstrate a simple method to modify indium tin oxide (ITO) electrodes in order to perform electro-catalytic oxidation of alcohols in alkaline medium. Metal hexacyanoferrate (MHCF) films such as nickel hexacyanoferrate (NiHCF) and copper hexacyanoferrate (CuHCF) were successfully immobilized on ITO electrodes using an electrochemical method. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were employed

V. Ganesh; D. Latha Maheswari; Sheela Berchmans

2011-01-01

349

Graphene oxide functionalized with silver@silica-polyethylene glycol hybrid nanoparticles for direct electrochemical detection of quercetin.  

PubMed

A direct electrochemical detection of quercetin based on functionalized graphene oxide modified on gold-printed circuit board chip was demonstrated in this study. Functionalized graphene oxide materials are prepared by the covalent reaction of graphene oxide with silver@silica-polyethylene glycol nanoparticles (~12.35nm). Functionalized graphene oxide electrode shows a well-defined voltammetric response in phosphate buffered saline and catalyzes the oxidation of quercetin to quinone without the need of an enzyme. Significantly, the functionalized graphene oxide modified electrode exhibited a higher sensitivity than pristine gold-printed circuit board and graphene oxide electrodes, a wide concentration range of 7.5 to 1040nM and detection limit of 3.57nM. Developed biosensor platform is selective toward quercetin in the presence of an interferent molecule. PMID:24637169

Veerapandian, Murugan; Seo, Yeong-Tai; Yun, Kyusik; Lee, Min-Ho

2014-08-15

350

Use of electrochemical technology to increase the quality of the effluents of bio-oxidation processes. A case studied.  

PubMed

In this work, it has been studied the use of conductive-diamond electrochemical oxidation (CDEO) as a refining technology to assure the quality of the effluents of door manufacturing processes (DMP). To do this, the raw effluents of these factories have been treated by a combination of physicochemical, biological and CDEO treatments. CDEO was found to be a feasible alternative to the refinement of a wooden DMP waste. It can successfully decrease the organic load of the effluents of the biological oxidation with low energy requirements. In addition, in case of incidents in the biological process, CDEO can treat successfully the effluents of the coagulation process. The effluents of the biological treatment have also been treated by CDEO in order to check the possible use of electrochemical technology to increase the biodegradability of the effluents and their possible recycle to the biological treatment. Unfortunately, electrochemical technology was found to be not adequate to increase the biodegradability of the effluents of a biological treatment. The hard oxidation conditions generated during CDEO do not lead to the accumulation of intermediates but to the almost direct formation of carbon dioxide. Lowering the current density or changing the electrodes can not enhance the biodegradability of the effluents of an electrochemical cell. PMID:18501407

Cañizares, Pablo; Beteta, Alberto; Sáez, Cristina; Rodríguez, Lourdes; Rodrigo, Manuel A

2008-07-01

351

A new class of electrochemically and thermally stable lithium salts for lithium battery electrolytes. 4: Investigations of the electrochemical oxidation of lithium organoborates  

Microsoft Academic Search

Synthesis, analysis, and purification of lithium bis[2,2â²-biphenyldiolato(2-)-O,Oâ²]borate, lithium bis[salicylato(2-)]-borate, lithium phenolate, and dilithium-2,2â²-biphenyldiolate are described. Electrochemical studies show that lithium organoborates are subject to anodic decomposition mechanisms, which depend on their chemical structure. The anodic decomposition of lithium benzenediolatoborates results in the formation of soluble products including chinones, whereas the anodic oxidation of lithium bis[2,2â²-biphenyldiolato(2-)-O,Oâ²]borate, lithium bis[salicylato(2-)]borate, and lithium phenolates

J. Barthel; R. Buestrich; H. J. Gores; M. Schmidt; M. Wuehr

1997-01-01

352

Biochemical and spectrophotometric significance of advanced oxidized protein products.  

PubMed

We previously described the presence of advanced oxidation protein products (AOPP), a novel marker of oxidative stress in the plasma of hemodialyzed patients (HD). The present study was carried out to further investigate how myeloperoxidase (MPO)-catalyzed reactions could contribute to AOPP generation in the plasma. First, patterns of plasma protein oxidation obtained after in vitro incubation of control plasma with hypochlorous acid (HOCl) were compared to those from HD patients and control plasma. The use of various analytical techniques enabled localising and identifying the main oxidized proteins with albumin (HSA) after protein separation by size-exclusion chromatography and SDS-PAGE electrophoresis. The characterization of the oxidation level of the individual plasma proteins in terms of carbonyl groups and 3-nitrotyrosine formations was performed by immunoblotting. Secondly, to highlight the significance of AOPP index monitored by spectrophotometry, spectra were established for plasma fractions from HD patients and compared to data for control plasma and HOCl-treated plasma. The corresponding absorbance difference spectra were matched with external standards such as dityrosine, nitrotyrosine and pentosidine and elaborated chromophoric probe models. Indeed, HSA was chlorinated by HOCl reagent or HOCl generated via the MPO/H(2)O(2)/Cl(-) system and was nitrated by tetranitromethane. Increased absorbances at the range of 340 nm were observed both with chlorinated and nitrated HSA. Finally, our results indicate that HOCl, and not NO(2)(*), generated via MPO activity, could represent one of the pathways for AOPP production in plasma proteins exposed to activated phagocytes. PMID:15196590

Capeillère-Blandin, Chantal; Gausson, Valérie; Descamps-Latscha, Béatrice; Witko-Sarsat, Véronique

2004-06-28

353

Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy  

NASA Astrophysics Data System (ADS)

Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy (XPS) analysis of electrochemical cells to ex situ investigations. Using a combination of ambient-pressure XPS and CeO2-x/YSZ/Pt single-chamber cells, we carry out in situ spectroscopy to probe oxidation states of all exposed surfaces in operational SOCs at 750°C in 1mbar reactant gases H2 and H2O. Kinetic energy shifts of core-level photoelectron spectra provide a direct measure of the local surface potentials and a basis for calculating local overpotentials across exposed interfaces. The mixed ionic/electronic conducting CeO2-x electrodes undergo Ce3+/Ce4+ oxidation-reduction changes with applied bias. The simultaneous measurements of local surface Ce oxidation states and electric potentials reveal the active ceria regions during H2 electro-oxidation and H2O electrolysis. The active regions extend ~150?m from the current collectors and are not limited by the three-phase-boundary interfaces associated with other SOC materials. The persistence of the Ce3+/Ce4+ shifts in the ~150?m active region suggests that the surface reaction kinetics and lateral electron transport on the thin ceria electrodes are co-limiting processes.

Zhang, Chunjuan; Grass, Michael E.; McDaniel, Anthony H.; Decaluwe, Steven C.; Gabaly, Farid El; Liu, Zhi; McCarty, Kevin F.; Farrow, Roger L.; Linne, Mark A.; Hussain, Zahid; Jackson, Gregory S.; Bluhm, Hendrik; Eichhorn, Bryan W.

2010-11-01

354

Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform.  

PubMed

We have developed Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets modified glassy carbon (Fe3O4/r-GO/GC) electrode as a novel system for the preparation of electrochemical sensing platform. Decorating Fe3O4 nanoparticles on graphene sheets was performed via a facile one-step chemical reaction strategy, where the reduction of GO and the in-situ generation of Fe3O4 nanoparticles occurred simultaneously. Characterization of as-made nanocomposite using X-ray diffraction (XRD), transmission electron microscopy (TEM) and alternative gradient force magnetometry (AGFM) clearly demonstrate the successful attachment of monodisperse Fe3O4 nanoparticles to graphene sheets. Electrochemical studies revealed that the Fe3O4/r-GO/GC electrode possess excellent electrocatalytic activities toward the low potential oxidation of NADH (0.05 V vs. Ag/AgCl) as well as the catalytic reduction of O2 and H2O2 at reduced overpotentials. Via immobilization of lactate dehydrogenase (LDH) as a model dehydrogenase enzyme onto the Fe3O4/r-GO/GC electrode surface, the ability of modified electrode for biosensing lactate was demonstrated. In addition, using differential pulse voltammetry (DPV) to investigate the electrochemical oxidation behavior of ascorbic acid (AA), dopamine (DA) and uric acid (UA) at Fe3O4/r-GO/GC electrode, the high electrocatalytic activity of the modified electrode toward simultaneous detection of these compounds was indicated. Finally, based on the strong electrocatalytic action of Fe3O4/r-GO/GC electrode toward both oxidation and reduction of nitrite, a sensitive amperometric sensor for nitrite determination was proposed. The Fe3O4/r-GO hybrid presented here showing favorable electrochemical features may hold great promise to the development of electrochemical sensors, molecular bioelectronic devices, biosensors and biofuel cells. PMID:23708810

Teymourian, Hazhir; Salimi, Abdollah; Khezrian, Somayeh

2013-11-15

355

Ethylene oxidation over platinum: In situ electrochemically controlled promoting using Na-{beta}{double_prime} alumina and studies with a Pt(111)/Na model catalyst  

SciTech Connect

The catalytic effects of a Pt film supported on the Na{sup +} ion conductor {beta}{double_prime} alumina on the oxidation of ethene under the influence of electrochemical modification was investigated over a range of conditions. Mechanistic aspects of this system without electrochemical modification were revealed through kinetic and spectroscopic studies and compared to the electrochemically modified system. The role of surface Na was found to critical in the catalytic effects of these systems. 22 refs., 9 figs., 1 tab.

