Sample records for advanced estimation techniques

  1. Advances in parameter estimation techniques applied to flexible structures

    NASA Technical Reports Server (NTRS)

    Maben, Egbert; Zimmerman, David C.

    1994-01-01

    In this work, various parameter estimation techniques are investigated in the context of structural system identification utilizing distributed parameter models and 'measured' time-domain data. Distributed parameter models are formulated using the PDEMOD software developed by Taylor. Enhancements made to PDEMOD for this work include the following: (1) a Wittrick-Williams based root solving algorithm; (2) a time simulation capability; and (3) various parameter estimation algorithms. The parameter estimations schemes will be contrasted using the NASA Mini-Mast as the focus structure.

  2. Development of advanced techniques for rotorcraft state estimation and parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Bohn, J. G.; Vincent, J. H.

    1980-01-01

    An integrated methodology for rotorcraft system identification consists of rotorcraft mathematical modeling, three distinct data processing steps, and a technique for designing inputs to improve the identifiability of the data. These elements are as follows: (1) a Kalman filter smoother algorithm which estimates states and sensor errors from error corrupted data. Gust time histories and statistics may also be estimated; (2) a model structure estimation algorithm for isolating a model which adequately explains the data; (3) a maximum likelihood algorithm for estimating the parameters and estimates for the variance of these estimates; and (4) an input design algorithm, based on a maximum likelihood approach, which provides inputs to improve the accuracy of parameter estimates. Each step is discussed with examples to both flight and simulated data cases.

  3. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  4. Conceptual Model Evaluation using Advanced Parameter Estimation Techniques with Heat as a Tracer

    NASA Astrophysics Data System (ADS)

    Naranjo, R. C.; Morway, E. D.; Healy, R. W.

    2016-12-01

    Temperature measurements made at multiple depths beneath the sediment-water interface has proven useful for estimating seepage rates from surface-water channels and corresponding subsurface flow direction. Commonly, parsimonious zonal representations of the subsurface structure are defined a priori by interpretation of temperature envelopes, slug tests or analysis of soil cores. However, combining multiple observations into a single zone may limit the inverse model solution and does not take full advantage of the information content within the measured data. Further, simulating the correct thermal gradient, flow paths, and transient behavior of solutes may be biased by inadequacies in the spatial description of subsurface hydraulic properties. The use of pilot points in PEST offers a more sophisticated approach to estimate the structure of subsurface heterogeneity. This presentation evaluates seepage estimation in a cross-sectional model of a trapezoidal canal with intermittent flow representing four typical sedimentary environments. The recent improvements in heat as a tracer measurement techniques (i.e. multi-depth temperature probe) along with use of modern calibration techniques (i.e., pilot points) provides opportunities for improved calibration of flow models, and, subsequently, improved model predictions.

  5. Evaluation of a technique for satellite-derived area estimation of forest fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; Chung, Charles C.

    1992-01-01

    The advanced very high resolution radiometer (AVHRR), has been found useful for the location and monitoring of both smoke and fires because of the daily observations, the large geographical coverage of the imagery, the spectral characteristics of the instrument, and the spatial resolution of the instrument. This paper will discuss the application of AVHRR data to assess the geographical extent of burning. Methods have been developed to estimate the surface area of burning by analyzing the surface area effected by fire with AVHRR imagery. Characteristics of the AVHRR instrument, its orbit, field of view, and archived data sets are discussed relative to the unique surface area of each pixel. The errors associated with this surface area estimation technique are determined using AVHRR-derived area estimates of target regions with known sizes. This technique is used to evaluate the area burned during the Yellowstone fires of 1988.

  6. Advances in the regionalization approach: geostatistical techniques for estimating flood quantiles

    NASA Astrophysics Data System (ADS)

    Chiarello, Valentina; Caporali, Enrica; Matthies, Hermann G.

    2015-04-01

    The knowledge of peak flow discharges and associated floods is of primary importance in engineering practice for planning of water resources and risk assessment. Streamflow characteristics are usually estimated starting from measurements of river discharges at stream gauging stations. However, the lack of observations at site of interest as well as the measurement inaccuracies, bring inevitably to the necessity of developing predictive models. Regional analysis is a classical approach to estimate river flow characteristics at sites where little or no data exists. Specific techniques are needed to regionalize the hydrological variables over the considered area. Top-kriging or topological kriging, is a kriging interpolation procedure that takes into account the geometric organization and structure of hydrographic network, the catchment area and the nested nature of catchments. The continuous processes in space defined for the point variables are represented by a variogram. In Top-kriging, the measurements are not point values but are defined over a non-zero catchment area. Top-kriging is applied here over the geographical space of Tuscany Region, in Central Italy. The analysis is carried out on the discharge data of 57 consistent runoff gauges, recorded from 1923 to 2014. Top-kriging give also an estimation of the prediction uncertainty in addition to the prediction itself. The results are validated using a cross-validation procedure implemented in the package rtop of the open source statistical environment R The results are compared through different error measurement methods. Top-kriging seems to perform better in nested catchments and larger scale catchments but no for headwater or where there is a high variability for neighbouring catchments.

  7. Bayesian techniques for surface fuel loading estimation

    Treesearch

    Kathy Gray; Robert Keane; Ryan Karpisz; Alyssa Pedersen; Rick Brown; Taylor Russell

    2016-01-01

    A study by Keane and Gray (2013) compared three sampling techniques for estimating surface fine woody fuels. Known amounts of fine woody fuel were distributed on a parking lot, and researchers estimated the loadings using different sampling techniques. An important result was that precise estimates of biomass required intensive sampling for both the planar intercept...

  8. Mass estimating techniques for earth-to-orbit transports with various configuration factors and technologies applied

    NASA Technical Reports Server (NTRS)

    Klich, P. J.; Macconochie, I. O.

    1979-01-01

    A study of an array of advanced earth-to-orbit space transportation systems with a focus on mass properties and technology requirements is presented. Methods of estimating weights of these vehicles differ from those used for commercial and military aircraft; the new techniques emphasizing winged horizontal and vertical takeoff advanced systems are described utilizing the space shuttle subsystem data base for the weight estimating equations. The weight equations require information on mission profile, the structural materials, the thermal protection system, and the ascent propulsion system, allowing for the type of construction and various propellant tank shapes. The overall system weights are calculated using this information and incorporated into the Systems Engineering Mass Properties Computer Program.

  9. Effective wind speed estimation: Comparison between Kalman Filter and Takagi-Sugeno observer techniques.

    PubMed

    Gauterin, Eckhard; Kammerer, Philipp; Kühn, Martin; Schulte, Horst

    2016-05-01

    Advanced model-based control of wind turbines requires knowledge of the states and the wind speed. This paper benchmarks a nonlinear Takagi-Sugeno observer for wind speed estimation with enhanced Kalman Filter techniques: The performance and robustness towards model-structure uncertainties of the Takagi-Sugeno observer, a Linear, Extended and Unscented Kalman Filter are assessed. Hence the Takagi-Sugeno observer and enhanced Kalman Filter techniques are compared based on reduced-order models of a reference wind turbine with different modelling details. The objective is the systematic comparison with different design assumptions and requirements and the numerical evaluation of the reconstruction quality of the wind speed. Exemplified by a feedforward loop employing the reconstructed wind speed, the benefit of wind speed estimation within wind turbine control is illustrated. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Simulations of motor unit number estimation techniques

    NASA Astrophysics Data System (ADS)

    Major, Lora A.; Jones, Kelvin E.

    2005-06-01

    Motor unit number estimation (MUNE) is an electrodiagnostic procedure used to evaluate the number of motor axons connected to a muscle. All MUNE techniques rely on assumptions that must be fulfilled to produce a valid estimate. As there is no gold standard to compare the MUNE techniques against, we have developed a model of the relevant neuromuscular physiology and have used this model to simulate various MUNE techniques. The model allows for a quantitative analysis of candidate MUNE techniques that will hopefully contribute to consensus regarding a standard procedure for performing MUNE.

  11. Advanced techniques to prepare seed to sow

    Treesearch

    Robert P. Karrfalt

    2013-01-01

    This paper reviews research on improving the basic technique of cold stratification for tree and shrub seeds. Advanced stratification techniques include long stratification, stratification re-dry, or multiple cycles of warm-cold stratification. Research demonstrates that careful regulation of moisture levels and lengthening the stratification period have produced a...

  12. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less

  13. [Advance in interferogram data processing technique].

    PubMed

    Jing, Juan-Juan; Xiangli, Bin; Lü, Qun-Bo; Huang, Min; Zhou, Jin-Song

    2011-04-01

    Fourier transform spectrometry is a type of novel information obtaining technology, which integrated the functions of imaging and spectra, but the data that the instrument acquired is the interference data of the target, which is an intermediate data and couldn't be used directly, so data processing must be adopted for the successful application of the interferometric data In the present paper, data processing techniques are divided into two classes: general-purpose and special-type. First, the advance in universal interferometric data processing technique is introduced, then the special-type interferometric data extracting method and data processing technique is illustrated according to the classification of Fourier transform spectroscopy. Finally, the trends of interferogram data processing technique are discussed.

  14. Recent Advances in Techniques for Starch Esters and the Applications: A Review

    PubMed Central

    Hong, Jing; Zeng, Xin-An; Brennan, Charles S.; Brennan, Margaret; Han, Zhong

    2016-01-01

    Esterification is one of the most important methods to alter the structure of starch granules and improve its applications. Conventionally, starch esters are prepared by conventional or dual modification techniques, which have the disadvantages of being expensive, have regent overdoses, and are time-consuming. In addition, the degree of substitution (DS) is often considered as the primary factor in view of its contribution to estimate substituted groups of starch esters. In order to improve the detection accuracy and production efficiency, different detection techniques, including titration, nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis/infrared spectroscopy (TGA/IR) and headspace gas chromatography (HS-GC), have been developed for DS. This paper gives a comprehensive overview on the recent advances in DS analysis and starch esterification techniques. Additionally, the advantages, limitations, some perspectives on future trends of these techniques and the applications of their derivatives in the food industry are also presented. PMID:28231145

  15. Positional estimation techniques for an autonomous mobile robot

    NASA Technical Reports Server (NTRS)

    Nandhakumar, N.; Aggarwal, J. K.

