Science.gov

Sample records for advanced electrochemical oxidation

  1. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with hy...

  2. ELECTROCHEMICAL ADVANCED OXIDATION PROCESS UTILIZING NB-DOPED TIO2 ELECTRODES

    EPA Science Inventory

    An electrochemical advanced oxidation process has been developed, utilizing electrodes which generate hydroxyl free radical (HO) by oxidizing water. All substrates tested are oxidized, mostly with reaction rates proportional to the corresponding rate constants for reaction with h...

  3. Remediation of a winery wastewater combining aerobic biological oxidation and electrochemical advanced oxidation processes.

    PubMed

    Moreira, Francisca C; Boaventura, Rui A R; Brillas, Enric; Vilar, Vítor J P

    2015-05-15

    Apart from a high biodegradable fraction consisting of organic acids, sugars and alcohols, winery wastewaters exhibit a recalcitrant fraction containing high-molecular-weight compounds as polyphenols, tannins and lignins. In this context, a winery wastewater was firstly subjected to a biological oxidation to mineralize the biodegradable fraction and afterwards an electrochemical advanced oxidation process (EAOP) was applied in order to mineralize the refractory molecules or transform them into simpler ones that can be further biodegraded. The biological oxidation led to above 97% removals of dissolved organic carbon (DOC), chemical oxygen demand (COD) and 5-day biochemical oxygen demand (BOD5), but was inefficient on the degradation of a bioresistant fraction corresponding to 130 mg L(-1) of DOC, 380 mg O2 L(-1) of COD and 8.2 mg caffeic acid equivalent L(-1) of total dissolved polyphenols. Various EAOPs such as anodic oxidation with electrogenerated H2O2 (AO-H2O2), electro-Fenton (EF), UVA photoelectro-Fenton (PEF) and solar PEF (SPEF) were then applied to the recalcitrant effluent fraction using a 2.2 L lab-scale flow plant containing an electrochemical cell equipped with a boron-doped diamond (BDD) anode and a carbon-PTFE air-diffusion cathode and coupled to a photoreactor with compound parabolic collectors (CPCs). The influence of initial Fe(2+) concentration and current density on the PEF process was evaluated. The relative oxidative ability of EAOPs increased in the order AO-H2O2 < EF < PEF ≤ SPEF. The SPEF process using an initial Fe(2+) concentration of 35 mg L(-1), current density of 25 mA cm(-2), pH of 2.8 and 25 °C reached removals of 86% on DOC and 68% on COD after 240 min, regarding the biologically treated effluent, along with energy consumptions of 45 kWh (kg DOC)(-1) and 5.1 kWh m(-3). After this coupled treatment, color, odor, COD, BOD5, NH4(+), NO3(-) and SO4(2-) parameters complied with the legislation targets and, in addition, a total dissolved polyphenols content of 0.35 mg caffeic acid equivalent L(-1) was found. Respirometry tests revealed low biodegradability enhancement along the SPEF process. PMID:25765168

  4. Post-treatment of reclaimed waste water based on an electrochemical advanced oxidation process

    NASA Technical Reports Server (NTRS)

    Verostko, Charles E.; Murphy, Oliver J.; Hitchens, G. D.; Salinas, Carlos E.; Rogers, Tom D.

    1992-01-01

    The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. An electrochemical UV reactor is being developed which generates oxidants, operates at low temperatures, and requires no chemical expendables. The reactor is the basis for an advanced oxidation process in which electrochemically generated ozone and hydrogen peroxide are used in combination with ultraviolet light irradiation to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency, and process reaction kinetics are discussed. At the completion of this development effort the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.

  5. Occurrence and Removal of Organic Micropollutants in Landfill Leachates Treated by Electrochemical Advanced Oxidation Processes.

    PubMed

    Oturan, Nihal; van Hullebusch, Eric D; Zhang, Hui; Mazeas, Laurent; Budzinski, Hélène; Le Menach, Karyn; Oturan, Mehmet A

    2015-10-20

    In recent years, electrochemical advanced oxidation processes have been shown to be an effective alternative for the removal of refractory organic compounds from water. This study is focused on the effective removal of recalcitrant organic matter (micropollutants, humic substances, etc.) present in municipal solid waste landfill leachates. A mixture of eight landfill leachates has been studied by the electro-Fenton process using a Pt or boron-doped diamond (BDD) anode and a carbon felt cathode or by the anodic oxidation process with a BDD anode. These processes exhibit great oxidation ability due to the in situ production of hydroxyl radicals ((•)OH), a highly powerful oxidizing species. Both electrochemical processes were shown to be efficient in the removal of dissolved total organic carbon (TOC) from landfill leachates. Regarding the electro-Fenton process, the replacement of the classical anode Pt by the anode BDD allows better performance in terms of dissolved TOC removal. The occurrence and removal yield of 19 polycyclic aromatic hydrocarbons, 15 volatile organic compounds, 7 alkylphenols, 7 polychlorobiphenyls, 5 organochlorine pesticides, and 2 polybrominated diphenyl ethers in landfill leachate were also investigated. Both electrochemical processes allow one to reach a quasicomplete removal (about 98%) of these organic micropollutants. PMID:26378656

  6. Electrochemical advanced oxidation for cold incineration of the pharmaceutical ranitidine: mineralization pathway and toxicity evolution.

    PubMed

    Olvera-Vargas, Hugo; Oturan, Nihal; Brillas, Enric; Buisson, Didier; Esposito, Giovanni; Oturan, Mehmet A

    2014-12-01

    Ranitidine (RNTD) is a widely prescribed histamine H2-receptor antagonist whose unambiguous presence in water sources appointed it as an emerging pollutant. Here, the degradation of 0.1 mM of this drug in aqueous medium was studied by electrochemical advanced oxidation processes (EAOPs) like anodic oxidation with electrogenerated H2O2 and electro-Fenton using Pt/carbon-felt, BDD/carbon-felt and DSA-Ti/RuO2–IrO2/carbon-felt cells. The higher oxidation power of the electro-Fenton process using a BDD anode was demonstrated. The oxidative degradation of RNTD by the electrochemically generated OH radicals obeyed a pseudo-first order kinetics. The absolute rate constant for its hydroxylation reaction was 3.39 × 109 M−1 s−1 as determined by the competition kinetics method. Almost complete mineralization of the RNTN solution was reached by using a BDD anode in both anodic oxidation with electrogenerated H2O2 and electro-Fenton processes. Up to 11 cyclic intermediates with furan moiety were detected from the degradation of RNTD, which were afterwards oxidized to short-chain carboxylic acids before their mineralization to CO2 and inorganic ions such as NH4+, NO3− and SO42−. Based on identified products, a plausible reaction pathway was proposed for RNTD mineralization. Toxicity assessment by the Microtox® method revealed that some cyclic intermediates are more toxic than the parent molecule. Toxicity was quickly removed following the almost total mineralization of the treated solution. Overall results confirm the effectiveness of EAOPs for the efficient removal of RNTD and its oxidation by-products from water. PMID:25461930

  7. Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches.

    PubMed

    Ganzenko, Oleksandra; Huguenot, David; van Hullebusch, Eric D; Esposito, Giovanni; Oturan, Mehmet A

    2014-01-01

    As pollution becomes one of the biggest environmental challenges of the twenty-first century, pollution of water threatens the very existence of humanity, making immediate action a priority. The most persistent and hazardous pollutants come from industrial and agricultural activities; therefore, effective treatment of this wastewater prior to discharge into the natural environment is the solution. Advanced oxidation processes (AOPs) have caused increased interest due to their ability to degrade hazardous substances in contrast to other methods, which mainly only transfer pollution from wastewater to sludge, a membrane filter, or an adsorbent. Among a great variety of different AOPs, a group of electrochemical advanced oxidation processes (EAOPs), including electro-Fenton, is emerging as an environmental-friendly and effective treatment process for the destruction of persistent hazardous contaminants. The only concern that slows down a large-scale implementation is energy consumption and related investment and operational costs. A combination of EAOPs with biological treatment is an interesting solution. In such a synergetic way, removal efficiency is maximized, while minimizing operational costs. The goal of this review is to present cutting-edge research for treatment of three common and problematic pollutants and effluents: dyes and textile wastewater, olive processing wastewater, and pharmaceuticals and hospital wastewater. Each of these types is regarded in terms of recent scientific research on individual electrochemical, individual biological and a combined synergetic treatment. PMID:24965093

  8. Application of electrochemical advanced oxidation processes to the mineralization of the herbicide diuron.

    PubMed

    Pipi, Angelo R F; Sirés, Ignasi; De Andrade, Adalgisa R; Brillas, Enric

    2014-08-01

    Here, solutions with 0.185mM of the herbicide diuron of pH 3.0 have been treated by electrochemical advanced oxidation processes (EAOPs) like electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and UVA photoelectro-Fenton (PEF) or solar PEF (SPEF). Trials were performed in stirred tank reactors of 100mL and in a recirculation flow plant of 2.5L using a filter-press reactor with a Pt or boron-doped diamond (BDD) anode and an air-diffusion cathode for H2O2 electrogeneration. Oxidant hydroxyl radicals were formed from water oxidation at the anode and/or in the bulk from Fenton's reaction between added Fe(2+) and generated H2O2. In both systems, the relative oxidation ability of the EAOPs increased in the sequence EO-H2O2

  9. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  10. Toxicological and chemical assessment of arsenic-contaminated groundwater after electrochemical and advanced oxidation treatments.

    PubMed

    Radić, Sandra; Crnojević, Helena; Vujčić, Valerija; Gajski, Goran; Gerić, Marko; Cvetković, Želimira; Petra, Cvjetko; Garaj-Vrhovac, Vera; Oreščanin, Višnja

    2016-02-01

    Owing to its proven toxicity and mutagenicity, arsenic is regarded a principal pollutant in water used for drinking. The objective of this study was the toxicological and chemical evaluation of groundwater samples obtained from arsenic enriched drinking water wells before and after electrochemical and ozone-UV-H2O2-based advanced oxidation processes (EAOP). For this purpose, acute toxicity test with Daphnia magna and chronic toxicity test with Lemna minor L. were employed as well as in vitro bioassays using human peripheral blood lymphocytes (HPBLs). Several oxidative stress parameters were estimated in L.minor. Physicochemical analysis showed that EAOP treatment was highly efficient in arsenic but also in ammonia and organic compound removal from contaminated groundwater. Untreated groundwater caused only slight toxicity to HPBLs and D. magna in acute experiments. However, 7-day exposure of L. minor to raw groundwater elicited genotoxicity, a significant growth inhibition and oxidative stress injury. The observed genotoxicity and toxicity of raw groundwater samples was almost completely eliminated by EAOP treatment. Generally, the results obtained with L. minor were in agreement with those obtained in the chemical analysis suggesting the sensitivity of the model organism in monitoring of arsenic-contaminated groundwater. In parallel to chemical analysis, the implementation of chronic toxicity bioassays in a battery is recommended in the assessment of the toxic and genotoxic potential of such complex mixtures. PMID:26580737

  11. Inactivation of Pseudomonas aeruginosa in electrochemical advanced oxidation process with diamond electrodes.

    PubMed

    Griessler, M; Knetsch, S; Schimpf, E; Schmidhuber, A; Schrammel, B; Wesner, W; Sommer, R; Kirschner, A K T

    2011-01-01

    The electrochemical advanced oxidation process (EAOP) with diamond electrodes may serve as an additional technology to the currently approved methods for water disinfection. Only few data exist on the microbicidal effect of the EAOP. The aim of our study was to investigate the microbicidal effect of a flow-through oxidation cell with diamond electrodes, using Pseudomonas aeruginosa as the test organism. Without electrical current the EAOP had no measurable effect on investigated microbiological and chemical parameters. For direct electrical current a stronger impact was observed at low flow rate than at higher flow rate. Depending on the contact time of the oxidants and the type of quenching reagent added, inactivation of P. aeruginosa was in the range log 1.6-3.6 at the higher flow rate and log 2.4-4.4 at the lower rate. Direct electrical current showed a stronger microbicidal effect than alternating current (maximum reduction log 4.0 and log 2.9, respectively). The microbiological results of experiments with this EAOP prototype revealed higher standard deviations than expected, based on our experience with standard water disinfection methods. Safe use of an EAOP system requires operating parameters to be defined and used accurately, and thus specific monitoring tests must be developed. PMID:21902043

  12. Incorporation of electrochemical advanced oxidation processes in a multistage treatment system for sanitary landfill leachate.

    PubMed

    Moreira, Francisca C; Soler, J; Fonseca, Amlia; Saraiva, Isabel; Boaventura, Rui A R; Brillas, Enric; Vilar, Vtor J P

    2015-09-15

    The current study has proved the technical feasibility of including electrochemical advanced oxidation processes (EAOPs) in a multistage strategy for the remediation of a sanitary landfill leachate that embraced: (i) first biological treatment to remove the biodegradable organic fraction, oxidize ammonium and reduce alkalinity, (ii) coagulation of the bio-treated leachate to precipitate humic acids and particles, followed by separation of the clarified effluent, and (iii) oxidation of the resulting effluent by an EAOP to degrade the recalcitrant organic matter and increase its biodegradability so that a second biological process for removal of biodegradable organics and nitrogen content could be applied. The influence of current density on an UVA photoelectro-Fenton (PEF) process was firstly assessed. The oxidation ability of various EAOPs such as electro-Fenton (EF) with two distinct initial total dissolved iron concentrations ([TDI]0), PEF and solar PEF (SPEF) was further evaluated and these processes were compared with their analogous chemical ones. A detailed assessment of the two first treatment stages was made and the biodegradability enhancement during the SPEF process was determined by a Zahn-Wellens test to define the ideal organics oxidation state to stop the EAOP and apply the second biological treatment. The best current density was 200mAcm(-2) for a PEF process using a BDD anode, [TDI]0 of 60mgL(-1), pH 2.8 and 20C. The relative oxidation ability of EAOPs increased in the order EF with 12mg [TDI]0L(-1)

  13. Decolorization and mineralization of Allura Red AC aqueous solutions by electrochemical advanced oxidation processes.

    PubMed

    Thiam, Abdoulaye; Sirés, Ignasi; Garrido, José A; Rodríguez, Rosa M; Brillas, Enric

    2015-06-15

    The decolorization and mineralization of solutions containing 230 mg L(-1) of the food azo dye Allura Red AC at pH 3.0 have been studied upon treatment by electrochemical oxidation with electrogenerated H2O2 (EO-H2O2), electro-Fenton (EF) and photoelectro-Fenton (PEF). Experiments were performed with a stirred tank reactor containing a boron-doped diamond (BDD) or Pt anode and an air-diffusion cathode to generate H2O2. The main oxidants were hydroxyl radicals formed at the anode surface from water oxidation and in the bulk from Fenton's reaction between H2O2 and added Fe(2+). The oxidation ability increased in the sequence EO-H2O2 < EF < PEF and faster degradation was always obtained using BDD. PEF process with BDD yielded almost total mineralization following similar trends in SO4(2-), ClO4(-) and NO3(-) media, whereas in Cl(-) medium, mineralization was inhibited by the formation of recalcitrant chloroderivatives. GC-MS analysis confirmed the cleavage of the −N=N− bond with formation of two main aromatics in SO4(2-) medium and three chloroaromatics in Cl(-) solutions. The effective oxidation of final oxalic and oxamic acids by BDD along with the photolysis of Fe(III)-oxalate species by UVA light accounted for the superiority of PEF with BDD. NH4(+), NO3(-) and SO4(2-) ions were released during the mineralization. PMID:25734532

  14. Electrochemical oxidation of chlorophenols

    SciTech Connect

    Polcaro, A.M.; Palmas, S.

    1997-05-01

    Electrochemical 2-chlorophenol and 2,6-dichlorophenol removal from aqueous solutions using porous carbon felt anodes was investigated. Operating variables including current input, ratio between electrode and solution volumes, and initial pollutant concentration were considered in order to determine their influence on the faradic efficiency of the process. The byproducts of the oxidation reaction were identified, and their concentration was determined during the electrolysis. The experimental results showed that a satisfactory detoxification, consisting of removal of cyclic chlorinated compounds, could be accomplished by means of this electrochemical method with a faradic efficiency of 30% under optimized conditions. A mathematical model based on the reaction between chlorophenols adsorbed on the carbon fibers of the electrode and hydroxyl radicals produced by anodic oxidation of water has been proposed in order to interpret the experimental behavior of the system under different operating conditions.

  15. Solid oxide electrochemical reactor science.

    SciTech Connect

    Sullivan, Neal P.; Stechel, Ellen Beth; Moyer, Connor J.; Ambrosini, Andrea; Key, Robert J.

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  16. Removal of arsenic, phosphates and ammonia from well water using electrochemical/chemical methods and advanced oxidation: a pilot plant approach.

    PubMed

    Orescanin, Visnja; Kollar, Robert; Nad, Karlo; Halkijevic, Ivan; Kuspilic, Marin; Findri Gustek, Stefica

    2014-01-01

    The purpose of this work was to develop a pilot plant purification system and apply it to groundwater used for human consumption, containing high concentrations of arsenic and increased levels of phosphates, ammonia, mercury and color. The groundwater used was obtained from the production well in the Vinkovci County (Eastern Croatia). Due to a complex composition of the treated water, the purification system involved a combined electrochemical treatment, using iron and aluminum electrode plates with simultaneous ozonation, followed by a post-treatment with UV, ozone and hydrogen peroxide. The removal of the contaminant with the waste sludge collected during the electrochemical treatment was also tested. The combined electrochemical and advanced oxidation treatment resulted in the complete removal of arsenic, phosphates, color, turbidity, suspended solids and ammonia, while the removal of other contaminants of interest was up to 96.7%. Comparable removal efficiencies were obtained by using waste sludge as a coagulant. PMID:24798899

  17. Electrochemical oxidation of organic waste

    SciTech Connect

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids.

  18. Electrochemical oxidation of organic waste

    SciTech Connect

    Almon, A.C.; Buchanan, B.R.

    1990-12-31

    Both silver catalyzed and direct electrochemical oxidation of organic species are examined in analytical detail. This paper describes the mechanisms, reaction rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantities of laboratory waste is described. The 200-mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and nonradioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II), which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene. In direct electrochemical oxidation, the organic species are destroyed at the surface of the working electrode without the use of silver as an electron transfer agent. This paper focuses on the destruction of tributylphosphate (TBP), although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids.

  19. Electrochemical oxidation for landfill leachate treatment

    SciTech Connect

    Deng, Yang Englehardt, James D.

    2007-07-01

    This paper aims at providing an overview of electrochemical oxidation processes used for treatment of landfill leachate. The typical characteristics of landfill leachate are briefly reviewed, and the reactor designs used for electro-oxidation of leachate are summarized. Electrochemical oxidation can significantly reduce concentrations of organic contaminants, ammonia, and color in leachate. Pretreatment methods, anode materials, pH, current density, chloride concentration, and other additional electrolytes can considerably influence performance. Although high energy consumption and potential chlorinated organics formation may limit its application, electrochemical oxidation is a promising and powerful technology for treatment of landfill leachate.

  20. Electrochemical carbon dioxide concentrator advanced technology tasks

    NASA Technical Reports Server (NTRS)

    Schneider, J. J.; Schubert, F. H.; Hallick, T. M.; Woods, R. R.

    1975-01-01

    Technology advancement studies are reported on the basic electrochemical CO2 removal process to provide a basis for the design of the next generation cell, module and subsystem hardware. An Advanced Electrochemical Depolarized Concentrator Module (AEDCM) is developed that has the characteristics of low weight, low volume, high CO2, removal, good electrical performance and low process air pressure drop. Component weight and noise reduction for the hardware of a six man capacity CO2 collection subsystem was developed for the air revitalization group of the Space Station Prototype (SSP).

  1. Electrochemical nitric oxide sensors for physiological measurements.

    PubMed

    Privett, Benjamin J; Shin, Jae Ho; Schoenfisch, Mark H

    2010-06-01

    The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. In this tutorial review, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed. PMID:20502795

  2. Dechlorination by combined electrochemical reduction and oxidation*

    PubMed Central

    Cong, Yan-qing; Wu, Zu-cheng; Tan, Tian-en

    2005-01-01

    Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electrochemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol. PMID:15909345

  3. Dechlorination by combined electrochemical reduction and oxidation.

    PubMed

    Cong, Yan-qing; Wu, Zu-cheng; Tan, Tian-en

    2005-06-01

    Chlorophenols are typical priority pollutants listed by USEPA (U.S. Environmental Protection Agency). The removal of chlorophenol could be carried out by a combination of electrochemical reduction and oxidation method. Results showed that it was feasible to degrade contaminants containing chlorine atoms by electrochemical reduction to form phenol, which was further degraded on the anode by electrochemical oxidation. Chlorophenol removal rate was more than 90% by the combined electrochemical reduction and oxidation at current of 6 mA and pH 6. The hydrogen atom is a powerful reducing agent that reductively dechlorinates chlorophenols. The instantaneous current efficiency was calculated and the results indicated that cathodic reduction was the main contributor to the degradation of chlorophenol. PMID:15909345

  4. Toxicity assessment of the water used for human consumption from the Cameron/Tuba City abandoned uranium mining area prior/after the combined electrochemical treatment/advanced oxidation.

    PubMed

    Gajski, Goran; Oreščanin, Višnja; Gerić, Marko; Kollar, Robert; Lovrenčić Mikelić, Ivanka; Garaj-Vrhovac, Vera

    2015-01-01

    The purpose of this work was detailed physicochemical, radiological, and toxicological characterization of the composite sample of water intended for human consumption in the Cameron/Tuba City abandoned uranium mining area before and after a combined electrochemical/advanced oxidation treatment. Toxicological characterization was conducted on human lymphocytes using a battery of bioassays. On the bases of the tested parameters, it could be concluded that water used for drinking from the tested water sources must be strictly forbidden for human and/or animal consumption since it is extremely cytogenotoxic, with high oxidative stress potential. A combined electrochemical treatment and posttreatment with ozone and UV light decreased the level of all physicochemical and radiological parameters below the regulated values. Consequently, the purified sample was neither cytotoxic nor genotoxic, indicating that the presented method could be used for the improvement of water quality from the sites highly contaminated with the mixture of heavy metals and radionuclides. PMID:25087498

  5. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  6. Solid oxide electrochemical cell fabrication process

    DOEpatents

    Dollard, Walter J. (Churchill Borough, PA); Folser, George R. (Lower Burrell, PA); Pal, Uday B. (Cambridge, MA); Singhal, Subhash C. (Murrysville, PA)

    1992-01-01

    A method to form an electrochemical cell (12) is characterized by the steps of thermal spraying stabilized zirconia over a doped lanthanum manganite air electrode tube (14) to provide an electrolyte layer (15), coating conductive particles over the electrolyte, pressurizing the outside of the electrolyte layer, feeding halide vapors of yttrium and zirconium to the outside of the electrolyte layer and feeding a source of oxygen to the inside of the electrolyte layer, heating to cause oxygen reaction with the halide vapors to close electrolyte pores if there are any and to form a metal oxide coating on and between the particles and provide a fuel electrode (16).

  7. Degradation of pharmaceutical beta-blockers by electrochemical advanced oxidation processes using a flow plant with a solar compound parabolic collector.

    PubMed

    Isarain-Chávez, Eloy; Rodríguez, Rosa María; Cabot, Pere Lluís; Centellas, Francesc; Arias, Conchita; Garrido, José Antonio; Brillas, Enric

    2011-08-01

    The degradation of the beta-blockers atenolol, metoprolol tartrate and propranolol hydrochloride was studied by electro-Fenton (EF) and solar photoelectro-Fenton (SPEF). Solutions of 10 L of 100 mg L⁻¹ of total organic carbon of each drug in 0.1 M Na₂SO₄ with 0.5 mM Fe²⁺ of pH 3.0 were treated in a recirculation flow plant with an electrochemical reactor coupled with a solar compound parabolic collector. Single Pt/carbon felt (CF) and boron-doped diamond (BDD)/air-diffusion electrode (ADE) cells and combined Pt/ADE-Pt/CF and BDD/ADE-Pt/CF cells were used. SPEF treatments were more potent with the latter cell, yielding 95-97% mineralization with 100% of maximum current efficiency and energy consumptions of about 0.250 kWh g TOC⁻¹. However, the Pt/ADE-Pt/CF cell gave much lower energy consumptions of about 0.080 kWh g TOC⁻¹ with slightly lower mineralization of 88-93%, then being more useful for its possible application at industrial level. The EF method led to a poorer mineralization and was more potent using the combined cells by the additional production of hydroxyl radicals (•OH) from Fenton's reaction from the fast Fe²⁺ regeneration at the CF cathode. Organics were also more rapidly destroyed at BDD than at Pt anode. The decay kinetics of beta-blockers always followed a pseudo first-order reaction, although in SPEF, it was accelerated by the additional production of •OH from the action of UV light of solar irradiation. Aromatic intermediates were also destroyed by hydroxyl radicals. Ultimate carboxylic acids like oxalic and oxamic remained in the treated solutions by EF, but their Fe(III) complexes were photolyzed by solar irradiation in SPEF, thus explaining its higher oxidation power. NO₃⁻ was the predominant inorganic ion lost in EF, whereas the SPEF process favored the production of NH₄⁺ ion and volatile N-derivatives. PMID:21693380

  8. Electrochemical oxidation of phenol using graphite anodes

    SciTech Connect

    Awad, Y.M.; Abuzaid, N.S.

    1999-02-01

    The effects of current and pH on the electrochemical oxidation of phenol on graphite electrodes is investigated in this study. There was no sign of deterioration of the graphite bed after 5 months of operation. Phenol removal efficiency was a function of the current applied and was around 70% at a current of 2.2 A. The increase of phenol removal efficiency with current is attributed to the increase of ionic transport which increases the rate of electrode reactions responsible for the removal process. The percentage of complete oxidation of phenol increases with current, with a maximum value of about 50%. However, at pH 0.2 it is slightly higher than that at pH 0.5 at all currents. The phenol removal rate increases with increases of current and pH. While the current (CO{sub 2}) efficiency reaches a maximum value in the current range of 1.0--1.2 A, it increases with an increase of acid concentration. The findings of this study have important implications: while anodic oxidation of phenol on graphite can achieve acceptable removal of phenol, the extent of oxidation should not be overlooked.

  9. Chemical, electrochemical and photochemical molecular water oxidation catalysts.

    PubMed

    Bofill, Roger; Garca-Antn, Jordi; Escriche, Llus; Sala, Xavier

    2015-11-01

    Hydrogen release from the splitting of water by simply using sunlight as the only energy source is an old human dream that could finally become a reality. This process involves both the reduction and oxidation of water into hydrogen and oxygen, respectively. While the first process has been fairly overcome, the conversion of water into oxygen has been traditionally the bottleneck process hampering the development of a sustainable hydrogen production based on water splitting. Fortunately, a revolution in this field has occurred during the past decade, since many research groups have been conducting an intense research in this area. Thus, while molecular, well-characterized catalysts able to oxidize water were scarce just five years ago, now a wide range of transition metal based compounds has been reported as active catalysts for this transformation. This review reports the most prominent key advances in the field, covering either examples where the catalysis is triggered chemically, electrochemically or photochemically. PMID:25547287

  10. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Heppner, D. B.; Hallick, T. M.; Woods, R. R.

    1979-01-01

    Two multicell, liquid-cooled, advanced electrochemical depolarized carbon dioxide concentrator modules were fabricated. The cells utilized advanced, lightweight, plated anode current collectors, internal liquid cooling and lightweight cell frames. Both were designed to meet the carbon dioxide removal requirements of one-person, i.e., 1.0 kg/d (2.2 lb/d).

  11. Electrochemical oxidation of perfluorinated compounds in water.

    PubMed

    Niu, Junfeng; Li, Yang; Shang, Enxiang; Xu, Zesheng; Liu, Jinzi

    2016-03-01

    Perfluorinated compounds (PFCs) are persistent and refractory organic pollutants that have been detected in various environmental matrices and municipal wastewater. Electrochemical oxidation (EO) is a promising remediation technique for wastewater contaminated with PFCs. A number of recent studies have demonstrated that the "non-active" anodes, including boron-doped diamond, tin oxide, and lead dioxide, are effective in PFCs elimination in wastewater due to their high oxygen evolution potential. Many researchers have conducted experiments to investigate the optimal conditions (i.e., potential, current density, pH value, plate distance, initial PFCs concentration, electrolyte, and other factors) for PFCs elimination to obtain the maximal elimination efficiency and current efficiency. The EO mechanism and pathways of PFCs have been clearly elucidated, which undergo electron transfer, Kolbe decarboxylation or desulfonation, hydrolysis, and radical reaction. In addition, the safety evaluation and energy consumption evaluation of the EO technology have also been summarized to decrease toxic ion release from electrode and reduce the cost of this technique. Although the ultrasonication and hydrothermal techniques combined with the EO process can improve the removal efficiency and current efficiency significantly, these coupled techniques have not been commercialized and applied in industrial wastewater treatment. Finally, key challenges facing EO technology are listed and the directions for further research are pointed out (such as combination with other techniques, treatment for natural waters contaminated by low levels of PFCs, and reactor design). PMID:26745381

  12. Electrochemically reduced graphene oxide / sulfonated polyether ether ketone composite membrane for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Seetharaman, S.; Ramya, K.; Dhathathreyan, K. S.

    2013-06-01

    A simple and effective method for the preparation of sulfonated polyether ether ketone (SPEEK) based composites with electrochemical reduced graphene oxide (EGO) as inorganic fillers has been described. The resulting dispersions are homogeneous and the cast membranes show significant improvement on tensile strength and thermal properties. It has high ionic conductivity and is cost effective making it a promising alternative membrane for electrochemical applications.

  13. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review.

    PubMed

    Sharma, Virender K; Oturan, Mehmet; Kim, Hyunook

    2014-01-01

    Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed. PMID:24687789

  14. Tutorial Review: Electrochemical Nitric Oxide Sensors for Physiological Measurements

    PubMed Central

    Privett, Benjamin J.; Shin, Jae Ho; Schoenfisch, Mark H.

    2013-01-01

    Summary The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO-detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. Herein, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed. PMID:20502795

  15. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P. (Edgewood, PA); Bessette, Norman F. (N. Huntingdon, PA)

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  16. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar (Export, PA); Ruka, Roswell J. (Churchill Boro, Allegheny County, PA)

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  17. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1978-01-01

    The overall objectives of the present program are to: (1) improve the performance of the electrochemical CO2 removal technique by increasing CO2 removal efficiencies at pCO2 levels below 400 Pa, increasing cell power output and broadening the tolerance of electrochemical cells for operation over wide ranges of cabin relative humidity; (2) design, fabricate, and assemble development hardware to continue the evolution of the electrochemical concentrating technique from the existing level to an advanced level able to efficiently meet the CO2 removal needs of a spacecraft air revitalization system (ARS); (3) develop and incorporate into the EDC the components and concepts that allow for the efficient integration of the electrochemical technique with other subsystems to form a spacecraft ARS; (4) combine ARS functions to enable the elimination of subsystem components and interfaces; and (5) demonstrate the integration concepts through actual operation of a functionally integrated ARS.

  18. Innovative oxide materials for electrochemical energy conversion

    NASA Astrophysics Data System (ADS)

    Wachsman, Eric D.

    2012-02-01

    Research in functional materials has progressed from those materials exhibiting structural to electronic functionality. The study of ion conducting ceramics ushers in a new era of ``chemically functional materials.'' This chemical functionality arises out of the defect equilibria of these materials, and results in the ability to transport chemical species and actively participate in chemical reactions at their surface. Moreover, this chemical functionality provides a promise for the future whereby the harnessing of our natural hydrocarbon energy resources can shift from inefficient and polluting combustion - mechanical methods to direct electrochemical conversion. The unique properties of these materials and their applications will be described. The focus will be on the application of ion conducting ceramics to energy conversion and storage, chemical sensors, chemical separation and conversion, and life support systems. Results presented will include development of record high power density (3 kW/kg) solid oxide fuel cells, NOx/CO species selective solid-state sensors, high yield membrane reactors, and regenerative life support systems that reduce CO2 to O2 and solid C.

  19. ADVANCED OXIDATION PROCESS

    SciTech Connect

    Colin P. Horwitz; Terrence J. Collins

    2003-10-22

    The design of new, high efficiency and cleaner burning engines is strongly coupled with the removal of recalcitrant sulfur species, dibenzothiophene and its derivatives, from fuels. Oxidative desulfurization (ODS) wherein these dibenzothiophene derivatives are oxidized to their corresponding sulfoxides and sulfones is an approach that has gained significant attention. Fe-TAML{reg_sign} activators of hydrogen peroxide (TAML is Tetra-Amido-Macrocyclic-Ligand) convert in a catalytic process dibenzothiophene and its derivatives to the corresponding sulfoxides and sulfones rapidly at moderate temperatures (60 C) and ambient pressure. The reaction can be performed in both an aqueous system containing an alcohol (methanol, ethanol, or t-butanol) to solubilize the DBT and in a two-phase hydrocarbon/aqueous system where the alcohol is present in both phases and facilitates the oxidation. Under a consistent set of conditions using the FeBF{sub 2} TAML activator, the degree of conversion was found to be t-butanol > methanol > ethanol. In the cases of methanol and ethanol, both the sulfoxide and sulfone were observed while for t-butanol only the sulfone was detected. In the two-phase system, the alcohol may function as an inverse phase transfer agent. The oxidation was carried out using two different TAML activators. In homogeneous solution, approximately 90% oxidation of the DBT could be achieved using the prototype TAML activator, FeB*, by sonicating the solution at near room temperature. In bi-phasic systems conversions as high as 50% were achieved using the FeB* TAML activator and hydrogen peroxide at 100 C. The sonication method yielded only {approx}6% conversion but this may have been due to mixing.

  20. Technology advancement of the electrochemical CO2 concentrating process

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Woods, R. R.; Hallick, T. M.; Heppner, D. B.

    1977-01-01

    A five-cell, liquid-cooled advanced electrochemical depolarized carbon dioxide concentrator module was fabricated. The cells utilized the advanced, lightweight, plated anode current collector concept and internal liquid-cooling. The five cell module was designed to meet the carbon dioxide removal requirements of one man and was assembled using plexiglass endplates. This one-man module was tested as part of an integrated oxygen generation and recovery subsystem.

  1. Electrochemical and partial oxidation of methane

    NASA Astrophysics Data System (ADS)

    Singh, Rahul

    2008-10-01

    Hydrogen has been the most common fuel used for the fuel cell research but there remains challenging technological hurdles and storage issues with hydrogen fuel. The direct electrochemical oxidation of CH4 (a major component of natural gas) in a solid oxide fuel cell (SOFC) to generate electricity has a potential of commercialization in the area of auxiliary and portable power units and battery chargers. They offer significant advantages over an external reformer based SOFC, namely, (i) simplicity in the overall system architecture and balance of plant, (ii) more efficient and (iii) availability of constant concentration of fuel in the anode compartment of SOFC providing stability factor. The extreme operational temperature of a SOFC at 700-1000°C provides a thermodynamically favorable pathway to deposit carbon on the most commonly used Ni anode from CH4 according to the following reaction (CH4 = C + 2H2), thus deteriorating the cell performance, stability and durability. The coking problem on the anode has been a serious and challenging issue faced by the catalyst research community worldwide. This dissertation presents (i) a novel fabricated bi-metallic Cu-Ni anode by electroless plating of Cu on Ni anode demonstrating significantly reduced or negligible coke deposition on the anode for CH4 and natural gas fuel after long term exposure, (ii) a thorough microstructural examination of Ni and Cu-Ni anode exposed to H2, CH4 and natural gas after long term exposure at 750°C by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction and (iii) in situ electrochemical analysis of Ni and Cu-Ni for H2, CH4 and natural gas during long term exposure at 750°C by impedance spectroscopy. A careful investigation of variation in the microstructure and performance characteristics (voltage-current curve and impedance) of Ni and Cu-Ni anode before and after a long term exposure of CH4 and natural gas would allow us to test the validation of a negligible coke formation on the novel fabricated anode by electroless plating process. Hydrogen is an environmentally cleaner source of energy. The recent increase in the demand of hydrogen as fuel for all types of fuel cells and petroleum refining process has boosted the need of production of hydrogen. Methane, a major component of natural gas is the major feedstock for production of hydrogen. The route of partial oxidation of methane to produce syngas (CO + H2) offers significant advantages over commercialized steam reforming process for higher efficiency and lower energy requirements. Partial oxidation of methane was studied by pulsing O2 into a CH4 flow over Rh/Al2O3 in a sequence of in situ infrared (IR) cell and fixed bed reactor at 773 K. The results obtained from the sequence of an IR cell followed by a fixed bed reactor show that (i) adsorbed CO produced possesses a long residence time, indicating that adsorbed oxygen leading to the formation of CO is significantly different from those leading to CO2 and (ii) CO2 is not an intermediate species for the formation of CO. In situ IR of pulse reaction coupled with alternating reactor sequence is an effective approach to study the primary and secondary reactions as well as the nature of their adsorbed species. As reported earlier, hydrogen remains to be the most effective fuel for fuel cells, the production of high purity hydrogen from naturally available resources such as coal, petroleum, and natural gas requires a number of energy-intensive steps, making fuel cell processes for stationary electric power generation prohibitively uneconomic. Direct use of coal or coal gas as the feed is a promising approach for low cost electricity generation. Coal gas solid oxide fuel cell was studied by pyrolyzing Ohio #5 coal to coal gas and transporting to a Cu anode solid oxide fuel cell to generate power. The study of coal-gas solid oxide fuel cell is divided into two sections, i.e., (i) understanding the composition of coal gas by in situ infrared spectroscopy combined with mass spectrometry and (ii) evaluating the performance of coal gas for power generation based on the composition on a Cu-SOFC. The voltage-current performance curve for coal gas suggests that hydrogen and methane rich coal gas performed better than CO2 or D2O concentrated coal gas. A slow rate of reforming reaction of D2O than CO2 with coal and coal gas was observed during pyrolysis reaction. The coal and coke (by-product of pyrolysis) were characterized by Raman spectrometer to reveal the effect of pyrolysis on the structural properties of coal.

  2. Electrochemical oxidation of reverse osmosis concentrate on mixed metal oxide (MMO) titanium coated electrodes.

    PubMed

    Bagastyo, Arseto Y; Radjenovic, Jelena; Mu, Yang; Rozendal, Ren A; Batstone, Damien J; Rabaey, Korneel

    2011-10-15

    Reverse osmosis (RO) membranes have been successfully applied around the world for wastewater reuse applications. However, RO is a physical separation process, and besides the clean water stream (permeate) a reverse osmosis concentrate (ROC) is produced, usually representing 15-25% of the feed water flow and containing the organic and inorganic contaminants at higher concentrations. In this study, electrochemical oxidation was investigated for the treatment of ROC generated during the reclamation of municipal wastewater effluent. Using laboratory-scale two-compartment electrochemical systems, five electrode materials (i.e. titanium coated with IrO2-Ta2O5, RuO2-IrO2, Pt-IrO2, PbO2, and SnO2-Sb) were tested as anodes in batch mode experiments, using ROC from an advanced water treatment plant. The best oxidation performance was observed for Ti/Pt-IrO2 anodes, followed by the Ti/SnO2-Sb and Ti/PbO2 anodes. The effectiveness of the treatment appears to correlate with the formation of oxidants such as active chlorine (i.e. Cl2/HClO/ClO-). As a result, electro-generated chlorine led to the abundant formation of harmful by-products such as trihalomethanes (THMs) and haloacetic acids (HAAs), particularly at Ti/SnO2-Sb and Ti/Pt-IrO2 anodes. The highest concentration of total HAAs (i.e. 2.7 mg L(-1)) was measured for the Ti/SnO2-Sb electrode, after 0.55 Ah L(-1) of supplied specific electrical charge. Irrespective of the used material, electrochemical oxidation of ROC needs to be complemented by a polishing treatment to alleviate the release of halogenated by-products. PMID:21802107

  3. Cobalt vanadium oxide thin nanoplates: primary electrochemical capacitor application

    PubMed Central

    Zhang, Youjuan; Liu, Yuanying; Chen, Jing; Guo, Qifei; Wang, Ting; Pang, Huan

    2014-01-01

    Co3V2O8 thin nanoplates are firstly described as a kind of electrode material for supercapacitors. More importantly, from electrochemical measurements, the obtained Co3V2O8 nanoplate electrode shows a good specific capacitance (0.5?A g?1, 739?F g?1) and cycling stability (704?F g?1 retained after 2000 cycles). This study essentially offers a new kind of metal vanadium oxides as electrochemical active material for the development of supercapacitors. PMID:25023373

  4. Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems.

    PubMed

    Park, Min-Sik; Kim, Jeonghun; Kim, Ki Jae; Lee, Jong-Won; Kim, Jung Ho; Yamauchi, Yusuke

    2015-12-14

    Transition metal oxides possessing two kinds of metals (denoted as AxB3-xO4, which is generally defined as a spinel structure; A, B = Co, Ni, Zn, Mn, Fe, etc.), with stoichiometric or even non-stoichiometric compositions, have recently attracted great interest in electrochemical energy storage systems (ESSs). The spinel-type transition metal oxides exhibit outstanding electrochemical activity and stability, and thus, they can play a key role in realising cost-effective and environmentally friendly ESSs. Moreover, porous nanoarchitectures can offer a large number of electrochemically active sites and, at the same time, facilitate transport of charge carriers (electrons and ions) during energy storage reactions. In the design of spinel-type transition metal oxides for energy storage applications, therefore, nanostructural engineering is one of the most essential approaches to achieving high electrochemical performance in ESSs. In this perspective, we introduce spinel-type transition metal oxides with various transition metals and present recent research advances in material design of spinel-type transition metal oxides with tunable architectures (shape, porosity, and size) and compositions on the micro- and nano-scale. Furthermore, their technological applications as electrode materials for next-generation ESSs, including metal-air batteries, lithium-ion batteries, and supercapacitors, are discussed. PMID:26549729

  5. Electrochemical reduction of nickel from oxide melts

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. I.; Vatolin, A. N.

    2010-08-01

    The electrochemical behavior of nickel ions in melted sodium borosilicate and calcium alumino-silicate with NiO additions (0.25-4 wt %), which cover the entire solubility region, is studied using I- V characteristics and an electrolytic method.

  6. Treatment of Radioactive Organic Wastes by an Electrochemical Oxidation

    SciTech Connect

    Kim, K.H.; Ryue, Y.G.; Kwak, K.K.; Hong, K.P.; Kim, D.H.

    2007-07-01

    A waste treatment system by using an electrochemical oxidation (MEO, Mediated Electrochemical Oxidation) was installed at KAERI (Korea Atomic Energy Research Institute) for the treatment of radioactive organic wastes, especially EDTA (Ethylene Diamine Tetraacetic Acid) generated during the decontamination activity of nuclear installations. A cerium and silver mediated electrochemical oxidation technique method has been developed as an alternative for an incineration process. An experiment to evaluate the applicability of the above two processes and to establish the conditions to operate the pilot-scale system has been carried out by changing the concentration of the catalyst and EDTA, the operational current density, the operating temperature, and the electrolyte concentration. As for the results, silver mediated oxidation was more effective in destructing the EDTA wastes than the cerium mediated oxidation process. For a constant volume of the EDTA wastes, the treatment time for the cerium-mediated oxidation was 9 hours and its conversion ratio of EDTA to water and CO{sub 2} was 90.2 % at 80 deg. C, 10 A, but the treatment time for the silver-mediated oxidation was 3 hours and its conversion ratio was 89.2 % at 30 deg. C, 10 A. (authors)

  7. Fractional surface termination of diamond by electrochemical oxidation.

    PubMed

    Hoffmann, Ren; Obloh, Harald; Tokuda, Norio; Yang, Nianjun; Nebel, Christoph E

    2012-01-10

    The crystalline form of sp(3)-hybridized carbon, diamond, offers various electrolyte-stable surface terminations. The H-termination-selective attachment of nitrophenyl diazonium, imaged by AFM, shows that electrochemical oxidation can control the fractional hydrogen/oxygen surface termination of diamond on the nanometer scale. This is of particular interest for all applications relying on interfacial electrochemistry, especially for biointerfaces. PMID:22172282

  8. Nanostructured Mn-based oxides for electrochemical energy storage and conversion.

    PubMed

    Zhang, Kai; Han, Xiaopeng; Hu, Zhe; Zhang, Xiaolong; Tao, Zhanliang; Chen, Jun

    2015-02-01

    Batteries and supercapacitors as electrochemical energy storage and conversion devices are continuously serving for human life. The electrochemical performance of batteries and supercapacitors depends in large part on the active materials in electrodes. As an important family, Mn-based oxides have shown versatile applications in primary batteries, secondary batteries, metal-air batteries, and pseudocapacitors due to their high activity, high abundance, low price, and environmental friendliness. In order to meet future market demand, it is essential and urgent to make further improvements in energy and power densities of Mn-based electrode materials with the consideration of multiple electron reaction and low molecular weight of the active materials. Meanwhile, nanomaterials are favourable to achieve high performance by means of shortening the ionic diffusion length and providing large surface areas for electrode reactions. This article reviews the recent efforts made to apply nanostructured Mn-based oxides for batteries and pseudocapacitors. The influence of structure, morphology, and composition on electrochemical performance has been systematically summarized. Compared to bulk materials and notable metal catalysts, nanostructured Mn-based oxides can promote the thermodynamics and kinetics of the electrochemical reactions occurring at the solid-liquid or the solid-liquid-gas interface. In particular, nanostructured Mn-based oxides such as one-dimensional MnO2 nanostructures, MnO2-conductive matrix nanocomposites, concentration-gradient structured layered Li-rich Mn-based oxides, porous LiNi0.5Mn1.5O4 nanorods, core-shell structured LiMnSiO4@C nanocomposites, spinel-type Co-Mn-O nanoparticles, and perovskite-type CaMnO3 with micro-nano structures all display superior electrochemical performance. This review should shed light on the sustainable development of advanced batteries and pseudocapacitors with nanostructured Mn-based oxides. PMID:25200459

  9. Electrochemical oxidation of imazapyr with BDD electrode in titanium substrate.

    PubMed

    Souza, F L; Teodoro, T Q; Vasconcelos, V M; Migliorini, F L; Lima Gomes, P C F; Ferreira, N G; Baldan, M R; Haiduke, R L A; Lanza, M R V

    2014-12-01

    In this work we have studied the treatment of imazapyr by electrochemical oxidation with boron-doped diamond anode. Electrochemical degradation experiments were performed in a one-compartment cell containing 0.45 L of commercial formulations of herbicide in the pH range 3.0-10.0 by applying a density current between 10 and 150 mA cm(-2) and in the temperature range 25-45 °C. The maximum current efficiencies were obtained at lower current densities since the electrochemical system is under mass transfer control. The mineralization rate increased in acid medium and at higher temperatures. The treatment was able to completely degrade imazapyr in the range 4.6-100.0 mg L(-1), although the current charge required rises along with the increasing initial concentration of the herbicide. Toxicity analysis with the bioluminescent bacterium Vibrio fischeri showed that at higher pollutant concentrations the toxicity was reduced after the electrochemical treatment. To clarify the reaction pathway for imazapyr mineralization by OH radicals, LC-MS/MS analyses we performed together with a theoretical study. Ions analysis showed the formation of high levels of ammonium in the cathode. The main final products of the electrochemical oxidation of imazapyr with diamond thin film electrodes are formic, acetic and butyric acids. PMID:25461923

  10. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, Russell R. (Murrysville, PA)

    1990-01-01

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.

  11. Method of electrode fabrication for solid oxide electrochemical cells

    DOEpatents

    Jensen, R.R.

    1990-11-20

    A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.

  12. Zinc oxide nanostructures for electrochemical cortisol biosensing

    NASA Astrophysics Data System (ADS)

    Vabbina, Phani Kiran; Kaushik, Ajeet; Tracy, Kathryn; Bhansali, Shekhar; Pala, Nezih

    2014-05-01

    In this paper, we report on fabrication of a label free, highly sensitive and selective electrochemical cortisol immunosensors using one dimensional (1D) ZnO nanorods (ZnO-NRs) and two dimensional nanoflakes (ZnO-NFs) as immobilizing matrix. The synthesized ZnO nanostructures (NSs) were characterized using scanning electron microscopy (SEM), selective area diffraction (SAED) and photoluminescence spectra (PL) which showed that both ZnO-NRs and ZnO-NFs are single crystalline and oriented in [0001] direction. Anti-cortisol antibody (Anti-Cab) are used as primary capture antibodies to detect cortisol using electrochemical impedance spectroscopy (EIS). The charge transfer resistance increases linearly with increase in cortisol concentration and exhibits a sensitivity of 3.078 K?. M-1 for ZnO-NRs and 540 ?. M -1 for ZnO-NFs. The developed ZnO-NSs based immunosensor is capable of detecting cortisol at 1 pM. The observed sensing parameters are in physiological range. The developed sensors can be integrated with microfluidic system and miniaturized potentiostat to detect cortisol at point-of-care.

  13. Decolorization of landfill leachate using electrochemical oxidation technique

    NASA Astrophysics Data System (ADS)

    Jumaah, Majd Ahmed; Othman, Mohamed Rozali

    2015-09-01

    The study was carried out to investigate the electrochemical oxidation of landfill leachate from the Jeram sanitary landfill leachate using charcoal base metallic composite electrodes. The control parameters used were applied voltage, Cl- concentration (as supporting electrolyte) and pH of the solution. The optimum conditions obtained were NaCl concentration of 1.5 % (w/v), applied voltage of 10 V, operating time 180 min and C60CG Co10PVC15 electrode as an anode.15 Electrochemical treatment using charcoal base metallic composite electrode was able to remove color up to 79%.

  14. Electrochemical oxidation of sulphides in paper mill wastewater by using mixed oxide anodes.

    PubMed

    Särkkä, Heikki; Kuhmonen, Kaisa; Vepsäläinen, Mikko; Pulliainen, Martti; Selin, Jukka; Rantala, Pekka; Kukkamäki, Esko; Sillanpää, Mika

    2009-08-01

    In this study, the electrochemical oxidation technique was used to oxidize sulphides present in paper mill wastewater. Inactivation of anaerobic bacteria in wastewater was also investigated. Sulphide oxidation was effective during the experiments, and the best efficiency was achieved by the smallest current density used. One of the main oxidants of sulphides during the experiments was oxygen. Anaerobic bacteria were better inactivated with higher initial chloride concentration in wastewater because of electrochemically generated chlorine/hypochlorite. Dissolved oxygen, redox potential and pH values of the wastewater increased because of electrochemically generated oxygen-based oxidants and oxidation reactions occurring on the anode. In general, it can be said that sulphide removal was successful in the present study. PMID:19803327

  15. Sol-gel Technology and Advanced Electrochemical Energy Storage Materials

    NASA Technical Reports Server (NTRS)

    Chu, Chung-tse; Zheng, Haixing

    1996-01-01

    Advanced materials play an important role in the development of electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. The sol-gel process is a versatile solution for use in the fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. This processing technique is particularly useful in producing porous materials with high surface area and low density, two of the most desirable characteristics for electrode materials. In addition,the porous surface of gels can be modified chemically to create tailored surface properties, and inorganic/organic micro-composites can be prepared for improved material performance device fabrication. Applications of several sol-gel derived electrode materials in different energy storage devices are illustrated in this paper. V2O5 gels are shown to be a promising cathode material for solid state lithium batteries. Carbon aerogels, amorphous RuO2 gels and sol-gel derived hafnium compounds have been studied as electrode materials for high energy density and high power density electrochemical capacitors.

  16. Recent advances on multi-component hybrid nanostructures for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Xiong, Pan; Zhu, Junwu; Wang, Xin

    2015-10-01

    With the continuously growing energy demand and ever-escalating environmental problems, the great energy transition from conventional fossil fuels to renewable sources of energy is under way, and requires more efficient and reliable electrochemical energy storage devices, such as electrochemical capacitors (also called as supercapacitors). In order to achieve high energy and power densities of supercapacitors, numerous efforts are devoted to the development of advanced multi-component hybrid electrode materials for realizing high-performance. This review summarizes the most recent progress in the development of nanostructured electrode materials for energy storage, with a particular focus on these nanostructures that integrate carbon materials, metal oxides/hydroxides and conducting polymers for enhancing energy storage performances via taking advantage of each component's unique functionality and their synergetic effects. Finally, we give some perspectives on the challenges and opportunities in this intriguing field.

  17. Electrochemical phase diagrams for Ti oxides from density functional calculations

    NASA Astrophysics Data System (ADS)

    Huang, Liang-Feng; Rondinelli, James M.

    2015-12-01

    Developing an accurate simulation method for the electrochemical stability of solids, as well as understanding the physics related with its accuracy, is critically important for improving the performance of compounds and predicting the stability of new materials in aqueous environments. Herein we propose a workflow for the accurate calculation of first-principles electrochemical phase (Pourbaix) diagrams. With this scheme, we study the electrochemical stabilities of Ti and Ti oxides using density-functional theory. First, we find the accuracy of an exchange-correlation functional in predicting formation energies and electrochemical stabilities is closely related with the electronic exchange interaction therein. Second, the metaGGA and hybrid functionals with a more precise description of the electronic exchange interaction lead to a systematic improvement in the accuracy of the Pourbaix diagrams. Furthermore, we show that accurate Ti Pourbaix diagrams also require that thermal effects are included through vibrational contributions to the free energy. We then use these diagrams to explain various experimental electrochemical phenomena for the Ti-O system, and show that if experimental formation energies for Ti oxides, which contain contributions from defects owing to their generation at high (combustion) temperatures, are directly used to predict room temperature Pourbaix diagrams then significant inaccuracies result. In contrast, the formation energies from accurate first-principles calculations, e.g., using metaGGA and hybrid functionals, are found to be more reliable. Finally, to facilitate the future application of our accurate electrochemical phase equilibria diagrams, the variation of the Ti Pourbaix diagrams with aqueous ion concentration is also provided.

  18. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  19. Electrochemical properties of inorganic nanoporous oxide coated electrodes

    NASA Astrophysics Data System (ADS)

    Leonard, Kevin C.

    The ability to produce clean water and produce and store clean energy is essential to society. Hence, technologies that facilitate clean energy and clean water are of great importance. This study focused on utilizing nanoporous insulating oxide materials to alter the chemistry at the electrode/electrolyte interface to improve the performance of a number of clean energy and clean water technologies. Here we have shown that applying a thin-film of SiO2 nanoparticles to an electrochemical capacitor electrode can increase the energy storage capacity by up to 50% at high power ratings. We have developed a geometric model to describe the coating of the porous electrode to explain the increased performance at high power ratings. We have also shown that the coated electrochemical capacitor exhibits a higher capacitance when normalized to BET surface area, suggesting that the coated surface is behaving fundamentally differently than the uncoated surface. We attribute the increase in capacitance to the inherent surface potential of the oxide coating and have shown that if we alter the surface potential of the oxide, we can in turn alter the electrochemical capacitance. In addition, we have determined that when used in capacitive deionization systems, these coatings can increase ion removal and accelerate regeneration, allowing for higher efficiency and less waste water. We have demonstrated that a nanoporous oxide coating can increase the gas production rate and lower the overpotential of the hydrogen evolution reaction via water electrolysis on both stainless steel and carbon electrodes. In addition, this work presents data on utilizing nanoporous oxide coatings on Li-Ion battery cathodes to improve high temperature capacity fade. We also introduce a novel thin-film battery/electrochemical capacitor hybrid device, which can improve the performance of simple thin-film batteries.

  20. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods.

    PubMed

    Marie, Mohammed; Mandal, Sanghamitra; Manasreh, Omar

    2015-01-01

    A glucose electrochemical sensor based on zinc oxide (ZnO) nanorods was investigated. The hydrothermal sol-gel growth method was utilized to grow ZnO nanorods on indium tin oxide-coated glass substrates. The total active area of the working electrode was 0.3 0.3 cm2 where titanium metal was deposited to enhance the contact. Well aligned hexagonal structured ZnO nanorods with a diameter from 68 to 116 nm were obtained. The excitonic peak obtained from the absorbance spectroscopy was observed at ~370 nm. The dominant peak of Raman spectroscopy measurement was at 440 cm(-1), matching with the lattice vibration of ZnO. The uniform distribution of the GOx and Nafion membrane that has been done using spin coating technique at 4000 rotations per minute helps in enhancing the ion exchange and increasing the sensitivity of the fabricated electrochemical sensor. The amperometric response of the fabricated electrochemical sensor was 3 s. The obtained sensitivity of the fabricated ZnO electrochemical sensor was 10.911 mA/mMcm2 and the lower limit of detection was 0.22 M. PMID:26263988

  1. An Electrochemical Glucose Sensor Based on Zinc Oxide Nanorods

    PubMed Central

    Marie, Mohammed; Mandal, Sanghamitra; Manasreh, Omar

    2015-01-01

    A glucose electrochemical sensor based on zinc oxide (ZnO) nanorods was investigated. The hydrothermal solgel growth method was utilized to grow ZnO nanorods on indium tin oxide-coated glass substrates. The total active area of the working electrode was 0.3 0.3 cm2 where titanium metal was deposited to enhance the contact. Well aligned hexagonal structured ZnO nanorods with a diameter from 68 to 116 nm were obtained. The excitonic peak obtained from the absorbance spectroscopy was observed at ~370 nm. The dominant peak of Raman spectroscopy measurement was at 440 cm?1, matching with the lattice vibration of ZnO. The uniform distribution of the GOx and Nafion membrane that has been done using spin coating technique at 4000 rotations per minute helps in enhancing the ion exchange and increasing the sensitivity of the fabricated electrochemical sensor. The amperometric response of the fabricated electrochemical sensor was 3 s. The obtained sensitivity of the fabricated ZnO electrochemical sensor was 10.911 mA/mMcm2 and the lower limit of detection was 0.22 M. PMID:26263988

  2. Electrochemical water-splitting based on hypochlorite oxidation.

    PubMed

    Macounov, Kate?ina Minhov; Simic, Nina; Ahlberg, Elisabet; Krtil, Petr

    2015-06-17

    Effective catalytic water-splitting can be electrochemically triggered in an alkaline solution of sodium hypochlorite. Hypochlorite oxidation on polycrystalline platinum yields ClO radicals, which initiate a radical-assisted water-splitting, yielding oxygen, hydrogen peroxide, and protons. The efficiency of the O2 production corresponds to about two electrons per molecule of the produced O2 and is controlled primarily by the hypochlorite concentration and pH. PMID:26030185

  3. Electrochemical Oxidation of Synthetic Dyes in Simulated Wastewaters

    NASA Astrophysics Data System (ADS)

    Gallios, G.; Violintzis, X.; Voinovskii, I.; Voulgaropoulos, A.

    An electrochemical oxidation method for the degradation of synthetic reactive azodyes found in textile wastewaters is discussed. Four commercial synthetic dyes (black, blue, red and yellow) commonly used in dying operations were studied in single, binary and ternary mixtures. Low (100 mg/L) and high (500, 1,000 and 2,000 mg/L) initial dye concentrations were studied. The effect of various sodium chloride concentrations (as supporting electrolyte) on the effectiveness of electrochemical oxidation was examined. The effect of current intensity (1.5, 2.5 and 3.0 A) and pH (vales 3, 5, 7 and 10) was studied as well. The kinetics of the electrochemical oxidation for each dye were studied and compared. The conditions for effective dye degradation even from 2,000 mg/L initial concentration were established. The method was proved very effective even with binary and ternary mixtures of basic synthetic dyes. The Chemical Oxygen Demand (COD) and the Total Organic Carbon (TOC) were reduced by 60% and 25% respectively, meaning that the treated solutions were friendlier to the environment.

  4. [Modeling the oxidative detoxication function of the liver using electrochemical oxidation reactions].

    PubMed

    Zhirnov, G F; Izotov, M V; Karuzina, I I; Lopukhin, Iu M; Archakov, A I

    1979-01-01

    An electrochemical system is developed, which permits to simulate oxidative reactions, processing in presence of cytochrome P-450. The system, combined with a dialyzing apparatus, may be used for oxidation and elimination of various hydrophobic substances of exoand endogenous origin from animal and human organisms. PMID:442594

  5. Observable Electrochemical Oxidation of Carbon Promoted by Platinum Nanoparticles.

    PubMed

    Kou, Zongkui; Cheng, Kun; Wu, Hui; Sun, Ronghui; Guo, Beibei; Mu, Shichun

    2016-02-17

    The radical degradation of Pt-based catalysts toward oxygen reduction reaction (ORR), predominantly caused by the oxidation of carbon supports, heavily blocks the commercialization of polymer electrolyte membrane fuel cells (PEMFCs). As reported, the electrochemical oxidation of carbon could be accelerated by Pt catalysts; however, hitherto no direct evidence is present for the promotion of Pt catalysts. Herein, a unique ultrathin carbon layer (approximately 2.9 nm in thickness) covered Pt catalyst (Pt/C-GC) is designed and synthesized by a chemical vapor deposition (CVD) method. This magnifies the catalysis effect of Pt to carbon oxidation due to the greatly increased contact sites between the metal-support, making it easy to investigate the carbon oxidation process by observing the thinning of the carbon layer on Pt nanoparticles from TEM observations. Undoubtedly, this finding can better guide the structural design of the durable metal catalysts for PEMFCs and other applications. PMID:26788962

  6. Simultaneous Electrochemical Reduction and Delamination of Graphene Oxide Films.

    PubMed

    Wang, Xiaohan; Kholmanov, Iskandar; Chou, Harry; Ruoff, Rodney S

    2015-09-22

    Here we report an electrochemical method to simultaneously reduce and delaminate graphene oxide (G-O) thin films deposited on metal (Al and Au) substrates. During the electrochemical reaction, interface charge transfer between the G-O thin film and the electrode surface was found to be important in eliminating oxygen-containing groups, yielding highly reduced graphene oxide (rG-O). In the meantime, hydrogen bubbles were electrochemically generated at the rG-O film/electrode interface, propagating the film delamination. Unlike other metal-based G-O reduction methods, the metal used here was either not etched at all (for Au) or etched a small amount (for Al), thus making it possible to reuse the substrate and lower production costs. The delaminated rG-O film exhibits a thickness-dependent degree of reduction: greater reduction is achieved in thinner films. The thin rG-O films having an optical transmittance of 90% (? = 550 nm) had a sheet resistance of 6390 447 ?/? (ohms per square). rG-O-based stretchable transparent conducting films were also demonstrated. PMID:26257072

  7. Electrochemical & Thermochemical Behavior of Cerium(IV) Oxide delta

    NASA Astrophysics Data System (ADS)

    Chueh, William C.

    The mixed-valent nature of nonstoichiometric ceria (CeO2-delta ) gives rise to a wide range of intriguing properties, such as mixed ionic and electronic conduction and oxygen storage. Surface and transport behavior in rare-earth (samaria) doped and undoped ceria were investigated, with particular emphasis on applications in electrochemical and thermochemical energy conversion processes such as fuel cells and solar fuel production. The electrochemical responses of bulk-processed ceria with porous Pt and Au electrodes were analyzed using 1-D and 2-D transport models to decouple surface reactions, near-surface transport and bulk transport. Combined experimental and numerical results indicate that hydrogen electro-oxidation and hydrolysis near open-circuit conditions occur preferentially over the ceria | gas interface rather than over the ceria | gas | metal interface, with the rate-limiting step likely to be either surface reaction or transport through the surface oxygen vacancy depletion layer. In addition, epitaxial thin films of ceria were grown on zirconia substrates using pulsed-laser deposition to examine electrocatalysis over well-defined microstructures. Physical models were derived to analyze the electrochemical impedance response. By varying the film thickness, interfacial and chemical capacitance were decoupled, with the latter shown to be proportional to the small polaron densities. The geometry of microfabricated metal current collectors (metal = Pt, Ni) was also systematically varied to investigate the relative activity of the ceria | gas and the ceria | metal | gas interfaces. The data suggests that the electrochemical activity of the metal-ceria composite is only weakly dependent on the metal due to the relatively high activity of the ceria | gas interface. In addition to electrochemical experiments, thermochemical reduction-oxidation studies were performed on ceria. It was shown that thermally-reduced ceria, upon exposure to H 2O and/or CO2, can be reoxidized to form H2, CO, and/or CH4. Analysis of gas evolution rates confirms that the kinetics of ceria oxidation by H2O and CO2 are dominated by surface reactions, rather than by ambipolar oxygen diffusion. Temperature-programmed oxidation experiments revealed that, even under thermodynamically favored conditions, carbonaceous species do not form on the surface of neat ceria, thereby giving a high CO selectivity when dissociating CO2. A scaled-up ceria-based solar reactor was designed and tested to demonstrate the feasibility of solar fuel production via thermochemical cycling.

  8. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Riley, Brian; Szreders, Bernard E.

    1988-04-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approx. 1100 to 1300 C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20 and 50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  9. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Brian, Riley (Willimantic, CT); Szreders, Bernard E. (Oakdale, CT)

    1989-01-01

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (approximately 1100.degree.-1300.degree. C.) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20-50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  10. Fabrication of solid oxide fuel cell by electrochemical vapor deposition

    DOEpatents

    Riley, B.; Szreders, B.E.

    1988-04-26

    In a high temperature solid oxide fuel cell (SOFC), the deposition of an impervious high density thin layer of electrically conductive interconnector material, such as magnesium doped lanthanum chromite, and of an electrolyte material, such as yttria stabilized zirconia, onto a porous support/air electrode substrate surface is carried out at high temperatures (/approximately/1100/degree/ /minus/ 1300/degree/C) by a process of electrochemical vapor deposition. In this process, the mixed chlorides of the specific metals involved react in the gaseous state with water vapor resulting in the deposit of an impervious thin oxide layer on the support tube/air electrode substrate of between 20--50 microns in thickness. An internal heater, such as a heat pipe, is placed within the support tube/air electrode substrate and induces a uniform temperature profile therein so as to afford precise and uniform oxide deposition kinetics in an arrangement which is particularly adapted for large scale, commercial fabrication of SOFCs.

  11. The electrochemical oxidation of organic selenides and selenoxides

    SciTech Connect

    Ryan, M.D.; Yau, J.; Hack, M.

    1997-06-01

    The electrochemical oxidation of alkyl and aryl selenides was investigated in acetonitrile. The oxidation of diphenyl selenide and di(4-methylphenyl) selenide led primarily to the formation of their respective selenoxides, which were identified by exhaustive coulometric oxidation and {sup 1}H and {sup 13}C analysis of the products. The selenoxide itself was not observed in the cyclic voltammetry of the selenide for two reasons: first, the protonation of the selenoxide by the acid formed from the reaction of water with the cation radical and second, the formation of a selenoxide hydrate. The formation of the hydrate with diphenyl selenoxide was verified by isolation of the dimethoxy derivative. In addition to the selenoxide, selenonium compounds, formed by the coupling of the oxidized material, were also observed. The alkyl selenides were generally oxidized at a lower potential than the aryl selenides. This trend is different from the sulfur analogues, where the aryl sulfides are easier to oxidize than their alkyl counterparts. As a result, the difference in their redox potentials is relatively small. These differences may occur because the oxidation of aryl sulfides is more likely to take place on the aromatic ring, which leads to a greater yield of the coupled products (about 100%) when compared to the selenide analogue.