Harkness, I.R.; Hardacre, C.; Lambert, R.M. [Cambridge Univ. (United Kingdom)] [Cambridge Univ. (United Kingdom); Yentekakis, I.V. [Univ. of Patras (Greece)] [Univ. of Patras (Greece)

1996-04-15

356

The oriented growth of tungsten oxide in ordered mesoporous carbon and their electrochemical performance  

NASA Astrophysics Data System (ADS)

Electrocatalysts for hydrogen oxidation and methanol oxidation are the heart of the proton exchange membrane fuel cell. In spite of tremendous efforts, developing low-cost anodic electrocatalysts with high catalytic activity and corrosion resistance is still a great challenge. Here, we report a nanocomposite consisting of oriented WO3 nanorods grown in ordered mesoporous carbon as a high-performance functional catalyst carrier for proton exchange membrane fuel cells. As a result of the catalytic graphitization effect of tungsten compounds, the degree of graphitization and conductivity of mesoporous carbon film were improved even at a low temperature. Furthermore, compared with ordered mesoporous carbon, ordered mesoporous C-WO3 nanocomposites possess favorable hydrophilicity, excellent corrosion resistance and notable electrocatalytic activities. The unusual electrocatalytic activities arise from the ideal physical properties of the carrier and synergetic catalysis between Pt and WO3.Electrocatalysts for hydrogen oxidation and methanol oxidation are the heart of the proton exchange membrane fuel cell. In spite of tremendous efforts, developing low-cost anodic electrocatalysts with high catalytic activity and corrosion resistance is still a great challenge. Here, we report a nanocomposite consisting of oriented WO3 nanorods grown in ordered mesoporous carbon as a high-performance functional catalyst carrier for proton exchange membrane fuel cells. As a result of the catalytic graphitization effect of tungsten compounds, the degree of graphitization and conductivity of mesoporous carbon film were improved even at a low temperature. Furthermore, compared with ordered mesoporous carbon, ordered mesoporous C-WO3 nanocomposites possess favorable hydrophilicity, excellent corrosion resistance and notable electrocatalytic activities. The unusual electrocatalytic activities arise from the ideal physical properties of the carrier and synergetic catalysis between Pt and WO3. Electronic supplementary information (ESI) available: Additional structural characterizations and electrochemical measurements. See DOI: 10.1039/c4nr00396a

Wang, Tao; Tang, Jing; Fan, Xiaoli; Zhou, Jianhua; Xue, Hairong; Guo, Hu; He, Jianping

2014-04-01

357

Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte  

NASA Astrophysics Data System (ADS)

Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within ˜5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports. For the first time, in situ FTIR measurements in acid electrolyte showed that highly dispersed Pt nanoparticles (2--5nm) on NbRuyO z (at% 8Nb:1Ru) catalyze the formation of CO2 from ethanol in greater yield, and 0.35--0.4V lower, than Pt(111). Compared to conventional Pt/carbon, this indicates that, (1) Pt supported on NbRuyO z can be more effective at splitting the C---C bond in ethanol and, (2) the scission occurs at potentials more ideal for a higher efficiency fuel cell anode. Ex situ-microscopy revealed the polarization-induced two- and three-dimensional formation of Pt-NbOx interfacial adsorption sites responsible for the facilitation of the total oxidation pathway of ethanol. The results show that synthesis and post-treatment of niobia supports can bias the utility of Pt/niobia systems towards the ethanol oxidation reaction at the anode or the oxygen reduction reaction at the cathode. Experimental and computational-theoretical analyses indicate that the mechanism of interfacial site formation is dependent upon the local oxygen concentration, as well as the availability of multiple, energetically accessible oxidation states like those inherent to niobia. Future directions for the development of highly active, niobium-based materials tailored for efficient catalysis of the total oxidation pathway of ethanol are discussed.

Konopka, Daniel A.

358

The electrochemical approach to concerted proton--electron transfers in the oxidation of phenols in water  

PubMed Central

Establishing mechanisms and intrinsic reactivity in the oxidation of phenol with water as the proton acceptor is a fundamental task relevant to many reactions occurring in natural systems. Thanks to the easy measure of the reaction kinetics by the current and the setting of the driving force by the electrode potential, the electrochemical approach is particularly suited to this endeavor. Despite challenging difficulties related to self-inhibition blocking the electrode surface, experimental conditions were established that allowed a reliable analysis of the thermodynamics and mechanisms of the proton-coupled electron-transfer oxidation of phenol to be carried out by means of cyclic voltammetry. The thermodynamic characterization was conducted in buffer media whereas the mechanisms were revealed in unbuffered water. Unambiguous evidence of a concerted proton–electron transfer mechanism, with water as proton acceptor, was thus gathered by simulation of the experimental data with appropriately derived theoretical relationships, leading to the determination of a remarkably large intrinsic rate constant. The same strategy also allowed the quantitative analysis of the competition between the concerted proton–electron transfer pathway and an OH?-triggered stepwise pathway (proton transfer followed by electron transfer) at high pHs. Investigation of the passage between unbuffered and buffered media with the example of the PO4H2?/PO4H2? couple revealed the prevalence of a mechanism involving a proton transfer preceding an electron transfer over a PO4H2?-triggered concerted process.

Costentin, Cyrille; Louault, Cyril; Robert, Marc; Saveant, Jean-Michel

2009-01-01

359

THERMAL AND ELECTROCHEMICAL THREE DIMENSIONAL CFD MODEL OF A PLANAR SOLID OXIDE ELECTROLYSIS CELL  

SciTech Connect

A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell, as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec , Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

Grant Hawkes; Jim O'Brien; Carl Stoots; Steve Herring; Mehrdad Shahnam

2005-07-01

360

Electrochemical detection of p-ethylguaiacol, a fungi infected fruit volatile using metal oxide nanoparticles.  

PubMed

Nanoparticles of TiO2 or SnO2 on screen-printed carbon (SP) electrodes have been developed for evaluating their potential application in the electrochemical sensing of volatiles in fruits and plants. These metal oxide nanoparticle-modified electrodes possess high sensitivity and low detection limit for the detection of p-ethylguaiacol, a fingerprint compound present in the volatile signature of fruits and plants infected with a pathogenic fungus Phytophthora cactorum. The electroanalytical data obtained using cyclic voltammetry and differential pulse voltammetry showed that both SnO2 and TiO2 exhibited high sensitivity (174-188 ?A cm(-2) mM(-1)) and low detection limits (35-62 nM) for p-ethylguaiacol detection. The amperometric detection was highly repeatable with RSD values ranging from 2.48 to 4.85%. The interference studies show that other common plant volatiles do not interfere in the amperometric detection signal of p-ethylguaiacol. The results demonstrate that metal oxides are a reasonable alternative to expensive electrode materials such as gold or platinum for amperometric sensor applications. PMID:24895939

Fang, Yi; Umasankar, Yogeswaran; Ramasamy, Ramaraja P

2014-06-30

361

Investigation of properties of electrochemically synthesized iron oxide nano-powders.  

PubMed

Nano-sized powders of iron oxides have been synthesized electrochemically at temperatures in the range of 295-361 K, and current densities in the range of 200-1000 mA dm(-2). The structure and morphology of the powders were investigated by X-ray diffraction and scanning electron and transmission electron microscopy techniques. Their infrared absorption spectra, specific heat C(p)(T) and magnetic susceptibility chi(T) temperature dependences are also determined. The obtained powders consist of two phases, each possessing distinguished characteristics: the one formed of large plates and the other of whiskers. By appropriate adjustment of the synthesis conditions, it is possible to change features and relative abundances of the two phases, and that way to control morphology and other powder properties. Relaxation and transformation of the phases under external influences was also investigated, and the optimal procedure for preparation and stabilization of iron oxide nano-sized powders with desired characteristics was established. PMID:19094051

Vuli?evi?, L J; Ivanovi?, N; Popovi?, N; Novakovi?, M; Popovi?, M; Mitri?, M; Andri?, V; Babi?, D

2008-12-01

362

Electrochemical Characteristics of Tin Oxide-Graphite as Anode Material for Lithium-ion Cells  

NASA Astrophysics Data System (ADS)

Tin oxide anode materials used in lithium-ion cells experience large volume changes during charging and discharging which cause substantial losses in capacity. In this work, the tin oxide-graphite composite is proposed as an alternative anode material to overcome this problem. The composite was synthesised from a solution of tin chloride dihydrate and graphite powders with citric acid as the chelating agent. In this sol-gel method, a solid phase is formed through a chemical reaction in a liquid phase at moderate temperature. The technique offers several advantages compared to the solid state synthesis technique such as the ability to maintain the homogeneous mixture of precursors during synthesis and to produce small particles. The electrochemical behaviour of the anode material was investigated by means of galvanostatic charge discharge technique. An initial reversible capacity of 748 mAh/g is obtained and nearly 600 mAh/g was retained upon the reaching the fifth cycle. This study shows that the presence of graphite is able to minimise the agglomeration of tin particles that causes large volume changes during cycling, thereby improving cyclability of the anode material.