    1990-01-01

    Techniques for positional estimation of a mobile robot navigation in an indoor environment are described. A comprehensive review of the various positional estimation techniques studied in the literature is first presented. The techniques are divided into four different types and each of them is discussed briefly. Two different kinds of environments are considered for positional estimation; mountainous natural terrain and an urban, man-made environment with polyhedral buildings. In both cases, the robot is assumed to be equipped with single visual camera that can be panned and tilted and also a 3-D description (world model) of the environment is given. Such a description could be obtained from a stereo pair of aerial images or from the architectural plans of the buildings. Techniques for positional estimation using the camera input and the world model are presented.

  16. Application of Advanced Signal Processing Techniques to Angle of Arrival Estimation in ATC Navigation and Surveillance Systems

    DTIC Science & Technology

    1982-06-23

    Administration Systems Research and Development Service 14, Spseq Aese Ce ’ Washington, D.C. 20591 It. SeppkW•aae metm The work reported in this document was...consider sophisticated signal processing techniques as an alternative method of improving system performanceH Some work in this area has already taken place...demands on the frequency spectrum. As noted in Table 1-1, there has been considerable work on advanced signal processing in the MLS context

  17. Two biased estimation techniques in linear regression: Application to aircraft

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav

    1988-01-01

    Several ways for detection and assessment of collinearity in measured data are discussed. Because data collinearity usually results in poor least squares estimates, two estimation techniques which can limit a damaging effect of collinearity are presented. These two techniques, the principal components regression and mixed estimation, belong to a class of biased estimation techniques. Detection and assessment of data collinearity and the two biased estimation techniques are demonstrated in two examples using flight test data from longitudinal maneuvers of an experimental aircraft. The eigensystem analysis and parameter variance decomposition appeared to be a promising tool for collinearity evaluation. The biased estimators had far better accuracy than the results from the ordinary least squares technique.

  18. Recommended advanced techniques for waterborne pathogen detection in developing countries.

    PubMed

    Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N

    2015-02-19

    The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.

  19. Nonparametric probability density estimation by optimization theoretic techniques

    NASA Technical Reports Server (NTRS)

    Scott, D. W.

    1976-01-01

    Two nonparametric probability density estimators are considered. The first is the kernel estimator. The problem of choosing the kernel scaling factor based solely on a random sample is addressed. An interactive mode is discussed and an algorithm proposed to choose the scaling factor automatically. The second nonparametric probability estimate uses penalty function techniques with the maximum likelihood criterion. A discrete maximum penalized likelihood estimator is proposed and is shown to be consistent in the mean square error. A numerical implementation technique for the discrete solution is discussed and examples displayed. An extensive simulation study compares the integrated mean square error of the discrete and kernel estimators. The robustness of the discrete estimator is demonstrated graphically.

  20. An advanced algorithm for deformation estimation in non-urban areas

    NASA Astrophysics Data System (ADS)

    Goel, Kanika; Adam, Nico

    2012-09-01

    This paper presents an advanced differential SAR interferometry stacking algorithm for high resolution deformation monitoring in non-urban areas with a focus on distributed scatterers (DSs). Techniques such as the Small Baseline Subset Algorithm (SBAS) have been proposed for processing DSs. SBAS makes use of small baseline differential interferogram subsets. Singular value decomposition (SVD), i.e. L2 norm minimization is applied to link independent subsets separated by large baselines. However, the interferograms used in SBAS are multilooked using a rectangular window to reduce phase noise caused for instance by temporal decorrelation, resulting in a loss of resolution and the superposition of topography and deformation signals from different objects. Moreover, these have to be individually phase unwrapped and this can be especially difficult in natural terrains. An improved deformation estimation technique is presented here which exploits high resolution SAR data and is suitable for rural areas. The implemented method makes use of small baseline differential interferograms and incorporates an object adaptive spatial phase filtering and residual topography removal for an accurate phase and coherence estimation, while preserving the high resolution provided by modern satellites. This is followed by retrieval of deformation via the SBAS approach, wherein, the phase inversion is performed using an L1 norm minimization which is more robust to the typical phase unwrapping errors encountered in non-urban areas. Meter resolution TerraSAR-X data of an underground gas storage reservoir in Germany is used for demonstrating the effectiveness of this newly developed technique in rural areas.

  1. Evaluation of gravimetric techniques to estimate the microvascular filtration coefficient

    PubMed Central

    Dongaonkar, R. M.; Laine, G. A.; Stewart, R. H.

    2011-01-01

    Microvascular permeability to water is characterized by the microvascular filtration coefficient (Kf). Conventional gravimetric techniques to estimate Kf rely on data obtained from either transient or steady-state increases in organ weight in response to increases in microvascular pressure. Both techniques result in considerably different estimates and neither account for interstitial fluid storage and lymphatic return. We therefore developed a theoretical framework to evaluate Kf estimation techniques by 1) comparing conventional techniques to a novel technique that includes effects of interstitial fluid storage and lymphatic return, 2) evaluating the ability of conventional techniques to reproduce Kf from simulated gravimetric data generated by a realistic interstitial fluid balance model, 3) analyzing new data collected from rat intestine, and 4) analyzing previously reported data. These approaches revealed that the steady-state gravimetric technique yields estimates that are not directly related to Kf and are in some cases directly proportional to interstitial compliance. However, the transient gravimetric technique yields accurate estimates in some organs, because the typical experimental duration minimizes the effects of interstitial fluid storage and lymphatic return. Furthermore, our analytical framework reveals that the supposed requirement of tying off all draining lymphatic vessels for the transient technique is unnecessary. Finally, our numerical simulations indicate that our comprehensive technique accurately reproduces the value of Kf in all organs, is not confounded by interstitial storage and lymphatic return, and provides corroboration of the estimate from the transient technique. PMID:21346245

  2. Wafer hot spot identification through advanced photomask characterization techniques

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; McMurran, Jeff; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2016-10-01

    As device manufacturers progress through advanced technology nodes, limitations in standard 1-dimensional (1D) mask Critical Dimension (CD) metrics are becoming apparent. Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that the classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on subresolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. These items are not quantifiable with the 1D metrology techniques of today. Likewise, the mask maker needs advanced characterization methods in order to optimize the mask process to meet the wafer lithographer's needs. These advanced characterization metrics are what is needed to harmonize mask and wafer processes for enhanced wafer hot spot analysis. In this paper, we study advanced mask pattern characterization techniques and their correlation with modeled wafer performance.

  3. Teaching advanced wound closure techniques using cattle digits.

    PubMed

    Khalil, Philipe N; Kanz, Karl-Georg; Siebeck, Matthias; Mutschler, Wolf

    2011-03-01

    To evaluate a model used to impart advanced wound closure skills because available models do not meet the necessary requirements to a substantial degree. Seventy-one residents were asked to evaluate a 75-minute-long skills course using cadaveric cattle digits to learn Z-plasty, V-Y-plasty, and oval-shaped rotational flaps. A short film and the course instructor demonstrated each technique first. A Likert rating scale ranging from 1 to 6 was used for questions in the survey given to the residents. There was strong agreement among residents (1.65 ± 1.17 years of experience) that advanced wound closure training courses are necessary (5.73 ± 0.73), which corresponded to the residents' low level of knowledge and self-assessment of practical skills and present experience (2.84 ± 1.01). The course was evaluated with high acceptance, even though it was found to be demanding for the trainees (5.84 ± 0.40). This might also be related to the high rating of the model itself, which was found to be a suitable method for teaching advanced wound closure techniques (5.50 ± 0.71) that was easily comprehensible (5.73 ± 0.53). Skills training courses for young trainees are warranted to impart advanced wound closure techniques. The curriculum using cattle digits presented here is recommended. The authors have indicated no significant interest with commercial supporters. © 2011 by the American Society for Dermatologic Surgery, Inc.

  4. A Biomechanical Modeling Guided CBCT Estimation Technique

    PubMed Central

    Zhang, You; Tehrani, Joubin Nasehi; Wang, Jing

    2017-01-01

    Two-dimensional-to-three-dimensional (2D-3D) deformation has emerged as a new technique to estimate cone-beam computed tomography (CBCT) images. The technique is based on deforming a prior high-quality 3D CT/CBCT image to form a new CBCT image, guided by limited-view 2D projections. The accuracy of this intensity-based technique, however, is often limited in low-contrast image regions with subtle intensity differences. The solved deformation vector fields (DVFs) can also be biomechanically unrealistic. To address these problems, we have developed a biomechanical modeling guided CBCT estimation technique (Bio-CBCT-est) by combining 2D-3D deformation with finite element analysis (FEA)-based biomechanical modeling of anatomical structures. Specifically, Bio-CBCT-est first extracts the 2D-3D deformation-generated displacement vectors at the high-contrast anatomical structure boundaries. The extracted surface deformation fields are subsequently used as the boundary conditions to drive structure-based FEA to correct and fine-tune the overall deformation fields, especially those at low-contrast regions within the structure. The resulting FEA-corrected deformation fields are then fed back into 2D-3D deformation to form an iterative loop, combining the benefits of intensity-based deformation and biomechanical modeling for CBCT estimation. Using eleven lung cancer patient cases, the accuracy of the Bio-CBCT-est technique has been compared to that of the 2D-3D deformation technique and the traditional CBCT reconstruction techniques. The accuracy was evaluated in the image domain, and also in the DVF domain through clinician-tracked lung landmarks. PMID:27831866