  12. Treatment of landfill leachate by electrochemical oxidation and anaerobic process.

    PubMed

    Li, Tinggang; Li, Xiufen; Chen, Jian; Zhang, Guoping; Wang, Hongchun

    2007-05-01

    The removal performance of typical refractory organic compounds in landfill leachate was investigated during the electrochemical (EC) oxidation and anaerobic process combined treatment system in this paper. The results indicated that the treatment of landfill leachate by the combined system was highly effective. The toxicity of leachate was notably decreased after the electrochemical oxidation process and the biodegradability was improved. The concentration of the organic acid with low molecular weight in the leachate increased from 28% to 90% based on the biodegradability assays after the EC oxidation process. The anaerobic digestion could further remove the residual organic compounds. At a hydraulic retention time (HRT) of 16 hours and an organic loading rate (OLR) of 8 kg COD/m3 d, the concentration of COD, SS, ALK, VA, N-TKN, N-NH4+ and P-PO4(3)- [corrected] in UASB effluent were 532, 12, 6744, 400, 540, 455 and 11.6 mg/L, respectively, with approximately 90% removal efficiency of COD. The organic compounds in the landfill leachate revealed different degradation characteristics in the combined system. p-chloroaniline, bisphenol A, 6-methyl-2-phenyl-quinoline, dimethylnaphthaline and N'-(2-methyl-4-chlorophenyl)-N-cyclohexyformamidine, classified into the first group in this paper, were completely removed by the EC oxidation and did not reappear in the effluent of the UASB reactor. Phenylacetic acid, 3-methyl-indole and N-cyclohexyl-acetamide, called the second group, were completely removed, but reappeared in the UASB reactor. 4-methyl-phenol, 3,4-dihydroisoquinoline, 2(3H)-benzothiazolone, exo-2-hydroxycineole and benzothiazole, the third group, were degraded little in the EC oxidation process, but extensively removed by the anaerobic process. Benzoic acid, benzenepropanoic acid and 2-cyano-3,5-dimethyl-1-hydroxypyrrole, the fourth group, concentration obviously increased in the EC process, but was completely removed in the UASB reactor. The content of volatile fatty acids (VFAs) markedly increased from 0.68% in the leachate to 16.18% in the effluent from the electrochemical oxidation process (EC(effl)). In addition, the degradation rate of organic compounds from the landfill leachate was different in the EC oxidation and anaerobic process. PMID:17571841

  13. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  14. Platinum Electrodeposition at Unsupported Electrochemically Reduced Nanographene Oxide for Enhanced Ammonia Oxidation

    PubMed Central

    2015-01-01

    The electrochemical reduction of highly oxidized unsupported graphene oxide nanosheets and its platinum electrodeposition was done by the rotating disk slurry electrode technique. Avoiding the use of a solid electrode, graphene oxide was electrochemically reduced in a slurry solution with a scalable process without the use of a reducing agent. Graphene oxide nanosheets were synthesized from carbon platelet nanofibers to obtain highly hydrophilic layers of less than 250 nm in width. The graphene oxide and electrochemically reduced graphene oxide/Pt (erGOx/Pt) hybrid materials were characterized through different spectroscopy and microscopy techniques. Pt nanoparticles with 100 facets, clusters, and atoms at erGOx were identified by high resolution transmission electron microscopy (HRTEM). Cyclic voltammetry was used to characterize the electrocatalytic activity of the highly dispersed erGOx/Pt hybrid material toward the oxidation of ammonia, which showed a 5-fold current density increase when compared with commercially available Vulcan/Pt 20%. This is in agreement with having Pt (100) facets present in the HRTEM images of the erGOx/Pt material. PMID:24417177

  15. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation.

    PubMed

    Huang, Jianfei; Zhao, Shunan; Chen, Wei; Zhou, Ying; Yang, Xiaoling; Zhu, Yihua; Li, Chunzhong

    2016-03-21

    This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications. PMID:26580842

  16. Electrochemical test methods for advanced battery and semiconductor technology

    NASA Astrophysics Data System (ADS)

    Hsu, Chao-Hung

    This dissertation consists of two studies. The first study was the evaluation of metallic materials for advanced lithium ion batteries and the second study was the determination of the dielectric constant k for the low-k materials. The advanced lithium ion battery is miniature for implantable medical devices and capable of being recharged from outside of the body using magnetic induction without physical connections. The stability of metallic materials employed in the lithium ion battery is one of the major safety concerns. Three types of materials---Pt-Ir alloy, Ti alloys, and stainless steels---were evaluated extensively in this study. The electrochemical characteristics of Pt-Ir alloy, Ti alloys, and stainless steels were evaluated in several types of battery electrolytes in order to determine the candidate materials for long-term use in lithium ion batteries. The dissolution behavior of these materials and the decomposition behavior of the battery electrolyte were investigated using the anodic potentiodynamic polarization (APP) technique. Lifetime prediction for metal dissolution was conducted using constant potential polarization (CPP) technique. The electrochemical impedance spectroscopy (EIS) technique was employed to investigate the metal dissolution behavior or the battery electrolyte decomposition at the open circuit potential (OCP). The scanning electron microscope (SEM) was used to observe the morphology changes after these tests. The effects of experimental factors on the corrosion behaviors of the metallic materials and stabilities of the battery electrolytes were also investigated using the 23 factorial design approach. Integration of materials having low dielectric constant k as interlayer dielectrics and/or low-resistivity conductors will partially solve the RC delay problem for the limiting performance of high-speed logic chips. The samples of JSR LKD 5109 material capped by several materials were evaluated by using EIS. The feasibility of using EIS to determine the dielectric constant k of the low-k materials was also evaluated in this study. The test results demonstrated that the EIS technique is a powerful method in the study of low-k materials.

  17. Functionalizing Aluminum Oxide by Ag Dendrite Deposition at the Anode during Simultaneous Electrochemical Oxidation of Al.

    PubMed

    Rafailovi?, Lidija D; Gammer, Christoph; Rentenberger, Christian; Triovi?, Tomislav; Kleber, Christoph; Karnthaler, Hans Peter

    2015-11-01

    A novel synthesis strategy is presented for depositing metallic Ag at the anode during simultaneous electrochemical oxidation of Al. This unexpected result is achieved based on galvanic coupling. Metallic dendritic nanostructures well-anchored in a high surface area supporting matrix are envisioned to open up a new avenue of applications. PMID:26398487

  18. Three-dimensionally grown thorn-like Cu nanowire arrays by fully electrochemical nanoengineering for highly enhanced hydrazine oxidation

    NASA Astrophysics Data System (ADS)

    Huang, Jianfei; Zhao, Shunan; Chen, Wei; Zhou, Ying; Yang, Xiaoling; Zhu, Yihua; Li, Chunzhong

    2016-03-01

    This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications.This communication reports fully electrochemical nanoengineering toward three-dimensionally grown thorn-like Cu nanowire arrays (CNWAs) as a highly efficient and durable electrocatalyst for hydrazine oxidation. Characterized by substantial negative shifting of the onset potential and an enlarged catalytic current density, the CNWAs afforded greatly enhanced hydrazine oxidation activity, even transcending that of the Pt/C catalyst at a higher reaction rate. The parameters of the electrochemical engineering and metallization methods were found to be essentially influential on the microstructure, and thus the electrocatalytic activity of the CNWAs. The present work typifies a flexible and expandible route toward integrated electrodes of metallic 1D nanostructures which are of interest in advancing the performance of cutting-edge electrochemical applications. Electronic supplementary information (ESI) available: Experimental details, additional figures and table. See DOI: 10.1039/c5nr06512g

  19. Mediated Electrochemical Oxidation (MEO) based technology. Final report

    SciTech Connect

    1996-07-18

    The goal of this CRADA was the continued research and development by LLNL, and the commercialization by EOSystems, Inc., of the waste treatment technology known as Mediated Electrochemical Oxidation. MEO is a non-thermal electrochemical technology developed in part at LLNL for the destruction of organic waste streams; this technology has wide applications in the government, manufacturing, biomedical and industrial sectors. The system uses an electrochemical cell to generate highly oxidizing {open_quote}mediators{close_quote} in an acidic aqueous solution, which subsequently react with organic waste and convert it to carbon dioxide and water. The broad research responsibilities of LLNL in this CRADA were the investigation of numerous cell electrode materials and materials of construction, the evaluation of the process chemistry, and the testing of a flow visualization cell and a functional prototype. Major deliverables included: a determination of suitable electrode materials, an investigation of the destruction efficiency for numerous organic substrates, the construction and testing of a flow visualization cell, and the testing of a functional prototype commercial cell. The responsibilities of EOSystems included the definition of the market and potential customers, the design and engineering of the flow visualization and prototype cells, and the commercialization of the MEO units. Deliverables included the selection of the process and ancillary systems, the design of a flow visualization cell, and the design and construction of a prototype cell. In general, most of the deliverables were met by both partners, although unexpected technical difficulties delayed some of the delivery dates and forced the adoption of a modified statement of work. However, the primary, original project goals were completed on-time and on-budget.

  20. Selective Electrochemical Generation of Hydrogen Peroxide from Water Oxidation.

    PubMed

    Viswanathan, Venkatasubramanian; Hansen, Heine A; Nrskov, Jens K

    2015-11-01

    Water is a life-giving source, fundamental to human existence, yet over a billion people lack access to clean drinking water. The present techniques for water treatment such as piped, treated water rely on time and resource intensive centralized solutions. In this work, we propose a decentralized device concept that can utilize sunlight to split water into hydrogen and hydrogen peroxide. The hydrogen peroxide can oxidize organics while the hydrogen bubbles out. In enabling this device, we require an electrocatalyst that can oxidize water while suppressing the thermodynamically favored oxygen evolution and form hydrogen peroxide. Using density functional theory calculations, we show that the free energy of adsorbed OH* can be used to determine selectivity trends between the 2e(-) water oxidation to H2O2 and the 4e(-) oxidation to O2. We show that materials which bind oxygen intermediates sufficiently weakly, such as SnO2, can activate hydrogen peroxide evolution. We present a rational design principle for the selectivity in electrochemical water oxidation and identify new material candidates that could perform H2O2 evolution selectively. PMID:26538037

  1. Electrochemical formation of a composite polymer-aluminum oxide film

    NASA Astrophysics Data System (ADS)

    Runge-Marchese, Jude Mary

    1997-10-01

    The formation of polymer films through electrochemical techniques utilizing electrolytes which include conductive polymer is of great interest to the coatings and electronics industries as a means for creating electrically conductive and corrosion resistant finishes. One of these polymers, polyamino-benzene (polyaniline), has been studied for this purpose for over ten years. This material undergoes an insulator-to-metal transition upon doping with protonic acids in an acid/base type reaction. Review of prior studies dealing with polyaniline and working knowledge of aluminum anodization has led to the development of a unique process whereby composite polymer-aluminum oxide films are formed. The basis for the process is a modification of the anodizing electrolyte which results in the codeposition of polyaniline during aluminum anodization. A second process, which incorporates electrochemical sealing of the anodic layer with polyaniline was also developed. The formation of these composite films is documented through experimental processing, and characterized by way of scientific analysis and engineering tests. Analysis results revealed the formation of unique dual phase anodic films with fine microstructures which exhibited full intrusion of the columnar aluminum oxide structure with polyaniline, indicating the polymer was deposited as the metal oxidation proceeded. An aromatic amine derivative of polyaniline with aluminum sulfate was determined to be the reaction product within the aluminum oxide phase of the codeposited films. Scientific characterization determined the codeposition process yields completely chemically and metallurgically bound composite films. Engineering studies determined the films, obtained through a single step, exhibited superior wear and corrosion resistance to conventionally anodized and sealed films processed through two steps, demonstrating the increased manufacturing process efficiency that can be realized with the modification of the conventional anodization process.

  2. Current status of environmental, health, and safety issues of electrochemical capacitors for advanced vehicle applications

    SciTech Connect

    Vimmerstedt, L.J.; Hammel, C.J.

    1997-04-01

    Electrochemical capacitors are a candidate for traction power assists in hybrid electric vehicles (HEVs). Other advanced automotive applications, while not the primary focus of current development efforts, are also possible. These include load leveling high-energy batteries, power conditioning electronics, electrically hated catalysts, electric power steering, and engine starter power. Higher power and longer cycle life are expected for electrochemical capacitors than for batteries. Evaluation of environmental, health, and safety (EH and S) issues of electrochemical capacitors is an essential part of the development and commercialization of electrochemical capacitors for advanced vehicles. This report provides an initial EH and S assessment. This report presents electrochemical capacitor electrochemistry, materials selection, intrinsic material hazards, mitigation of those hazards, environmental requirements, pollution control options, and shipping requirements. Most of the information available for this assessment pertains to commercial devices intended for application outside the advanced vehicle market and to experiment or prototype devices. Electrochemical capacitors for power assists in HEVs are not produced commercially now. Therefore, materials for advanced vehicle electrochemical capacitors may change, and so would the corresponding EH and S issues. Although changes are possible, this report describes issues for likely electrochemical capacitor designs.

  3. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system.

    PubMed

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron-hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  4. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    NASA Astrophysics Data System (ADS)

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-05-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electron-hole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems.

  5. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system

    PubMed Central

    Qi, Xiujuan; Wang, Ting; Long, Yujiao; Ni, Jinren

    2015-01-01

    A 100% increment of antibacterial ability has been achieved due to significant synergic effects of boron-doped diamond (BDD) anode and reduced graphene oxide (rGO) coupled in a three dimensional electrochemical oxidation system. The rGO, greatly enhanced by BDD driven electric field, demonstrated strong antibacterial ability and even sustained its excellent performance during a reasonable period after complete power cut in the BDD-rGO system. Cell damage experiments and TEM observation confirmed much stronger membrane stress in the BDD-rGO system, due to the faster bacterial migration and charge transfer by the expanded electro field and current-carrying efficiency by quantum tunnel. Reciprocally the hydroxyl-radical production was eminently promoted with expanded area of electrodes and delayed recombination of the electronhole pairs in presence of the rGO in the system. This implied a huge potential for practical disinfection with integration of the promising rGO and the advanced electrochemical oxidation systems. PMID:25994309

  6. Size-dependent electrochemical oxidation of silver nanoparticles.

    PubMed

    Ivanova, Olga S; Zamborini, Francis P

    2010-01-13

    Here we quantify the electrochemical oxidation of Ag nanoparticles (NPs) as a function of size by electrostatically attaching Ag NPs synthesized by seed-mediated growth in the presence of citrate (diameter = 8 to 50 nm) to amine-functionalized indium-tin oxide coated glass electrodes (Glass/ITO), obtaining a linear sweep voltammogram from 0.1 V, where Ag(0) is stable, up to 1.0 V, and observing the peak potential (E(p)) for oxidation of Ag(0) to Ag(+). Electrostatic attachment to the organic linker presumably removes direct interactions between Ag and ITO and allows control over the total Ag coverage by altering the soaking time. This is important as both metal-electrode interactions and overall Ag coverage can affect E(p). E(p) shifts positive from an average of 275 to 382 mV as the Ag NP diameter increases for a constant Ag coverage and under conditions of planar diffusion, suggesting a shift in E(p) due to a thermodynamic shift in E(0) for the Ag/Ag(+) redox couple with size. The negative shift in E(p) with decreasing Ag NP radius follows the general trend predicted by theory and agrees with previous qualitative experimental observations. A better understanding of metal nanostructure oxidation is crucial considering their potential use in many different applications and the importance of metal corrosion processes at the nanoscale. PMID:20000318

  7. Oxidation of advanced steam turbine alloys

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.

    2006-03-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  8. Physical and electrochemical study of cobalt oxide nano- and microparticles

    SciTech Connect

    Alburquenque, D.; Vargas, E.; Denardin, J.C.; Escrig, J.; Marco, J.F.; Gautier, J.L.

    2014-07-01

    Cobalt oxide nanocrystals of size 17–21 nm were synthesized by a simple reaction between cobalt acetate (II) and dodecylamine. On the other hand, micrometric Co{sub 3}O{sub 4} was prepared using the ceramic method. The structural examination of these materials was performed using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM and HRTEM). XRD studies showed that the oxides were pure, well-crystallized, spinel cubic phases with a-cell parameter of 0.8049 nm and 0.8069 nm for the nano and micro-oxide, respectively. The average particle size was 19 nm (nano-oxide) and 1250 μm (micro-oxide). Morphological studies carried out by SEM and TEM analyses have shown the presence of octahedral particles in both cases. Bulk and surface properties investigated by X-ray photoelectron spectroscopy (XPS), point zero charge (pzc), FTIR and cyclic voltammetry indicated that there were no significant differences in the composition on both materials. The magnetic behavior of the samples was determined using a vibrating sample magnetometer. The compounds showed paramagnetic character and no coercivity and remanence in all cases. Galvanostatic measurements of electrodes formed with nanocrystals showed better performance than those built with micrometric particles. - Highlights: • Spinel Co{sub 3}O{sub 4} nanoparticles and microparticles with same structure but with different cell parameters, particle size and surface area were synthesized. • Oxide nanoparticles showed better electrochemical behavior than micrometric ones due to area effect.

  9. Electrochemical oxidation of carbon fibers: Properties, surface chemistry and morphology

    NASA Astrophysics Data System (ADS)

    Jiang, Wenbo

    1999-10-01

    A series of PAN-based T300 carbon fibers was continuously, electrochemically oxidized in aqueous and organic media. A 30% fiber weight loss was obtained at an extent of oxidation of 10,600 C/g. Acidic functional groups were produced on fiber surfaces in amounts from 0 to 2640 mumol/g as the extent of oxidation increased from 0 to 10600 C/g. These surface functions were further reacted with diethylenetriamine to introduce amine functions onto fibers. The oxidation extended far deeper than the XPS detection limit (<100 A). N 2 BET at 77K gave very low fiber specific surface area in contrast to CO2 DR measurements at 273 K which confirmed large increases in surface area with oxidation. No heavy damage or macro-/mesopores were found in scanning electron micrographs. An ultramicropore structure was characterized by the CO2 DR method combined with nonlocal density functional theory. The average pore diameter was about 1.2 nm with a dominant pore diameter of 0.4 nm. CCl4, methylene blue, I2, AgNO3, and Ni(NO3)2 adsorption studies were performed. A pH-dependent swelling model was discussed. In basic media, a solvation/swelling process allows small molecules to penetrate the microporous channels and react with fiber functional groups. A remote site silver reduction/adsorption model was confirmed based upon high AgNO3 adsorption and qualitative experiments. Single filament breaking and fragmentation tests and fiber/epoxy composite mechanical tests were conducted. Fiber/epoxy matrix adhesion was improved by oxidation although the fiber tensile strength decreased. Post-heat treatment causes further weight loss and the loss of oxygen-containing surface functional groups.

  10. Electrochemical oxidation and reuse of tannery saline wastewater.

    PubMed

    Sundarapandiyan, S; Chandrasekar, R; Ramanaiah, B; Krishnan, S; Saravanan, P

    2010-08-15

    In this present work, electrochemical treatment of saline wastewater with organic (protein) load was studied. The influence of the critical parameters of electro-oxidation such as pH, period, salt concentration and current density on the reduction of organic load was studied using graphite electrodes. It was found that current density of 0.024 A/cm(2) for a period of 2 h at pH 9.0 rendered best results in terms of reduction in COD and TKN. The energy requirement for the reduction of 1 kg of TKN and 1 kg of COD are 22.45 kWh and 0.80 kWh respectively at pH 9 and 0.024 A/cm(2). Reuse experiments were conducted at commercial scale. One of the saline waste streams in leather manufacturing process, pickling was treated and reused continuously thrice. The characteristics of the waste stream and the quality of the leathers indicate that the reuse of saline streams with intermittent electrochemical treatment is feasible. PMID:20435417

  11. Bismuth oxide coated amorphous manganese dioxide for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Zhang, Linsen; Dong, Huichao; Xia, Tongchi; Huang, Zhigang

    2015-05-01

    With MnSO4, NaOH and K2S2O8 as the raw materials, the amorphous and ?-type manganese dioxide (MnO2) is separately prepared by using different chemical precipitation-oxidation methods. The results of charge-discharge and electrochemical impedance spectroscopy (EIS) tests show that (i) the specific capacitance of the amorphous MnO2 reaches to 301.2 F g-1 at a current density of 200 mA g-1 and its capacitance retention rate after 2000 cycles is 97%, which is obviously higher than 250.8 F g-1 and 71% of the ?-type one, respectively; (ii) good electrochemical capacitance properties of the amorphous MnO2 should be contributed to easy insertion/extraction of ions within the material; (iii) when 5 wt% Bi2O3 is coated on the amorphous MnO2, its specific capacitance increases to 352.8 F g-1 and the capacitance retention rate is 90% after 2000 cycles.

  12. Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Pathania, Deepak; Katwal, Rishu; Kaur, Harpreet

    2016-03-01

    In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reaction parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investigated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: adsorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation efficiency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation.

  13. Synthesis and electrochemical properties of lithium molybdenum oxides

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hironori; Tabuchi, Mitsuharu; Shikano, Masahiro; Yasuo Nishimura; Kageyama, Hiroyuki; Ishida, Tadashi; Nakamura, Hideo; Kurioka, Yutaka; Kanno, Ryoji

    Layered oxides Li 2MoO 3 were synthesized at 923 K (sample A), 1023 K (sample B), and 1073 K (sample C) and characterized by X-ray diffractometry, magnetic and electrochemical measurements. All Li 2MoO 3 showed rhombohedral symmetry with an ?-NaFeO 2-related structure and paramagnetic behavior down to 83 K. Lithium deintercalation from samples B and C proceeded to x=1.2 in Li 2- xMoO 3. The Li/Li 2MoO 3 (samples B and C) cells showed cycling capacities of 150 mAh/g in the voltage range of 1.5-4.3 V after 10 cycles. Samples B and C showed better cycle reversibility than sample A. The different charge and discharge characteristics between samples A-C might be caused by structural differences which were indicated by X-ray diffraction measurements.

  14. Spectroscopic And Electrochemical Studies Of Electrochromic Hydrated Nickel Oxide Films

    NASA Astrophysics Data System (ADS)

    Yu, P. C.; Nazri, G.; Lampert, C. M.

    1986-09-01

    The electrochrcrnic properties of hydrated nickel oxide thin films electrochemically deposited by anodization onto doped tin oxide-coated glass have been studied by transmittance measurements, cyclic voltammetry, Fourier-transform infrared spectroscopy, and ion-backscattering spectrometry. The spectral transmittance is reported for films switched in both the bleached and colored states. The photopic transmittance (Tp) can be switched from T (bleached) = 0.77 to T (colored) = 0.21, and the solar transmittance (Ts) can be switched from Ts(bleached) = 0.73 to TS (colored) = 0.35. Also reported is the near-infrared transmittance (TNIR)which was found to switch fran T N,IR (bleached) = 0.72 to TNIR (colored) = 0.55. The bleached condition is noted to have very low solar absorption in both the visible and solar regions. Ion-backscattering spectrometry was performed on the hydrated nickel oxide film, yielding a camposition of Ni01.0 (dehydrated) and a film thickness of 125 A. Cyclic voltammetry showed that, for films in the bleached or colored state, the reversible reaction is Ni(0H), = NiOOH + H+ + e . Voltammnetry also showed that the switching of the film is controlled by the diffusion or protons, where OH plays a role in the reaction mechanism. Analysis of the hydrated nickel-oxide thin films by Fourier-transform infrared spectroscopy revealed that both the bleached and colored states contain lattice water and hydroxyl groups. The surface hydroxyl groups play an important role in the coloration and bleaching of the anodically deposited nickel oxide thin films.

  15. Vanadium oxides nanostructures: Hydrothermal synthesis and electrochemical properties

    SciTech Connect

    Mjejri, I.; Etteyeb, N.; Sediri, F.

    2014-12-15

    Highlights: Vanadium oxides nanostructures were synthesized hydrothermally. Reversible redox behavior with doping/dedoping process. Doping/dedoping is easier for Li{sup +} to Na{sup +}. Energy-related applications such as cathodes in lithium batteries. - Abstract: A facile and template-free one-pot strategy is applied to synthesize nanostructured vanadium oxide particles via a hydrothermal methodology. X-ray diffraction (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) have been used to characterize the structure and morphology of the samples. The products are gradually changed from sheet-shaped VO{sub 2}(B) to rod-like V{sub 3}O{sub 7}H{sub 2}O with decreasing cyclohexanediol as both protective and reducing agent. The specific surface area of the VO{sub 2}(B) nanosheets and V{sub 3}O{sub 7}H{sub 2}O nanorods was found to be 22 and 16 m{sup 2} g{sup ?1}, respectively. Thin films of VO{sub 2}(B) and V{sub 3}O{sub 7}H{sub 2}O deposited on ITO substrates were electrochemically characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The voltammograms show reversible redox behavior with doping/dedoping process corresponding to reversible cation intercalation/de-intercalation into the crystal lattice of the nanorods/nanosheets. This process is easier for the small Li{sup +} cation than larger ones Na{sup +}.

  16. A reduced graphene oxide based electrochemical biosensor for tyrosine detection

    NASA Astrophysics Data System (ADS)

    Wei, Junhua; Qiu, Jingjing; Li, Li; Ren, Liqiang; Zhang, Xianwen; Chaudhuri, Jharna; Wang, Shiren

    2012-08-01

    In this paper, a green and safe hydrothermal method has been used to reduce graphene oxide and produce hemin modified graphene nanosheet (HGN) based electrochemical biosensors for the determination of l-tyrosine levels. The as-fabricated HGN biosensors were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FTIR) spectra and thermogravimetric analysis (TGA). The experimental results indicated that hemin was successfully immobilized on the reduced graphene oxide nanosheet (rGO) through ?-? interaction. TEM images and EDX results further confirmed the attachment of hemin on the rGO nanosheet. Cyclic voltammetry tests were carried out for the bare glass carbon electrode (GCE), the rGO electrode (rGO/GCE), and the hemin-rGO electrode (HGN/GCE). The HGN/GCE based biosensor exhibits a tyrosine detection linear range from 5 10-7 M to 2 10-5 M with a detection limitation of 7.5 10-8 M at a signal-to-noise ratio of 3. The sensitivity of this biosensor is 133 times higher than that of the bare GCE. In comparison with other works, electroactive biosensors are easily fabricated, easily controlled and cost-effective. Moreover, the hemin-rGO based biosensors demonstrate higher stability, a broader detection linear range and better detection sensitivity. Study of the oxidation scheme reveals that the rGO enhances the electron transfer between the electrode and the hemin, and the existence of hemin groups effectively electrocatalyzes the oxidation of tyrosine. This study contributes to a widespread clinical application of nanomaterial based biosensor devices with a broader detection linear range, improved stability, enhanced sensitivity and reduced costs.

  17. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Cramer, Stephen D.; Ziomek-Moroz, M.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy’s Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760°C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  18. Oxidation of alloys for advanced steam turbines

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Bullard, Sophie J.; Ziomek-Moroz, M.; Alman, David E.

    2005-01-01

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of advanced alloys for use in USC systems, with emphasis placed on alloys for high- and intermediate-pressure turbine sections.

  19. Electrochemical Water Oxidation of Ultrathin Cobalt Oxide-Based Catalyst Supported onto Aligned ZnO Nanorods.

    PubMed

    Koteeswara Reddy, Nandanapalli; Winkler, Stefanie; Koch, Norbert; Pinna, Nicola

    2016-02-10

    A stable and durable electrochemical water oxidation catalyst based on CoO functionalized ZnO nanorods (NRs) is introduced. ZnO NRs were grown on fluorine-doped tin oxide (FTO) by using a low-temperature chemical solution method and were functionalized with cobalt oxide by electrochemical deposition. The electrochemical water oxidation performance of cobalt oxide functionalized ZnO NRs was studied under alkaline (pH = 10) conditions. From these studies, it is noticed that cobalt oxide functionalized ZnO NRs show electrocatalytic activity toward water oxidation with current density on the order of several mA cm(-2). Further, 30 s CoO deposited ZnO nanorods exhibited excellent galvanostatic stability at a current density of 1 mA cm(-2) and potentiostatic stability at 1.25 V vs Ag/AgCl over an electrolysis period of 1 h. PMID:26784675

  20. Electrochemically Reduced Water Protects Neural Cells from Oxidative Damage

    PubMed Central

    Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  1. Electrochemically reduced water protects neural cells from oxidative damage.

    PubMed

    Kashiwagi, Taichi; Yan, Hanxu; Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru; Shirahata, Sanetaka

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50-200??M) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200??M H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca(2+) influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  2. Electrochemical, H2O2-Boosted Catalytic Oxidation System

    NASA Technical Reports Server (NTRS)

    Akse, James R.; Thompson, John O.; Schussel, Leonard J.

    2004-01-01

    An improved water-sterilizing aqueous-phase catalytic oxidation system (APCOS) is based partly on the electrochemical generation of hydrogen peroxide (H2O2). This H2O2-boosted system offers significant improvements over prior dissolved-oxygen water-sterilizing systems in the way in which it increases oxidation capabilities, supplies H2O2 when needed, reduces the total organic carbon (TOC) content of treated water to a low level, consumes less energy than prior systems do, reduces the risk of contamination, and costs less to operate. This system was developed as a variant of part of an improved waste-management subsystem of the life-support system of a spacecraft. Going beyond its original intended purpose, it offers the advantage of being able to produce H2O2 on demand for surface sterilization and/or decontamination: this is a major advantage inasmuch as the benign byproducts of this H2O2 system, unlike those of systems that utilize other chemical sterilants, place no additional burden of containment control on other spacecraft air- or water-reclamation systems.

  3. HANDBOOK ON ADVANCED NONPHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    The purpose of this handbook is to summarize commercial-scale system performance and cost data for advanced nonphotochemical oxidation (ANPO) treatment of contaminated water, air, and soil. Similar information from pilot-and bench-scale evaluations of ANPO processes is also inclu...

  4. HANDBOOK ON ADVANCED PHOTOCHEMICAL OXIDATION PROCESSES

    EPA Science Inventory

    This handbook summarizes commercial-scale system performance and cost data for advanced photochemical oxidation (APO) treatment of contaminated water, air, and solids. Similar information from pilot- and bench-scale evaluations of APO processes is also included to supplement the...

  5. Demonstration of Electrochemical Cell Properties by a Simple, Colorful Oxidation-reduction Experiment.

    ERIC Educational Resources Information Center

    Hendricks, Lloyd J.; And Others

    1982-01-01

    Describes apparatus/methodology and provides background information for an experiment demonstrating electrochemical concepts and properties of electrochemical cells. The color of a solution close to an electrode is changed from that of the bulk solution to either of two contrasting colors depending on whether the reaction is oxidation or

  6. Recent advances in electrochemical biosensors based on graphene two-dimensional nanomaterials.

    PubMed

    Song, Yang; Luo, Yanan; Zhu, Chengzhou; Li, He; Du, Dan; Lin, Yuehe

    2016-02-15

    Graphene as a star among two-dimensional nanomaterials has attracted tremendous research interest in the field of electrochemistry due to their intrinsic properties, including the electronic, optical, and mechanical properties associated with their planar structure. The marriage of graphene and electrochemical biosensors has created many ingenious biosensing strategies for applications in the areas of clinical diagnosis and food safety. This review provides a comprehensive overview of the recent advances in the development of graphene based electrochemical biosensors. Special attention is paid to graphene-based enzyme biosensors, immunosensors, and DNA biosensors. Future perspectives on high-performance graphene-based electrochemical biosensors are also discussed. PMID:26187396

  7. Eliminating degradation in solid oxide electrochemical cells by reversible operation

    NASA Astrophysics Data System (ADS)

    Graves, Christopher; Ebbesen, Sune Dalgaard; Jensen, Søren Højgaard; Simonsen, Søren Bredmose; Mogensen, Mogens Bjerg

    2015-02-01

    One promising energy storage technology is the solid oxide electrochemical cell (SOC), which can both store electricity as chemical fuels (electrolysis mode) and convert fuels to electricity (fuel-cell mode). The widespread use of SOCs has been hindered by insufficient long-term stability, in particular at high current densities. Here we demonstrate that severe electrolysis-induced degradation, which was previously believed to be irreversible, can be completely eliminated by reversibly cycling between electrolysis and fuel-cell modes, similar to a rechargeable battery. Performing steam electrolysis continuously at high current density (1 A cm-2), initially at 1.33 V (97% energy efficiency), led to severe microstructure deterioration near the oxygen-electrode/electrolyte interface and a corresponding large increase in ohmic resistance. After 4,000 h of reversible cycling, however, no microstructural damage was observed and the ohmic resistance even slightly improved. The results demonstrate the viability of applying SOCs for renewable electricity storage at previously unattainable reaction rates, and have implications for our fundamental understanding of degradation mechanisms that are usually assumed to be irreversible.

  8. Electrochemical oxidation of textile industry wastewater by graphite electrodes.

    PubMed

    Bhatnagar, Rajendra; Joshi, Himanshu; Mall, Indra D; Srivastava, Vimal C

    2014-01-01

    In the present article, studies have been performed on the electrochemical (EC) oxidation of actual textile industry wastewater by graphite electrodes. Multi-response optimization of four independent parameters namely initial pH (pHo): 4-10, current density (j): 27.78-138.89 A/m(2), NaCl concentration (w): 0-2g/L and electrolysis time (t): 10-130min have been performed using Box-Behnken (BB) experimental design. It was aimed to simultaneously maximize the chemical oxygen demand (COD) and color removal efficiencies and minimize specific energy consumption using desirability function approach. Pareto analysis of variance (ANOVA) showed a high coefficient of determination value for COD (R(2) = 0.8418), color (R(2) = 0.7010) and specific energy (R(2) = 0.9125) between the experimental values and the predicted values by a second-order regression model. Maximum COD and color removal and minimum specific energy consumed was 90.78%, 96.27% and 23.58 kWh/kg COD removed, respectively, were observed at optimum conditions. The wastewater, sludge and scum obtained after treatment at optimum condition have been characterized by various techniques. UV-visible study showed that all azo bonds of the dyes present in the wastewater were totally broken and most of the aromatic rings were mineralized during EC oxidation with graphite electrode. Carbon balance showed that out of the total carbon eroded from the graphite electrodes, 27-29.2% goes to the scum, 71.1-73.3% goes into the sludge and rest goes to the treated wastewater. Thermogravimetric analysis showed that the generated sludge and scum can be dried and used as a fuel in the boilers/incinerators. PMID:24766597

  9. Facile and controllable electrochemical reduction of graphene oxide and its applications

    SciTech Connect

    Shao, Yuyan; Wang, Jun; Engelhard, Mark H.; Wang, Chong M.; Lin, Yuehe

    2010-01-01

    Graphene oxide is electrochemically reduced which is called electrochemically reduced graphene oxide (ER-G). ER-G is characterized with scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. The oxygen content is significantly decreased and the sp 2 carbon is restored after electrochemical reduction. ER-G exhibits much higher electrochemical capacitance and cycling durability than carbon nanotubes (CNTs) and chemically reduced graphene; the specific capacitance measured with cyclic voltammetry (20 mV/s) is ~165 F/g, ~86 F/g, and ~100 F/g for ER-G, CNTs, and chemically reduced graphene,1 respectively. The electrochemical reduction of oxygen and hydrogen peroxide was greatly enhanced on ER-G electrodes as compared with CNTs. ER-G has shown a good potential for applications in energy storage, biosensors, and electrocatalysis.

  10. Semi-empirical chemical model for indirect advanced oxidation of Acid Orange 7 using an unmodified carbon fabric cathode for H2O2 production in an electrochemical reactor.

    PubMed

    Ramírez, B; Rondán, V; Ortiz-Hernández, L; Silva-Martínez, S; Alvarez-Gallegos, A

    2016-04-15

    A commercial Unidirectional Carbon Fabric piece was used to design an electrode for the cathodic O2 reduction reaction in a divided (by a Nafion(®) 117 membrane) parallel plate reactor. The anode was a commercial stainless steel mesh. Under this approach it is feasible to produce H2O2 at low energy (2.08 kWh kg(-1) H2O2) in low ionic acidic medium. In the catholyte side the H2O2 can be activated with Fe(2+) to develop the Fenton reagent. It was found that Acid Orange 7 (AO7) indirect oxidation (in the concentration range of 0.12-0.24 mM) by Fenton chemistry follows a first order kinetic equation. The energy required for 0.24 mM AO7 degradation is 1.04 kWhm(-3). From each experimental AO7 oxidation the main parameters (a, mM and k, min(-1)) of the first order kinetic equation are obtained. These parameters can be correlated with AO7 concentration in the concentration range studied. Based on this method a semi-empirical chemical model was developed to predict the AO7 abatement, by means of Fenton chemistry. Good AO7 oxidation predictions can be made in the concentration range studied. A detailed discussion of the energy required for oxidizing AO7 and the accuracy of the chemical model to predict its oxidation is included in this paper. PMID:26874037

  11. Advances in Mechanisms of Anti-oxidation

    PubMed Central

    Ma, Qiang

    2016-01-01

    Reactive oxygen species (ROS) are a family of molecules that are continuously produced from oxygen consumption in aerobic cells. Controlled generation of ROS in normal cells serves useful purposes to regulate important cellular processes such as cell proliferation, inflammation, and immune response, but overproduction of ROS causes oxidative stress that contributes to the development of cancer, chronic disease, and aging. These hugely different consequences of ROS exposure demand a carefully balanced control of ROS production and disposition, which is largely achieved through the bodys elaborate antioxidant system. The human antioxidant system consists of small antioxidants, antioxidant proteins, ROS-metabolizing enzymes, as well as many regulator proteins that mediate adaptive responses to oxidant stress. How such a complex system reacts with oxidants and achieves the required specificity and sensitivity for proper anti-oxidation is incompletely understood. In this respect, new advances in the understanding of the chemistry that determines the reaction of a given oxidant or antioxidant with a protein target provide considerable insights into these and related questions. The findings hold certain promise for new drug development for preventing and treating diseases associated with oxidant tissue damage. PMID:24641954

  12. STEP wastewater treatment: a solar thermal electrochemical process for pollutant oxidation.

    PubMed

    Wang, Baohui; Wu, Hongjun; Zhang, Guoxue; Licht, Stuart

    2012-10-01

    A solar thermal electrochemical production (STEP) pathway was established to utilize solar energy to drive useful chemical processes. In this paper, we use experimental chemistry for efficient STEP wastewater treatment, and suggest a theory based on the decreasing stability of organic pollutants (hydrocarbon oxidation potentials) with increasing temperature. Exemplified by the solar thermal electrochemical oxidation of phenol, the fundamental model and experimental system components of this process outline a general method for the oxidation of environmentally stable organic pollutants into carbon dioxide, which is easily removed. Using thermodynamic calculations we show a sharply decreasing phenol oxidation potential with increasing temperature. The experimental results demonstrate that this increased temperature can be supplied by solar thermal heating. In combination this drives electrochemical phenol removal with enhanced oxidation efficiency through (i) a thermodynamically driven decrease in the energy needed to fuel the process and (ii) improved kinetics to sustain high rates of phenol oxidation at low electrochemical overpotential. The STEP wastewater treatment process is synergistic in that it is performed with higher efficiency than either electrochemical or photovoltaic conversion process acting alone. STEP is a green, efficient, safe, and sustainable process for organic wastewater treatment driven solely by solar energy. PMID:22965739

  13. Characterization of internal oxide layers in 3% Si grain-oriented steel by electrochemical methods

    NASA Astrophysics Data System (ADS)

    Toda, H.; Sato, K.; Komatsubara, M.

    1997-12-01

    The structure of internal oxide layers in decarburized sheet was studied using a newly developed electrochemical method. Dissolving potential profiles indicated the amount of fayalite (Fe2SiO4) and silica (SiO2) in the layers. The quantitative data for the contents of fayalite and silica in the internal oxide layers can be easily obtained by this method.

  14. Status of test results of electrochemical organic oxidation of a tank 241-SY-101 simulated waste

    SciTech Connect

    Colby, S.A.

    1994-06-01

    This report presents scoping test results of an electrochemical waste pretreatment process to oxidize organic compounds contained in the Hanford Site`s radioactive waste storage tanks. Electrochemical oxidation was tested on laboratory scale to destroy organics that are thought to pose safety concerns, using a nonradioactive, simulated tank waste. Minimal development work has been applied to alkaline electrochemical organic destruction. Most electrochemical work has been directed towards acidic electrolysis, as in the metal purification industry, and silver catalyzed oxidation. Alkaline electrochemistry has traditionally been associated with the following: (1) inefficient power use, (2) electrode fouling, and (3) solids handling problems. Tests using a laboratory scale electrochemical cell oxidized surrogate organics by applying a DC electrical current to the simulated tank waste via anode and cathode electrodes. The analytical data suggest that alkaline electrolysis oxidizes the organics into inorganic carbonate and smaller carbon chain refractory organics. Electrolysis treats the waste without adding chemical reagents and at ambient conditions of temperature and pressure. Cell performance was not affected by varying operating conditions and supplemental electrolyte additions.

  15. Electrochemical Oxidative Decarboxylation of Malonic Acid Derivatives: A Method for the Synthesis of Ketals and Ketones.

    PubMed

    Ma, Xiaofeng; Luo, Xiya; Dochain, Simon; Mathot, Charlotte; Mark, Istvn E

    2015-10-01

    A novel electrochemical oxidative decarboxylation of disubstituted malonic acids leading to dimethoxy ketals is described. In the presence of NH3, a wide range of disubstituted malonic acids was transformed into the corresponding ketals in good to excellent yields under electrochemical conditions. When the crude reaction mixture, obtained after electrolysis, was directly treated with 1 M aq HCl, the initially generated ketals were smoothly transformed into the corresponding ketones in a single vessel operation. PMID:26392322

  16. Induced effects of advanced oxidation processes

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-02-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields.

  17. Induced effects of advanced oxidation processes

    PubMed Central

    Liu, Peng; Li, Chaolin; Zhao, Zhuanjun; Lu, Gang; Cui, Haibo; Zhang, Wenfang

    2014-01-01

    Hazardous organic wastes from industrial, military, and commercial activities represent one of the greatest challenges to human beings. Advanced oxidation processes (AOPs) are alternatives to the degradation of those organic wastes. However, the knowledge about the exact mechanisms of AOPs is still incomplete. Here we report a phenomenon in the AOPs: induced effects, which is a common property of combustion reaction. Through analysis EDTA oxidation processes by Fenton and UV-Fenton system, the results indicate that, just like combustion, AOPs are typical induction reactions. One most compelling example is that pre-feeding easily oxidizable organic matter can promote the oxidation of refractory organic compound when it was treated by AOPs. Connecting AOPs to combustion, it is possible to achieve some helpful enlightenment from combustion to analyze, predict and understand AOPs. In addition, we assume that maybe other oxidation reactions also have induced effects, such as corrosion, aging and passivation. Muchmore research is necessary to reveal the possibilities of induced effects in those fields. PMID:24503715

  18. Advanced oxidation process treatment of mixed waste

    SciTech Connect

    Bernardin, F.E.; Cheuvront, D.A.

    1995-12-31

    The challenge in treating mixed wastes, i.e., wastes containing both hazardous organics as well as radionuclides, is to treat the hazardous portion and separate the radionuclides for disposal without creating other secondary waste products.An advanced oxidation process (AOP) utilizing hydrogen peroxide and ultraviolet light is particularly well-suited to this task. With the application of this technology, the organic contaminants are destroyed onsite, leaving water and radionuclides, that can be reused or disposed of as appropriate. Four case histories using AOPs are very briefly outlined in this paper.

  19. Recent advances in the electrochemical construction of heterocycles

    PubMed Central

    2014-01-01

    Summary Due to the fact that the major portion of pharmaceuticals and agrochemicals contains heterocyclic units and since the overall number of commercially used heterocyclic compounds is steadily growing, heterocyclic chemistry remains in the focus of the synthetic community. Enormous efforts have been made in the last decades in order to render the production of such compounds more selective and efficient. However, most of the conventional methods for the construction of heterocyclic cores still involve the use of strong acids or bases, the operation at elevated temperatures and/or the use of expensive catalysts and reagents. In this regard, electrosynthesis can provide a milder and more environmentally benign alternative. In fact, numerous examples for the electrochemical construction of heterocycles have been reported in recent years. These cases demonstrate that ring formation can be achieved efficiently under ambient conditions without the use of additional reagents. In order to account for the recent developments in this field, a selection of representative reactions is presented and discussed in this review. PMID:25550752

  20. Mapping Electrochemical Heterogeneity at Iron Oxide Surfaces: A Local Electrochemical Impedance Study.

    PubMed

    Lucas, Marie; Boily, Jean-Franois

    2015-12-22

    Alternating current scanning electrochemical microscopy (AC-SECM) was used for the first time to map key electrochemical attributes of oriented hematite (?-Fe2O3) single crystal surfaces at the micron-scale. Localized electrochemical impedance spectra (LEIS) of the (001) and (012) faces provided insight into the spatial variations of local double layer capacitance (Cdl) and charge transfer resistance (Rad). These parameters were extracted by LEIS measurements in the 0.4-8000 Hz range to probe the impedance response generated by the redistribution of water molecules and charge carriers (ions) under an applied AC. These were attributed to local variations in the local conductivity of the sample surfaces. Comparison with global EIS measurements on the same samples uncovered highly comparable frequency-resolved processes, that were broken down into contributions from the bulk hematite, the interface as well as the microelectrode/tip assembly. This work paves the way for new studies aimed at mapping electrochemical processes at the mesoscale on this environmentally and technologically important material. PMID:26625255

  1. Advances in electrospun carbon fiber-based electrochemical sensing platforms for bioanalytical applications.

    PubMed

    Mao, Xianwen; Tian, Wenda; Hatton, T Alan; Rutledge, Gregory C

    2016-02-01

    Electrochemical sensing is an efficient and inexpensive method for detection of a range of chemicals of biological, clinical, and environmental interest. Carbon materials-based electrodes are commonly employed for the development of electrochemical sensors because of their low cost, biocompatibility, and facile electron transfer kinetics. Electrospun carbon fibers (ECFs), prepared by electrospinning of a polymeric precursor and subsequent thermal treatment, have emerged as promising carbon systems for biosensing applications since the electrochemical properties of these carbon fibers can be easily modified by processing conditions and post-treatment. This review addresses recent progress in the use of ECFs for sensor fabrication and analyte detection. We focus on the modification strategies of ECFs and identification of the key components that impart the bioelectroanalytical activities, and point out the future challenges that must be addressed in order to advance the fundamental understanding of the ECF electrochemistry and to realize the practical applications of ECF-based sensing devices. PMID:26650731

  2. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect

    Lvov, Serguei; Chung, Mike; Fedkin, Mark; Lewis, Michele; Balashov, Victor; Chalkova, Elena; Akinfiev, Nikolay; Stork, Carol; Davis, Thomas; Gadala-Maria, Francis; Stanford, Thomas; Weidner, John; Law, Victor; Prindle, John

    2011-01-06

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the world's hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements – around 530 °C and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  3. Electrochemical self-assembly of oriented zinc oxide film from polyethylene oxide containing electrolyte.

    PubMed

    Ju, Xiaohui; Feng, Wei; Fujii, Akihiko; Ozaki, Masanori

    2009-03-01

    Oriented nanopillar ZnO crystals were firstly fabricated by the potentiostatic cathodic electrodeposition technique on conducting glass substrates from polyethylene oxide (PEO) containing zinc nitrate solutions at low temperature (343 K). The mechanism for PEO-assisted electrochemical growth of ZnO hexagonal columus was proposed and confirmed by scanning electron microscopy, X-ray diffraction and UV-visible spectrophotometer measurements. It was observed that the concentration of PEO played an important role in the morphology and size of ZnO crystals. The structure and optical studies indicated that the addition of PEO not only influenced crystal growth habit but also improve the optical properties of ZnO. PMID:19435038

  4. Electrochemical oxidation of berberine and mass spectrometric identification of its oxidation products.

    PubMed

    Skopalov, Jana; Vacek, Jan; Papoukov, Barbora; Jirovsk, David; Maier, Vt?zslav; Ranc, Vclav

    2012-10-01

    Electrochemical oxidation of the isoquinoline alkaloid berberine in aqueous medium was studied by cyclic and differential pulse voltammetry at a glassy carbon electrode (GCE). Two anodic peaks of the quaternary form of berberine were observed at +1.2V and +1.4V (vs. SCE) in acidic and neutral solutions. When the anodic polarization exceeded the value of +1.1 V, the redox active film is formed on the GCE surface. The formation of adsorbed film was well-documented by quasireversible redox couple at +0.25 V which was studied in redox cycling experiments. In alkaline medium, a new anodic peak at +0.5 V appeared due to oxidation of berberine pseudobase to 8-oxoberberine. Solutions of berberine at different pH were subjected to controlled potential electrolysis on platinum gauze electrode and analyzed using liquid chromatography (HPLC) equipped with electrospray ionization/quadrupole time-of-flight mass spectrometry. The main water soluble monomeric product of berberine oxidation under physiological-near experimental conditions, OP1, was identified as demethyleneberberine cation (2,3-dihydroxy-9,10-dimethoxy-5,6-dihydroisoquinolino[3,2-a]isoquinolin-7-ium). PMID:21963270

  5. Mediated electrochemical oxidation of organic wastes without electrode separators

    DOEpatents

    Farmer, Joseph C. (Newtown, PA); Wang, Francis T. (Danville, CA); Hickman, Robert G. (Livermore, CA); Lewis, Patricia R. (Livermore, CA)

    1996-01-01

    An electrochemical cell/electrolyte/mediator combination for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required.

  6. Mediated electrochemical oxidation of organic wastes without electrode separators

    DOEpatents

    Farmer, J.C.; Wang, F.T.; Hickman, R.G.; Lewis, P.R.

    1996-05-14

    An electrochemical cell/electrolyte/mediator combination is described for the efficient destruction of organic contaminants using metal salt mediators in a sulfuric acid electrolyte, wherein the electrodes and mediator are chosen such that hydrogen gas is produced at the cathode and no cell membrane is required. 3 figs.

  7. Tunable photoluminescence from sheet-like black phosphorus crystal by electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Gan, Z. X.; Sun, L. L.; Wu, X. L.; Meng, M.; Shen, J. C.; Chu, Paul K.

    2015-07-01

    An electrochemical method to prepare two-dimensional (2D) layered black phosphorus oxide with an inhomogeneous and non-stoichiometric structure is developed and described. The localized oxygen-related electronic states induce tunable photoluminescence (PL) between 620 and 670 nm. After oxidation, several new Raman modes with frequencies below 300 cm-1 emerge and the Ag 1 mode splits into two sub-bands. The frequency difference between the two sub-bands (?) exhibits a monotonic dependence on the emission wavelength suggesting that PL is determined by the degree of oxidation. Similar to graphene oxide, phosphorene oxide is a promising 2D structure with many potential applications.

  8. Characterization of oxide structures on stainless steel sternal wires by electrochemical reduction

    NASA Astrophysics Data System (ADS)

    Su, Yea-Yang; Shih, Chun-Che; Chen, Lung-Ching; Shih, Chun-Ming; Lin, Shing-Jong

    2012-01-01

    Different oxide structures can be formed on passive stainless steel sternal wires by various surface modifications. Oxide structure has a significant influence on the efficacy and biocompatibility of the medical devices. In this study, cathodic reduction was used to distinguish the oxide structures on 316L stainless steel sternal wires in a buffered phosphate electrolyte. TEM, Auger depth profile, XPS, and SEM were applied to examine the oxide structures. Interfacial resistance was measured using electrochemical impedance spectroscopy. Results indicate that cathodic reduction profiles have the capability to identify oxide structures on the passivated medical devices.

  9. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  10. Electrochemical synthesis of nickel-aluminium oxide system from metals obtained by ore processing

    NASA Astrophysics Data System (ADS)

    Korobochkin, V. V.; Usoltseva, N. V.; Shorokhov, K. G.; Popova, E. V.

    2015-11-01

    Separate and combined electrochemical oxidation of aluminium and nickel has been conducted by alternating current of industrial frequency. Concentration increase of electrolyte solution (sodium chloride) in the range from 3 to 25 wt. % and current density from 0.5 to 1.5 A/cm2 was found to result in the increasing metal oxidation rate, excluding aluminium oxidation which oxidation rate is independent of the electrolyte solution concentration. At the current density of 1.5 A/cm2 the products of separate oxidation of nickel and aluminium are nickel oxyhydroxides, nickel hydroxides and aluminium oxyhydroxide (boehmite), respectively. In addition to these compounds, the nickel-aluminium oxide hydrate is included in the products of nickel and aluminium co-oxidation. Its content grows with the increasing electrolyte solution concentration. Varying the concentration and current density within the limits indicated, the nickel-aluminium oxide system with nickel oxide content from 3 to 10 wt. % is produced.

  11. Development of Advanced Electrochemical Sensors for DNA Detection at the Point of Care

    NASA Astrophysics Data System (ADS)

    Hsieh, Kuangwen

    In the post-genomic era, ever-advancing capabilities in DNA detection and analysis have become vital to the detection of infectious diseases and the diagnosis of genetic abnormalities and inheritable diseases. The benefit of such capabilities, however, has yet to reach patients outside of centralized facilities. There thus exists an increasing need to decentralize DNA detection methods and to administer such diagnostics at the "point of care." Electrochemical-based DNA sensors present a compelling approach, but have yet to deliver satisfactory sensitivity, specificity, miniaturization, and real-time monitoring capability to meet the demand of point-of-care diagnostics. Motivated by their potential and their current limitations, in this dissertation, we present a series of strategies that we have undertaken in order to address the key shortcomings of electrochemical DNA sensors and advance them toward point-of-care applications. First, we report a single-step, single reagent, label-free, isothermal electrochemical DNA sensor based on the phenomenon of enzyme catalyzed target recycling amplification. Using this technique, we achieve improved detection limit in comparison to hybridization-based sensors without amplification. We also demonstrate greater than 16-fold amplification of signal at low target concentrations. Next, we present a novel electrochemical DNA sensor that detects single-nucleotide mismatched targets with unprecedented "polarity-switching" responses. This "bipolar" sensor employs a surface-bound and redox-modified (methylene blue) DNA probe architecture, and outputs a decreased Faradaic current when hybridized to a perfectly matched (PM) target, but conversely reports an increased Faradaic current when hybridized to a single-base mismatched (SM) target. Third, we describe the microfluidic electrochemical dynamic allele specific hybridization (microE-DASH) platform for versatile and rapid detection of single-nucleotide polymorphisms. Implementing electrochemical-based melting curve analysis within the microfluidic device, this platform directly detects PCR amplicon-like targets and distinguishes perfectly matched target from single-base mismatched target and heterozygote combination of both targets in 20 minutes. Finally, we present the microfluidic electrochemical quantitative loop-mediated isothermal amplification (MEQ-LAMP) platform for rapid, sensitive, and quantitative detection of pathogen genomic DNA at the point of care. DNA amplification is electrochemically monitored in real time within a monolithic microfluidic device, enabling the detection of as few as 16 copies of Salmonella genomic DNA via a single-step process in under an hour.

  12. Integrating electrochemical oxidation into forward osmosis process for removal of trace antibiotics in wastewater.

    PubMed

    Liu, Pengxiao; Zhang, Hanmin; Feng, Yujie; Shen, Chao; Yang, Fenglin

    2015-10-15

    During the rejection of trace pharmaceutical contaminants from wastewater by forward osmosis (FO), disposal of the FO concentrate was still an unsolved issue. In this study, by integrating the advantages of forward osmosis and electrochemical oxidation, a forward osmosis process with the function of electrochemical oxidation (FOwEO) was established for the first time to achieve the aim of rejection of trace antibiotics from wastewater and treatment of the concentrate at the same time. Results demonstrated that FOwEO (current density J=1 mA cm(-2)) exhibited excellent rejections of antibiotics (>98%) regardless of different operation conditions, and above all, antibiotics in the concentrate were well degraded (>99%) at the end of experiment (after 3h). A synergetic effect between forward osmosis and electrochemical oxidation was observed in FOwEO, which lies in that antibiotic rejections by FO were enhanced due to the degradation of antibiotics in the concentrate, while the electrochemical oxidation capacity was improved in the FOwEO channel, of which good mass transfer and the assist of indirect oxidation owing to the reverse NaCl from draw solution were supposed to be the mechanism. This study demonstrated that the FOwEO has the capability to thoroughly remove trace antibiotics from wastewater. PMID:25966924

  13. Synthesis and characterization of a nanocomposite of goethite nanorods and reduced graphene oxide for electrochemical capacitors

    SciTech Connect

    Shou Qingliang; Cheng Jipeng; Zhang Li; Nelson, Bradley J.; Zhang Xiaobin

    2012-01-15

    We report a one-step synthesis of a nanocomposite of goethite ({alpha}-FeOOH) nanorods and reduced graphene oxide (RGO) using a solution method in which ferrous cations serve as a reducing agent of graphite oxide (GO) to graphene and a precursor to grow goethite nanorods. As-prepared goethite nanorods have an average length of 200 nm and a diameter of 30 nm and are densely attached on both sides of the RGO sheets. The electrochemical properties of the nanocomposite were characterized by cyclic voltammetry (CV) and chronopotentiometry (CP) charge-discharge tests. The results showed that goethite/RGO composites have a high electrochemical capacitance of 165.5 F g{sup -1} with an excellent recycling capability making the material promising for electrochemical capacitors. - Graphical abstract: The reduced graphene oxide sheets are decorated with goethite nanorods. The as-prepared composite exhibits a high electrochemical capacitance with good recycling capability, which is promising for supercapacitor applications. Higlights: Black-Right-Pointing-Pointer Ferrous ions act as reductant of graphite oxide and precursor of goethite nanorods. Black-Right-Pointing-Pointer Goethite nanorods are attached on both sides of the reduced graphene oxide sheets. Black-Right-Pointing-Pointer Composite exhibits a high specific capacitance and a good recycling capability. Black-Right-Pointing-Pointer Composite is promising for supercapacitor applications.

  14. Electrochemical studies on nanometal oxide-activated carbon composite electrodes for aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Ho, Mui Yen; Khiew, Poi Sim; Isa, Dino; Chiu, Wee Siong

    2014-11-01

    In present study, the electrochemical performance of eco-friendly and cost-effective titanium oxide (TiO2)-based and zinc oxide-based nanocomposite electrodes were studied in neutral aqueous Na2SO3 electrolyte, respectively. The electrochemical properties of these composite electrodes were studied using cyclic voltammetry (CV), galvanostatic charge-discharge (CD) and electrochemical impedance spectroscopy (EIS). The experimental results reveal that these two nanocomposite electrodes achieve the highest specific capacitance at fairly low oxide loading onto activated carbon (AC) electrodes, respectively. Considerable enhancement of the electrochemical properties of TiO2/AC and ZnO/AC nanocomposite electrodes is achieved via synergistic effects contributed from the nanostructured metal oxides and the high surface area mesoporous AC. Cations and anions from metal oxides and aqueous electrolyte such as Ti4+, Zn2+, Na+ and SO32- can occupy some pores within the high-surface-area AC electrodes, forming the electric double layer at the electrode-electrolyte interface. Additionally, both TiO2 and ZnO nanoparticles can provide favourable surface adsorption sites for SO32- anions which subsequently facilitate the faradaic processes for pseudocapacitive effect. These two systems provide the low cost material electrodes and the low environmental impact electrolyte which offer the increased charge storage without compromising charge storage kinetics.

  15. Effect of nanostructured graphene oxide on electrochemical activity of its composite with polyaniline titanium dioxide

    NASA Astrophysics Data System (ADS)

    Binh Phan, Thi; Thanh Luong, Thi; Mai, Thi Xuan; Thanh Thuy Mai, Thi; Tot Pham, Thi

    2016-03-01

    Graphene oxide (GO) significantly affects the electrochemical activity of its composite with polyanline titanium dioxide (TiO2). In this work various composites with different GO contents have been successfully synthesized by chemical method to compare not only their material properties but also electrochemical characteristics with each other. The results of an electrochemical impedance study showed that their electrochemical property has been improved due to the presence of GO in a composite matrix. The galvanodynamic polarization explained that among them the composite with GO/Ani ratio in the range of 1–14 exhibits a better performance compared to the other due to yielding a higher current desity (280 μA cm‑2). The TEM and SEM images which presented the fibres of a composite bundle with the presence of PANi and TiO2 were examined by IR-spectra and x-ray diffraction, respectively.

  16. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field applications of advanced oxidation technologies for contaminated groundwater with organics. he two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidation Systems, Inc. of Tucson...

  17. ADVANCED OXIDATION TECHNOLOGIES FOR THE TREATMENT OF CONTAMINATED GROUNDWATER

    EPA Science Inventory

    This paper presents information on two pilot-field appliations of advanced oxidation technologies for contaminated groundwater with organis. The two UV/oxidation technologies were developed by Ultrox International of Santa Ana, California and Peroxidatrion Systems, Inc. of Tucso...

  18. Preparation, characterization, and electrochemical application of mesoporous copper oxide

    SciTech Connect

    Cheng, Liang; Anhui Key Laboratory of Functional Molecular Solids, and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 ; Shao, Mingwang; Anhui Key Laboratory of Functional Molecular Solids, and College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000 ; Chen, Dayan; Zhang, Yuzhong

    2010-02-15

    Mesoporous CuO was successfully synthesized via thermal decomposition of CuC{sub 2}O{sub 4} precursors. These products had ring-like morphology, which was made up of nanoparticles with the average diameter of 40 nm. The electrochemical experiments showed that the mesoporous CuO decreased the overvoltage of the electrode and increased electron transference in the measurement of dopamine.

  19. Synthesis and electrochemical capacitance of long tungsten oxide nanorod arrays grown vertically on substrate

    SciTech Connect

    Park, Sun Hwa; Kim, Young Heon; Lee, Tae Geol; Shon, Hyun Kyong; Park, Hyun Min; Korea Research Institute of Standards and Science, Daejeon 305-340 ; Song, Jae Yong

    2012-11-15

    Highlights: ► Growth of long amorphous tungsten oxide nanorods on a substrate. ► Formation of single-crystalline tungsten oxide nanorods by a heat-treatment. ► High electrochemical pseudocapacitance of 2.8 mF cm{sup −2}. ► Excellent cyclability of psuedocapacitance up to 1000 cycles. -- Abstract: Long tungsten oxide nanorods are vertically grown on Al/W/Ti coated silicon substrates using a two-step anodization process. The first anodization of the Al film forms a mesh-like mask of anodic aluminum oxide, and the second anodization of the W film results in the formation of a buffer layer, a bottom nanorod, and a top nanorod of amorphous tungsten oxide. A pore-widening process prior to the second anodization leads to the enhancement of nanorod length above approximately 500 nm. After a heat-treatment, the tungsten oxide nanorods are crystallized to form a single crystalline structure while the buffer layer forms a polycrystalline structure. The crystalline tungsten oxide nanorods show a cyclic voltammogram retaining the quasi-rectangular shape of an electrochemically reversible faradaic redox reaction, i.e., a typical pseudocapacitive behavior. The maximum electrochemical capacitance per apparent surface area reaches approximately 2.8 mF cm{sup −2} at the voltage scan rate of 20 mV s{sup −1}, and the excellent cyclability of charge–discharge process is maintained up to 1000 cycles.

  20. Photo-electrochemical Oxidation of Organic C1 Molecules over WO3 Films in Aqueous Electrolyte: Competition Between Water Oxidation and C1 Oxidation.

    PubMed

    Reichert, Robert; Zambrzycki, Christian; Jusys, Zenonas; Behm, R Jrgen

    2015-11-01

    To better understand organic-molecule-assisted photo-electrochemical water splitting, photo-electrochemistry and on-line mass spectrometry measurements are used to investigate the photo-electrochemical oxidation of the C1 molecules methanol, formaldehyde, and formic acid over WO3 film anodes in aqueous solution and its competition with O2 evolution from water oxidation O2 (+) and CO2 (+) ion currents show that water oxidation is strongly suppressed by the organic species. Photo-electro-oxidation of formic acid is dominated by formation of CO2 , whereas incomplete oxidation of formaldehyde and methanol prevails, with the selectivity for CO2 formation increasing with increasing potential and light intensity. The mechanistic implications for the photo-electro-oxidation of the organic molecules and its competition with water oxidation, which could be derived from this novel approach, are discussed. PMID:26382643

  1. Advantages of electrodes with dendrimer-protected platinum nanoparticles and carbon nanotubes for electrochemical methanol oxidation.

    PubMed

    Siriviriyanun, Ampornphan; Imae, Toyoko

    2013-04-14

    Electrochemical sensors consisting of electrodes loaded with carbon nanotubes and Pt nanoparticles (PtNPs) protected by dendrimers have been developed using a facile method to fabricate them on two types of disposable electrochemical printed chips with a screen-printed circular gold or a screen-printed circular glassy carbon working electrode. The electrochemical performance of these sensors in the oxidation of methanol was investigated by cyclic voltammetry. It was revealed that such sensors possess stable durability and high electrocatalytic activity: the potential and the current density of an anodic peak in the oxidation of methanol increased with increasing content of PtNPs on the electrodes, indicating the promotion of electrocatalytic activity in relation to the amount of catalyst. The low anodic potential suggests the easy electrochemical reaction, and the high catalyst tolerance supports the almost complete oxidation of methanol to carbon dioxide. The significant performance of these sensors in the detection of methanol oxidation comes from the high electrocatalytic ability of PtNPs, excellent energy transfer of carbon nanotubes and the remarkable ability of dendrimers to act as binders. Thus these systems are effective for a wide range of applications as chemical, biomedical, energy and environmental sensors and as units of direct methanol fuel cells. PMID:23435635

  2. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode.

    PubMed

    Teodorescu, Florina; Rolland, Laure; Ramarao, Viswanatha; Abderrahmani, Amar; Mandler, Daniel; Boukherroub, Rabah; Szunerits, Sabine

    2015-09-28

    An electrochemical insulin-delivery system based on reduced graphene oxide impregnated with insulin is described. Upon application of a potential pulse of -0.8 V for 30 min, up to 70 ± 4% of human insulin was released into a physiological medium while preserving its biological activity. PMID:26257079

  3. Characterization of internal oxide layers in 3% Si grain-oriented steel by electrochemical methods

    SciTech Connect

    Toda, H.; Sato, K.; Komatsubara, M.

    1997-12-01

    The structure of internal oxide layers in decarburized sheet was studied using a newly developed electrochemical method. Dissolving potential profiles indicated the amount of fayalite (Fe{sub 2}SiO{sub 4}) and silica (SiO{sub 2}) in the layers. The quantitative data for the contents of fayalite and silica in the internal oxide layers can be easily obtained by this method.

  4. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  5. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs. PMID:22460594

  6. Degradation of methylparathion in aqueous solution by electrochemical oxidation.

    PubMed

    Vlyssides, Apostolos; Barampouti, Elli Maria; Mai, Sofia; Arapoglou, Dimitris; Kotronarou, Anastasia

    2004-11-15

    The electrochemical degradation of methylparathion has been investigated by using Ti/Pt as anode, Stainless Steel 304 as cathode, and sodium chloride as electrolyte. The pesticide is rapidly degraded, but full mineralization is not observed. Degradation products have been monitored through gas chromatography and mass spectrometry, and the overall degradation process has been monitored through dissolved and particulate organic carbon, sulfur, and phosphorus measurements. Several intermediates have been identified, and oxalic, formic, and acetic acids as well as tetraphosphorus trisulfide have been recognized as final products of the degradation process. A proposed mechanism of the process is presented. PMID:15573616

  7. Oxygen vacancy diffusion across cathode/electrolyte interface in solid oxide fuel cells: An electrochemical phase-field model

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Hu, Jia-Mian; Gerdes, Kirk; Chen, Long-Qing

    2015-08-01

    An electrochemical phase-field model is developed to study electronic and ionic transport across the cathode/electrolyte interface in solid oxide fuel cells. The influences of local current density and interfacial electrochemical reactions on the transport behaviors are incorporated. This model reproduces two electrochemical features. Nernst equation is satisfied through the thermodynamic equilibriums of the electron and oxygen vacancy. The distributions of charged species around the interface induce charge double layer. Moreover, we verify the nonlinear current/overpotential relationship. This model facilitates the exploration of problems in solid oxide fuel cells, which are associated with transport of species and electrochemical reactions at high operating temperature.