Hasanaly, Siti Munirah

2010-03-01

363

Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide  

NASA Astrophysics Data System (ADS)

Urease (Urs) and glutamate dehydrogenase (GLDH) have been co-immobilized onto a nanostructured-cerium oxide (Nano-CeO2) film deposited onto a indium-tin-oxide (ITO) coated glass substrate by dip-coating via sol-gel process for urea detection. This nanostructured film has characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM) and electrochemical techniques, respectively. The particle size of the Nano-CeO2 film has been found to be 23 nm. Electrochemcial response (CV) studies show that Ur-GLDH/Nano-CeO2/ITO bioelectrode is found to be sensitive in the 10-80 mg/dL urea concentration range and can detect urea concentration upto 0.1 mg/dL level. The value of Michaelis-Menten constant (Km) estimated using Lineweaver-Burke plot found as 6.09 mg/dL indicates enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4°C.

Ansari, Anees A.; Azahar, Md; Malhotra, B. D.

2012-04-01

364

Elaboration and use of nickel planar macrocyclic complex-based sensors for the direct electrochemical measurement of nitric oxide in biological media  

Microsoft Academic Search

We described here the electrochemical detection of nitric oxide, NO, in biological systems by using chemically modified ultramicro carbon electrodes. In the first part of the paper, the different steps involved in the electrochemical preparation and characterization of the nickel-based sensor are described. This is illustrated by the use of nickel(II) tetrasulfonated phthalocyanine complex. The second part of the paper

Fethi Bedioui; Stéphane Trevin; Jacques Dvynck; Frédérique Lantoine; Annie Brunet; Marie-Aude Devynck

1997-01-01

365

Dications of fluorenylidenes. Relationship between electrochemical oxidation potentials and antiaromaticity in diphenyl-substituted fluorenyl cations.  

PubMed

The antiaromaticity of a series of dications of p-substituted diphenylmethylidene fluorenes was explored using three criteria attributed to aromaticity/antiaromaticity. The relative stability of the dications (energetic criterion) was measured via the redox potentials obtained by electrochemical oxidation under very fast sweep rates with microelectrodes. Comparison of redox potentials with those of a model system, p-substituted tetraphenylethylenes, shows relatively small destabilization of the potentially antiaromatic fluorenylidene dication. However, the amount of destabilization is comparable with the limited electrochemical data available for other antiaromatic systems. Nucleus independent chemical shifts (NICS) were calculated for these dications (magnetic criterion) and indicated their antiaromaticity. A good linear relationship between experimental and calculated (B3LYP/6-31G(d)) (1)H and (13)C NMR shifts for the three dications, 3c, 3e, and 3f, for which NMR data has been reported, validated the accuracy of the NICS values. Bond length alternation/elongation (structural criterion) was explored via the harmonic oscillator model of aromaticity (HOMA) using the geometries calculated with density functional theory, but there was insufficient variation to evaluate relative antiaromaticity. In addition, the presence of benzannulation appears to restrict bond length alternation to such an extent that the magnitude of the HOMA index is of little use in evaluating the antiaromaticity of many polycyclic hydrocarbons. Both NICS values and redox potentials for formation of the dication in these systems show a strong linear correlation with sigma(p)(+) values, with the more antiaromatic fluorenylidene dication possessing the more electron-withdrawing substituent. The correlation between NICS values and redox potentials is also good, as might be expected, suggesting a strong relationship between magnetic and energetic characteristics of antiaromaticity. However, magnetic characteristics appear to be a more sensitive probe than energetic characteristics evaluated through redox potentials or structural characteristics evaluated through HOMA calculations. PMID:11925203

Mills, Nancy S; Benish, Michele A; Ybarra, Christie

2002-04-01

366

Development of advanced mixed oxide fuels for plutonium management  

SciTech Connect

A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

1997-06-01

367

Degradation of wine industry wastewaters by photocatalytic advanced oxidation.  

PubMed

Wine industry wastewaters contain a high concentration of organic biodegradable compounds as well as a great amount of suspended solids. These waters are difficult to treat by conventional biological processes because they are seasonal and a great flow variation exists. Photocatalytic advanced oxidation is a promising technology for waters containing high amounts of organic matter. In this study we firstly investigated the application of H2O2 as oxidant combined with light (artificial or natural) in order to reduce the organic matter in samples from wine industry effluents. Secondly, we studied its combination with heterogeneous catalysts: titanium dioxide and clays containing iron minerals. The addition of photocatalysts to the system reduces the required H2O2 concentration. Although the H2O2/TiO2 system produces higher efficiencies, the H2O2/clays system requires a H2O2 dosage between three and six times lower. PMID:15771106

Navarro, P; Sarasa, J; Sierra, D; Esteban, S; Ovelleiro, J L

2005-01-01

368

Introduction to Photochemical Advanced Oxidation Processes for Water Treatment  

Microsoft Academic Search

In this chapter, an overview of Photochemical Advanced Oxidation Technologies (PAOTs) is given,\\u000a together with recent relevant literature examples and references. Short-UV and VUV photolysis, UV\\/H2O2,\\u000a UV\\/O3, UV\\/O3\\/H2O2,\\u000a photo-Fenton and iron-based technologies, photo-ferrioxalate and UV\\/periodate, are exposed, together\\u000a with a brief introduction of heterogeneous photocatalysis. Fundamental grounds with mechanistic pathways\\u000a are described in each case. Combination of PAOTs with other

Marta I. Litter

369

Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.  

PubMed

In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 ?M to 1 mM with a detection limit of 0.1 ?M and high sensitivity of 1.1 ?A ?M(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. PMID:23141325

Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

2012-10-15

370

Comparative Electrochemical Analysis of Crystalline and Amorphous Anodized Iron Oxide Nanotube Layers as Negative Electrode for LIB.  

PubMed

This work is a comparative study of the electrochemical performance of crystalline and amorphous anodic iron oxide nanotube layers. These nanotube layers were grown directly on top of an iron current collector with a vertical orientation via a simple one-step synthesis. The crystalline structures were obtained by heat treating the as-prepared (amorphous) iron oxide nanotube layers in ambient air environment. A detailed morphological and compositional characterization of the resultant materials was performed via transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and Raman spectroscopy. The XRD patterns were further analyzed using Rietveld refinements to gain in-depth information on their quantitative phase and crystal structures after heat treatment. The results demonstrated that the crystalline iron oxide nanotube layers exhibit better electrochemical properties than the amorphous iron oxide nanotube layers when evaluated in terms of the areal capacity, rate capability, and cycling performance. Such an improved electrochemical response was attributed to the morphology and three-dimensional framework of the crystalline nanotube layers offering short, multidirectional transport lengths, which favor rapid Li(+) ions diffusivity and electron transport. PMID:24964233

Pervez, Syed Atif; Kim, Doohun; Farooq, Umer; Yaqub, Adnan; Choi, Jung-Hee; Lee, You-Jin; Doh, Chil-Hoon

2014-07-23

371

Combined technology for clomazone herbicide wastewater treatment: three-dimensional packed-bed electrochemical oxidation and biological contact degradation.  

PubMed

The clomazone herbicide wastewater was treated using a combined technology composed of electrochemical catalytic oxidation and biological contact degradation. A new type of electrochemical reactor was fabricated and a Ti/SnO2 electrode was chosen as the anode in electrochemical-oxidation reactor and stainless steel as the cathode. Ceramic rings loaded with SnO2 were used as three-dimensional electrodes forming a packed bed. The operation parameters that might influence the degradation of organic contaminants in the clomazone wastewater were optimized. When the cell voltage was set at 30 V and the volume of particle electrodes was designed as two-thirds of the volume of the total reactor bed, the chemical oxygen demand (COD) removal rate could reach 82% after 120 min electrolysis, and the ratio of biochemical oxygen demand (BOD)/COD of wastewater increased from 0.12 to 0.38. After 12 h degradation with biological contact oxidation, the total COD removal rate of the combined technology reached 95%, and effluent COD was below 120 mg/L. The results demonstrated that this electrocatalytic oxidation method can be used as a pretreatment for refractory organic wastewater before biological treatment. PMID:23823563

Feng, Yujie; Liu, Junfeng; Zhu, Limin; Wei, Jinzhi

2013-01-01

372

Square-wave stripping voltammetric determination of caffeic acid on electrochemically reduced graphene oxide-Nafion composite film.  

PubMed

An electrochemical sensor composed of Nafion-graphene nanocomposite film for the voltammetric determination of caffeic acid (CA) was studied. A Nafion graphene oxide-modified glassy carbon electrode was fabricated by a simple drop-casting method and then graphene oxide was electrochemically reduced over the glassy carbon electrode. The electrochemical analysis method was based on the adsorption of caffeic acid on Nafion/ER-GO/GCE and then the oxidation of CA during the stripping step. The resulting electrode showed an excellent electrocatalytical response to the oxidation of caffeic acid (CA). The electrochemistry of caffeic acid on Nafion/ER-GO modified glassy carbon electrodes (GCEs) were studied by cyclic voltammetry and square-wave adsorption stripping voltammetry (SW-AdSV). At optimized test conditions, the calibration curve for CA showed two linear segments: the first linear segment increased from 0.1 to 1.5 and second linear segment increased up to 10 µM. The detection limit was determined as 9.1×10(-8) mol L(-1) using SW-AdSV. Finally, the proposed method was successfully used to determine CA in white wine samples. PMID:24148400

Filik, Hayati; Çetinta?, Gamze; Avan, Asiye Asl?han; Aydar, Sevda; Koç, Serkan Naci; Boz, ?smail

2013-11-15

373

Thermodynamic and kinetic study of mixed metal oxide cathode material for lithium organic polymer electrolyte electrochemical cells  

NASA Astrophysics Data System (ADS)