  5. Development and validation of a MRgHIFU non-invasive tissue acoustic property estimation technique.

    PubMed

    Johnson, Sara L; Dillon, Christopher; Odéen, Henrik; Parker, Dennis; Christensen, Douglas; Payne, Allison

    2016-11-01

    MR-guided high-intensity focussed ultrasound (MRgHIFU) non-invasive ablative surgeries have advanced into clinical trials for treating many pathologies and cancers. A remaining challenge of these surgeries is accurately planning and monitoring tissue heating in the face of patient-specific and dynamic acoustic properties of tissues. Currently, non-invasive measurements of acoustic properties have not been implemented in MRgHIFU treatment planning and monitoring procedures. This methods-driven study presents a technique using MR temperature imaging (MRTI) during low-temperature HIFU sonications to non-invasively estimate sample-specific acoustic absorption and speed of sound values in tissue-mimicking phantoms. Using measured thermal properties, specific absorption rate (SAR) patterns are calculated from the MRTI data and compared to simulated SAR patterns iteratively generated via the Hybrid Angular Spectrum (HAS) method. Once the error between the simulated and measured patterns is minimised, the estimated acoustic property values are compared to the true phantom values obtained via an independent technique. The estimated values are then used to simulate temperature profiles in the phantoms, and compared to experimental temperature profiles. This study demonstrates that trends in acoustic absorption and speed of sound can be non-invasively estimated with average errors of 21% and 1%, respectively. Additionally, temperature predictions using the estimated properties on average match within 1.2 °C of the experimental peak temperature rises in the phantoms. The positive results achieved in tissue-mimicking phantoms presented in this study indicate that this technique may be extended to in vivo applications, improving HIFU sonication temperature rise predictions and treatment assessment.

  6. Accuracy of selected techniques for estimating ice-affected streamflow

    USGS Publications Warehouse

    Walker, John F.

    1991-01-01

    This paper compares the accuracy of selected techniques for estimating streamflow during ice-affected periods. The techniques are classified into two categories - subjective and analytical - depending on the degree of judgment required. Discharge measurements have been made at three streamflow-gauging sites in Iowa during the 1987-88 winter and used to established a baseline streamflow record for each site. Using data based on a simulated six-week field-tip schedule, selected techniques are used to estimate discharge during the ice-affected periods. For the subjective techniques, three hydrographers have independently compiled each record. Three measures of performance are used to compare the estimated streamflow records with the baseline streamflow records: the average discharge for the ice-affected period, and the mean and standard deviation of the daily errors. Based on average ranks for three performance measures and the three sites, the analytical and subjective techniques are essentially comparable. For two of the three sites, Kruskal-Wallis one-way analysis of variance detects significant differences among the three hydrographers for the subjective methods, indicating that the subjective techniques are less consistent than the analytical techniques. The results suggest analytical techniques may be viable tools for estimating discharge during periods of ice effect, and should be developed further and evaluated for sites across the United States.

  7. Performance and Weight Estimates for an Advanced Open Rotor Engine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Tong, Michael T.

    2012-01-01

    NASA s Environmentally Responsible Aviation Project and Subsonic Fixed Wing Project are focused on developing concepts and technologies which may enable dramatic reductions to the environmental impact of future generation subsonic aircraft. The open rotor concept (also historically referred to an unducted fan or advanced turboprop) may allow for the achievement of this objective by reducing engine fuel consumption. To evaluate the potential impact of open rotor engines, cycle modeling and engine weight estimation capabilities have been developed. The initial development of the cycle modeling capabilities in the Numerical Propulsion System Simulation (NPSS) tool was presented in a previous paper. Following that initial development, further advancements have been made to the cycle modeling and weight estimation capabilities for open rotor engines and are presented in this paper. The developed modeling capabilities are used to predict the performance of an advanced open rotor concept using modern counter-rotating propeller designs. Finally, performance and weight estimates for this engine are presented and compared to results from a previous NASA study of advanced geared and direct-drive turbofans.

  8. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs

    PubMed Central

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2015-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012. PMID:26347393

  9. On Advanced Estimation Techniques for Exoplanet Detection and Characterization using Ground-Based Coronagraphs

    NASA Technical Reports Server (NTRS)

    Lawson, Peter R.; Frazin, Richard; Barrett, Harrison; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gladysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jerome; hide

    2012-01-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We provide a formal comparison of techniques through a blind data challenge and evaluate performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  10. On Advanced Estimation Techniques for Exoplanet Detection and Characterization Using Ground-based Coronagraphs.

    PubMed

    Lawson, Peter R; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  11. On advanced estimation techniques for exoplanet detection and characterization using ground-based coronagraphs

    NASA Astrophysics Data System (ADS)

    Lawson, Peter R.; Poyneer, Lisa; Barrett, Harrison; Frazin, Richard; Caucci, Luca; Devaney, Nicholas; Furenlid, Lars; Gładysz, Szymon; Guyon, Olivier; Krist, John; Maire, Jérôme; Marois, Christian; Mawet, Dimitri; Mouillet, David; Mugnier, Laurent; Pearson, Iain; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry

    2012-07-01

    The direct imaging of planets around nearby stars is exceedingly difficult. Only about 14 exoplanets have been imaged to date that have masses less than 13 times that of Jupiter. The next generation of planet-finding coronagraphs, including VLT-SPHERE, the Gemini Planet Imager, Palomar P1640, and Subaru HiCIAO have predicted contrast performance of roughly a thousand times less than would be needed to detect Earth-like planets. In this paper we review the state of the art in exoplanet imaging, most notably the method of Locally Optimized Combination of Images (LOCI), and we investigate the potential of improving the detectability of faint exoplanets through the use of advanced statistical methods based on the concepts of the ideal observer and the Hotelling observer. We propose a formal comparison of techniques using a blind data challenge with an evaluation of performance using the Receiver Operating Characteristic (ROC) and Localization ROC (LROC) curves. We place particular emphasis on the understanding and modeling of realistic sources of measurement noise in ground-based AO-corrected coronagraphs. The work reported in this paper is the result of interactions between the co-authors during a week-long workshop on exoplanet imaging that was held in Squaw Valley, California, in March of 2012.

  12. Sonic Fatigue Design Techniques for Advanced Composite Aircraft Structures

    DTIC Science & Technology

    1980-04-01

    AFWAL-TR-80.3019 AD A 090553 SONIC FATIGUE DESIGN TECHNIQUES FOR ADVANCED COMPOSITE AIRCRAFT STRUCTURES FINAL REPORT Ian Holehouse Rohr Industries...5 2. General Sonic Fatigue Theory .... ....... 7 3. Composite Laminate Analysis .. ....... ... 10 4. Preliminary Sonic Fatigue...overall sonic fatigue design guides. These existing desiyn methcds have been developed for metal structures. However, recent advanced composite

  13. Advanced neuroimaging techniques for the term newborn with encephalopathy.

    PubMed

    Chau, Vann; Poskitt, Kenneth John; Miller, Steven Paul

    2009-03-01

    Neonatal encephalopathy is associated with a high risk of morbidity and mortality in the neonatal period and of long-term neurodevelopmental disability in survivors. Advanced magnetic resonance techniques now play a major role in the clinical care of newborns with encephalopathy and in research addressing this important condition. From conventional magnetic resonance imaging, typical patterns of injury have been defined in neonatal encephalopathy. When applied in contemporary cohorts of newborns with encephalopathy, the patterns of brain injury on magnetic resonance imaging distinguish risk factors, clinical presentation, and risk of abnormal outcome. Advanced magnetic resonance techniques such as magnetic resonance spectroscopy, diffusion-weighted imaging, and diffusion tensor imaging provide novel perspectives on neonatal brain metabolism, microstructure, and connectivity. With the application of these imaging tools, it is increasingly apparent that brain injury commonly occurs at or near the time of birth and evolves over the first weeks of life. These observations have complemented findings from trials of emerging strategies of brain protection, such as hypothermia. Application of these advanced magnetic resonance techniques may enable the earliest possible identification of newborns at risk of neurodevelopmental impairment, thereby ensuring appropriate follow-up with rehabilitation and psychoeducational resources.

  14. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  15. Quantitative CT: technique dependence of volume estimation on pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Colsher, James; Amurao, Maxwell; Samei, Ehsan

    2012-03-01

    Current estimation of lung nodule size typically relies on uni- or bi-dimensional techniques. While new three-dimensional volume estimation techniques using MDCT have improved size estimation of nodules with irregular shapes, the effect of acquisition and reconstruction parameters on accuracy (bias) and precision (variance) of the new techniques has not been fully investigated. To characterize the volume estimation performance dependence on these parameters, an anthropomorphic chest phantom containing synthetic nodules was scanned and reconstructed with protocols across various acquisition and reconstruction parameters. Nodule volumes were estimated by a clinical lung analysis software package, LungVCAR. Precision and accuracy of the volume assessment were calculated across the nodules and compared between protocols via a generalized estimating equation analysis. Results showed that the precision and accuracy of nodule volume quantifications were dependent on slice thickness, with different dependences for different nodule characteristics. Other parameters including kVp, pitch, and reconstruction kernel had lower impact. Determining these technique dependences enables better volume quantification via protocol optimization and highlights the importance of consistent imaging parameters in sequential examinations.

  16. Advances in Testing Techniques for Digital Microfluidic Biochips

    PubMed Central

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-01-01

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips. PMID:28749411

  17. Advances in Testing Techniques for Digital Microfluidic Biochips.

    PubMed

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-07-27

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.

  18. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.