  8. Chemical and electrochemical study of fabrics coated with reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Molina, J.; Fernndez, J.; del Ro, A. I.; Bonastre, J.; Cases, F.

    2013-08-01

    Polyester fabrics coated with reduced graphene oxide (RGO) have been obtained and later characterized by means of chemical and electrochemical techniques. X-ray photoelectron spectroscopy showed a decrease of the oxygen content as well as an increase of the sp2 fraction after chemical reduction of graphene oxide (GO). The electrical conductivity was measured by electrochemical impedance spectroscopy (EIS) and showed a decrease of 5 orders of magnitude in the resistance (?) when GO was reduced to RGO. The phase angle also changed from 90 for PES-GO (capacitative behavior) to 0 for RGO coated fabrics (resistive behavior). In general an increase in the number of RGO layers produced an increase of the conductivity of the fabrics. EIS measurements in metal/sample/electrolyte configuration showed better electrocatalytic properties and faster diffusion rate for RGO specimens. Scanning electrochemical microscopy was employed to test the electroactivity of the different fabrics obtained. The sample coated with GO was not conductive since negative feedback was obtained. When GO was reduced to RGO the sample behaved like a conducting material since positive feedback was obtained. Approach curves indicated that the redox mediator had influence on the electrochemical response. The Fe(CN)63-/4- redox mediator produced a higher electrochemical response than Ru(NH3)63+/2+ one.

  9. Advanced fabrication process for combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes.

    PubMed

    Eifert, Alexander; Mizaikoff, Boris; Kranz, Christine

    2015-01-01

    An advanced software-controlled focused ion beam (FIB) patterning process for the fabrication of combined atomic force-scanning electrochemical microscopy (AFM-SECM) probes is reported. FIB milling is a standard process in scanning probe microscopy (SPM) for specialized SPM probe fabrication. For AFM-SECM, milling of bifunctional probes usually requires several milling steps. Milling such complex multi-layer/multi-material structures using a single milling routine leads to significantly reduced fabrication times and costs. Based on an advanced patterning routine, a semi-automated FIB milling routine for fabricating combined AFM-SECM probes with high reproducibility is presented with future potential for processing at a wafer level. The fabricated bifunctional probes were electrochemically characterized using cyclic voltammetry, and their performance for AFM-SECM imaging experiments was tested. Different insulation materials (Parylene-C and SixNy) have been evaluated with respect to facilitating the overall milling process, the influence on the electrochemical behavior and the long-term stability of the obtained probes. Furthermore, the influence of material composition and layer sequence to the overall shape and properties of the combined probes were evaluated. PMID:25259683

  10. Vanadium oxide nanodisks: Synthesis, characterization, and electrochemical properties

    SciTech Connect

    Ren, Ling; Cao, Minhua; Shi, Shufeng; Hu, Changwen

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Highly crystallined VO{sub 1.6}{center_dot}H{sub 2}O nanodisks have been synthesized by using a novel solid-solution-solid growth process. Black-Right-Pointing-Pointer The nanodisks are assembled from nanoparticles. Black-Right-Pointing-Pointer PEG-4000 plays an important role for the formation of the nanodisks. Black-Right-Pointing-Pointer The as-synthesized nanodisks exhibit good electrochemical behavior. -- Abstract: Highly crystallined VO{sub 1.6}{center_dot}H{sub 2}O nanodisks assembled from nanoparticles have been successfully fabricated under hydrothermal conditions by using bulk V{sub 2}O{sub 5} and Na{sub 2}S{sub 2}O{sub 3} as the starting materials in the presence of surfactant polyethylene glycol 4000 (PEG-4000). The nanodisks have a diameter of 200 nm and thickness of 40 nm. Hollow nanodisks are occasionally observed, which is similar to Chinese ancient copper coins. The formation of nanodisks can be ascribed to a novel solid-solution-solid growth mechanism. Compared with other methods, the solid state transformation method is simple and economic. In addition, the nanodisks exhibit good electrochemical behavior and promising to be used in lithium-ion battery.

  11. Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrodes in other electrochemical devices

    DOEpatents

    Rieke, Peter C. (Pasco, WA); Coffey, Gregory W. (Richland, WA); Pederson, Larry R. (Kennewick, WA); Marina, Olga A. (Richland, WA); Hardy, John S. (Richland, WA); Singh, Prabhaker (Richland, WA); Thomsen, Edwin C. (Richland, WA)

    2010-07-20

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells. Also provided are electrochemical devices that include active oxygen reduction electrodes, such as solid oxide fuel cells, sensors, pumps and the like. The compositions comprises a copper-substituted ferrite perovskite material. The invention also provides novel methods for making and using the electrode compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having cathodes comprising the compositions.

  12. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-11-23

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  13. Cerium-modified doped strontium titanate compositions for solid oxide fuel cell anodes and electrodes for other electrochemical devices

    DOEpatents

    Marina, Olga A [Richland, WA; Stevenson, Jeffry W [Richland, WA

    2010-03-02

    The present invention provides novel compositions that find advantageous use in making electrodes for electrochemical cells and electrochemical devices such as solid oxide fuel cells, electrolyzers, sensors, pumps and the like, the compositions comprising cerium-modified doped strontium titanate. The invention also provides novel methods for making and using anode material compositions and solid oxide fuel cells and solid oxide fuel cell assemblies having anodes comprising the compositions.

  14. Modified cermet fuel electrodes for solid oxide electrochemical cells

    DOEpatents

    Ruka, Roswell J. (Churchill Boro, PA); Spengler, Charles J. (Murrysville, PA)

    1991-01-01

    An exterior porous electrode (10), bonded to a solid oxygen ion conducting electrolyte (13) which is in contact with an interior electrode (14), contains coarse metal particles (12) of nickel and/or cobalt, having diameters from 3 micrometers to 35 micrometers, where the coarse particles are coated with a separate, porous, multiphase layer (17) containing fine metal particles of nickel and/or cobalt (18), having diameters from 0.05 micrometers to 1.75 micrometers and conductive oxide (19) selected from cerium oxide, doped cerium oxide, strontium titanate, doped strontium titanate and mixtures thereof.

  15. Electrochemically regenerable carbon dioxide/moisture control technology for an Advanced Extravehicular Mobility Unit

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Cusick, R. J.

    1987-01-01

    Regenerable CO2/moisture removal techniques that reduce the expendables and logistics requirements are needed to sustain people undertaking EVAs for the Space Station. Here, the development of electrochemically regenerable CO2 absorption (ERCA) technology to replace the nonregenerable LiOH absorber for the advanced Portable Life Support System (PLSS) is reported. During EVA the ERCA uses a mechanism involving gas absorption into a liquid absorbent for the removal and storage of the metabolically produced CO2 and moisture. Following the EVA, the expended absorbent is regenerated onboard the Space Station by an electrochemical CO2 concentrator. The ERCA concept has the ability to effectively satisfy the high metabolic CO2 and moisture removal requirements of PLSS applications. This paper defines the ERCA concept and its advantages for the PLSS application, reviews breadboard test data, and presents physical characteristics of the breadboard and projected flight hardware.

  16. Electrochemically Exfoliated Graphene and Graphene Oxide for Energy Storage and Electrochemistry Applications.

    PubMed

    Ambrosi, Adriano; Pumera, Martin

    2016-01-01

    Top-down methods are of key importance for large-scale graphene and graphene oxide preparation. Electrochemical exfoliation of graphite has lately gained much interest because of the simplicity of execution, the short process time, and the good quality of graphene that can be obtained. Here, we test three different electrolytes, that is, H2 SO4 , Na2 SO4 , and LiClO4 , with a common exfoliation procedure to evaluate the difference in structural and chemical properties that result for the graphene. The properties are analyzed by means of scanning transmission electron microscopy (STEM), Raman spectroscopy, and X-ray photoelectron spectroscopy. We then tested the graphene materials for electrochemical applications, measuring the heterogeneous electron transfer (HET) rates with a Fe(CN)6 (3-/4-) redox probe, and their capacitive behavior in alkaline solutions. We correlate the electrochemical features with the presence of structural defects and oxygen functionalities on the graphene materials. In particular, the use of LiClO4 during the electrochemical exfoliation of graphite allowed the formation of highly oxidized graphene with a C/O ratio close to 4.0 and represents a possible avenue for the mass production of graphene oxide as valid alternative to the current laborious and dangerous chemical procedures, which also have limited scalability. PMID:26441292

  17. Development of graphene-nanometre-sized cerium oxide-incorporated aluminium and its electrochemical evaluation

    NASA Astrophysics Data System (ADS)

    Ashraf, P. Muhamed; Thomas, Saly N.; Edwin, Leela

    2016-02-01

    Graphene-nanometre-sized cerium oxide-incorporated aluminium was prepared and its electrochemical and surface morphological characteristics were studied. The atomic force micrographs and scanning electron micrographs evaluation highlighted that the graphene and nanometre-sized cerium oxide in aluminium had decreased the surface roughness and improved the surface morphological characteristics. The graphene: nanometre-sized cerium oxide (ratios 1:2 or 2:1) with lesser amounts of particle in the matrix showed excellent corrosion resistance in the marine environment as evidenced by linear polarization, electrochemical impedance and weight loss studies. Introduction of graphene in the aluminium matrix showed a barrier separation between the outermost layer and inner layer, increased roughness and increased corrosion. The material is found to be a potential candidate for use in marine environment.

  18. Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors.

    PubMed

    Kumar, Nanjundan Ashok; Choi, Hyun-Jung; Shin, Yeon Ran; Chang, Dong Wook; Dai, Liming; Baek, Jong-Beom

    2012-02-28

    An alternative and effective route to prepare conducting polyaniline-grafted reduced graphene oxide (PANi-g-rGO) composite with highly enhanced properties is reported. In order to prepare PANi-g-rGO, amine-protected 4-aminophenol was initially grafted to graphite oxide (GO) via acyl chemistry where a concomitant partial reduction of GO occurred due to the refluxing and exposure of GO to thionyl chloride vapors and heating. Following the deprotection of amine groups, an in situ chemical oxidative grafting of aniline in the presence of an oxidizing agent was carried out to yield highly conducting PANi-g-rGO. Electron microscopic studies demonstrated that the resultant composite has fibrillar morphology with a room-temperature electrical conductivity as high as 8.66 S/cm and capacitance of 250 F/g with good cycling stability. PMID:22276770

  19. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides.

    PubMed

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K(3)[Fe(CN)(6)] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO(3) form. PMID:20886983

  20. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides

    NASA Astrophysics Data System (ADS)

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.

  1. Morphological and Electrochemical Properties of Crystalline Praseodymium Oxide Nanorods

    PubMed Central

    2010-01-01

    Highly crystalline Pr6O11 nanorods were prepared by a simple precipitation method of triethylamine complex at 500C. Synthesized Pr6O11 nanorods were uniformly grown with the diameter of 1215 nm and the length of 100150 nm without any impurities of unstable PrO2 phase. The Pr6O11 nanorod electrodes attained a high electrical conductivity of 0.954 Scm?1 with low activation energy of 0.594 eV at 850C. The electrochemical impedance study showed that the resistance of electrode was significantly decreased at high temperature, which resulted from its high conductivity and low activation energy. The reduced impedance and high electrical conductivity of Pr6O11 nanorod electrodes are attributed to the reduction of grain boundaries and high space charge width. PMID:20672103

  2. Electrochemical Deposition of Iron Nanoneedles on Titanium Oxide Nanotubes

    SciTech Connect

    Gan Y. X.; Zhang L.; Gan B.J.

    2011-10-01

    Iron as a catalyst has wide applications for hydrogen generation from ammonia, photodecomposition of organics, and carbon nanotube growth. Tuning the size and shape of iron is meaningful for improving the catalysis efficiency. It is the objective of this work to prepare nanostructured iron with high surface area via electrochemical deposition. Iron nanoneedles were successfully electrodeposited on Ti supported TiO2 nanotube arrays in a chlorine-based electrolyte containing 0.15 M FeCl2 {center_dot} 4H2O and 2.0 M HCl. Transmission electron microscopic analysis reveals that the average length of the nanoneedles is about 200 nm and the thickness is about 10 nm. It has been found that a high overpotential at the cathode made of Ti/TiO2 nanotube arrays is necessary for the formation of the nanoneedles. Cyclic voltammetry test indicates that the electrodeposition of iron nanoneedles is a concentration-limited process.

  3. Tin Oxide Nanorod Array-Based Electrochemical Hydrogen Peroxide Biosensor

    NASA Astrophysics Data System (ADS)

    Liu, Jinping; Li, Yuanyuan; Huang, Xintang; Zhu, Zhihong

    2010-07-01

    SnO2 nanorod array grown directly on alloy substrate has been employed as the working electrode of H2O2 biosensor. Single-crystalline SnO2 nanorods provide not only low isoelectric point and enough void spaces for facile horseradish peroxidase (HRP) immobilization but also numerous conductive channels for electron transport to and from current collector; thus, leading to direct electrochemistry of HRP. The nanorod array-based biosensor demonstrates high H2O2 sensing performance in terms of excellent sensitivity (379 ?A mM-1 cm-2), low detection limit (0.2 ?M) and high selectivity with the apparent Michaelis-Menten constant estimated to be as small as 33.9 ?M. Our work further demonstrates the advantages of ordered array architecture in electrochemical device application and sheds light on the construction of other high-performance enzymatic biosensors.

  4. Ruthenium Oxide Electrochemical Super Capacitor Optimization for Pulse Power Applications

    NASA Technical Reports Server (NTRS)

    Merryman, Stephen A.; Chen, Zheng

    2000-01-01

    Electrical actuator systems are being pursued as alternatives to hydraulic systems to reduce maintenance time, weight and costs while increasing reliability. Additionally, safety and environmental hazards associated with the hydraulic fluids can be eliminated. For most actuation systems, the actuation process is typically pulsed with high peak power requirements but with relatively modest average power levels. The power-time requirements for electrical actuators are characteristic of pulsed power technologies where the source can be sized for the average power levels while providing the capability to achieve the peak requirements. Among the options for the power source are battery systems, capacitor systems or battery-capacitor hybrid systems. Battery technologies are energy dense but deficient in power density; capacitor technologies are power dense but limited by energy density. The battery-capacitor hybrid system uses the battery to supply the average power and the capacitor to meet the peak demands. It has been demonstrated in previous work that the hybrid electrical power source can potentially provide a weight savings of approximately 59% over a battery-only source. Electrochemical capacitors have many properties that make them well-suited for electrical actuator applications. They have the highest demonstrated energy density for capacitive storage (up to 100 J/g), have power densities much greater than most battery technologies (greater than 30kW/kg), are capable of greater than one million charge-discharge cycles, can be charged at extremely high rates, and have non-explosive failure modes. Thus, electrochemical capacitors exhibit a combination of desirable battery and capacitor characteristics.

  5. Advanced oxidation technologies for chemical demilitarization

    SciTech Connect

    Rosocha, L.A.; Korzekwa, R.A.; Monagle, M.; Coogan, J.J.; Tennant, R.A.; Brown, L.F.; Currier, R.P.

    1996-12-31

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory. The main project objective was to establish a technical basis for future program development in the area of chemical warfare agent destruction using a Los Alamos-developed advanced oxidation process: a two-stage device consisting of thermal packed-bed reactor (PBR) and a nonthermal plasma (NTP) reactor. Various compounds were evaluated as potential surrogates for chemical warfare (CW) agents. Representative effluent mass balances were projected for future comparisons with incinerators. The design and construction of lab-scale PBR/NTP reactors (consisting of a liquid injection and metering system, electric furnace, condensers, chemical traps, plasma reactors, power supplies, and chemical diagnostics) has been completed. This equipment, the experience gained from chemical-processing experiments, process modeling, and an initial demonstration of the feasibility of closed-loop operation, have provided a technical basis for further demonstrations and program development efforts.

  6. Boosting supercapacitor performance of carbon fibres using electrochemically reduced graphene oxide additives.

    PubMed

    Cao, Yachang; Zhu, Miao; Li, Peixu; Zhang, Rujing; Li, Xinming; Gong, Qianming; Wang, Kunling; Zhong, Minlin; Wu, Dehai; Lin, Feng; Zhu, Hongwei

    2013-12-01

    Modifying conventional materials with new recipes represents a straightforward yet efficient way to realize large-scale applications of new materials. Electrochemically reduced graphene oxide (ERGO) coated carbon fibres (CFs), prepared as fibre-like supercapacitor electrodes, exhibited excellent electrochemical energy storage performance. Upon addition of only a small amount (~1 wt%) of ERGO, the hybrid fibres showed superior electrochemical capacitances (nearly three orders of magnitude enhanced) compared to pure CFs in both aqueous and gel electrolytes. Meanwhile, the energy density did not decrease notably as the power density increased. The superior capacitive performance could be attributed to the synergistic effect between wrinkled and porous ERGO sheets and highly conductive CFs. This fibre electrode material also offered advantages such as easy operation, mass production capability, mechanical flexibility and robustness, and could have an impact on a wide variety of potential applications in energy and electronic fields. PMID:24141749

  7. Chitosan/graphene oxide nanocomposite films with enhanced interfacial interaction and their electrochemical applications

    NASA Astrophysics Data System (ADS)

    He, Linghao; Wang, Hongfang; Xia, Guangmei; Sun, Jing; Song, Rui

    2014-09-01

    A series of chitosan (CS) nanocomposites incorporated with graphene oxide (GO) nanosheets were facilely prepared by sonochemical method. Characterized by scanning electron microscopy, the obtained nanocomposites showed fine dispersion of GO in the CS matrix. Meanwhile, a marked interfacial interaction was also revealed as the values of glass transition temperature, the decomposition temperature and the storage modulus were significantly increased with the addition of GO. Furthermore, the well dispersed GO nanosheets could significantly improve the electrochemical activity of the CS as demonstrated by the electrochemical behaviors of pure CS and the GO/CS composite electrodes. Hence, the GO/CS nanocomposites film could be a promising candidate in the fabrication of electrochemical biosensors.

  8. Electrochemical investigations of advanced materials for microelectronic and energy storage devices

    NASA Astrophysics Data System (ADS)

    Goonetilleke, Pubudu Chaminda

    A broad range of electrochemical techniques are employed in this work to study a selected set of advanced materials for applications in microelectronics and energy storage devices. The primary motivation of this study has been to explore the capabilities of certain modern electrochemical techniques in a number of emerging areas of material processing and characterization. The work includes both aqueous and non-aqueous systems, with applications in two rather general areas of technology, namely microelectronics and energy storage. The sub-systems selected for investigation are: (i) Electrochemical mechanical and chemical mechanical planarization (ECMP and CMP, respectively), (ii) Carbon nanotubes in combination with room temperature ionic liquids (ILs), and (iii) Cathode materials for high-performance Li ion batteries. The first group of systems represents an important building block in the fabrication of microelectronic devices. The second and third groups of systems are relevant for new energy storage technologies, and have generated immense interests in recent years. A common feature of these different systems is that they all are associated with complex surface reactions that dictate the performance of the devices based on them. Fundamental understanding of these reactions is crucial to further development and expansion of their associated technologies. It is the complex mechanistic details of these surface reactions that we address using a judicious combination of a number of state of the art electrochemical techniques. The main electrochemical techniques used in this work include: (i) Cyclic voltammetry (CV) and slow scan cyclic voltammetry (SSCV, a special case of CV); (ii) Galvanostatic (or current-controlled) measurements; (iii) Electrochemical impedance spectroscopy (EIS), based on two different methodologies, namely, Fourier transform EIS (FT-EIS, capable of studying fast reaction kinetics in a time-resolved mode), and EIS using frequency response analysis (employed to study slow reactions such as solid state diffusion of Li). The designs of both the experimental equipment and the control variables change for studying the different aqueous and non-aqueous systems. The protocols for data analysis also change depending on the systems. In addition, it often becomes necessary to combine different aspects of the different experimental methods to obtain the necessary information about the system(s) under study. The experimental strategies and the associated theoretical considerations for developing these strategies are discussed in appropriate contexts of this work. CNT electrodes in combination with IL electrolytes are potentially important for electrochemical super-capacitors. We have carried out electrochemical investigation of such a system involving a paper-electrode of multiwall CNT in the IL of 1-Ethyl-3-methyl imidazolium ethylsulfate (EMIM-EtSO4). Our study concentrated on the analytical aspects of cyclic voltammetry (CV) to probe the double layer capacitance of these relatively unconventional systems. (that involve rather large charge-discharge time constants). Both theoretical and experimental aspects of CV for such systems have been discussed, focusing in particular, on the effects of faradaic side-reactions, electrolyte resistance and voltage scan speeds. The results have been analyzed using an electrode equivalent circuit model, demonstrating a method to account for the typical artifacts expected in CV of CNT-IL interfaces. Chemical-mechanical planarization (CMP) of copper has now become an integral part of modern semiconductor fabrication technology. Recently, electrochemical-mechanical planarization (ECMP) has emerged as a possible extension of CMP, where through voltage-activated removal of Cu surface layers, one can substantially minimize the down-force necessary for mechanical polishing However, the detailed electrochemical factors that are central to designing efficient abrasive-free electrolytes for ECMP are not clearly understood at the present time. The present work has addressed this issue by

  9. Treatment of papermaking tobacco sheet wastewater by electrocoagulation combined with electrochemical oxidation.

    PubMed

    Ma, Xiangjuan; Gao, Yang; Huang, Hanping

    2015-01-01

    Attempts were made in this study to examine the efficiency of electrocoagulation (EC) using aluminum (Al) anode and stainless steel net cathode combined with electrochemical oxidation with a β-PbO₂anode or a mixed metal oxide (MMO) anode for treatment of papermaking tobacco sheet wastewater, which has the characteristics of high content of suspended solids (SS), intensive color, and low biodegradability. The wastewater was first subjected to the EC process under 40 mA/cm² of current density, 2.5 g/L of NaCl, and maintaining the original pH of wastewater. After 6 minutes of EC process, the effluent was further treated by electrochemical oxidation. The results revealed that the removal of SS during the EC process was very beneficial to mass transfer of organics during electrochemical oxidation. After the combined process, 83.9% and 82.8% of chemical oxygen demand (COD) removal could be achieved on the β-PbO₂and MMO anodes, respectively. The main components of the final effluent were biodegradable organic acids, such as acetic acid, propionic acid, butyric acid, valeric acid, and hexahyl carbonic acid; the 5-day biochemical oxygen demand/chemical oxygen demand (BOD₅/COD) ratio increased from 0.06 to 0.85 (Al + β-PbO₂) or 0.80 (Al + MMO). Therefore, this integrated process is a promising alternative for pretreatment of papermaking tobacco sheet wastewater prior to biological treatment. PMID:25909726

  10. Elementary reaction modeling of solid oxide electrolysis cells: Main zones for heterogeneous chemical/electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Li, Wenying; Shi, Yixiang; Luo, Yu; Cai, Ningsheng

    2015-01-01

    A theoretical model of solid oxide electrolysis cells considering the heterogeneous elementary reactions, electrochemical reactions and the transport process of mass and charge is applied to study the relative performance of H2O electrolysis, CO2 electrolysis and CO2/H2O co-electrolysis and the competitive behavior of heterogeneous chemical and electrochemical reactions. In cathode, heterogeneous chemical reactions exist near the outside surface and the electrochemical reactions occur near the electrolyte. According to the mathematical analysis, the mass transfer flux D ?c determines the main zone size of heterogeneous chemical reactions, while the charge transfer flux ? ?V determines the other one. When the zone size of heterogeneous chemistry is enlarged, more CO2 could react through heterogeneous chemical pathway, and polarization curves of CO2/H2O co-electrolysis could be prone to H2O electrolysis. Meanwhile, when the zone size of electrochemistry is enlarged, more CO2 could react through electrochemical pathway, and polarization curves of CO2/H2O co-electrolysis could be prone to CO2 electrolysis. The relative polarization curves, the ratio of CO2 participating in electrolysis and heterogeneous chemical reactions, the mass and charge transfer flux and heterogeneous chemical/electrochemical reaction main zones are simulated to study the effects of cathode material characteristics (porosity, particle diameter and ionic conductivity) and operating conditions (gas composition and temperature).

  11. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage.

    PubMed

    Sassin, Megan B; Mansour, Azzam N; Pettigrew, Katherine A; Rolison, Debra R; Long, Jeffrey W

    2010-08-24

    We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO(x)) coatings are generated at the interior and exterior surfaces of macroscopically thick ( approximately 90 microm) carbon nanofoam paper substrates via redox reaction with aqueous K(2)FeO(4). The resulting FeO(x)-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li(2)SO(4)), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g(-1), 121 F cm(-3), and 0.85 F cm(-2), respectively, even at modest FeO(x) loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO(x) coating, delivering specific capacitance >300 F g(-1) normalized to the content of FeO(x) as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li(2)SO(4) electrolyte effectively suppresses the electrochemical dissolution of the FeO(x) coating, resulting in <20% capacitance fade over 1000 consecutive cycles. PMID:20731433

  12. Mechanistic studies of water electrolysis and hydrogen electro-oxidation on high temperature ceria-based solid oxide electrochemical cells.

    PubMed

    Zhang, Chunjuan; Yu, Yi; Grass, Michael E; Dejoie, Catherine; Ding, Wuchen; Gaskell, Karen; Jabeen, Naila; Hong, Young Pyo; Shavorskiy, Andrey; Bluhm, Hendrik; Li, Wei-Xue; Jackson, Gregory S; Hussain, Zahid; Liu, Zhi; Eichhorn, Bryan W

    2013-08-01

    Through the use of ambient pressure X-ray photoelectron spectroscopy (APXPS) and a single-sided solid oxide electrochemical cell (SOC), we have studied the mechanism of electrocatalytic splitting of water (H2O + 2e(-) → H2 + O(2-)) and electro-oxidation of hydrogen (H2 + O(2-) → H2O + 2e(-)) at ∼700 °C in 0.5 Torr of H2/H2O on ceria (CeO2-x) electrodes. The experiments reveal a transient build-up of surface intermediates (OH(-) and Ce(3+)) and show the separation of charge at the gas-solid interface exclusively in the electrochemically active region of the SOC. During water electrolysis on ceria, the increase in surface potentials of the adsorbed OH(-) and incorporated O(2-) differ by 0.25 eV in the active regions. For hydrogen electro-oxidation on ceria, the surface concentrations of OH(-) and O(2-) shift significantly from their equilibrium values. These data suggest that the same charge transfer step (H2O + Ce(3+) <-> Ce(4+) + OH(-) + H(•)) is rate limiting in both the forward (water electrolysis) and reverse (H2 electro-oxidation) reactions. This separation of potentials reflects an induced surface dipole layer on the ceria surface and represents the effective electrochemical double layer at a gas-solid interface. The in situ XPS data and DFT calculations show that the chemical origin of the OH(-)/O(2-) potential separation resides in the reduced polarization of the Ce-OH bond due to the increase of Ce(3+) on the electrode surface. These results provide a graphical illustration of the electrochemically driven surface charge transfer processes under relevant and nonultrahigh vacuum conditions. PMID:23822749

  13. Advanced EMU electrochemically regenerable CO2 and moisture absorber module breadboard

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Sudar, M.; Chang, B. J.

    1988-01-01

    The applicability of the Electrochemically Regenerable Carbon Dioxide and Moisture Absorption Technology to the advanced extravehicular mobility unit was demonstrated by designing, fabricating, and testing a breadboard Absorber Module and an Electrochemical Regenerator. Test results indicated that the absorber module meets or exceeds the carbon dioxide removal requirements specified for the design and can meet the moisture removal requirement when proper cooling is provided. CO2 concentration in the vent gas stream was reduced from 0.52 to 0.027 kPa (3.9 to 0.20 mm Hg) for the full five hour test period. Vent gas dew point was reduced from inlet values of 294 K (69 F) to 278 K (41 F) at the outlet. The regeneration of expended absorbent was achieved by the electrochemical method employed in the testing. An absorbent bed using microporous hydrophobic membrane sheets with circulating absorbent is shown to be the best approach to the design of an Absorber Module based on sizing and performance. Absorber Module safety design, comparison of various absorbents and their characteristics, moisture absorption and cooling study and subsystem design and operation time-lining study were also performed.

  14. Electrochemically deposited gallium oxide nanostructures on silicon substrates.

    PubMed

    Ghazali, Norizzawati Mohd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    We report a synthesis of β-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. β-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  15. AES and TDS studies of electrochemically oxidized Pt(100)

    NASA Astrophysics Data System (ADS)

    Wagner, F. T.; Ross, P. N.

    Anodic films formed on Pt(100) in 0.3M HF using a quasi thin-layer electrochemical cell within a vacuum envelope were transferred to ultra-high vacuum for study by AES and TDS. Films generated at potentials above 1.1 V (RHE) survived emersion and pumpdown in a hydrated state. As the emersion potential increased, the integrated H 2O and O 2 thermal desorption signals increased in parallel, indicating a constant stoichiometry consistent with the formation of a platinum hydroxide layer. The oxygen TDS and AES signals after holding the electrode at constant potentials above 1.9 V (RHE) for several minutes saturated with formation of a surface phase containing 2.3 O/Pt (desorbing as O 2) and 2 H 2O/Pt. Much thicker films could be grown by AC polarization. XPS analysis combined with TDS indicated the most likely chemical state of the saturation layer to be Pt(OH) 4. Water evolved from all films at 400 K and higher, temperatures much higher than that reported for surface adsorbed hydroxyl groups produced by low-temperature gas-phase coadsorption of O 2 and h 2O [G.B. Fisher and B.A. Sexton, Phys. Rev. Letters 44 (1980) 683]. The higher temperature desorption is ascribed to the incorporation of hydroxyls into a surface phase involving place-exchange between Pt and OH.

  16. Electrochemically deposited gallium oxide nanostructures on silicon substrates.

    TOXLINE Toxicology Bibliographic Information

    Ghazali NM; Mahmood MR; Yasui K; Hashim AM

    2014-01-01

    We report a synthesis of ?-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. ?-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method.

  17. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ghazali, Norizzawati Mohd; Mahmood, Mohamad Rusop; Yasui, Kanji; Hashim, Abdul Manaf

    2014-03-01

    We report a synthesis of ?-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. ?-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method.

  18. Electrochemically deposited gallium oxide nanostructures on silicon substrates

    PubMed Central

    2014-01-01

    We report a synthesis of ?-Ga2O3 nanostructures on Si substrate by electrochemical deposition using a mixture of Ga2O3, HCl, NH4OH, and H2O. The presence of Ga3+ ions contributed to the deposition of Ga2O3 nanostructures on the Si surface with the assistance of applied potentials. The morphologies of the grown structures strongly depended on the molarity of Ga2O3 and pH level of electrolyte. ?-Ga2O3 nanodot-like structures were grown on Si substrate at a condition with low molarity of Ga2O3. However, Ga2O3 nanodot structures covered with nanorods on top of their surfaces were obtained at higher molarity, and the densities of nanorods seem to increase with the decrease of pH level. High concentration of Ga3+ and OH- ions may promote the reaction of each other to produce Ga2O3 nanorods in the electrolyte. Such similar nature of Ga2O3 nanorods was also obtained by using hydrothermal process. The grown structures seem to be interesting for application in electronic and optoelectronic devices as well as to be used as a seed structure for subsequent chemical synthesis of GaN by thermal transformation method. PMID:24629107

  19. Electrolytic destruction of spent tributylphosphate extractant using silver catalyzed electrochemical oxidation

    SciTech Connect

    Almon, A.C.; Buchanan, B.R.

    1990-01-01

    Silver catalyzed electrochemical oxidation of organic species is examined in analytical detail. This paper describes the mechanisms, reactions rates, products, intermediates, capabilities, limitations, and optimal reaction conditions of the electrochemical destruction of organic waste. A small bench-top electrocell being tested for the treatment of small quantity laboratory waste is described. The 200 mL electrochemical cell used has a processing capacity of 50 mL per day, and can treat both radioactive and non-radioactive waste. In the silver catalyzed process, Ag(I) is electrochemically oxidized to Ag(II) which attacks organic species such as tributylphosphate (TBP), tetraphenylborate (TPB), and benzene {sup 1,2}. This paper focuses on the destruction of tributylphosphate (TBP) although several organic species have been destroyed using this process. The organic species are converted to carbon dioxide, water, and inorganic acids. The process has the potential for RCRA (Resource Conservation and Recovery Act) waste treatment as well as disposal of large amounts of radioactive organic waste.

  20. Effect of additives on electrochemical performance of lithium nickel cobalt manganese oxide at high temperature

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung Seok; Choi, Suneui; Song, JunHo; Woo, Sang-Gil; Jo, Yong Nam; Choi, Jungkyu; Yim, Taeeun; Yu, Ji-Sang; Kim, Young-Jun

    2014-05-01

    Lithium-nickel-cobalt-manganese oxide, Li[NixCoyMnz]O2 (NCM) is a low-cost cathode material with a high capacity and a moderately high rate capability, however, it still suffers from poor electrochemical performance. In this study, several types of additives are attempted to enhance the surface stability of high-Ni-content (Ni ? 60%) cathodes and the most effective additive turns out to be PS. The cycle performance in the presence of 2% PS is much improved at a high temperature of 60 C: (1) 98.9% of its initial capacity is preserved, (2) the increase in thickness is only 17.9%, preventing undesired swellings, and (3) gases are not generated in large amounts with the internal pressure being 56.4 kPa. The FT-IR spectroscopy results suggest that the surface of the cathode in the presence of 2% PS is covered with a film of alkyl sulfone components (RSOSR and RSO2SR), which is possibly formed by the electrochemical oxidation of PS. The current results confirm that the electrochemical performance of Ni-rich cathodes can be improved via the appropriate use of additives. They also indicate that among the tested additive candidates in this study, PS is highly desirable for enhancing the electrochemical performance of Ni-rich cathodes.

  1. Electrochemical synthesis of oxide thick film on the stabilized zirconia surface in molten salt

    SciTech Connect

    Shan, Y.J.; Nakamura, Tetsuro; Inaguma, Yoshiyuki; Itoh, Mitsuru

    1995-07-01

    A new method for the electrochemical synthesis of oxide thick film in molten salt was developed. The following galvanic cell was assembled, and the electrolysis was carried out at 973 K: Pt, metal{vert_bar}(50{minus}x/2) mole percent (m/o) KCl{minus}(50{minus}x/2) m/o NaCl{minus}x m/o additive{vert_bar}(O{sup 2{minus}})YSZ{vert_bar}O{sub 2}, Pt where the additive was an oxide or a chloride containing the metal ions of the anode. When the additive was dissolved and ionized in the molten salt, its oxide film formed on the stabilized zirconia surface. At this time, metal ions derived from the additive were carried to the stabilized zirconia surface under an electric field, and reacted with oxide ions, coming from the oxygen electrode through zirconia solid electrolyte, to form the oxide film.

  2. Electrochemical oxidation of ?Am(III) in nitric acid by a terpyridyl-derivatized electrode.

    PubMed

    Dares, Christopher J; Lapides, Alexander M; Mincher, Bruce J; Meyer, Thomas J

    2015-11-01

    Selective oxidation of trivalent americium (Am) could facilitate its separation from lanthanides in nuclear waste streams. Here, we report the application of a high-surface-area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand to the oxidation of Am(III) to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 volts (V) versus the saturated calomel electrode were applied, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 molar acid. This simple electrochemical procedure provides a method to access the higher oxidation states of Am in noncomplexing media for the study of the associated coordination chemistry and, more important, for more efficient separation protocols. PMID:26542564

  3. Electrochemical oxidation of cyanide in the hydrocyclone cell

    SciTech Connect

    Dhamo, N.

    1996-12-31

    A diluted electroplating cyanide rinse water has been used to test the use of the hydrocyclone cell (HCC) in batch recycle mode of operation for the simultaneous oxidation of cyanide during the electrodeposition of silver. The results obtained in this work with regard to the final products, current efficiency and the number of transferred electrons per CN{sup {minus}} helped to establish a probable reaction scheme. According to this, the process occurs mainly with one-electron transfer, through cyanate and cyanogen as intermediate species. Meanwhile, under conditions where the electrolyte circulates in an open bath and flows successively through the cathodic and the anodic compartments, as in the case of the HCC system, the cyanate could be produced by the direct oxidation through air and/or generated peroxide and CN could be lost as HCN (g).

  4. A Molecularly Imprinted Polymer with Incorporated Graphene Oxide for Electrochemical Determination of Quercetin

    PubMed Central

    Sun, Si; Zhang, Mengqi; Li, Yijun; He, Xiwen

    2013-01-01

    The molecularly imprinted polymer based on polypyrrole film with incorporated graphene oxide was fabricated and used for electrochemical determination of quercetin. The electrochemical behavior of quercetin on the modified electrode was studied in detail using differential pulse voltammetry. The oxidation peak current of quercetin in B-R buffer solution (pH = 3.5) at the modified electrode was regressed with the concentration in the range from 6.0 10?7 to 1.5 10?5 mol/L (r2 = 0.997) with a detection limit of 4.8 10?8 mol/L (S/N = 3). This electrode showed good stability and reproducibility. In the above mentioned range, rutin or morin which has similar structures and at the same concentration as quercetin did not interfere with the determination of quercetin. The applicability of the method for complex matrix analysis was also evaluated. PMID:23698263

  5. Electrochemical reactions of S-, Se-, and Te-containing organic compounds. XV. Oxidation of selenoanisole derivatives

    SciTech Connect

    Latypova, V.Z.; Kargin, Yu.M.; Zhuikov, V.V.; Chmutova, G.A.; Lisitsyn, Yu.A.

    1986-03-10

    The electrochemical oxidation of a number of derivatives of selenoanisole RC/sub 6/H/sub 4/SeCH/sub 3/ in acetonitrile on a platinum rotating disk electrode takes place according to a two-electron elimination mechanism with the formation of an intermediate unstable radical cation, which undergoes a first-order reaction (deprotonation, dealkylation, or an interaction with macrocomponents of the solution). A comparison of the results of the electrochemical oxidation and the spectrophotometry of CT complexes with the use of the methods of sigma-rho analysis demonstrated the constancy of the kinetic components of E/sub 1/2/ (R not equal to p-NH/sub 2/) and the distorting influence of adsorption effects on it. The compound with R = p-NH/sub 2/ reacts like other substituted anilines. The electrophilic constant of the p-SeCH/sub 3/ substituent has been evaluated (sigma/sup +/ = 0.59 +/- 0.05).

  6. Glucose oxidase catalysed oxidation of glucose in a dialysis membrane electrochemical reactor (D-MER).

    PubMed

    Bassguy, R; Dlcouls-Servat, K; Bergel, A

    2004-04-01

    The purpose of this work was to evaluate the effectiveness of a new Membrane Electrochemical Reactor (MER) for the production of gluconic acid by glucose oxidase (GOD) catalysed glucose oxidation. The GOD was confined against the electrode surface with a dialysis membrane. The role of the electrochemical step was to eliminate by oxidation the hydrogen peroxide that appeared as a by-product of the reaction and strongly inhibited and/or inactivated GOD. The dialysis MER gave a transformation ratio of 30% with an initial glucose concentration of around 300 mM. This result is significantly better than the maximum of 10% obtained when hydrogen peroxide was eliminated by addition of a large excess of catalase in solution, as is generally done. The D-MER also revealed unexpected properties of the enzyme kinetics, such as an oscillatory behaviour, which were discussed. PMID:15015074

  7. Strongly improved electrochemical cycling durability by adding iridium to electrochromic nickel oxide films.

    PubMed

    Wen, Rui-Tao; Niklasson, Gunnar A; Granqvist, Claes G

    2015-05-13

    Anodically colored nickel oxide (NiO) thin films are of much interest as counter electrodes in tungsten oxide based electrochromic devices such as "smart windows" for energy-efficient buildings. However, NiO films are prone to suffering severe charge density degradation upon prolonged electrochemical cycling, which can lead to insufficient device lifetime. Therefore, a means to improve the durability of NiO-based films is an important challenge at present. Here we report that the incorporation of a modest amount of iridium into NiO films [Ir/(Ir + Ni) = 7.6 atom %] leads to remarkable durability, exceeding 10000 cycles in a lithium-conducting electrolyte, along with significantly improved optical modulation during extended cycling. Structure characterization showed that the face-centered-cubic-type NiO structure remained after iridium addition. Moreover, the crystallinity of these films was enhanced upon electrochemical cycling. PMID:25919917

  8. Electrochemical fabrication of platinum nanoflakes on fulleropyrrolidine nanosheets and their enhanced electrocatalytic activity and stability for methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Ma, Li-Xia

    2015-07-01

    Pyridine-functionalized fulleropyrrolidine nanosheets are prepared by a fast reprecipitation method under ultrasonication, and used as a novel nanostructured support materials to fabricate Pt catalyst nanoflakes by a simple electrodeposition approach. The as-prepared novel Pt-fullerene hybrid catalyst (Pt/PyC60) exhibits much enhanced electrocatalytic activity and stability for methanol oxidation reaction compared to the unsupported Pt nanoflakes and commercial Pt/C. The introduction of nanostructured fulleropyrrolidine as new support materials not only increases the electrochemically active surface area of catalyst, but also significantly improves the long-term stability. This will contribute to developing functionalized fullerenes as new nanostructured support materials for advanced electrocatalysts in fuel cells.

  9. Surface protonation and electrochemical activity of oxides in aqueous solution

    SciTech Connect

    Goodenough, J.B.; Manoharan, R.; Paranthaman, M. )

    1990-03-14

    Measurements of the pH dependence of the surface-charge density on oxide particles are correlated with the pH dependence of the cyclic voltammograms and of the chemical activity of the oxide for electrolysis/fuel cell reactions. Studies of the pyrochlores Pb{sub 2}M{sub 2{minus}x}Pb{sub x}O{sub 7{minus}y} and the rutiles in MO{sub 2} (M = Ru or Ir) and of the perovskite Sr{sub 1{minus}x}NbO{sub 3{minus}{delta}} show that (1) the oxygen-reduction reaction, found on the pyrochlores in alkaline solution, occurs by exchange of a surface OH{sup {minus}} species at an O{prime} site with an adsorbed O{sub 2}{sup {minus}} solution species, (2) the oxygen-evolution and chlorine-evolution reactions occur at a surface O{sup {minus}} species made accessible by surface oxidation of a redox couple lying close to the top of the O{sup 2{minus}}:2p{sup 6} valence band, and (3) the hydrogen-evolution reaction occurs at the surface OH{sub 2} species bonded to cations with a surface redox couple lying close to the H{sup +}/H{sub 2} level in solution.

  10. Electrochemical activation of Cp* iridium complexes for electrode-driven water-oxidation catalysis.

    PubMed

    Thomsen, Julianne M; Sheehan, Stafford W; Hashmi, Sara M; Campos, Jess; Hintermair, Ulrich; Crabtree, Robert H; Brudvig, Gary W

    2014-10-01

    Organometallic iridium complexes bearing oxidatively stable chelate ligands are precursors for efficient homogeneous water-oxidation catalysts (WOCs), but their activity in oxygen evolution has so far been studied almost exclusively with sacrificial chemical oxidants. In this report, we study the electrochemical activation of Cp*Ir complexes and demonstrate true electrode-driven water oxidation catalyzed by a homogeneous iridium species in solution. Whereas the Cp* precursors exhibit no measurable O2-evolution activity, the molecular species formed after their oxidative activation are highly active homogeneous WOCs, capable of electrode-driven O2 evolution with high Faradaic efficiency. We have ruled out the formation of heterogeneous iridium oxides, either as colloids in solution or as deposits on the surface of the electrode, and found indication that the conversion of the precursor to the active molecular species occurs by a similar process whether carried out by chemical or electrochemical methods. This work makes these WOCs more practical for application in photoelectrochemical dyads for light-driven water splitting. PMID:25188635

  11. Electrochemical treatment of wastewater: A case study of reduction of DNT and oxidation of chlorinated phenols

    SciTech Connect

    Rodgers, J.D.; Bunce, N.J.; Jedral, W.

    1999-07-01

    Electrochemical treatment is under consideration as a treatment option for several recalcitrant compounds. In this work the authors investigate the oxidation of chlorophenols and the reduction of nitroaromatics. In the case of chlorinated phenols, they explore the problem of anode fouling which has hampered electrolytic treatment of phenolic compounds by examining phenols differing in the extent of chlorination, according to the mechanism of oxidation at different electrode types. Linear sweep voltammograms at a Pt anode were interpreted in terms of deposition of oligomers on the anode surface. Passivation increased in parallel with the uncompensated resistance of the solution and occurred only at potentials at which water is oxidized, suggesting that the formation of the oligomer film involves attack of hydroxyl radicals on electrochemically oxidized substrate. Relative reactivities of congeners were anode-dependent, due to different mechanisms of oxidation: direct electron transfer oxidation at PbO{sub 2} and hydroxyl radical attack at SnO{sub 2} and IrO{sub 2}. Voltammetry of 2,6-dinitrotoluene (DNT) was consistent with literature values. DNT was reduced at several cathodes with the most promising result at Ni-plated Ni wire. At current densities {lt} 0.1 mA cm{sup {minus}2}, current efficiencies {gt} 50% could be achieved with 4-chlorophenol at all three anodes and for 2,6-DNT at Ni-plated Ni wire.

  12. An electrochemical approach to graphene oxide coated sulfur for long cycle life

    NASA Astrophysics Data System (ADS)

    Moon, Joonhee; Park, Jungjin; Jeon, Cheolho; Lee, Jouhahn; Jo, Insu; Yu, Seung-Ho; Cho, Sung-Pyo; Sung, Yung-Eun; Hong, Byung Hee

    2015-07-01

    Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ~723.7 mA h g-1 even after 100 cycles at 0.5 C.Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ~723.7 mA h g-1 even after 100 cycles at 0.5 C. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01951f

  13. Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes.

    PubMed

    da Silva, Salatiel Wohlmuth; Klauck, Cláudia Regina; Siqueira, Marco Antônio; Bernardes, Andréa Moura

    2015-01-23

    Four different oxidation process, namely direct photolysis (DP) and three advanced oxidation processes (heterogeneous photocatalysis - HP, eletrochemical oxidation - EO and photo-assisted electrochemical oxidation - PEO) were applied in the treatment of wastewater containing nonylphenol ethoxylate (NPnEO). The objective of this work was to determine which treatment would be the best option in terms of degradation of NPnEO without the subsequent generation of toxic compounds. In order to investigate the degradation of the surfactant, the processes were compared in terms of UV/Vis spectrum, mineralization (total organic carbon), reaction kinetics, energy efficiency and phytotoxicity. A solution containing NPnEO was prepared as a surrogate of the degreasing wastewater, was used in the processes. The results showed that the photo-assisted processes degrade the surfactant, producing biodegradable intermediates in the reaction. On the other hand, the electrochemical process influences the mineralization of the surfactant. The process of PEO carried out with a 250W lamp and a current density of 10mA/cm(2) showed the best results in terms of degradation, mineralization, reaction kinetics and energy consumption, in addition to not presenting phytotoxicity. Based on this information, this process can be a viable alternative for treating wastewater containing NPnEO, avoiding the contamination of water resources. PMID:25262384

  14. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOEpatents

    Balazs, G.B.; Lewis, P.R.

    1999-07-06

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components. 2 figs.

  15. Mediated electrochemical oxidation of organic wastes using a Co(III) mediator in a neutral electrolyte

    DOEpatents

    Balazs, G. Bryan (Livermore, CA); Lewis, Patricia R. (Livermore, CA)

    1999-01-01

    An electrochemical cell with a Co(III) mediator and neutral pH anolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the cobalt mediator oxidizes the organics and insoluble radioactive species and is regenerated at the anode until all organics are converted to carbon dioxide and destroyed. The neutral electrolyte is non-corrosive, and thus extends the lifetime of the cell and its components.

  16. An Investigation into the Effect of a Post-electroplating Electrochemical Oxidation Treatment on Tin Whisker Formation

    NASA Astrophysics Data System (ADS)

    Ashworth, M. A.; Haspel, D.; Wu, L.; Wilcox, G. D.; Mortimer, R. J.

    2015-01-01

    Since the `cracked oxide theory' was proposed by Tu in 1994,1 there has only been a limited number of studies that have sought to investigate the effect of the Sn oxide on whisker growth. The current study has used electrochemical oxidation to produce oxide films, which has enabled the effect of the surface oxide thickness on whisker growth to be established. The effect of oxide thickness on whisker growth has been investigated for tin electrodeposits on both Cu and brass substrates. The influence of applied oxidation potential on the thickness of the Sn oxide film has been investigated using x-ray photoelectron spectroscopy (XPS) for potassium bicarbonate-carbonate and borate buffer electrolyte solutions. Whisker growth from electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass has been investigated and compared with samples left to develop a native air-formed oxide. XPS studies show that the thickness of the electrochemically formed Sn oxide film is dependent on the applied oxidation potential and the total charge passed. Subsequent whisker growth studies demonstrate that electrochemically oxidised Sn-Cu deposits on Cu and Sn deposits on brass are significantly less susceptible to whisker growth than those having a native oxide film. For Sn deposits on brass, the electrochemically formed Sn oxide greatly reduces Zn oxide formation at the surface of the tin deposit, which results in whisker mitigation. For Sn-Cu deposits on Cu, the reduction in whisker growth must simply derive from the increased thickness of the Sn oxide, i.e. the Sn oxide film has an important role in stemming the development of whiskers.

  17. Electrochemically regenerable metabolic CO2 and moisture control system for an advanced EMU application

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Beckstrom, P. S.; Cusick, R. J.

    1988-01-01

    Regenerable CO2 and moisture removal techniques that reduce expendables and logistics requirements are needed to sustain people undertaking extravehicular activities for the Space Station. NASA has been investigating ways to advance the Electrochemically Regenerable CO2 and Moisture Absorption (ERCA) technology to replace the nonregenerable solid lithium hydroxide absorber for the advanced Portable Life Support System (PLSS). The ERCA technology, due to its use of liquid absorbent, has the ability to effectively satisfy the high metabolic CO2 and moisture removal requirements of PLSS applications. This paper defines the ERCA technology concept and its advantages for the PLSS application, reviews breadboard and subscale testdata and presents the results of design concepts for a prototype Absorber Module of improved performance and the physical characteristics of the projected flight hardware.

  18. COD and color removal of reactive orange 16 dye solution by electrochemical oxidation and adsorption method

    NASA Astrophysics Data System (ADS)

    Zakaria, Zuhailie; Ahmad, Wan Yaacob Wan; Yusop, Muhammad Rahimi; Othman, Mohamed Rozali

    2015-09-01

    Degradation of Reactive Orange 16 (RO16) dye was investigated using electrochemical oxidation and adsorption (batch method) using mixture of coconut trunk charcoal-graphite-tin-polyvinyl chloride(PVC). In batch studies for adsorbents pellet and powder form of the charcoal mixture were used. RO16 was chosen as the model dye because of its high resistance towards conventional treatment methods. NaCl and RO16 concentration, treatment duration, weight of electrode and adsorbent and volume of solution were kept constant for both methods. The effectiveness of the treatments were compared and evaluated by percentage of RO16 decolorization and chemical oxygen demand (COD) removal and results indicated that electrochemical oxidation method ables to decolorized RO16 dye up to 98.5% after 20 minutes electrolysis time while pellet and powder in batch method only removed 17.1 and 33.6% of RO16 color respectively. However, only 45.6% of COD can be removed using electrochemical oxidation method while pellet and powder in batch method removed 47.8 and 49.6% of COD respectively. The decolorization and COD removal of RO16 was determined using UV-Vis spectrophotometer (by the changes of absorption spectrum intensity of azo chromophore (-N=N-) at λ=388 and 492.50 nm and Hach spectrophotometer respectively. FTIR was used to determine functional groups present in the coconut trunk charcoal.

  19. Electrochemical oxidation of the poultry manure anaerobic digested effluents for enhancing pollutants removal by Chlorella vulgaris.

    PubMed

    Wang, Mengzi; Cao, Wei; Wu, Yu; Lu, Haifeng; Li, Baoming

    2016-06-01

    The mechanisms and pseudo-kinetics of the electrochemical oxidation for wastewater treatment and the synergistic effect of combining algal biological treatment were investigated. NaCl, Na2SO4 and HCl were applied to compare the effect of electrolyte species on nutrients removal. NaCl was proved to be more efficient in removing ammonia ([Formula: see text]), total phosphorus (TP), total organic carbon (TOC) and inorganic carbon (IC). [Formula: see text] oxidation by using Ti/Pt-IrO2 electrodes was modelled, which indicates that the [Formula: see text] removal followed the zero-order kinetic with sufficient Cl(-) and the first-order kinetic with insufficient Cl(-), respectively. The feasibility of combining electrochemical oxidation with microalgae cultivation for wastewater treatment was also determined. A 2 h electrochemical pretreatment reduced 57% [Formula: see text], 76% TP, 72% TOC and 77% IC from the digested effluent, which is applied as feedstock for algae cultivation, and resulted in increasing both the biomass production and pollutants removal efficiencies of the algal biological process. PMID:26853507

  20. Simultaneous hydrogen production and electrochemical oxidation of organics using boron-doped diamond electrodes.

    PubMed

    Jiang, Juyuan; Chang, Ming; Pan, Peng

    2008-04-15

    This paper presents advantages of using a boron-doped diamond (BDD) electrode for hydrogen production and wastewater treatment in a single electrochemical cell. Results indicated that the BDD electrode possessed the widest known electrochemical window, allowing new possibilities for both anodic and cathodic reactions to simultaneously take place. The BDD electrode exhibited high anodic potential, generating high oxidation state radicals that facilitated oxidation of toxic waste organic compounds such as 4-nitrophenols. In contrast, because of widening of potential windows, the rate of hydrogen evolution at the cathode was significantly increased. Time-on-stream concentrations of reaction intermediates were monitored to elucidate mechanism involved in 4-nitrophenol oxidation. Spalling, fouling, or reduction in the thickness of thin-film diamond coating was not observed. Overall, the BDD electrode exhibits unique properties including chemical inertness, anticorrosion, and extended service life. These properties are especially important in wastewater treatment. Economic advantages were attributed to the low cost and long duration BDD electrode and the valuable hydrogen byproduct produced. Analysis has shown that technology associated with the BDD electrode could be effectively implemented with minimum energy input and capital requirements. When combined with solar energy and fuel cells, electrochemical wastewater processing can become energy efficient and cost-effective. PMID:18497166

  1. Biological treatment of a textile effluent after electrochemical oxidation of reactive dyes.

    PubMed

    Vilaseca, Mercè; Gutiérrez, Maria-Carmen; López-Grimau, Victor; López-Mesas, Montserrat; Crespi, Martí

    2010-02-01

    In this work, a synthetic textile effluent containing a reactive dye (C.I. Reactive Orange 4) was treated in an electrochemical cell with titanium covered by platinum oxide (Ti/PtOx) electrodes to remove color. The discolored effluent was mixed with other textile mill process effluents (scouring, bleaching, washing, etc.), according to the rate of each effluent in the mill, and was submitted to biological treatment (activated sludge plant). Two biological plants were run simultaneously to evaluate the influence of oxidant products generated during the electrochemical treatment. The final chemical oxygen demand (COD) removal in both plants was 65 to 72%. The yield of the activated sludge plants was not affected by the addition of 10% of the discolored dyeing effluent (even when oxidants products were not removed), which indicates that the previous electrochemical treatment do not produce inhibition effects on the biological plant. However, in the case of direct addition of the discolored effluent, the biological treatment plant required a longer adaptation period. In addition, the electrolytic respirometry tests showed that all the biodegradable organic matter was removed, which implies that the yield in organic matter removal was the maximum possible for this type of treatment. PMID:20183984

  2. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  3. Writable electrochemical energy source based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Wei, Di

    2015-10-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  4. Cobalt Oxide Nanoflowers for Electrochemical Determination of Glucose

    NASA Astrophysics Data System (ADS)

    Balouch, Quratulain; Ibupoto, Zafar Hussain; Khaskheli, Ghulam Qadir; Soomro, Razium Ali; Sirajuddin; Samoon, Muhammad Kashif; Deewani, Vinod Kumar

    2015-10-01

    This study reports a simple, economic, and efficient approach for synthesis of cobalt oxide (Co3O4) nanostructures by a low-temperature aqueous chemical growth method. The synthesized Co3O4 nanostructures were characterized by various techniques such as x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The synthesized nanostructures exhibited flower-shaped morphology with thickness of each pellet in the range of 200 to 300 nm. The synthesized Co3O4 nanostructures with excellent structural features exhibited high electrocatalytic activity towards the oxidation of glucose in alkaline solution. This enabled development of a highly sensitive (1618.71 µA mM-1 cm-2), stable and reproducible non-enzymatic glucose sensor. The developed sensor demonstrated high anti-interference capability against common interferents such as dopamine, ascorbic acid and uric acid. Furthermore, the applicability of the developed sensor for the determination of glucose from human blood serum provides an alternative approach for the routine glucose analysis.

  5. Writable electrochemical energy source based on graphene oxide.

    PubMed

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm(3) and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  6. Preparation of silver nanoparticles/graphene nanosheets as a catalyst for electrochemical oxidation of methanol

    SciTech Connect

    Han, Kun; Miao, Peng; Tang, Yuguo; Tong, Hui; Zhu, Xiaoli; Liu, Tao; Cheng, Wenbo

    2014-02-03

    In this report, silver nanoparticles (AgNPs) decorated graphene nanosheets have been prepared based on the reduction of Ag ions by hydroquinone, and their catalytic performance towards the electrochemical oxidation of methanol is investigated. The synthesis of the nano-composite is confirmed by transmission electron microscope measurements and UV-vis absorption spectra. Excellent electrocatalytic performance of the material is demonstrated by cyclic voltammograms. This material also contributes to the low peak potential of methanol oxidation compared with most of the other materials.

  7. Experimental study on electrochemical hydrogen pump of SrZrO{sub 3}-based oxide

    SciTech Connect

    Tanaka, M.; Asakura, Y.; Uda, T.

    2008-07-15

    The electrochemical hydrogen pump properties of the SrZr{sub 0.8}In{sub 0.2}O{sub 3-{alpha}} proton conducting oxide were evaluated under various atmospheres, temperatures and the effect of oxygen gas in the cathode for the recovery of hydrogen isotopes. It was found that high temperature is not necessarily required and protonic conductivity of the proton conducting oxide rather than total conductivity should be observed to improve the performance of the hydrogen pump. Furthermore, the presence of oxygen in the cathode compartment plays an important role in the enhancement of the hydrogen pump performance. (authors)

  8. ADVANCED OXIDATION PROCESSES (AOP'S FOR THE TREATMENT OF CCL CHEMICALS

    EPA Science Inventory

    Research on treatment of Contaminant Candidate List (CCL) chemicals is being conducted. Specific groups of contaminants on the CCL will be evaluated using numerous advanced oxidation processes (AOPs). Initially, these CCL contaminants will be evaluated in groups based on chemical...

  9. SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING

    EPA Science Inventory

    This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...

  10. Conductive diamond electrochemical oxidation of caffeine-intensified biologically treated urban wastewater.

    PubMed

    Martín de Vidales, María J; Millán, María; Sáez, Cristina; Pérez, José F; Rodrigo, Manuel A; Cañizares, Pablo

    2015-10-01

    In this work, the usefulness of Conductive Diamond Electrochemical Oxidation (CDEO) to degrade caffeine in real urban wastewater matrixes was assessed. The oxidation of actual wastewater intensified with caffeine (from 1 to 100 mg L(-1)) was studied, paying particular attention to the influence of the initial load of caffeine and the differences observed during the treatment of caffeine in synthetic wastewater. The results showed that CDEO is a technology that is capable of efficiently degrading this compound even at very low concentrations and that it can even be completely depleted. Profiles of the ionic species of S (SO4(2-)), N (NH4(+), NO3(-)) and Cl (ClO(-), ClO3(-) and ClO4(-)) were monitored and explained for plausible oxidation mechanisms. It was observed that the efficiency achieved is higher in the treatment of real wastewater than in the oxidation of synthetic wastewater because of the contribution of electrogenerated oxidant species such as hypochlorite. The formation of chlorate and perchlorate during electrochemical processes was observed, and a combined strategy to prevent this important drawback was successfully tested based on the application of low current densities with the simultaneous dosing of hydrogen peroxide. PMID:26048815

  11. High-temperature "spectrochronopotentiometry": correlating electrochemical performance with in situ Raman spectroscopy in solid oxide fuel cells.

    PubMed

    Kirtley, John D; Halat, David M; McIntyre, Melissa D; Eigenbrodt, Bryan C; Walker, Robert A

    2012-11-20

    Carbon formation or "coking" on solid oxide fuel cell (SOFC) anodes adversely affects performance by blocking catalytic sites and reducing electrochemical activity. Quantifying these effects, however, often requires correlating changes in SOFC electrochemical efficiency measured during operation with results from ex situ measurements performed after the SOFC has been cooled and disassembled. Experiments presented in this work couple vibrational Raman spectroscopy with chronopotentiometry to observe directly the relationship between graphite deposited on nickel cermet anodes and the electrochemical performance of SOFCs operating at 725 °C. Raman spectra from Ni cermet anodes at open circuit voltage exposed to methane show a strong vibrational band at 1556 cm(-1) assigned to the "G" mode of highly ordered graphite. When polarized in the absence of a gas-phase fuel, these carbon-loaded anodes operate stably, oxidizing graphite to form CO and CO(2). Disappearance of graphite intensity measured in the Raman spectra is accompanied by a steep ∼0.8 V rise in the cell potential needed to keep the SOFC operating under constant current conditions. Continued operation leads to spectroscopically observable Ni oxidation and another steep rise in cell potential. Time-dependent spectroscopic and electrochemical measurements pass through correlated equivalence points providing unequivocal, in situ evidence that identifies how SOFC performance depends on the chemical condition of its anode. Chronopotentiometric data are used to quantify the oxide flux necessary to eliminate the carbon initially present on the SOFC anode, and data show that the oxidation mechanisms responsible for graphite removal correlate directly with the electrochemical condition of the anode as evidenced by voltammetry and impedance measurements. Electrochemically oxidizing the Ni anode damages the SOFC significantly and irreversibly. Anodes that have been reconstituted following electrochemical oxidation of carbon and Ni show qualitatively different kinetics of carbon removal, and the electrochemical performance of these systems is characterized by low maximum currents and large polarization resistances. PMID:23046116

  12. Removal of the X-ray contrast media diatrizoate by electrochemical reduction and oxidation.

    PubMed

    Radjenovic, Jelena; Flexer, Victoria; Donose, Bogdan C; Sedlak, David L; Keller, Jurg

    2013-01-01

    Due to their resistance to biological wastewater treatment, iodinated X-ray contrast media (ICM) have been detected in municipal wastewater effluents at relatively high concentrations (i.e., up to 100 μg L(-1)), with hospitals serving as their main source. To provide a new approach for reducing the concentrations of ICMs in wastewater, electrochemical reduction at three-dimensional graphite felt and graphite felt doped with palladium nanoparticles was examined as a means for deiodination of the common ICM diatrizoate. The presence of palladium nanoparticles significantly enhanced the removal of diatrizoate and enabled its complete deiodination to 3,5-diacetamidobenzoic acid. When the system was employed in the treatment of hospital wastewater, diatrizoate was reduced, but the extent of electrochemical reduction decreased as a result of competing reactions with solutes in the matrix. Following electrochemical reduction of diatrizoate to 3,5-diacetamidobenzoic acid, electrochemical oxidation with boron-doped diamond (BDD) anodes was employed. 3,5-Diacetamidobenzoic acid disappeared from solution at a rate that was similar to that of diatrizoate, but it was more readily mineralized than the parent compound. When electrochemical reduction and oxidation were coupled in a three-compartment reactor operated in a continuous mode, complete deiodination of diatrizoate was achieved at an applied cathode potential of -1.7 V vs SHE, with the released iodide ions electrodialyzed in a central compartment with 80% efficiency. The resulting BDD anode potential (i.e., +3.4-3.5 V vs SHE) enabled efficient oxidation of the products of the reductive step. The presence of other anions (e.g., chloride) was likely responsible for a decrease in I(-) separation efficiency when hospital wastewater was treated. Reductive deiodination combined with oxidative degradation provides benefits over oxidative treatment methods because it does not produce stable iodinated intermediates. Nevertheless, the process must be further optimized for the conditions encountered in hospital wastewater to improve the separation efficiency of halide ions prior to the electrooxidation step. PMID:24261992

  13. Coupling digestion in a pilot-scale UASB reactor and electrochemical oxidation over BDD anode to treat diluted cheese whey.

    PubMed

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-11-01

    The efficiency of the anaerobic treatment of cheese whey (CW) at mesophilic conditions was investigated. In addition, the applicability of electrochemical oxidation as an advanced post-treatment for the complete removal of chemical oxygen demand (COD) from the anaerobically treated cheese whey was evaluated. The diluted cheese whey, having a pH of 6.5 and a total COD of 6 g/L, was first treated in a 600-L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB process, which was operated for 87 days at mesophilic conditions (32??2 C) at a hydraulic retention time (HRT) of 3 days, led to a COD removal efficiency between 66 and 97 %, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 9 and 18 A and in the presence of NaCl as the supporting electrolyte, complete removal of COD was attained after 3-4 h of reaction. During electrochemical experiments, three groups of organochlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs), and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, alongside free chlorine, are thought to increase the matrix ecotoxicity to Artemia salina. PMID:24793070

  14. Electrochemical properties of tin oxide anodes for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Ying Ching; Ma, Chuze; Alvarado, Judith; Kidera, Takafumi; Dimov, Nikolay; Meng, Ying Shirley; Okada, Shigeto

    2015-06-01

    Few tin (Sn)-oxide based anode materials have been found to have large reversible capacity for both sodium (Na)-ion and lithium (Li)-ion batteries. Herein, we report the synthesis and electrochemical properties of Sn oxide-based anodes for sodium-ion batteries: SnO, SnO2, and SnO2/C. Among them, SnO is the most suitable anode for Na-ion batteries with less first cycle irreversibility, better cycle life, and lower charge transfer resistance. The energy storage mechanism of the above-mentioned Sn oxides was studied, which suggested that the conversion reaction of the Sn oxide anodes is reversible in Na-ion batteries. The better anode performance of SnO is attributed by the better conductivity.

  15. Electrochemical properties of highly degenerate and low cost cadmium oxide thin films

    NASA Astrophysics Data System (ADS)

    Mundinamani, S. P.; Rabinal, M. K.

    2015-11-01

    In the present work, we describe a simple and easy method for the deposition of nanostructured cadmium oxide films on glass by spray pyrolysis. The electrochemical capacitive properties of these films have been studied for different electrolyte species under the different scan rates. The present results show a high value of specific capacitance of 18 F g?1 in 1 M NaOH electrolyte for the scan rate of 10 mV s?1. This value of specific capacitance is the highest ever reported value for cadmium oxide thin films. These results emphasize that the ion diffusion between the electrode and the electrolyte is significantly high due to the highly porous nanostructure of cadmium oxide and these results confirms the cadmium oxide as a capacitive material. The constructed devices were stable even after the 1000 cycle.