The thermodynamics and discharge kinetics of the lithium/bismuth modified manganese dioxide electrochemical couple was investigated. These investigations coupled with biased impedance spectroscopy studies lead to the establishment of a model of the electrochemical interfaces of the system. Biased impedance spectroscopy allows for the study of the electrodes during open circuit and discharge conditions. This ability to study the electrode interface during discharge allowed for the development of an equivalent circuit and description of the complex interface of the mixed metal oxide. The results of these techniques were the establishment of a theory of the discharge mechanism of the lithium/bismuth modified manganese dioxide electrochemical cell and the processes involved. Equivalent circuit analysis of materials provides data for comparison. Equivalent circuit analysis when used with biased impedance spectroscopy provides valued component data for lithium battery cathode material. The model, therefore, provides an invaluable tool in the investigation of new materials for use as lithium battery cathodes. Kinetic measurements were used to determine the catalytic nature of the bismuth phase in bismuth modified manganese dioxide lithium primary battery cathode material. A reduction in activation energy for lithium cells was identified in the bismuth manganese mixed metal oxide as compared to manganese dioxide. Impedance spectroscopy allowed for the identification of an additional process linked to the catalytic behavior of the bismuth oxide phase of the bismuth manganese mixed metal oxide. An additional part of the studies focused on the thermodynamics and kinetics of the lithium polymer electrolyte cells with bismuth manganese mixed metal oxide cathodes. This study resulted in the determination of thermodynamic properties of the electrochemical couple. Discharge kinetic measurements lead to the establishment of optimum cathode formulations. This optimization considered both gravimetric and volumetric efficiencies. Measurements examined the relationship between discharge characteristics and cathode material concentration and cathode thickness.

Atwater, Terrill Bradford

1997-09-01

374

Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell  

DOEpatents

Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

Isenberg, Arnold O. (Forest Hills Boro, PA)

1987-01-01

375

Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell  

DOEpatents

Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

Isenberg, A.O.

1987-03-10

376

Investigation of film formation properties during electrochemical oxidation of serotonin (5-HT) at polycrystalline boron doped diamond.  

PubMed

The change in surface morphology of oxygen-terminated polycrystalline boron doped diamond (pBDD) during electrochemical oxidation of the neurotransmitter serotonin (5-HT), resulting in a corresponding deterioration of the current signal, is investigated for the first time using both high resolution ex situ and in situ microscopy under a range of different electrochemical conditions. In situ electrochemical-atomic force microscopy (EC-AFM) reveals the formation of a granular film over the surface, which grows faster at higher-doped regions of the electrode surface and increases in thickness with repetitive potential cycles. The film properties were investigated using both cyclic voltammetry, with a range of redox species varying in charge, and conducting-AFM. These studies reveal the film to be positively charged and electrically insulating. The extent to which the film forms during 5-HT oxidation could be significantly minimised using different electrochemical procedures, as verified by voltammetry and in situ EC-AFM. Finally, even after extensive film formation, the original current signal could be recovered simply by leaving the electrode at open circuit potential for a short period of time, highlighting the suitability of BDD electrodes for neurotransmitter detection. PMID:24060971

Patel, Anisha N; Unwin, Patrick R; Macpherson, Julie V

2013-11-01

377

Thermal-Fluid and Electrochemical Modeling and Performance Study of a Planar Solid Oxide Electrolysis Cell: Analysis on SOEC Resistances, Size, and Inlet Flow Conditions.  

National Technical Information Service (NTIS)

Argonne National Laboratory and Idaho National Laboratory researchers are analyzing the electrochemical and thermal-fluid behavior of solid oxide electrolysis cells (SOECs) for high temperature steam electrolysis using computational fluid dynamics (CFD) t...

B. Yildiz J. Smith T. Sofu

2006-01-01

378

Electrochemical oxidation of reverse osmosis concentrate on boron-doped diamond anodes at circumneutral and acidic pH.  

PubMed

Electrochemical processes have been widely investigated for degrading organic contaminants present in wastewater. This study evaluated the performance of electrochemical oxidation using boron-doped diamond (BDD) electrodes by forming OH() for the treatment of reverse osmosis concentrate (ROC) from secondary-treated wastewater effluents. Since oxidation by OH() and active chlorine species (HClO/ClO(-)) is influenced by pH, the electrochemical oxidation of ROC was evaluated at controlled pH 6-7 and at pH 1-2 (no pH adjustment). A high concentration of chloride ions in the ROC enhanced the oxidation, and 7-11% of Coulombic efficiency for chemical oxygen demand (COD) removal was achieved with 5.2 Ah L(-1) of specific electrical charge. Complete COD removal was observed after 5.2 and 6.6 Ah L(-1), yet the corresponding dissolved organic carbon (DOC) removal was only 48% (at acidic pH) and 59% (at circumneutral pH). Although a higher operating pH seemed to enhance the participation of OH() in oxidation mechanisms, high concentrations of chloride resulted in the formation of significant concentrations of adsorbable organic chlorine (AOCl) after electrochemical oxidation at both pH. While adsorbable organic bromine (AOBr) was degraded at a higher applied electrical charge, a continuous increase in AOCl concentration (up to 0.88 mM) was observed until the end of the experiments (i.e. 10.9 Ah L(-1)). In addition, total trihalomethanes (tTHMs) and total haloacetic acids (tHAAs) were further degraded with an increase in electrical charge under both pH conditions, to final total concentrations of 1 and 4 ?M (tTHMs), and 12 and 22 ?M (tHAAs), at acidic and circumneutral pH, respectively. In particular, tHAAs were still an order of magnitude above their initial concentration in ROC after further electrooxidation. Where high chloride concentrations are present, it was found to be necessary to separate chloride from ROC prior to electrochemical oxidation in order to avoid the formation of chlorinated by-products. PMID:22995242

Bagastyo, Arseto Y; Batstone, Damien J; Kristiana, Ina; Gernjak, Wolfgang; Joll, Cynthia; Radjenovic, Jelena

2012-11-15

379

Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.  

PubMed

A solid oxide fuel cell (SOFC) unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3)-Ce(0.9)Gd(0.1)O(1.95) as the cathode. The SOFC operation is performed at 600 °C with a cathode gas simulating the lean-burn engine exhaust and at various fixed voltage, at open-circuit voltage, and with an inert gas flowing over the anode side, respectively. Electrochemical enhancement of NO decomposition occurs when an operating voltage is generated; higher O(2) concentration leads to higher enhancement. Smaller NO concentration results in larger NO conversion. Higher operating voltage and higher O(2) concentration can lead to both higher NO conversion and lower fuel consumption. The molar rate of the consumption of the anode fuel can be very much smaller than that of NO to N(2) conversion. This makes the anode fuel consumed in the SOFC-DeNO(x) process to be much less than the equivalent amount of ammonia consumed in the urea-based selective catalytic reduction process. Additionally, the NO conversion increases with the addition of propylene and SO(2) into the cathode gas. These are beneficial for the application of the SOFC-DeNO(x) technology on treating diesel and other lean-burn engine exhausts. PMID:21667969

Huang, Ta-Jen; Wu, Chung-Ying; Lin, Yu-Hsien

2011-07-01

380

Electrochemical and spectrophotometric study of the behavior of electropolymerized nickel porphyrin films in the determination of nitric oxide in solution.  

PubMed

We describe in this paper an electrochemical and spectrophotometric study of the behavior of an electropolymerized nickel porphyrin film as a sensor for the determination of nitric oxide (NO) in aqueous solution. Our results show that the anodic oxidation of NO at the modified electrode may not be the result of a catalytic effect induced by the porphyrinic complex. However, the current (measured by differential pulse amperometry) and calculated NO concentration showed a linear relationship in the range 15 nM-6 muM in aerobic phosphate buffer solution (pH 7.4). These results provide a fruitful example of calibration of such electrochemical sensors for the selective detection of NO with a calculated detection limit, at a signal-to-noise ratio of three, equal to 1.5 nM. PMID:18966491

Trevin, S; Bedioui, F; Devynck, J

1996-03-01

381

Effect of electrochemical oxidation of activated carbon fiber on competitive and noncompetitive sorption of trace toxic metal ions from aqueous solution  

Microsoft Academic Search

A viscose-rayon-based activated carbon cloth (ACC) was electrochemically oxidized to enhance its cation sorption capacity for comparison with as-received ACC. The ACCs were characterized by sodium capacity measurement, pH titration, zeta potential measurement, elemental analysis, Brunauer–Emmet–Teller surface area, and pore size distribution. Batch sorption experiments showed that electrochemically oxidized ACC (EO) is more effective for the removal of lead and

I. D. Harry; B. Saha; I. W. Cumming

2006-01-01

382

Electrochemical fabrication and electrocatalytic characteristics studies of gold nanopillar array electrode (AuNPE) for development of a novel electrochemical sensor  

Microsoft Academic Search

Gold nanopillar array electrodes were prepared by electrochemical deposition of gold into the nanopores of anodic aluminum oxide membrane placed onto the gold thin film electrode surface, which was in advance modified with cysteamine self-assembled monolayer as an anchoring layer. The Au nanopillar electrode is electrochemically stable and consists of highly dense, upstanding pillars assembled on the cysteamine monolayer. The

Chunmee Shin; Woonsup Shin; Hun-Gi Hong

2007-01-01

383

The electrochemical behavior of tin-doped indium oxide during reduction in 0.3 M hydrochloric acid  