  19. UAV State Estimation Modeling Techniques in AHRS

    NASA Astrophysics Data System (ADS)

    Razali, Shikin; Zhahir, Amzari

    2017-11-01

    Autonomous unmanned aerial vehicle (UAV) system is depending on state estimation feedback to control flight operation. Estimation on the correct state improves navigation accuracy and achieves flight mission safely. One of the sensors configuration used in UAV state is Attitude Heading and Reference System (AHRS) with application of Extended Kalman Filter (EKF) or feedback controller. The results of these two different techniques in estimating UAV states in AHRS configuration are displayed through position and attitude graphs.

  20. Advanced Physiological Estimation of Cognitive Status (APECS)

    DTIC Science & Technology

    2009-09-15

    REPORT Advanced Physiological Estimation of Cognitive Status (APECS) Final Report 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: EEG...fitness and transmit data to command and control systems. Some of the signals that the physiological sensors measure are readily interpreted, such as...electroencephalogram (EEG) and other signals requires a complex series of mathematical transformations or algorithms. Overall, research on algorithms

  1. Advanced wiring technique and hardware application: Airplane and space vehicle

    NASA Technical Reports Server (NTRS)

    Ernst, H. L.; Eichman, C. D.

    1972-01-01

    An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

  2. Three-dimensional hybrid grid generation using advancing front techniques

    NASA Technical Reports Server (NTRS)

    Steinbrenner, John P.; Noack, Ralph W.

    1995-01-01

    A new 3-dimensional hybrid grid generation technique has been developed, based on ideas of advancing fronts for both structured and unstructured grids. In this approach, structured grids are first generate independently around individual components of the geometry. Fronts are initialized on these structure grids, and advanced outward so that new cells are extracted directly from the structured grids. Employing typical advancing front techniques, cells are rejected if they intersect the existing front or fail other criteria When no more viable structured cells exist further cells are advanced in an unstructured manner to close off the overall domain, resulting in a grid of 'hybrid' form. There are two primary advantages to the hybrid formulation. First, generating blocks with limited regard to topology eliminates the bottleneck encountered when a multiple block system is used to fully encapsulate a domain. Individual blocks may be generated free of external constraints, which will significantly reduce the generation time. Secondly, grid points near the body (presumably with high aspect ratio) will still maintain a structured (non-triangular or tetrahedral) character, thereby maximizing grid quality and solution accuracy near the surface.

  3. Comparative evaluation of workload estimation techniques in piloting tasks

    NASA Technical Reports Server (NTRS)

    Wierwille, W. W.

    1983-01-01

    Techniques to measure operator workload in a wide range of situations and tasks were examined. The sensitivity and intrusion of a wide variety of workload assessment techniques in simulated piloting tasks were investigated. Four different piloting tasks, psychomotor, perceptual, mediational, and communication aspects of piloting behavior were selected. Techniques to determine relative sensitivity and intrusion were applied. Sensitivity is the relative ability of a workload estimation technique to discriminate statistically significant differences in operator loading. High sensitivity requires discriminable changes in score means as a function of load level and low variation of the scores about the means. Intrusion is an undesirable change in the task for which workload is measured, resulting from the introduction of the workload estimation technique or apparatus.

  4. Advanced techniques in placental biology -- workshop report.

    PubMed

    Nelson, D M; Sadovsky, Y; Robinson, J M; Croy, B A; Rice, G; Kniss, D A

    2006-04-01

    Major advances in placental biology have been realized as new technologies have been developed and existing methods have been refined in many areas of biological research. Classical anatomy and whole-organ physiology tools once used to analyze placental structure and function have been supplanted by more sophisticated techniques adapted from molecular biology, proteomics, and computational biology and bioinformatics. In addition, significant refinements in morphological study of the placenta and its constituent cell types have improved our ability to assess form and function in highly integrated manner. To offer an overview of modern technologies used by investigators to study the placenta, this workshop: Advanced techniques in placental biology, assembled experts who discussed fundamental principles and real time examples of four separate methodologies. Y. Sadovsky presented the principles of microRNA function as an endogenous mechanism of gene regulation. J. Robinson demonstrated the utility of correlative microscopy in which light-level and transmission electron microscopy are combined to provide cellular and subcellular views of placental cells. A. Croy provided a lecture on the use of microdissection techniques which are invaluable for isolating very small subsets of cell types for molecular analysis. Finally, G. Rice presented an overview methods on profiling of complex protein mixtures within tissue and/or fluid samples that, when refined, will offer databases that will underpin a systems approach to modern trophoblast biology.

  5. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  6. Advanced Tools and Techniques for Formal Techniques in Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Knight, John C.

    2005-01-01

    This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

  7. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  8. Novel and Advanced Techniques for Complex IVC Filter Retrieval.

    PubMed

    Daye, Dania; Walker, T Gregory

    2017-04-01

    Inferior vena cava (IVC) filter placement is indicated for the treatment of venous thromboembolism (VTE) in patients with a contraindication to or a failure of anticoagulation. With the advent of retrievable IVC filters and their ease of placement, an increasing number of such filters are being inserted for prophylaxis in patients at high risk for VTE. Available data show that only a small number of these filters are retrieved within the recommended period, if at all, prompting the FDA to issue a statement on the need for their timely removal. With prolonged dwell times, advanced techniques may be needed for filter retrieval in up to 60% of the cases. In this article, we review standard and advanced IVC filter retrieval techniques including single-access, dual-access, and dissection techniques. Complicated filter retrievals carry a non-negligible risk for complications such as filter fragmentation and resultant embolization of filter components, venous pseudoaneurysms or stenoses, and breach of the integrity of the caval wall. Careful pre-retrieval assessment of IVC filter position, any significant degree of filter tilting or of hook, and/or strut epithelialization and caval wall penetration by filter components should be considered using dedicated cross-sectional imaging for procedural planning. In complex cases, the risk for retrieval complications should be carefully weighed against the risks of leaving the filter permanently indwelling. The decision to remove an embedded IVC filter using advanced techniques should be individualized to each patient and made with caution, based on the patient's age and existing comorbidities.

  9. Deep learning ensemble with asymptotic techniques for oscillometric blood pressure estimation.

    PubMed

    Lee, Soojeong; Chang, Joon-Hyuk

    2017-11-01

    This paper proposes a deep learning based ensemble regression estimator with asymptotic techniques, and offers a method that can decrease uncertainty for oscillometric blood pressure (BP) measurements using the bootstrap and Monte-Carlo approach. While the former is used to estimate SBP and DBP, the latter attempts to determine confidence intervals (CIs) for SBP and DBP based on oscillometric BP measurements. This work originally employs deep belief networks (DBN)-deep neural networks (DNN) to effectively estimate BPs based on oscillometric measurements. However, there are some inherent problems with these methods. First, it is not easy to determine the best DBN-DNN estimator, and worthy information might be omitted when selecting one DBN-DNN estimator and discarding the others. Additionally, our input feature vectors, obtained from only five measurements per subject, represent a very small sample size; this is a critical weakness when using the DBN-DNN technique and can cause overfitting or underfitting, depending on the structure of the algorithm. To address these problems, an ensemble with an asymptotic approach (based on combining the bootstrap with the DBN-DNN technique) is utilized to generate the pseudo features needed to estimate the SBP and DBP. In the first stage, the bootstrap-aggregation technique is used to create ensemble parameters. Afterward, the AdaBoost approach is employed for the second-stage SBP and DBP estimation. We then use the bootstrap and Monte-Carlo techniques in order to determine the CIs based on the target BP estimated using the DBN-DNN ensemble regression estimator with the asymptotic technique in the third stage. The proposed method can mitigate the estimation uncertainty such as large the standard deviation of error (SDE) on comparing the proposed DBN-DNN ensemble regression estimator with the DBN-DNN single regression estimator, we identify that the SDEs of the SBP and DBP are reduced by 0.58 and 0.57  mmHg, respectively. These

  10. Multiple sensitive estimation and optimal sample size allocation in the item sum technique.

    PubMed

    Perri, Pier Francesco; Rueda García, María Del Mar; Cobo Rodríguez, Beatriz

    2018-01-01

    For surveys of sensitive issues in life sciences, statistical procedures can be used to reduce nonresponse and social desirability response bias. Both of these phenomena provoke nonsampling errors that are difficult to deal with and can seriously flaw the validity of the analyses. The item sum technique (IST) is a very recent indirect questioning method derived from the item count technique that seeks to procure more reliable responses on quantitative items than direct questioning while preserving respondents' anonymity. This article addresses two important questions concerning the IST: (i) its implementation when two or more sensitive variables are investigated and efficient estimates of their unknown population means are required; (ii) the determination of the optimal sample size to achieve minimum variance estimates. These aspects are of great relevance for survey practitioners engaged in sensitive research and, to the best of our knowledge, were not studied so far. In this article, theoretical results for multiple estimation and optimal allocation are obtained under a generic sampling design and then particularized to simple random sampling and stratified sampling designs. Theoretical considerations are integrated with a number of simulation studies based on data from two real surveys and conducted to ascertain the efficiency gain derived from optimal allocation in different situations. One of the surveys concerns cannabis consumption among university students. Our findings highlight some methodological advances that can be obtained in life sciences IST surveys when optimal allocation is achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Refinement of NMR structures using implicit solvent and advanced sampling techniques.