  16. Effect of surfactant on the electrochemical performance of graphene/iron oxide electrode for supercapacitor

    NASA Astrophysics Data System (ADS)

    Ghasemi, Shahram; Ahmadi, Fatemeh

    2015-09-01

    In this study, reduced graphene oxide- Fe3O4 (RGO-Fe3O4) nanocomposite is fabricated using simple electrophoretic deposition (EPD) method followed by an electrochemical reduction process. It is characterized using atomic force microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electron microscopy. Fe3O4 nanoparticles with 20-50 nm in diameter are uniformly formed on RGO. Electrochemical properties of nanocomposite are characterized by cyclic voltammetery, galvanostatic charge/discharge and electrochemical impedance spectroscopy. According to the galvanostatic charge/discharge analysis, RGO-Fe3O4/SS presents specific capacitance (Cs) of 154 F g-1 at current density of 1 A g-1, which is higher than that of RGO/SS (81 F g-1) in Na2SO4 electrolyte. Also, the electrochemical behaviors show that addition of three kind of surfactant, i.e. sodium dodecyl sulphate, cetyltrimethylammonium bromide, t-octyl phenoxy polyethoxyethanol (Triton X-100) to Na2SO4 aqueous solution can improve the Cs of RGO-Fe3O4/SS electrodes. RGO-Fe3O4/SS in Na2SO4 electrolyte containing Triton X-100 shows maximum Cs of 236 F g-1 at 1 A g-1 which retains 97% of initial capacitance after 500 cycles.

  17. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  18. An electrochemical approach to graphene oxide coated sulfur for long cycle life.

    PubMed

    Moon, Joonhee; Park, Jungjin; Jeon, Cheolho; Lee, Jouhahn; Jo, Insu; Yu, Seung-Ho; Cho, Sung-Pyo; Sung, Yung-Eun; Hong, Byung Hee

    2015-08-21

    Owing to the possibilities of achieving high theoretical energy density and gravimetric capacity, sulfur has been considered as a promising cathode material for rechargeable lithium batteries. However, sulfur shows rapid capacity fading due to the irreversible loss of soluble polysulfides and the decrease in active sites needed for conducting agents. Furthermore, the low electrical conductivity of sulfur hampers the full utilization of active materials. Here we report that graphene oxide coated sulfur composites (GO-S/CB) exhibit improved electrochemical stability as well as enhanced rate performance, evidenced by various electrochemical analyses. The cyclic voltammetry and the galvanostatic cycling analysis revealed that the GO plays key roles in homogenizing the nanocomposite structures of the electrodes, in improving the electrochemical contact, and in minimizing the loss of soluble polysulfide intermediates. An electrochemical impedance spectroscopy analysis also confirms the enhanced structural stability of the GO-S/CB composites after battery operation. As a result, the GO-S/CB exhibited excellent cycle stability and specific capacity as high as ?723.7 mA h g(-1) even after 100 cycles at 0.5 C. PMID:26196857

  19. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol.

    PubMed

    Li, Junhua; Kuang, Daizhi; Feng, Yonglan; Zhang, Fuxing; Xu, Zhifeng; Liu, Mengqin

    2012-01-30

    A graphene oxide (GO) film coated glassy carbon electrode (GCE) was fabricated for sensitive determination of 4-nitrophenol (4-NP). The GO-based sensor was characterized by scanning electron microscope, atomic force microscopy and electrochemical impedance spectroscopy. The electrochemical behaviors of 4-NP at the GO-film coated GCE were investigated in detail. In 0.1M acetate buffer with a pH of 4.8, 4-NP yields a very sensitive and well-defined reduction peak at the GO-modified GCE. It is found that the GO film exhibits obvious electrocatalytic activity toward the reduction of 4-NP since it not only increases the reduction peak current but also lowers the reduction overpotential. Based on this, an electrochemical method was proposed for the direct determination of 4-NP. Various kinetic parameters such as transfer electron number, transfer proton number and standard heterogeneous rate constant were calculated, and various experimental parameters were also optimized. Under the optimal conditions, the reduction peak current varies linearly with the concentration of 4-NP ranging from 0.1 to 120 ?M, and the detection limit is 0.02 ?M at the signal noise ratio of 3. Moreover, the fabricated sensor presented high selectivity and long-term stability. This electrochemical sensor was further applied to determine 4-NP in real water samples, and it showed great promise for simple, sensitive, and quantitative detection of 4-NP. PMID:22178284

  20. Oxidation-Reduction Resistance of Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Greenbauer-Seng, L. (Technical Monitor); Thomas-Ogbuji, L.; Humphrey, D. L.; Setlock, J. A.

    2003-01-01

    Resistance to oxidation and blanching is a key issue for advanced copper alloys under development for NASA's next generation of reusable launch vehicles. Candidate alloys, including dispersion-strengthened Cu-Cr-Nb, solution-strengthened Cu-Ag-Zr, and ODS Cu-Al2O3, are being evaluated for oxidation resistance by static TGA exposures in low-p(O2) and cyclic oxidation in air, and by cyclic oxidation-reduction exposures (using air for oxidation and CO/CO2 or H2/Ar for reduction) to simulate expected service environments. The test protocol and results are presented.

  1. In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals on a boron-doped diamond electrode.

    PubMed

    Oliveira, S Carlos B; Oliveira-Brett, Ana Maria

    2012-03-13

    In situ DNA oxidative damage by electrochemically generated hydroxyl free radicals has been directly demonstrated on a boron-doped diamond electrode. The DNA-electrochemical biosensor incorporates immobilized double-stranded DNA (dsDNA) as molecular recognition element on the electrode surface, and measures in situ specific binding processes with dsDNA, as it is a complementary tool for the study of bimolecular interaction mechanisms of compounds binding to DNA and enabling the screening and evaluation of the effect caused to DNA by radicals and health hazardous compounds. Oxidants, particularly reactive oxygen species (ROS), play an important role in dsDNA oxidative damage which is strongly related to mutagenesis, carcinogenesis, autoimmune inflammatory, and neurodegenerative diseases. The hydroxyl radical is considered the main contributing ROS to endogenous oxidation of cellular dsDNA causing double-stranded and single-stranded breaks, free bases, and 8-oxoguanine occurrence. The dsDNA-electrochemical biosensor was used to study the interaction between dsDNA immobilized on a boron-doped diamond electrode surface and in situ electrochemically generate hydroxyl radicals. Non-denaturing agarose gel-electrophoresis of the dsDNA films on the electrode surface after interaction with the electrochemically generated hydroxyl radicals clearly showed the occurrence of in situ dsDNA oxidative damage. The importance of the dsDNA-electrochemical biosensor in the evaluation of the dsDNA-hydroxyl radical interactions is clearly demonstrated. PMID:22335175

  2. Steam Oxidation of Advanced Steam Turbine Alloys

    SciTech Connect

    Holcomb, Gordon R.

    2008-01-01

    Power generation from coal using ultra supercritical steam results in improved fuel efficiency and decreased greenhouse gas emissions. Results of ongoing research into the oxidation of candidate nickel-base alloys for ultra supercritical steam turbines are presented. Exposure conditions range from moist air at atmospheric pressure (650C to 800C) to steam at 34.5 MPa (650C to 760C). Parabolic scale growth coupled with internal oxidation and reactive evaporation of chromia are the primary corrosion mechanisms.

  3. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts

    NASA Astrophysics Data System (ADS)

    Gao, Y. Q.; Liu, X. Y.; Yang, G. W.

    2016-02-01

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts.The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm-2 at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec-1, while no deactivation is detected in the CV testing even up to 30 000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08989a

  4. Development of an Electrochemical Oxidation Method for Probing Higher Order Protein Structure with Mass Spectrometry

    SciTech Connect

    McClintock, Carlee; Kertesz, Vilmos; Hettich, Robert {Bob} L

    2008-01-01

    We report here the novel use of electrochemistry to generate covalent oxidative labels on intact proteins in both non-native and physiologically relevant solutions as a surface mapping probe of higher order protein structure. Two different electrodes were tested across a range of experimental parameters including voltage, flow rate, and solution electrolyte composition to affect the extent of oxidation on intact proteins, as measured both on-line and off-line with mass spectrometry. Oxidized proteins were collected off-line for proteolytic digestion followed by LC-MS/MS analysis. Peptide MS/MS data were searched with the InsPecT scoring algorithm for forty-six oxidative mass shifts previously reported in the literature. Preliminary data showed agreement between solvent accessibility and the oxidation status of many ubiquitin residues in aqueous buffer, while more buried residues were found to be oxidized in non-native solution. Our results indicate that electrochemical oxidation using a boron-doped diamond electrode has the potential to become a useful and easily accessible tool for conducting oxidative surface mapping experiments.

  5. Changes in the redox state of iridium oxide clusters and their relation to catalytic water oxidation. Radiolytic and electrochemical studies

    SciTech Connect

    Nahor, G.S.; Hapiot, P.; Neta, P. ); Harriman, A. )

    1991-01-24

    Radiolytically prepared iridium oxide (IrO{sub x}{center dot}nH{sub 2}O) clusters have been shown to catalyze the photochemical oxidation of water. These catalysts have been oxidized by radiolytic or electrochemical methods and the changes in their optical absorptions and redox states have been studied. The clusters contain four or five Ir atoms in a mixture of Ir{sup III} and Ir{sup IV} states, formally described as Ir{sup 3.2+}. Time-resolved pulse-radiolytic studies revealed three processes in the subsecond time scale. The first step produces a short-lived intermediate ({lambda}{sub max} {approximately} 360 nm), possibly an OH adduct, that is transformed to more stable oxidized species ({lambda}{sub max} 340 and 580 nm). In the third step, there is a rise in the 580-nm absorption. The same species were observed in {gamma}-radiolysis and in spectroelectrochemical experiments. Cyclic voltammetric and coulometric measurements suggest that the initial IrO{sub x} cluster is oxidized in two stages, from Ir{sup 3.2+} to Ir{sup 3.8+} and then to Ir{sup 4+}. Further oxidation of the cluster leads to oxidation of water to O{sub 2}.

  6. Optimization and electrochemical characterization of RF-sputtered iridium oxide microelectrodes for electrical stimulation

    NASA Astrophysics Data System (ADS)

    Kang, Xiaoyang; Liu, Jingquan; Tian, Hongchang; Yang, Bin; NuLi, Yanna; Yang, Chunsheng

    2014-02-01

    A reactively sputtered iridium oxide (IrOx) thin film has been developed as electrochemical modification material for microelectrodes to obtain high stability and charge storage capacity (CSC) in functional electrical stimulation. The effect of the oxygen flow and oxygen to argon ratio during sputtering process on the microstructure and electrochemical properties of the IrOx film is characterized. After optimization, the activated IrOx microelectrode shows the highest CSC of 36.15 mC cm-2 at oxygen flow of 25 sccm and oxygen to argon ratio of (2.5:1). Because the deposition process of the reactively sputtered iridium oxide is an exothermic reaction, it is difficult to form film patterning by the lift-off process. The lift-off process was focused on the partially carbonized photoresist (PR) and normal PR. The higher of the carbonization degree of PR reaches, the longer the immersion duration. However, the patterning process of the iridium oxide film becomes feasible when the sputtering pressure is increasing. The experimental results show that the iridium oxide films forms the pattern with the lowest duration of ultrasonic agitation when the deposition pressure is 4.2 Pa and pressure ratio between O2 and Ar pressure is 3:4.

  7. ADVANCED OXIDATION: OXALATE DECOMPOSITION TESTING WITH OZONE

    SciTech Connect

    Ketusky, E.; Subramanian, K.

    2012-02-29

    At the Savannah River Site (SRS), oxalic acid is currently considered the preferred agent for chemically cleaning the large underground Liquid Radioactive Waste Tanks. It is applied only in the final stages of emptying a tank when generally less than 5,000 kg of waste solids remain, and slurrying based removal methods are no-longer effective. The use of oxalic acid is preferred because of its combined dissolution and chelating properties, as well as the fact that corrosion to the carbon steel tank walls can be controlled. Although oxalic acid is the preferred agent, there are significant potential downstream impacts. Impacts include: (1) Degraded evaporator operation; (2) Resultant oxalate precipitates taking away critically needed operating volume; and (3) Eventual creation of significant volumes of additional feed to salt processing. As an alternative to dealing with the downstream impacts, oxalate decomposition using variations of ozone based Advanced Oxidation Process (AOP) were investigated. In general AOPs use ozone or peroxide and a catalyst to create hydroxyl radicals. Hydroxyl radicals have among the highest oxidation potentials, and are commonly used to decompose organics. Although oxalate is considered among the most difficult organic to decompose, the ability of hydroxyl radicals to decompose oxalate is considered to be well demonstrated. In addition, as AOPs are considered to be 'green' their use enables any net chemical additions to the waste to be minimized. In order to test the ability to decompose the oxalate and determine the decomposition rates, a test rig was designed, where 10 vol% ozone would be educted into a spent oxalic acid decomposition loop, with the loop maintained at 70 C and recirculated at 40L/min. Each of the spent oxalic acid streams would be created from three oxalic acid strikes of an F-area simulant (i.e., Purex = high Fe/Al concentration) and H-area simulant (i.e., H area modified Purex = high Al/Fe concentration) after nearing dissolution equilibrium, and then decomposed to {le} 100 Parts per Million (ppm) oxalate. Since AOP technology largely originated on using ultraviolet (UV) light as a primary catalyst, decomposition of the spent oxalic acid, well exposed to a medium pressure mercury vapor light was considered the benchmark. However, with multi-valent metals already contained in the feed, and maintenance of the UV light a concern; testing was conducted to evaluate the impact from removing the UV light. Using current AOP terminology, the test without the UV light would likely be considered an ozone based, dark, ferrioxalate type, decomposition process. Specifically, as part of the testing, the impacts from the following were investigated: (1) Importance of the UV light on the decomposition rates when decomposing 1 wt% spent oxalic acid; (2) Impact of increasing the oxalic acid strength from 1 to 2.5 wt% on the decomposition rates; and (3) For F-area testing, the advantage of increasing the spent oxalic acid flowrate from 40 L/min (liters/minute) to 50 L/min during decomposition of the 2.5 wt% spent oxalic acid. The results showed that removal of the UV light (from 1 wt% testing) slowed the decomposition rates in both the F & H testing. Specifically, for F-Area Strike 1, the time increased from about 6 hours to 8 hours. In H-Area, the impact was not as significant, with the time required for Strike 1 to be decomposed to less than 100 ppm increasing slightly, from 5.4 to 6.4 hours. For the spent 2.5 wt% oxalic acid decomposition tests (all) without the UV light, the F-area decompositions required approx. 10 to 13 hours, while the corresponding required H-Area decompositions times ranged from 10 to 21 hours. For the 2.5 wt% F-Area sludge, the increased availability of iron likely caused the increased decomposition rates compared to the 1 wt% oxalic acid based tests. In addition, for the F-testing, increasing the recirculation flow rates from 40 liter/minute to 50 liter/minute resulted in an increased decomposition rate, suggesting a better use of ozone.

  8. Influence of synthesis conditions on the electrochemical properties of nanostructured amorphous manganese oxide cryogels

    NASA Astrophysics Data System (ADS)

    Yang, Jingsi; Xu, Jun John

    Amorphous manganese oxides have received increasing attention in recent years as intercalation cathodes for rechargeable lithium batteries. The sol-gel method is a versatile method for achieving nanostructured amorphous oxides. In this paper, two different sol-gel routes are investigated, where nanostructured amorphous manganese oxide cryogels are obtained via freeze drying Mn(IV) oxide hydrogels formed in situ. In one route the hydrogels are formed by reaction between a solution of sodium permanganate and a solution of disodium fumarate, and in the other route by reaction between a solution of sodium permanganate and solid fumaric acid. Highly homogeneous monolithic manganese oxide hydrogels are obtained from both synthesis routes with precursor concentrations between 0.1 and 0.2 M. The freeze drying method proves to be an efficient method for obtaining nanostructured amorphous manganese oxide cryogels out of the hydrogels. Depending on the synthesis conditions of the hydrogels, the resultant cryogels can yield very high specific capacities for lithium intercalation and excellent rate performance. The cryogel with the best performance exhibits 289 mAh/g at a C/100 rate and 174 mAh/g at a 2 C rate. Strong dependence of electrochemical properties of the cryogels on the synthesis conditions of the parent hydrogels has been observed. The different electrochemical properties are believed to be due to different surface areas and local structures of the cryogels derived from hydrogels synthesized under different conditions. This strong dependence gives rise to the possibility of achieving promising intercalation materials through tailoring the surface area and the local structure of amorphous manganese oxides by adjusting sol-gel synthesis conditions.

  9. High performance solid oxide fuel cell cathode fabricated by electrochemical vapor deposition

    SciTech Connect

    Suzuki, Minoru; Sasaki, Hirokazu; Otoshi, Shoji; Kajimura, Atsuko; Sugiura, Nozomi; Ippommatsu, Masamichi . Fundamental Research Labs.)

    1994-07-01

    La(Sr)MnO[sub 3] cathodes have been investigated as high temperature oxygen reduction electrodes in the solid oxide fuel cells (SOFCs). The cathodes consist of 10 mole percent of yttria stabilized zirconia (YSZ) thin film electrolyte layer deposited on a porous La[sub 0.81]Sr[sub 0.09]MnO[sub 3] tube using the electrochemical vapor deposition method. The La(Sr)MnO[sub 3]/YSZ cathodes have different electrochemical properties from those fabricated with the sintering method. The cathode polarization was about 1 mV at a current density of 1.5 A/cm[sup 2] in oxygen at 1,000 C. This type of cathode has an extremely large phase boundary and large interfacial capacitance (more than 1 F/cm[sup 2]) which is approximately proportional to the oxygen partial pressure.

  10. Co-Ni alloy nanowires prepared by anodic aluminum oxide template via electrochemical deposition.

    PubMed

    Kwag, Yong-Gyu; Ha, Jong-Keun; Kim, Hye-Sung; Cho, Hyoung-Jin; Cho, Kwon-Koo

    2014-12-01

    The alloy nanowires are more prospective magnetic and shape memory materials. Fabrication of binary or more alloy nanowires using electrochemical deposition process is generally challenging due to the different synthesis conditions of individual elements. In the present work, binary NiCo alloy nanowire arrays have been fabricated by electrochemical deposition using anodic aluminum oxide template medium technique. The optimum conditions (temperature, voltage and time) for synthesis of NiCo alloy nanowire array were achieved based on the ideal experimental conditions of single Ni and Co nanowire arrays. The synthesized NiCo alloy nanowire arrays were characterized by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray spectrometer. The amorphous NiCo alloy nanowires were crystallized by annealing of 800 degrees C for 1 hour in argon atmosphere. The controlled composition of electrolyte provided to achieve a uniformly distributed chemical composition of Ni and Co (49.26:50.74) in nanowires. PMID:25970984

  11. Superior Catalytic Activity of Electrochemically Reduced Graphene Oxide Supported Iron Phthalocyanines toward Oxygen Reduction Reaction.

    PubMed

    Liu, Dong; Long, Yi-Tao

    2015-11-01

    Structure and surface properties of supporting materials are of great importance for the catalytic performance of the catalysts. Herein, we prepared the iron phthalocyanine (FePc) functionalized electrochemically reduced graphene oxide (ERGO) by the electrochemical reduction of FePc/GO. The resultant FePc/ERGO exhibits higher catalytic activity toward ORR than that of FePc/graphene. More importantly, the onset potential for ORR at FePc/ERGO positively shifts by 45 mV compared with commercial Pt/C in alkaline media. Besides, FePc/ERGO displays enhanced durability and selectivity toward ORR. The superior catalytic performance of FePc/ERGO for ORR are ascribed to the self-supported structure of ERGO, uniformly morphology and size of FePc nanoparticles. PMID:26477473

  12. Electroless Deposition of Conformed Nanoscale Iron Oxide on Carbon Nanoarchitectures for Electrochemical Charge Storage

    SciTech Connect

    Sassin, M.; Mansour, A; Pettigrew, K; Rolison, D; Long, J

    2010-01-01

    We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO{sub x}) coatings are generated at the interior and exterior surfaces of macroscopically thick ({approx}90 {micro}m) carbon nanofoam paper substrates via redox reaction with aqueous K{sub 2}FeO{sub 4}. The resulting FeO{sub x}-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li{sub 2}SO{sub 4}), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g{sup -1}, 121 F cm{sup -3}, and 0.85 F cm{sup -2}, respectively, even at modest FeO{sub x} loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO{sub x} coating, delivering specific capacitance >300 F g{sup -1} normalized to the content of FeO{sub x} as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li{sub 2}SO{sub 4} electrolyte effectively suppresses the electrochemical dissolution of the FeO{sub x} coating, resulting in <20% capacitance fade over 1000 consecutive cycles.

  13. Morphology, structural and optical properties of iron oxide thin film photoanodes in photoelectrochemical cell: Effect of electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Maabong, Kelebogile; Machatine, Augusto G.; Hu, Yelin; Braun, Artur; Nambala, Fred J.; Diale, Mmantsae

    2016-01-01

    Hematite (α-Fe2O3) is a promising semiconductor as photoanode in solar hydrogen production from photoelectrolysis of water due to its appropriate band gap, low cost and high electrochemical stability in aqueous caustic electrolytes. Operation of such photoanode in a biased photoelectrochemical cell constitutes an anodization with consequent redox reactions at the electrode surface. α-Fe2O3 thin film photoanodes were prepared by simple and inexpensive dip coating method on fluorine doped tin oxide (FTO) glass substrate, annealed in air at 500 °C for 2 h, then electrochemically oxidized (anodized) in 1 M KOH at 500 mV for 1 min in dark and light conditions. Changes in structural properties and morphology of α-Fe2O3 nanoparticles films were investigated by XRD, Raman spectroscopy and a high resolution FE-SEM. The average grain size was observed to increase from ~57 nm for pristine samples to 73 and 77 nm for anodized samples in dark and light respectively. Broadening and red shift in Raman spectra in anodized samples may be attributed to lattice expansion upon oxidation. The UV-visible measurements revealed enhanced absorption in the photoanodes after the treatment. The findings suggest that the anodization of the photoelectrode in a biased cell causes not only changes of the molecular structure at the surface, but also changes in the crystallographic structure which can be detected with x-ray diffractometry.

  14. Simultaneous Electrochemical Detection of Dopamine and Ascorbic Acid Using an Iron Oxide/Reduced Graphene Oxide Modified Glassy Carbon Electrode

    PubMed Central

    Peik-See, Teo; Pandikumar, Alagarsamy; Nay-Ming, Huang; Hong-Ngee, Lim; Sulaiman, Yusran

    2014-01-01

    The fabrication of an electrochemical sensor based on an iron oxide/graphene modified glassy carbon electrode (Fe3O4/rGO/GCE) and its simultaneous detection of dopamine (DA) and ascorbic acid (AA) is described here. The Fe3O4/rGO nanocomposite was synthesized via a simple, one step in-situ wet chemical method and characterized by different techniques. The presence of Fe3O4 nanoparticles on the surface of rGO sheets was confirmed by FESEM and TEM images. The electrochemical behavior of Fe3O4/rGO/GCE towards electrocatalytic oxidation of DA was investigated by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) analysis. The electrochemical studies revealed that the Fe3O4/rGO/GCE dramatically increased the current response against the DA, due to the synergistic effect emerged between Fe3O4 and rGO. This implies that Fe3O4/rGO/GCE could exhibit excellent electrocatalytic activity and remarkable electron transfer kinetics towards the oxidation of DA. Moreover, the modified sensor electrode portrayed sensitivity and selectivity for simultaneous determination of AA and DA. The observed DPVs response linearly depends on AA and DA concentration in the range of 19 mM and 0.5100 ?M, with correlation coefficients of 0.995 and 0.996, respectively. The detection limit of (S/N = 3) was found to be 0.42 and 0.12 ?M for AA and DA, respectively. PMID:25195850

  15. Reduced graphene oxide anchored Cu(OH)2 as a high performance electrochemical supercapacitor.

    PubMed

    Pramanik, Atin; Maiti, Sandipan; Mahanty, Sourindra

    2015-09-01

    Developing new materials for electrochemical supercapacitors with higher energy density has recently gained tremendous impetus in the context of effective utilization of renewable energy. Herein, we report a simple one-pot synthesis of bundled nanorods of Cu(OH)2 embedded in a matrix of reduced graphene oxide (Cu(OH)2@RGO) under mild hydrothermal conditions of 80 °C for 1 h. The synthesized material shows a high BET surface area of 78.7 m(2) g(-1) and a mesoporous nature with a broad pore-size distribution consisting of structural pores as well as inter-particle pores. Raman spectroscopy suggests an intimate interaction between Cu(OH)2 and reduced graphene oxide (RGO) creating more defects by destruction of sp(2) domains which would help the defect-assisted charge transport during electrochemical processes. When investigated as an electrochemical supercapacitor, Cu(OH)2@RGO shows a high capacitance of 602 F g(-1) at 0.2 A g(-1) in 1 M KOH in a three-electrode cell configuration. Detailed electrochemical studies indicate that the Faradic processes are diffusion controlled and follow a quasi-reversible kinetics. Further, a two-electrode symmetric cell shows good energy density and power density (84.5 Wh kg(-1) at 0.55 kW kg(-1) and 20.5 Wh kg(-1) at 5.5 kW kg(-1)) characteristics demonstrating superior application potential of this common low-cost transition metal hydroxide for high performance energy storage devices. PMID:26208312

  16. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the sulphur yields as a function of electrode potential indicate that thiosulphate is not the only source of the sulphur product.

  17. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms

    PubMed Central

    Pilehvar, Sanaz; De Wael, Karolien

    2015-01-01

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. PMID:26610583

  18. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms.

    PubMed

    Pilehvar, Sanaz; De Wael, Karolien

    2015-01-01

    Nanotechnology is becoming increasingly important in the field of (bio)sensors. The performance and sensitivity of biosensors is greatly improved with the integration of nanomaterials into their construction. Since its first discovery, fullerene-C60 has been the object of extensive research. Its unique and favorable characteristics of easy chemical modification, conductivity, and electrochemical properties has led to its tremendous use in (bio)sensor applications. This paper provides a concise review of advances in fullerene-C60 research and its use as a nanomaterial for the development of biosensors. We examine the research work reported in the literature on the synthesis, functionalization, approaches to nanostructuring electrodes with fullerene, and outline some of the exciting applications in the field of (bio)sensing. PMID:26610583

  19. Amorphous Ni-Co Binary Oxide with Hierarchical Porous Structure for Electrochemical Capacitors.

    PubMed

    Long, Chao; Zheng, Mingtao; Xiao, Yong; Lei, Bingfu; Dong, Hanwu; Zhang, Haoran; Hu, Hang; Liu, Yingliang

    2015-11-11

    A simple and outstanding approach is provided to fabricate amorphous structure Ni-Co binary oxide as supercapacitors electrode materials. We can easily obtain porous Ni-Co oxides composite materials via chemical bath deposition and subsequent calcination without any template or complicate operation procedures. The amorphous porous Ni-Co binary oxide exhibits brilliant electrochemical performance: first, the peculiar porous structure can effectively transport electrolytes and shorten the ion diffusion path; second, binary composition and amorphous character introduce more surface defects for redox reactions. It shows a high specific capacitance up to 1607 F g(-1) and can be cycled for 2000 cycles with 91% capacitance retention. In addition, the asymmetric supercapacitor delivers superior energy density of 28 W h kg(-1), and the maximum power density of 3064 W kg(-1) with a high energy density of 10 W h kg(-1). PMID:26099689

  20. Development of a tritium monitor combined with an electrochemical tritium pump using a proton conducting oxide

    SciTech Connect

    Tanaka, M.; Sugiyama, T.

    2015-03-15

    The detection of low level tritium is one of the key issues for tritium management in tritium handling facilities. Such a detection can be performed by tritium monitors based on proton conducting oxide technique. We tested a tritium monitoring system composed of a commercial proportional counter combined with an electrochemical hydrogen pump equipped with CaZr{sub 0.9}In{sub 0.1}O{sub 3-α} as proton conducting oxide. The hydrogen pump operated at 973 K under electrolysis conditions using tritiated water vapor (HTO). The proton conducting oxide extracts tritium molecules (HT) from HTO and tritium concentration is measured by the proportional counter. The advantage of the proposed tritium monitoring system is that it is able to convert HTO into molecular hydrogen.

  1. Cobalt (hydro)oxide electrodes under electrochemical conditions: a first principle study

    NASA Astrophysics Data System (ADS)

    Chen, Jia; Selloni, Annabella

    2013-03-01

    There is currently much interest in photoelectrochemical water splitting as a promising pathway towards sustainable energy production. A major issue of such photoelectrochemical devices is the limited efficiency of the anode, where the oxygen evolution reaction (OER) takes place. Cobalt (hydro)oxides, particularly Co3O4 and Co(OH)2, have emerged as promising candidates for use as OER anode materials. Interestingly, recent in-situ Raman spectroscopy studies have shown that Co3O4 electrodes undergo progressive oxidation and transform into oxyhydroxide, CoO(OH), under electrochemical working conditions. (Journal of the American Chemical Society 133, 5587 (2011))Using first principle electronic structure calculations, we provide insight into these findings by presenting results on the structural, thermodynamic, and electronic properties of cobalt oxide, hydroxide and oxydroxide CoO(OH), and on their relative stabilities when in contact with water under external voltage.

  2. Sequential treatment of diluted olive pomace leachate by digestion in a pilot scale UASB reactor and BDD electrochemical oxidation.

    PubMed

    Katsoni, Alphathanasia; Mantzavinos, Dionissios; Diamadopoulos, Evan

    2014-06-15

    The efficiency of the anaerobic treatment of olive pomace leachate (OPL) at mesophilic conditions was investigated. Daily and cumulative biogas production was measured during the operational period. The maximum biogas flowrate was 65L/d, of which 50% was methane. In addition, the applicability of electrochemical oxidation as an advanced post-treatment method for the complete removal of chemical oxygen demand (COD) from the anaerobically treated OPL was evaluated. The diluted OPL, having a pH of 6.5 and a total COD of 5g/L, was first treated in a 600L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB reactor was operated for 71 days at mesophilic conditions (322C) in a temperature-controlled environment at a hydraulic retention time of 3 days, and organic loading rates (OLR) between 0.33 and 1.67g COD/(L.d). The UASB process led to a COD removal efficiency between 35 and 70%, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 18 A and in the presence of 0.17% NaCl as the supporting electrolyte, complete removal of COD was attained after 7h of treatment predominantly through total oxidation reactions. During electrochemical experiments, three groups of organo-chlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs) and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, along with the residual chlorine are thought to increase the matrix ecotoxicity to Artemia salina. PMID:24704905

  3. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Technical Reports Server (NTRS)

    1993-01-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.

  4. Advanced launch system. Advanced development oxidizer turbopump program

    NASA Astrophysics Data System (ADS)

    1993-10-01

    On May 19, 1989, Pratt & Whitney was awarded contract NAS8-37595 by the National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville Alabama for an Advanced Development Program (ADP) to design, develop and demonstrate a highly reliable low cost, liquid oxygen turbopump for the Advanced Launch System (ALS). The ALS had an overall goal of reducing the cost of placing payloads in orbit by an order of magnitude. This goal would require a substantial reduction in life cycle costs, with emphasis on recurring costs, compared to current launch vehicles. Engine studies supporting these efforts were made for the Space Transportation Main Engine (STME). The emphasis on low cost required design simplification of components and subsystems such that the ground maintenance and test operations was minimized. The results of the Oxygen Turbopump ADP technology effort would provide data to be used in the STME. Initially the STME baseline was a gas generator cycle engine with a vacuum thrust level of 580,000 lbf. This was later increased to 650,000 lbf and the oxygen turbopump design approach was changed to reflect the new thrust level. It was intended that this ADP program be conducted in two phases. Phase 1, a basic phase, would encompass the preliminary design effort, and Phase II, an optional contract phase to cover design, fabrication and test evaluation of an oxygen turbopump at a component test facility at the NASA John C. Stennis Space Center in Mississippi. The basic phase included preliminary design and analysis, evaluation of low cost concepts, and evaluation of fabrication techniques. The option phase included design of the pump and support hardware, analysis of the final configuration to ensure design integrity, fabrication of hardware to demonstrate low cost, DVS Testing of hardware to verify the design, assembly of the turbopump and full scale turbopump testing. In December 1990, the intent of this ADP to support the design and development was changed. The design effort for the oxygen turbopump became part of the STME Phase B contract. The status of the pump design funded through this ADP was presented at the Preliminary Design Review (PDR) at the MSFC on October 24, 1990. Advancements in the design of the pump were subsequently continued under the Phase B Contract. The emphasis of this ADP became the demonstration of individual technologies that would have the greatest potential for reducing the recurring cost and increasing reliability. In October of 1992, overall program funding was reduced and work on this ADP was terminated.

  5. Activated carbon electrodes: electrochemical oxidation coupled with desalination for wastewater treatment.

    PubMed

    Duan, Feng; Li, Yuping; Cao, Hongbin; Wang, Yi; Crittenden, John C; Zhang, Yi

    2015-04-01

    The wastewater usually contains low-concentration organic pollutants and some inorganic salts after biological treatment. In the present work, the possibility of simultaneous removal of them by combining electrochemical oxidation and electrosorption was investigated. Phenol and sodium chloride were chosen as representative of organic pollutants and inorganic salts and a pair of activated carbon plate electrodes were used as anode and cathode. Some important working conditions such as oxygen concentration, applied potential and temperature were evaluated to reach both efficient phenol removal and desalination. Under optimized 2.0 V of applied potential, 38C of temperature, and 500 mL min(-1) of oxygen flow, over 90% of phenol, 60% of TOC and 20% of salinity were removed during 300 min of electrolysis time. Phenol was removed by both adsorption and electrochemical oxidation, which may proceed directly or indirectly by chlorine and hypochlorite oxidation. Chlorophenols were detected as degradation intermediates, but they were finally transformed to carboxylic acids. Desalination was possibly attributed to electrosorption of ions in the pores of activated carbon electrodes. The charging/regeneration cycling experiment showed good stability of the electrodes. This provides a new strategy for wastewater treatment and recycling. PMID:25585871

  6. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.

    PubMed

    Wang, Wenting; Xu, Guiyun; Cui, Xinyan Tracy; Sheng, Ge; Luo, Xiliang

    2014-08-15

    Significantly enhanced catalytic activity of a nanocomposite composed of conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) doped with graphene oxide (GO) was achieved through a simple electrochemical reduction process. The nanocomposite (PEDOT/GO) was electrodeposited on an electrode and followed by electrochemical reduction, and the obtained reduced nanocomposite (PEDOT/RGO) modified electrode exhibited lowered electrochemical impedance and excellent electrocatalytic activity towards the oxidation of dopamine. Based on the excellent catalytic property of PEDOT/RGO, an electrochemical sensor capable of sensitive and selective detection of DA was developed. The fabricated sensor can detect DA in a wide linear range from 0.1 to 175?M, with a detection limit of 39nM, and it is free from common interferences such as uric acid and ascorbic acid. PMID:24632460

  7. Characterization of electro-oxidation catalysts using scanning electrochemical and mass spectral methods

    NASA Astrophysics Data System (ADS)

    Jambunathan, Krishnakumar

    Low temperature fuel cells have many potential benefits, including high efficiency, high energy density and environmental friendliness. However, logistically appealing fuels for this system, such as reformed hydrocarbons or alcohols, exhibit poor performance because of catalyst poisoning that occurs during oxidation at the anode. This research focuses on the analysis of several model fuels and catalyst materials to understand the impact of catalyst poisoning on reactivity. Two novel experimental tools were developed based upon the local measurement of catalyst performance using scanning, reactivity mapping probes. The Scanning Electrochemical Microscope (SECM) was used to directly measure the rate constant for hydrogen oxidation in the presence and absence of dissolved CO. The Scanning Differential Electrochemical Mass Spectrometer (SDEMS) was exploited to measure the partial and complete oxidation products of methanol and ethanol oxidation. The reactivity of Pt and Pt/Ru catalysts towards the hydrogen oxidation reaction in the absence and presence of adsorbed CO was elucidated using the SECM. Steady state rate constant measurements in the absence of CO showed that the rate of hydrogen oxidation reaction exceeded 1 cms-1 . Steady state rate constant measurements in the presence of CO indicated that the platinum surface is completely inactive due to adsorbed CO. Addition of as little as 6% Ru to the Pt electrode was found to significantly improve the activity of the electrode towards CO removal. SDEMS was used to study the electro-oxidation of methanol on Pt xRuy electrodes at different electrode potentials and temperatures. Screening measurements performed with the SDEMS showed that PtxRu y electrodes containing 6--40% Ru had the highest activity for methanol oxidation. Current efficiencies for CO2 were also calculated under different conditions. SDEMS was also used to study the electro-oxidation of ethanol on Pt xRuy electrodes. The reaction was found to occur more slowly than the methanol oxidation reaction. Addition of 22%--40% Ru to the Pt electrode was found to increase the current densities and lower the onset potentials. The reaction was found to occur though a parallel path mechanism, which was confirmed by the detection of ethanol and acetic acid apart from CO2.

  8. Modelling temporal kinetic oscillations for electrochemical oxidation of formic acid on Pt

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiroshi; Tanaka, Naoki; Naito, Masayoshi

    1996-01-01

    A model is presented which suitably reproduces the observed kinetic potential oscillations for the electrochemical oxidation of formic acid on Pt. Coupled ordinary differential equations are formulated concerning three variables: the electrode potential and the amounts of adsorbed water and carbon monoxide. Two points prove to be essential in this model to an obtain oscillation behavior similar to the observed behavior: the interaction between the two adsorbed species increases with the electrode potential and the saturation surface coverage of the adsorbed carbon monoxide is less than 1. These two points are consistent with experimental observations.

  9. Electrophoretically deposited graphene oxide and carbon nanotube composite for electrochemical capacitors.

    PubMed

    Ajayi, Obafunso A; Guitierrez, Daniel H; Peaslee, David; Cheng, Arthur; Gao, Theodore; Wong, Chee Wei; Chen, Bin

    2015-10-16

    We report a scalable one-step electrode fabrication approach for synthesizing composite carbon-based supercapacitors with synergistic outcomes. Multi-walled carbon nanotubes (MWCNTs) were successfully integrated into our modified electrophoretic deposition process to directly form composite MWCNT-GO electrochemical capacitor electrodes (where GO is graphene oxide) with superior performance to solely GO electrodes. The measured capacitance improved threefold, reaching a maximum specific capacitance of 231 F g(-1). Upon thermal reduction, MWCNT-GO electrode sheet resistance decreased by a factor of 8, significantly greater than the 2× decrease of those without MWCNTs. PMID:26403850

  10. Morphological, rheological and electrochemical studies ofpoly(ethylene oxide) electrolytes containing fumed silicananoparticles

    SciTech Connect

    Xie, Jiangbing; Kerr, John B.; Duan, Robert G.; Han, Yongbong

    2003-06-01

    In this paper, the rheology and crystallization of composite Poly(Ethylene Oxide) (PEO) electrolytes were studied by dynamic mechanical analysis, DSC and polarized light microscopy. The effects of fumed silica nanoparticles on the conductivities of the polymer electrolytes at temperatures above and below their melting point were measured and related to their rheology and crystallization behavior, respectively. The electrolyte/electrode interfacial properties and cycling performances of the composite polymer electrolytes in Li/Li cells are also discussed. The measured electrochemical properties were found to depend heavily on the operational environments and sample processing history.

  11. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.

    PubMed

    Durante, Christian; Cuscov, Marco; Isse, Abdirisak Ahmed; Sandon, Giancarlo; Gennaro, Armando

    2011-02-01

    Using Cr-EDTA as a model system, a two-step method has been investigated for the abatement of persistent chromium complexes in water. The treatment consists of an oxidative decomposition of the organic ligands by means of ozonization or electrochemical oxidation at a boron doped diamond (BDD) electrode, followed by removal of the metal via electrochemical coagulation. In the designed synthetic waste, EDTA has been used both as a chelating agent and as a mimic of the organic content of a typical wastewater provided by a purification leather plant. A crucial point evaluated is the influence of the oxidative pretreatment on the chemical modification of the synthetic waste and hence on the electrocoagulation efficacy. Because of the great stability of Cr complexes, such as Cr-EDTA, the classical coagulation methods, based on ligand exchange between Cr(III) and Fe(II) or Fe(III), are ineffective toward Cr abatement in the presence of organic substances. On the contrary, when advanced oxidation processes (AOPs), such as ozonization or electrooxidation at a BDD anode are applied in series with electrocoagulation (EC), complete abatement of the recalcitrant Cr fraction can be achieved. ECs have been carried out by using Fe sacrificial anodes, with alternating polarization and complete Cr abatement (over 99%) has been obtained with modest charge consumption. It has been found that Cr(III) is first oxidized to Cr(VI) in the AOP preceding EC. Then, during EC, Cr(VI) is mainly reduced back to Cr(III) by electrogenerated Fe(II). Thus, Cr is mainly eliminated as Cr(III). However, a small fraction of Cr(VI) goes with the precipitate as confirmed by XPS analysis of the sludge. PMID:21255817

  12. Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance.

    PubMed

    Yang, Wenyao; Zhao, Yuetao; He, Xin; Chen, Yan; Xu, Jianhua; Li, Shibin; Yang, Yajie; Jiang, Yadong

    2015-01-01

    In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectrometry. The results indicate that a layer-ordered structure is constructed in this nanocomposite during the vacuum filtering process. The electrochemical performances of the flexible films are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. The results reveal that a 193.7F/g highly specific capacitance of nanocomposite film is achieved at a current density of 500mA/g. This flexible and self-supporting nanocomposite film exhibits excellent cycling stability, and the capacity retention is 90.6% after 1000cycles, which shows promising application as high-performance electrode materials for flexible energy-storage devices. PMID:26019698

  13. Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay.

    PubMed

    Wang, Jiamian; Wang, Xiuyun; Wu, Shuo; Song, Jie; Zhao, Yanqiu; Ge, Yanqiu; Meng, Changgong

    2016-02-01

    Silver nanoclusters and graphene oxide nanocomposite (AgNCs/GRO) is synthesized and functionalized with detection antibody for highly sensitive electrochemical sensing of carcinoembryonic antigen (CEA), a model tumor marker involved in many cancers. AgNCs with large surface area and abundant amount of low-coordinated sites are synthesized with DNA as template and exhibit high catalytic activity towards the electrochemical reduction of H2O2. GRO is employed to assemble with AgNCs because it has large specific surface area, super electronic conductivity and strong ?-? stacking interaction with the hydrophobic bases of DNA, which can further improve the catalytic ability of the AgNCs. Using AgNCs/GRO as signal amplification tag, an enzyme-free electrochemical immunosensing protocol is designed for the highly sensitive detection of CEA on the capture antibody functionalized immunosensing interface. Under optimal conditions, the designed immunosensor exhibits a wide linear range from 0.1pgmL(-1) to 100ngmL(-1) and a low limit of detection of 0.037pgmL(-1). Practical sample analysis reveals the sensor has good accuracy and reproducibility, indicating the great application prospective of the AgNCs/GRO in fabricating highly sensitive immunosensors, which can be extended to the detection of various kinds of low abundance disease related proteins. PMID:26772127

  14. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.

    PubMed

    Benvidi, Ali; Rajabzadeh, Nooshin; Mazloum-Ardakani, Mohammad; Heidari, Mohammad Mehdi; Mulchandani, Ashok

    2014-08-15

    The increasing desire for sensitive, easy, low-cost, and label free methods for the detection of DNA sequences has become a vital matter in biomedical research. For the first time a novel label-free biosensor for sensitive detection of Amelogenin gene (AMEL) using reduced graphene oxide modified glassy carbon electrode (GCE/RGO) has been developed. In this work, detection of DNA hybridization of the target and probe DNA was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The optimum conditions were found for the immobilization of probe on RGO surface and its hybridization with the target DNA. CV and EIS carried out in an aqueous solution containing [Fe(CN)6](3-/4-) redox pair have been used for the biosensor characterization. The biosensor has a wide linear range from 1.010(-20) to 1.010(-14)M with the lower detection limit of 3.210(-21)M. Moreover, the present electrochemical detection offers some unique advantages such as ultrahigh sensitivity, simplicity, and feasibility for apparatus miniaturization in analytical tests. The excellent performance of the biosensor is attributed to large surface-to-volume ratio and high conductivity of RGO, which enhances the probe absorption and promotes direct electron transfer between probe and the electrode surface. This electrochemical DNA sensor could be used for the detection of specific ssDNA sequence in real biological samples. PMID:24632459

  15. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-07-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst.

  16. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction.

    PubMed

    Lu, Zhiyi; Wang, Haotian; Kong, Desheng; Yan, Kai; Hsu, Po-Chun; Zheng, Guangyuan; Yao, Hongbin; Liang, Zheng; Sun, Xiaoming; Cui, Yi

    2014-01-01

    Searching for low-cost and efficient catalysts for the oxygen evolution reaction has been actively pursued owing to its importance in clean energy generation and storage. While developing new catalysts is important, tuning the electronic structure of existing catalysts over a wide electrochemical potential range can also offer a new direction. Here we demonstrate a method for electrochemical lithium tuning of catalytic materials in organic electrolyte for subsequent enhancement of the catalytic activity in aqueous solution. By continuously extracting lithium ions out of LiCoO2, a popular cathode material in lithium ion batteries, to Li0.5CoO2 in organic electrolyte, the catalytic activity is significantly improved. This enhancement is ascribed to the unique electronic structure after the delithiation process. The general efficacy of this methodology is demonstrated in several mixed metal oxides with similar improvements. The electrochemically delithiated LiCo0.33Ni0.33Fe0.33O2 exhibits a notable performance, better than the benchmark iridium/carbon catalyst. PMID:24993836

  17. Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Yang, Wenyao; Zhao, Yuetao; He, Xin; Chen, Yan; Xu, Jianhua; Li, Shibin; Yang, Yajie; Jiang, Yadong

    2015-05-01

    In this paper, we demonstrate the preparation of a flexible poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate)/reduced graphene oxide (PEDOT-PSS/RGO) film with a layered structure via a simple vacuum filtered method as a high performance electrochemical electrode. The PEDOT-PSS/RGO films are characterized by scanning electron microscopy (SEM), X-ray diffraction, Raman spectroscopy, and Fourier transform infrared (FT-IR) spectrometry. The results indicate that a layer-ordered structure is constructed in this nanocomposite during the vacuum filtering process. The electrochemical performances of the flexible films are characterized by electrochemical impedance spectroscopy, cyclic voltammetry, and galvanostatic charge/discharge. The results reveal that a 193.7 F/g highly specific capacitance of nanocomposite film is achieved at a current density of 500 mA/g. This flexible and self-supporting nanocomposite film exhibits excellent cycling stability, and the capacity retention is 90.6 % after 1000 cycles, which shows promising application as high-performance electrode materials for flexible energy-storage devices.

  18. Controllable Synthesis of Formaldehyde Modified Manganese Oxide Based on Gas-Liquid Interfacial Reaction and Its Application of Electrochemical Sensing.

    PubMed

    Bai, Wushuang; Sheng, Qinglin; Nie, Fei; Zheng, Jianbin

    2015-12-30

    Controllable synthesis of manganese oxides was performed via a simple one-step synthetic method. Then obtained manganese oxides which exhibit flower-like, cloud-like, hexagon-like, and rod-like morphologies were modified by formaldehyde based on a simple self-made gas-liquid reaction device respectively and the modified manganese oxides with coral-like, scallop-like and rod-like morphology were synthesized accordingly. The obtained materials were characterized and the formation mechanism was also researched. Then the modified manganese oxides were used to fabricate electrochemical sensors to detect H2O2. Comparison of electrochemical properties between three kinds of modified manganese oxides was investigated and the best one has been successfully employed as H2O2 sensor which shows a low detection limit of 0.01 ?M, high sensitivity of 162.69 ?A mM(-1) cm(-2), and wide linear range of 0.05 ?M-12.78 mM. The study provides a new method for controllable synthesis of metal oxides, and electrochemical application of formaldehyde modified manganese oxides will provides a new strategy for electrochemical sensing with high performance, low cost, and simple fabrication. PMID:26647786

  19. Enhanced electrochemical performance of a crosslinked polyaniline-coated graphene oxide-sulfur composite for rechargeable lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Moon, San; Jung, Young Hwa; Kim, Do Kyung

    2015-10-01

    Due to the extraordinarily high theoretical capacity of sulfur (1675 mAh g-1), the lithium-sulfur (Li-S) battery has been considered a promising candidate for future high-energy battery applications. Li-S batteries, however, have suffered from limited cycle lives, mainly due to the formation of soluble polysulfides, which prevent the practical application of this attractive technology. The encapsulation of sulfur with various conductive materials has addressed this issue to some extent. Nevertheless, most approaches still present partial encapsulation of sulfur and moreover require a large quantity of conductive material (typically, >30 wt%), making the use of sulfur less desirable from the viewpoint of capacity. Here, we address these chronic issues of Li-S cells by developing a graphene oxide-sulfur composite with a thin crosslinked polyaniline (PANI) layer. Graphene oxide nanosheets with large surface area, high conductivity and a uniform conductive PANI layer, which are synthesized by a layer-by-layer method, have a synergetic interaction with a large portion of the sulfur in the active material. Furthermore, a simple crosslinking process efficiently prevents polysulfide dissolution, resulting in unprecedented electrochemical performance, even with a high sulfur content (∼75%): a high capacity retention of ∼80% is observed, in addition to 97.53% of the average Coulombic efficiency being retained after 500 cycles. The performance we demonstrate represents an advance in the field of lithium-sulfur batteries for applications such as power tools.

  20. Amorphous mixed-metal hydroxide nanostructures for advanced water oxidation catalysts.

    PubMed

    Gao, Y Q; Liu, X Y; Yang, G W

    2016-02-25

    The design of highly efficient, durable, and earth-abundant catalysts for the oxygen evolution reaction (OER) is crucial in order to promote energy conversion and storage processes. Here, we synthesize amorphous mixed-metal (Ni-Fe) hydroxide nanostructures with a homogeneous distribution of Ni/Fe as well as a tunable Ni/Fe ratio by a simple, facile, green and low-cost electrochemical technique, and we demonstrate that the synthesized amorphous nanomaterials possess ultrahigh activity and super long-term cycle stability in the OER process. The amorphous Ni0.71Fe0.29(OH)x nanostructure affords a current density of 10 mA cm(-2) at an overpotential of a mere 0.296 V and a small Tafel slope of 58 mV dec(-1), while no deactivation is detected in the CV testing even up to 30?000 cycles, which suggests the promising application of these amorphous nanomaterials in electrochemical oxidation. Meanwhile, the distinct catalytic activities among these amorphous Ni-Fe hydroxide nanostructures prompts us to take notice of the composition of the alloy hydroxides/oxides when studying their catalytic properties, which opens an avenue for the rational design and controllable preparation of such amorphous nanomaterials as advanced OER electrocatalysts. PMID:26864279

  1. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry.

    PubMed

    Guo, Zhen; Liu, Bin; Zhang, Qinghong; Deng, Weiping; Wang, Ye; Yang, Yanhui

    2014-05-21

    Oxidation catalysis not only plays a crucial role in the current chemical industry for the production of key intermediates such as alcohols, epoxides, aldehydes, ketones and organic acids, but also will contribute to the establishment of novel green and sustainable chemical processes. This review is devoted to dealing with selective oxidation reactions, which are important from the viewpoint of green and sustainable chemistry and still remain challenging. Actually, some well-known highly challenging chemical reactions involve selective oxidation reactions, such as the selective oxidation of methane by oxygen. On the other hand some important oxidation reactions, such as the aerobic oxidation of alcohols in the liquid phase and the preferential oxidation of carbon monoxide in hydrogen, have attracted much attention in recent years because of their high significance in green or energy chemistry. This article summarizes recent advances in the development of new catalytic materials or novel catalytic systems for these challenging oxidation reactions. A deep scientific understanding of the mechanisms, active species and active structures for these systems are also discussed. Furthermore, connections among these distinct catalytic oxidation systems are highlighted, to gain insight for the breakthrough in rational design of efficient catalytic systems for challenging oxidation reactions. PMID:24553414

  2. An Electrochemical Study of Frustrated Lewis Pairs: A Metal-Free Route to Hydrogen Oxidation

    PubMed Central

    2014-01-01

    Frustrated Lewis pairs have found many applications in the heterolytic activation of H2 and subsequent hydrogenation of small molecules through delivery of the resulting proton and hydride equivalents. Herein, we describe how H2 can be preactivated using classical frustrated Lewis pair chemistry and combined with in situ nonaqueous electrochemical oxidation of the resulting borohydride. Our approach allows hydrogen to be cleanly converted into two protons and two electrons in situ, and reduces the potential (the required energetic driving force) for nonaqueous H2 oxidation by 610 mV (117.7 kJ mol1). This significant energy reduction opens routes to the development of nonaqueous hydrogen energy technology. PMID:24720359

  3. Cuprous Sulfide/Reduced Graphene Oxide Hybrid Nanomaterials: Solvothermal Synthesis and Enhanced Electrochemical Performance

    NASA Astrophysics Data System (ADS)

    He, Zhanjun; Zhu, Yabo; Xing, Zheng; Wang, Zhengyuan

    2016-01-01

    The cuprous sulfide nanoparticles (CuS NPs)-decorated reduced graphene oxide (rGO) nanocomposites have been successfully prepared via a facile and efficient solvothermal synthesis method. Scanning electron microscopy and transmission electron microscopy images demonstrated that CuS micronspheres composed of nanosheets and distributed on the rGO layer in well-monodispersed form. Fourier-transform infrared spectroscopy analyses and x-ray photoelectron spectroscopy showed that graphene oxide (GO) had been reduced to rGO. The electrochemical performances of CuS/rGO nanocomposites were investigated by cyclic voltammetry and charge/discharge techniques, which showed that the specific capacitance of CuS/rGO nanocomposites was enhanced because of the introduction of rGO.

  4. Electrochemical analysis of polyethylenimine-modified graphene oxide supports for Pt nanoparticles catalyst electrode.

    PubMed

    Park, Jae Young; Kim, Seok

    2014-03-01

    Polyethylenimine-modified graphene oxide supported platinum electro-catalyst was synthesized by a modified sodium borohydride reduction method. As a modifier agent, polyethylenimine (PEI) was used to form coating layer onto graphene surface. To ascertain the electrochemical behavior, PEI-reduced graphene oxide (PEI-RGO) was compared with changing the PEI/RGO weight ratio of 1:0.5, 1:1 and 1:2, respectively. The morphology of electro-catalysts was observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) images. In addition, lattice parameters and particle size of electro-catalysts were measured by X-ray diffraction (XRD). FT-IR spectra of catalysts were used to ascertain existence and functional group of the PEI branches on GO surface. PMID:24745236

  5. Electrochemical and electrochromic properties of niobium oxide thin films fabricated by pulsed laser deposition

    SciTech Connect

    Fu, Z.W.; Kong, J.J.; Qin, Q.Z.

    1999-10-01

    Niobium oxide thin films have been successfully fabricated on the indium-tin oxide coated glasses by pulsed laser deposition in an O{sub 3}/O{sub 2} gas mixture. Films are characterized by X-ray diffraction and Raman spectrometry. Electrochemical and electrochromic properties of Nb{sub 2}O{sub 5} films are examined by cyclic voltammogram and potential step coupled with an in situ charge-coupled device spectrophotometer. The unique characteristics of absorption spectra of Nb{sub 2}O{sub 5} films are observed for the first time, and the optical absorption from the trapped electrons in the surface states plays an important role in the electrochromic phenomenon.

  6. Electrochemical investigation of polyhalide ion oxidation-reduction on carbon nanotube electrodes for redox flow batteries

    SciTech Connect

    Shao, Yuyan; Engelhard, Mark H.; Lin, Yuehe

    2009-10-01

    Polyhalide ions (Br-/BrCl2-) are an important redox couple for redox flow batteries. The oxidation-reduction behavior of polyhalide ions on a carbon nanotube (CNT) electrode has been investigated with cyclic voltammetry and electrochemical impedance spectroscopy. The onset oxidation potential of Br-/BrCl2- is negatively shifted by >100 mV, and the redox current peaks are greatly enhanced on a CNT electrode compared with that on the most widely-used graphite electrode. The reaction resistance of the redox couple (Br-/BrCl2-) is decreased on a CNT electrode. The redox reversibility is increased on a CNT electrode even though it still needs further improvement. CNT is a promising electrode material for redox flow batteries.

  7. Influence of hydrogen-oxidizing bacteria on the corrosion of low carbon steel: Local electrochemical investigations.

    PubMed

    Moreira, Rebeca; Schtz, Marta K; Libert, Marie; Tribollet, Bernard; Vivier, Vincent

    2014-06-01

    Low carbon steel has been considered a suitable material for component of the multi-barrier system employed on the geological disposal of high-level radioactive waste (HLW). A non negligible amount of dihydrogen (H2) is expected to be produced over the years within the geological repository due to the anoxic corrosion of metallic materials and also to the water radiolysis. The influence of the activity of hydrogen-oxidizing bacteria (HOB) and iron-reducing bacteria (IRB) on carbon steel corrosion is considered in this study because of the high availability of energetic nutriments (H2, iron oxides and hydroxides) produced in anoxic disposal conditions. Local electrochemical techniques were used for investigating the activity of IRB as a promoter of local corrosion in the presence of H2 as electron donor. A local consumption of H2 by the bacteria has been evidenced and impedance measurements indicate the formation of a thick layer of corrosion products. PMID:24177135

  8. Evidence for Decoupled Electron and Proton Transfer in the Electrochemical Oxidation of Ammonia on Pt(100).

    PubMed

    Katsounaros, Ioannis; Chen, Ting; Gewirth, Andrew A; Markovic, Nenad M; Koper, Marc T M

    2016-02-01

    The two traditional mechanisms of the electrochemical ammonia oxidation consider only concerted proton-electron transfer elementary steps and thus they predict that the rate-potential relationship is independent of the pH on the pH-corrected RHE potential scale. In this letter we show that this is not the case: the increase of the solution pH shifts the onset of the NH3-to-N2 oxidation on Pt(100) to lower potentials and also leads to higher surface concentration of formed NOad before the latter is oxidized to nitrite. Therefore, we present a new mechanism for the ammonia oxidation that incorporates a deprotonation step occurring prior to the electron transfer. The deprotonation step yields a negatively charged surface-adsorbed species that is discharged in a subsequent electron transfer step before the N-N bond formation. The negatively charged species is thus a precursor for the formation of N2 and NO. The new mechanism should be a future guide for computational studies aiming at the identification of intermediates and corresponding activation barriers for the elementary steps. Ammonia oxidation is a new example of a bond-forming reaction on (100) terraces that involves decoupled proton-electron transfer. PMID:26757266

  9. LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD

    PubMed Central

    Koehler, Kirsten; Shapiro, Jeffrey; Sameenoi, Yupaporn; Henry, Charles; Volckens, John

    2014-01-01

    Human exposure to particulate matter (PM) air pollution is associated with human morbidity and mortality. The mechanisms by which PM impacts human health are unresolved, but evidence suggests that PM intake leads to cellular oxidative stress through the generation of reactive oxygen species (ROS). Therefore, reliable tools are needed for estimating the oxidant generating capacity, or oxidative load, of PM at high temporal resolution (minutes to hours). One of the most widely reported methods for assessing PM oxidative load is the dithiothreitol (DTT) assay. The traditional DTT assay utilizes filter-based PM collection in conjunction with chemical analysis to determine the oxidation rate of reduced DTT in solution with PM. However, the traditional DTT assay suffers from poor time resolution, loss of reactive species during sampling, and high limit of detection. Recently, a new DTT assay was developed that couples a Particle-Into-Liquid-Sampler with microfluidic-electrochemical detection. This ‘on-line’ system allows high temporal resolution monitoring of PM reactivity with improved detection limits. This study reports on a laboratory comparison of the traditional and on-line DTT approaches. An urban dust sample was aerosolized in a laboratory test chamber at three atmospherically-relevant concentrations. The on-line system gave a stronger correlation between DTT consumption rate and PM mass (R2 = 0.69) than the traditional method (R2 = 0.40) and increased precision at high temporal resolution, compared to the traditional method. PMID:24711675

  10. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL); Kleefisch, Mark S. (Naperville, IL); Kobylinski, Thaddeus P. (Lisle, IL); Udovich, Carl A. (Joliet, IL)

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  11. Formation of electrochemically reduced graphene oxide on melamine electrografted layers and its application toward the determination of methylxanthines.

    PubMed

    Kesavan, Srinivasan; Raj, M Amal; John, S Abraham

    2016-03-01

    The current study describes the electrografting of 2,4-diamino-1,3,5-triazine (AT) groups at the surfaces of glassy carbon electrode (GCE) and indium tin oxide (ITO) through in situ diazotization of melamine. The presence of AT groups at the surface of the electrode was confirmed by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Furthermore, graphene oxide (GO) was self-assembled on AT grafted GCE. The oxygen functional groups present on the surface of GO were electrochemically reduced to form an electrochemically reduced graphene oxide (ERGO) on AT grafted electrode surface. Raman spectra show the characteristic D and G bands at 1340 and 1605 cm(-1), respectively, which confirms the successful attachment of GO on AT grafted surface, and the ratio of D and G bands was increased after the electrochemical reduction of GO. EIS shows that the electron transfer reaction of [Fe(CN)6](3-/4-) was higher at the ERGO modified electrode than at bare, AT grafted, and GO modified GCEs. The electrocatalytic activity of ERGO was investigated toward the oxidation of methylxanthines. It shows excellent electrocatalytic activity toward these methylxanthines by not only shifting their oxidation potentials toward less positive potentials but also enhancing their oxidation currents. PMID:26717896

  12. Effect of hydrothermal reaction time and alkaline conditions on the electrochemical properties of reduced graphene oxide

    NASA Astrophysics Data System (ADS)

    Vermisoglou, E. C.; Giannakopoulou, T.; Romanos, G.; Giannouri, M.; Boukos, N.; Lei, C.; Lekakou, C.; Trapalis, C.

    2015-12-01

    Reduced graphene oxide sheets (rGO) were prepared by hydrothermal treatment of aqueous dispersions of graphite oxide (GtO) applied for short (4 h) and prolonged reaction times (19-24 h). The effect of process duration as well as the alkaline conditions (pH ∼10) by addition of K2CO3 on the quality characteristics of the produced rGO materials was investigated. Both reduction and exfoliation occurred during this process as it was evidenced by FTIR and XRD data. SEM, TEM and HRTEM microscopy displayed highly exfoliated rGO materials. XPS verified that the re-establishment of the conjugated graphene network is more extensive for prolonged times of hydrothermal processing in accordance to Raman spectroscopy measurements. The sample produced under alkaline conditions bore fewer defects and almost 5 times higher BET surface area (∼181 m2/g) than the sample with no pH adjustment (∼34 m2/g) for the same hydrothermal reaction time (19 h), attributed to the developed microporosity. The specific capacitance of this material estimated by electrochemical impedance using three-electrode cell and KCl aqueous solution as an electrolyte was ∼400-500 F/g. When EDLC capacitors were fabricated from rGO materials the electrochemical testing in organic electrolyte i.e. TEABF4 in PC, revealed that the shortest hydrothermal reaction time (4 h) was more efficient resulting in capacitance around 60 F/g.

  13. Selective oxidation of ethane using the Au|YSZ|Ag electrochemical membrane system

    SciTech Connect

    Hamakawa, Satoshi; Sato, Koichi; Hayakawa, Takashi; York, A.P.E.; Tsunoda, Tatsuo; Suzuki, Kunio; Shimizu, Masao; Takehira, Katsuomi

    1997-01-01

    The catalytic conversion of ethane to acetaldehyde on an inert gold electrode has been studied using the electrochemical membrane reactor with yttria-stabilized zirconia (YSZ) solid electrolyte at 475 C. On applying a direct current to the reaction cell, 5% ethane in N{sub 2}, Au|YSZ|Ag, 100% O{sub 2}, acetaldehyde was formed and the formation rate increased linearly with increasing current. Selectivities to acetaldehyde and carbon dioxide were 45 and 55%, respectively. The addition of oxygen to the ethane-mixed gas in the anode space did not affect the acetaldehyde formation. The use of YSZ powder as a fixed bed catalyst under the mixed gas flow of ethane and oxygen at 450 to 600 C resulted in the formation of carbon monoxide, carbon dioxide, and ethene. Even the use of N{sub 2}O instead of oxygen resulted in no formation of acetaldehyde. Hence, it is likely that partial oxidation of ethane to acetaldehyde was carried out by the oxygen species transferred electrochemically through the YSZ which appeared at the gold-YSZ-gas triple-phase boundary. From the results of ethanol oxidation over the Au|YSZ|Ag system, the following mechanism was proposed: ethane is dehydrogenated to an ethyl radical, then converted to ethoxide, and finally to acetaldehyde by the oxygen species transferred through the YSZ.

  14. Effect of nitro substituent on electrochemical oxidation of phenols at boron-doped diamond anodes.

    PubMed

    Jiang, Yi; Zhu, Xiuping; Li, Hongna; Ni, Jinren

    2010-02-01

    In order to investigate nitro-substitutent's effect on degradation of phenols at boron-doped diamond (BDD) anodes, cyclic voltammetries of three nitrophenol isomers: 2-nitrophenol (2NP), 3-nitrophenol (3NP) and 4-nitrophenol (4NP) were studied, and their bulk electrolysis results were compared with phenol's (Ph) under alkaline condition. The voltammetric study showed nitrophenols could be attacked by hydroxyl radicals and nitro-group was released from the aromatic ring. Results of bulk electrolysis showed degradation of all phenols were fit to a pseudo first-order equation and followed in this order: 2NP>4NP>3NP>Ph. Molecular structures, especially carbon atom charge, significantly influenced the electrochemical oxidation of these isomers. Intermediates were analyzed during the electrolysis process, and were mainly catechol, resorcinol, hydroquinone, and carboxylic acids, such as acetic acid and oxalic acid. A simple degradation pathway was proposed. Moreover, a linear increasing relationship between degradation rates and Hammett constants of the studied phenols was observed, which demonstrated that electrochemical oxidation of these phenols was mainly initiated by electrophilic attack of hydroxyl radicals at BDD anodes. PMID:20060999

  15. Processing, microstructural evolution and electrochemical performance relationships in solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sarikaya, Ayhan

    The relationships between the processing parameters, microstructures and electrochemical performance of solid oxide fuel cell (SOFC) components were investigated. The operating regimes (i.e., reducing vs. oxidizing) as well as the elevated temperatures (e.g. 800C) for their operation introduce several material challenges. Therefore, composite materials are employed to withstand operating conditions while providing sufficient electrochemical performance for fuel cell operation. Analyses on lanthanum-strontium manganite (LSM) - yttria stabilized zirconia (YSZ) compositions (45 vol%-55 vol%) by impedance spectroscopy demonstrated that two competing polarization mechanisms (i.e. charge-exchange and surface adsorption-diffusion of oxygen) limit performance. Optimization of microstructures resulted in total resistances as low as 0.040 Ohm cm2. Studies on Ag composites revealed that incorporation of up to 25 vol% oxide particles (LSM and YSZ) with sizes comparable to the Ag grains (~0.5 microm) can minimize the densification and coarsening of the Ag matrix. While the powder based oxide additions increased the stability limit of porous Ag composites from <550C to 800C, the use of nanostructured coatings increased the stability limit to 900C for cathodes and current collectors. Investigations of Ni-YSZ anode microstructures demonstrated that uniform distribution of percolating isometric pores (>5 microm) allows forming desired continuous percolation of all phases (Ni, YSZ and pores) lowering activation polarization below 0.100 Ohm cm2 and maintaining significant electrical conductivity (>1000 S/cm). Identification of polarization mechanisms by deconvolution of impedance spectra and tailoring the corresponding microstructures was demonstrated as an effective method for optimization of SOFC components.