Microsoft Academic Search

The electrochemical behavior of tin-doped indium oxide (ITO) on SiO2 in 0.3 M HCl was studied using voltammetric scanning method. The result showed that an obvious reduction current peak occurred during the first cathodic potential scanning. The reduction reaction became less active after annealing ITO at 500°C for 1 h. The result was attributed to the replenishment of oxygen-deficient site,

C. A. Huang; K. C. Li; G. C. Tu; W. S. Wang

2003-01-01

384

Studies on electrochemical oxidation of non-aqueous electrolyte on the LiCoO 2 thin film electrode  

Microsoft Academic Search

In this study, we demonstrated an in situ FTIR measurement for an electrochemical oxidation of propylene carbonate with 1.0 mol dm?3 LiClO4 on LiCoO2 cathode active material used in rechargeable lithium batteries. A thin film electrode of LiCoO2 was prepared by an r.f. sputtering method. The prepared LiCoO2 film had high quality as an electrode for the in situ FTIR

Kiyoshi Kanamura; Shigetaka Toriyama; Soshi Shiraishi; Masahiro Ohashi; Zen-ichiro Takehara

1996-01-01

385

Oxygen doping in SrFe 1 ? x Co xO 3 perovskite oxides by the electrochemical method  

Microsoft Academic Search

SrFe1 ? xCoxO3 ? z (0 ? x ? 1, z?0.1) of the cubic perovskite type was prepared by treating mixtures of grossly oxygen-deficient samples obtained at room temperature, using an electrochemical oxidation technique. The ferromagnetic Curie temperature has been found to be raised above 300 K for 0.4 $?-x ? 1.0 (340 K at x = 0.4) by the

Chikara Okazoe; Yasuo Takeda; Nobuyuki Imanishi; Osamu Yamamoto; Mikio Takano; Ryoji Kanno

1996-01-01

386

Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling  

Microsoft Academic Search

Localized corrosion mechanism of stainless steel (SS) types UNS S30403 and UNS 31603 in the presence of iron-oxidizing bacteria Sphaerotilus spp. isolated from rust deposits was studied electrochemically. OCP transient, cyclic anodic and cathodic potentiodynamic polarization curves were measured on steel electrodes through their exposure to 3% NaCl solution supplemented with Sphaerotilus culture. The exposure period was composed of three

J. Starosvetsky; D. Starosvetsky; B. Pokroy; T. Hilel; R. Armon

2008-01-01

387

Electrochemical promotion of propane oxidation on Pt deposited on a dense ??-Al2O3 ceramic Ag+ conductor  

PubMed Central

A new kind of electrochemical catalyst based on a Pt porous catalyst film deposited on a ??-Al2O3 ceramic Ag+ conductor was developed and evaluated during propane oxidation. It was observed that, upon anodic polarization, the rate of propane combustion was significantly electropromoted up to 400%. Moreover, for the first time, exponential increase of the catalytic rate was evidenced during galvanostatic transient experiment in excellent agreement with EPOC equation.

Tsampas, Mihalis N.; Kambolis, Anastasios; Obeid, Emil; Lizarraga, Leonardo; Sapountzi, Foteini M.; Vernoux, Philippe

2013-01-01

388

Physical Properties and Electrochemical Features of Lithium Nickel-Cobalt Oxide Cathode Materials Prepared at Moderate Temperature  

Microsoft Academic Search

In this paper, we report the synthesis, the physical properties and the electrochemical features of the lithium nickel-cobalt oxide cathode materials prepared by a combustion method at moderate temperature. Structural properties were investigated by X-ray diffraction, Raman scattering and FTIR. Spectroscopic measurements show unambiguously that the final product is identified as a modified-spinel structure (Fd3m space group) with the stoichiometric

L. El-Farh; M. Massot; M. Lemal; C. Julien; S. Chitra; P. Kalyani; T. Mohan; R. Gangadharan

1999-01-01

389

Electrochemical and spectroelectrochemical study of the oxidation of S 2? 4 and S 2? 6 ions in liquid ammonia  

Microsoft Academic Search

The electrochemical study of solutions of lithium polysulfides (Li2Sn) or ammonium polysulfides ((NH4)2Sn) in liquid ammonia allows the specific study of the oxidation of S2?4 and S2?6 ions. This has been conducted by using cyclic voltammetric experiments and, for the first time in liquid ammonia, time resolved spectroelectrochemical measurements coupling cyclic voltammetric and absorption spectra recording. These experiments have been

E. Levillain; F. Gaillard; A. Demortier; J. P. Lelieur

1996-01-01

390

3D CFD Electrochemical and Heat Transfer Model of an Integrated-Planar Solid Oxide Electrolysis Cells  

Microsoft Academic Search

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in a new novel integrated planar porous-tube supported solid oxide electrolysis cell (SOEC). The model is of several integrated planar cells attached to a ceramic support tube. This design is being evaluated with modeling at the Idaho National Laboratory. Mass,

Grant Hawkes; James E. OBrien

2008-01-01

391

Selective electrochemical oxidation of carbon by active oxygen for potential application as a sensor for diesel particulates  

Microsoft Academic Search

The formation of active oxygen by electrochemical oxidation of H2O vapor, coupled with carbon detection using those oxygen species, has been investigated by utilizing Sn0.9In0.1P2O7 as a proton conductor and Pt as an electrocatalyst. The H2O vapor was dissociated into protons and electrons at a Pt–carbon working electrode, which produced active oxygen on the carbon surface. This oxygen species showed

Shinya Teranishi; Kyohei Kondo; Akihito Tsuge; Takashi Hibino

2009-01-01

392

A new cleaning process combining non-ionic surfactant with diamond film electrochemical oxidation for polished silicon wafers  

Microsoft Academic Search

This paper presents a new cleaning process for particle and organic contaminants on polished silicon wafer surfaces. It combines a non-ionic surfactant with boron-doped diamond (BDD) film anode electrochemical oxidation. The non-ionic surfactant is used to remove particles on the polished wafer's surface, because it can form a protective film on the surface, which makes particles easy to remove. The

Gao Baohong; Zhu Yadong; Liu Yuling; Wang Shengli; Zhou Qiang; Liu Xiaoyan

2010-01-01

393

Photoelectrochemical kinetics of Eosin Y-sensitized zinc oxide films investigated by scanning electrochemical microscopy under illumination with different LED  

Microsoft Academic Search

The overall efficiency of the light-induced charge separation in dye-sensitized solar cells depends on the kinetic competition between back electron transfer and dye regeneration processes by a redox electrolyte. In a previous study, the reduction of the intermittently formed photo-oxidized dye molecules by iodide ions in the electrolyte phase was investigated using the feedback mode of a scanning electrochemical microscope

Yan Shen; Ushula Mengesha Tefashe; Kazuteru Nonomura; Thomas Loewenstein; Derck Schlettwein; Gunther Wittstock

2009-01-01

394

In situ X-ray absorption spectroscopy investigation of a bifunctional manganese oxide catalyst with high activity for electrochemical water oxidation and oxygen reduction.  

PubMed

In situ X-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs RHE produces a disordered Mn3(II,III,III)O4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed Mn(III,IV) oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3(II,III,III)O4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the Mn(III,IV) oxide, rather than Mn3(II,III,III)O4, is the phase pertinent to the observed OER activity. PMID:23758050

Gorlin, Yelena; Lassalle-Kaiser, Benedikt; Benck, Jesse D; Gul, Sheraz; Webb, Samuel M; Yachandra, Vittal K; Yano, Junko; Jaramillo, Thomas F

2013-06-12

395

In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction  

PubMed Central

In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity.

Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

2013-01-01

396

Optical and electrochemical properties of polyether derivatives of perylenediimides adsorbed on nanocrystalline metal oxide films  

Microsoft Academic Search

We report optical and electrochemical properties of polyether derivatives of perylenediimides (PDIs) thin films formed in various materials (semiconductor, insulator, amorphous and self-assembly). Perylenediimides adsorbed on nanocrystalline TiO2 (NT) nanocrystalline alumina (NA), amorphous silicon (PS) and neat self-assemblied (SA) films were prepared and characterized based on spectroscopic, electrochemical, spectro-electrochemical techniques. The absorption and fluorescence spectra of PDIs in chloroform exhibit

Mahmut Kus; Özgül Hakli; Ceylan Zafer; Canan Varlikli; Serafettin Demic; Serdar Özçelik; Siddik Icli

2008-01-01

397

[Studies on the degradation of paracetamol in sono-electrochemical oxidation].  

PubMed

A novel lead dioxide electrodes co-doped with rare earth and polytetrafluoroethylene (PTFE) were prepared by the electrode position method and applied as anodes in sono-electrochemical oxidation for pharmaceutical wastewater degradation. The results showed that the APAP removal and the mineralization efficiency reached an obvious increase, which meant that the catalytic efficiency showed a significant improvement in the use of rare-earth doped electrode. The effects of process factors showed that the condition of the electrode had the best degradation efficiency with doped with Ce2O3 under electrolyte concentration of 14.2 g x L(-1), 49.58 W x cm(-2), 50 Hz, pH = 3, 71.43 mA x cm(-2). The APAP of 500 mg x L(-1) removal rate reached 92.20% and its COD and TOC values declined to 79.95% and 58.04%, the current efficiency reached 45.83% after degradation process for 2.0 h. The intermediates were monitored by the methods of GC-MS, HPLC, and IC. The main intermediates of APAP were p-benzoquinone, benzoic acid, acetic acid, maleic acid, oxalic acid, formic acid etc, and the final products were carbon dioxide and water. The goal of completely degradation of pollutant was achieved and a possible degradation way was proposed. PMID:23002620

Dai, Qi-Zhou; Ma, Wen-Jiao; Shen, Hong; Chen, Jun; Chen, Jian-Meng

2012-07-01

398

Sustained Release of a Monoclonal Antibody from Electrochemically Prepared Mesoporous Silicon Oxide.  