    PubMed

    Chen, Jianhan; Im, Wonpil; Brooks, Charles L

    2004-12-15

    NMR biomolecular structure calculations exploit simulated annealing methods for conformational sampling and require a relatively high level of redundancy in the experimental restraints to determine quality three-dimensional structures. Recent advances in generalized Born (GB) implicit solvent models should make it possible to combine information from both experimental measurements and accurate empirical force fields to improve the quality of NMR-derived structures. In this paper, we study the influence of implicit solvent on the refinement of protein NMR structures and identify an optimal protocol of utilizing these improved force fields. To do so, we carry out structure refinement experiments for model proteins with published NMR structures using full NMR restraints and subsets of them. We also investigate the application of advanced sampling techniques to NMR structure refinement. Similar to the observations of Xia et al. (J.Biomol. NMR 2002, 22, 317-331), we find that the impact of implicit solvent is rather small when there is a sufficient number of experimental restraints (such as in the final stage of NMR structure determination), whether implicit solvent is used throughout the calculation or only in the final refinement step. The application of advanced sampling techniques also seems to have minimal impact in this case. However, when the experimental data are limited, we demonstrate that refinement with implicit solvent can substantially improve the quality of the structures. In particular, when combined with an advanced sampling technique, the replica exchange (REX) method, near-native structures can be rapidly moved toward the native basin. The REX method provides both enhanced sampling and automatic selection of the most native-like (lowest energy) structures. An optimal protocol based on our studies first generates an ensemble of initial structures that maximally satisfy the available experimental data with conventional NMR software using a simplified

  12. Advanced Packaging Materials and Techniques for High Power TR Module: Standard Flight vs. Advanced Packaging

    NASA Technical Reports Server (NTRS)

    Hoffman, James Patrick; Del Castillo, Linda; Miller, Jennifer; Jenabi, Masud; Hunter, Donald; Birur, Gajanana

    2011-01-01

    The higher output power densities required of modern radar architectures, such as the proposed DESDynI [Deformation, Ecosystem Structure, and Dynamics of Ice] SAR [Synthetic Aperture Radar] Instrument (or DSI) require increasingly dense high power electronics. To enable these higher power densities, while maintaining or even improving hardware reliability, requires advances in integrating advanced thermal packaging technologies into radar transmit/receive (TR) modules. New materials and techniques have been studied and compared to standard technologies.

  13. Space Shuttle propulsion parameter estimation using optimal estimation techniques, volume 1

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The mathematical developments and their computer program implementation for the Space Shuttle propulsion parameter estimation project are summarized. The estimation approach chosen is the extended Kalman filtering with a modified Bryson-Frazier smoother. Its use here is motivated by the objective of obtaining better estimates than those available from filtering and to eliminate the lag associated with filtering. The estimation technique uses as the dynamical process the six degree equations-of-motion resulting in twelve state vector elements. In addition to these are mass and solid propellant burn depth as the ""system'' state elements. The ""parameter'' state elements can include aerodynamic coefficient, inertia, center-of-gravity, atmospheric wind, etc. deviations from referenced values. Propulsion parameter state elements have been included not as options just discussed but as the main parameter states to be estimated. The mathematical developments were completed for all these parameters. Since the systems dynamics and measurement processes are non-linear functions of the states, the mathematical developments are taken up almost entirely by the linearization of these equations as required by the estimation algorithms.

  14. State estimation for advanced control of wave energy converters

    DOE Data Explorer

    Coe, Ryan; Bacelli, Giorgio

    2017-04-25

    A report on state estimation for advanced control of wave energy converters (WECs), with supporting data models and slides from the overview presentation. The methods discussed are intended for use to enable real-time closed loop control of WECs.

  15. Advanced decision aiding techniques applicable to space

    NASA Technical Reports Server (NTRS)

    Kruchten, Robert J.

    1987-01-01

    RADC has had an intensive program to show the feasibility of applying advanced technology to Air Force decision aiding situations. Some aspects of the program, such as Satellite Autonomy, are directly applicable to space systems. For example, RADC has shown the feasibility of decision aids that combine the advantages of laser disks and computer generated graphics; decision aids that interface object-oriented programs with expert systems; decision aids that solve path optimization problems; etc. Some of the key techniques that could be used in space applications are reviewed. Current applications are reviewed along with their advantages and disadvantages, and examples are given of possible space applications. The emphasis is to share RADC experience in decision aiding techniques.

  16. Comparing capacity value estimation techniques for photovoltaic solar power

    DOE PAGES

    Madaeni, Seyed Hossein; Sioshansi, Ramteen; Denholm, Paul

    2012-09-28

    In this paper, we estimate the capacity value of photovoltaic (PV) solar plants in the western U.S. Our results show that PV plants have capacity values that range between 52% and 93%, depending on location and sun-tracking capability. We further compare more robust but data- and computationally-intense reliability-based estimation techniques with simpler approximation methods. We show that if implemented properly, these techniques provide accurate approximations of reliability-based methods. Overall, methods that are based on the weighted capacity factor of the plant provide the most accurate estimate. As a result, we also examine the sensitivity of PV capacity value to themore » inclusion of sun-tracking systems.« less

  17. Advanced Bode Plot Techniques for Ultrasonic Transducers

    NASA Astrophysics Data System (ADS)

    DeAngelis, D. A.; Schulze, G. W.

    The Bode plot, displayed as either impedance or admittance versus frequency, is the most basic test used by ultrasonic transducer designers. With simplicity and ease-of-use, Bode plots are ideal for baseline comparisons such as spacing of parasitic modes or impedance, but quite often the subtleties that manifest as poor process control are hard to interpret or are nonexistence. In-process testing of transducers is time consuming for quantifying statistical aberrations, and assessments made indirectly via the workpiece are difficult. This research investigates the use of advanced Bode plot techniques to compare ultrasonic transducers with known "good" and known "bad" process performance, with the goal of a-priori process assessment. These advanced techniques expand from the basic constant voltage versus frequency sweep to include constant current and constant velocity interrogated locally on transducer or tool; they also include up and down directional frequency sweeps to quantify hysteresis effects like jumping and dropping phenomena. The investigation focuses solely on the common PZT8 piezoelectric material used with welding transducers for semiconductor wire bonding. Several metrics are investigated such as impedance, displacement/current gain, velocity/current gain, displacement/voltage gain and velocity/voltage gain. The experimental and theoretical research methods include Bode plots, admittance loops, laser vibrometry and coupled-field finite element analysis.

  18. [Advanced online search techniques and dedicated search engines for physicians].

    PubMed

    Nahum, Yoav

    2008-02-01

    In recent years search engines have become an essential tool in the work of physicians. This article will review advanced search techniques from the world of information specialists, as well as some advanced search engine operators that may help physicians improve their online search capabilities, and maximize the yield of their searches. This article also reviews popular dedicated scientific and biomedical literature search engines.

  19. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1988-01-01

    Parametric cost estimating methods for space systems in the conceptual design phase are developed. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance, and time. The relationship between weight and cost is examined in detail. A theoretical model of cost is developed and tested statistically against a historical data base of major research and development programs. It is concluded that the technique presented is sound, but that it must be refined in order to produce acceptable cost estimates.

  20. Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles

    NASA Technical Reports Server (NTRS)

    Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

    1992-01-01

    Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

  1. Multidirectional mobilities: Advanced measurement techniques and applications

    NASA Astrophysics Data System (ADS)

    Ivarsson, Lars Holger

    Today high noise-and-vibration comfort has become a quality sign of products in sectors such as the automotive industry, aircraft, components, households and manufacturing. Consequently, already in the design phase of products, tools are required to predict the final vibration and noise levels. These tools have to be applicable over a wide frequency range with sufficient accuracy. During recent decades a variety of tools have been developed such as transfer path analysis (TPA), input force estimation, substructuring, coupling by frequency response functions (FRF) and hybrid modelling. While these methods have a well-developed theoretical basis, their application combined with experimental data often suffers from a lack of information concerning rotational DOFs. In order to measure response in all 6 DOFs (including rotation), a sensor has been developed, whose special features are discussed in the thesis. This transducer simplifies the response measurements, although in practice the excitation of moments appears to be more difficult. Several excitation techniques have been developed to enable measurement of multidirectional mobilities. For rapid and simple measurement of the loaded mobility matrix, a MIMO (Multiple Input Multiple Output) technique is used. The technique has been tested and validated on several structures of different complexity. A second technique for measuring the loaded 6-by-6 mobility matrix has been developed. This technique employs a model of the excitation set-up, and with this model the mobility matrix is determined from sequential measurements. Measurements on ``real'' structures show that both techniques give results of similar quality, and both are recommended for practical use. As a further step, a technique for measuring the unloaded mobilities is presented. It employs the measured loaded mobility matrix in order to calculate compensation forces and moments, which are later applied in order to compensate for the loading of the

  2. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  3. Advances in top-down and bottom-up surface nanofabrication: techniques, applications & future prospects.

    PubMed

    Biswas, Abhijit; Bayer, Ilker S; Biris, Alexandru S; Wang, Tao; Dervishi, Enkeleda; Faupel, Franz

    2012-01-15

    This review highlights the most significant advances of the nanofabrication techniques reported over the past decade with a particular focus on the approaches tailored towards the fabrication of functional nano-devices. The review is divided into two sections: top-down and bottom-up nanofabrication. Under the classification of top-down, special attention is given to technical reports that demonstrate multi-directional patterning capabilities less than or equal to 100 nm. These include recent advances in lithographic techniques, such as optical, electron beam, soft, nanoimprint, scanning probe, and block copolymer lithography. Bottom-up nanofabrication techniques--such as, atomic layer deposition, sol-gel nanofabrication, molecular self-assembly, vapor-phase deposition and DNA-scaffolding for nanoelectronics--are also discussed. Specifically, we describe advances in the fabrication of functional nanocomposites and graphene using chemical and physical vapor deposition. Our aim is to provide a comprehensive platform for prominent nanofabrication tools and techniques in order to facilitate the development of new or hybrid nanofabrication techniques leading to novel and efficient functional nanostructured devices. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Surgical Techniques for Diaphragmatic Resection During Cytoreduction in Advanced or Recurrent Ovarian Carcinoma: A Systematic Review and Meta-analysis.