  16. Nanoporous zeolite and solid-state electrochemical devices for nitrogen-oxide sensing

    NASA Astrophysics Data System (ADS)

    Yang, Jiun-Chan

    Solid-state electrochemical gas sensing devices composed of stabilized-zirconia electrolyte have used extensively in the automobile and chemical industry. Two types of electrochemical devices, potentiometric and amperometric, were developed in this thesis for total NOx (NO + NO2) detection in harsh environments. In potentiometric devices, Pt covered with Pt containing zeolite Y (PtY) and WO3 were examined as the two electrode materials. Significant reactivity differences toward NOx between PtY and WO 3 led to the difference in non-electrochemical reactions and resulted in a electrode potential. With gases passing through a PtY filter, it was possible to remove interferences from 2000 ppm CO, 800 ppm propane, 10 ppm NH3, as well as to minimize effects of 113% O2, CO2, and H2O. Total NOx concentration was measured by maintaining a temperature difference between the filter and the sensor. The sensitivity was significantly improved by connecting sensors in series. Amperometic devices were also developed to detect NOx passing through the PtY filter. By applying a low anodic potential of 80 mV, NO in the NOx equilibrated mixture can be oxidized at a Pt working electrode on the YSZ electrolyte at 500C. The PtY can be held separate from the YSZ or coated onto the YSZ as a film. This design was demonstrated to exhibit total-NOx detection capability, a low NOx detection limit (< 1 ppm), high NOx selectivity relative to CO and oxygen, and linear dependence on NOx concentration. The non-electrochemical reactions around the triple-phase boundary were studied to understand the origin of the superior performance of WO3 on potentiometric NOx sensing. From TPD, DRIFTS, XRD, Raman, and catalytic activity measurements, the interfacial reactions between WO 3 and YSZ were found to dramatically reduce the NOx catalytic activity of YSZ. WO3 reacted with surface Y2O3 on YSZ and formed less catalytically active yttrium tungsten oxides and monoclinic ZrO2, which suppressed the non-electrochemical reactions around the triple-phase boundary. These two products also decreased the oxygen vacancy density around the triple-phase boundary, slowed down the electrochemical oxygen reduction reaction, and in turn increased the NOx signal. The surface nanostructure of electrodes was modified by wet chemical processes to change the non-electrochemical NOx reactions. A thin WO3 coating prepared from the peroxytungstate solution with well-defined triple-phase boundaries resulted in higher sensitivity and better response times than the electrode fabricated from commercial WO3 powders. The electrodeposited porous Pt layer greatly increased the surface area and led to a similar catalytic activity with PtY on NOx sensing. The modified electrodes demonstrated the importance of the surface nanostructure and interfacial species for potentiometric NOx sensing. The sensors composed of tungsten/H2O2 deposited sensing electrodes and more hydrothermal stable Pt-loaded siliceous zeolite Y (PtSY) reference electrodes have stable NO2 signal at 5-10% water in 600C.

  17. Studies on electrochemical recovery of silver from simulated waste water from Ag(II)/Ag(I) based mediated electrochemical oxidation process.

    PubMed

    Chandrasekara Pillai, K; Chung, Sang Joon; Moon, Il-Shik

    2008-11-01

    In the Ag(II)/Ag(I) based mediated electrochemical oxidation (MEO) process, the spent waste from the electrochemical cell, which is integrated with the scrubber columns, contains high concentrations of precious silver as dissolved ions in both the anolyte and the catholyte. This work presents an electrochemical developmental study for the recovery of silver from simulated waste water from Ag(II)/Ag(I) based MEO process. Galvanostatic method of silver deposition on Ti cathode in an undivided cell was used, and the silver recovery rate kinetics of silver deposition was followed. Various experimental parameters, which have a direct bearing on the metal recovery efficiency, were optimized. These included studies with the nitric acid concentration (0.75-6M), the solution stirring rate (0-1400 rpm), the inter-electrode distance between the anode and the cathode (2-8 cm), the applied current density (29.4-88.2 mA cm(-2)), and the initial Ag(I) ion concentration (0.01-0.2M). The silver recovered by the present electrodeposition method was re-dissolved in 6M nitric acid and subjected to electrooxidation of Ag(I) to Ag(II) to ascertain its activity towards Ag(II) electrogeneration from Ag(I), which is a key factor for the efficient working of MEO process. Our studies showed that the silver metal recovered by the present electrochemical deposition method could be reused repeatedly for MEO process with no loss in its electrochemical activity. Some work on silver deposition from sulfuric acid solution of different concentrations was also done because of its promising features as the catholyte in the Ag(II) generating electrochemical cell used in MEO process, which include: (i) complete elimination of poisonous NO(x) gas liberation in the cathode compartment, (ii) reduced Ag(+) ion migration across Nafion membrane from anolyte to catholyte thereby diminished catholyte contamination, and (iii) lower cell voltage and hence lesser power consumption. PMID:18762320

  18. Joining of Oxide Dispersion Strengthened Steels for Advanced Reactors

    NASA Astrophysics Data System (ADS)

    Baker, B. W.; Brewer, L. N.

    2014-12-01

    The design, manufacture, and experimental analysis of structural materials capable of operation in the high temperatures, corrosive environments, and radiation damage spectra of future reactor designs remain one of the key pacing items for advanced reactor designs. The most promising candidate structural materials are vanadium-based refractory alloys, silicon carbide composites and oxide dispersion strengthened steels. Of these, oxide dispersion strengthened steels are a likely near-term candidate to meet required demands. This paper reviews different variants of oxide dispersion strengthened steels and discusses their capability with regard to high-temperature strength, corrosion resistance, and radiation damage resistance. Additionally, joining of oxide dispersion strengthened steels, which has been cited as a limiting factor preventing their use, is addressed and reviewed. Specifically, friction stir welding of these steels is reviewed as a promising joining method for oxide dispersion strengthened steels.

  19. Recent advances of lanthanum-based perovskite oxides for catalysis

    DOE PAGESBeta

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent developmentmore » of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.« less

  20. Recent advances of lanthanum-based perovskite oxides for catalysis

    SciTech Connect

    Zhu, Huiyuan; Zhang, Pengfei; Dai, Sheng

    2015-09-21

    There is a need to reduce the use of noble metal elements especially in the field of catalysis, where noble metals are ubiquitously applied. To this end, perovskite oxides, an important class of mixed oxide, have been attracting increasing attention for decades as potential replacements. Benefiting from the extraordinary tunability of their compositions and structures, perovskite oxides can be rationally tailored and equipped with targeted physical and chemical properties e.g. redox behavior, oxygen mobility, and ion conductivity for enhanced catalysis. Recently, the development of highly efficient perovskite oxide catalysts has been extensively studied. This review article summarizes the recent development of lanthanum-based perovskite oxides as advanced catalysts for both energy conversion applications and traditional heterogeneous reactions.

  1. Direct electrochemical oxidation of S-captopril using gold electrodes modified with graphene-AuAg nanocomposites

    PubMed Central

    Pogacean, Florina; Biris, Alexandru R; Coros, Maria; Lazar, Mihaela Diana; Watanabe, Fumiya; Kannarpady, Ganesh K; Al Said, Said A Farha; Biris, Alexandru S; Pruneanu, Stela

    2014-01-01

    In this paper, we present a novel approach for the electrochemical detection of S-captopril based on graphene AuAg nanostructures used to modify an Au electrode. Multi-layer graphene (Gr) sheets decorated with embedded bimetallic AuAg nanoparticles were successfully synthesized catalytically with methane as the carbon source. The two catalytic systems contained 1.0 wt% Ag and 1.0 wt% Au, while the second had a larger concentration of metals (1.5 wt% Ag and 1.5 wt% Au) and was used for the synthesis of the Gr-AuAg-1 and Gr-AuAg-1.5 multicomponent samples. High-resolution transmission electron microscopy analysis indicated the presence of graphene flakes that had regular shapes (square or rectangular) and dimensions in the tens to hundreds of nanometers. We found that the size of the embedded AuAg nanoparticles varied between 5 and 100 nm, with the majority being smaller than 20 nm. Advanced scanning transmission electron microscopy studies indicated a bimetallic characteristic of the metallic clusters. The resulting Gr-AuAg-1 and Gr-AuAg-1.5 samples were used to modify the surface of commonly used Au substrates and subsequently employed for the direct electrochemical oxidation of S-captopril. By comparing the differential pulse voltammograms recorded with the two modified electrodes at various concentrations of captopril, the peak current was determined to be well-defined, even at relatively low concentration (10?5 M), for the Au/Gr-AuAg-1.5 electrode. In contrast, the signals recorded with the Au/Gr-AuAg-1 electrode were poorly defined within a 510?6 to 510?3 M concentration range, and many of them overlapped with the background. Such composite materials could find significant applications in nanotechnology, sensing, or nanomedicine. PMID:24596464

  2. Oxidation of chlorinated benzenes using advanced oxidation processes

    SciTech Connect

    Masten, S.J.; Shu, Minmin; Galbraith, M.J.; Davies, S.H.R.

    1996-12-31

    The oxidation of 1,2-dichlorobenzene (DCB), 1,3,5-trichlorobenzene (TCB) and pentanoic acid (PA) by ozone, ozone/H{sub 2}O{sub 2} and ozone/UV/H{sub 2}O{sub 2} was studied. The greatest removal of TCB using ozone/H{sub 2}O{sub 2} treatment was achieved using a H{sub 2}O{sub 2} concentration of 60 {mu}M. At pH values <6, ozone/UV performed significantly better than the other processes. However, at circumneutral pH, the removal efficiencies of TCB and DCB by the three AOPs were nearly equal ({approximately} 97% for TCB; 98% for DCB). At high pH (>9) the removal efficiencies for all processes studied were nearly equal. The DCB and TCB removal efficiencies for all the processes studied were usually lower when humic acid was present, however, at a concentration of 1.6 mg/L humic acid slightly enhanced the rate of TCB and PA degradation by ozone. For all the processes studied the rates of oxidation of TCB and DCB were significantly slower in the presence of added bicarbonate. In the systems studied, it appears that the reaction of DCB, TCB and PA with OH is primarily responsible for the degradation of these compounds. Estimates of the steady-state OH concentrations were made using the PA data. The concentration of OH ranged from 6 x 10{sup -14} to 6 x 10{sup -12} M. 25 refs., 12 figs., 3 tabs.

  3. Advanced oxidation processes with coke plant wastewater treatment.

    PubMed

    Krzywicka, A; Kwarciak-Koz?owska, A

    2014-01-01

    The aim of this study was to determine the most efficient method of coke wastewater treatment. This research examined two processes - advanced oxidation with Fenton and photo-Fenton reaction. It was observed that the use of ultraviolet radiation with Fenton process had a better result in removal of impurities. PMID:24804662

  4. Treatment of toxic organics in water by advanced oxidation processes

    SciTech Connect

    Glaze, W.H.; Iwamasa, K.; Homewood, S.

    1995-12-31

    This paper provides a brief description of advanced oxidation processes (AOPs) for the treatment of water contaminated with undesirable organic compounds. Challenges posed by the practical use of AOPs are outlined, including the potential production of chemical byproducts. The lack of accurate mechanistic models is also discussed.

  5. Use of electrochemical oxidation and model peptides to study nucleophilic biological targets of reactive metabolites: the case of rimonabant.

    PubMed

    Thorsell, Annika; Isin, Emre M; Jurva, Ulrik

    2014-10-20

    Electrochemical oxidation of drug molecules is a useful tool to generate several different types of metabolites. In the present study we developed a model system involving electrochemical oxidation followed by characterization of the oxidation products and their propensity to modify peptides. The CB1 antagonist rimonabant was chosen as the model drug. Rimonabant has previously been shown to give high covalent binding to proteins in human liver microsomes and hepatocytes and the iminium ion and/or the corresponding aminoaldehyde formed via P450 mediated ?-carbon oxidation of rimonabant was proposed to be a likely contributor. This proposal was based on the observation that levels of covalent binding were significantly reduced when iminium species were trapped as cyanide adducts but also following addition of methoxylamine expected to trap aldehydes. Incubation of electrochemically oxidized rimonabant with peptides resulted in peptide adducts to the N-terminal amine with a mass increment of 64 Da. The adducts were shown to contain an addition of C5H4 originating from the aminopiperidine moiety of rimonabant. Formation of the peptide adducts required further oxidation of the iminium ion to short-lived intermediates, such as dihydropyridinium species. In addition, the metabolites and peptide adducts generated in human liver microsomes were compared with those generated by electrochemistry. Interestingly, the same peptide modification was found when rimonabant was coincubated with one of the model peptides in microsomes. This clearly indicated that reactive metabolite(s) of rimonabant identical to electrochemically generated species are also present in the microsomal incubations. In summary, electrochemical oxidation combined with peptide trapping of reactive metabolites identified a previously unobserved bioactivation pathway of rimonabant that was not captured by traditional trapping agents and that may contribute to the in vitro covalent binding. PMID:25210840

  6. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process.

    PubMed

    Bragg, Stefanie A; Armstrong, Kristie C; Xue, Zi-Ling

    2012-08-15

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H(2)O(2) and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high C(H(2)O(2),t=0), the reaction is zeroth order with respect to C(H(2)O(2)) and first order with respect to C(blood). The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods. PMID:22841055

  7. Pretreatment of whole blood using hydrogen peroxide and UV irradiation. Design of the advanced oxidation process

    PubMed Central

    Bragg, Stefanie A.; Armstrong, Kristie C.; Xue, Zi-Ling

    2013-01-01

    A new process to pretreat blood samples has been developed. This process combines the Advanced Oxidation Process (AOP) treatment (using H2O2 and UV irradiation) with acid deactivation of the enzyme catalase in blood. A four-cell reactor has been designed and built in house. The effect of pH on the AOP process has been investigated. The kinetics of the pretreatment process shows that at high CH2O2,t = 0, the reaction is zeroth order with respect to CH2O2 and first order with respect to Cblood. The rate limiting process is photon flux from the UV lamp. Degradation of whole blood has been compared with that of pure hemoglobin samples. The AOP pretreatment of the blood samples has led to the subsequent determination of chromium and zinc concentrations in the samples using electrochemical methods. PMID:22841055

  8. Surface structure effects on the electrochemical oxidation of ethanol on platinum single crystal electrodes.

    PubMed

    Colmati, Flavio; Tremiliosi-Filho, Germano; Gonzalez, Ernesto R; Bern, Antonio; Herrero, Enrique; Feliu, Juan M

    2008-01-01

    Ethanol oxidation has been studied on Pt(111), Pt(100) and Pt(110) electrodes in order to investigate the effect of the surface structure and adsorbing anions using electrochemical and FTIR techniques. The results indicate that the surface structure and anion adsorption affect significantly the reactivity of the electrode. Thus, the main product of the oxidation of ethanol on the Pt(111) electrode is acetic acid, and acetaldehyde is formed as secondary product. Moreover, the amount of CO formed is very small, and probably associated with the defects present on the electrode surface. For that reason, the amount of CO2 is also small. This electrode has the highest catalytic activity for the formation of acetic acid in perchloric acid. However, the formation of acetic acid is inhibited by the presence of specifically adsorbed anions, such as (bi)sulfate or acetate, which is the result of the formation of acetic acid. On the other hand, CO is readily formed at low potentials on the Pt(100) electrode, blocking completely the surface. Between 0.65 and 0.80 V, the CO layer is oxidized and the production of acetaldehyde and acetic acid is detected. The Pt(110) electrode displays the highest catalytic activity for the splitting of the C-C bond. Reactions giving rise to CO formation, from either ethanol or acetaldehyde, occur at high rate at any potential. On the other hand, the oxidation of acetaldehyde to acetic acid has probably the lower reaction rate of the three basal planes. PMID:19213328

  9. In situ XPS studies of perovskite oxide surfaces under electrochemical polarization.

    PubMed

    Vovk, Greg; Chen, Xiaohua; Mims, Charles A

    2005-02-17

    An in situ XPS study of oxidation-reduction processes on three perovskite oxide electrode surfaces was carried out by incorporating the materials in an electrochemical cell mounted on a heated sample stage in an ultrahigh vacuum (UHV) chamber. Electrodes made of powdered LaCr(1-x)Ni(x)O(3-delta) (x = 0.4, 1) showed changes in the XPS features of all elements upon redox cycling between formal Ni3+ and Ni2+ oxidation stoichiometries, indicating the delocalized nature of the electronic states involved and strong mixing of O 2p to Ni 3d levels to form band states. The surface also showed changes in adsorption capacity for CO2 upon reduction as a result of increased nucleophilicity of surface oxygen. Another perovskite oxide, La(0.5)Sr(0.5)CoO(3-delta), laser deposited as highly oriented thin films on (100) oriented yttria-stabilized zirconia (YSZ), also showed evidence of both local and nonlocal effects in the XPS features upon redox cycling. In contrast to LaCr(1-x)Ni(x)O(3-delta), redox cycling mainly affected the XPS features of cobalt with little effect on oxygen. This signifies reduced participation of O 2p states in the conduction band of this material. Small changes in surface cation stoichiometry in this film were observed and attributed to mobility of the A-site Sr dopant under polarization. PMID:16851240

  10. Surface Composition, Work Function, and Electrochemical Characteristics of Gallium-Doped Zinc Oxide

    SciTech Connect

    Ratcliff, E. L.; Sigdel, A. K.; Macech, M. R.; Nebesny, K.; Lee, P. A.; Ginley, D. S.; Armstrong, N. R.; Berry, J. J.

    2012-06-30

    Gallium-doped zinc oxide (GZO) possesses the electric conductivity, thermal stability, and earth abundance to be a promising transparent conductive oxide replacement for indium tin oxide electrodes in a number of molecular electronic devices, including organic solar cells and organic light emitting diodes. The surface chemistry of GZO is complex and dominated by the hydrolysis chemistry of ZnO, which influences the work function via charge transfer and band bending caused by adsorbates. A comprehensive characterization of the surface chemical composition and electrochemical properties of GZO electrodes is presented, using both solution and surface adsorbed redox probe molecules. The GZO surface is characterized using monochromatic X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy after the following pretreatments: (i) hydriodic acid etch, (ii) potassium hydroxide etch, (iii) RF oxygen plasma etching, and (iv) high-vacuum argon-ion sputtering. The O 1s spectra for the GZO electrodes have contributions from the stoichiometric oxide lattice, defects within the lattice, hydroxylated species, and carbonaceous impurities, with relative near-surface compositions varying with pretreatment. Solution etching procedures result in an increase of the work function and ionization potential of the GZO electrode, but yield different near surface Zn:Ga atomic ratios, which significantly influence charge transfer rates for a chemisorbed probe molecule. The near surface chemical composition is shown to be the dominant factor in controlling surface work function and significantly influences the rate of electron transfer to both solution and tethered probe molecules.

  11. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber

    NASA Astrophysics Data System (ADS)

    Ben Salem, Sonia; Achour, Zahra Ben; Thamri, Kamel; Touayar, Oualid

    2014-10-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L -1 of NaOH solution, at a temperature of 90°C, and using a 16 mA cm2 constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the `mirage effect' technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m2 s-1 and (370 ± 20) Wm-1 K-1. This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999.

  12. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber.

    PubMed

    Ben Salem, Sonia; Achour, Zahra Ben; Thamri, Kamel; Touayar, Oualid

    2014-01-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L(-1) of NaOH solution, at a temperature of 90°C, and using a 16 mA cm(2) constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the 'mirage effect' technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m(2) s(-1) and (370 ± 20) Wm(-1) K(-1). This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999. PMID:25349555

  13. Study and characterization of porous copper oxide produced by electrochemical anodization for radiometric heat absorber

    PubMed Central

    2014-01-01

    The aim of this work is to optimize the different parameters for realization of an absorbing cavity to measure the incident absolute laser energy. Electrochemical oxidation is the background process that allowed the copper blackening. A study of the blackened surface quality was undertaken using atomic force microscopy (AFM) analysis and ultraviolet-visible-infrared spectrophotometry using a Shimadzu spectrophotometer. A two-dimensional and three-dimensional visualization by AFM of the formed oxide coating showed that the copper surfaces became porous after electrochemical etching with different roughness. This aspect is becoming more and more important with decreasing current density anodization. In a 2 mol L -1 of NaOH solution, at a temperature of 90°C, and using a 16 mA cm2 constant density current, the copper oxide formed has a reflectivity of around 3% in the spectral range between 300 and 1,800 nm. Using the ‘mirage effect’ technique, the obtained Cu2O diffusivity and thermal conductivity are respectively equal to (11.5 ± 0.5) 10 to 7 m2 s-1 and (370 ± 20) Wm-1 K-1. This allows us to consider that our Cu2O coating is a good thermal conductor. The results of the optical and thermal studies dictate the choice of the cavity design. The absorbing cavity is a hollow cylinder machined to its base at an angle of 30°. If the included angle of the plane is 30° and the interior surface gives specular reflection, an incoming ray parallel to the axis will undergo five reflections before exit. So the absorption of the surface becomes closely near 0.999999. PMID:25349555

  14. V{sub 2}O{sub 5} xerogel-poly(ethylene oxide) hybrid material: Synthesis, characterization, and electrochemical properties

    SciTech Connect

    Guerra, Elidia M.; Ciuffi, Katia J.; Oliveira, Herenilton P. . E-mail: herepo@ffclrp.usp.br

    2006-12-15

    In this work, we report the synthesis, characterization, and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) (PEO) hybrid materials obtained by varying the average molecular weight of the organic component as well as the components' ratios. The materials were characterized by X-ray diffraction, ultraviolet/visible and infrared spectroscopies, thermogravimetric analysis, scanning electron microscopy, electron paramagnetic resonance, and cyclic voltammetry. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved, with increase in the interplanar spacing, giving evidence of a low-crystalline structure. We found that the electrochemical behaviour of the hybrid materials is quite similar to that found for the V{sub 2}O{sub 5} xerogel alone, and we verified that PEO leads to stabilization and reproducibility of the Li{sup +} electrochemical insertion/de-insertion into the V{sub 2}O{sub 5} xerogel structure, which makes these materials potential components of lithium ion batteries. - Graphical abstract: The synthesis, structural and electrochemical properties of vanadium pentoxide xerogel-poly(ethylene oxide) hybrid materials have been described. Despite the presence of broad and low intensity peaks, the X-ray diffractograms indicate that the lamellar structure of the vanadium pentoxide xerogel is preserved. The cy voltammetry technique demonstrated that PEO intercalation provides an improvement in the electrochemical properties, mainly with respect to the lithium electroinsertion process into the oxide matrix.

  15. Advanced Launch System advanced development oxidizer turbopump program: Technical implementation plan

    NASA Technical Reports Server (NTRS)

    Ferlita, F.

    1989-01-01

    The Advanced Launch Systems (ALS) Advanced Development Oxidizer Turbopump Program has designed, fabricated and demonstrated a low cost, highly reliable oxidizer turbopump for the Space Transportation Engine that minimizes the recurring cost for the ALS engines. Pratt and Whitney's (P and W's) plan for integrating the analyses, testing, fabrication, and other program efforts is addressed. This plan offers a comprehensive description of the total effort required to design, fabricate, and test the ALS oxidizer turbopump. The proposed ALS oxidizer turbopump reduces turbopump costs over current designs by taking advantage of design simplicity and state-of-the-art materials and producibility features without compromising system reliability. This is accomplished by selecting turbopump operating conditions that are within known successful operating regions and by using proven manufacturing techniques.

  16. Highly efficient and energy-saving sectional treatment of landfill leachate with a synergistic system of biochemical treatment and electrochemical oxidation on a boron-doped diamond electrode.

    PubMed

    Zhao, Guohua; Pang, Yaning; Liu, Lei; Gao, Junxia; Lv, Baoying

    2010-07-15

    In this paper, a synergistic combination of the biochemical treatment and electrochemical oxidation (SBEO) of landfill leachate with sectional treatment on a boron-doped diamond (BDD) electrode is proposed. The first stage involves the synergistic system of biochemical treatment and electrochemical oxidation. Then, the second stage is followed by individual biochemical treatment. Comparisons among the SBEO, electrochemical oxidation, biochemical treatment and biochemical treatment with the pretreatment of electrochemical oxidation are made systematically, which show that this method is both highly efficient and energy-saving. The higher TOC removal and low energy cost on the BDD electrode can be explained by the conversion of the bio-refractory pollutants to biodegradable organics in the electrochemical oxidation process, improving the current efficiency and reducing the energy cost. The treated wastewater is degraded only with biochemical treatment in the second stage, which further improves efficiency and reduced the energy cost. PMID:20413218

  17. Composite electrodes for advanced electrochemical applications. Quarterly report for the period July 1 - September 30, 1999

    SciTech Connect

    Kovach, Chris

    1999-10-01

    The electrochemical industry is one of the most highly energy-intensive industries today. However, there have been no significant advances in the electrodes that these industries use. The dimensionally stable anode (DSA), which ELTECH introduced under a license agreement, has been the industry standard for the past twenty-five years. But, DSAs are nearing the end of their technological prevalence. The principal problems with DSAs include high capital and operating cost, and the proprietary nature of the technology. In addition, DSAs experience problems that include contamination of the process solution by anode materials, failure when the electrocatalytic coating peels from under attack, generally low anode performance due to inherent limitations in operating current density, and short anode lifetime because of corrosion. The proposed innovation combines the low electrical resistance of copper with the corrosion resistance of electrically conductive diamond to achieve energy-efficient, long-lifetime electrodes for electrochemistry. The proposed work will ultimately develop a composite electrode that consists of a copper substrate, a conductive diamond coating, and a catalytic precious metal coating. The scope of the current work includes preparation, testing, and evaluation of diamond-coated titanium electrodes.

  18. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Macdonald, Digby D.; Liu, Sue; Sikora, Elizbieta; Liu, Jun

    2001-06-01

    Fracture of AISI 4340 steel in concentrated sodium hydroxide solution has been monitored by measuring the coupling current that flows between the crack and the external surfaces. The results clearly demonstrate that positive current flows from the crack to the external cathodes (through the solution) during crack growth of AISI 4340 steel in concentrated (6 to12 M) sodium hydroxide solution at 70 C. The (electron) coupling current contains periodic noise that is attributed to fracture events occurring at the crack front, with the amplitude of the noise and the mean current increasing with crack growth rate. The characteristic shape of the individual transients in the noise at lower SCC crack growth rate is a rapid drop followed by slow recovery. The form of the noise in the coupling current during SCC at high NaOH concentration (8 M and 12 M) is attributed to overlap of many cracks propagating simultaneously through micro fracture events along grain boundaries. The discrete events, which have a dimension of about 49 {micro}m, are postulated to be hydrogen induced, and the mechanism of caustic cracking of AISI 4340 steel is considered to be hydrogen embrittlement along grain boundaries. Measurement of the electrochemical noise is shown to be capable of detecting and distinguishing between uniform corrosion and stress corrosion cracking in the steel/NaOH system. The coupling current data are consistent with a hydrogen embrittlement mechanism for crack advance.

  19. Effluent characteristics of advanced treatment for biotreated coking wastewater by electrochemical technology using BDD anodes.

    PubMed

    Wang, Chunrong; Zhang, Mengru; Liu, Wei; Ye, Min; Su, Fujin

    2015-05-01

    Effluent of biotreated coking wastewater comprises hundreds of organic and inorganic pollutants and has the characteristics of high toxicity and difficult biodegradation; thus, its chemical oxygen demand cannot meet drainage standards in China. A boron-doped diamond anode was selected for advanced treatment of biotreated coking wastewater, and considering the efficiency of the removal of total organic carbon and energy consumption, optimal conditions were obtained as current density of 75 mA cm(-2), electrolysis time of 1.5 h, and an electrode gap of 1.0 cm in an orthogonal test. Effluent characteristics were investigated at different electrolysis times. The ratio of the 5-day biochemical oxygen demand (BOD5) to the chemical oxygen demand increased from an initial value of 0.05 to 0.65 at 90 min. Fluorescence spectra were used to evaluate the evolution of refractory organics. Two fluorescence peaks for raw wastewater, corresponding to an aromatic protein-like substance II and humic acid-like substance, weakened at 30 and at 90 min, only the former was detected. The specific oxygen uptake rate was used to assess effluent toxicity, and an obvious inhibition effect was found at 15 min; then, it was significantly faded at 30 and 45 min. The BOD5/NO3 (-)-N ratio increased from an initial value of 0.48 to 1.25 at 45 min and then gradually dropped to 0.69 at 90 min. According to the above effluent characteristics, it is strongly suggested that electrochemical technology using boron-doped diamond anodes is combined with biological denitrification technology for the advanced treatment of biotreated coking wastewater. PMID:25432427

  20. Oxidative Lipidomics Coming of Age: Advances in Analysis of Oxidized Phospholipids in Physiology and Pathology

    PubMed Central

    Pitt, Andrew R.

    2015-01-01

    Abstract Significance: Oxidized phospholipids are now well recognized as markers of biological oxidative stress and bioactive molecules with both pro-inflammatory and anti-inflammatory effects. While analytical methods continue to be developed for studies of generic lipid oxidation, mass spectrometry (MS) has underpinned the advances in knowledge of specific oxidized phospholipids by allowing their identification and characterization, and it is responsible for the expansion of oxidative lipidomics. Recent Advances: Studies of oxidized phospholipids in biological samples, from both animal models and clinical samples, have been facilitated by the recent improvements in MS, especially targeted routines that depend on the fragmentation pattern of the parent molecular ion and improved resolution and mass accuracy. MS can be used to identify selectively individual compounds or groups of compounds with common features, which greatly improves the sensitivity and specificity of detection. Application of these methods has enabled important advances in understanding the mechanisms of inflammatory diseases such as atherosclerosis, steatohepatitis, leprosy, and cystic fibrosis, and it offers potential for developing biomarkers of molecular aspects of the diseases. Critical Issues and Future Directions: The future in this field will depend on development of improved MS technologies, such as ion mobility, novel enrichment methods and databases, and software for data analysis, owing to the very large amount of data generated in these experiments. Imaging of oxidized phospholipids in tissue MS is an additional exciting direction emerging that can be expected to advance understanding of physiology and disease. Antioxid. Redox Signal. 22, 1646–1666. PMID:25694038

  1. The kinetics and electrochemical rate-determining step of aqueous pyrite oxidation

    NASA Astrophysics Data System (ADS)

    Williamson, Mark A.; Rimstidt, J. Donald

    1994-12-01

    Rate data available in the literature have been compiled for the reaction of pyrite with dissolved oxygen (DO) to produce a rate law that is applicable over four orders of magnitude in DO concentration over the pH range 2-10. The valid rate law is ? where r is the rate of pyrite destruction in units of mol m -2 s -1. A series of batch and mixed flow reactor experiments were performed to determine the effect of SO 42-, Cl -, ionic strength, and dissolved oxygen on the rate of reaction of pyrite with ferric iron. Of these, only dissolved oxygen was found to have any appreciable effect. Experimental results of the present study were combined with kinetic data reported in the literature to formulate rate laws that are applicable over a six order of magnitude range in Fe 3+ and Fe 2+ concentration for the pH range 0.5-3.0. In N 2-purged solution, the rate law is ? and when dissolved oxygen is present, ? where r is the rate of pyrite destruction in mol m -2 s -1. Experiments were also performed in which a single pyrite sample was repeatedly reacted with ferric iron solutions of the same composition and identical surface area to mass of solution ratio (A/M). For each subsequent experiment, the rate of reaction slowed and the original behavior of the pyrite could not be reestablished by washing the pyrite with concentrated HNO3 or EDTA. This behavior was interpreted as representative of a change in the electrochemical properties of the solid pyrite. Pretreating pyrite samples with aqueous solutions of ferrous iron and EDTA did not change the reaction rate with ferric iron; however, pretreatment with hydroxylamine hydrochloride lowered the rate significantly. The data presented are best modeled by a nonsite-specific Freundlich multilayer isotherm. Good correlation was found between Eh and rate for the aqueous oxidation of pyrite with DO and ferric iron. Because the fractional orders of reaction are difficult to explain with a purely molecular-based mechanism, a cathodic-anodic electrochemical mechanism is favored to explain the transfer of the electron from pyrite to the aqueous oxidant. Mechanistically, the results of this study suggest a nonsite specific interaction between dissolved oxidants and the pyrite surface. Rate correlates strongly with Eh ({Fe3+}/{Fe2+} ratio or DO concentration) and is consistent with an electrochemical mechanism where anodic and cathodic reactions occur at different places on the pyrite surface.

  2. Electrochemical oxidation of synthetic tannery wastewater in chloride-free aqueous media.

    PubMed

    Costa, Carla Regina; Montilla, Francisco; Moralln, Emilia; Olivi, Paulo

    2010-08-15

    The electrochemical treatment of a synthetic tannery wastewater, prepared with several compounds used by finishing tanneries, was studied in chloride-free media. Boron-doped diamond (Si/BDD), antimony-doped tin dioxide (Ti/SnO(2)-Sb), and iridium-antimony-doped tin dioxide (Ti/SnO(2)-Sb-Ir) were evaluated as anode. The influence of pH and current density on the treatment was assessed by means of the parameters used to measure the level of organic contaminants in the wastewater; i.e., total phenols, chemical oxygen demand (COD), total organic carbon (TOC), and absorbance. Results showed that faster decrease in these parameters occurred when the Si/BDD anode was used. Good results were obtained with the Ti/SnO(2)-Sb anode, but its complete deactivation was reached after 4h of electrolysis at 25 mA cm(-2), indicating that the service life of this electrode is short. The Ti/SnO(2)-Sb-Ir anode is chemically and electrochemically more stable than the Ti/SnO(2)-Sb anode, but it is not suitable for the electrochemical treatment under the studied conditions. No significant changes were observed for electrolyses performed at different pH conditions with Si/BDD, and this electrode led to almost complete mineralization after 4h of electrolysis at 100 mA cm(-2). The increase in current density resulted in faster wastewater oxidation, with lower current efficiency and higher energy consumption. Si/BBD proved to be the best electrodic material for the direct electrooxidation of tannery wastewaters. PMID:20452722

  3. Effect of additive on electrochemical corrosion properties of plasma electrolytic oxidation coatings formed on CP Ti under different processing frequency

    NASA Astrophysics Data System (ADS)

    Babaei, Mahdi; Dehghanian, Changiz; Vanaki, Mojtaba

    2015-12-01

    The plasma electrolytic oxidation (PEO) coating containing zirconium oxide was fabricated on CP Ti at different processing frequencies viz., 100 Hz and 1000 Hz in a (Na2ZrO3, Na2SiO3)-additive containing NaH2PO4-based solution, and long-term electrochemical corrosion behavior of the coatings was studied using electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. Electrochemical degradation behavior of two-layered coatings formed at different frequencies was turned out to be governed by concentration of electrolyte additive. With increasing additive concentration, the coating obtained at frequency of 1000 Hz exhibited enhanced corrosion resistance. However, corrosion resistance of the coating prepared at 100 Hz was found to decrease with increased additive, which was attributed to intensified microdischarges damaging the protective effect of inner layer. Nevertheless, the electrolyte additive was found to mitigate the long-term degradation of the coatings to a significant extent.

  4. Mediated electrochemical oxidation treatment for Rocky Flats combustible low-level mixed waste. Final report, FY 1993 and 1994

    SciTech Connect

    Chiba, Z.; Lewis, P.R.; Murguia, L.C.

    1994-09-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which destroys hazardous organics by oxidizing a mediator at the anode of an electrochemical cell; the mediator in turn oxidizes the organics within the bulk of the electrolyte. With this process organics can be nearly completely destroyed, that is, the carbon and hydrogen present in the hydrocarbon are almost entirely mineralized to carbon dioxide and water. The MEO process is also capable of dissolving radioactive materials, including difficult-to-dissolve compounds such as plutonium oxide. Hence, this process can treat mixed wastes, by destroying the hazardous organic components of the waste, and dissolving the radioactive components. The radioactive material can be recovered if desired, or disposed of as non-mixed radioactive waste. The process is inherently safe, since the hazardous and radioactive materials are completely contained in the aqueous phase, and the system operates at low temperatures (below 80{degree}C) and at ambient pressures.

  5. Electrochemically reduced graphene oxide/carbon nanotubes composites as binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Yang, Qin; Pang, Siu-Kwong; Yung, Kam-Chuen

    2016-04-01

    Binder-free composites of electrochemically reduced graphene oxide (ecrGO) and multiwalled carbon nanotubes (MWCNTs) were fabricated as supercapacitors electrodes operating in aqueous systems. GO was found to be electrochemically reduced according to the XRD and Raman data. Therefore, this facile and controllable method was applied to reduce GO in the GO/MWCNTs composites, generating ecrGO/MWCNTs composites. The ecrGO/MWCNTs composites exhibit higher specific capacitance (Csp) than ecrGO because the intercalation of MWCNTs into ecrGO sheets increases the surface areas, according to the TEM, XRD and N2 adsorption-desorption results. The composites with different mass ratios of GO to MWCNTs (10:1, 5:1, 1:1, 1:5, 1:10) were investigated. The ecrGO/MWCNTs composite (GO: MWCNTs = 5:1) showed the highest Csp from the cyclic voltammetry results at a scan rate of 10 mV s-1, and it expressed Csp of 165 F g-1 at a current density of 1 A g-1 and 93% retention after 4000 cycles of charge/discharge. When the mass ratio of GO to MWCNTs further decreases to 1:10, the Csp of the composites declines, and the ecrGO/MWCNTs composite (GO: MWCNTs = 1:10) performs a nearly pure double-layer capacitor. However, the composites containing more MWCNTs can maintain better capacitive behavior at higher rates of charge/discharge.

  6. Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control

    NASA Astrophysics Data System (ADS)

    Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

    2014-07-01

    The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360 meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis.

  7. Electrochemical deposition of silver on manganese dioxide coated reduced graphene oxide for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Lee, Kyungmi; Ahmed, Mohammad Shamsuddin; Jeon, Seungwon

    2015-08-01

    We have prepared a reduced graphene oxide (rGO)-supported silver (Ag) and manganese dioxide (MnO2) deposited porous-like catalyst (denoted as rGO/MnO2/Ag) through a facile electrochemical deposition route and have been used as a cathode catalyst for oxygen reduction reaction (ORR) in alkaline fuel cells. The physical properties of rGO/MnO2/Ag have been investigated via several instrumental methods. This material exhibits a polycrystalline structure characterized by Ag/MnO2 microsphere formation as a result of Ostwald ripening. The X-ray diffraction and X-ray photoelectron spectroscopy data reveal that the MnO2 and Ag have been slightly alloyed and Mn presents with the dioxide form on rGO. The electrochemical properties of the electrocatalyst have been studied via several voltammetric methods. The results demonstrated that the rGO/MnO2/Ag has an excellent catalytic activity for ORR in alkaline media compared to the other tested electrodes. Particularly, it shows 1.2 times higher current density and better electron transfer rate at 0.3 V per O2 than that of 20 wt% Pt/C. The other kinetic analysis reveals that the O2 has reduced directly to H2O through a nearly four-electron pathway with better anodic fuel tolerance and duration performance than that of 20% Pt/C.

  8. Synthesis of Electrochemically Reduced Graphene Oxide Bonded to Thiodiazole-Pd and Applications to Biosensor.

    PubMed

    You, Jung-Min; Han, Hyoung Soon; Jeon, Seungwon

    2015-08-01

    A novel biosensor for the determination of hydrogen peroxide and glucose was developed based on EGN-TDZ-Pd, as an electrocatalyst. The preparation of graphene oxide (GO) nanosheets was functionalized by combining it with 5-amino-1,3,4-thiadiazole-2-thiol (TDZ) and by covalently bonding it to palladium (Pd) nanoparticles (GO-TDZ-Pd). In the electrochemical investigation, EGN-TDZ-Pd was characterized via scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical impedance spectroscopy (EIS). Cyclic voltammetry (CV) and chronoamperometry (CA) were used to characterize the performance of EGN-TDZ-Pd. The proposed H2O2 biosensor exhibited a wide linear range from 10 M to 6.5 mM. Also, a glucose biosensor was prepared using glucose oxidase and EGN-TDZ-Pd placed onto a glassy carbon electrode (GCE). The GOx/EGN-TDZ-Pd/GCE was easily prepared using a rapid and simple procedure, and it was utilized for highly sensitive glucose determination. PMID:26369140

  9. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Mandon, Julien; Hgman, Marieann; Merkus, Peter J. F. M.; van Amsterdam, Jan; Harren, Frans J. M.; Cristescu, Simona M.

    2012-01-01

    Fractional exhaled nitric oxide (FENO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring FENO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 1?10-9) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO, Aerocrine AB, Sweden). FENO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values.

  10. Label-free electrochemical immunosensor based on cerium oxide nanowires for Vibrio cholerae O1 detection.

    PubMed

    Tam, Phuong Dinh; Thang, Cao Xuan

    2016-01-01

    This paper developed a label-free immunosensor based on cerium oxide nanowire for Vibrio cholerae O1 detection application. The CeO2 nanowires were synthesized by hydrothermal reaction. The immobilization of Anti-V. cholerae O1 onto CeO2 nanowire-deposited sensor was performed via an amino ester, which was created by using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, and sulfo-N-hydroxysuccinimide. The electrochemical responses of the immunosensor were studied by electrochemical impedance spectroscopy with [Fe (CN) 6] (3-/4-) as redox probe. A linear response in electron transfer resistance for cell of V. cholerae O1 concentration was found in the range of 1.0 10(2)CFU/mL to 1.0 10(4)CFU/mL. The detection limit of the immunosensor was 1.0 10(2)CFU/mL. The immunosensor sensitivity was 56.82 ?/CFU mL(-1). Furthermore, the parameters affecting immunosensor response were also investigated, as follows: pH value, immunoreaction time, incubation temperature, and anti-V. cholerae O1 concentration. PMID:26478391

  11. Spontaneous electrochemical treatment for sulfur recovery by a sulfide oxidation/vanadium(V) reduction galvanic cell.

    PubMed

    Kijjanapanich, Pimluck; Kijjanapanich, Pairoje; Annachhatre, Ajit P; Esposito, Giovanni; Lens, Piet N L

    2015-02-01

    Sulfide is the product of the biological sulfate reduction process which gives toxicity and odor problems. Wastewaters or bioreactor effluents containing sulfide can cause severe environmental impacts. Electrochemical treatment can be an alternative approach for sulfide removal and sulfur recovery from such sulfide rich solutions. This study aims to develop a spontaneous electrochemical sulfide oxidation/vanadium(V) reduction cell with a graphite electrode system to recover sulfide as elemental sulfur. The effects of the internal and external resistance on the sulfide removal efficiency and electrical current produced were investigated at different pH. A high surface area of the graphite electrode is required in order to have as less internal resistance as possible. In this study, graphite powder was added (contact area >633 cm(2)) in order to reduce the internal resistance. A sulfide removal efficiency up to 91% and electrical charge of more than 400 C were achieved when using five graphite rods supplemented with graphite powder as the electrode at an external resistance of 30 ? and a sulfide concentration of 250 mg L(-1). PMID:25463589

  12. Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction induced Carrier Control

    PubMed Central

    Seo, Hyungtak; Ahn, Seungbae; Kim, Jinseo; Lee, Young-Ahn; Chung, Koo-Hyun; Jeon, Ki-Joon

    2014-01-01

    The extended application of graphene-based electronic devices requires a bandgap opening in order to realize the targeted device functionality. Since the bandgap tuning of pristine graphene is limited to 360 meV, the chemical modification of graphene is considered essential to achieve a large bandgap opening at the expense of electrical properties degradation. Reduced graphene oxide (RGO) has attracted significant interest for fabricating graphene-based semiconductors since it has several advantages over other forms of chemically modified graphene; such as tunable bandgap opening, decent electrical properties, and easy synthesis. Because of the reduced bonding nature of RGO, the role of metastable oxygen in the RGO matrix is recently highlighted and it may offer emerging ionic devices. In this study, we show that multi-resistivity RGO/n-Si diodes can be obtained by controlling the RGO thickness at a nanometer scale. This is made possible by (1) a metastable lattice-oxygen drift within bulk RGO and (2) electrochemical ambient hydroxyl (OH) formation at the RGO surface. The effect demonstrated in a p-RGO/n-Si heterojunction diode is equivalent to electrochemically driven reversible electronic manipulation and therefore provides an important basis for the application of O bistability in RGO for chemical sensors and electrocatalysis. PMID:25007942

  13. Behavior of molybdenum nitrides as materials for electrochemical capacitors: Comparison with ruthenium oxide

    SciTech Connect

    Liu, T.C.; Pell, W.G.; Conway, B.E.; Roberson, S.L.

    1998-06-01

    Ruthenium oxide (RuO{sub 2}), formed as a thin film on a Ru or Ti metal substrate, exhibits a large specific (cm{sup {minus}2}) and almost constant, electrochemical capacitance over a 1.35 V range in aqueous H{sub 2}SO{sub 4}. This behavior has led to its investigation and use as a material for fabrication of supercapacitor devices. However, its cost has encouraged search for other materials exhibiting similar behavior. Work reported in the present paper evaluates two nitrides of Mo, Mo{sub 2}N and MoN, as substitutes for RuO{sub 2}. It is shown that very similar capacitance behavior to that of RuO{sub 2} films arises, e.g., in cyclic voltammetry and dc charging curves; in the former, almost mirror-image anodic and cathodic current-response profiles, characteristic of a capacitor, arise. However, the nitride materials have a substantially smaller voltage operating range of only some 0.7 V due to electrochemical decomposition above ca. 0.7 V vs. RHE. This limits their usefulness as a substitute for RuO{sub 2}. Of interest is that the nitride films exhibit potential-decay and potential-recovery on open circuit after respective charge and forced discharge. The decay and recovery processes are logarithmic in time, indicating the role of internal faradaic charge redistribution processes.

  14. Direct and environmentally benign synthesis of manganese oxide/graphene composites from graphite for electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Lee, Hae-Min; Jeong, Gyoung Hwa; Kang, Doo Won; Kim, Sang-Wook; Kim, Chang-Koo

    2015-05-01

    We develop a direct and environmentally benign method to prepare manganese oxide (Mn3O4)/graphene composites via one-step hydrothermal synthesis from graphite without using strong acids and toxic reducing agents. Structural and morphological analyses reveals that the irregularly shaped Mn3O4 nanoparticles are well-dispersed on the graphene flakes. Cyclic voltammetry and galvanostatic charge-discharge tests indicate that the charge-storing mechanism of the Mn3O4/graphene composites is pseudocapacitive. The Mn3O4/graphene composite exhibits a specific capacitance of 367 F/g at a current density of 5 A/g. After 3000 charge-discharge cycles, the Mn3O4/graphene electrode retains 91.8% of its initial specific capacitance. From electrochemical impedance spectra, it is evident that the changes in both the equivalent series resistance and charge-transfer resistance of the Mn3O4/graphene electrode before and after 3000 charge-discharge cycles are small, indicating good cycling and electrochemical stability of the Mn3O4/graphene electrode.

  15. Thromboresistant/anti-biofilm catheters via electrochemically modulated nitric oxide release.

    PubMed

    Ren, Hang; Colletta, Alessandro; Koley, Dipankar; Wu, Jianfeng; Xi, Chuanwu; Major, Terry C; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-01

    Inexpensive nitric oxide (NO) release strategies to prevent thrombosis and bacterial infections are desirable for implantable medical devices. Herein, we demonstrate the utility of electrochemically modulated NO release from a catheter model using an inner copper wire working electrode and an inorganic nitrite salt solution reservoir. These catheters generate NO surface fluxes of >1.0 10(-10)mol min(-1) cm(-2) for more than 60 h. Catheters with an NO flux of 1.1 10(-10)mol min(-1) cm(-2) are shown to significantly reduce surface thrombus formation when implanted in rabbit veins for 7h. Further, the ability of these catheters to exhibit anti-biofilm properties against bacterial species commonly causing bloodstream and urinary catheter infections is examined. Catheters releasing NO continuously during the 2d growth of Staphylococcus aureus exhibit a 6 log-unit reduction in viable surface bacteria. We also demonstrate that catheters generating NO for only 3h at a flux of 1.0 10(-10)mol min(-1) cm(-2) lower the live bacterial counts of both 2d and 4d pre-formed Escherichia coli biofilms by >99.9%. Overall, the new electrochemical NO-release devices could provide a cost-effective strategy to greatly enhance the biocompatibility and antimicrobial properties of intravascular and urinary catheters, as well as other implantable medical devices. PMID:25588885

  16. Exhaled nitric oxide monitoring by quantum cascade laser: comparison with chemiluminescent and electrochemical sensors.

    PubMed

    Mandon, Julien; Hgman, Marieann; Merkus, Peter J F M; van Amsterdam, Jan; Harren, Frans J M; Cristescu, Simona M

    2012-01-01

    Fractional exhaled nitric oxide (F(E)NO) is considered an indicator in the diagnostics and management of asthma. In this study we present a laser-based sensor for measuring F(E)NO. It consists of a quantum cascade laser (QCL) combined with a multi-pass cell and wavelength modulation spectroscopy for the detection of NO at the sub-part-per-billion by volume (ppbv, 110(-9)) level. The characteristics and diagnostic performance of the sensor were assessed. A detection limit of 0.5 ppbv was demonstrated with a relatively simple design. The QCL-based sensor was compared with two market sensors, a chemiluminescent analyzer (NOA 280, Sievers) and a portable hand-held electrochemical analyzer (MINO, Aerocrine AB, Sweden). F(E)NO from 20 children diagnosed with asthma and treated with inhaled corticosteroids were measured. Data were found to be clinically acceptable within 1.1 ppbv between the QCL-based sensor and chemiluminescent sensor and within 1.7 ppbv when compared to the electrochemical sensor. The QCL-based sensor was tested on healthy subjects at various expiratory flow rates for both online and offline sampling procedures. The extended NO parameters, i.e. the alveolar region, airway wall, diffusing capacity, and flux were calculated and showed a good agreement with the previously reported values. PMID:22352669

  17. Electrochemical oxidation of glucose on gold nanoparticle-modified reduced graphene oxide electrodes in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Shi, Qiaofang; Diao, Guowang; Mu, Shaolin

    2015-12-01

    A given amount of gold is electrodeposited on the reduced graphene oxide (RGO)/glassy carbon (GC) electrodes to form Au/RGO/GC electrodes, which are carried out at different potentials. The Au/RGO/GC electrode with Au loading of 250 ?g cm-2 prepared at a constant potential of -0.30 V exhibits the best electrocatalytic activity to glucose oxidation in alkaline solutions because of homogeneous dispersion of gold nanoparticles with smaller sizes. This electrode shows long-term stability, rapid charge transfer ability, and higher current density compared to other gold electrodes reported previously.

  18. Nanoelectrical investigation and electrochemical performance of nickel-oxide/carbon sphere hybrids through interface manipulation.

    PubMed

    Yang, Xiaogang; Zhang, Yan'ge; Wu, Guodong; Zhu, Congxu; Zou, Wei; Gao, Yuanhao; Tian, Jie; Zheng, Zhi

    2016-05-01

    Advanced hetero-nanostructured materials for electrochemical devices, such as Li-ion batteries (LiBs), dramatically depend on each functional component and their interfaces to transport and storage charges, where the bottleneck is the sluggish one in series. In this work, we prepare Ni(OH)2@C hybrids through a continuous feeding in reflux and followed by a hydrothermal treatment. The as-prepared Ni(OH)2@C can be further converted into NiO@C hybrids after thermal annealing. As a control, Ni(OH)2&C and NiO&C nanocomposites have also been prepared. Peakforce Tuna measurement shows the conductivity of the NiO@C hybrids is higher than that of NiO&C composites in nanoscale. To further investigate the quality of the interface, 100 charge/discharge cycles of the hybrids are performed in LiBs. The capacity retention of hybrid materials has significantly improved than the simple carbon composites. The enhancement of the electrochemical performance is attributed to the better electric conductivity and smaller charge transfer impedance and strong covalent interface between nickel species and carbon spheres obtained through the controlled seeded deposition. PMID:26897565

  19. Electrochemical behavior of palmatine and its sensitive determination based on an electrochemically reduced l-methionine functionalized graphene oxide modified electrode.

    PubMed

    Qiao, Wenhua; Wang, Lu; Ye, Baoxian; Li, Gaiping; Li, Jianjun

    2015-12-01

    A new and sensitive voltammetric sensor for palmatine, based on an electrochemically reduced l-methionine functionalized graphene oxide modified glassy carbon electrode (l-Met-ERGO/GCE), is reported. The electrochemical characteristics of palmatine at the proposed sensor were studied systematically and some dynamic parameters were calculated for the first time. A reasonable reaction mechanism for palmatine on the l-Met-ERGO/GCE electrode was proposed and discussed, and this could be a reference for the pharmacological action of palmatine in clinical study. Under optimized conditions, the peak current had a linear relationship with palmatine concentration in the range of 1 10(-7) to 5 10(-5) mol L(-1) with a detection limit of 6 10(-8) mol L(-1). Additionally, the proposed method was also used to detect palmatine in human urine samples, medicinal tablets and the Chinese herb Fibraurea recisa Pierre with satisfactory results. PMID:26517817

  20. High efficiencies in the electrochemical oxidation of an anthraquinonic dye with conductive-diamond anodes.

    PubMed

    Aquino, Jos Mario; Rocha-Filho, Romeu C; Sez, Cristina; Caizares, Pablo; Rodrigo, Manuel A

    2014-01-01

    Oxidation of anthraquinonic dye Acid Blue 62 by electrolysis with conductive-diamond electrodes is studied in this work. COD, TOC, and color have been selected to monitor the degradation of the molecule as a function of several operating inputs (current density, pH, temperature, and NaCl concentration). Results show that the electrochemical oxidation of this model of large molecules follows a first order kinetics in all the conditions assessed, and it does not depend on the pH and temperature. The occurrence of chloride ions in wastewaters increases the rate of color and COD removal as a consequence of the mediated oxidation promoted by the chlorinated oxidizing species. However, chloride occurrence does not have an influence on the mineralization rate. First-order kinetic-constants for color depletion (attack to chromophores groups), oxidation (COD removal), and mineralization (TOC removal) were found to depend on the current density and to increase significantly with its value. A single model was proposed to explain these changes in terms of the mediated oxidation processes. Rate of mineralization remained very close to that expected for a purely mass transfer-controlled process. This was explained assuming that mediated oxidation does not have a significant influence on the mineralization in spite it has some effect on intermediate oxidation stages. The efficiency of the oxidation was found to depend mainly on the concentration of COD being negligible the effect of the other inputs assessed except for the occurrence of chloride ions. Opposite, the efficiency of mineralization depends on concentration of TOC and current density and it did not depend on the chloride occurrence. This observation was found to have an important influence on the power required to remove a given percentage of the initial TOC or COD. To decrease COD efficiently, the occurrence of chloride in the solution is very important, while to remove TOC efficiently, it is more important to work at low current densities and chloride effect is negligible. Energy consumption could be decreased by folds using the proper conditions. PMID:24652577

  1. Impact of leachate composition on the advanced oxidation treatment.

    PubMed

    Oulego, Paula; Collado, Sergio; Laca, Adriana; Daz, Mario

    2016-01-01

    Advanced oxidation processes (AOPs) are gaining importance as an alternative to the biological or physicochemical treatments for the management of leachates. In this work, it has been studied the effect of the characteristics of the leachate (content in humic acids, landfill age and degree of stabilization) on the wet oxidation process and final quality of the treated effluent. A high concentration of humic acids in the leachate had a positive effect on the COD removal because this fraction is more easily oxidizable. Additionally, it has been demonstrated that the simultaneous presence of humic acid and the intermediates generated during the oxidation process improved the degradation of this acid, since such intermediates are stronger initiators of free radicals than the humic acid itself. Similar values of COD removals (49% and 51%) and biodegradability indices (0.30 and 0.35) were observed, after 8h of wet oxidation, for the stabilised leachate (biologically pretreated) and the raw one, respectively. Nevertheless, final colour removal was much higher for the stabilised leachate, achieving values up to 91%, whereas for the raw one only 56% removal was attained for the same reaction time. Besides, wet oxidation treatment was more efficient for the young leachate than for the old one, with final COD conversions of 60% and 37%, respectively. Eventually, a triangular "three-lump" kinetic model, which considered direct oxidation to CO2 and partial oxidation through intermediate compounds, was here proposed. PMID:26517790

  2. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby Macdonald; Brian Marx; Balaji Soundararajan; Morgan Smith

    2005-07-28

    The different tasks that have been carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA), which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals, and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical, and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms. Hence, wavelet analysis of the coupling current data from the DOE waste containers is also being carried out to extract data pertaining to general, pitting and stress corrosion processes, from the overall data which is bound to contain noise fluctuations due to any or all of the above mentioned processes.

  3. Solid flexible electrochemical supercapacitor using Tobacco mosaic virus nanostructures and ALD ruthenium oxide

    NASA Astrophysics Data System (ADS)

    Gnerlich, M.; Pomerantseva, E.; Gregorczyk, K.; Ketchum, D.; Rubloff, G.; Ghodssi, R.

    2013-11-01

    An all-solid electrochemical supercapacitor has been developed using a nanostructured nickel and titanium nitride template that is coated with ruthenium oxide by atomic layer deposition (ALD). The electrode morphology was based on a high surface area biotemplate of genetically modified Tobacco mosaic virus. The biotemplate automatically self-assembles at room temperature in aqueous solution. Nafion perfluorosulfonate ionomer dispersion was cast on the electrodes and used as a solid proton-conducting electrolyte. A 5.8 F g-1 gravimetric capacity (578 F cm-2 based on footprint) was achieved in Nafion electrolyte, and the device retained 80% of its capacity after 25?000 cycles. The technology presented here will enable thin, solid, flexible supercapacitors that are compatible with standard microfabrication techniques.

  4. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  5. In-situ quantification of solid oxide fuel cell electrode microstructure by electrochemical impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Chen, Fanglin

    2015-03-01

    Three-dimensional (3D) microstructure of solid oxide fuel cell electrodes plays critical roles in determining fuel cell performance. The state-of-the-art quantification technique such as X-ray computed tomography enables direct calculation of geometric factors by 3D microstructure reconstruction. Taking advantages of in-situ, fast-responding and low cost, electrochemical impedance spectroscopy represented by distribution of relaxation time (DRT) is a novel technique to estimate geometric properties of fuel cell electrodes. In this study, we employed the anode supported cells with the cell configuration of Ni-YSZ || YSZ || LSM-YSZ as an example and compared the tortuosity factor of pores of the anode substrate layer by X-ray computed tomography and DRT analysis. Good agreement was found, validating the feasibility of in-situ microstructural quantification by using the DRT technique.

  6. Solid oxide electrolysis cell analysis by means of electrochemical impedance spectroscopy: A review

    NASA Astrophysics Data System (ADS)

    Nechache, A.; Cassir, M.; Ringued, A.

    2014-07-01

    High temperature water electrolysis based on Solid Oxide Electrolysis Cell (SOEC) is a very promising solution to produce directly pure hydrogen. However, degradation issues occurring during operation still represent a scientific and technological barrier in view of its development at an industrial scale. Electrochemical Impedance Spectroscopy (EIS) is a powerful in-situ fundamental tool adapted to the study of SOEC systems. Hence, after a quick presentation of EIS principle and data analysis methods, this review demonstrates how EIS can be used: (i) to characterize the performance and mechanisms of SOEC electrodes; (ii) as a complementary tool to study SOEC degradation processes for different cell configurations, in addition to post-test tools such as scanning electron microscopy (SEM) or X-ray diffraction (XRD). The use of EIS to establish a systematic SOEC analysis is introduced as well.

  7. Electrochemical oxidation of methanol on Pt nanoparticles composited MnO 2 nanowire arrayed electrode

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-Yu; Li, Hu-Lin

    2008-03-01

    By use of the membrane-template synthesis route, MnO 2 nanowire arrayed electrodes are successfully synthesized by means of the anodic deposition technique. The Pt nanoparticles composited MnO 2 nanowire arrayed electrodes (PME) are obtained through depositing Pt on MnO 2 nanowire arrayed electrode by cathode deposition technique. For comparison of electrochemical performance, Pt nanowire arrayed electrodes which have the same amount of Pt with PME are also prepared. The electro-oxidation of methanol on PME and Pt nanowire arrayed electrodes is investigated at room temperature by cyclic voltammetry, which show that about 110 mV decreased overpotential and 2.1-fold enhanced votammetric current are achieved on PME. The chronoamperometry result demonstrates that the resistance to carbon monoxide for PME is improved.

  8. Nanocrystalline indium tin oxide fabricated via sol-gel combustion for electrochemical luminescence cells.

    PubMed

    Chaoumead, Accarat; Kim, Tae-Woo; Park, Min-Woo; Sung, Youl-Moon

    2012-04-01

    Nanoporous indium tin oxide (ITO) was synthesized via a sol-gel combustion hybrid method using Ketjenblack as a fuel. The effects of the sol-gel combustion conditions on the structures and morphology of the ITO particles were studied. The size of the nanoporous powder was found to be 20-30 nm in diameter. The layer of the nanoporous ITO electrode (-10 microm thickness) with large surface area (-360 m2/g) was fabricated for an electrochemical luminescence (ECL) cell. At 4 V bias, the ECL efficiency of the cell consisting of the nanoporous ITO layer was approximately 1050 cd/m2, which is significantly higher than the cell using only the FTO electrode (450 cd/m2). The nanoporous ITO layer was effective in increasing the ECL intensities. PMID:22849163

  9. Mechanism for resistive switching in an oxide-based electrochemical metallization memory

    NASA Astrophysics Data System (ADS)

    Peng, Shanshan; Zhuge, Fei; Chen, Xinxin; Zhu, Xiaojian; Hu, Benlin; Pan, Liang; Chen, Bin; Li, Run-Wei

    2012-02-01

    A comparison of the asymmetric OFF-state current-voltage characteristics between Cu/ZnO/Pt and Cu/ZnO/Al-doped ZnO (AZO) electrochemical metallization memory (ECM) cells demonstrates that the Cu filament rupture and rejuvenation occur at the ZnO/Pt (or AZO) interface, i.e., the cathodic interface. Therefore, the filament is most likely to have a conical shape, with wider and narrower diameters formed at the anodic and cathodic interfaces, respectively. It is inferred that the filament growth starts at the anode surface and stops at the cathode surface. Our results indicate that oxide-based ECM cells strongly differ from sulfide- and selenide-based ones in the resistive switching mechanism.

  10. Spinel manganese-nickel-cobalt ternary oxide nanowire array for high-performance electrochemical capacitor applications.

    PubMed

    Li, Lu; Zhang, Yongqi; Shi, Fan; Zhang, Yijun; Zhang, Jiaheng; Gu, Changdong; Wang, Xiuli; Tu, Jiangping

    2014-10-22

    Aligned spinel Mn-Ni-Co ternary oxide (MNCO) nanowires are synthesized by a facile hydrothermal method. As an electrode of supercapacitors, the MNCO nanowire array on nickel foam shows an outstanding specific capacitance of 638 F g(-1) at 1 A g(-1) and excellent cycling stability. This exceptional performance benefits from its nanowire architecture, which can provide large reaction surface area, fast ion and electron transfer, and good structural stability. Furthermore, an asymmetric supercapacitor (ASC) with high energy density is assembled successfully by employing the MNCO nanowire array as positive electrode and carbon black as negative electrode. The excellent electrochemical performances indicate the promising potential application of the ASC device in the energy storage field. PMID:25247606

  11. Electrochemical regeneration of sodium hypochlorite in the absorption-oxidation method of desorbing waste gases

    SciTech Connect

    Znamenskii, Yu.D.; Perchugov, G.Ya.

    1988-07-10

    The electrochemical synthesis of sodium hypochlorite from a solution with a reduced concentration of sodium chloride is efficiently carried out with the use of ruthenium oxide-titanium anodes (ROTA). In this context they investigated the electrolysis of a solution of sodium chloride with concentrations equal to 20 and 50 kg/m/sup 3/ in a single cell flow-type electrolyzer with an ROTA and, for comparison, with a graphite anode under laboratory conditions. A flow-type electrolyzer was selected in view of the fact that it most closely satisfies the purposes of gas purification. The current efficiency with respect to sodium hypochlorite was almost two times higher, and the specific consumption of electrical energy was 1.6-1.8 times lower in the case of the ROTA than in the case of the graphite electrode. The yield of sodium chlorate remained on the same level in both cases.

  12. Template-Free Synthesis of Ruthenium Oxide Nanotubes for High-Performance Electrochemical Capacitors.

    PubMed

    Kim, Ji-Young; Kim, Kwang-Heon; Kim, Hyun-Kyung; Park, Sang-Hoon; Roh, Kwang Chul; Kim, Kwang-Bum

    2015-08-01

    One-dimensional, hydrous ruthenium oxide nanotubes (RuO21.84H2O) have been successfully achieved using a template-free, microwave-hydrothermal process. These were found to be amorphous in nature and have a large specific surface area of 250 m(2)g(-1), producing a specific and volumetric capacitance of 511 Fg(-1) and 531 Fcm(-3), respectively, at a discharging current density of 0.5 Ag(-1). When used as an electrode material in an electrochemical capacitor or ultracapacitor, they produced a significant improvement in capacitance, rate capability, and cyclability that can be attributed to the hollow nature of tubes allowing greater contact between the active surface of the electrode and the electrolyte. PMID:26161814

  13. Indium tin oxide based chip for optical and electrochemical characterization of protein-cell interaction

    NASA Astrophysics Data System (ADS)

    Choi, Yong Hyun; Min, Junhong; Cho, Sungbo

    2015-06-01

    Analysis on the interaction between proteins and cells is required for understanding the cellular behaviour and response. In this article, we characterized the adhesion and growth of 293/GFP cells on fetal bovine serum (FBS) coated indium tin oxide (ITO) electrode. Using optical and electrochemical measurement, it was able to detect the adsorption of the protein on the surface of the ITO electrode dependent on the concentration of the protein in the immersing solution or the immersing time. An increase in the amount of the adsorbed serum protein resulted in a decrease in anodic peak current and an increase in the charge transfer resistance extracted from the equivalent circuit fitting analysis. More cells adhered and proliferated on the ITO electrode which was pre-immersed in FBS medium rather than bare electrode. The effect of the FBS on cell behaviors was reflected in the impedance monitoring of cells at 21.5 kHz.

  14. Electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials.

    PubMed

    Moon, Byung-Hak; Jeong, Yong-Hoon; Choe, Han-Cheol

    2011-08-01

    In this study, we investigated the electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials. The Ti-35Ta-xHf alloys contained from 3 wt.% to 15 wt.% Hf were manufactured by arc melting furnace. The nanotube oxide layers were formed on Ti-35Ta-xHf alloy by anodic oxidation method in 1 M H3PO4 electrolytes containing 0.5 wt.% NaF and 0.8 wt.% NaF at room temperature. The surface characteristics of Ti-35Ta-xHf alloy and nanotube morphology were determined by FE-SEM, STEM, and XRD. The nano-porous surface of Ti-35Ta-xHf alloys showed in 0.5 wt% NaF solution and nanotubular surface showed in 0.8 wt% NaF solution, respectively. The highly ordered nanotube layer without regular knots was formed on the Ti-35Ta-15Hf alloy in the 0.5 wt% NaF solution compared to on Ti-35Ta-3Hf and Ti-35Ta-7Hf alloys in 0.8 wt% NaF solution. Also, the nanotube length of Ti-35Ta-xHf alloys increased as Hf content increased. PMID:22103212

  15. Synthesis and Electrochemical Analyses of Manganese Oxides for Super-Capacitors.

    PubMed

    Kim, Taewoo; Hwang, Hyein; Jang, Jaeyong; Park, Inyeong; Shim, Sang Eun; Baeck, Sung-Hyeon

    2015-11-01

    δ-Phase and α-phase manganese oxides were prepared using a hydrothermal method and their electrochemical properties were characterized. The influence of calcination temperature on the properties of manganese oxides was studied. Crystallinities were studied by X-ray diffraction, and scanning and transmission electron microscopy were utilized to examine morphologies. Average pore sizes and specific surface areas of samples were analyzed using the Barret-Joyner-Halenda and Brunauer-Emmett-Teller methods, respectively. After calcination in the range 300 degrees C to 600 degrees C, changes in morphology and crystallinity were observed. The flower-like shape of as synthesized samples became nanorod-like and the δ-phase changed to the α-phase. These changes may have been due to the removal of water during calcination. Furthermore, a transition stage in which the two phases coexisted was observed. Synthesized manganese oxides were mixed with carbon by sonification, to increase electric conductivity and to induce a synergistic effect between pseudo-capacitor and electric double layer capacitor (EDLC). Specific capacitances and rate durability of each composite were investigated by cyclic voltammetry in 1 M Na2SO4 electrolyte at different scan rates. MnO2 calcined at 400 degrees C exhibited the highest capacitance, probably due to its high surface area and more porous structure. PMID:26726613

  16. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions

    NASA Astrophysics Data System (ADS)

    Mueller, David N.; Machala, Michael L.; Bluhm, Hendrik; Chueh, William C.