PubMed

Nanostructured mesoporous silica (SiO(2)) films are used to load and release the monoclonal antibody bevacizumab (Avastin) in vitro. A biocompatible and biodegradable form of mesoporous SiO(2) is prepared by electrochemical etching of single crystalline Si, followed by thermal oxidation in air at 800 °C. Porous SiO(2) exhibits a negative surface charge at physiological pH (7.4), allowing it to spontaneously adsorb the positively charged antibody from an aqueous phosphate buffered saline solution. This electrostatic adsorption allows bevacizumab to be concentrated by >100× (300 mg bevacziumab per gram of porous SiO(2) when loaded from a 1 mg mL(-1) solution of bevacziumab). Drug loading is monitored by optical interferometric measurements of the thin porous film. A two-component Bruggeman effective medium model is employed to calculate percent porosity and film thickness, and is further used to determine the extent of drug loading into the porous SiO(2) film. In vitro drug release profiles are characterized by an enzyme-linked immunosorbent assay (ELISA), which confirms that the antibody is released in its active, VEGF-binding form. The nanostructured delivery system described here provides a sustained release of the monoclonal antibody where approximately 98% of drug is released over a period of one month. PMID:21274422

Andrew, Jennifer S; Anglin, Emily J; Wu, Elizabeth C; Chen, Michelle Y; Cheng, Lingyun; Freeman, William R; Sailor, Michael J

2010-09-01

399

Supported Pd-Cu bimetallic nanoparticles that have high activity for the electrochemical oxidation of methanol.  

PubMed

Monodisperse bimetallic Pd-Cu nanoparticles with controllable size and composition were synthesized by a one-step multiphase ethylene glycol (EG) method. Adjusting the stoichiometric ratio of the Pd and Cu precursors afforded nanoparticles with different compositions, such as Pd(85)-Cu(15), Pd(56)-Cu(44), and Pd(39)-Cu(61). The nanoparticles were separated from the solution mixture by extraction with non-polar solvents, such as n-hexane. Monodisperse bimetallic Pd-Cu nanoparticles with narrow size-distribution were obtained without the need for a size-selection process. Capping ligands that were bound to the surface of the particles were removed through heat treatment when the as-prepared nanoparticles were loaded onto a Vulcan XC-72 carbon support. Supported bimetallic Pd-Cu nanoparticles showed enhanced electrocatalytic activity towards methanol oxidation compared with supported Pd nanoparticles that were fabricated according to the same EG method. For a bimetallic Pd-Cu catalyst that contained 15?% Cu, the activity was even comparable to the state-of-the-art commercially available Pt/C catalysts. A STEM-HAADF study indicated that the formation of random solid-solution alloy structures in the bimetallic Pd(85)-Cu(15)/C catalysts played a key role in improving the electrochemical activity. PMID:22415817

Yin, Zhen; Zhou, Wu; Gao, Yongjun; Ma, Ding; Kiely, Christopher J; Bao, Xinhe

2012-04-16

400

Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode.  

PubMed

In this study, a novel disposable all-solid-state ion-selective electrode using graphene as the ion-to-electron transducer was developed. The graphene film was prepared on screen-printed electrode directly from the graphene oxide dispersion by a one-step electrodeposition technique. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to demonstrate the large double layer capacitance and fast charge transfer of the graphene film modified electrode. On the basis of these excellent properties, an all-solid-state calcium ion-selective electrode as the model was constructed using the calcium ion-selective membrane and graphene film modified electrode. The mechanism about the graphene promoting the ion-to-electron transformation was investigated in detail. The disposable electrode exhibited a Nernstian slope (29.1 mV/decade), low detection limit (10(-5.8) M), and fast response time (less than 10 s). With the high hydrophobic character of graphene materials, no water film was formed between the ion-selective membrane and the underlying graphene layer. Further studies revealed that the developed electrode was insensitive to light, oxygen, and redox species. The use of the disposable electrode for real sample analysis obtained satisfactory results, which made it a promising alternative in routine sensing applications. PMID:22380625

Ping, Jianfeng; Wang, Yixian; Ying, Yibin; Wu, Jian

2012-04-01

401

Electrochemical aptamer sensor for thrombin detection based on Au nanoneedle and enzymatic ascorbic acid oxidization.  

PubMed

In this article, we describe an aptamer-based sandwich-type electrochemical sensor for the detection of human alpha-thrombin. Au nanoneedles were synthesized in the hole of the naked polycarbonate (PC) template using electrodepositing strategy. The thiolated thrombin aptamer I was immobilized as the capture probe on the gold nanoneedles through Au-S bond. After the thrombin was captured, the biotinylated aptamer II, used as the detection probe, was bound to thrombin. Then, the streptavidin-conjugated alkaline phosphatase (SA-ALP) was linked to the biotinylated aptamer II and catalyze hydrolyzation reaction of ascorbic acid 2-phosphate to produce ascorbic acid. Differential pulse voltammetry was used to detect the oxidizing current of ascorbic acid, which is proportional to the concentration of thrombin bound on the electrode surface ranging from 0.24 nM to 150 nM with a detection limit of 0.1 nM at 3 sigma. This assay is rapid, simple, sensitive and highly specific. It could be applied to detect thrombin in complex real sample. PMID:23646773

Xu, Feng; Hua, Mei; Luo, Lei; Du, Huali; Yang, Yunhui

2013-01-01

402

Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition  

PubMed Central

A seedless growth of zinc oxide (ZnO) structures on multilayer (ML) graphene by electrochemical deposition without any pre-deposited ZnO seed layer or metal catalyst was studied. A high density of a mixture of vertically aligned/non-aligned ZnO rods and flower-shaped structures was obtained. ML graphene seems to generate the formation of flower-shaped structures due to the stacking boundaries. The nucleation of ZnO seems to be promoted at the stacking edges of ML graphene with the increase of applied current density, resulting in the formation of flower-shaped structures. The diameters of the rods/flower-shaped structures also increase with the applied current density. ZnO rods/flower-shaped structures with high aspect ratio over 5.0 and good crystallinity were obtained at the applied current densities of ?0.5 and ?1.0 mA/cm2. The growth mechanism was proposed. The growth involves the formation of ZnO nucleation below 80°C and the enhancement of the growth of vertically non-aligned rods and flower-shaped structures at 80°C. Such ZnO/graphene hybrid structure provides several potential applications in sensing devices.

2014-01-01

403

Influence of microstructure on the electrochemical performance of tin-doped indium oxide film electrodes.  

PubMed

The effect of the microstructure of tin-doped indium oxide (ITO) films on their electrochemical performance was studied using three redox probes, tris(2,2'-bipyridyl ruthenium(II) chloride (Ru(bpy)3(2+/3+)), ferrocyanide (Fe(CN)6(4-/3-)), and ferrocenemethanol (FcCH2H(0/+)). ITO films were deposited using dc magnetron sputtering under a variety of conditions that resulted in films having different degrees of crystallinity, crystallographic texture, sheet resistance, surface roughness, and percent tin. It was found that the electron transfer for all three redox probes used in this study was more efficient at polycrystalline films than at amorphous ITO films. This effect is more pronounced at faster scan rates. The crystallographic texture of the ITO films, surface roughness, and a change in sheet resistance from 7.9 to 13.7 ohms/square did not have an effect on electron-transfer kinetics. ITO films deposited using a 1 wt % SnO2 target and having sheet resistance comparable to films deposited using a 10 wt % SnO2 target had dramatically different microstructure from the films with higher weight percent Sn and were shown to perform poorly when used as electrode materials. We believe that the dramatic differences in electron-transfer kinetics observed at the various ITO films can be attributed to either the different density of defect sites along the grain boundaries or defect sites caused by substitutional Sn in the film. PMID:12141673

Popovich, Natasha D; Wong, Sze-Shun; Yen, Brian K H; Yeom, Hyo-Young; Paine, David C

2002-07-01

404

Electrochemical oxidation of adenine using platinum electrodes modified with carbon nanotubes  

NASA Astrophysics Data System (ADS)

Single- (SWNTs), double- (DWNTs), and multi-walled (MWNTs) carbon nanotubes were synthesized by controlled Radio Frequency-catalytic Chemical Vapor Deposition (RF-cCVD). Their morphological and structural characteristics were identified using Transmission Electron Microscopy (TEM/HRTEM) and X-ray powder diffraction (XRD). Next, three platinum electrodes with identical amounts of each nanotube material (denoted Pt-SW, Pt-DW, and Pt-MW) were modified in order to test the electro-catalytic characteristics of the carbon nanotubes and further used for the electrochemical oxidation of adenine. The signal recorded with the Pt-SW electrode was very poor, due to the predominantly semiconducting properties of these nanotubes. In contrast, the signal recorded with Pt-DW or Pt-MW was well-defined, with the peak potentials at 1.07 and 1.01 V vs Ag/AgCl, respectively. In both cases, the detection limit (DL) for adenine was found to be 3×10-6 M.

Pogacean, Florina; Biris, Alexandru R.; Coros, Maria; Watanabe, Fumiya; Biris, Alexandru S.; Clichici, Simona; Filip, Adriana; Pruneanu, Stela

2014-05-01

405

Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids.  