    PubMed

    Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Chiappa, Valentina; Donfrancesco, Cristina; Di Donato, Violante; Indini, Alice; Aletti, Giovanni; Raspagliesi, Francesco

    2016-02-01

    Optimal cytoreduction is one the main factors improving survival outcomes in patients affected by ovarian cancer (OC). It is estimated that approximately 40% of OC patients have gross disease located on the diaphragm. However, no mature data evaluating outcomes of surgical techniques for the management of diaphragmatic carcinosis exist. In the present study, we aimed to estimate surgery-related morbidity of different surgical techniques for diaphragmatic cytoreduction in advanced or recurrent OC. PubMed (MEDLINE), Web of Science, and Clincaltrials.gov databases were searched for records estimating outcomes of diaphragmatic peritoneal stripping (DPS) or diaphragmatic full-thickness resection (DFTR) for OC. The meta-analysis was performed using the Cochrane Review software. For the final analysis, 5 articles were available, including 272 patients. Diaphragmatic peritoneal stripping and DFTR were performed in 197 patients (72%) and 75 patients (28%), respectively. Pooled analysis suggested that the estimated pleural effusion rate was 43% and 51% after DPS and DFTR, respectively. The need for pleural punctures or chest tube placement was 4% and 9% after DPS and DFTR, respectively. The rate of postoperative pneumothorax (4% vs 9%; odds ratio, 0.31; 95% confidence interval, 0.05-2.08) and subdiaphragmatic abscess (3% vs 3%; odds ratio, 0.45; 95% confidence interval, 0.09-2.31) were similar after the execution of DPS and DFTR. Diaphragmatic surgery is a crucial step during cytoreduction for advanced or recurrent OC. Obviously, the choice to perform DPS or DFTR depends on the infiltration of the diaphragmatic muscle or not. Both the procedures are associated with a low pulmonary complication and chest tube placement rates.

  5. Advanced flow MRI: emerging techniques and applications

    PubMed Central

    Markl, M.; Schnell, S.; Wu, C.; Bollache, E.; Jarvis, K.; Barker, A. J.; Robinson, J. D.; Rigsby, C. K.

    2016-01-01

    Magnetic resonance imaging (MRI) techniques provide non-invasive and non-ionising methods for the highly accurate anatomical depiction of the heart and vessels throughout the cardiac cycle. In addition, the intrinsic sensitivity of MRI to motion offers the unique ability to acquire spatially registered blood flow simultaneously with the morphological data, within a single measurement. In clinical routine, flow MRI is typically accomplished using methods that resolve two spatial dimensions in individual planes and encode the time-resolved velocity in one principal direction, typically oriented perpendicular to the two-dimensional (2D) section. This review describes recently developed advanced MRI flow techniques, which allow for more comprehensive evaluation of blood flow characteristics, such as real-time flow imaging, 2D multiple-venc phase contrast MRI, four-dimensional (4D) flow MRI, quantification of complex haemodynamic properties, and highly accelerated flow imaging. Emerging techniques and novel applications are explored. In addition, applications of these new techniques for the improved evaluation of cardiovascular (aorta, pulmonary arteries, congenital heart disease, atrial fibrillation, coronary arteries) as well as cerebrovascular disease (intra-cranial arteries and veins) are presented. PMID:26944696

  6. Accurate Estimation of Solvation Free Energy Using Polynomial Fitting Techniques

    PubMed Central

    Shyu, Conrad; Ytreberg, F. Marty

    2010-01-01

    This report details an approach to improve the accuracy of free energy difference estimates using thermodynamic integration data (slope of the free energy with respect to the switching variable λ) and its application to calculating solvation free energy. The central idea is to utilize polynomial fitting schemes to approximate the thermodynamic integration data to improve the accuracy of the free energy difference estimates. Previously, we introduced the use of polynomial regression technique to fit thermodynamic integration data (Shyu and Ytreberg, J Comput Chem 30: 2297–2304, 2009). In this report we introduce polynomial and spline interpolation techniques. Two systems with analytically solvable relative free energies are used to test the accuracy of the interpolation approach. We also use both interpolation and regression methods to determine a small molecule solvation free energy. Our simulations show that, using such polynomial techniques and non-equidistant λ values, the solvation free energy can be estimated with high accuracy without using soft-core scaling and separate simulations for Lennard-Jones and partial charges. The results from our study suggest these polynomial techniques, especially with use of non-equidistant λ values, improve the accuracy for ΔF estimates without demanding additional simulations. We also provide general guidelines for use of polynomial fitting to estimate free energy. To allow researchers to immediately utilize these methods, free software and documentation is provided via http://www.phys.uidaho.edu/ytreberg/software. PMID:20623657

  7. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  8. Data Compression Techniques for Advanced Space Transportation Systems

    NASA Technical Reports Server (NTRS)

    Bradley, William G.

    1998-01-01

    Advanced space transportation systems, including vehicle state of health systems, will produce large amounts of data which must be stored on board the vehicle and or transmitted to the ground and stored. The cost of storage or transmission of the data could be reduced if the number of bits required to represent the data is reduced by the use of data compression techniques. Most of the work done in this study was rather generic and could apply to many data compression systems, but the first application area to be considered was launch vehicle state of health telemetry systems. Both lossless and lossy compression techniques were considered in this study.

  9. Fabrication of advanced electrochemical energy materials using sol-gel processing techniques

    NASA Technical Reports Server (NTRS)

    Chu, C. T.; Chu, Jay; Zheng, Haixing

    1995-01-01

    Advanced materials play an important role in electrochemical energy devices such as batteries, fuel cells, and electrochemical capacitors. They are being used as both electrodes and electrolytes. Sol-gel processing is a versatile solution technique used in fabrication of ceramic materials with tailored stoichiometry, microstructure, and properties. The application of sol-gel processing in the fabrication of advanced electrochemical energy materials will be presented. The potentials of sol-gel derived materials for electrochemical energy applications will be discussed along with some examples of successful applications. Sol-gel derived metal oxide electrode materials such as V2O5 cathodes have been demonstrated in solid-slate thin film batteries; solid electrolytes materials such as beta-alumina for advanced secondary batteries had been prepared by the sol-gel technique long time ago; and high surface area transition metal compounds for capacitive energy storage applications can also be synthesized with this method.

  10. Comparative Analysis of Various Single-tone Frequency Estimation Techniques in High-order Instantaneous Moments Based Phase Estimation Method

    NASA Astrophysics Data System (ADS)

    Rajshekhar, G.; Gorthi, Sai Siva; Rastogi, Pramod

    2010-04-01

    For phase estimation in digital holographic interferometry, a high-order instantaneous moments (HIM) based method was recently developed which relies on piecewise polynomial approximation of phase and subsequent evaluation of the polynomial coefficients using the HIM operator. A crucial step in the method is mapping the polynomial coefficient estimation to single-tone frequency determination for which various techniques exist. The paper presents a comparative analysis of the performance of the HIM operator based method in using different single-tone frequency estimation techniques for phase estimation. The analysis is supplemented by simulation results.

  11. WAATS: A computer program for Weights Analysis of Advanced Transportation Systems

    NASA Technical Reports Server (NTRS)

    Glatt, C. R.

    1974-01-01

    A historical weight estimating technique for advanced transportation systems is presented. The classical approach to weight estimation is discussed and sufficient data is presented to estimate weights for a large spectrum of flight vehicles including horizontal and vertical takeoff aircraft, boosters and reentry vehicles. A computer program, WAATS (Weights Analysis for Advanced Transportation Systems) embracing the techniques discussed has been written and user instructions are presented. The program was developed for use in the ODIN (Optimal Design Integration System) system.

  12. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy

    PubMed Central

    Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw

    2014-01-01

    Objective This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. Design We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Results Advanced colorectal neoplasia was detected in 2544 of the 35 918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7–8. Conclusions Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. PMID:24385598

  13. Endoscopic therapy for early gastric cancer: Standard techniques and recent advances in ESD

    PubMed Central

    Kume, Keiichiro

    2014-01-01

    The technique of endoscopic submucosal dissection (ESD) is now a well-known endoscopic therapy for early gastric cancer. ESD was introduced to resect large specimens of early gastric cancer in a single piece. ESD can provide precision of histologic diagnosis and can also reduce the recurrence rate. However, the drawback of ESD is its technical difficulty, and, consequently, it is associated with a high rate of complications, the need for advanced endoscopic techniques, and a lengthy procedure time. Various advances in the devices and techniques used for ESD have contributed to overcoming these drawbacks. PMID:24914364

  14. Framework for the mapping of the monthly average daily solar radiation using an advanced case-based reasoning and a geostatistical technique.

    PubMed

    Lee, Minhyun; Koo, Choongwan; Hong, Taehoon; Park, Hyo Seon

    2014-04-15

    For the effective photovoltaic (PV) system, it is necessary to accurately determine the monthly average daily solar radiation (MADSR) and to develop an accurate MADSR map, which can simplify the decision-making process for selecting the suitable location of the PV system installation. Therefore, this study aimed to develop a framework for the mapping of the MADSR using an advanced case-based reasoning (CBR) and a geostatistical technique. The proposed framework consists of the following procedures: (i) the geographic scope for the mapping of the MADSR is set, and the measured MADSR and meteorological data in the geographic scope are collected; (ii) using the collected data, the advanced CBR model is developed; (iii) using the advanced CBR model, the MADSR at unmeasured locations is estimated; and (iv) by applying the measured and estimated MADSR data to the geographic information system, the MADSR map is developed. A practical validation was conducted by applying the proposed framework to South Korea. It was determined that the MADSR map developed through the proposed framework has been improved in terms of accuracy. The developed MADSR map can be used for estimating the MADSR at unmeasured locations and for determining the optimal location for the PV system installation.

  15. Advanced Marketing Core Curriculum. Test Items and Assessment Techniques.

    ERIC Educational Resources Information Center

    Smith, Clifton L.; And Others

    This document contains duties and tasks, multiple-choice test items, and other assessment techniques for Missouri's advanced marketing core curriculum. The core curriculum begins with a list of 13 suggested textbook resources. Next, nine duties with their associated tasks are given. Under each task appears one or more citations to appropriate…

  16. Estimation of single plane unbalance parameters of a rotor-bearing system using Kalman filtering based force estimation technique

    NASA Astrophysics Data System (ADS)

    Shrivastava, Akash; Mohanty, A. R.