    2015-01-01

    Surface redox-active centres in transition-metal oxides play a key role in determining the efficacy of electrocatalysts. The extreme sensitivity of surface redox states to temperatures, to gas pressures and to electrochemical reaction conditions renders them difficult to investigate by conventional surface-science techniques. Here we report the direct observation of surface redox processes by surface-sensitive, operando X-ray absorption spectroscopy using thin-film iron and cobalt perovskite oxides as model electrodes for elevated-temperature oxygen incorporation and evolution reactions. In contrast to the conventional view that the transition metal cations are the dominant redox-active centres, we find that the oxygen anions near the surface are a significant redox partner to molecular oxygen due to the strong hybridization between oxygen 2p and transition metal 3d electronic states. We propose that a narrow electronic state of significant oxygen 2p character near the Fermi level exchanges electrons with the oxygen adsorbates. This result highlights the importance of surface anion-redox chemistry in oxygen-deficient transition-metal oxides.

  17. Electrochemical gas-electricity cogeneration through direct carbon solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Xie, Yongmin; Cai, Weizi; Xiao, Jie; Tang, Yubao; Liu, Jiang; Liu, Meilin

    2015-03-01

    Solid oxide fuel cells (SOFCs), with yttrium stabilized zirconia (YSZ) as electrolyte, composite of strontium-doped lanthanum manganate (LSM) and YSZ as cathode, and cermet of silver and gadolinium-doped ceria (GDC) as anode, are prepared and tested with 5wt% Fe-loaded activated carbon as fuel and ambient air as oxidant. It is found that electricity and CO gas can be cogenerated in the direct carbon SOFCs through the electrochemical oxidation of CO and the Boudouard reaction. The gas-electricity cogeneration performances are investigated by taking the operating time of the DC-SOFCs as a measure of rate decrease of the Boudouard reaction. Three single cells and a two-cell-stack are tested and characterized in terms of electrical power output, CO production rate, electrical conversion efficiency, and overall conversion efficiency. It turns out that a rapid rate of the Boudouard reaction is necessary for getting high electrical power and CO production. Taking the emitted CO as part of the power output, an overall efficiency of 76.5% for the single cell, and of 72.5% for the stack, is obtained.

  18. Detoxification of methyl-parathion pesticide in aqueous solutions by electrochemical oxidation.

    PubMed

    Arapoglou, D; Vlyssides, A; Israilides, C; Zorpas, A; Karlis, P

    2003-03-17

    Commercial methyl-parathion (MeP) was detoxified using an electrochemical method that employed a Ti/Pt anode and stainless steel 304 as cathode. Sodium chloride was added as electrolyte and the mixture was passed through an electrolytic cell for 2 h. Due to the strong oxidizing potential of the produced chemicals, the organic pollutants were wet oxidized to carbon dioxide and water. A number of experiments were run at laboratory scale. Reductions of COD and BOD(5) were both over 80% and the mean energy consumption was 18-8 kWh per kg(-1) COD reduced (COD(r)). The degradation of MeP was more effective when the pH of the brine solution was in the acid range than when it was in the alkaline range. From the results it can be concluded that electrolysis could be used as an oxidation pre-treatment stage for detoxification of toxic wastes with MeP. PMID:12628787

  19. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes

    NASA Astrophysics Data System (ADS)

    Close, Thomas; Tulsyan, Gaurav; Diaz, Carlos A.; Weinstein, Steven J.; Richter, Christiaan

    2015-05-01

    A material capable of rapid, reversible molecular oxygen uptake at room temperature is desirable for gas separation and sensing, for technologies that require oxygen storage and oxygen splitting such as fuel cells (solid-oxide fuel cells in particular) and for catalytic applications that require reduced oxygen species (such as removal of organic pollutants in water and oil-spill remediation). To date, however, the lowest reported temperature for a reversible oxygen uptake material is in the range of 200-300 °C, achieved in the transition metal oxides SrCoOx (ref. 1) and LuFe2O4+x (ref. 2) via thermal cycling. Here, we report rapid and reversible oxygen scavenging by TiO2-x nanotubes at room temperature. The uptake and release of oxygen is accomplished by an electrochemical rather than a standard thermal approach. We measure an oxygen uptake rate as high as 14 mmol O2 g-1 min-1, ˜2,400 times greater than commercial, irreversible oxygen scavengers. Such a fast oxygen uptake at a remarkably low temperature suggests a non-typical mechanistic pathway for the re-oxidation of TiO2-x. Modelling the diffusion of oxygen, we show that a likely pathway involves ‘exceptionally mobile’ interstitial oxygen produced by the oxygen adsorption and decomposition dynamics, recently observed on the surface of anatase.

  20. Electrochemical synthesis of new magnetic mixed oxides of Sr and Fe: Composition, magnetic properties, and microstructure

    SciTech Connect

    Amigo, R.; Asenjo, J.; Krotenko, E.; Torres, F.; Tejada, J.; Brillas, E.

    2000-02-01

    An electrochemical method for the preparation of magnetic nanoparticles of new Sr-Fe oxides is presented in this work. It consists of the electrolysis of nitrate or chloride solutions with Sr{sup 2+} and Fe{sup 3+} salts using commercial Fe electrodes. Magnetic materials are collected as precipitates from nitrate media in the pH range 1-3 and from chloride media within the pH range 1--12. The presence of 100--300 ppm aniline in acidic nitrate media yields a decrease in energy cost and particle size. Inductively coupled plasma analysis of materials and energy-dispersive X-ray spectrometry of single particles confirm that they are composed of mixed oxides of Sr and Fe. All synthesized materials crystallize as inverse cubic spinels, usually with intermediate structures between magnetite and maghemite. They are formed by nanoparticles with average sizes from 2 nm to {approximately} 50 nm, as observed by scanning electron microscopy. The electrogenerated mixed oxides have higher saturation magnetization, but lower remanent magnetization and coercive field, than commercial strontium hexaferrite with micrometric particle size.

  1. 3D CFD ELECTROCHEMICAL AND HEAT TRANSFER MODEL OF AN INTERNALLY MANIFOLDED SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant L. Hawkes; James E. O'Brien; Greg Tao

    2011-11-01

    A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created to model high-temperature electrolysis cell performance and steam electrolysis in an internally manifolded planar solid oxide electrolysis cell (SOEC) stack. This design is being evaluated at the Idaho National Laboratory for hydrogen production from nuclear power and process heat. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, operating potential, steam-electrode gas composition, oxygen-electrode gas composition, current density and hydrogen production over a range of stack operating conditions. Single-cell and five-cell results will be presented. Flow distribution through both models is discussed. Flow enters from the bottom, distributes through the inlet plenum, flows across the cells, gathers in the outlet plenum and flows downward making an upside-down ''U'' shaped flow pattern. Flow and concentration variations exist downstream of the inlet holes. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Effects of variations in operating temperature, gas flow rate, oxygen-electrode and steam-electrode current density, and contact resistance from the base case are presented. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition. Results are discussed for using this design in the electrolysis mode. Discussion of thermal neutral voltage, enthalpy of reaction, hydrogen production, cell thermal efficiency, cell electrical efficiency, and Gibbs free energy are discussed and reported herein.

  2. Boron-doped cadmium oxide composite structures and their electrochemical measurements

    SciTech Connect

    Lokhande, B.J.; Ambare, R.C.; Mane, R.S.; Bharadwaj, S.R.

    2013-08-01

    Graphical abstract: Conducting nano-fibrous 3% boron doped cadmium oxide thin films were prepared by SILAR and its super capacitive properties were studied. - Highlights: Samples are of nanofibrous nature. All samples shows pseudocapacitive behavior. 3% B doped CdO shows good specific capacitance. 3% B doped CdO shows maximum 74.93% efficiency at 14 mA/cm{sup 2}. 3% B doped CdO shows 0.8 ? internal resistance. - Abstract: Boron-doped and undoped cadmium oxide composite nanostructures in thin film form were prepared onto stainless steel substrates by a successive ionic layer adsorption and reaction method using aqueous solutions of cadmium nitrate, boric acid and 1% H{sub 2}O{sub 2}. As-deposited films were annealed at 623 K for 1 h. The X-ray diffraction study shows crystalline behavior for both doped and undoped films with a porous topography and nano-wires type architecture, as observed in SEM image. Wettability test confirms the hydrophilic surface with 58 contact angle value. Estimated band gap energy is around 1.9 eV. Electrochemical behavior of the deposited films is attempted in 1 M KOH electrolyte using cyclic voltammetry (CV), electrochemical impedance spectroscopy and galvanostatic chargedischarge tests. Maximum values of the specific capacitance, specific energy and specific power obtained for 3% B doped CdO film at 2 mV/s scan rate are 20.05 F/g, 1.22 Wh/kg and 3.25 kW/kg, respectively.

  3. Mediated electrochemical oxidation as an alternative to incineration for mixed wastes

    SciTech Connect

    Chiba, Z.; Schumacher, B.; Lewis, P.; Murguia, L.

    1995-02-01

    Mediated Electrochemical Oxidation (MEO) is an aqueous process which oxidizes organics electrochemically at low temperatures and ambient pressures. The process can be used to treat mixed wastes containing hazardous organics by destroying the organic components of the wastes. The radioactive components of the wastes are dissolved in the electrolyte where they can be recovered if desired, or immobilized for disposal. The process of destroying organics is accomplished via a mediator, which is in the form of metallic ions in solution. At Lawrence Livermore National Laboratory (LLNL) we have worked with worked with several mediators, including silver, cobalt and cerium. We have tested mediators in nitric as well as sulfuric acids. We have recently completed extensive experimental studies on cobalt-sulfuric acid and silver-nitric acid systems for destroying the major organic components of Rocky Flats Plant combustible mixed wastes. Organics tested were: Trimsol (a cutting oil), cellulose (including paper and cloth), rubber (latex), plastics (Tyvek, polyethylene and polyvinyl chloride) and biomass (bacteria). The process was capable of destroying almost all of the organics tested, attaining high destruction efficiencies at reasonable coulombic efficiencies. The only exception was polyvinyl chloride, which was destroyed very slowly resulting in poor coulombic efficiencies. Besides the process development work mentioned above, we are working on the design of a pilot-plant scale integrated system to be installed in the Mixed Waste Management Facility (MWMF) at LLNL. The system will also be completely integrated with upstream and downstream processes (for example, feed preparation, off-gas and water treatment, and final forms encapsulation). The conceptual design for the NEO-MWMF system has been completed and preliminary design work has been initiated. Demonstration of the process with low-level mixed wastes is expected to commence in 1998.

  4. Study of the electrochemical oxidation and reduction of C.I. Reactive Orange 4 in sodium sulphate alkaline solutions.

    PubMed

    del Ro, A I; Molina, J; Bonastre, J; Cases, F

    2009-12-15

    Synthetic solutions of hydrolysed C.I. Reactive Orange 4, a monoazo textile dye commercially named Procion Orange MX-2R (PMX2R) and colour index number C.I. 18260, was exposed to electrochemical treatment under galvanostatic conditions and Na2SO4 as electrolyte. The influence of the electrochemical process as well as the applied current density was evaluated. Ti/SnO2-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively, and the intermediates generated on the cathode during electrochemical reduction were investigated. Aliquots of the solutions treated were analysed by UV-visible and FTIR-ATR spectroscopy confirming the presence of aromatic structures in solution when an electro-reduction was carried out. Electro-oxidation degraded both the azo group and aromatic structures. HPLC measures revealed that all processes followed pseudo-first order kinetics and decolourisation rates showed a considerable dependency on the applied current density. CV experiments and XPS analyses were carried out to study the behaviour of both PMX2R and intermediates and to analyse the state of the cathode after the electrochemical reduction, respectively. It was observed the presence of a main intermediate in solution after an electrochemical reduction whose chemical structure is similar to 2-amino-1,5-naphthalenedisulphonic acid. Moreover, the analysis of the cathode surface after electrochemical reduction reveals the presence of a coating layer with organic nature. PMID:19647934

  5. Advanced treatment of sodium acetate in water by ozone oxidation.

    PubMed

    Yang, De-Min; Yuan, Jian-Mei

    2014-02-01

    Ozone oxidation is an advanced oxidation process for treatment of organic and inorganic wastewater. In this paper, sodium acetate (according to chemical oxygen demand [COD]) was selected as the model pollutant in water, and the degradation efficiencies and mechanism of sodium acetate in water by ozone oxidation were investigated. The results showed that the ozone oxidation was an effective treatment technology for advanced treatment of sodium acetate in water; the COD removal rate obtained the maximum value of 45.89% from sodium acetate solution when the pH value was 10.82, ozone concentration was 100 mg/L, reaction time was 30 minutes, and reaction temperature was 25 degrees C. The COD removal rate increased first and decreased subsequently with the bicarbonate (HCO3-) concentration from 0 to 200 mg/L, the largest decline being 20.35%. The COD removal rate declined by 25.38% with the carbonate (CO3(2-)) concentration from 0 to 200 mg/L; CO3(2-) has a more obvious scavenging effect to inhibit the formation of hydroxyl free radicals than HCO3-. Calcium chloride (CaCl2) and calcium hydroxide (Ca(OH)2) could enhance the COD removal rate greatly; they could reach 77.35 and 96.53%, respectively, after a reaction time of 30 minutes, which was increased by 31.46 and 50.64%, respectively, compared with only ozone oxidation. It was proved that the main ozone oxidation product of sodium acetate was carbon dioxide (CO2), and the degradation of sodium acetate in the ozone oxidation process followed the mechanism of hydroxyl free radicals. PMID:24645544

  6. Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres

    NASA Astrophysics Data System (ADS)

    Sarma, Biplab; Jurovitzki, Abraham L.; Ray, Rupashree S.; Smith, York R.; Mohanty, Swomitra K.; Misra, Mano

    2015-07-01

    The effect of annealing atmosphere on the supercapacitance behavior of iron oxide nanotube (Fe-NT) electrodes has been explored and reported here. Iron oxide nanotubes were synthesized on a pure iron substrate through an electrochemical anodization process in an ethylene glycol solution containing 3% H2O and 0.5 wt.% NH4F. Subsequently, the annealing of the nanotubes was carried out at 500 °C for 2 h in various gas atmospheres such as air, oxygen (O2), nitrogen (N2), and argon (Ar). The morphology and crystal phases evolved after the annealing processes were examined via field emission scanning electron microscopy, x-ray diffraction, Raman spectroscopy, and x-ray photoelectron spectroscopy. The electrochemical capacitance properties of the annealed Fe-NT electrodes were evaluated by conducting cyclic voltammetry (CV), galvanostatic charge-discharge, and electrochemical impedance spectroscopy tests in the Li2SO4 electrolyte. Based on these experiments, it was found that the capacitance of the Fe-NT electrodes annealed in air and O2 atmospheres shows mixed behavior comprising both the electric double layer and pseudocapacitance. However, annealing in N2 and Ar environments resulted in well-defined redox peaks in the CV profiles of the Fe-NT electrodes, which are therefore attributed to the relatively higher pseudonature of the capacitance in these electrodes. Based on the galvanostatic charge-discharge studies, the specific capacitance achieved in the Fe-NT electrode after annealing in Ar was about 300 mF cm-2, which was about twice the value obtained for N2-annealed Fe-NTs and three times higher than those annealed in air and O2. The experiments also demonstrated excellent cycle stability for the Fe-NT electrodes with 83%-85% capacitance retention, even after many charge-discharge cycles, irrespective of the gas atmospheres used during annealing. The increase in the specific capacitance was discussed in terms of increased oxygen vacancies as a result of the enhanced transformation of the hematite (α-Fe2O3) phase to the magnetite (Fe3O4) phase for the electrodes annealed in the N2 and Ar atmospheres.

  7. Evaluation of advanced oxidation process for the treatment of groundwater

    SciTech Connect

    Garland, S.B. II ); Peyton, G.R. ); Rice, L.E. . Kansas City Div.)

    1990-01-01

    An advanced oxidation process utilizing ozone, ultraviolet radiation, and hydrogen peroxide was selected for the removal of chlorinated hydrocarbons, particularly trichlorethene and 1,2-dichlorethene, from groundwater underlying the US Department of Energy Kansas City Plant. Since the performance of this process for the removal of organics from groundwater is not well-documented, an evaluation was initiated to determine the performance of the treatment plant, document the operation and maintenance costs experience, and evaluate contaminant removal mechanisms. 11 refs., 3 figs.

  8. Oxidation of alloys targeted for advanced steam turbines

    SciTech Connect

    Holcomb, G.R.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Alman, D.E.

    2006-03-12

    Ultra supercritical (USC) power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energys Advanced Power Systems Initiatives include coal generation at 60% efficiency, which would require steam temperatures of up to 760C. This research examines the steamside oxidation of alloys for use in USC systems, with emphasis placed on applications in high- and intermediate-pressure turbines.

  9. Influence of electrochemical reduction and oxidation processes on the decolourisation and degradation of C.I. Reactive Orange 4 solutions.

    PubMed

    del Ro, A I; Molina, J; Bonastre, J; Cases, F

    2009-06-01

    The electrochemical treatment of wastewaters from textile industry is a promising treatment technique for substances which are resistant to biodegradation. This paper presents the results of the electrochemical decolourisation and degradation of C.I. Reactive Orange 4 synthetic solutions (commercially known as Procion Orange MX2R). Electrolyses were carried out under galvanostatic conditions in a divided or undivided electrolytic cell. Therefore, oxidation, reduction or oxido-reduction experiences were tested. Ti/SnO(2)-Sb-Pt and stainless steel electrodes were used as anode and cathode, respectively. Degradation of the dye was followed by TOC, total nitrogen, COD and BOD(5) analyses. TOC removal after an oxidation process was higher than after oxido-reduction while COD removal after this last process was about 90%. Besides, the biodegradability of final samples after oxido-reduction process was studied and an improvement was observed. UV-Visible spectra revealed the presence of aromatic structures in solution when an electro-reduction was carried out while oxido-reduction process degraded both azo group and aromatic structures. HPLC analyses indicated the presence of a main intermediate after the reduction process with a chemical structure closely similar to 2-amine-1, 5-naphthalenedisulfonic acid. The lowest decolourisation rate corresponded to electrochemical oxidation. In these experiences a higher number of intermediates were generated as HPLC analysis demonstrated. The decolourisation process for the three electrochemical processes studied presented a pseudo-first order kinetics. PMID:19345978

  10. Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and Micro-Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Achour, A.; Vizireanu, S.; Dinescu, G.; Le Brizoual, L.; Djouadi, M.-A.; Boujtita, M.

    2013-05-01

    Unintentional nitrogen doped carbon nanowall (CNW) films were oxidized through anodic polarization in different applied potential windows, in a mild neutral K2SO4 electrolyte solution. Applied potentials in the range of [0-1], [0-1.5] and [0-2] V vs. SCE were explored. The films were characterized with X-ray photoelectron (XPS) and Micro-Raman spectroscopy, in order to investigate the surface chemistry and structural changes after treatment, respectively. The XPS analysis revealed that this electrochemical treatment leads to an increase of oxygen functional groups, and influences the nitrogen proportion and bonding configuration (such as pyridinic/pyridonic nitrogen) on the film surface at room temperature. In particular, an obvious enhancement of pyrrolic/pyridonic nitrogen doping of CNWs via electrochemical cycling in the range of [0-1.5] and [0-2] V vs. SCE was achieved. Such enhancement happened, because of the oxidation of nitrogen atoms in pyridine as a result of OH ions injection upon electrochemical cycling. Micro-Raman analysis indicates structural quality degradation with increasing the applied potential window. Moreover, the electrochemical capacitance of CNW films was increased after treatment in the range of [0-1] and [0-1.5] and decreased in the range of [0-2] V vs. SCE. The results show that harsh oxidation happened in the range [0-2] V.

  11. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry.

    PubMed

    Miyata, M; Ihara, I; Yoshid, G; Toyod, K; Umetsu, K

    2011-01-01

    In animal husbandry, antibiotics are widely used to treat and prevent diseases or to promote growth. The use of antibiotics for domestic animals enables to promote safety of livestock products and enhance productivity. Tetracycline antibiotics (TCs) are one of the primarily used groups of antibiotics for cattle and swine. However, the unintentional spreading of antibiotics from animal waste to the environment may leave out drug residues, promoting resistant strains of bacteria, and will adversely affect the ecosystem and human health. To prevent the spread of veterinary antibiotics in the environment, it is required to treat residual antibiotics in livestock wastewater. In this study, we investigated the electrochemical oxidation of TCs to treat livestock wastewater. The concentrations of TCs in aqueous solutions were reduced from 100 mg/L to less than 0.6 mg/L by 6 h of electrochemical treatment using a Ti/IrO2 anode with Na2SO4 electrolyte. The concentration of oxytetracycline (OTC) in livestock wastewater was also reduced from 100 mg/L to less than 0.7 mg/L by the same treatment. Thus, the electrochemical oxidation using a Ti/IrO2 anode with Na2SO4 electrolyte was found to be effective for degradation of TCs. The results suggest that the electrochemical oxidation method is a promising treatment for TCs in livestock wastewater. PMID:21278467

  12. Decolorization of C. I. Reactive Orange 4 and Textile Effluents by Electrochemical Oxidation Technique using Silver-Carbon Composite Electrode.

    PubMed

    Nordin, Norazzizi; Fathrita Mohd Amir, Siti; Rahimi Yusop, Muhammad; Rozali Othman, Mohamed

    2015-01-01

    In this study, the electrochemical oxidation of C. I. Reactive Orange 4 (RO4) on a silver-carbon composite (AgC-PVC) electrode was studied using the cyclic voltammetry, potential liner V, and electrolysis methods. The AgC-PVC electrode was used as the working electrode in the electrochemical measurement of RO4 in the presence of NaCl as a supporting electrolyte. The UV-Vis spectra of RO4 after the electrochemical oxidation showed the complete decolorization of the solution. The electrolysis products were characterized using FTIR and GC-MS. The results showed that in the presence of OCl- as an active oxidant, RO4 molecules are broken down into several lower-molecular-weight molecules by the electrochemical technique. The electrode used was also able to reduce the COD, BOD(5) and surfactant contents in the textile effluents using a pilot scale reactor. This proved that the prepared AgC-PVC electrode was beneficial for removing both the color and other pollutants from textile effluents. PMID:26454599

  13. The oriented growth of tungsten oxide in ordered mesoporous carbon and their electrochemical performance

    NASA Astrophysics Data System (ADS)

    Wang, Tao; Tang, Jing; Fan, Xiaoli; Zhou, Jianhua; Xue, Hairong; Guo, Hu; He, Jianping

    2014-04-01

    Electrocatalysts for hydrogen oxidation and methanol oxidation are the heart of the proton exchange membrane fuel cell. In spite of tremendous efforts, developing low-cost anodic electrocatalysts with high catalytic activity and corrosion resistance is still a great challenge. Here, we report a nanocomposite consisting of oriented WO3 nanorods grown in ordered mesoporous carbon as a high-performance functional catalyst carrier for proton exchange membrane fuel cells. As a result of the catalytic graphitization effect of tungsten compounds, the degree of graphitization and conductivity of mesoporous carbon film were improved even at a low temperature. Furthermore, compared with ordered mesoporous carbon, ordered mesoporous C-WO3 nanocomposites possess favorable hydrophilicity, excellent corrosion resistance and notable electrocatalytic activities. The unusual electrocatalytic activities arise from the ideal physical properties of the carrier and synergetic catalysis between Pt and WO3.Electrocatalysts for hydrogen oxidation and methanol oxidation are the heart of the proton exchange membrane fuel cell. In spite of tremendous efforts, developing low-cost anodic electrocatalysts with high catalytic activity and corrosion resistance is still a great challenge. Here, we report a nanocomposite consisting of oriented WO3 nanorods grown in ordered mesoporous carbon as a high-performance functional catalyst carrier for proton exchange membrane fuel cells. As a result of the catalytic graphitization effect of tungsten compounds, the degree of graphitization and conductivity of mesoporous carbon film were improved even at a low temperature. Furthermore, compared with ordered mesoporous carbon, ordered mesoporous C-WO3 nanocomposites possess favorable hydrophilicity, excellent corrosion resistance and notable electrocatalytic activities. The unusual electrocatalytic activities arise from the ideal physical properties of the carrier and synergetic catalysis between Pt and WO3. Electronic supplementary information (ESI) available: Additional structural characterizations and electrochemical measurements. See DOI: 10.1039/c4nr00396a

  14. Synthesis of Pt nanoparticles on electrochemically reduced graphene oxide by potentiostatic and alternate current methods

    SciTech Connect

    Molina, J.; Fernández, J.; Río, A.I. del; Bonastre, J.; Cases, F.

    2014-03-01

    Reduced graphene oxide (RGO) has been synthesized on Pt wires by means of a potentiodynamic method between + 0.6 V and − 1.4 V for 20 scans. Cyclic voltammetry characterization of the coatings showed the typical capacitative behavior of graphene. Pt nanoparticles were synthesized on Pt–RGO electrodes by means of potentiostatic methods and a comparison between different synthesis potentials (− 0.16, 0, + 0.2 and + 0.4 V) for the same synthesis charge (mC·cm{sup −2}) was established. The electrodes obtained were characterized in 0.5 M H{sub 2}SO{sub 4} solution to observe the characteristic oxidation and reduction processes of the Pt surface. A 0.5 M H{sub 2}SO{sub 4}/0.5 M CH{sub 3}OH solution was used to measure the catalytic properties of the deposits against methanol oxidation. The most appropriate potential to perform the synthesis was 0 V followed by − 0.16 V and + 0.2 V. The morphology of the coatings varied depending on the potential applied as observed by scanning electron microscopy. Alternate current methods were also used to synthesize Pt nanoparticles and compare the results with the traditional potentiostatic method. Different frequencies were used: 0.1, 1, 10, 100, 1000 and 10 000 Hz. Alternate current synthesis is more efficient than traditional potentiostatic methods, obtaining more electroactive coatings with less effective synthesis time. - Highlights: • Reduced graphene oxide has been obtained by electrochemical reduction on Pt wires. • Pt nanoparticles have been obtained potentiostatically at different potentials. • Pt nanoparticles have been obtained by ac methods with different frequencies. • ac synthesis is a better synthesis method than potentiostatic synthesis.

  15. Alloys for advanced steam turbines--Oxidation behavior

    SciTech Connect

    Holcomb, G.R.

    2007-10-01

    Advanced or ultra supercritical (USC) steam power plants offer the promise of higher efficiencies and lower emissions. Current goals of the U.S. Department of Energy (DOE) include power generation from coal at 60% efficiency, which would require steam temperatures of up to 760°C. Current research on the oxidation of candidate materials for advanced steam turbines is presented with a focus on a methodology for estimating chromium evaporation rates from protective chromia scales. The high velocities and pressures of advanced steam turbines lead to evaporation predictions as high as 5 × 10-8 kg m-2s-1 of CrO2(OH)2(g) at 760°C and 34.5 MPa. This is equivalent to 0.077 mm per year of solid Cr loss.

  16. Kinetics and mechanism of the electrochemical formation of iron oxidation products on steel immersed in sour acid media.

    PubMed

    Hernndez-Espejel, Antonio; Palomar-Pardav, Manuel; Cabrera-Sierra, Romn; Romero-Romo, Mario; Ramrez-Silva, Mara Teresa; Arce-Estrada, Elsa M

    2011-03-01

    From electrochemical techniques (cyclic voltammetry, potential steps, and EIS), XRD, and SEM-EDX, the kinetics and mechanism of anodic film formation applying anodic potential steps on steel immersed in sour acid media was determined. It was found, from a thermodynamic analysis, based on equilibrium phase diagrams of the system considered in this work, that iron oxidation may produce different new solid phases, depending on the applied potential, the first being the iron oxidation associated with formation of FeS((c)) species, which in turn can be reoxidized to FeS(2(c)) or even to Fe(2)O(3(c)) at higher potential values. From analysis of the corresponding experimental potentiostatic current density transients, it was concluded that the electrochemical anodic film formation involves an E(1)CE(2) mechanism, whereby the first of the two simultaneous processes were the Fe electrochemical oxidation (E(1)) followed by FeS precipitation (C) that occurs by 3D nucleation and growth limited by mass transfer reaction and FeS oxidation (E(2)) forming a mix of different stoichiometry iron sulphides and oxides. From EIS measurements, it was revealed that the anodic film's charge transfer resistance diminishes as the potential applied for its formation becomes more anodic, thus behaving poorly against corrosion. PMID:21302956

  17. Facile synthesis of cobalt oxide/reduced graphene oxide composites for electrochemical capacitor and sensor applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Toan; Nguyen, Van Hoa; Deivasigamani, Ranjith Kumar; Kharismadewi, Dian; Iwai, Yoshio; Shim, Jae-Jin

    2016-03-01

    Reduced graphene oxide sheets decorated with cobalt oxide nanoparticles (Co3O4/rGO) were produced using a hydrothermal method without surfactants. Both the reduction of GO and the formation of Co3O4 nanoparticles occurred simultaneously under this condition. At the same current density of 0.5 A g-1, the Co3O4/rGO nanocomposites exhibited much a higher specific capacitance (545 F g-1) than that of bare Co3O4 (100 F g-1). On the other hand, for the detection of H2O2, the peak current of Co3O4/rGO was 4 times higher than that of Co3O4. Moreover, the resulting composite displayed a low detection limit of 0.62 μM and a high sensitivity of 28,500 μA mM-1cm-2 for the H2O2 sensor. These results suggest that the Co3O4/rGO nanocomposite is a promising material for both supercapacitor and non-enzymatic H2O2 sensor applications.

  18. Aerosol synthesis and electrochemical analysis of niobium mixed-metal oxides for the ethanol oxidation reaction in acid and alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Konopka, Daniel A.

    Direct ethanol fuel cells are especially important among emerging electrochemical power systems with the potential to offset a great deal of the energy demand currently met through the use of fossil fuels. Ethanol can be refined from petroleum sources or attained from renewable biomass, and is more easily and safely stored and transported than hydrogen, methanol or gasoline. The full energy potential of ethanol in fuel cells can only be realized if the reaction follows a total oxidation pathway to produce CO2. This must be achieved by the development of advanced catalysts that are electrically conductive, stable in corrosive environments, contain a high surface area on which the reaction can occur, and exhibit a bi-functional effect for the ethanol oxidation reaction (EOR). The latter criterion is achievable in mixed-metal systems. Platinum is an effective metal for catalyzing surface reactions of many adsorbates and is usually implemented in the form of Pt nanoparticles supported on inexpensive carbon. This carbon is believed to be neutral in the catalysis of Pt. Instead, carbon can be replaced with carefully designed metals and metal oxides as co-catalysis or support structures that favorably alter the electronic structure of Pt slightly through a strong metal support interaction, while also acting as an oxygen source near adsorbates to facilitate the total oxidation pathway. Niobium mixed-metal-oxides were explored in this study as bi-functional catalyst supports to Pt nanoparticles. We developed a thermal aerosol synthesis process by which mesoporous powders of mixed-metal-oxides decorated with Pt nanoparticles could be obtained from liquid precursors within 5 seconds or less, followed by carefully refined chemical and thermal post-treatments. Exceptionally high surface areas of 170--180m2/g were achieved via a surfactant-templated 3D wormhole-type porosity, comparable on a per volume basis to commercial carbon blacks and high surface area silica supports. For the first time, in situ FTIR measurements in acid electrolyte showed that highly dispersed Pt nanoparticles (2--5nm) on NbRuyO z (at% 8Nb:1Ru) catalyze the formation of CO2 from ethanol in greater yield, and 0.35--0.4V lower, than Pt(111). Compared to conventional Pt/carbon, this indicates that, (1) Pt supported on NbRuyO z can be more effective at splitting the C---C bond in ethanol and, (2) the scission occurs at potentials more ideal for a higher efficiency fuel cell anode. Ex situ-microscopy revealed the polarization-induced two- and three-dimensional formation of Pt-NbOx interfacial adsorption sites responsible for the facilitation of the total oxidation pathway of ethanol. The results show that synthesis and post-treatment of niobia supports can bias the utility of Pt/niobia systems towards the ethanol oxidation reaction at the anode or the oxygen reduction reaction at the cathode. Experimental and computational-theoretical analyses indicate that the mechanism of interfacial site formation is dependent upon the local oxygen concentration, as well as the availability of multiple, energetically accessible oxidation states like those inherent to niobia. Future directions for the development of highly active, niobium-based materials tailored for efficient catalysis of the total oxidation pathway of ethanol are discussed.

  19. Electrochemical enzyme-less urea sensor based on nano-tin oxide synthesized by hydrothermal technique.

    PubMed

    Ansari, S G; Fouad, H; Shin, Hyung-Shik; Ansari, Z A

    2015-12-01

    Nano-Tin oxide was synthesized using hydrothermal method at 150C for 6h and then thin films were deposited by electrophoretic method at an optimized voltage of 100V for 5min on electropolished aluminum substrate. Spherical particles of about 30-50nm diameters are observed with partial agglomeration when observed under electron microscope, which are tetragonal rutile structure. XPS results showed peaks related to Sn 4d, Sn 3d, O 1s & C 1s with spin-orbit splitting of 8.4eV for Sn 3d. Feasibility studies of enzyme less urea sensing characteristics of nano-tin oxide thin films are exhibited herein. The deposited films have been used for enzyme less urea sensing from 1 to 20mM concentration in buffer solution. The sensors were characterized electrochemically to obtain cyclic voltammogram as a function of urea concentration and scan rate. The sensitivity is estimated as 18.9?A/mM below 5mM and 2.31?A/mM above 5mM with a limit of detection of 0.6mM. PMID:26381425

  20. Electrochemical Oxidation of NADH at Highly Boron-Doped Diamond Electrodes.

    PubMed

    Rao, T N; Yagi, I; Miwa, T; Tryk, D A; Fujishima, A

    1999-07-01

    Conductive boron-doped chemical vapor-deposited diamond thin films, already known to have superior properties for general electroanalysis, including low background current and a wide potential window, are here shown to have additional advantages with respect to electrochemical oxidation of nicotinamide adenine dinucleotide (NADH), including high resistance to deactivation and insensitivity to dissolved oxygen. Cyclic voltammetry, amperometry, and the rotating disk electrode technique were used to study the reaction in neutral pH solution. Highly reproducible cyclic voltammograms for NADH oxidation were obtained at as-deposited diamond electrodes. The response was stable over several months of storage in ambient air, in contrast to glassy carbon electrodes, which deactivated within 1 h. The diamond electrode exhibited very high sensitivity for NADH, with an amperometric detection limit of 10 nM (S/N = 7). The response remained stable, even in the very low concentration range, for several months. In addition, interference effects due to ascorbic acid were minimal when the concentrations of NADH and ascorbic acid were comparable. An NADH-mediated dehydrogenese-based ethanol biosensor incorporating an unmodified diamond electrode is demonstrated. The present results indicate that diamond is a useful electrode material for the analytical detection of NADH, making it attractive for use in sensors based on enzyme-catalyzed reactions involving NADH as a cofactor. PMID:21662795

  1. Morphological and substrate effects on the electrochemical behaviour of doped tin oxide anodes

    NASA Astrophysics Data System (ADS)

    Miljkovic, Bojan

    Films of Sb-doped SnO2 were successfully fabricated on a Ti substrate through precursor application by spin coating followed by a thermal decomposition process. The dependence of film characteristics on fabrication temperature was studied in the range of 500 to 800C. An optimum electrocatalytic response was found for a firing temperature of 600C. This was attributed to a balance between Sb-doping effects, titanium substrate oxidation, and film morphological development. This was determined through observation of the morphology, crystallographic texture, and electrochemical characteristics, such as the oxygen evolution potential (OEP), ferri/ferrocyanide electron transfer reaction, and phenol oxidation. Polymerization of phenol and the subsequent deactivation of the anode surface was related to the active surface area of the SnO2 film. Preliminary studies on the effect of Ni-Sb and Zn-Sb co-doping of SnO2 were conducted. The addition of Ni was shown to decrease the film conductivity while maintaining the OEP. Inclusion of Zn resulted in the formation of a second phase, Zn2SnO4 , which effectively inhibited oxygen evolution causing an increase in the OEP.

  2. Electrochemical oxidation of landfill leachate in a flow reactor: optimization using response surface methodology.

    PubMed

    Silveira, Jefferson E; Zazo, Juan A; Pliego, Gema; Bidóia, Edério D; Moraes, Peterson B

    2015-04-01

    Response surface methodology based on Box-Behnken (BBD) design was successfully applied to the optimization in the operating conditions of the electrochemical oxidation of sanitary landfill leachate aimed for making this method feasible for scale up. Landfill leachate was treated in continuous batch-recirculation system, where a dimensional stable anode (DSA(©)) coated with Ti/TiO2 and RuO2 film oxide were used. The effects of three variables, current density (milliampere per square centimeter), time of treatment (minutes), and supporting electrolyte dosage (moles per liter) upon the total organic carbon removal were evaluated. Optimized conditions were obtained for the highest desirability at 244.11 mA/cm(2), 41.78 min, and 0.07 mol/L of NaCl and 242.84 mA/cm(2), 37.07 min, and 0.07 mol/L of Na2SO4. Under the optimal conditions, 54.99% of chemical oxygen demand (COD) and 71.07 ammonia nitrogen (NH3-N) removal was achieved with NaCl and 45.50 of COD and 62.13 NH3-N with Na2SO4. A new kinetic model predicted obtained from the relation between BBD and the kinetic model was suggested. PMID:25339535

  3. THERMAL AND ELECTROCHEMICAL THREE DIMENSIONAL CFD MODEL OF A PLANAR SOLID OXIDE ELECTROLYSIS CELL

    SciTech Connect

    Grant Hawkes; Jim O'Brien; Carl Stoots; Steve Herring; Mehrdad Shahnam

    2005-07-01

    A three-dimensional computational fluid dynamics (CFD) model has been created to model high-temperature steam electrolysis in a planar solid oxide electrolysis cell (SOEC). The model represents a single cell, as it would exist in an electrolysis stack. Details of the model geometry are specific to a stack that was fabricated by Ceramatec , Inc. and tested at the Idaho National Laboratory. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT2. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the SOEC mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Mean model results are shown to compare favorably with experimental results obtained from an actual ten-cell stack tested at INL.

  4. Electrochemical Urea Biosensor Based on Sol-gel Derived Nanostructured Cerium Oxide

    NASA Astrophysics Data System (ADS)

    Ansari, Anees A.; Azahar, Md; Malhotra, B. D.

    2012-04-01

    Urease (Urs) and glutamate dehydrogenase (GLDH) have been co-immobilized onto a nanostructured-cerium oxide (Nano-CeO2) film deposited onto a indium-tin-oxide (ITO) coated glass substrate by dip-coating via sol-gel process for urea detection. This nanostructured film has characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), Scanning electron microscope (SEM) and electrochemical techniques, respectively. The particle size of the Nano-CeO2 film has been found to be 23 nm. Electrochemcial response (CV) studies show that Ur-GLDH/Nano-CeO2/ITO bioelectrode is found to be sensitive in the 10-80 mg/dL urea concentration range and can detect urea concentration upto 0.1 mg/dL level. The value of Michaelis-Menten constant (Km) estimated using Lineweaver-Burke plot found as 6.09 mg/dL indicates enhancement in the affinity and/or activity of enzyme attached to their nanobiocomposite. This bioelectrode retained 95% of enzyme activity after 6 months at 4C.

  5. Electrochemical, Optical and Electronic Properties of Iridium Tin Oxide Thin Film as Counter Electrode of Electrochromic Device

    NASA Astrophysics Data System (ADS)

    Niwa, Tatsuo; Takai, Osamu

    2010-10-01

    Iridium tin oxide films (IRTOFs) containing dispersed iridium oxide in a tin oxide matrix were prepared by an ion-plating process. The optical, electrochemical, and electronic properties of the films were measured by varying the iridium concentration in the films. The cyclic voltammogram characteristic of the films showed good reproducibility. The coloration efficiency of the IRTOFs increased with an increase in the concentration of iridium. The change ranges of the conductivity become more than 108 times. The activation energy increased with increasing iridium concentration in the iridium concentration range in which the conductivity decreased. The characteristics of an all-solid-state electrochromic device with an IRTOF counter electrode were measured.

  6. Surface characteristics and electrochemical corrosion behavior of a pre-anodized microarc oxidation coating on titanium alloy.

    PubMed

    Cui, W F; Jin, L; Zhou, L

    2013-10-01

    A porous bioactive titania coating on biomedical ? titanium alloy was prepared by pre-anodization followed by micro arc oxidation technology. The effects of pre-anodization on the phase constituent, morphology and electrochemical corrosion behavior of the microarc oxidation coating were investigated. The results show that pre-anodization has less influence on the phase constituent and the surface morphology of the microarc oxidation coating, but improves the inner layer density of the microarc oxidation coating. The decrease of plasma discharge strength due to the presence of the pre-anodized oxide film contributes to the formation of the compact inner layer. The pre-anodized microarc oxidation coating effectively inhibits the penetration of the electrolyte in 0.9% NaCl solution and thus increases the corrosion resistance of the coated titanium alloy in physiological solution. PMID:23910276

  7. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, Arnold O.

    1987-01-01

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection.

  8. Bipolar plating of metal contacts onto oxide interconnection for solid oxide electrochemical cell

    DOEpatents

    Isenberg, A.O.

    1987-03-10

    Disclosed is a method of forming an adherent metal deposit on a conducting layer of a tube sealed at one end. The tube is immersed with the sealed end down into an aqueous solution containing ions of the metal to be deposited. An ionically conducting aqueous fluid is placed inside the tube and a direct current is passed from a cathode inside the tube to an anode outside the tube. Also disclosed is a multi-layered solid oxide fuel cell tube which consists of an inner porous ceramic support tube, a porous air electrode covering the support tube, a non-porous electrolyte covering a portion of the air electrode, a non-porous conducting interconnection covering the remaining portion of the electrode, and a metal deposit on the interconnection. 1 fig.

  9. Advanced oxidation of alkylphenol ethoxylates in aqueous systems.

    PubMed

    Nagarnaik, Pranav M; Boulanger, Bryan

    2011-10-01

    Alkylphenols and alkylphenol ethoxylates are ubiquitous wastewater contaminants. In this study the oxidation of nonylphenol ethoxylates (NPEO) and octylphenol ethoxylates (OPEO) by oxidant systems generating hydroxide radicals was evaluated. The reaction of each oxidant with a technical mixture of NPEO (Tergitol) and OPEO (Triton X-100) in ultrapure laboratory water and four aqueous environmental matrices was carried out in order to develop an understanding of reaction kinetics. The oxidation of APEOs was evaluated by hydroxyl radical generated by (1) hydrogen peroxide in the presence of ultraviolet light, (2) Fenton's reagent, and (3) a photo-Fenton's process. The second order kinetic rate constant for both NPEO and OPEO with hydroxyl radical was calculated to be 1.110? M? s?. The efficacy of the AOPs within an aqueous environmental matrix was dependent on the rate of formation of hydroxyl radical and the scavenging capacity of the matrix. A model based on the hydroxyl radical formation, scavenging capacity and the kinetic rate constant of target APEO was developed from the existing literature and applied to predict the concentration of APEOs in solution during advanced oxidation in different aqueous environmental matrices. PMID:21784502

  10. Removal of caffeine from aqueous solution by indirect electrochemical oxidation using a graphite-PVC composite electrode: A role of hypochlorite ion as an oxidising agent.

    PubMed

    Al-Qaim, Fouad F; Mussa, Zainab H; Othman, Mohamed R; Abdullah, Md P

    2015-12-30

    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products. PMID:26218306

  11. Vanadium Oxide Electrochemical Capacitors: An Investigation into Aqueous Capacitive Degradation, Alternate Electrolyte-Solvent Systems, Whole Cell Performance and Graphene Oxide Composite Electrodes

    NASA Astrophysics Data System (ADS)

    Engstrom, Allison Michelle

    Vanadium oxide has emerged as a potential electrochemical capacitor material due to its attractive pseudocapacitive performance; however, it is known to suffer from capacitive degradation upon sustained cycling. In this work, the electrochemical cycling behavior of anodically electrodeposited vanadium oxide films with various surface treatments in aqueous solutions is investigated at different pH. Quantitative compositional analysis and morphological studies provide additional insight into the mechanism responsible for capacitive degradation. Furthermore, the capacitance and impedance behavior of vanadium oxide electrochemical capacitor electrodes is compared for both aqueous and nonaqueous electrolyte-solvent systems. Alkali metal chloride and bromide electrolytes were studied in aqueous systems, and nonaqueous systems containing alkali metal bromides were studied in polar aprotic propylene carbonate (PC) or dimethyl sulfoxide (DMSO) solvents. The preferred aqueous and nonaqueous systems identified in the half-cell studies were utilized in symmetric vanadium oxide whole-cells. An aqueous system utilizing a 3.0 M NaCl electrolyte at pH 3.0 exhibited an excellent 96% capacitance retention over 3000 cycles at 10 mV s-1. An equivalent system tested at 500 mV s-1 displayed an increase in capacitance over the first several thousands of cycles, and eventually stabilized over 50,000 cycles. Electrodes cycled in nonaqueous 1.0 M LiBr in PC exhibited mostly non-capacitive charge-storage, and electrodes cycled in LiBr-DMSO exhibited a gradual capacitive decay over 10,000 cycles at 500 mV s-1. Morphological and compositional analyses, as well as electrochemical impedance modeling, provide additional insight into the cause of the cycing behavior. Lastly, reduced graphene oxide and vanadium oxide nanowire composites have been successfully synthesized using electrophoretic deposition for electrochemical capacitor electrodes. The composite material was found to perform with a higher capacitance than electrodes containing only vanadium oxide nanowires by a factor of 4.0 at 10 mV s-1 and 7.5 at 500 mV s-1. The thermally reduced composite material was examined in both symmetric and asymmetric whole cell electrochemical capacitor devices, and although the asymmetric cell achieved both higher energy and power density, the symmetric cell retained a higher capacitance over 50,000 cycles at 200 mV s-1.

  12. A non-oxidative electrochemical approach to online measurements of dopamine release through laccase-catalyzed oxidation and intramolecular cyclization of dopamine.

    PubMed

    Lin, Yuqing; Zhang, Zipin; Zhao, Lingzhi; Wang, Xiang; Yu, Ping; Su, Lei; Mao, Lanqun

    2010-02-15

    A new electrochemical approach to selective online measurements of dopamine (DA) release in the cerebral microdialysate is demonstrated with a non-oxidative mechanism based on the distinct reaction properties of DA and the excellent biocatalytic activity of laccase. To make the successful transition of the distinct sequential reaction properties of DA from a conceptual determination protocol to a practical online analytical system, laccase enzyme is immobilized onto magnetite nanoparticles and the nanoparticles are confined into a fused-silica capillary through an external magnetic field to fabricate a magnetic microreactor. The microreactor is placed in the upstream of the thin-layer electrochemical flow cell to efficiently catalyze the oxidation of DA into its quinonoid form and thereby initialize the sequential reactions including deprotonation, intramolecular cyclization, disproportionation and/or oxidation to finally give 5,6-dihydroxyindoline quinone. The electrochemical reduction of the produced 5,6-dihydroxyindoline quinone at bare glassy carbon electrode is used as the readout for the DA measurement. The laccase-immobilized microreactor is also found to catalyze the oxidation of ascorbic acid (AA) and 3,4-dihydroxyphenylacetic acid (DOPAC) into electroinactive species and, as such, to eliminate the great interference from both species. Moreover, the successful transition of the mechanism for DA detection from the conventional oxidative electrochemical approach to the non-oxidative one substantially enables the measurements virtually interference-free from physiological levels of uric acid, 5-hydroxytryptamine, norepinephrine, and epinephrine. The current response is linear with DA concentration within a concentration range from 1 to 20 microM with a sensitivity of 3.97 nA/microM. The detection limit, based on a signal-to-noise ratio of 3, is calculated to be 0.3 microM. The high selectivity and the good linearity as well as the high stability of the online method make it very potential for continuous monitoring of cerebral DA release in physiological and pathological processes. PMID:19926273

  13. Enhanced Osseointegration of Hierarchical Micro/Nanotopographic Titanium Fabricated by Microarc Oxidation and Electrochemical Treatment.

    PubMed

    Li, Guanglong; Cao, Huiliang; Zhang, Wenjie; Ding, Xun; Yang, Guangzheng; Qiao, Yuqin; Liu, Xuanyong; Jiang, Xinquan

    2016-02-17

    Rapid osseointegration is recognized as a critical factor in determining the success rate of orthopedic and dental implants. Microarc oxidation (MAO) fabricated titanium oxide coatings with a porous topography have been proven to be a potent approach to enhance osteogenic capacity. Now we report two kinds of new hierarchical coatings with similar micromorphologies but different nanotopographies (i.e., MAO and MAO-AK coatings), and both coatings significantly promote cell attachment and osteogenic differentiation through mediating the integrin ?1 signaling pathway. In this study, titanium with a unique hierarchical micro/nanomorphology surface was fabricated by a novel duplex coating process, that is, the first a titanium oxide layer was coated by MAO, and then the coating was electrochemically reduced in alkaline solution (MAO-AK). A series of in vitro stem cell differentiation and in vivo osseointegration experiments were carried out to evaluate the osteogenic capacity of the resulting coatings. In vitro, the initial adhesion of the canine bone marrow stem cells (BMSCs) seeded on the MAO and MAO-AK coatings was significantly enhanced, and cell proliferation was promoted. In addition, the expression levels of osteogenesis-related genes, osteorix, alkaline phosphates (ALP), osteopontin, and osteocalcin, in the canine BMSCs, were all up-regulated after incubation on these coatings, especially on the MAO-AK coating. Also, the in vitro ALP activity and mineralization capacity of canine BMSC cultured on the MAO-AK group was better than that on the MAO group. Furthermore, 6 weeks after insertion of the titanium implants into canine femurs, both the bone formation speed and the bone-implant contact ratio of the MAO-AK group were significantly higher than those of the MAO group. All these results suggest that this duplex coating process is promising for engineering titanium surfaces to promote osseointegration for dental and orthopedic applications. PMID:26789077

  14. Detection of the short-lived cation radical intermediate in the electrochemical oxidation of N,N-dimethylaniline by scanning electrochemical microscopy.

    PubMed

    Cao, Fahe; Kim, Jiyeon; Bard, Allen J

    2014-12-31

    The short-lived intermediate N,N-dimethylaniline (DMA) cation radical, DMA(+), was detected during the oxidation of DMA in MeCN with 0.1 M tetra-n-butylammonium hexafluorophosphate. The detection was accomplished at steady state by scanning electrochemical microscopy (SECM) with ultramicroelectrodes using the tip generation/substrate collection mode. Cyclic voltammetry (CV) with a 2 mm Pt electrode indicates that DMA oxidation in acetonitrile is followed by a dimerization and two electrochemical reactions, which is consistent with previous results. The DMA(+) intermediate is detected by SECM, where the DMA(+) generated at the ca. 500 nm radius Pt tip is collected on a 5 ?m radius Pt substrate when the gap between the tip and the substrate is a few hundred nanometers. Almost all of the DMA(+) is reduced at the substrate when the gap is 200 nm or less, yielding a dimerization rate constant of 2.5 10(8) M(-1)s(-1) based on a simulation. This is roughly 3 orders of magnitude larger than the value estimated by fast-scan CV. We attribute this discrepancy to the effects of double-layer capacitance charging and adsorbed species in the high scan rate CV. PMID:25478724

  15. Thermodynamic and kinetic study of mixed metal oxide cathode material for lithium organic polymer electrolyte electrochemical cells

    NASA Astrophysics Data System (ADS)

    Atwater, Terrill Bradford

    1997-09-01

    The thermodynamics and discharge kinetics of the lithium/bismuth modified manganese dioxide electrochemical couple was investigated. These investigations coupled with biased impedance spectroscopy studies lead to the establishment of a model of the electrochemical interfaces of the system. Biased impedance spectroscopy allows for the study of the electrodes during open circuit and discharge conditions. This ability to study the electrode interface during discharge allowed for the development of an equivalent circuit and description of the complex interface of the mixed metal oxide. The results of these techniques were the establishment of a theory of the discharge mechanism of the lithium/bismuth modified manganese dioxide electrochemical cell and the processes involved. Equivalent circuit analysis of materials provides data for comparison. Equivalent circuit analysis when used with biased impedance spectroscopy provides valued component data for lithium battery cathode material. The model, therefore, provides an invaluable tool in the investigation of new materials for use as lithium battery cathodes. Kinetic measurements were used to determine the catalytic nature of the bismuth phase in bismuth modified manganese dioxide lithium primary battery cathode material. A reduction in activation energy for lithium cells was identified in the bismuth manganese mixed metal oxide as compared to manganese dioxide. Impedance spectroscopy allowed for the identification of an additional process linked to the catalytic behavior of the bismuth oxide phase of the bismuth manganese mixed metal oxide. An additional part of the studies focused on the thermodynamics and kinetics of the lithium polymer electrolyte cells with bismuth manganese mixed metal oxide cathodes. This study resulted in the determination of thermodynamic properties of the electrochemical couple. Discharge kinetic measurements lead to the establishment of optimum cathode formulations. This optimization considered both gravimetric and volumetric efficiencies. Measurements examined the relationship between discharge characteristics and cathode material concentration and cathode thickness.

  16. Virtual electrochemical nitric oxide analyzer using copper, zinc superoxide dismutase immobilized on carbon nanotubes in polypyrrole matrix.

    PubMed

    Madasamy, Thangamuthu; Pandiaraj, Manickam; Balamurugan, Murugesan; Karnewar, Santosh; Benjamin, Alby Robson; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Kotamraju, Srigiridhar; Karunakaran, Chandran

    2012-10-15

    In this work, we have designed and developed a novel and cost effective virtual electrochemical analyzer for the measurement of NO in exhaled breath and from hydrogen peroxide stimulated endothelial cells using home-made potentiostat. Here, data acquisition system (NI MyDAQ) was used to acquire the data from the electrochemical oxidation of NO mediated by copper, zinc superoxide dismutase (Cu,ZnSOD). The electrochemical control programs (graphical user-interface software) were developed using LabVIEW 10.0 to sweep the potential, acquire the current response and process the acquired current signal. The Cu,ZnSOD (SOD1) immobilized on the carbon nanotubes in polypyrrole modified platinum electrode was used as the NO biosensor. The electrochemical behavior of the SOD1 modified electrode exhibited the characteristic quasi-reversible redox peak at the potential, +0.06 V vs. Ag/AgCl. The biological interferences were eliminated by nafion coated SOD1 electrode and then NO was measured selectively. Further, this biosensor showed a wide linear range of response over the concentration of NO from 0.1 μM to 1 mM with a detection limit of 0.1 μM and high sensitivity of 1.1 μA μM(-1). The electroanalytical results obtained here using the developed virtual electrochemical instrument were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. PMID:23141325

  17. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes

    PubMed Central

    Li, Shiue-Lin; Nealson, Kenneth H.

    2015-01-01

    Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331

  18. Enriching distinctive microbial communities from marine sediments via an electrochemical-sulfide-oxidizing process on carbon electrodes.

    PubMed

    Li, Shiue-Lin; Nealson, Kenneth H

    2015-01-01

    Sulfide is a common product of marine anaerobic respiration, and a potent reactant biologically and geochemically. Here we demonstrate the impact on microbial communities with the removal of sulfide via electrochemical methods. The use of differential pulse voltammetry revealed that the oxidation of soluble sulfide was seen at +30 mV (vs. SHE) at all pH ranges tested (from pH = 4 to 8), while non-ionized sulfide, which dominated at pH = 4 was poorly oxidized via this process. Two mixed cultures (CAT and LA) were enriched from two different marine sediments (from Catalina Island, CAT; from the Port of Los Angeles, LA) in serum bottles using a seawater medium supplemented with lactate, sulfate, and yeast extract, to obtain abundant biomass. Both CAT and LA cultures were inoculated in electrochemical cells (using yeast-extract-free seawater medium as an electrolyte) equipped with carbon-felt electrodes. In both cases, when potentials of +630 or +130 mV (vs. SHE) were applied, currents were consistently higher at +630 then at +130 mV, indicating more sulfide being oxidized at the higher potential. In addition, higher organic-acid and sulfate conversion rates were found at +630 mV with CAT, while no significant differences were found with LA at different potentials. The results of microbial-community analyses revealed a decrease in diversity for both CAT and LA after electrochemical incubation. In addition, some bacteria (e.g., Clostridium and Arcobacter) not well-known to be capable of extracellular electron transfer, were found to be dominant in the electrochemical cells. Thus, even though the different mixed cultures have different tolerances for sulfide, electrochemical-sulfide removal can lead to major population changes. PMID:25741331

  19. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    Digby D. Macdonald; Brian M. Marx; Sejin Ahn; Julio de Ruiz; Balaji Soundararaja; Morgan Smith; and Wendy Coulson

    2008-01-15

    Various forms of general and localized corrosion represent principal threats to the integrity of DOE liquid waste storage tanks. These tanks, which are of a single wall or double wall design, depending upon their age, are fabricated from welded carbon steel and contain a complex waste-form comprised of NaOH and NaNO{sub 3}, along with trace amounts of phosphate, sulfate, carbonate, and chloride. Because waste leakage can have a profound environmental impact, considerable interest exists in predicting the accumulation of corrosion damage, so as to more effectively schedule maintenance and repair. The different tasks that are being carried out under the current program are as follows: (1) Theoretical and experimental assessment of general corrosion of iron/steel in borate buffer solutions by using electrochemical impedance spectroscopy (EIS), ellipsometry and XPS techniques; (2) Development of a damage function analysis (DFA) which would help in predicting the accumulation of damage due to pitting corrosion in an environment prototypical of DOE liquid waste systems; (3) Experimental measurement of crack growth rate, acoustic emission signals and coupling currents for fracture in carbon and low alloy steels as functions of mechanical (stress intensity), chemical (conductivity), electrochemical (corrosion potential, ECP), and microstructural (grain size, precipitate size, etc) variables in a systematic manner, with particular attention being focused on the structure of the noise in the current and its correlation with the acoustic emissions; (4) Development of fracture mechanisms for carbon and low alloy steels that are consistent with the crack growth rate, coupling current data and acoustic emissions; (5) Inserting advanced crack growth rate models for SCC into existing deterministic codes for predicting the evolution of corrosion damage in DOE liquid waste storage tanks; (6) Computer simulation of the anodic and cathodic activity on the surface of the steel samples in order to exactly predict the corrosion mechanisms; (7) Wavelet analysis of EC noise data from steel samples undergoing corrosion in an environment similar to that of the high level waste storage containers, to extract data pertaining to general, pitting and stress corrosion processes, from the overall data. The Point Defect Model (PDM) is directly applied as the theoretical assessment method for describing the passive film formed on iron/steels. The PDM is used to describe general corrosion in the passive region of iron. In addition, previous work suggests that pit formation is due to the coalescence of cation vacancies at the metal/film interface which would make it possible to use the PDM parameters to predict the onset of pitting. This previous work suggests that once the critical vacancy density is reached, the film ruptures to form a pit. Based upon the kinetic parameters derived for the general corrosion case, two parameters relating to the cation vacancy formation and annihilation can be calculated. These two parameters can then be applied to predict the transition from general to pitting corrosion for iron/mild steels. If cation vacancy coalescence is shown to lead to pitting, it can have a profound effect on the direction of future studies involving the onset of pitting corrosion. The work has yielded a number of important findings, including an unequivocal demonstration of the role of chloride ion in passivity breakdown on nickel in terms of cation vacancy generation within the passive film, the first detection and characterization of individual micro fracture events in stress corrosion cracking, and the determination of kinetic parameters for the generation and annihilation of point defects in the passive film on iron. The existence of coupling between the internal crack environment and the external cathodic environment, as predicted by the coupled environment fracture model (CEFM), has also been indisputably established for the AISI 4340/NaOH system. It is evident from the studies that analysis of coupling current noise is a very sensitive tool for studying the crack tip processes in relation to the chemical, mechanical, electrochemical and microstructural properties of the system. Experiments are currently being carried out to explore these crack tip processes by simultaneous measurement of the acoustic activity at the crack tip in an effort to validate the coupling current data. These latter data are now being used to deterministically predict the accumulation of general and localized corrosion damage on carbon in prototypical DOE liquid waste storage tanks. Computer simulation of the cathodic and anodic activity on the steel surfaces is also being carried out in an effort to simulate the actual corrosion process. Wavelet analysis of the coupling current data promises to be a useful tool to differentiate between the different corrosion mechanisms.

  20. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.

    PubMed

    Huang, Ta-Jen; Wu, Chung-Ying; Lin, Yu-Hsien

    2011-07-01

    A solid oxide fuel cell (SOFC) unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3)-Ce(0.9)Gd(0.1)O(1.95) as the cathode. The SOFC operation is performed at 600 C with a cathode gas simulating the lean-burn engine exhaust and at various fixed voltage, at open-circuit voltage, and with an inert gas flowing over the anode side, respectively. Electrochemical enhancement of NO decomposition occurs when an operating voltage is generated; higher O(2) concentration leads to higher enhancement. Smaller NO concentration results in larger NO conversion. Higher operating voltage and higher O(2) concentration can lead to both higher NO conversion and lower fuel consumption. The molar rate of the consumption of the anode fuel can be very much smaller than that of NO to N(2) conversion. This makes the anode fuel consumed in the SOFC-DeNO(x) process to be much less than the equivalent amount of ammonia consumed in the urea-based selective catalytic reduction process. Additionally, the NO conversion increases with the addition of propylene and SO(2) into the cathode gas. These are beneficial for the application of the SOFC-DeNO(x) technology on treating diesel and other lean-burn engine exhausts. PMID:21667969

  1. Comparison of different advanced oxidation processes for phenol degradation.

    PubMed

    Esplugas, Santiago; Gimnez, Jaime; Contreras, Sandra; Pascual, Esther; Rodrguez, Miguel

    2002-02-01

    Advanced Oxidation Processes (O3, O3/H2O2, UV, UV/O3, UV/H2O2, O3/UV/H2O2, Fe2+ /H2O2 and photocatalysis) for degradation of phenol in aqueous solution have been studied in earlier works. In this paper, a comparison of these techniques is undertaken: pH influence, kinetic constants, stoichiometric coefficient and optimum oxidant/pollutant ratio. Of the tested processes, Fenton reagent was found to the fastest one for phenol degradation. However, lower costs were obtained with ozonation. In the ozone combinations, the best results were achieved with single ozonation. As for the UV processes, UV/H2O2 showed the highest degradation rate. PMID:11848342

  2. Arsenic removal from water using advanced oxidation processes.

    PubMed

    Zaw, Myint; Emett, Maree T

    2002-07-01

    Consumption of groundwaters containing natural arsenic at several hundred microg/l (ppb) in countries such as Bangladesh has lead to the increased occurrence of many cancers particularly those of the skin and bladder, while concerns in the USA and Australia regarding the unknown health impact of drinking water containing tens of ppb of arsenic is leading to increasingly stringent maximum contaminant levels. The anaerobic conditions of these groundwaters result in the arsenic being present in its reduced form, hence the use of an oxidant is necessary if the arsenic is to be successfully removed by precipitation or ion exchange methods. Advance oxidation methods which utilise ultraviolet light and a photo absorber have been developed and patented, in which both iron salts and sulphite can be used as the photoabsorber. The former absorber has been developed for arsenic removal in rural areas of Bangladesh and the latter for groundwaters in countries such as the USA. PMID:12076516

  3. Development of advanced mixed oxide fuels for plutonium management

    SciTech Connect

    Eaton, S.; Beard, C.; Buksa, J.; Butt, D.; Chidester, K.; Havrilla, G.; Ramsey, K.

    1997-06-01

    A number of advanced Mixed Oxide (MOX) fuel forms are currently being investigated at Los Alamos National Laboratory that have the potential to be effective plutonium management tools. Evolutionary Mixed Oxide (EMOX) fuel is a slight perturbation on standard MOX fuel, but achieves greater plutonium destruction rates by employing a fractional nonfertile component. A pure nonfertile fuel is also being studied. Initial calculations show that the fuel can be utilized in existing light water reactors and tailored to address different plutonium management goals (i.e., stabilization or reduction of plutonium inventories residing in spent nuclear fuel). In parallel, experiments are being performed to determine the feasibility of fabrication of such fuels. Initial EMOX pellets have successfully been fabricated using weapons-grade plutonium.

  4. [Research advances on anaerobic ferrous-oxidizing microorganisms].

    PubMed

    Zhang, Meng; Zheng, Ping; Ji, Jun-yuan

    2013-08-01

    Anaerobic ferrous-oxidizing microorganisms (AFOM) are one of the important discoveries in microbiology, geology and environmental science. The study of AFOM is of significance to make clear the banded iron formations (BIFs), promote the biogeochemical cycles of iron, nitrogen and carbon, enrich the microbiological content, develop new biotechnologies for anaerobic iron oxidation, and explore the ancient earth environment and extraterrestrial life. This paper summarized the research advances on AFOM, introduced the habitats of AFOM, discussed the biodiversity and the nutritive and metabolic characteristics of AFOM, and assessed the potential functions of AFOM. An outlook was made on the future researches of new species AFOM, their microbial metabolism mechanisms, and their development and applications. PMID:24380362

  5. Selective Separation of Cs and Sr from LiCl-Based Salt for Electrochemical Processing of Oxide Spent Nuclear Fuel

    SciTech Connect

    P Sachdev

    2008-07-01

    Electrochemical processing technology is currently being used for the treatment of metallic spent fuel from the Experimental Breeder Reactor-II at Idaho National Laboratory. The treatment of oxide-based spent nuclear fuel via electrochemical processing is possible provided there is a front-end oxide reduction step. During this reduction process, certain fission products, including Cs and Sr, partition into the salt phase and form chlorides. Both solid state and molten LiCl-zeolite-A ion exchange tests were conducted for selectively removing Cs and Sr from LiCl-based salt. The solid-state tests produced in excess of 99% removal of Cs and Sr. The molten state tests failed due to phase transformation of the zeolite structure when in contact with the molten LiCl salt.

  6. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide

    PubMed Central

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-01-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1–400 ng·mL−1, with a detection limit of 0.1 ng·mL−1 (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples. PMID:27003798

  7. Novel Signal-Amplified Fenitrothion Electrochemical Assay, Based on Glassy Carbon Electrode Modified with Dispersed Graphene Oxide.