PubMed

Silver(I) oxide (Ag2O) micro- and nanoparticles were electrochemically synthesized by anodizing a sacrificial silver wire in a basic aqueous sulfate solution. Ag2O particles were released from the silver electrode surface during synthesis producing a visible sol "stream". The composition of these particles was established using selected area electron diffraction, X-ray diffraction, and X-ray photoelectron spectroscopy. The shape of Ag2O crystallites could be adjusted using the potential of the silver wire generator electrode. The generation of a dispersed Ag2O sol and the observed shape selectivity are both explained by a two-step mechanism involving the anodic dissolution of silver metal, Ag0 --> Ag+(aq) + 1e-, followed by the precipitation of Ag2O particles, 2Ag+ + 2OH- --> Ag2O(s) + H2O. Within 100 mV of the voltage threshold for particle growth, cubic particles with a depression in each face ("hopper crystals") were produced. The application of more positive voltages resulted in the generation of 8-fold symmetric "flower"-shaped particles formed as a consequence of fast growth in the <111> crystallographic direction. The diameter of flower particles was adjustable from 250 nm to 1.8 microm using the growth duration at constant potential. PMID:16277476

Murray, B J; Li, Q; Newberg, J T; Menke, E J; Hemminger, J C; Penner, R M

2005-11-01

406

Electrochemical oxidation of nitrogen-heterocyclic compounds at boron-doped diamond electrode.  

PubMed

Nitrogen-heterocyclic compounds (NHCs) are toxic and bio-refractory contaminants widely spread in environment. This study investigated electrochemical degradation of NHCs at boron-doped diamond (BDD) anode with particular attention to the effect of different number and position of nitrogen atoms in molecular structure. Five classical NHCs with similar structures including indole (ID), quinoline (QL), isoquinoline (IQL), benzotriazole (BT) and benzimidazole (BM) were selected as the target compounds. Results of bulk electrolysis showed that degradation of all NHCs was fit to a pseudo first-order equation. The five compounds were degraded with the following sequence: ID>QL>IQL>BT>BM in terms of their rates of oxidation. Quantum chemical calculation was combined with experimental results to describe the degradation character of NHCs at BDD anode. A linear relationship between degradation rate and delocalization energy was observed, which demonstrated that electronic charge was redistributed through the conjugation system and accumulated at the active sites under the attack of hydroxyl radicals produced at BDD anode. Moreover, atom charge was calculated by semi empirical PM3 method and active sites of NHCs were identified respectively. Analysis of intermediates by GC-MS showed agreement with calculation results. PMID:22071370

Xing, Xuan; Zhu, Xiuping; Li, Hongna; Jiang, Yi; Ni, Jinren

2012-01-01

407

Electrochemical biosensors for on-chip detection of oxidative stress from cells.  

PubMed

The production of reactive oxygen species (ROS) in the body has been shown to play a significant role in the development and progression of numerous diseases. This makes it important to develop a method of detection for hydrogen peroxide (H2O2), the most stable ROS. Several methods such as the use of fluorescent probes and electrochemistry have been utilized in the past to detect the imbalance in ROS levels generated from injured or stimulated cells. An imbalance in the levels of ROS leads to a state of oxidative stress within the body. Different enzymes such as horseradish peroxidase (HRP) and superoxide dismutase have been used in the detection of ROS. HRP is commonly used as the biorecognition element in many H2O2 sensors. Researchers have looked into immobilizing these enzymes onto carbon nanotubes and nanoparticles to increase sensor sensitivity. In this chapter, we present experimental procedures to perform electrochemical quantification of H2O2, one of the major ROS release from injured cells (macrophages and hepatocytes). PMID:23791096

Enomoto, James; Matharu, Zimple; Revzin, Alexander

2013-01-01

408

Macroporous metal oxides: Synthesis, characterization and application in catalysis and electrochemical power sources  

NASA Astrophysics Data System (ADS)

New approaches to the synthesis of magnesium, aluminum and nickel oxides with three-dimensionally ordered macroporous (3DOM) structure by colloidal crystal templating were explored. Such metal oxides were characterized by powder X-ray diffraction, scanning and transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry and nitrogen gas adsorption. Interconnected macropores, either organized in periodic arrays or positioned randomly, varied in diameter from 275 to 950 nm. The effect of the pore size on sintering behavior of the material was studied on macroporous alpha-Al2O3. Having a free diffusion path inherent to 3DOM structure, such morphology offers the advantage of highly accessible surfaces, which makes it an interesting candidate for catalyst supports. A silver catalyst supported on 3DOM alpha-Al 2O3 was tested in epoxidation of ethylene and its performance was compared to that of the catalyst prepared on commercial alumina support. The procedure successfully used for the preparation of macroporous alpha-Al 2O3 was adopted for the synthesis of 3DOM lithium aluminates. Namely, a mixture of LiAl5O8 and gamma-LiAlO 2, as well as pure beta- and gamma-LiAlO2 phases were obtained. Correlations between the manner in which the lithium precursor was introduced, the molar ratio between lithium and aluminum precursors, the heat treatment conditions and the morphology and phase composition of the product were established. With their open pore structures and thin walls, these materials may have potential applications as breeder materials for fusion reactors or as ceramic matrixes in molten carbonate fuel cells. As a part of a related project targeting a nano-assembled lithium solid state battery, proposed cathode material, LiCoO2, was obtained in a form of macroporous thin films prepared by electrostatic spray deposition on Pt-coated quartz substrates and electrochemical measurements were performed on these films.

Sokolov, Sergey

409

Electrochemical detection of nitric oxide production in human polymorphonuclear neutrophil leukocytes.  

PubMed

The detection of nitric oxide (NO) release by human polymorphonuclear neutrophil leukocytes (PMNs) presents several difficulties, mainly due to concomitant production of O2- and H2O2, which could interfere with the measurements. A Nafion and nickel porphyrin-coated microelectrode was used to measure NO production in PMNs in vitro. It allowed detection of 6.3 +/- 1.9 nM NO in a PMN-containing system and was unaffected by added chemicals. Addition of the chemotactic oligopeptide f-met-leu-phe (fMLP; 100 nM) induced a NO release which reached a value of 71 +/- 30 pmol NO/10(6) PMN x ml(-1) 5 min after stimulation in the presence of SOD (150 U/ml). If SOD was omitted, the corresponding value was 36 +/- 20 pmol NO/10(6) PMN x ml(-1). Presence or absence of catalase did not alter the amount of NO measured. Addition of the NO-synthase inhibitor N(G)-monomethyl-L-arginine (LNMMA; 1 mM) reduced the current by 82 +/- 20%. These results agree with the rate of NO production in human PMNs when measured spectrophotometrically using the NO-dependent oxidation of oxyhaemoglobin to methaemoglobin. The NO production in human PMN was dependent on fMLP concentrations, but independent of cell-concentrations of 0.5-3.5 x 10(6)/ml. This paper shows that a electrochemical method, e.g. Nafion and porphyrin-coated microelectrode, is suitable for studies of NO release from stimulated human PMNs. PMID:10533848

Lärfars, G; Lantoine, F; Devynck, M A; Gyllenhammar, H

1999-08-01

410

Electrospray ionization of alkali and alkaline earth metal species. Electrochemical oxidation and pH effects  

PubMed

The utility of electrospray ionization mass spectrometry (ESI-MS) for characterizing dissolved metal species has generated considerable interest in the use of this technique for metal speciation. However, the development of accurate speciation methods based on ESI-MS requires a detailed understanding of the mechanisms by which dissolved metal species are ionized during electrospray. We report how the analysis of alkali and alkaline earth metal species provides new information about some of the processes that affect electrospray ion yield. Selected metal ions and organic ligands were combined in 50 : 50 water-acetonitrile buffered with acetic acid or ammonium acetate and analyzed by flow injection ESI-MS using mild electrospray conditions. Species formed by alkali metal ions with thiol and oxygen-donating ligands were detected in acidic and neutral pH solutions. Electrochemical oxidation of N, N-diethyldithiocarbamate and glutathione during electrospray was indicated by detection of the corresponding disulfides as protonated or alkali metal species. The extent of ligand oxidation depended on solution pH and the dissociation constant of the thiol group. Tandem mass spectrometric experiments suggested that radical cations such as [NaL](+.) (where L=N,N-diethyldithiocarbamate) can be generated by in-source fragmentation of disulfide species. Greater complexation of alkali metals at neutral pH was indicated by a corresponding decrease in the relative abundance of the free metal ion. The number of alkali metal ions bound by glutathione and phthalic acid also increased with increasing pH, in accordance with thermodynamic equilibrium theory. Alkaline earth metal species were detected only in acidic solutions, the absence of 8-hydroxyquinoline complexes being attributed to their relative instability and subsequent dissociation during electrospray. Hence, accurate speciation by ESI-MS depends on experimental conditions and the intrinsic properties of each analyte. Copyright 2000 John Wiley & Sons, Ltd. PMID:10972998

Ross; Ikonomou; Orians

2000-08-01

411

Electrochemical detection of catecholamine release using planar iridium oxide electrodes in nanoliter microfluidic cell culture volumes.  