    2018-03-01

    This paper proposes a model-based method to estimate single plane unbalance parameters (amplitude and phase angle) in a rotor using Kalman filter and recursive least square based input force estimation technique. Kalman filter based input force estimation technique requires state-space model and response measurements. A modified system equivalent reduction expansion process (SEREP) technique is employed to obtain a reduced-order model of the rotor system so that limited response measurements can be used. The method is demonstrated using numerical simulations on a rotor-disk-bearing system. Results are presented for different measurement sets including displacement, velocity, and rotational response. Effects of measurement noise level, filter parameters (process noise covariance and forgetting factor), and modeling error are also presented and it is observed that the unbalance parameter estimation is robust with respect to measurement noise.

  17. Development of advanced acreage estimation methods

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr. (Principal Investigator)

    1980-01-01

    The use of the AMOEBA clustering/classification algorithm was investigated as a basis for both a color display generation technique and maximum likelihood proportion estimation procedure. An approach to analyzing large data reduction systems was formulated and an exploratory empirical study of spatial correlation in LANDSAT data was also carried out. Topics addressed include: (1) development of multiimage color images; (2) spectral spatial classification algorithm development; (3) spatial correlation studies; and (4) evaluation of data systems.

  18. System health monitoring using multiple-model adaptive estimation techniques

    NASA Astrophysics Data System (ADS)

    Sifford, Stanley Ryan

    Monitoring system health for fault detection and diagnosis by tracking system parameters concurrently with state estimates is approached using a new multiple-model adaptive estimation (MMAE) method. This novel method is called GRid-based Adaptive Parameter Estimation (GRAPE). GRAPE expands existing MMAE methods by using new techniques to sample the parameter space. GRAPE expands on MMAE with the hypothesis that sample models can be applied and resampled without relying on a predefined set of models. GRAPE is initially implemented in a linear framework using Kalman filter models. A more generalized GRAPE formulation is presented using extended Kalman filter (EKF) models to represent nonlinear systems. GRAPE can handle both time invariant and time varying systems as it is designed to track parameter changes. Two techniques are presented to generate parameter samples for the parallel filter models. The first approach is called selected grid-based stratification (SGBS). SGBS divides the parameter space into equally spaced strata. The second approach uses Latin Hypercube Sampling (LHS) to determine the parameter locations and minimize the total number of required models. LHS is particularly useful when the parameter dimensions grow. Adding more parameters does not require the model count to increase for LHS. Each resample is independent of the prior sample set other than the location of the parameter estimate. SGBS and LHS can be used for both the initial sample and subsequent resamples. Furthermore, resamples are not required to use the same technique. Both techniques are demonstrated for both linear and nonlinear frameworks. The GRAPE framework further formalizes the parameter tracking process through a general approach for nonlinear systems. These additional methods allow GRAPE to either narrow the focus to converged values within a parameter range or expand the range in the appropriate direction to track the parameters outside the current parameter range boundary

  19. Techniques for estimating health care costs with censored data: an overview for the health services researcher

    PubMed Central

    Wijeysundera, Harindra C; Wang, Xuesong; Tomlinson, George; Ko, Dennis T; Krahn, Murray D

    2012-01-01

    Objective The aim of this study was to review statistical techniques for estimating the mean population cost using health care cost data that, because of the inability to achieve complete follow-up until death, are right censored. The target audience is health service researchers without an advanced statistical background. Methods Data were sourced from longitudinal heart failure costs from Ontario, Canada, and administrative databases were used for estimating costs. The dataset consisted of 43,888 patients, with follow-up periods ranging from 1 to 1538 days (mean 576 days). The study was designed so that mean health care costs over 1080 days of follow-up were calculated using naïve estimators such as full-sample and uncensored case estimators. Reweighted estimators – specifically, the inverse probability weighted estimator – were calculated, as was phase-based costing. Costs were adjusted to 2008 Canadian dollars using the Bank of Canada consumer price index (http://www.bankofcanada.ca/en/cpi.html). Results Over the restricted follow-up of 1080 days, 32% of patients were censored. The full-sample estimator was found to underestimate mean cost ($30,420) compared with the reweighted estimators ($36,490). The phase-based costing estimate of $37,237 was similar to that of the simple reweighted estimator. Conclusion The authors recommend against the use of full-sample or uncensored case estimators when censored data are present. In the presence of heavy censoring, phase-based costing is an attractive alternative approach. PMID:22719214

  20. A score to estimate the likelihood of detecting advanced colorectal neoplasia at colonoscopy.

    PubMed

    Kaminski, Michal F; Polkowski, Marcin; Kraszewska, Ewa; Rupinski, Maciej; Butruk, Eugeniusz; Regula, Jaroslaw

    2014-07-01

    This study aimed to develop and validate a model to estimate the likelihood of detecting advanced colorectal neoplasia in Caucasian patients. We performed a cross-sectional analysis of database records for 40-year-old to 66-year-old patients who entered a national primary colonoscopy-based screening programme for colorectal cancer in 73 centres in Poland in the year 2007. We used multivariate logistic regression to investigate the associations between clinical variables and the presence of advanced neoplasia in a randomly selected test set, and confirmed the associations in a validation set. We used model coefficients to develop a risk score for detection of advanced colorectal neoplasia. Advanced colorectal neoplasia was detected in 2544 of the 35,918 included participants (7.1%). In the test set, a logistic-regression model showed that independent risk factors for advanced colorectal neoplasia were: age, sex, family history of colorectal cancer, cigarette smoking (p<0.001 for these four factors), and Body Mass Index (p=0.033). In the validation set, the model was well calibrated (ratio of expected to observed risk of advanced neoplasia: 1.00 (95% CI 0.95 to 1.06)) and had moderate discriminatory power (c-statistic 0.62). We developed a score that estimated the likelihood of detecting advanced neoplasia in the validation set, from 1.32% for patients scoring 0, to 19.12% for patients scoring 7-8. Developed and internally validated score consisting of simple clinical factors successfully estimates the likelihood of detecting advanced colorectal neoplasia in asymptomatic Caucasian patients. Once externally validated, it may be useful for counselling or designing primary prevention studies. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    DOT National Transportation Integrated Search

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  2. Image enhancement and advanced information extraction techniques for ERTS-1 data

    NASA Technical Reports Server (NTRS)

    Malila, W. A. (Principal Investigator); Nalepka, R. F.; Sarno, J. E.

    1975-01-01

    The author has identified the following significant results. It was demonstrated and concluded that: (1) the atmosphere has significant effects on ERTS MSS data which can seriously degrade recognition performance; (2) the application of selected signature extension techniques serve to reduce the deleterious effects of both the atmosphere and changing ground conditions on recognition performance; and (3) a proportion estimation algorithm for overcoming problems in acreage estimation accuracy resulting from the coarse spatial resolution of the ERTS MSS, was able to significantly improve acreage estimation accuracy over that achievable by conventional techniques, especially for high contrast targets such as lakes and ponds.

  3. State-of-the-art characterization techniques for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Wu, Tianpin; Amine, Khalil

    2017-03-01

    To meet future needs for industries from personal devices to automobiles, state-of-the-art rechargeable lithium-ion batteries will require both improved durability and lowered costs. To enhance battery performance and lifetime, understanding electrode degradation mechanisms is of critical importance. Various advanced in situ and operando characterization tools developed during the past few years have proven indispensable for optimizing battery materials, understanding cell degradation mechanisms, and ultimately improving the overall battery performance. Here we review recent progress in the development and application of advanced characterization techniques such as in situ transmission electron microscopy for high-performance lithium-ion batteries. Using three representative electrode systems—layered metal oxides, Li-rich layered oxides and Si-based or Sn-based alloys—we discuss how these tools help researchers understand the battery process and design better battery systems. We also summarize the application of the characterization techniques to lithium-sulfur and lithium-air batteries and highlight the importance of those techniques in the development of next-generation batteries.

  4. Techniques for estimating flood hydrographs for ungaged urban watersheds

    USGS Publications Warehouse

    Stricker, V.A.; Sauer, V.B.

    1984-01-01

    The Clark Method, modified slightly was used to develop a synthetic, dimensionless hydrograph which can be used to estimate flood hydrographs for ungaged urban watersheds. Application of the technique results in a typical (average) flood hydrograph for a given peak discharge. Input necessary to apply the technique is an estimate of basin lagtime and the recurrence interval peak discharge. Equations for this purpose were obtained from a recent nationwide study on flood frequency in urban watersheds. A regression equation was developed which relates flood volumes to drainage area size, basin lagtime, and peak discharge. This equation is useful where storage of floodwater may be a part of design of flood prevention. (USGS)

  5. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

    1973-01-01

    A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

  6. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  7. Novel Application of Density Estimation Techniques in Muon Ionization Cooling Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohayai, Tanaz Angelina; Snopok, Pavel; Neuffer, David

    The international Muon Ionization Cooling Experiment (MICE) aims to demonstrate muon beam ionization cooling for the first time and constitutes a key part of the R&D towards a future neutrino factory or muon collider. Beam cooling reduces the size of the phase space volume occupied by the beam. Non-parametric density estimation techniques allow very precise calculation of the muon beam phase-space density and its increase as a result of cooling. These density estimation techniques are investigated in this paper and applied in order to estimate the reduction in muon beam size in MICE under various conditions.

  8. A comparison of minimum distance and maximum likelihood techniques for proportion estimation

    NASA Technical Reports Server (NTRS)

    Woodward, W. A.; Schucany, W. R.; Lindsey, H.; Gray, H. L.