    PubMed

    Wang, Limin; Dong, Jinbo; Wang, Yulong; Cheng, Qi; Yang, Mingming; Cai, Jia; Liu, Fengquan

    2016-01-01

    A novel signal-amplified electrochemical assay for the determination of fenitrothion was developed, based on the redox behaviour of organophosphorus pesticides on a glassy carbon working electrode. The electrode was modified using graphene oxide dispersion. The electrochemical response of fenitrothion at the modified electrode was investigated using cyclic voltammetry, current-time curves, and square-wave voltammetry. Experimental parameters, namely the accumulation conditions, pH value, and volume of dispersed material, were optimised. Under the optimum conditions, a good linear relationship was obtained between the oxidation peak current and the fenitrothion concentration. The linear range was 1-400 ng·mL(-1), with a detection limit of 0.1 ng·mL(-1) (signal-to-nose ratio = 3). The high sensitivity of the sensor was demonstrated by determining fenitrothion in pakchoi samples. PMID:27003798

  8. Use of high-temperature gas-tight electrochemical cells to measure electronic transport and thermodynamics in metal oxides

    SciTech Connect

    Park, J.H.; Ma, B.; Park, E.T.

    1997-10-01

    By using a gas-tight electrochemical cell, the authors can perform high-temperature coulometric titration and measure electronic transport properties to determine the electronic defect structure of metal oxides. This technique reduces the time and expense required for conventional thermogravimetric measurements. The components of the gas-tight coulometric titration cell are an oxygen sensor, Pt/yttria stabilized zirconia (YSZ)/Pt, and an encapsulated metal oxide sample. Based on cell design, both transport and thermodynamic measurements can be performed over a wide range of oxygen partial pressures (pO{sub 2} = 10{sup {minus}35} to 1 atm). This paper describes the high-temperature gas-tight electrochemical cells used to determine electronic defect structures and transport properties for pure and doped-oxide systems, such as YSZ, doped and pure ceria (Ca-CeO{sub 2} and CeO{sub 2}), copper oxides, and copper-oxide-based ceramic superconductors, transition metal oxides, SrFeCo{sub 0.5}O{sub x}, and BaTiO{sub 3}.

  9. Constraints on the oxidation state of the mantle: An electrochemical and 57Fe Mssbauer study of mantle-derived ilmenites

    NASA Astrophysics Data System (ADS)

    Virgo, David; Luth, Robert W.; Moats, Mark A.; Ulmer, Gene C.

    1988-07-01

    Ilmenite samples from four kimberlite localities were studied using electrochemical, Mssbauer spectroscopic, and microprobe analytical techniques in order to infer the oxidation state of their source regions in the mantle. The values of Fe 3+/?Fe calculated from analyses, using three different electron microanalytical instruments assuming ilmenite stoichiometry, are consistently higher than those derived from the Mssbauer data, by as much as 100%. Furthermore, the range in Fe 3+/?Fe calculated using the analyses from different instruments and/or different correction schemes is nearly as large. Thus Fe 3+/?Fe calculated from microprobe analyses should be taken with caution, even if the precision appears high. An yttria-doped zirconia, double-cell electrochemical apparatus was used to measure the oxygen fugacity ( O 2) of ilmenite as a function of temperature. Samples that contain carbon show irreversible, "auto-oxidation" trends of sharply increasing O 2 with increasing temperature upon initial heating. The one sample that lacked C did not "autooxidize". 57Fe Mssbauer spectroscopy on the electrochemical experiment run products demonstrates that Fe 3+/?Fe is significantly lower than it is for the natural C-bearing ilmenites. In contrast, the ilmenite that lacked C did not change Fe 3+/?Fe during the electrochemical experiment. Examination of the reduced samples with SEM established that the natural, single-phase ilmenites exsolved during the electrochemical experiment to form ilmenite ss, + spinel ss. Reduction-exsolution was caused by reaction with C, which shifted the bulk composition from the stability field of ilmenite ss along an oxygen reaction line into the two-phase stability field of ilmenite ss + spinel ss that lies between the ilmenite-hematite and the ulvspinel-magnetite joins in the TiO 2-(Fe,Mg)O-(Fe,Al) 2O 3 system. The initial, reduced trends in the electrochemical experiments for the C-bearing ilmenites are attributed to disequilibrium interactions between the decomposing sample and the evolved gas in the electrochemical cell and do not represent the quenched "mantle memory" nor the intrinsic o 2 of the sample prior to reduction. Futhermore, the oxidized o 2 trend is interpreted, for the carbon-bearing samples, as representing the o 2 of the ilmenite ss + spinel ss assemblage and not the intrinsic o 2 of the mantle-derived ilmenite ss.

  10. More accurate macro-models of solid oxide fuel cells through electrochemical and microstructural parameter estimation - Part II: Parameter estimation

    NASA Astrophysics Data System (ADS)

    Boigues-Muñoz, Carlos; Pumiglia, Davide; McPhail, Stephen J.; Santori, Giulio; Montinaro, Dario; Comodi, Gabriele; Carlini, Maurizio; Polonara, Fabio

    2015-07-01

    This paper presents a systematic synergetic approach between experimental measurements, equivalent circuit modelling (described in Part I) and macro-scale modelling theory which has proved to be instrumental for the estimation of microstructural and electrochemical features of a Ni-YSZ|YSZ|Pr2NiO4+δ - GDC solid oxide fuel cell (SOFC). The aforementioned parameters have been used to generate a more accurate CFD macro-model which has been validated against the experimental results (presented in Part III).

  11. Synthesis of Au/graphene oxide composites for selective and sensitive electrochemical detection of ascorbic acid.

    PubMed

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-01-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM(-1) cm(-2) to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application. PMID:25515430

  12. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes.

    PubMed

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well. PMID:26706687

  13. Electrochemical and biological characterization of coatings formed on Ti-15Mo alloy by plasma electrolytic oxidation.

    PubMed

    Kazek-Kęsik, Alicja; Krok-Borkowicz, Małgorzata; Pamuła, Elżbieta; Simka, Wojciech

    2014-10-01

    β-Type titanium alloys are considered the future materials for bone implants. To improve the bioactivity of Ti-15Mo, the surface was modified using the plasma electrolytic oxidation (PEO) process. Tricalcium phosphate (TCP, Ca3PO4), wollastonite (CaSiO3) and silica (SiO2) were selected as additives in the anodizing bath to enhance the bioactivity of the coatings formed during the PEO process. Electrochemical analysis of the samples was performed in Ringer's solution at 37°C. The open-circuit potential (EOCP) as a function of time, corrosion potential (ECORR), corrosion current density (jCORR) and polarization resistance (Rp) of the samples were determined. Surface modification improved the corrosion resistance of Ti-15Mo in Ringer's solution. In vitro studies with MG-63 osteoblast-like cells were performed for 1, 3 and 7 days. After 24h, the cells were well adhered on the entire surfaces, and their number increased with increasing culture time. The coatings formed in basic solution with wollastonite exhibited better biological performance compared with the as-ground sample. PMID:25175202

  14. Effect of electrochemical oxidation on biodegradability and toxicity of batik industry wastewater

    NASA Astrophysics Data System (ADS)

    Subramaniam, Devagi; Halim, Azhar A.

    2014-09-01

    This study was conducted to investigate the increase in biodegradability and reduction in toxicity level in the batik wastewater treatment. Basically, the wastewater treatment from batik industry contained chemicals especially dyes which are not biodegradable and contains higher toxicity level because of the chemical compartment which comes out during the wastewater discharge and this could lead high risk in health wise to humans and all the aquatic living organisms. Thus, this research was carried to enhance the effectiveness of the electrochemical oxidation method by using the batik wastewater. Optimal parameters such as pH, time, distance between graphite electrodes and sodium chloride (NaCl) concentration as it activates as the electrolyte was done to obtain the removal of BOD, COD and color in the batik wastewater. The research study found that the removal of COD and color was high in the acidic conditions which are pH 5 with the removal of COD, 89.71% and color 93.89%. The ratio of BOD5/ COD successfully increased from 0.015 to 0.271 which mean it increase by 94.46% and the toxicity level using Toxtrax method (10017) also successfully reduced from 1.195% to 0.129% which means the samples which were slightly toxic were reduced to non-toxic level.

  15. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    PubMed Central

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-01-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15?V, a high sensitivity of 101.86??A mM?1 cm?2 to AA, a low detection limit of 100?nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application. PMID:25515430

  16. Highly Selective Oxidation of Carbohydrates in an Efficient Electrochemical Energy Converter: Cogenerating Organic Electrosynthesis.

    PubMed

    Holade, Yaovi; Servat, Karine; Napporn, Teko W; Morais, Cláudia; Berjeaud, Jean-Marc; Kokoh, Kouakou B

    2016-02-01

    The selective electrochemical conversion of highly functionalized organic molecules into electricity, heat, and added-value chemicals for fine chemistry requires the development of highly selective, durable, and low-cost catalysts. Here, we propose an approach to make catalysts that can convert carbohydrates into chemicals selectively and produce electrical power and recoverable heat. A 100 % Faradaic yield was achieved for the selective oxidation of the anomeric carbon of glucose and its related carbohydrates (C1-position) without any function protection. Furthermore, the direct glucose fuel cell (DGFC) enables an open-circuit voltage of 1.1 V in 0.5 m NaOH to be reached, a record. The optimized DGFC delivers an outstanding output power Pmax =2 mW cm(-2) with the selective conversion of 0.3 m glucose, which is of great interest for cogeneration. The purified reaction product will serve as a raw material in various industries, which thereby reduces the cost of the whole sustainable process. PMID:26777210

  17. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid

    NASA Astrophysics Data System (ADS)

    Song, Jian; Xu, Lin; Xing, Ruiqing; Li, Qingling; Zhou, Chunyang; Liu, Dali; Song, Hongwei

    2014-12-01

    In this work, we present a novel ascorbic acid (AA) sensor applied to the detection of AA in human sera and pharmaceuticals. A series of Au nanoparticles (NPs) and graphene oxide sheets (Au NP/GO) composites were successfully synthesized by reduction of gold (III) using sodium citrate. Then the Au NP/GO composites were used to construct nonenzymatic electrodes in practical AA measurement. The electrode that has the best performance presents attractive analytical features, such as a low working potential of +0.15 V, a high sensitivity of 101.86 μA mM-1 cm-2 to AA, a low detection limit of 100 nM, good reproducibility and excellent selectivity. And more,it was also employed to accurately and practically detect AA in human serum and clinical vitamin C tablet with the existence of some food additive. The enhanced AA electrochemical properties of the Au NP/GO modified electrode in our work can be attributed to the improvement of electroactive surface area of Au NPs and the synergistic effect from the combination of Au NPs and GO sheets. This work shows that the Au NP/GO/GCEs hold the prospect for sensitive and selective determination of AA in practical clinical application.

  18. A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes

    NASA Astrophysics Data System (ADS)

    Lin, Yuanjing; Lin, Qingfeng; Liu, Xue; Gao, Yuan; He, Jin; Wang, Wenli; Fan, Zhiyong

    2015-12-01

    Due to the broad applications of porous alumina nanostructures, research on fabrication of anodized aluminum oxide (AAO) with nanoporous structure has triggered enormous attention. While fabrication of highly ordered nanoporous AAO with tunable geometric features has been widely reported, it is known that its growth rate can be easily affected by the fluctuation of process conditions such as acid concentration and temperature during electrochemical anodization process. To fabricate AAO with various geometric parameters, particularly, to realize precise control over pore depth for scientific research and commercial applications, a controllable fabrication process is essential. In this work, we revealed a linear correlation between the integrated electric charge flow throughout the circuit in the stable anodization process and the growth thickness of AAO membranes. With this understanding, we developed a facile approach to precisely control the growth process of the membranes. It was found that this approach is applicable in a large voltage range, and it may be extended to anodization of other metal materials such as Ti as well.

  19. Electrocatalysis of NADH oxidation using electrochemically activated fluphenazine on carbon nanotube electrode.

    PubMed

    Sobczak, Agnieszka; R?bi?, Tomasz; Milczarek, Grzegorz

    2015-12-01

    Electrocatalytic determination of NADH using a hybrid surface-modified electrode with multi-wall carbon nanotubes (MWCNTs) and a novel electrogenerated redox mediator is described. The redox mediator precursor - fluphenazine (Flu) was adsorbed on MWCNT-modified glassy carbon (GC) electrode which was then subjected to electrochemical activation in 0.1 M H2SO4 using cyclic voltammetry (CV) over a range of potentials -0.2 to 1.5 V vs. Ag/AgCl (6 scans at 100 mV s(-1)). Cyclic voltammograms of Flu indicated the formation of a stable electroactive material presenting one reversible redox couple at the formal potential of -0.115 vs. Ag/AgCl in a phosphate buffer (pH7.0) as a supporting electrolyte. The peaks increased linearly with increasing scan rate indicating electroactive molecules anchored to the electrode surface. The GC/MWCNT/Flu electrode efficiently catalyzed the oxidation of NADH with a decrease in the overpotential of about 600 mV and 150 mV compared to the bare GC and GC/MWCNT electrode, respectively. This modified electrode was successfully used as the working electrode in the chronoamperometric analysis. The peak current response to NADH was linear over its concentration range from 15 ?M to 84 ?M, and correlation coefficient 0.998. The limits of detection (5 ?M) and quantitation (15 ?M) were evaluated. PMID:26211441

  20. Application of electrochemically reduced graphene oxide on screen-printed ion-selective electrode.

    PubMed

    Ping, Jianfeng; Wang, Yixian; Ying, Yibin; Wu, Jian

    2012-04-01

    In this study, a novel disposable all-solid-state ion-selective electrode using graphene as the ion-to-electron transducer was developed. The graphene film was prepared on screen-printed electrode directly from the graphene oxide dispersion by a one-step electrodeposition technique. Cyclic voltammetry and electrochemical impedance spectroscopy were employed to demonstrate the large double layer capacitance and fast charge transfer of the graphene film modified electrode. On the basis of these excellent properties, an all-solid-state calcium ion-selective electrode as the model was constructed using the calcium ion-selective membrane and graphene film modified electrode. The mechanism about the graphene promoting the ion-to-electron transformation was investigated in detail. The disposable electrode exhibited a Nernstian slope (29.1 mV/decade), low detection limit (10(-5.8) M), and fast response time (less than 10 s). With the high hydrophobic character of graphene materials, no water film was formed between the ion-selective membrane and the underlying graphene layer. Further studies revealed that the developed electrode was insensitive to light, oxygen, and redox species. The use of the disposable electrode for real sample analysis obtained satisfactory results, which made it a promising alternative in routine sensing applications. PMID:22380625

  1. Electrochemical immunosensor for ethinylestradiol using diazonium salt grafting onto silver nanoparticles-silica-graphene oxide hybrids.

    PubMed

    Cincotto, Fernando H; Martnez-Garca, Gonzalo; Yez-Sedeo, Paloma; Canevari, Thiago C; Machado, S A S; Pingarrn, Jos M

    2016-01-15

    This work describes the preparation of an electrochemical immunosensor for ethinylestradiol (EE2) based on grafting of diazonium salt of 4-aminobenzoic acid onto a glassy carbon electrode modified with silver nanoparticles/SiO2/graphene oxide hybrid followed by covalent binding of anti-ethinylestradiol (anti-EE2) to activated carboxyl groups. A competitive immunoassay was developed for the determination of the hormone using peroxidase-labeled ethinylestradiol (HRP-EE2) and measurement of the amperometric response at -200mV in the presence of hydroquinone (HQ) as redox mediator. The calibration curve for EE2 exhibited a linear range between 0.1 and 50ng/mL (r(2)=0.996), with a detection limit of 65pg/mL. Interference studies with other hormones related with EE2 revealed the practical specificity of the developed method for the analyte. A good reproducibility, with RSD=4.5% (n=10) was also observed. The operating stability of a single bioelectrode modified with anti-EE2 was maintained at least for 15 days when it was stored at 4C under humid conditions between measurements. The developed immunosensor was applied to the analysis of spiked urine with good results. PMID:26592615

  2. Electrochemical oxidation of amphetamine-like drugs and application to electroanalysis of ecstasy in human serum.

    PubMed

    Garrido, E M P J; Garrido, J M P J; Milhazes, N; Borges, F; Oliveira-Brett, A M

    2010-08-01

    Amphetamine and amphetamine-like drugs are popular recreational drugs of abuse because they are powerful stimulants of the central nervous system. Due to a dramatic increase in the abuse of methylenedioxylated derivatives, individually and/or in a mixture, and to the incoherent and contradictory interpretation of the electrochemical data available on this subject, a comprehensive study of the redox properties of amphetamine-like drugs was accomplished. The oxidative behaviour of amphetamine (A), methamphetamine (MA), methylenedioxyamphetamine (MDA) and methylenedioxymethamphetamine (MDMA) was studied in different buffer systems by cyclic, differential pulse and square-wave voltammetry using a glassy carbon electrode. A quantitative electroanalytical method was developed and successfully applied to the determination of MDMA in seized samples and in human serum. Validation parameters, such as sensitivity, precision and accuracy, were evaluated. The results found using the developed electroanalytical methodology enabled to gather some information about the content and amount of MDMA present in ecstasy tablets found in Portugal. Moreover, the data found in this study outlook the possibility of using the voltammetric methods to investigate the potential harmful effects of interaction between drugs such as MDMA and methamphetamine and other substances often used together in ecstasy tablets. PMID:20051327

  3. Seedless growth of zinc oxide flower-shaped structures on multilayer graphene by electrochemical deposition

    PubMed Central

    2014-01-01

    A seedless growth of zinc oxide (ZnO) structures on multilayer (ML) graphene by electrochemical deposition without any pre-deposited ZnO seed layer or metal catalyst was studied. A high density of a mixture of vertically aligned/non-aligned ZnO rods and flower-shaped structures was obtained. ML graphene seems to generate the formation of flower-shaped structures due to the stacking boundaries. The nucleation of ZnO seems to be promoted at the stacking edges of ML graphene with the increase of applied current density, resulting in the formation of flower-shaped structures. The diameters of the rods/flower-shaped structures also increase with the applied current density. ZnO rods/flower-shaped structures with high aspect ratio over 5.0 and good crystallinity were obtained at the applied current densities of −0.5 and −1.0 mA/cm2. The growth mechanism was proposed. The growth involves the formation of ZnO nucleation below 80°C and the enhancement of the growth of vertically non-aligned rods and flower-shaped structures at 80°C. Such ZnO/graphene hybrid structure provides several potential applications in sensing devices. PMID:25024694

  4. Electrochemical detection of catecholamine exocytosis using planar iridium oxide electrodes in nanoliter microfluidic cell culture volumes

    PubMed Central

    Ges, Igor A.; Currie, Kevin P.M.; Baudenbacher, Franz

    2013-01-01

    Release of neurotransmitters and hormones by Ca2+ regulated exocytosis is a fundamental cellular/molecular process that is disrupted in a variety of psychiatric, neurological, and endocrine disorders. Therefore, this area represents a relevant target for drug and therapeutic development, efforts that will be aided by novel analytical tools and devices that provide mechanistically rich data with increased throughput. Toward this goal, we have electrochemically deposited iridium oxide (IrOx) films onto planar thin film platinum electrodes (20300m2) and utilized these for quantitative detection of catecholamine exocytosis from adrenal chromaffin cells trapped in a microfluidic network. The IrOx electrodes show a linear response to norepinephrine in the range of 0400M, with a sensitivity of 23.10.5mA/(Mmm2). The sensitivity of the IrOx electrodes does not change in the presence of ascorbic acid, a substance commonly found in biological samples. A replica molded polydimethylsiloxane (PDMS) microfluidic device with nanoliter sensing volumes was aligned and sealed to a glass substrate with the sensing electrodes. Small populations of chromaffin cells were trapped in the microfluidic sensing chamber and stimulated by rapid perfusion with high potassium (50mM) containing Tyrodes solution at a flow rate of 1nL/s. Stimulation of the cells produced a rapid increase in current due to oxidation of the released catecholamines, with an estimated maximum concentration in the microfluidic device ~52M. Thus, we demonstrate the utility of an integrated microfluidic network with IrOx electrodes for real-time quantitative detection of catecholamines released from small populations of cells. PMID:22398270

  5. Treatment of synthetic urine by electrochemical oxidation using conductive-diamond anodes.

    PubMed

    Dbira, Sondos; Bensalah, Nasr; Bedoui, Ahmed; Cañizares, Pablo; Rodrigo, Manuel A

    2015-04-01

    In this work, the electrochemical oxidation of synthetic urine by anodic oxidation using boron-doped diamond as anode and stainless steel as cathode was investigated. Results show that complete depletion of chemical oxygen demand (COD) and total organic carbon (TOC) can be attained regardless of the current density applied in the range 20-100 mA cm(-2). Oxalic and oxamic acids, and, in lower concentrations, creatol and guanidine were identified as the main intermediates. Chloride ions play a very important role as mediators and contribute not only to obtain a high efficiency in the removal of the organics but also to obtain an efficient removal of nitrogen by the transformation of the various raw nitrogen species into gaseous nitrogen through chloramine formation. The main drawback of the technology is the formation of chlorates and perchlorates as final chlorine products. The increase of current density from 20 to 60 mA cm(-2) led to an increase in the rate of COD and TOC removals although the process becomes less efficient in terms of energy consumption (removals of COD and TOC after applying 18 Ah dm(-3) were 93.94 and 94.94 %, respectively, at 20 mA cm(-2) and 89.17 and 86.72 %, respectively, at 60 mA cm(-2)). The most efficient conditions are low current densities and high temperature reaching total mineralization at an applied charge as low as 20 kAh m(-3). This result confirmed that the electrolysis using diamond anodes is a very interesting technology for the treatment of urine. PMID:25399531

  6. Macroporous metal oxides: Synthesis, characterization and application in catalysis and electrochemical power sources

    NASA Astrophysics Data System (ADS)

    Sokolov, Sergey

    New approaches to the synthesis of magnesium, aluminum and nickel oxides with three-dimensionally ordered macroporous (3DOM) structure by colloidal crystal templating were explored. Such metal oxides were characterized by powder X-ray diffraction, scanning and transmission electron microscopy, thermogravimetric analysis, differential scanning calorimetry and nitrogen gas adsorption. Interconnected macropores, either organized in periodic arrays or positioned randomly, varied in diameter from 275 to 950 nm. The effect of the pore size on sintering behavior of the material was studied on macroporous alpha-Al2O3. Having a free diffusion path inherent to 3DOM structure, such morphology offers the advantage of highly accessible surfaces, which makes it an interesting candidate for catalyst supports. A silver catalyst supported on 3DOM alpha-Al 2O3 was tested in epoxidation of ethylene and its performance was compared to that of the catalyst prepared on commercial alumina support. The procedure successfully used for the preparation of macroporous alpha-Al 2O3 was adopted for the synthesis of 3DOM lithium aluminates. Namely, a mixture of LiAl5O8 and gamma-LiAlO 2, as well as pure beta- and gamma-LiAlO2 phases were obtained. Correlations between the manner in which the lithium precursor was introduced, the molar ratio between lithium and aluminum precursors, the heat treatment conditions and the morphology and phase composition of the product were established. With their open pore structures and thin walls, these materials may have potential applications as breeder materials for fusion reactors or as ceramic matrixes in molten carbonate fuel cells. As a part of a related project targeting a nano-assembled lithium solid state battery, proposed cathode material, LiCoO2, was obtained in a form of macroporous thin films prepared by electrostatic spray deposition on Pt-coated quartz substrates and electrochemical measurements were performed on these films.

  7. In-situ X-Ray Absorption Spectroscopy (XAS) Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction

    PubMed Central

    Benck, Jesse D.; Gul, Sheraz; Webb, Samuel M.; Yachandra, Vittal K.; Yano, Junko; Jaramillo, Thomas F.

    2013-01-01

    In-situ x-ray absorption spectroscopy (XAS) is a powerful technique that can be applied to electrochemical systems, with the ability to elucidate the chemical nature of electrocatalysts under reaction conditions. In this study, we perform in-situ XAS measurements on a bifunctional manganese oxide (MnOx) catalyst with high electrochemical activity for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER). Using x-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS), we find that exposure to an ORR-relevant potential of 0.7 V vs. RHE produces a disordered Mn3II,III,IIIO4 phase with negligible contributions from other phases. After the potential is increased to a highly anodic value of 1.8 V vs. RHE, relevant to the OER, we observe an oxidation of approximately 80% of the catalytic thin film to form a mixed MnIII,IV oxide, while the remaining 20% of the film consists of a less oxidized phase, likely corresponding to unchanged Mn3II,III,IIIO4. XAS and electrochemical characterization of two thin film catalysts with different MnOx thicknesses reveals no significant influence of thickness on the measured oxidation states, at either ORR or OER potentials, but demonstrates that the OER activity scales with film thickness. This result suggests that the films have porous structure, which does not restrict electrocatalysis to the top geometric layer of the film. As the portion of the catalyst film that is most likely to be oxidized at the high potentials necessary for the OER is that which is closest to the electrolyte interface, we hypothesize that the MnIII,IV oxide, rather than Mn3II,III,IIIO4, is the phase pertinent to the observed OER activity. PMID:23758050

  8. A novel approach for analyzing electrochemical properties of mixed conducting solid oxide fuel cell anode materials by impedance spectroscopy.

    PubMed

    Nenning, A; Opitz, A K; Huber, T M; Fleig, J

    2014-10-28

    For application of acceptor-doped mixed conducting oxides as solid oxide fuel cell (SOFC) anodes, high electrochemical surface activity as well as acceptable electronic and ionic conductivity are crucial. In a reducing atmosphere, particularly the electronic conductivity of acceptor-doped oxides can become rather low and the resulting complex interplay of electrochemical reactions and charge transport processes makes a mechanistic interpretation of impedance measurements very complicated. In order to determine all relevant resistive and capacitive contributions of mixed conducting electrodes in a reducing atmosphere, a novel electrode design and impedance-based analysis technique is therefore introduced. Two interdigitating metallic current collectors are placed in a microelectrode, which allows in-plane measurements within the electrode as well as electrochemical measurements versus a counter electrode. Equivalent circuit models for quantifying the spectra of both measurement modes are developed and applied to simultaneously fit both spectra, using the same parameter set. In this manner, the electronic and ionic conductivity of the material as well as the area-specific resistance of the surface reaction and the chemical capacitance can be determined on a single microelectrode in a H2-H2O atmosphere. The applicability of this new tool was demonstrated in SrTi0.7Fe0.3O(3-?) (STFO) thin film microelectrodes, deposited on single-crystalline yttria-stabilized zirconia (YSZ) substrates. All materials parameters that contribute to the polarization resistance of STFO electrodes in a reducing atmosphere could thus be quantified. PMID:25219525

  9. Oxidant/anti-oxidant dynamics in patients with advanced cervical cancer: correlation with treatment response.

    PubMed

    Sharma, Alpana; Rajappa, Medha; Satyam, Abhigyan; Sharma, Manoj

    2010-08-01

    Cervical cancer is the most common cancer in Indian women. Oxidative stress is potentially harmful to cells and ROS are involved in multistage carcinogenesis, in initiation and promotion. The aim was to study the alterations in the circulating pro-/anti-oxidants in advanced cervical cancer patients, before and after neoadjuvant chemoradiation and to assess the relevance of the variation in the levels to therapeutic response. 90 patients with advanced cancer cervix (FIGO IIIa-IVa) and 90 healthy controls were enrolled. Blood samples were collected: before and after chemotherapy, after radiation and after 1 year on follow-up. Pro-/anti-oxidant levels were estimated using standard methods. Response to therapy was assessed during and after therapy and after 1 year of follow-up. The pre-treatment levels of plasma lipid peroxide were significantly elevated; while antioxidant levels were lowered in cancer patients; when compared to controls. After chemotherapy, lipid peroxidation showed a significant decline in complete responders, as compared with partial/non-responders and remained highly significant after therapy and during follow-up. Anti-oxidant enzymes showed a mild increase (P < 0.05), after chemotherapy in complete responders, as compared with partial/non-responders and remained highly significant after therapy and on follow-up. This important finding suggests that pre-treatment levels of antioxidant-oxidant parameters and the extent of their change during treatment can predict the therapeutic response to neoadjuvant chemoradiation in advanced cancer cervix. Oxidant-antioxidant profile merits investigation as markers of response, survival, and recurrence in larger prospective studies, which might throw light on their possible use as predictors of chemoradiosensitivity of cervical tumors. PMID:20354762

  10. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation

    NASA Astrophysics Data System (ADS)

    Youn, Duck Hyun; Park, Yoon Bin; Kim, Jae Young; Magesh, Ganesan; Jang, Youn Jeong; Lee, Jae Sung

    2015-10-01

    As an efficient non-precious metal catalyst for oxygen evolution reaction (OER) in electrochemical and photoelectrochemical water splitting, NiFe layered double hydroxide (LDH)/reduced graphene oxide (NiFe/RGO) composite is synthesized by a simple solvothermal method in one-pot. NiFe LDHs are uniformly deposited on RGO layers of high electrical conductivity and large surface area. In electrochemical water splitting, NiFe/RGO shows superior OER performance compared to bare NiFe and reference IrO2 with a lower benchmark ?10 value (required overpotential to drive 10 mA cm-2) of 0.245 V. Furthermore, NiFe/RGO substantially increases the performance of a hematite photoanode in photoelectrochemical water oxidation, demonstrating its potential as an OER co-catalyst for photoelectrodes.

  11. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G.B.; Chiba, Z.; Lewis, P.R.; Nelson, N.; Steward, G.A.

    1999-06-15

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO[sub 2]. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement. 2 figs.

  12. Mediated electrochemical oxidation of organic wastes using a Co (III) mediator in a nitric acid based system

    DOEpatents

    Balazs, G. Bryan; Chiba, Zoher; Lewis, Patricia R.; Nelson, Norvell; Steward, G. Anthony

    1999-01-01

    An electrochemical cell with a Co(III) mediator and nitric acid electrolyte provides efficient destruction of organic and mixed wastes. The organic waste is concentrated in the anolyte reservoir, where the mediator oxidizes the organics and insoluble transuranic compounds and is regenerated at the anode until the organics are converted to CO.sub.2. The nitric acid is an excellent oxidant that facilitates the destruction of the organic components. The anode is not readily attacked by the nitric acid solution, thus the cell can be used for extended continual operation without electrode replacement.

  13. Synthesis and electrocatalytic effect of Ag@Pt core-shell nanoparticles supported on reduced graphene oxide for sensitive and simple label-free electrochemical aptasensor.

    PubMed

    Mazloum-Ardakani, Mohammad; Hosseinzadeh, Laleh; Taleat, Zahra

    2015-12-15

    Bimetallic Ag@Pt core-shell nanoparticles supported on reduced graphene oxide nanosheets (Ag@Pt-GRs) was synthesized and used as novel desirable sensor platform and electrocatalyst for catechol as probe in aptasensor. Gold screen-printed electrodes modified with Ag@Pt-GRs and applied to advance enzyme-free and label-free electrochemical aptasensor for detection of protein biomarker tumor necrosis factor-alpha (TNF-α). The morphology of the Ag@Pt-GRs could be characterized by transmission electron microscopy, X-ray diffraction and UV-vis spectra. The results showed that these nanocomposite exhibited attractive electrocatalytic activity and also yielded large surface area, which improve the amount of immobilized TNF-α aptamer. Due to the excellent electrocatalytic activity of Ag@Pt-GRs towards the oxidation of catechol, determination of TNF-α antigen was based on its obstruction to the electrocatalytic oxidation of catechol by Ag@Pt-GRs after binding to the surface of electrode through interaction with the aptamer. The calibration curve was obtained by differential pulse voltammetry and square wave voltammetry. Under optimum conditions, the results demonstrated that this electrochemical aptasensor possessed a dynamic range from 0.0 pg/mL to 60 pg/mL with a low detection limit of 2.07 pg/mL for TNF-α. The analytical usefulness of the aptasensor was finally demonstrated analyzing serum samples. The simple fabrication method, high sensitivity, specificity, good reproducibility and stability as well as acceptable accuracy for TNF-α detection in human serum samples are the main advantages of this aptasensor, which might have broad applications in protein diagnostics and bioassay. PMID:26094037

  14. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    PubMed Central

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  15. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    PubMed

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf

    2014-01-01

    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si. PMID:25593562

  16. Electronic defects and interface potentials for Al oxide films on Al and their relationship to electrochemical properties

    SciTech Connect

    SULLIVAN,JOHN P.; DUNN,ROBERTO G.; BARBOUR,J. CHARLES; WALL,FREDERICK D.; MISSERT,NANCY A.; BUCHHEIT,R.G.

    2000-06-01

    The relative electronic defect densities and oxide interface potentials were determined for naturally-occurring and synthetic Al oxides on Al. In addition, the effect of electrochemical treatment on the oxide electrical properties was assessed. The measurements revealed (1) that the open circuit potential of Al in aqueous solution is inversely correlated with the oxide electronic defect density (viz., lower oxide conductivities are correlated with higher open circuit potentials), and (2) the electronic defect density within the Al oxide is increased upon exposure to an aqueous electrolyte at open circuit or applied cathodic potentials, while the electronic defect density is reduced upon exposure to slight anodic potentials in solution. This last result, combined with recent theoretical predictions, suggests that hydrogen may be associated with electronic defects within the Al oxide, and that this H may be a mobile species, diffusing as H{sup +}. The potential drop across the oxide layer when immersed in solution at open circuit conditions was also estimated and found to be 0.3 V, with the field direction attracting positive charge towards the Al/oxide interface.

  17. Electrochemical and spectroscopic studies of some less stable oxidation states of selected lanthanide and actinide elements

    SciTech Connect

    Hobart, D. E.

    1981-06-01

    Simultaneous observation of electrochemical and spectroscopic properties (spectroelectrochemistry) at optically transparent electrodes (OTE's) was used to study some less stable oxidation states of selected lanthanide and actinide elements. Cyclic voltammetry at microelectrodes was used in conjunction with spectroelectrochemistry for the study of redox couples. Additional analytical techniques were used. The formal reduction potential (E/sup 0/') values of the M(III)/M(II) redox couples in 1 M KCl at pH 6 were -0.34 +- 0.01 V for Eu, -1.18 +- 0.01 V for Yb, and -1.50 +- 0.01 V for Sm. Spectropotentiostatic determination of E/sup 0/' for the Eu(III)/Eu(II) redox couple yielded a value of -0.391 +- 0.005 V. Spectropotentiostatic measurement of the Ce(IV)/Ce(III) redox couple in concentrated carbonate solution gave E/sup 0/' equal to 0.051 +- 0.005 V, which is about 1.7 V less positive than the E/sup 0/' value in noncomplexing solution. This same difference in potential was observed for the E/sup 0/' values of the Pr(IV)/Pr(III) and Tb(IV)/Tb(III) redox couples in carbonate solution, and thus Pr(IV) and Tb(IV) were stabilized in this medium. The U(VI)/U(V)/U(IV) and U(IV)/U(III) redox couples were studied in 1 M KCl at OTE's. Spectropotentiostatic measurement of the Np(VI)/Np(V) redox couple in 1 M HClO/sub 4/ gave an E/sup 0/' value of 1.140 +- 0.005 V. An E/sup 0/' value of 0.46 +- 0.01 V for the Np(VII)/Np(VI) couple was found by voltammetry. Oxidation of Am(III) was studied in concentrated carbonate solution, and a reversible cyclic voltammogram for the Am(IV)/Am(III) couple yielded E/sup 0/' = 0.92 +- 0.01 V in this medium; this value was used to estimate the standard reduction potential (E/sup 0/) of the couple as 2.62 +- 0.01 V. Attempts to oxidize Cm(III) in concentrated carbonate solution were not successful which suggests that the predicted E/sup 0/ value for the Cm(IV)/Cm(III) redox couple may be in error.

  18. 2,4-Toluene diisocyanate detection in liquid and gas environments through electrochemical oxidation in an ionic liquid.

    PubMed

    Lin, Lu; Rehman, Abdul; Chi, Xiaowei; Zeng, Xiangqun

    2016-02-01

    The electrochemical oxidation of 2,4-toluene diisocyanate (2,4-TDI) in an ionic liquid (IL) has been systematically characterized to determine plausible electrochemical and chemical reaction mechanisms and to define the optimal detection methods for such a highly significant analyte. It has been found that the use of an IL as the electrolyte allows the oxidation of 2,4-TDI to occur at a less positive anodic potential with no side reactions as compared to traditional acetonitrile based electrolytes. UV-Vis, FT-IR, cyclic voltammetry and Electrochemical Impedance Spectroscopy (EIS) studies have revealed the unique mechanisms of dimerization of 2,4-TDI at the electrode interface by self-addition reactions, which can be utilized to improve the selectivity of detection. The study of 2,4-TDI redox chemistry further facilitates the development of a robust amperometric sensing methodology by selecting a hydrophobic IL ([C4mpy][NTf2]) and by restricting the potential window to only include the oxidation process. Thus, this innovative electrochemical sensor is capable of avoiding the two most ubiquitous interferents in ambient conditions (i.e. humidity and oxygen), thereby enhancing the sensor performance and reliability for real world applications. The method was established to detect 2,4-TDI in both liquid and gas phases. The limits of detection (LOD) values were 130.2 ppm and 0.7862 ppm, respectively, for the two phases, and are comparable to the safety standards reported by NIOSH. The as-developed 2.4-TDI amperometric sensor exhibits a sensitivity of 1.939 ?A ppm(-1). Moreover, due to the simplicity of design and the use of an IL both as a solvent and non-volatile electrolyte, the sensor has the potential to be miniaturized for smart sensing protocols in distributed sensor applications. PMID:26763507

  19. High-sensitivity paracetamol sensor based on Pd/graphene oxide nanocomposite as an enhanced electrochemical sensing platform.

    PubMed

    Li, Junhua; Liu, Jinlong; Tan, Gongrong; Jiang, Jianbo; Peng, Sanjun; Deng, Miao; Qian, Dong; Feng, Yonglan; Liu, Youcai

    2014-04-15

    Well-dispersed Pd nanoparticles were facilely anchored on graphene oxide (Pd/GO) via a one-pot chemical reduction of the Pd(2+) precursor without any surfactants and templates. The morphology and composition of the Pd/GO nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and energy dispersive analysis of X-ray (EDX). The stepwise fabrication process of the Pd/GO modified electrode and its electrochemical sensing performance towards paracetamol was evaluated using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The experimental results indicate that the as-synthesized Pd nanoparticles are relatively uniform in size (5-10 nm) without large aggregation and uniformly distributed in the carbon matrix with the overall Pd content of 28.77 wt% in Pd/GO. Compared with the GO modified electrode, the Pd/GO modified electrode shows a better electrocatalytic activity to the oxidation of paracetamol with lower oxidation potential and larger peak current, so the Pd/GO nanocomposite can be used as an enhanced sensing platform for the electrochemical determination of paracetamol. The kinetic parameters of the paracetamol electro-oxidation at Pd/GO electrode were studied in detail, and the determination conditions were optimized. Under the optimal conditions, the oxidation peak current is linear to the paracetamol concentration in the ranges of 0.005-0.5 ?M and 0.5-80.0 ?M with a detection limit of 2.2 nM. Based on the high sensitivity and good selectivity of the Pd/GO modified electrode, the proposed method was successfully applied to the determination of paracetamol in commercial tablets and human urines, and the satisfactory results confirm the applicability of this sensor in practical analysis. PMID:24315879

  20. Understanding the mechanism of surface modification through enhanced thermal and electrochemical stabilities of N-doped graphene oxide

    NASA Astrophysics Data System (ADS)

    Mehetre, Shantilal S.; Maktedar, Shrikant S.; Singh, Man

    2016-03-01

    The kinetically active two dimensional surface of graphene oxide (GrO) plays an important role in understanding the chemistry of graphene. The GrO is comprises of carbon and oxygen while the f-(6-AIND) GrO contains nitrogen along with carbon and oxygen. The prominent thermal instability of GrO is widely explored. However, due to the synergistic impact of their constituting elements, the thermal and electrochemical stability of f-(6-AIND) GrO enhances after N-doping with nitrogen containing heterocycles like 6-Aminoindazole. Hence it is essential to probe the mutual impact of various functionalities present over the surface of GrO, to understand the mechanism of direct functionalization of GrO with thermal and electrochemical stabilities. Therefore, the decomposition kinetics of discrete atomic domains and their effect on thermal stability of f-(6-AIND) GrO was revealed with spectroscopic analysis and thermal assessment. Additionally, the mechanism of thermal transformation is precisely developed to demonstrate the impact of heat on weight loss due to the mass transfer. Likewise, the electrochemical properties can be well understood with the help of mechanism of electrochemical activity and cyclic voltammetry experiments. Also, the f-(6-AIND) GrO is confirmed with the help of various surface analysis techniques like FTIR, EDS, HR-XPS, HR-TEM, CV, SAED, TGA, DSC and UV-vis.

  1. Improved in vivo performance of amperometric oxygen (PO2) sensing catheters via electrochemical nitric oxide generation/release.

    PubMed

    Ren, Hang; Coughlin, Megan A; Major, Terry C; Aiello, Salvatore; Rojas Pena, Alvaro; Bartlett, Robert H; Meyerhoff, Mark E

    2015-08-18

    A novel electrochemically controlled release method for nitric oxide (NO) (based on electrochemical reduction of nitrite ions) is combined with an amperometric oxygen sensor within a dual lumen catheter configuration for the continuous in vivo sensing of the partial pressure of oxygen (PO2) in blood. The on-demand electrochemical NO generation/release method is shown to be fully compatible with amperometric PO2 sensing. The performance of the sensors is evaluated in rabbit veins and pig arteries for 7 and 21 h, respectively. Overall, the NO releasing sensors measure both venous and arterial PO2 values more accurately with an average deviation of -2 11% and good correlation (R(2) = 0.97) with in vitro blood measurements, whereas the corresponding control sensors without NO release show an average deviation of -31 28% and poor correlation (R(2) = 0.43) at time points >4 h after implantation in veins and >6 h in arteries. The NO releasing sensors induce less thrombus formation on the catheter surface in both veins and arteries (p < 0.05). This electrochemical NO generation/release method could offer a new and attractive means to improve the biocompatibility and performance of implantable chemical sensors. PMID:26201351

  2. Nitrogen doped holey graphene as an efficient metal-free multifunctional electrochemical catalyst for hydrazine oxidation and oxygen reduction

    NASA Astrophysics Data System (ADS)

    Yu, Dingshan; Wei, Li; Jiang, Wenchao; Wang, Hong; Sun, Bo; Zhang, Qiang; Goh, Kunli; Si, Rongmei; Chen, Yuan

    2013-03-01

    Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both hydrazine oxidation (its current generation ability is comparable to that of 10 wt% Pt-C catalyst) and oxygen reduction (its limiting current is comparable to that of 20 wt% Pt-C catalyst) with four-electron transfer processes and excellent durability.Electrocatalysts for anode or cathode reactions are at the heart of electrochemical energy conversion and storage devices. Molecular design of carbon based nanomaterials may create the next generation electrochemical catalysts for broad applications. Herein, we present the synthesis of a three-dimensional (3D) nanostructure with a large surface area (784 m2 g-1) composed of nitrogen doped (up to 8.6 at.%) holey graphene. The holey structure of graphene sheets (~25% of surface area is attributed to pores) engenders more exposed catalytic active edge sites. Nitrogen doping further improves catalytic activity, while the formation of the 3D porous nanostructure significantly reduces graphene nanosheet stacking and facilitates the diffusion of reactants/electrolytes. The three factors work together, leading to superb electrochemical catalytic activities for both hydrazine oxidation (its current generation ability is comparable to that of 10 wt% Pt-C catalyst) and oxygen reduction (its limiting current is comparable to that of 20 wt% Pt-C catalyst) with four-electron transfer processes and excellent durability. Electronic supplementary information (ESI) available: AFM images of GO sheets, nitrogen physisorption isotherms, XPS spectrum of RG, RDE curves of electrodes, CV curves of electrodes, and determination of the number of total electrons (n) involved in hydrazine oxidation. See DOI: 10.1039/c3nr34267k

  3. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  4. Development of Advanced Electrochemical Emission Spectroscopy for Monitoring Corrosion in Simulated DOE Liquid Waste

    SciTech Connect

    MacDonald, Digby D.

    2005-06-01

    In this work, the examination of electrochemical noise data comprised three main approaches: one, a computer simulation of the anodic and cathodic activity relating to corrosion on a metal surface; two, experimental modeling of the electrochemical environment inside nuclear waste storage containers and collection of EN generated; and three, Wavelet analysis of the EN data from the first two parts. The simulation of EN proved to be effective in replicating the EN data of both general and pitting corrosion. Using competition mechanisms for the anodic and cathodic sites on the surface, the long-term, low-frequency data generated by localized pitting corrosion was reproduced. Disabling one or more of the rules of the simulation eliminated the low-frequency character of the data, and eliminating all of the rules effectively reproduced general corrosion noise. The simulation accuracy benefited from comparison to experimental data, and conversely, it improved the EN analysis by providing theory for the underlying mechanisms. The experimental electrochemical cell modeled the important factors in nuclear waste storage containers for this EN study; mainly increased temperature and the concentrations of corrosion-inducing or inhibiting chemicals. It also provided a platform for studying how the EN was affected by the competing chemicals.

  5. Review: advances in electrochemical genosensors-based methods for monitoring blooms of toxic algae.

    PubMed

    Orozco, Jahir; Medlin, Linda K

    2013-10-01

    Harmful algal blooms (HABs), which have expanded worldwide in their occurrence and frequency, are a serious menace to aquatic ecosystems and humans. The development of rapid, accurate and cost-effective detection systems for toxic algal monitoring in aquatic environments is urgently required. Although many efforts have been devoted to develop reliable tools to monitor the entire spectrum of existing toxic algae, a portable semi-automated system that enables HAB monitoring at a low cost is still not available for general purchase. This work reviews the challenges and opportunities in translating the remarkable progress of electrochemical genosensors-based methods towards practical in situ HAB monitoring applications. It is specifically focused on reviewing the optimised methods for a detection system based on a sandwich hybridisation assay (SHA) performed over transducer platforms of different materials, geometries and dimensions and presenting the diverse advantages and disadvantages among them. Probe design and specificity and optimisation of the genosensor in terms of hybridisation conditions and electrochemical signal are discussed as well as their long-term stability and storage and semi-automation attempts. With continuous innovation and attention to key challenges, we expect semi-automatic devices containing DNA-based electrochemical biosensors to have an important impact upon monitoring of serious HAB events. PMID:23097073

  6. Electrochemical oxidation of ampicillin antibiotic at boron-doped diamond electrodes and process optimization using response surface methodology.

    PubMed

    Krbahti, Bahad?r K; Ta?yrek, Selin

    2015-03-01

    Electrochemical oxidation and process optimization of ampicillin antibiotic at boron-doped diamond electrodes (BDD) were investigated in a batch electrochemical reactor. The influence of operating parameters, such as ampicillin concentration, electrolyte concentration, current density, and reaction temperature, on ampicillin removal, COD removal, and energy consumption was analyzed in order to optimize the electrochemical oxidation process under specified cost-driven constraints using response surface methodology. Quadratic models for the responses satisfied the assumptions of the analysis of variance well according to normal probability, studentized residuals, and outlier t residual plots. Residual plots followed a normal distribution, and outlier t values indicated that the approximations of the fitted models to the quadratic response surfaces were very good. Optimum operating conditions were determined at 618 mg/L ampicillin concentration, 3.6 g/L electrolyte concentration, 13.4 mA/cm(2) current density, and 36 C reaction temperature. Under response surface optimized conditions, ampicillin removal, COD removal, and energy consumption were obtained as 97.1 %, 92.5 %, and 71.7 kWh/kg CODr, respectively. PMID:24906830

  7. Electrochemical sensor for Isoniazid based on the glassy carbon electrode modified with reduced graphene oxide-Au nanomaterials.

    PubMed

    Guo, Zhuo; Wang, Ze-Yu; Wang, Hui-Hua; Huang, Guo-Qing; Li, Meng-Meng

    2015-12-01

    A sensitive electrochemical sensor has been fabricated to detect Isoniazid (INZ) using reduced graphene oxide (RGO) and Au nanocomposites (RGO-Au). RGO-Au nanocomposites were synthesized by a solution-based approach of chemical co-reduction of Au(III) and graphene oxide (GO), and were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and Fourier transform infrared (FT-IR). The Au nanoparticles separate the RGO sheets in the precipitate and prevent RGO sheets from aggregation upon π-π stacking interactions. RGO-Au nanocomposites were used to modify the glassy carbon electrode (GCE). The electrochemical properties of RGO-Au/GCE were investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), and the RGO-Au/GCE exhibited remarkably strong electrocatalytic activities towards INZ. Under the optimized conditions, there was linear relationships between the peak currents and the concentrations in the range of 1.0×10(-7)M to 1.0×10(-3)M for INZ, with the limit of detection (LOD) (based on S/N=3) of 1.0×10(-8)M for INZ. PMID:26354255

  8. Electrochemical detection of Cu2+ through Ag nanoparticle assembly regulated by copper-catalyzed oxidation of cysteamine.

    PubMed

    Cui, Lin; Wu, Jie; Li, Jie; Ge, Yanqiu; Ju, Huangxian

    2014-05-15

    A highly sensitive and selective electrochemical sensor was developed for the detection of Cu(2+) by the assembly of Ag nanoparticles (AgNPs) at dithiobis[succinimidylpropionate] encapsulated Au nanoparticles (DSP-AuNPs), which was regulated by copper-catalyzed oxidation of cysteamine (Cys). The electrochemical sensor was constructed by layer-by-layer modification of glassy carbon electrode with carbon nanotubes, poly(amidoamine) dendrimers and DSP-AuNPs. In the absence of Cu(2+), Cys could bind to the surface of citrate-stabilized AgNPs via Ag-S bond, thus AgNPs could be assembled on the sensor surface through the reaction between DSP and Cys. In contrast, the copper-catalyzed oxidation of Cys by dissolved oxygen in the presence of Cu(2+) inhibited the Cys-induced aggregation of AgNPs, leading to the decrease of the electrochemical stripping signal of AgNPs. Under the optimized conditions, this method could detect Cu(2+) in the range of 1.0-1000 nM with a detection limit of 0.48 nM. The proposed Cu(2+) sensor showed good reproducibility, stability and selectivity. It has been satisfactorily applied to determine Cu(2+) in water samples. PMID:24389390

  9. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage

    NASA Astrophysics Data System (ADS)

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-01

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage.This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg-1 (ZnO/GNR symmetric) to 9.4 Wh kg-1 (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm-2, paves the way to a high performance aqueous electrochemical supercapacitive energy storage. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06083d

  10. Screen-printed calcium-birnessite electrodes for water oxidation at neutral pH and an "electrochemical harriman series".

    PubMed

    Lee, Seung Y; González-Flores, Diego; Ohms, Jonas; Trost, Tim; Dau, Holger; Zaharieva, Ivelina; Kurz, Philipp

    2014-12-01

    A mild screen-printing method was developed to coat conductive oxide surfaces (here: fluorine-doped tin oxide) with micrometer-thick layers of presynthesized calcium manganese oxide (Ca-birnessite) particles. After optimization steps concerning the printing process and layer thickness, electrodes were obtained that could be used as corrosion-stable water-oxidizing anodes at pH 7 to yield current densities of 1 mA cm(-2) at an overpotential of less than 500 mV. Analyses of the electrode coatings of optimal thickness (≈10 μm) indicated that composition, oxide phase, and morphology of the synthetic Ca-birnessite particles were hardly affected by the screen-printing procedure. However, a more detailed analysis by X-ray absorption spectroscopy revealed small modifications of both the Mn redox state and the structure at the atomic level, which could affect functional properties such as proton conductivity. Furthermore, the versatile new screen-printing method was used for a comparative study of various transition-metal oxides concerning electrochemical water oxidation under "artificial leaf conditions" (neutral pH, fairly low overpotential and current density), for which a general activity ranking of RuO2 >Co3 O4 ≈(Ca)MnOx ≈NiO was observed. Within the group of screened manganese oxides, Ca-birnessite performed better than "Mn-only materials" such as Mn2 O3 and MnO2 . PMID:25346273

  11. High performance liquid chromatography coupled with post-column electrochemical oxidation for the detection of PSP toxins.

    PubMed

    Boyer, G L; Goddard, G D

    1999-01-01

    High Performance Liquid Chromatography (HPLC) is an important tool for the study of PSP toxins. It provides an alternative to bioassays and gives the concentration of individual toxin isomers. The current HPLC protocol uses a post-column chemical reaction system (PCRS) to oxidize the saxitoxin ring system to form a fluorescent chromophore. This oxidation is sensitive to changes in the flow rate, temperature, pH and age of the reagents. We have previously shown that this oxidation can be accomplished using electrochemical techniques. Termed the electrochemical oxidation system (ECOS), this approach provides a simpler alternative to the traditional PCRS-based HPLC system. A detailed description of the construction and maintenance of an HPLC-ECOS system for the analysis of PSP toxins is presented. Comparisons of the mouse bioassay, HPLC-PCRS and HPLC-ECOS system are presented for three different sample matrices: toxic dinoflagellates (Alexandrium tamarense), geoduck (Panopea generosa) and scallops (Placopectin magellanicus). In all three cases, the correlation of the HPLC-ECOS system to the mouse bioassay is similar to that obtained using the HPLC-PCRS system for the analysis of PSP toxins. PMID:11122529

  12. Electrochemical Synthesis of Binary and Ternary Niobium-Containing Oxide Electrodes Using the p-Benzoquinone/Hydroquinone Redox Couple.

    PubMed

    Papa, Christopher M; Cesnik, Anthony J; Evans, Taylor C; Choi, Kyoung-Shin

    2015-09-01

    New electrochemical synthesis methods have been developed to obtain layered potassium niobates, KNb3O8 and K4Nb6O17, and perovskite-type KNbO3 as film-type electrodes. The electrodes were synthesized from aqueous solutions using the redox chemistry of p-benzoquinone and hydroquinone to change the local pH at the working electrode to trigger deposition of desired phases. In particular, the utilization of electrochemically generated acid via the oxidation of hydroquinone for inorganic film deposition was first demonstrated in this study. The layered potassium niobates could be converted to (H3O)Nb3O8 and (H3O)4Nb6O17 by cationic exchange, which, in turn, could be converted to Nb2O5 by heat treatment. The versatility of the new deposition method was further demonstrated for the formation of CuNb2O6 and AgNbO3, which were prepared by the deposition of KNb3O8 and transition metal oxides, followed by thermal and chemical treatments. Considering the lack of solution-based synthesis methods for Nb-based oxide films, the methods reported in this study will contribute greatly to studies involving the synthesis and applications of Nb-based oxide electrodes. PMID:26293515

  13. Zinc oxide nanoring embedded lacey graphene nanoribbons in symmetric/asymmetric electrochemical capacitive energy storage.

    PubMed

    Sahu, Vikrant; Goel, Shubhra; Sharma, Raj Kishore; Singh, Gurmeet

    2015-12-28

    This article describes the synthesis and characterization of ZnO nanoring embedded graphene nanoribbons. Patterned holes (mesopore dia.) in graphene nanoribbons are chemically generated, leading to a high density of the edge planes. These planes carry negatively charged surface groups (like -COOH and -OH) and therefore anchor the metal ions in a cordial fashion forming a string of metal ions along the edge planes. These strings of imbibed metal ions precipitate as tiny ZnO nanorings over lacey graphene nanoribbons. The thus obtained graphene nanoribbon (GNR) based hierarchical ZnO mesoporous structures are three dimensionally accessible to the electrolyte and demonstrate high performance in capacitive energy storage. The ZnO/GNR nanocomposite electrode in an asymmetric supercapacitor device with lacey reduced graphene oxide nanoribbons (LRGONRs) as a negative electrode exhibits a 2.0 V potential window in the aqueous electrolyte and an ultra-short time constant (0.08 s). The wide potential window consequently increased the energy density from 6.8 Wh kg(-1) (ZnO/GNR symmetric) to 9.4 Wh kg(-1) (ZnO/GNR||LRGONR asymmetric). The relaxation time constant obtained for the asymmetric supercapacitor device was three orders of magnitude less compared to the ZnO (symmetric, 33 s) supercapacitor device. The high cycling stability of ZnO/GNR||LRGONR up to 96.7% capacitance retention, after 5000 GCD cycles at 2 mA cm(-2), paves the way to a high performance aqueous electrochemical supercapacitive energy storage. PMID:26597970

  14. Electrochemical study of lithiated transition metal oxide composite for single layer fuel cell

    NASA Astrophysics Data System (ADS)

    Hu, Huiqing; Lin, Qizhao; Muhammad, Afzal; Zhu, Bin

    2015-07-01

    This study analyzed the effect of various semiconductors of transition metal oxides in modified lithiated NiO on the electrochemical performance of a single layer fuel cell (SLFC). A typical ionic conductor Ce0.8Sm0.2O2-? (SDC) and three types of semiconductors Li0.3Ni0.6Cu0.07Sr0.03O2-? (LNCuS), Li0.3Ni0.6Mn0.07Sr0.03O2-? (LNMnS) and Li0.3Ni0.6Co0.07Sr0.03O2-? (LNCoS), were the fundamental components of the SLFCs. The components were characterized by using X-ray diffraction (XRD), a scanning electron microscope (SEM), and an energy-dispersive X-ray spectrometer (EDS). The stability of the synthesized materials was evaluated using thermal gravity analysis (TGA). The ohmic resistances at 500 C were 0.36, 0.48 and 0.58 ? cm2 for 6SDC-4LNMnS, 6SDC-4LNCoS and 6SDC-4LNCuS, respectively. Among the three SLFCs, the single cell with 6SDC-4LNMnS achieves the highest power density (422 mW cm-2) but the lowest temperature stability, while the single cell with 6SDC-4LNCuS achieved the lowest power density (331 mW cm-2) but the highest temperature stability during the operation temperature.

  15. Batch fabrication of mesoporous boron-doped nickel oxide nanoflowers for electrochemical capacitors

    SciTech Connect

    Yang, Jing-He; Yu, Qingtao; Li, Yamin; Mao, Liqun; Ma, Ding

    2014-11-15

    Highlights: • A new facile liquid-phase method has been employed for synthesis boron-doped NiO nanoflowers. • The specific surface area of NiO is as high as 200 m{sup 2} g{sup −1}. • NiO nanoflowers exhibit a high specific capacitance of ∼1309 F g{sup −1} at a charge and discharge current density of 3 A g{sup −1}. • NiO nanoflowers have excellent cycling ability and even after 2500 cycles there is no significant reduction in specific capacitance. - Abstract: Boron-doped nickel oxide (B-NiO) nanoflowers are prepared by simple thermal decomposition of nickel hydroxide. B-NiO is porous sphere with a diameter of about 400 nm. B-NiO nanoflowers are composed of approximately 30 nm nanoplates and the thickness of the nanosheets is approximately 3 nm. The specific surface area of the material is as high as 200 m{sup 2} g{sup −1} and the pore size distribution curves of B-NiO has three typical peaks in the range of mesoporous (5 nm, 13 nm and 18 nm). As an electrode for supercapacitors, the crystalline B-NiO nanoflowers have favorable characteristics, for instance, a specific capacitance of 1309 F g{sup −1} at a current density of 3 A g{sup −1} and no significant reduction in Coulombic efficiency after 2500 cycles at 37.5 A g{sup −1}. This remarkable electrochemical performance will make B-NiO nanoflowers a promising electrode material for high performance supercapacitors.

  16. Modeling and optimizing advanced oxidation processes for hazardous wastes treatment

    SciTech Connect

    Hong, A.; Zappi, M.; Kuo, C.H.

    1995-12-31

    A kinetic model was developed for various advanced oxidation processes (AOPs) and for this model a rate expression was derived that describes the OH radical concentration given a set of operating conditions. The model explained well some of the observed complex dependence behaviors of AOPs. This model with the derived rate expression (Eq 1) is useful for optimizing hazardous waste treatment processes. In its final form, this paper will present experimental results of process optimization during hazardous waste treatment. Kinetic constants of contaminant degradation will be presented as a function of test parameters such as pH, O{sub 3} and H{sub 2}O{sub 2} concentration, water characteristics including hardness, carbonate content, alkalinity, and radical scavenger concentration. An emphasis will be placed on the validation of the proposed model.

  17. Solar photoassisted advanced oxidation process of azo dyes.

    PubMed

    Prato-Garcia, D; Buitrn, G

    2009-01-01

    Advanced oxidation processes assisted with natural solar radiation in CPC type reactors (parabolic collector compound), was applied for the degradation of three azo dyes: acid orange (AO7), acid red 151 (AR151) and acid blue 113 (AB113). Fenton, Fenton like and ferrioxalate-type complexes showed to be effective for degrade the azo linkage and moieties in different extensions. Initially, the best dose of reagents (Fe(3 + )-H(2)O(2)) was determined through a factorial experimental design, next, using response surface methodologies, the reagent consumption was reduced up to 40%, maintaining in all cases high decolourisation percentages (>98%) after 60 min. of phototreatment. In this work, it was also studied the effect of concentration changes of the influent between 100-300 mg/L and the operation of the photocatalytic process near neutral conditions (pH 6.0-6.5) by using ferrioxalate type complex (FeOx). PMID:19273895

  18. Sonophotocatalysis in advanced oxidation process: a short review.

    PubMed

    Joseph, Collin G; Li Puma, Gianluca; Bono, Awang; Krishnaiah, Duduku

    2009-06-01

    Sonophotocatalysis involves the use of a combination of ultrasonic sound waves, ultraviolet radiation and a semiconductor photocatalyst to enhance a chemical reaction by the formation of free radicals in aqueous systems. Researchers have used sonophotocatalysis in a variety of investigations i.e. from water decontamination to direct pollutant degradation. This degradation process provides an excellent opportunity to reduce reaction time and the amount of reagents used without the need for extreme physical conditions. Given its advantages, the sonophotocatalysis process has a futuristic application from an engineering and fundamental aspect in commercial applications. A detailed search of published reports was done and analyzed in this paper with respect to sonication, photocatalysis and advanced oxidation processes. PMID:19282232

  19. Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan.

    PubMed

    Li, Junhua; Kuang, Daizhi; Feng, Yonglan; Zhang, Fuxing; Xu, Zhifeng; Liu, Mengqin; Wang, Deping

    2013-04-15

    A new kind of nanocomposite based on silver nanoparticles (AgNPs)/graphene oxide (GO) was conveniently achieved through a green and low-cost synthesis approach using glucose as a reducing and stabilizing agent, and the synthetic procedure can be easily used for the construction of a disposable electrochemical sensor on glassy carbon electrode (GCE). The nanocomposite was detailedly characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The experimental results demonstrated that the nanocomposite possessed the specific features of both silver nanoparticles and graphene, and the intrinsic high specific area and the fast electron transfer rate ascribed to the nanohybrid structure could improve its electrocatalytic performance greatly. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were employed to evaluate the electrochemical properties of AgNPs/GO/GCE towards tryptophan, and the AgNPs/GO film exhibited a distinctly higher activity for the electro-oxidation of tryptophan than GO film with tenfold enhancement of peak current. The oxidation mechanism and the kinetic parameters were investigated, and analysis operation conditions were optimized. Under the selected experimental conditions, the oxidation peak currents were proportional to tryptophan concentrations over the range of 0.01 ?M to 50.0 ?M and 50.0 ?M to 800.0 ?M, respectively. The detection limit was 2.0 nM (S/N=3). Moreover, the proposed method is free of interference from tyrosine and other coexisting species. The resulting sensor displays excellent repeatability and long-term stability; finally it was successfully applied to detect tryptophan in real samples with good recoveries, ranging from 99.0% to 103.0%. PMID:23202352

  20. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage.

    PubMed

    Nguyen, Tuyen; Eugnio, Snia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M Joo; Silva, Teresa M; Montemor, M Ftima

    2015-08-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g(-1) at 1 A g(-1). The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g(-1) to 20 A g(-1). The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles. PMID:26135715

  1. More accurate macro-models of solid oxide fuel cells through electrochemical and microstructural parameter estimation - Part I: Experimentation

    NASA Astrophysics Data System (ADS)

    Boigues Muñoz, Carlos; Pumiglia, Davide; McPhail, Stephen J.; Montinaro, Dario; Comodi, Gabriele; Santori, Giulio; Carlini, Maurizio; Polonara, Fabio

    2015-10-01

    The distributed relaxation times (DRT) method has been employed in order to deconvolute the electrochemical impedance spectroscopy (EIS) measurements carried out on a Ni-YSZ|YSZ|Pr2NiO4+δ - GDC solid oxide fuel cell (SOFC). This has enabled to shed light on the diverse physicochemical processes occurring within the aforementioned cell by individuating the characteristic relaxation times of these by means of a specifically designed experimental campaign where temperature and gas compositions in anode and cathode were varied one at a time. A comprehensive equivalent circuit model (ECM) has thus been generated based on the processes observed in the DRT spectra. This ECM has proved to be instrumental for the obtainment of parameters which describe the microstructural and electrochemical properties of the SOFC when used contemporaneously with experimental results and modelling theory (described in Part II of this work).

  2. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Eugnio, Snia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M. Joo; Silva, Teresa M.; Montemor, M. Ftima

    2015-07-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g-1 at 1 A g-1. The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g-1 to 20 A g-1. The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  3. Influence of albumin and inorganic ions on electrochemical corrosion behavior of plasma electrolytic oxidation coated magnesium for surgical implants

    NASA Astrophysics Data System (ADS)

    Wan, Peng; Lin, Xiao; Tan, LiLi; Li, Lugee; Li, WeiRong; Yang, Ke

    2013-10-01

    Magnesium and its alloys are of great interest for biodegradable metallic devices. However, the degradation behavior and mechanisms of magnesium treated with coating in physiological environment in the presence of organic compound such as albumin have not been elucidated. In this study, the plasma electrolytic oxidation coated magnesium immersed in four different simulated body fluids: NaCl, PBS and with the addition of albumin to investigate the influence of protein and inorganic ions on degradation behavior by electrochemical methods. The results of electrochemical tests showed that aggressive corrosion took place in 0.9 wt.% NaCl solution; whereas albumin can act as an inhibitor, its adsorption impeded further dissolution of the coating. The mechanism was attributed to the synergistic effect of protein adsorption and precipitation of insoluble salts.

  4. First-principles density functional calculation of electrochemical stability of fast Li ion conducting garnet-type oxides.

    PubMed

    Nakayama, Masanobu; Kotobuki, Masashi; Munakata, Hirokazu; Nogami, Masayuki; Kanamura, Kiyoshi

    2012-07-28

    The research and development of rechargeable all-ceramic lithium batteries are vital to realize their considerable advantages over existing commercial lithium ion batteries in terms of size, energy density, and safety. A key part of such effort is the development of solid-state electrolyte materials with high Li(+) conductivity and good electrochemical stability; lithium-containing oxides with a garnet-type structure are known to satisfy the requirements to achieve both features. Using first-principles density functional theory (DFT), we investigated the electrochemical stability of garnet-type Li(x)La(3)M(2)O(12) (M = Ti, Zr, Nb, Ta, Sb, Bi; x = 5 or 7) materials against Li metal. We found that the electrochemical stability of such materials depends on their composition and structure. The electrochemical stability against Li metal was improved when a cation M was chosen with a low effective nuclear charge, that is, with a high screening constant for an unoccupied orbital. In fact, both our computational and experimental results show that Li(7)La(3)Zr(2)O(12) and Li(5)La(3)Ta(2)O(12) are inert to Li metal. In addition, the linkage of MO(6) octahedra in the crystal structure affects the electrochemical stability. For example, perovskite-type La(1/3)TaO(3) was found, both experimentally and computationally, to react with Li metal owing to the corner-sharing MO(6) octahedral network of La(1/3)TaO(3), even though it has the same constituent elements as garnet-type Li(5)La(3)Ta(2)O(12) (which is inert to Li metal and features isolated TaO(6) octahedra). PMID:22711381

  5. Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries

    PubMed Central

    Mun, Junyoung; Yim, Taeeun; Park, Jang Hoon; Ryu, Ji Heon; Lee, Sang Young; Kim, Young Gyu; Oh, Seung M.