PubMed

Release of neurotransmitters and hormones by calcium regulated exocytosis is a fundamental cellular/molecular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. Therefore, this area represents a relevant target for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistically rich data with increased throughput. Toward this goal, we have electrochemically deposited iridium oxide (IrOx) films onto planar thin film platinum electrodes (20 ?m×300 ?m) and utilized these for quantitative detection of catecholamine release from adrenal chromaffin cells trapped in a microfluidic network. The IrOx electrodes show a linear response to norepinephrine in the range of 0-400 ?M, with a sensitivity of 23.1±0.5 mA/M mm(2). The sensitivity of the IrOx electrodes does not change in the presence of ascorbic acid, a substance commonly found in biological samples. A replica molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. Small populations of chromaffin cells were trapped in the microfluidic device and stimulated by rapid perfusion with high potassium (50mM) containing Tyrode's solution at a flow rate of 1 nL/s. Stimulation of the cells produced a rapid increase in current due to oxidation of the released catecholamines, with an estimated maximum concentration in the cell culture volume of ~52 ?M. Thus, we demonstrate the utility of an integrated microfluidic network with IrOx electrodes for real-time quantitative detection of catecholamines released from small populations of chromaffin cells. PMID:22398270

Ges, Igor A; Currie, Kevin P M; Baudenbacher, Franz

2012-04-15

412

Physical, mechanical and electrochemical characterization of all-perovskite intermediate temperature solid oxide fuel cells  

NASA Astrophysics Data System (ADS)

Strontium- and magnesium-doped lanthanum gallate (LSGM) has been considered as a promising electrolyte for solid oxide fuel cell (SOFC) systems in recent years due to its high ionic conductivity and chemical stability over a wide range of oxygen partial pressures and temperatures. This research describes synthesis, physical and mechanical behavior, electrochemical properties, phase evolution, and microstructure of components of an all-perovskite anode-supported intermediate temperature solid oxide fuel cell (ITSOFC), based on porous La 0.75Sr0.25Cr0.5Mn0.5O3 (LSCM) anode, La0.8Sr0.2Ga0.8Mg0.2O 2.8 (LSGM) electrolyte, and porous La0.6Sr0.4Fe 0.8Co0.2O3 (LSCF) cathode. The phase evolution of synthesized LSGM and LSCM powders has been investigated, and it has been confirmed that there is no reaction between LSGM and LSCM at sintering temperature. Using different amounts of poreformers and binders as well as controlling firing temperature, porosity of the anode was optimized while still retaining good mechanical integrity. The effect of cell operation conditions under dry hydrogen fuel on the SOFC open circuit voltage (OCV) and cell performance were also investigated. Characterization study of the synthesized LSGM indicates that sintering at 1500°C obtains higher electrical conductivity compared to the currently published results, while conductivity of pellets sintered at 1400°C and 1450°C would be slightly lower. The effect of sintering temperature on bulk and grain boundary resistivities was also discussed. The mechanical properties, such as hardness, Young's modulus, fracture toughness and modulus of rupture of the electrolyte were determined and correlated with scanning electron microscopy (SEM) morphological characterization. Linear thermal expansion and thermal expansion coefficient of LSGM were also measured.

Mohammadi, Alidad

413

Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system  

DOEpatents

An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

1999-06-15

414

Electrochemical behavior of phthalocyanines containing high oxidation state central metals: Titanium(IV), vanadium(IV), and tantalum(V)  

Microsoft Academic Search

The syntheses of 2,(3)-(peripheral) and 1,(4)-(non-peripheral) (2-mercaptopyridine)phthalocyanine complexes of titanium(IV) oxide (5a and 6a, respectively), vanadium(IV) oxide (7a and 8a, respectively) and tantalum(V) hydroxide (9a, peripheral only) and their electrochemical characterization are presented in this report. Their electrochemistry is compared to that of thiophenyl and thiobenzyl substituted derivatives. The non-peripherally substituted complexes are more difficult to reduce than peripherally substituted

Vongani P. Chauke; Yasin Arslanoglu; Tebello Nyokong

2011-01-01

415

Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste  

SciTech Connect

In this work, the examination of electrochemical noise data comprised three main approaches: one, a computer simulation of the anodic and cathodic activity relating to corrosion on a metal surface; two, experimental modeling of the electrochemical environment inside nuclear waste storage containers and collection of EN generated; and three, Wavelet analysis of the EN data from the first two parts. The simulation of EN proved to be effective in replicating the EN data of both general and pitting corrosion. Using competition mechanisms for the anodic and cathodic sites on the surface, the long-term, low-frequency data generated by localized pitting corrosion was reproduced. Disabling one or more of the rules of the simulation eliminated the low-frequency character of the data, and eliminating all of the rules effectively reproduced general corrosion noise. The simulation accuracy benefited from comparison to experimental data, and conversely, it improved the EN analysis by providing theory for the underlying mechanisms. The experimental electrochemical cell modeled the important factors in nuclear waste storage containers for this EN study; mainly increased temperature and the concentrations of corrosion-inducing or inhibiting chemicals. It also provided a platform for studying how the EN was affected by the competing chemicals.

MacDonald, Digby D.

2005-06-01

416

Review: advances in electrochemical genosensors-based methods for monitoring blooms of toxic algae.  

PubMed

Harmful algal blooms (HABs), which have expanded worldwide in their occurrence and frequency, are a serious menace to aquatic ecosystems and humans. The development of rapid, accurate and cost-effective detection systems for toxic algal monitoring in aquatic environments is urgently required. Although many efforts have been devoted to develop reliable tools to monitor the entire spectrum of existing toxic algae, a portable semi-automated system that enables HAB monitoring at a low cost is still not available for general purchase. This work reviews the challenges and opportunities in translating the remarkable progress of electrochemical genosensors-based methods towards practical in situ HAB monitoring applications. It is specifically focused on reviewing the optimised methods for a detection system based on a sandwich hybridisation assay (SHA) performed over transducer platforms of different materials, geometries and dimensions and presenting the diverse advantages and disadvantages among them. Probe design and specificity and optimisation of the genosensor in terms of hybridisation conditions and electrochemical signal are discussed as well as their long-term stability and storage and semi-automation attempts. With continuous innovation and attention to key challenges, we expect semi-automatic devices containing DNA-based electrochemical biosensors to have an important impact upon monitoring of serious HAB events. PMID:23097073

Orozco, Jahir; Medlin, Linda K

2013-10-01

417

Electronic defects and interface potentials for Al oxide films on Al and their relationship to electrochemical properties  

SciTech Connect

The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic Al oxides on Al. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measurements revealed (1) that the open circuit potential of Al in aqueous solution is inversely correlated with the oxide electronic defect density (viz., lower oxide conductivities are correlated with higher open circuit potentials), and (2) the electronic defect density within the Al oxide is increased upon exposure to an aqueous electrolyte at open circuit or applied cathodic potentials, while the electronic defect density is reduced upon exposure to slight anodic potentials in solution. This last result, combined with recent theoretical predictions, suggests that hydrogen may be associated with electronic defects within the Al oxide, and that this H may be a mobile species, diffusing as H{sup +}. The potential drop across the oxide layer when immersed in solution at open circuit conditions was also estimated and found to be 0.3 V, with the field direction attracting positive charge towards the Al/oxide interface.

SULLIVAN,JOHN P.; DUNN,ROBERTO G.; BARBOUR,J. CHARLES; WALL,FREDERICK D.; MISSERT,NANCY A.; BUCHHEIT,R.G.

2000-06-01

418

Nanometer-scale electrochemical lithography on the spinel oxide LiMn{sub 2}O{sub 4}  

SciTech Connect

A scheme for nanometer-scale patterning of the surface of a conducting lithium manganese oxide (LiMn{sub 2}O{sub 4}) by scanning probe microscopy is described. A significant feature of this work is the demonstration that a localized surface chemical change can be confined to a depth which depends on the oxide-tip voltage bias and ambient humidity. Processing strategies exploiting this localized pattern generation vary from shallow surface property modification to localized etching of the oxide and the formation of nanometer-size pits, wells, or trenches. Unlike the scanning probe based surface oxidation of metals and semiconductors, the electroactive material is altered via electrochemically generated species. (c) 2000 American Institute of Physics.

Kostecki, Robert [Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 1 Cyclotron Rd., Berkeley, California 94720 (United States)] [Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 1 Cyclotron Rd., Berkeley, California 94720 (United States); McLarnon, Frank [Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 1 Cyclotron Rd., Berkeley, California 94720 (United States)] [Lawrence Berkeley National Laboratory, Environmental Energy Technologies Division, 1 Cyclotron Rd., Berkeley, California 94720 (United States)

2000-05-01

419

Solar photoassisted advanced oxidation process of azo dyes.  

PubMed

Advanced oxidation processes assisted with natural solar radiation in CPC type reactors (parabolic collector compound), was applied for the degradation of three azo dyes: acid orange (AO7), acid red 151 (AR151) and acid blue 113 (AB113). Fenton, Fenton like and ferrioxalate-type complexes showed to be effective for degrade the azo linkage and moieties in different extensions. Initially, the best dose of reagents (Fe(3 + )-H(2)O(2)) was determined through a factorial experimental design, next, using response surface methodologies, the reagent consumption was reduced up to 40%, maintaining in all cases high decolourisation percentages (>98%) after 60 min. of phototreatment. In this work, it was also studied the effect of concentration changes of the influent between 100-300 mg/L and the operation of the photocatalytic process near neutral conditions (pH 6.0-6.5) by using ferrioxalate type complex (FeOx). PMID:19273895

Prato-Garcia, D; Buitrón, G

2009-01-01

420

Oxidative stress in aging: advances in proteomic approaches.  

PubMed

Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

2014-01-01