    2014-01-01

    Room-temperature ionic liquid (RTIL) electrolytes have attracted much attention for use in advanced, safe lithium-ion batteries (LIB) owing to their nonvolatility, high conductivity, and great thermal stability. However, LIBs containing RTIL-electrolytes exhibit poor cyclability because electrochemical side reactions cause problematic surface failures of the cathode. Here, we demonstrate that a thin, homogeneous surface film, which is electrochemically generated on LiCoO2 from an RTIL-electrolyte containing an unsaturated substituent on the cation (1-allyl-1-methylpiperidinium bis(trifluoromethanesulfonyl)imide, AMPip-TFSI), can avert undesired side reactions. The derived surface film comprised of a high amount of organic species from the RTIL cations homogenously covered LiCoO2 with a <25?nm layer and helped suppress unfavorable thermal reactions as well as electrochemical side reactions. The superior performance of the cell containing the AMPip-TFSI electrolyte was further elucidated by surface, electrochemical, and thermal analyses. PMID:25168309

  6. An electrochemical and computational study for discrimination of D- and L-cystine by reduced graphene oxide/?-cyclodextrin.

    PubMed

    Zor, Erhan; Bingol, Haluk; Ramanaviciene, Almira; Ramanavicius, Arunas; Ersoz, Mustafa

    2015-01-01

    Here, we report a novel enantioselective electrochemical biosensor for the discrimination of cystine enantiomers (d- and l-cystine) using a chiral interface for the specific recognition of d- and l-cystine. The biosensor is based on reduced graphene oxide modified by ?-cyclodextrin (rGO/?-CD) at the GCE surface. During the preparation of rGO/?-CD/GCE, the modified electrode surfaces were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The electrochemical behaviours of the d- and l-cystine were investigated using the rGO/?-CD/GCE by CV and compared to bare GCE. A clear separation between the oxidation peak potentials of d- and l-cystine was observed at 1.32 and 1.42 V, respectively. The electrochemical discrimination performance of the fabricated chiral sensor was also examined by differential pulse voltammetry (DPV) in a mixed solution of d- and l-cystine. In addition, the DPV technique was used for the determination of d- and l-cystine at low concentration values in the range of 1.0-10.0 ?M. To investigate the amperometric response of rGO/?-CD/GCE towards d- and l-cystine, the chronoamperometry technique was used in the concentration range of 10.0-100.0 ?M. The interactions of the enantiomers with rGO/?-CD were modelled by molecular docking using AutoDock Vina, and the interaction energies were predicted to be -4.8 and -5.3 kcal mol(-1) for d- and l-cystine, respectively. The corresponding values of binding constants were calculated to be 3.32 10(3) and 7.71 10(3) M(-1), respectively. The experimental and molecular docking results indicate that the rGO/?-CD/GCE has a different affinity for each enantiomer. PMID:25382195

  7. Great-enhanced performance of Pt nanoparticles by the unique carbon quantum dot/reduced graphene oxide hybrid supports towards methanol electrochemical oxidation

    NASA Astrophysics Data System (ADS)

    Hong, Tian-Zeng; Xue, Qiong; Yang, Zhi-Yong; Dong, Ya-Ping

    2016-01-01

    The Pt-carbon quantum dot (CQD)/reduced graphene oxide (RGO) catalysts are prepared by one pot reduction method and demonstrate ultraefficient performance towards methanol oxidation reaction (MOR). In the high content CQD products, Pt nanoparticles around 2-3 nm are dispersed uniformly on supporting materials. And the X-ray photoelectron spectroscopy analysis indicates that in the high content CQD products a large part of surface oxygen groups is contributed by CQD. The electrochemical tests reveal that the catalyst with the saturated CQD exhibits best performance in MOR: the mass and specific activity at forward peak position, the potential close to fuel cell operation and 3600 s of chronoamperometric curve are roughly 2-3 folds of the commercial Pt/C. Furthermore, the electrochemical data on the series of catalysts with different quantity of CQD disclose the improving tendency of MOR performance with the increasing content of CQD evidently. Overview the electrochemical and characterization results, we suggest CQD play multiple roles in the enhancement of Pt performance: present abundant nucleating and anchoring points to facilitate the formation of small size and uniform distributed Pt particles; act as spacer to alleviate restacking of RGO sheets; and provide fruitful surface oxygen groups to improve the antipoisonous ability of Pt.

  8. Oxidative Stress in Aging: Advances in Proteomic Approaches

    PubMed Central

    Ortuo-Sahagn, Daniel; Palls, Merc; Rojas-Mayorqun, Argelia E.

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  9. Oxidative stress in aging: advances in proteomic approaches.

    PubMed

    Ortuño-Sahagún, Daniel; Pallàs, Mercè; Rojas-Mayorquín, Argelia E

    2014-01-01

    Aging is a gradual, complex process in which cells, tissues, organs, and the whole organism itself deteriorate in a progressive and irreversible manner that, in the majority of cases, implies pathological conditions that affect the individual's Quality of Life (QOL). Although extensive research efforts in recent years have been made, the anticipation of aging and prophylactic or treatment strategies continue to experience major limitations. In this review, the focus is essentially on the compilation of the advances generated by cellular expression profile analysis through proteomics studies (two-dimensional [2D] electrophoresis and mass spectrometry [MS]), which are currently used as an integral approach to study the aging process. Additionally, the relevance of the oxidative stress factors is discussed. Emphasis is placed on postmitotic tissues, such as neuronal, muscular, and red blood cells, which appear to be those most frequently studied with respect to aging. Additionally, models for the study of aging are discussed in a number of organisms, such as Caenorhabditis elegans, senescence-accelerated probe-8 mice (SAMP8), naked mole-rat (Heterocephalus glaber), and the beagle canine. Proteomic studies in specific tissues and organisms have revealed the extensive involvement of reactive oxygen species (ROS) and oxidative stress in aging. PMID:24688629

  10. An advanced oxidation process using ionized gas for wastewater treatment.

    PubMed

    Lee, Eun Ju; Chung, Paul Gene; Kwak, Dong Heui; Kim, Lee Hyung; Kim, Min Jeong

    2010-01-01

    This study on removing non-degradable materials in wastewater focused primarily on advanced oxidation methods such as ozone, ozone/UV and ozone/H2O2. Wastewater treatment using an ionized gas from plasma has been actively progressing. The ionized gas involves reactive species such as O2+, O2- cluster, O radical and OH radical. Since the ionized gas method has such outstanding characteristics as relatively simple structures, non-calorification, non-toxicity and low electricity consumption, it evidently of interest as a new process. A series of experiments were conducted to demonstrate the feasibility of ionized gas as a useful element for the diminution of nondegradable organic matters. On the other hand, a large amount of organic matters were changed to hydrophilic and the compounds containing aromatic functional group gradually decreased. The results implied that the ionized gas has been able to degrade the non-biodegradable organic matters. Therefore, the oxidation process by using an ionized gas process could be considered as an effective alternative unit in water and wastewater treatment plants. PMID:20651452

  11. The electrochemical oxidation of toluene catalysed by Co(ii) in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide.

    PubMed

    Balaji, S; Kannan, K; Moon, I S

    2015-11-18

    The electrochemical oxidation of toluene in N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([bmpyr](+)[Ntf2](-)) was investigated by using cyclic voltammetry and galvanostatic electrolysis in the presence of Co(ii) at a Pt disc working electrode. Cyclic voltammetry (CV) investigations revealed that Co(ii)-Co(iii) oxidation is a diffusion controlled electron transfer process. The diffusion coefficient values of Co(ii) were found to increase from 0.38 10(-7) to 1.9 10(-7) cm(2) s(-1) as the temperature was increased from 25 C to 80 C. The CV peak current for toluene electro-oxidation increased by nearly 7 fold in the presence of Co(ii) demonstrating a good catalytic effect. Co(ii) catalysed galvanostatic electrolysis of toluene at room temperature has shown that benzaldehyde was formed along with a small quantity of 3-methyl-1-hexanol. PMID:26538114

  12. Electrochemical oxidation of methanol using dppm-bridged Ru/Pd, Ru/Pt and Ru/Au catalysts.

    PubMed

    Yang, Ying; McElwee-White, Lisa

    2004-08-01

    The electrochemical oxidation of methanol was carried out using a series of dppm-bridged Ru/Pd, Ru/Pt and Ru/Au heterobimetallic complexes as catalysts. The major oxidation products were formaldehyde dimethyl acetal (dimethoxymethane, DMM) and methyl formate (MF). The Ru/Pd and Ru/Pt bimetallic catalysts generally afforded lower product ratios of DMM/MF and higher current efficiencies than the Ru/Au catalysts. The Ru/Au bimetallics exhibited product ratios and current efficiencies similar to those obtained from the Ru mononuclear compound CpRu(PPh(3))(2)Cl. Increasing the methanol concentration afforded higher current efficiencies, while the addition of water to the samples shifted the product distribution toward the more highly oxidized product, MF. PMID:15278130

  13. Electrochemical Sensor Based on Carbon Paste Electrode Modified with Nanostructured Crypotomelane-Type Manganese Oxides for Detection of Heavy Metals

    SciTech Connect

    Cui, Xiaoli; Liu, Guodong; Li, Liyu; Yantasee, Wassana; Lin, Yuehe

    2005-02-03

    A carbon paste electrode modified with nanostructured crypotomelane type manganese oxides was evaluated as new electrochemical sensor for the detection of heavy metal ions in aqueous media. The crypotomelane type manganese oxides are nanofibrous crystals with sub-nanometer tunnels which provide excellent sites for ion-exchanges. The adsorptive stripping voltammetry (ASV) technique involves preconcentration of the metal ions into nanostructured crypotomelane type manganese oxides under an open circuit, then electrolysis of the preconcentrated species, followed by a square-wave potential sweep towards positive values. Factors affecting the preconcentration process were investigated using lead ion as the model analyte. The voltammetric responses increased with the preconcentration time from 2 to 30 min, and also linearly with lead ion concentrations ranging from 50 to 1200 ppb. The detection limits of target metal ion were 10 ppb after 4 min preconcentration and improved to 1 ppb after 20 min preconcentration. The potential for simultaneous detection of copper, silver and lead is also discussed.

  14. Hierarchical Co@C Nanoflowers: Synthesis and Electrochemical Properties as an Advanced Negative Material for Alkaline Secondary Batteries.

    PubMed

    Li, Li; Ma, Jianmin; Zhang, Zichao; Cao, Bingqiang; Wang, Yijing; Jiao, Lifang; Yuan, Huatang

    2015-11-01

    Hierarchical Co@C nanoflowers have been facilely synthesized via a simple route based on a low-temperature solid-phase reaction. The obtained hierarchical Co@C nanoflowers, each constructed of a number of nanosheets, display a three-dimensional architecture with an average grain size of about 300 nm. The electrochemical properties of the Co@C nanoflowers as the negative material for Ni/Co cells have been systemically researched. In particular, Co@C material exhibits high discharge-specific capacity and good cycling stability. The discharge-specific capacity of our Co@C-3 electrode can reach 612.1 mA h g(-1), and the specific capacity of 415.3 mA h g(-1) is retained at a current density of 500 mA g(-1) after 120 cycles, indicating its great potential for high-performance Ni/Co batteries. Interestingly, the as-synthesized Co@C electrode also exhibits favorable rate capability. These desirable properties can be attributed to porous pathways, which allow fast transportation of ions and electrons and easy accessibility to the electrolyte. The dominant electrochemical mechanism of Co@C can be attributed to the reduction-oxidation reaction between metallic cobalt and cobalt hydroxide in alkaline solution. PMID:26460934

  15. Degradation of 1-hydroxy-2,4-dinitrobenzene from aqueous solutions by electrochemical oxidation: role of anodic material.

    PubMed

    Quiroz, Marco A; Snchez-Salas, Jos L; Reyna, Silvia; Bandala, Erick R; Peralta-Hernndez, Juan M; Martnez-Huitle, Carlos A

    2014-03-15

    Electrochemical oxidation (ECOx) of 1-hydroxy-2,4-dinitrobenzene (or 2,4-dinitrophenol: 2,4-DNP) in aqueous solutions by electrolysis under galvanostatic control was studied at Pb/PbO2, Ti/SnO2, Ti/IrxRuySnO2 and Si/BDD anodes as a function of current density applied. Oxidative degradation of 2,4-DNP has clearly shown that electrode material and the current density applied were important parameters to optimize the oxidation process. It was observed that 2,4-DNP was oxidized at few substrates to CO2 with different results, obtaining good removal efficiencies at Pb/PbO2, Ti/SnO2 and Si/BDD anodes. Trends in degradation way depend on the production of hydroxyl radicals (OH) on these anodic materials, as confirmed in this study. Furthermore, HPLC results suggested that two kinds of intermediates were generated, polyhydroxylated intermediates and carboxylic acids. The formation of these polyhydroxylated intermediates seems to be associated with the denitration step and substitution by OH radicals on aromatic rings, this being the first proposed step in the reaction mechanism. These compounds were successively oxidized, followed by the opening of aromatic rings and the formation of a series of carboxylic acids which were at the end oxidized into CO2 and H2O. On the basis of these information, a reaction scheme was proposed for each type of anode used for 2,4-D oxidation. PMID:24462986

  16. Chemical and electrochemical oxidation of thiophene-pyridine and thiophene-pyrimidine co-oligomers in solutions.

    PubMed

    Kumagai, Akira; Fukumoto, Hiroki; Yamamoto, Takakazu

    2007-07-19

    Chemical and electrochemical oxidation (or p-doping) of three types of pi-conjugated co-oligomers, Py-Th-(Th)n-Th-Py (Py = pyridine unit; Th = thiophene unit; 5a, n = 1; 6a, n = 2), Th-Py-(Th)n-Py-Th (5b: n = 1; 6b: n = 2), and Pym-Th-(Th)n-Th-Pym (Pym = pyrimidine unit; 5c: n = 1; 6c: n = 2), in solution systems has been studied. The chemical oxidation with NOBF(4) proceeded with isosbestic points in the UV-vis spectrum. The UV-vis absorption peak of 5a at 418 nm in CH(2)Cl(2) shifted to 456 nm after oxidation of 5a with NOBF(4). The oxidized 5a was easily reduced by N(2)H(4) to give the original UV-vis spectrum of 5a, and 5b, 6b, and 5c behaved similarly in the oxidation and reduction. In the oxidation by NOBF4, an (oxidized co-oligomer)/(original neutral co-oligomer) ratio of 1 was attained at [NOBF4] = 1.3 x 10(-6), 4 x 10(-6), 7 x 10(-6), and 9 x 10(-6) M for 5a, 6b, 5b, and 5c, respectively. The obtained data are considered to reflect the ease of oxidation of the co-oligomer, which is affected by the electron-accepting nature of the N-containing aromatic unit in the co-oligomer and effective pi-conjugated length of the co-oligomer. The cyclic voltammogram of 5a showed three redox couples with anodic peak current potentials of Epa = 0.75, 1.10, and 1.34 V versus Ag+/Ag, respectively. The first oxidation peak was assigned to one-electron oxidation of 5a, and electronic current of the first anodic peak (i) of 5a and 5c was proportional to (scanning rate)1/2. From the i- (scanning rate)1/2 relationship, diffusion constants, D's, of 5a and 5c were estimated to be 9.6 x 10(-6) and 1.7 x 10(-5) cm2 s(-1), respectively. CV data of 5b with the terminal thiophene units indicated occurrence of electrochemical oxidative polymerization of 5b. PMID:17590042

  17. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    SciTech Connect

    Balazs, B.; Chiba, Z.; Hsu, P.; Lewis, P.; Murguia, L.; Adamson, M.

    1997-02-01

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation. The oxidant, or mediator, is a multivalent transition metal ion which is cleanly recycled in a number of charge transfer steps in an electrochemical cell. The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70{degrees}C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques. Although the oxidation of organics and the dissolution of transuranics by higher valency metal ions has been known for some time, applying the MEO technology to waste treatment is a relatively recent development. Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and engineering development have been completed for a pilot plant-scale MEO system, and numerous data have been gathered on the efficacy of the process for a wide variety of anticipated waste components. This presentation will review the data collected at LLNL for a bench scale system based primarily on the use of a Ag(II) mediator in a nitric acid electrolyte; results from several other mediator/acid combinations will be included. Data obtained on the chemical, electrochemical, and engineering aspects will be presented. The topics of organics destruction, transuranic recovery, and some of the ancillary systems will be addressed, and areas requiring further study will be mentioned.

  18. Electrochemical deposition and behavior of mixed-valent molybdenum oxide film at glassy carbon and ITO electrodes

    NASA Astrophysics Data System (ADS)

    Koak, Sleyman; Erta?, Fatma Nil; Dursun, Zekerya

    2013-01-01

    The effect of solution composition and the type of the anionic species on the electrochemical formation of mixed-valent molybdenum oxide on a glassy carbon and ITO electrode surfaces was elucidated. Susccessive recording of the voltammograms has shown that anionic species display different stabilizing effect on the reductive formation of hydrogen molybdenum bronzes [MoO3-x (OH)x] and chloroacetic acid buffer has given the best results. The deposit was built upon cycling the potential between 0 and -0.9 V (vs. Ag/AgCl) via reduction of Mo(VI) to Mo(V) on the electrode surface in pH 3.0 chloroacetic acid solution. Electrochemical impedance measurements carried out in this medium revealed a shift in potential zero charge values from -0.2 V to -0.55 V after the potential of the GCE had been cycled for 30 min. An establishment of mixed-valent molybdenum oxide deposit by time on the gold electrode surface was proved by quartz crystal microbalance measurements. Atomic force and scanning electron microscopy techniques were made use of so as to characterize the surface structures of the electrodes. X-ray photoelectron spectroscopy studies confirmed that the deposit contains both Mo(V) and Mo(VI). The deposited films exhibited unique catalytic activity towards nitrite oxidation consistent with the change in peak characteristics.

  19. A new method for manufacturing graphene and electrochemical characteristic of graphene-supported Pt nanoparticles in methanol oxidation

    NASA Astrophysics Data System (ADS)

    Kakaei, Karim; Zhiani, Mohammad

    2013-03-01

    We report a Pt/graphene catalyst for the methanol oxidation. Graphene is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Graphene-supported Pt electrocatalyst is then reduced by sodium borohydride with ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) as a stabilizing agent to prepare highly dispersed Pt nanoparticles on carbon graphene to use as methanol oxidation in direct methanol fuel cell (DMFC) catalysts. X-ray diffractometer and scanning electron microscopy technique are used to investigate the crystallite size and the surface morphologies respectively. The electrochemical characteristics of the Pt/graphene and commercial Pt/C catalysts are investigated by cyclic voltammetry (CV) in nitrogen saturated sulfuric acid aqueous solutions and in mixed sulfuric acid and methanol aqueous solutions. The catalytic activities of the Pt/graphene and Pt/C electrodes for methanol oxidation is 1315 A g-1 Pt and 725 A g-1 Pt, which can be revealed the particular properties of the exfoliated graphene supports. Furthermore, Pt/graphene exhibited a better sensitivity, signal-to-noise ratio, and stability than commercial Pt/C.

  20. Analysis of diffusion-controlled stochastic events of iridium oxide single nanoparticle collisions by scanning electrochemical microscopy.

    PubMed

    Kwon, Seong Jung; Bard, Allen J

    2012-04-25

    We investigated the electrochemical detection of single iridium oxide nanoparticle (IrO(x) NP) collisions at the NaBH(4)-treated Pt ultramicroelectrode (UME) in a scanning electrochemical microscope (SECM) over an insulating surface. The NP collision events were monitored by observing the electrocatalytic water oxidation reaction at potentials where it does not take place on the Pt UME. These collisions occurred stochastically, resulting in a transient response ("blip") for each collision. The frequency of the collisions is proportional to the flux of NPs to the UME tip, and thus equivalent to the SECM current. A plot of collision frequency versus distance followed the theoretical approach curve behavior for negative feedback for a high concentration of mediator, demonstrating that the collisions were diffusion-controlled and that single-particle measurements of mass transport are equivalent to ensemble ones. When the SECM was operated with a Pt substrate at the same potential as the tip, the behavior followed that expected of the shielding mode. These studies and additional ones result in a model where the IrO(x) NP collision on the Pt UME is adsorptive, with oxygen produced by the catalyzed water oxidation causing a current decay. This results in a blip current response, with the current decay diminished in the presence of the oxygen scavenger, sulfite ion. Random walk and theoretical bulk simulations agreed with the proposed mechanism of IrO(x) NP collision, adsorption, and subsequent deactivation. PMID:22452267

  1. Electrochemical preparation of nickel and copper oxides-decorated graphene composite for simultaneous determination of dopamine, acetaminophen and tryptophan.

    PubMed

    Liu, Bingdi; Ouyang, Xiaoqian; Ding, Yaping; Luo, Liqing; Xu, Duo; Ning, Yanqun

    2016-01-01

    In the present work, transition metal oxides decorated graphene (GR) have been fabricated for simultaneous determination of dopamine (DA), acetaminophen (AC) and tryptophan (Trp) using square wave voltammetry. Electro-deposition is a facile preparation strategy for the synthesis of nickel oxide (NiO) and copper oxide (CuO) nanoparticles. GR can be modified by using citric acid to produce more functional groups, which is conducive to the deposition of dispersed metal particles. The morphologies and interface properties of the obtained NiO-CuO/GR nanocomposite were examined by scanning electron microscopy, energy dispersive X-ray spectroscopy and Raman spectroscopy. Moreover, the electrochemical performances of the composite film were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The modified electrode exhibited that the linear response ranges for detecting DA, AC and Trp were 0.5-20?M, 4-400?M and 0.3-40?M, respectively, and the detection limits were 0.17?M, 1.33?M and 0.1?M (S/N=3). Under optimal conditions, the sensor displayed high sensitivity, excellent stability and satisfactory results in real samples analysis. PMID:26695242

  2. Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor.

    PubMed

    Liu, Xiaobo; Marrakchi, Mouna; Jahne, Michael; Rogers, Shane; Andreescu, Silvana

    2016-02-01

    The involvement of oxidative stress in the mechanism of antibiotics-meditated cell death is unclear and subject to debate. The kinetic profile and a quantitative relationship between the release of reactive oxygen species (ROS), bacteria and antibiotic type remain elusive. Here we report direct measurements and analytical quantification of the release of superoxide radicals (O2(-)), a major contributor to ROS, in antibiotics-treated bacterial cultures using a cytochrome c electrochemical biosensor. The specificity of electrochemical measurements was established by the addition of superoxide dismutase (SOD) which decreased the O2()(-) signal. Measurements using a general ROS-specific fluorescence dye and colony forming units (CFU) assays were performed side-by-side to determine the total ROS and establish the relationship between ROS and the degree of lethality. Exposure of Escherichia coli and Listeria monocytogenes cultures to antibiotics increased the release of O2(-) radicals in a dose-dependent manner, suggesting that the transmembrane generation of ROS may occur as part of the antibiotic action. The study provides a quantitative methodology and fundamental knowledge to further explore the role of oxidative stress in antibiotics-meditated bacterial death and to assess physiological changes associated with the complex metabolic events related to oxidative stress and bacterial resistance. PMID:26655038

  3. An electrochemical study of the oxidation of hydrogen at platinum electrodes in several room temperature ionic liquids.

    PubMed

    Silvester, Debbie S; Aldous, Leigh; Hardacre, Christopher; Compton, Richard G

    2007-05-10

    The electrochemical oxidation of dissolved hydrogen gas has been studied in a range of room-temperature ionic liquids (RTILs), namely [C(2)mim][NTf(2)], [C(4)mim][NTf(2)], [N(6,2,2,2)][NTf(2)], [P(14,6,6,6)][NTf(2)], [C(4)mpyrr][NTf(2)], [C(4)mim][BF(4)], [C(4)mim][PF(6)], [C(4)mim][OTf], and [C(6)mim]Cl on a platinum microdisk electrode of diameter 10 microm. In all cases, except [C(6)mim]Cl, a broad quasi-electrochemically reversible oxidation peak between 0.3 to 1.3 V vs Ag was seen prior to electrode activation ([C(6)mim]Cl showed an almost irreversible wave). When the electrode was pre-anodized ("activated") at 2.0 V vs Ag for 1 min, the peak separations became smaller, and the peak shape became more electrochemically reversible. It is thought that the electrogenerated protons chemically combine with the anions (A-) of the RTIL. The appearance and position of the reverse (reduction) peak on the voltammograms is thought to depend on three factors: (1) the stability of the protonated anion, HA, (2) the position of equilibrium of the protonation reaction HA<==> H+ + A- , and (3) any follow-up chemistry, e.g., dissociation or reaction of the protonated anion, HA. This is discussed for the five different anions studied. The reduction of HNTf(2) was also studied in two [NTf(2)]- -based RTILs and was compared to the oxidation waves from hydrogen. The results have implications for the defining of pKa in RTIL media, for the development of suitable reference electrodes for use in RTILs, and in the possible amperometric sensing of H2 gas. PMID:17284067

  4. High Surface Area Antimony-Doped Tin Oxide Electrodes Templated by Graft Copolymerization. Applications in Electrochemical and Photoelectrochemical Catalysis.

    PubMed

    Luo, Hanlin; Fang, Zhen; Song, Na; Garvey, Timothy; Lopez, Rene; Meyer, Thomas J

    2015-11-18

    Mesoporous ATO nanocrystalline electrodes of micrometer thicknesses have been prepared from ATO nanocrystals and the grafted copolymer templating agents poly vinyl chloride-g-poly(oxyethylene methacrylate). As-obtained electrodes have high interfacial surface areas, large pore volumes, and rapid intraoxide electron transfer. The resulting high surface area materials are useful substrates for electrochemically catalyzed water oxidation. With thin added shells of TiO2 deposited by atomic layer deposition (ALD) and a surface-bound Ru(II) polypyridyl chromophore, they become photoanodes for hydrogen generation in the presence of a reductive scavenger. PMID:26488595

  5. Influence of electrolytes (TEABF4 and TEMABF4) on electrochemical performance of graphite oxide derived from needle coke.

    PubMed

    Yang, Sunhye; Kim, Ick-Jun; Choi, In-Sik; Bae, Mi-Kyeong; Kim, Hyun-Soo

    2013-05-01

    The structure of needle coke was changed to graphite oxide structure after oxidation treatment with 70 wt.% of nitric acid and sodium chlorate (NaClO3), and the inter-layer distance of the oxidized needle coke was expanded to 6.9 angstroms. The first charge profile of the oxidized needle coke-cell with 1.2 M TEMABF4/acetonitrile solution displayed that the intercalation of electrolyte ions into the inter-layer occurred at 1.0 V, which value is lower than 1.3 V of the oxidized needle coke-cell with 1.2 M TEABF4/acetonitrile solution. After first charge/discharge, the cell using TEMABF4 electrolyte exhibited smaller electrode resistance of 0.05 omega, and larger specific volume capacitance of 25.5 F/ml at the two-electrode system in the potential range 0-2.5 V than those of the cell using TEABF4 electrolyte. Compared to the TEABF4 electrolyte, better electrochemical performance of the TEMABF4 electrolyte in the oxidized needle coke may be caused by the smaller cation (TEMA+) size and better ion mobility in the nanopores between inter-layers. PMID:23858941

  6. Electrochemical modification of the passive oxide layer on a Ti film observed by in situ neutron reflectometry

    SciTech Connect

    Tun, Z.; Noeel, J.J.; Shoesmith, D.W.

    1999-03-01

    Anodization and the effect of subsequently applying cathodic potential to a thin-film Ti electrode in an aqueous NaCl solution have been studied with in situ neutron reflectometry. This new technique provides further insight into the processes underlying anodic oxide formation and hydrogen absorption under cathodic polarization. The results (Pilling-Bedworth ratio, anodization ratio, the onset of fluctuations in electrode current under cathodic potential, etc.) are generally in agreement with the literature, but this new technique provides further insight into the electrochemical processes. The anodized oxide is observed to be not porous, and has the density of the rutile structure for its entire thickness. However, it comprises two distinct regions: an inner region similar in thickness and composition to the original air-grown oxide, and an outer region containing a significant amount of hydrogen. The similarity of the inner region to the original oxide suggests that the underlying oxide growth mechanism for Ti is the point-defect model. Under applied cathodic potentials the overall oxide thickness remains constant, but the inner region is gradually converted to a material similar in hydrogen content to the outer region. The onset of massive hydrogen penetration seems to occur when the conversion is complete, or when the inner region has been reduced to only a few atomic layers.

  7. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    NASA Astrophysics Data System (ADS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-02-01

    Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution.

  8. Cobalt-Porphyrin-Platinum-Functionalized Reduced Graphene Oxide Hybrid Nanostructures: A Novel Peroxidase Mimetic System For Improved Electrochemical Immunoassay.

    PubMed

    Shu, Jian; Qiu, Zhenli; Wei, Qiaohua; Zhuang, Junyang; Tang, Dianping

    2015-01-01

    5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt flat stacking on the reduced graphene oxide with platinum nanoparticles (PtNPs/CoTPP/rGO) were first synthesized and functionalized with monoclonal rabbit anti-aflatoxin B1 antibody (anti-AFB1) for highly efficient electrochemical immunoassay of aflatoxin B1 (AFB1) in this work. Transmission electron microscopy (TEM), atomic force microscope (AFM) and spectral techniques were employed to characterize the PtNPs/CoTPP/rGO hybrids. Using anti-AFB1-conjugated PtNPs/CoTPP/rGO as the signal-transduction tag, a novel non-enzymatic electrochemical immunosensing system was designed for detection of target AFB1 on the AFB1-bovine serum albumin-functionalized sensing interface. Experimental results revealed that the designed immunoassay could exhibit good electrochemical responses for target analyte and allowed the detection of AFB1 at a concentration as low as 5.0 pg mL(-1) (5.0 ppt). Intra- and inter-assay coefficients of variation were below 10%. Importantly, the methodology was further validated for analyzing naturally contaminated or spiked blank peanut samples with consistent results obtained by AFB1 ELISA kit, thus providing a promising approach for quantitative monitoring of organic pollutants. PMID:26462136

  9. Enhancing electrochemical performance by control of transport properties in buffer layers--solid oxide fuel/electrolyser cells.

    PubMed

    Ramasamy, Devaraj; Nasani, Narendar; Brando, Ana D; Prez Coll, Domingo; Fagg, Duncan P

    2015-05-01

    The current work demonstrates how tailoring the transport properties of thin ceria-based buffer layers in solid oxide fuel or electrolyser cells can provide the necessary phase stability against chemical interaction at the electrolyte/electrode interface, while also providing radical improvements in the electrochemical performance of the oxygen electrode. Half cells of Ce0.8R0.2O2-? + 2 mol% Co buffer layers (where R = Gd, Pr) with Nd2NiO4+? electrodes were fabricated by spin coating on dense YSZ electrolyte supports. Dramatic decreases in polarization resistance, Rp, of up to an order of magnitude, could be achieved in the order, Pr ? Gd < no buffer layer. The current article shows how this improvement can be related to increased levels of ambipolar conductivity in the mixed conducting buffer layer, which provides an additional parallel path for electrochemical reaction. This is an important breakthrough as it shows how electrode polarization resistance can be substantially improved, in otherwise identical electrochemical cells, solely by tailoring the transport properties of thin intermediate buffer layers. PMID:25857870

  10. Cobalt-Porphyrin-Platinum-Functionalized Reduced Graphene Oxide Hybrid Nanostructures: A Novel Peroxidase Mimetic System For Improved Electrochemical Immunoassay

    PubMed Central

    Shu, Jian; Qiu, Zhenli; Wei, Qiaohua; Zhuang, Junyang; Tang, Dianping

    2015-01-01

    5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt flat stacking on the reduced graphene oxide with platinum nanoparticles (PtNPs/CoTPP/rGO) were first synthesized and functionalized with monoclonal rabbit anti-aflatoxin B1 antibody (anti-AFB1) for highly efficient electrochemical immunoassay of aflatoxin B1 (AFB1) in this work. Transmission electron microscopy (TEM), atomic force microscope (AFM) and spectral techniques were employed to characterize the PtNPs/CoTPP/rGO hybrids. Using anti-AFB1-conjugated PtNPs/CoTPP/rGO as the signal-transduction tag, a novel non-enzymatic electrochemical immunosensing system was designed for detection of target AFB1 on the AFB1-bovine serum albumin-functionalized sensing interface. Experimental results revealed that the designed immunoassay could exhibit good electrochemical responses for target analyte and allowed the detection of AFB1 at a concentration as low as 5.0 pg mL−1 (5.0 ppt). Intra- and inter-assay coefficients of variation were below 10%. Importantly, the methodology was further validated for analyzing naturally contaminated or spiked blank peanut samples with consistent results obtained by AFB1 ELISA kit, thus providing a promising approach for quantitative monitoring of organic pollutants. PMID:26462136

  11. Cobalt-Porphyrin-Platinum-Functionalized Reduced Graphene Oxide Hybrid Nanostructures: A Novel Peroxidase Mimetic System For Improved Electrochemical Immunoassay

    NASA Astrophysics Data System (ADS)

    Shu, Jian; Qiu, Zhenli; Wei, Qiaohua; Zhuang, Junyang; Tang, Dianping

    2015-10-01

    5,10,15,20-Tetraphenyl-21H,23H-porphine cobalt flat stacking on the reduced graphene oxide with platinum nanoparticles (PtNPs/CoTPP/rGO) were first synthesized and functionalized with monoclonal rabbit anti-aflatoxin B1 antibody (anti-AFB1) for highly efficient electrochemical immunoassay of aflatoxin B1 (AFB1) in this work. Transmission electron microscopy (TEM), atomic force microscope (AFM) and spectral techniques were employed to characterize the PtNPs/CoTPP/rGO hybrids. Using anti-AFB1-conjugated PtNPs/CoTPP/rGO as the signal-transduction tag, a novel non-enzymatic electrochemical immunosensing system was designed for detection of target AFB1 on the AFB1-bovine serum albumin-functionalized sensing interface. Experimental results revealed that the designed immunoassay could exhibit good electrochemical responses for target analyte and allowed the detection of AFB1 at a concentration as low as 5.0 pg mL-1 (5.0 ppt). Intra- and inter-assay coefficients of variation were below 10%. Importantly, the methodology was further validated for analyzing naturally contaminated or spiked blank peanut samples with consistent results obtained by AFB1 ELISA kit, thus providing a promising approach for quantitative monitoring of organic pollutants.

  12. Amplified inhibition of the electrochemical signal of ferrocene by enzyme-functionalized graphene oxide nanoprobe for ultrasensitive immunoassay.

    PubMed

    Lai, Guosong; Cheng, Hui; Xin, Dinghong; Zhang, Haili; Yu, Aimin

    2016-01-01

    A nanoprobe-induced signal inhibition mechanism was designed for ultrasensitive electrochemical immunoassay at a chitosan-ferrocene (CS-Fc) based immunosensor. The nanoprobe was prepared by covalently loading signal antibody and high-content horseradish peroxidase (HRP) on the graphene oxide (GO) nanocarrier. The immunosensor was prepared through the stepwise assembly of gold nanoparticles (Au NPs) and capture antibody at a CS-Fc modified electrode. After sandwich immunoreaction, the GO-HRP nanoprobes were quantitatively captured onto the immunosensor surface and thus induced the production of a layer of insoluble film through the enzymatically catalytic reaction of the HRP labels. Both the dielectric immunocomplex formed on the immunosensor surface and the enzymatic precipitate with low electroconductivity led to the electrochemical signal decease of the Fc indicator, which was greatly amplified by the multi-enzyme signal amplification of the nanoprobe. Based on this amplified signal inhibition mechanism, a new ultrasensitive electrochemical immunoassay method was developed. Using carcinoembryonic antigen as a model analyte, this method showed a wide linear range over 5 orders of magnitude with a detection limit down to 0.54pg/mL. Besides, the immunosensor showed good specificity, acceptable reproducibility and stability as well as satisfactory reliability for the serum sample analysis. PMID:26703270

  13. Molecular Cobalt Clusters as Precursors of Distinct Active Species in Electrochemical, Photochemical, and Photoelectrochemical Water Oxidation Reactions in Phosphate Electrolytes.

    PubMed

    Li, Xiaobo; Clatworthy, Edwin B; Masters, Anthony F; Maschmeyer, Thomas

    2015-11-01

    Three cobalt model molecular compounds, Co-cubane ([Co4 (3 -O)4 (-OAc)4 py4 ]), Co-trimer ([Co3 (?3 -O)(-OAc)6 py3 ]PF6 ), and Co-dimer ([Co2 (?-OH)2 (-OAc)(OAc)2 py4 ]PF6 ), are investigated as water oxidation reaction (WOR) catalysts, using electrochemical, photochemical, and photoelectrochemical methodologies in phosphate electrolyte. The actual species contributing to the catalytic activity observed in the WOR are derived from the transformation of these cobalt compounds. The catalytic activity observed is highly dependent on the initial compound structure and on the particular WOR methodology used. Co-cubane shows no activity in the electrochemical WOR and negligible activity in the photochemical WOR, but is active in the photoelectrochemical WOR, in which it behaves as a precursor to catalytically active species. Co-dimer also shows no activity in the electrochemical WOR, but behaves as a precursor to catalytically active species in both the photochemical and photoelectrochemical WOR experiments. Co-trimer behaves as a precursor to catalytically active species in all three of the WOR methodologies. PMID:26404053

  14. An ultrasensitive electrochemical DNA biosensor based on a copper oxide nanowires/single-walled carbon nanotubes nanocomposite

    NASA Astrophysics Data System (ADS)

    Chen, Mei; Hou, Changjun; Huo, Danqun; Yang, Mei; Fa, Huanbao

    2016-02-01

    Here, we developed a novel and sensitive electrochemical biosensor to detect specific-sequence target DNA. The biosensor was based on a hybrid nanocomposite consisting of copper oxide nanowires (CuO NWs) and carboxyl-functionalized single-walled carbon nanotubes (SWCNTs-COOH). The resulting CuO NWs/SWCNTs layers exhibited a good differential pulse voltammetry (DPV) current response for the target DNA sequences, which we attributed to the properties of CuO NWs and SWCNTs. CuO NWs and SWCNTs hybrid composites with highly conductive and biocompatible nanostructure were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cyclic voltammetry (CV). Immobilization of the probe DNA on the electrode surface was largely improved due to the unique synergetic effect of CuO NWs and SWCNTs. DPV was applied to monitor the DNA hybridization event, using adriamycin as an electrochemical indicator. Under optimal conditions, the peak currents of adriamycin were linear with the logarithm of target DNA concentrations (ranging from 1.0 × 10-14 to 1.0 × 10-8 M), with a detection limit of 3.5 × 10-15 M (signal/noise ratio of 3). The biosensor also showed high selectivity to single-base mismatched target DNA. Compared with other electrochemical DNA biosensors, we showed that the proposed biosensor is simple to implement, with good stability and high sensitivity.

  15. Graphene-Based Hybrids with Manganese Oxide Polymorphs as Tailored Interfaces for Electrochemical Energy Storage: Synthesis, Processing, and Properties

    NASA Astrophysics Data System (ADS)

    Gupta, S.; van Meveren, M. M.; Jasinski, J.

    2015-01-01

    Technological progress is determined to a greater extent by developments of novel materials or new combinations of known materials with different dimensionality and diverse functionality. In this work, we report on the synthesis and characterization of graphene-based hybrid nanomaterials coupled with transition-metal oxide polymorphs (nano/micro-manganese oxides, i.e., β-MnO2 [Mn(IV)] and Mn3O4 [Mn(II, III)]). This lays the groundwork for high-performance electrochemical electrodes for alternative energy devices owing to their higher specific capacitance, wide operational potential window and stability through charge-discharge cycling, environmentally benignity, cost-effectiveness, easy processing, and reproducibility on a larger scale. To accomplish this, we strategically designed these hybrids by direct anchoring or physical adsorption of β-MnO2 and Mn3O4 on variants of graphene, namely graphene oxide and its reduced form, via mixing dispersions of the constituents under mild ultrasonication and drop-casting, resulting in four different combinations. This facile approach affords strong chemical/physical attachment and is expected to result in coupling between the pseudocapacitive transition-metal oxides and supercapacitive nanocarbons showing enhanced activity/reactivity and reasonable areal density of tailored interfaces. We used a range of complementary analytical characterization tools to determine the structure and physical properties, such as scanning electron microscopy combined with energy-dispersive x-ray spectroscopy, atomic force microscopy, x-ray diffraction, resonance Raman spectroscopy combined with elemental Raman mapping, and transmission electron microscopy in conjunction with selected-area electron diffraction. All of these techniques reveal surface morphology, local (lattice dynamical) and average structure, and local charge transfer due to the physically (or chemically) adsorbed manganese oxide of synthesized hybrids that helps to establish microscopic structure-property-function correlations highlighting the surface structure and interfaces to further investigate their electrochemical supercapacitor properties.

  16. Characterizing mechanisms of extracellular electron transport in sulfur and iron-oxidizing electrochemically active bacteria isolated from marine sediments

    NASA Astrophysics Data System (ADS)

    Rowe, A. R.; Bird, L. J.; Lam, B. R.; Nealson, K. H.

    2014-12-01

    Lithotrophic reactions, including the oxidation of mineral species, are often difficult to detect in environmental systems. This could be due to the nature of substrate or metabolite quantification or the rapid consumption of metabolic end products or intermediates by proximate biological or abiotic processes. Though recently genetic markers have been applied to detecting these processes in environmental systems, our knowledge of lithotrophic markers are limited to those processes catalyzed by organisms that have been cultured and physiologically characterized. Here we describe the use of electrochemical enrichment techniques to isolate marine sediment-dwelling microbes capable of the oxidation or insoluble forms of iron and sulfur including both the elemental species. All the organisms isolated fall within the Alphaproteobacteria and Gammaproteobacteria and are capable of acquiring electrons from an electrode while using either oxygen or nitrate as a terminal electron acceptor. Electrochemical analysis of these microbes has demonstrated that, though they have similar geochemical abilities (either sulfur or iron oxidation), they likely utilize different biochemical mechanisms demonstrated by the variability in dominant electron transfer modes or interactions (i.e., biofilm, planktonic or mediator facilitated interactions) and the wide range of midpoint potentials observed for dominant redox active cellular components (ranging from -293 to +50 mV vs. Ag/AgCl). For example, organisms isolated on elemental sulfur tended to have higher midpoint potentials than iron-oxidizing microbes. A variety of techniques are currently being applied to understanding the different mechanisms of extracellular electron transport for oxidizing an electrode or corresponding insoluble electron donor including both genomic and genetic manipulation experiments. The insight gained from these experiments is not limited to the physiology of the organisms isolated but will also aid in identification of genetic targets to better understand the ecologic importance of lithotrophs and the role solid substrates may play in their metabolism.

  17. Oxidative stress to the cornea, changes in corneal optical properties, and advances in treatment of corneal oxidative injuries.

    PubMed

    Cejka, Cestmir; Cejkova, Jitka

    2015-01-01

    Oxidative stress is involved in many ocular diseases and injuries. The imbalance between oxidants and antioxidants in favour of oxidants (oxidative stress) leads to the damage and may be highly involved in ocular aging processes. The anterior eye segment and mainly the cornea are directly exposed to noxae of external environment, such as air pollution, radiation, cigarette smoke, vapors or gases from household cleaning products, chemical burns from splashes of industrial chemicals, and danger from potential oxidative damage evoked by them. Oxidative stress may initiate or develop ocular injury resulting in decreased visual acuity or even vision loss. The role of oxidative stress in the pathogenesis of ocular diseases with particular attention to oxidative stress in the cornea and changes in corneal optical properties are discussed. Advances in the treatment of corneal oxidative injuries or diseases are shown. PMID:25861412

  18. Catalytic oxidation of anionic surfactants by electrochemical oxidation with CuO-Co2O3-PO4(3-) modified kaolin.

    PubMed

    Gu, Lin; Wang, Bo; Ma, Hongzhu; Kong, Wuping

    2006-09-21

    A new catalytic oxidation of anionic surfactants by electrochemistry method was designed and used to investigate the removal of anionic surfactant from simulated wastewater. Synergetic effect on COD removal was studied when integrating the electrochemical reactor, using porous graphite as anode and cathode, with the effective CuO-Co2O3-PO4(3-) modified kaolin catalyst in a single undivided cell. The result showed that this combined process could effectively remove anionic surfactant. Its COD removal efficiency was much higher than those individual processes and could reach up to 90% in 60 min. The operating parameters such as initial pH, cell voltage, and current intensity were also investigated. Possible theory for COD removal was also proposed to predict the role of modified kaolin, electro-catalysis and oxidation in the combined process. The pollutants in wastewater could be decreased by the high reactive OH* that produced on the surface of catalyst by the decomposition of electrochemical generated H2O2. The result indicates that the catalytic oxidation by electrochemistry method is a promising wastewater treatment technique. PMID:16621257

  19. A review on the electrochemical treatment of the salty organic wastewater

    NASA Astrophysics Data System (ADS)

    Du, Xianjun

    2015-07-01

    Electrochemical technologies have proved to be useful for the treatment of wastewater, and recent years, there are growing interests in electrochemical treatment of the salty organic wastewater. The aim of this paper is to mainly present the source of the salty organic wastewater, the mechanism of direct and indirect oxidation process, and the research advances of electrochemical technologies in the salty organic wastewater by literature reports review.

  20. Applications of advanced oxidation processes: present and future.

    PubMed

    Suty, H; De Traversay, C; Cost, M

    2004-01-01

    The use of advanced oxidation processes (AOPs) to remove pollutants in various water treatment applications has been the subject of study for around 30 years. Most of the available processes (Fenton reagent, O3 under basic conditions, O3/H2O2, O3/UV, O3/solid catalyst, H2O2/M(n+), H2O2/UV, photo-assisted Fenton, H2O2/solid catalyst, H2O2/NaClO, TiO2/UV etc.) have been investigated in depth and a considerable body of knowledge has been built up about the reactivity of many pollutants. Various industrial applications have been developed, including ones for ground remediation (TCE, PCE), the removal of pesticides from drinking water, the removal of formaldehyde and phenol from industrial waste water and a reduction in COD from industrial waste water. The development of such AOP applications has been stimulated by increasingly stringent regulations, the pollution of water resources through agricultural and industrial activities and the requirement that industry meet effluent discharge standards. Nevertheless, it is difficult to obtain an accurate picture of the use of AOPs and its exact position in the range of water treatment processes has not been determined to date. The purpose of this overview is to discuss those processes and provide an indication of future trends. PMID:15077976

  1. A straightforward implementation of in situ solution electrochemical C NMR spectroscopy for studying reactions on commercial electrocatalysts: ethanol oxidation.

    PubMed

    Huang, L; Sorte, E G; Sun, S-G; Tong, Y Y J

    2015-05-11

    Identifying and quantifying electrocatalytic-reaction-generated solution species, be they reaction intermediates or products, are highly desirable in terms of understanding the associated reaction mechanisms. We report herein a straightforward implementation of in situ solution electrochemical (13)C NMR spectroscopy for the first time that enables in situ studies of reactions on commercial fuel-cell electrocatalysts (Pt and PtRu blacks). Using ethanol oxidation reaction (EOR) as a working example, we discovered that (1) the complete oxidation of ethanol to CO2 only took place dominantly at the very beginning of a potentiostatic chronoamperometric (CA) measurement and (2) the PtRu had a much higher activity in catalysing oxygen insertion reaction that leads to acetic acid. PMID:25868425

  2. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    PubMed

    McClintock, Carlee S; Hettich, Robert L

    2013-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  3. A New Mechanism in Electrochemical Process for Arsenic Oxidation: Production of H2O2 from Anodic O2 Reduction on the Cathode under Automatically Developed Alkaline Conditions.

    PubMed

    Qian, Ao; Yuan, Songhu; Zhang, Peng; Tong, Man

    2015-05-01

    Electrochemical cathodes are often used to reduce contaminants or produce oxidizing substances (i.e., H2O2). Alkaline conditions develop automatically around the cathode in electrochemical processes, and O2 diffuses onto the cathode easily. However, limited attention is paid to contaminant transformation by the reactive species produced on the cathode under oxic and alkaline conditions due to the inapplicability of pH for Fenton reaction. In this study, a new oxidation mechanism on the cathode is presented for contaminant transformation under automatically developed alkaline conditions. In an electrochemical sand column, 6.67 μM As(III) was oxidized by 36% when it passed through the cathode under the conditions of 30 mA current, an initial pH of 7.5 and a flow rate of 2 mL/min. Under the alkaline conditions (pH 10.0-11.0) that developed automatically around the cathode, the reduction potential of As(III) decreased greatly, allowing a pronounced oxidation by the small quantities of H2O2 produced from O2 reduction on the cathode. As(III) oxidation was further increased by the presence of soil pore water and groundwater solutes of HCO3-, Ca2+, Mg2+ and humic acid. The new oxidation mechanism found for the cathode under localized alkaline conditions supplements the fundamentals of contaminant transformation in electrochemical processes. PMID:25853500

  4. Electrochemical assay for the determination of nitric oxide metabolites using copper(II) chlorophyllin modified screen printed electrodes.

    PubMed

    Balamurugan, Murugesan; Madasamy, Thangamuthu; Pandiaraj, Manickam; Bhargava, Kalpana; Sethy, Niroj Kumar; Karunakaran, Chandran

    2015-06-01

    This work presents a novel electrochemical assay for the collective measurement of nitric oxide (NO) and its metabolites nitrite (NO2(-)) and nitrate (NO3(-)) in volume miniaturized sample at low cost using copper(II) chlorophyllin (CuCP) modified sensor electrode. Zinc oxide (ZnO) incorporated screen printed carbon electrode (SPCE) was used as a host matrix for the immobilization of CuCP. The morphological changes of the ZnO and CuCP modified electrodes were investigated using scanning electron microscopy. The electrochemical characterization of CuCP-ZnO-SPCE exhibited the characteristic quasi-reversible redox peaks at the potential +0.06 V versus Ag/AgCl. This biosensor electrode showed a wide linear range of response over NO concentrations from 200 nM to 500 ?M with a detection limit of 100 nM and sensitivity of 85.4 nA ?M(-1). Furthermore, NO2(-) measurement showed linearity of 100 nM to 1mM with a detection limit of 100 nM for NO2(-) and sensitivity of 96.4 nA ?M(-1). Then, the concentration of NO3(-) was measured after its enzymatic conversion into NO2(-). Using this assay, the concentrations of NO, NO2(-), and NO3(-) present in human plasma samples before and after beetroot supplement were estimated using suitable membrane coated CuCP-ZnO-SPCE and validated with the standard Griess method. PMID:25700865

  5. Assessment of Electrodes Prepared from Wafers of Boron-doped Diamond for the Electrochemical Oxidation of Waste Lubricants

    SciTech Connect

    Taylor, G.T.; Sullivan, I.A.; Newey, A.W.E.

    2006-07-01

    Electrochemical oxidation using boron-doped diamond electrodes is being investigated as a treatment process for radioactively contaminated oily wastes. Previously, it was shown that electrodes coated with a thin film of diamond were able to oxidise a cutting oil but not a mineral oil. These tests were inconclusive, because the electrodes lost their diamond coating during operation. Accordingly, an electrode prepared from a 'solid' wafer of boron-doped diamond is being investigated to determine whether it will oxidise mineral oils. The electrode has been tested with sucrose, a cutting oil and an emulsified mineral oil. Before and after each test, the state of the electrode was assessed by cyclic voltammetry with the ferro/ferricyanide redox couple. Analysis of the cyclic voltammogram suggested that material accumulated on the surface of the electrode during the tests. The magnitude of the effect was in the order: - emulsified mineral oil > cutting oil > sucrose. Despite this, the results indicated that the electrode was capable of oxidising the emulsified mineral oil. Confirmatory tests were undertaken in the presence of alkali to trap the carbon dioxide, but they had to be abandoned when the adhesive holding the diamond in the electrode was attacked by the alkali. Etching of the diamond wafer was also observed at the end of the tests. Surface corrosion is now regarded as an intrinsic part of the electrochemical oxidation on diamond, and it is expected that the rate of attack will determine the service life of the electrodes. (authors)

  6. A new cleaning process combining non-ionic surfactant with diamond film electrochemical oxidation for polished silicon wafers

    NASA Astrophysics Data System (ADS)

    Baohong, Gao; Yadong, Zhu; Yuling, Liu; Shengli, Wang; Qiang, Zhou; Xiaoyan, Liu

    2010-07-01

    This paper presents a new cleaning process for particle and organic contaminants on polished silicon wafer surfaces. It combines a non-ionic surfactant with boron-doped diamond (BDD) film anode electrochemical oxidation. The non-ionic surfactant is used to remove particles on the polished wafer's surface, because it can form a protective film on the surface, which makes particles easy to remove. The effects of particle removal comparative experiments were observed by metallographic microscopy, which showed that the 1% v/v non-ionic surfactant achieved the best result. However, the surfactant film itself belongs to organic contamination, and it eventually needs to be removed. BDD film anode electrochemical oxidation (BDD-EO) is used to remove organic contaminants, because it can efficiently degrade organic matter. Three organic contaminant removal comparative experiments were carried out: the first one used the non-ionic surfactant in the first step and then used BDD-EO, the second one used BDD-EO only, and the last one used RCA cleaning technique. The XPS measurement result shows that the wafer's surface cleaned by BDD-EO has much less organic residue than that cleaned by RCA cleaning technique, and the non-ionic surfactant can be efficiently removed by BDD-EO.

  7. Non-covalent functionalization of graphene oxide by polyindole and subsequent incorporation of Ag nanoparticles for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Dubey, Prashant; Kumar, Ashish; Prakash, Rajiv

    2015-11-01

    Reduced graphene oxide (r-GO) sheets have been modified by polyindole (PIn) via in situ chemical oxidation method to obtain stable dispersion in water and furthermore incorporation of Ag nanoparticles (Ag NPs); the resulting Ag NPs/PIn-r-GO nanocomposite is demonstrated for electrochemical applications. Ag NPs/r-GO and PIn/GO nanocomposites have also been prepared for its comparative study with Ag NPs/PIn-r-GO. Non-covalent functionalization of GO by PIn polymer leads to PIn-GO dispersion, which is stable for several months without any precipitation. This dispersed solution is used for formation of Ag NPs/PIn-r-GO nanocomposite. Various experimental tools like UV-vis, FTIR and TEM have been used to characterize as-synthesized materials. Thereafter electrochemical performance of as-synthesized nanocomposites have been compared for their charge capacitive behaviour (without its poisoning compared to Ag NPs/r-GO) which leads to be an excellent candidate for the possible applications such as electrocatalysis, charge storage devices, etc. We observed that Ag NPs/PIn-r-GO nanocomposite exhibits better processability and electroactivity as electrode material in comparison to Ag NPs/r-GO and PIn/GO nanocomposites due to synergistic effect of individual components.

  8. Polyaniline-iron oxide nanohybrid film as multi-functional label-free electrochemical and biomagnetic sensor for catechol.

    PubMed

    Chandra, Sudeshna; Lang, Heinrich; Bahadur, Dhirendra

    2013-09-17

    Polyaniline-iron oxide magnetic nanohybrid was synthesized and characterized using various spectroscopic, microstructural and electrochemical techniques. The smart integration of Fe3O4 nanoparticles within the polyaniline (PANI) matrix yielded a mesoporous nanohybrid (Fe3O4@PANI) with high surface area (94 m(2) g(-1)) and average pore width of 12.8 nm. Catechol is quasi-reversibly oxidized to o-quinone and reduced at the Fe3O4@PANI modified electrodes. The amperometric current response toward catechol was evaluated using the nanohybrid and the sensitivity and detection limit were found to be 312 μA μL(-1) and 0.2 nM, respectively. The results from electrochemical impedance spectroscopy (EIS) indicated that the increased solution resistance (Rs) was due to elevated adsorption of catechol on the modified electrodes. Photoluminescence spectra showed ligand-to-metal charge transfer (LMCT) between p-π orbitals of the phenolate oxygen in catechol and the d-σ* metal orbital of Fe3O4@PANI nanohybrid. Potential dependent spectroelectrochemical behavior of Fe3O4@PANI nanohybrid toward catechol was studied using UV/vis/NIR spectroscopy. The binding activity of the biomagnetic particles to catechol through Brownian relaxation was evident from AC susceptibility measurements. The proposed sensor was used for successful recovery of catechol in tap water samples. PMID:23998532

  9. Amperometric detection and electrochemical oxidation of aliphatic amines and ammonia on silver-lead oxide thin-film electrodes

    SciTech Connect

    Ge, Jisheng

    1996-01-08

    This thesis comprises three parts: Electrocatalysis of anodic oxygen-transfer reactions: aliphatic amines at mixed Ag-Pb oxide thin-film electrodes; oxidation of ammonia at anodized Ag-Pb eutectic alloy electrodes; and temperature effects on oxidation of ethylamine, alanine, and aquated ammonia.

  10. Electrochemical methane sensor

    DOEpatents

    Zaromb, S.; Otagawa, T.; Stetter, J.R.

    1984-08-27

    A method and instrument including an electrochemical cell for the detection and measurement of methane in a gas by the oxidation of methane electrochemically at a working electrode in a nonaqueous electrolyte at a voltage about 1.4 volts vs R.H.E. (the reversible hydrogen electrode potential in the same electrolyte), and the measurement of the electrical signal resulting from the electrochemical oxidation.

  11. Effects of Tungsten Oxide Addition on the Electrochemical Performance of Nanoscale Tantalum Oxide-Based Electrocatalysts for Proton Exchange Membrane PEM Fuel Cells

    SciTech Connect

    Oh, Tak Keun; Kim, Jin Yong; Shin, Yongsoon; Engelhard, Mark H.; Weil, K. Scott

    2011-08-01

    In the present study, the properties of a series of non-platinum based nanoscale tantalum oxide/tungsten oxide-carbon composite catalysts was investigated for potential use in catalyzing the oxygen reduction reaction (ORR) on the cathode side of a PEM fuel cell membrane electrode assembly. Electrochemical performance was measured using a half-cell test set up with a rotating disc electrode and compared with a commercial platinum-on-carbon (Pt/C) catalyst. Overall, all of the oxide-based composite catalysts exhibit high ORR on-set potentials, comparable to that of the baseline Pt/C catalyst. The addition of tungsten oxide as a dopant to tantalum oxide greatly improved mass specific current density. Maximum performance was achieved with a catalyst containing 32 mol% of tungsten oxide, which exhibited a mass specific current density ~8% that of the Pt/C catalyst at 0.6 V vs. the normal hydrogen electrode (NHE) and ~35% that of the Pt/C catalyst at 0.2 V vs. NHE. Results from X-ray photoelectron spectroscopy analysis indicated that the tungsten cations in the composite catalysts exist in the +6 oxidation state, while the tantalum displays an average valence of +5, suggesting that the addition of tungsten likely creates an oxygen excess in the tantalum oxide structure that influences its oxygen absorption kinetics. When the 32mol% tungsten doped catalyst loading on the working electrode was increased to five times that of the original loading (which was equivalent to that of the baseline Pt/C catalyst), the area specific current density improved four fold, achieving an area specific current density ~35% that of the Pt/C catalyst at 0.6 V vs. NHE.

  12. Electrochemical degradation of polycyclic aromatic hydrocarbons in creosote solution using ruthenium oxide on titanium expanded mesh anode.

    PubMed

    Tran, Lan-Huong; Drogui, Patrick; Mercier, Guy; Blais, Jean-Franois

    2009-05-30

    In this study, expanded titanium (Ti) covered with ruthenium oxide (RuO(2)) electrode was used to anodically oxidize polycyclic aromatic hydrocarbons (PAH) in creosote solution. Synthetic creosote-oily solution (COS) was prepared with distilled water and a commercial creosote solution in the presence of an amphoteric surfactant; Cocamidopropylhydroxysultaine (CAS). Electrolysis was carried out using a parallelepipedic electrolytic 1.5-L cell containing five anodes (Ti/RuO(2)) and five cathodes (stainless steel, 316 L) alternated in the electrode pack. The effects of initial pH, temperature, retention time, supporting electrolyte, current density and initial PAH concentration on the process performance were examined. Experimental results revealed that a current density of 9.23 mA cm(-2) was beneficial for PAH oxidation. The sum of PAH concentrations for 16 PAHs could be optimally diminished up to 80-82% while imposing a residence time in the electrolysis cell of 90 min. There was not a significant effect of the electrolyte (Na(2)SO(4)) concentration on oxidation efficiency in the investigated range of 500-4000 mg/L. However, an addition of 500 mg Na(2)SO(4)L(-1) was required to reduce the energy consumption and the treatment cost. Besides, there was no effect of initial PAH concentration on oxidation efficiency in the investigated range of 270-540 mg PAHL(-1). Alkaline media was not favourable for PAH oxidation, whereas high performance of PAH degradation could be recorded without initial pH adjustment (original pH around 6.0). Likewise, under optimal conditions, 84% of petroleum hydrocarbon (C(10)-C(50)) was removed, whereas removal yields of 69% and 62% have been measured for O&G and COD, respectively. Microtox and Daphnia biotests showed that electrochemical oxidation using Ti/RuO(2) could be efficiently used to reduce more than 90% of the COS toxicity. PMID:18926633

  13. Mechanistic differences between electrochemical and gas-phase thermal oxidation of platinum-group transition metals as discerned by surface-enhanced Raman spectroscopy

    SciTech Connect

    Chan, H.Y.H.; Zou, S.; Weaver, M.J.

    1999-12-16

    The oxidation of five Pt-group metals--platinum, palladium, iridium, rhodium, and ruthenium--is examined by means of surface-enhanced Raman spectroscopy (SERS) in aqueous electrochemical and gaseous dioxygen environments as a function of electrode potential and temperature, respectively, with the objective of intercomparing systematically the conditions required for surface oxide formation and discerning the reaction mechanisms involved. The SERS strategy, utilizing ultrathin Pt-group metal films electrodeposited on a gold substrate, enables monolayer-level metal oxide vibrational spectra to readily be obtained in both the electrochemical and gaseous environments. The SER spectra obtained during positive- and then negative-going potential excursions in aqueous 0.1 M HCLO{sub 4} display metal-oxygen vibrational bands signaling anodic oxide formation and subsequent removal at potentials consistent with corresponding voltammetric data. The nature of the amorphous oxides (or hydroxides) formed is deduced by comparison with bulk-phase metal oxide Raman spectra. The onset potentials for surface oxide formation are comparable to the thermodynamic potentials for the bulk-phase metal oxides. In contrast, the onset of surface oxidation even in ambient-pressure dioxygen uniformly requires elevated temperatures, {gt}200 C for each metal except for iridium, where oxide formation occurs at ca. 100 C. While spectral differences are evident, especially on palladium and ruthenium, the nature of the oxides formed in the electrochemical and gaseous systems is largely similar. The highly activated nature of the gaseous O{sub 2} oxidations is consistent with literature reports for Pt-group surfaces in ultrahigh vacuum as well as higher-pressure conditions. Likely reasons for the markedly more efficacious metal electrooxidations are discussed. Thermodynamic factors are not responsible, since the free-energy driving forces for the gaseous O{sub 2} oxidations are larger than for the electrochemical reactions at the applied potentials where surface oxidation for the latter processes proceeds at room temperature. The electrostatic driving forces for oxygen incorporation into the metal lattice (via high-field ion transport) are also typically more favorable for the gaseous systems, as evidenced by a comparison of the metal-solution and metal-gas surface potentials. The intrinsically more facile electrochemical processes thereby deduced are attributed to the occurrence of direct oxide production via a metal-oxygen place-exchange mechanism, expedited by interfacial solvation and therefore being energetically unfavorable in the anhydrous gas-phase environment. Other factors, such as the formation of precursor chemisorbed oxygen, are also considered.

  14. Advances in the identification of electrochemical transfer function models using Prony analysis

    SciTech Connect

    Trudnowski, D.J.; Donnelly, M.K.; Hauer, J.F.

    1993-02-01

    This paper further advances the usefulness and understanding of Prony analysis as a tool for identification of power system electromechanical oscillation models. These linear models are developed by analyzing power system ring-down data. The presented results allow more generality in the assumed model formulation. In addition, a comparison is made between Prony analysis and autoregressive moving-average (KARMA) modeling, which has also been proposed for analysis of system oscillations. Under the conditions investigated, the Prony algorithm performed more accurate identification.

  15. Modular advanced oxidation process enabled by cathodic hydrogen peroxide production.

    PubMed

    Barazesh, James M; Hennebel, Tom; Jasper, Justin T; Sedlak, David L

    2015-06-16

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO()) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d(-1). The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO() scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m(-3), with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  16. Modular Advanced Oxidation Process Enabled by Cathodic Hydrogen Peroxide Production

    PubMed Central

    2015-01-01

    Hydrogen peroxide (H2O2) is frequently used in combination with ultraviolet (UV) light to treat trace organic contaminants in advanced oxidation processes (AOPs). In small-scale applications, such as wellhead and point-of-entry water treatment systems, the need to maintain a stock solution of concentrated H2O2 increases the operational cost and complicates the operation of AOPs. To avoid the need for replenishing a stock solution of H2O2, a gas diffusion electrode was used to generate low concentrations of H2O2 directly in the water prior to its exposure to UV light. Following the AOP, the solution was passed through an anodic chamber to lower the solution pH and remove the residual H2O2. The effectiveness of the technology was evaluated using a suite of trace contaminants that spanned a range of reactivity with UV light and hydroxyl radical (HO•) in three different types of source waters (i.e., simulated groundwater, simulated surface water, and municipal wastewater effluent) as well as a sodium chloride solution. Irrespective of the source water, the system produced enough H2O2 to treat up to 120 L water d–1. The extent of transformation of trace organic contaminants was affected by the current density and the concentrations of HO• scavengers in the source water. The electrical energy per order (EEO) ranged from 1 to 3 kWh m–3, with the UV lamp accounting for most of the energy consumption. The gas diffusion electrode exhibited high efficiency for H2O2 production over extended periods and did not show a diminution in performance in any of the matrices. PMID:26039560

  17. Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    SciTech Connect

    McClintock, Carlee; Hettich, Robert {Bob} L

    2013-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent hydroxyl radicals for these measurements; however, many of these approaches require use of radioactive sources or caustic oxidizing chemicals. The purpose of this research was to evaluate and optimize the use of boron-doped diamond (BDD) electrochemistry as a highly accessible tool for producing hydroxyl radicals as a means to induce a controllable level of oxidation on a range of intact proteins. These experiments utilize a relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber, along with a unique cell activation approach to improve control over the intact protein oxidation yield. Studies were conducted to evaluate the level of protein adsorption onto the electrode surface. This report demonstrates a robust protocol for the use of BDD electrochemistry and high performance LC-MS/MS as a high-throughput experimental pipeline for probing higher order protein structure, and illustrates how it is complementary to predictive computational modeling efforts.

  18. An advanced tunnel oxide layer process for 65 nm NOR floating-gate flash memories

    NASA Astrophysics Data System (ADS)

    Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Liao, Yiming; Wu, Fuwei; Yan, Feng

    2015-10-01

    An advanced tunnel oxide layer process for 65 nm NOR-type floating-gate flash memory is proposed to improve tunnel oxide quality by an additive sacrificial oxide layer growth. The sacrificial oxide layer process effectively controls the thickness variation of tunnel oxide and improves the flatness of the SiO2/Si interface across the active area. The interface traps generation during program/erase cycling of flash cells is found to be reduced, and the reliability property is significantly improved as compared to flash cells without the sacrificial oxide layer process. The technology is applicable to further scaled floating-gate flash memories.

  19. Spray absorption and electrochemical