    1982-01-01

    The estimation of mixing proportions P sub 1, P sub 2,...P sub m in the mixture density f(x) = the sum of the series P sub i F sub i(X) with i = 1 to M is often encountered in agricultural remote sensing problems in which case the p sub i's usually represent crop proportions. In these remote sensing applications, component densities f sub i(x) have typically been assumed to be normally distributed, and parameter estimation has been accomplished using maximum likelihood (ML) techniques. Minimum distance (MD) estimation is examined as an alternative to ML where, in this investigation, both procedures are based upon normal components. Results indicate that ML techniques are superior to MD when component distributions actually are normal, while MD estimation provides better estimates than ML under symmetric departures from normality. When component distributions are not symmetric, however, it is seen that neither of these normal based techniques provides satisfactory results.

  9. Development of a technique for estimating noise covariances using multiple observers

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1988-01-01

    Friedland's technique for estimating the unknown noise variances of a linear system using multiple observers has been extended by developing a general solution for the estimates of the variances, developing the statistics (mean and standard deviation) of these estimates, and demonstrating the solution on two examples.

  10. Development and application of the maximum entropy method and other spectral estimation techniques

    NASA Astrophysics Data System (ADS)

    King, W. R.

    1980-09-01

    This summary report is a collection of four separate progress reports prepared under three contracts, which are all sponsored by the Office of Naval Research in Arlington, Virginia. This report contains the results of investigations into the application of the maximum entropy method (MEM), a high resolution, frequency and wavenumber estimation technique. The report also contains a description of two, new, stable, high resolution spectral estimation techniques that is provided in the final report section. Many examples of wavenumber spectral patterns for all investigated techniques are included throughout the report. The maximum entropy method is also known as the maximum entropy spectral analysis (MESA) technique, and both names are used in the report. Many MEM wavenumber spectral patterns are demonstrated using both simulated and measured radar signal and noise data. Methods for obtaining stable MEM wavenumber spectra are discussed, broadband signal detection using the MEM prediction error transform (PET) is discussed, and Doppler radar narrowband signal detection is demonstrated using the MEM technique. It is also shown that MEM cannot be applied to randomly sampled data. The two new, stable, high resolution, spectral estimation techniques discussed in the final report section, are named the Wiener-King and the Fourier spectral estimation techniques. The two new techniques have a similar derivation based upon the Wiener prediction filter, but the two techniques are otherwise quite different. Further development of the techniques and measurement of the technique spectral characteristics is recommended for subsequent investigation.

  11. The Extended-Image Tracking Technique Based on the Maximum Likelihood Estimation

    NASA Technical Reports Server (NTRS)

    Tsou, Haiping; Yan, Tsun-Yee

    2000-01-01

    This paper describes an extended-image tracking technique based on the maximum likelihood estimation. The target image is assume to have a known profile covering more than one element of a focal plane detector array. It is assumed that the relative position between the imager and the target is changing with time and the received target image has each of its pixels disturbed by an independent additive white Gaussian noise. When a rotation-invariant movement between imager and target is considered, the maximum likelihood based image tracking technique described in this paper is a closed-loop structure capable of providing iterative update of the movement estimate by calculating the loop feedback signals from a weighted correlation between the currently received target image and the previously estimated reference image in the transform domain. The movement estimate is then used to direct the imager to closely follow the moving target. This image tracking technique has many potential applications, including free-space optical communications and astronomy where accurate and stabilized optical pointing is essential.

  12. Accuracy of Noninvasive Estimation Techniques for the State of the Cochlear Amplifier

    NASA Astrophysics Data System (ADS)

    Dalhoff, Ernst; Gummer, Anthony W.

    2011-11-01

    Estimation of the function of the cochlea in human is possible only by deduction from indirect measurements, which may be subjective or objective. Therefore, for basic research as well as diagnostic purposes, it is important to develop methods to deduce and analyse error sources of cochlear-state estimation techniques. Here, we present a model of technical and physiologic error sources contributing to the estimation accuracy of hearing threshold and the state of the cochlear amplifier and deduce from measurements of human that the estimated standard deviation can be considerably below 6 dB. Experimental evidence is drawn from two partly independent objective estimation techniques for the auditory signal chain based on measurements of otoacoustic emissions.

  13. Advanced Diagnostic Techniques in Autoimmune Bullous Diseases

    PubMed Central

    Jindal, Anuradha; Rao, Raghavendra; Bhogal, Balbir S

    2017-01-01

    Autoimmune blistering diseases are diverse group of conditions characterized by blisters in the skin with or without mucosal lesions. There may be great degree of clinical and histopathological overlap; hence, advanced immunological tests may be necessary for more precise diagnosis of these conditions. Direct immunofluorescence microscopy is the gold standard tests to demonstrate the tissue-bound antibodies and should be done in all cases. Magnitude of antibody level in patient’ serum can be assessed by indirect immunofluorescence and enzyme linked immunosorbent assay. In this article we have reviewed the various techniques that are available in the diagnosis of autoimmune blistering diseases. PMID:28584369

  14. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    DOE PAGES

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities forin situandin operandoGISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in themore » soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed.« less

  15. Technology development of fabrication techniques for advanced solar dynamic concentrators

    NASA Technical Reports Server (NTRS)

    Richter, Scott W.

    1991-01-01

    The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

  16. Advanced grazing-incidence techniques for modern soft-matter materials analysis

    PubMed Central

    Hexemer, Alexander; Müller-Buschbaum, Peter

    2015-01-01

    The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

  17. Estimating Crop Growth Stage by Combining Meteorological and Remote Sensing Based Techniques

    NASA Astrophysics Data System (ADS)

    Champagne, C.; Alavi-Shoushtari, N.; Davidson, A. M.; Chipanshi, A.; Zhang, Y.; Shang, J.

    2016-12-01

    Estimations of seeding, harvest and phenological growth stage of crops are important sources of information for monitoring crop progress and crop yield forecasting. Growth stage has been traditionally estimated at the regional level through surveys, which rely on field staff to collect the information. Automated techniques to estimate growth stage have included agrometeorological approaches that use temperature and day length information to estimate accumulated heat and photoperiod, with thresholds used to determine when these stages are most likely. These approaches however, are crop and hybrid dependent, and can give widely varying results depending on the method used, particularly if the seeding date is unknown. Methods to estimate growth stage from remote sensing have progressed greatly in the past decade, with time series information from the Normalized Difference Vegetation Index (NDVI) the most common approach. Time series NDVI provide information on growth stage through a variety of techniques, including fitting functions to a series of measured NDVI values or smoothing these values and using thresholds to detect changes in slope that are indicative of rapidly increasing or decreasing `greeness' in the vegetation cover. The key limitations of these techniques for agriculture are frequent cloud cover in optical data that lead to errors in estimating local features in the time series function, and the incongruity between changes in greenness and traditional agricultural growth stages. There is great potential to combine both meteorological approaches and remote sensing to overcome the limitations of each technique. This research will examine the accuracy of both meteorological and remote sensing approaches over several agricultural sites in Canada, and look at the potential to integrate these techniques to provide improved estimates of crop growth stage for common field crops.

  18. A low tritium hydride bed inventory estimation technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A.

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. Themore » first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.« less

  19. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    NASA Technical Reports Server (NTRS)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  20. Comparison study on disturbance estimation techniques in precise slow motion control

    NASA Astrophysics Data System (ADS)

    Fan, S.; Nagamune, R.; Altintas, Y.; Fan, D.; Zhang, Z.

    2010-08-01

    Precise low speed motion control is important for the industrial applications of both micro-milling machine tool feed drives and electro-optical tracking servo systems. It calls for precise position and instantaneous velocity measurement and disturbance, which involves direct drive motor force ripple, guide way friction and cutting force etc., estimation. This paper presents a comparison study on dynamic response and noise rejection performance of three existing disturbance estimation techniques, including the time-delayed estimators, the state augmented Kalman Filters and the conventional disturbance observers. The design technique essentials of these three disturbance estimators are introduced. For designing time-delayed estimators, it is proposed to substitute Kalman Filter for Luenberger state observer to improve noise suppression performance. The results show that the noise rejection performances of the state augmented Kalman Filters and the time-delayed estimators are much better than the conventional disturbance observers. These two estimators can give not only the estimation of the disturbance but also the low noise level estimations of position and instantaneous velocity. The bandwidth of the state augmented Kalman Filters is wider than the time-delayed estimators. In addition, the state augmented Kalman Filters can give unbiased estimations of the slow varying disturbance and the instantaneous velocity, while the time-delayed estimators can not. The simulation and experiment conducted on X axis of a 2.5-axis prototype micro milling machine are provided.

  1. Application of advanced techniques for the assessment of bio-stability of biowaste-derived residues: A minireview.

    PubMed

    Lü, Fan; Shao, Li-Ming; Zhang, Hua; Fu, Wen-Ding; Feng, Shi-Jin; Zhan, Liang-Tong; Chen, Yun-Min; He, Pin-Jing

    2018-01-01

    Bio-stability is a key feature for the utilization and final disposal of biowaste-derived residues, such as aerobic compost or vermicompost of food waste, bio-dried waste, anaerobic digestate or landfilled waste. The present paper reviews conventional methods and advanced techniques used for the assessment of bio-stability. The conventional methods are reclassified into two categories. Advanced techniques, including spectroscopic (fluorescent, ultraviolet-visible, infrared, Raman, nuclear magnetic resonance), thermogravimetric and thermochemolysis analysis, are emphasized for their application in bio-stability assessment in recent years. Their principles, pros and cons are critically discussed. These advanced techniques are found to be convenient in sample preparation and to supply diversified information. However, the viability of these techniques as potential indicators for bio-stability assessment ultimately lies in the establishment of the relationship of advanced ones with the conventional methods, especially with the methods based on biotic response. Furthermore, some misuses in data explanation should be noted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The role of alternative (advanced) conscious sedation techniques in dentistry for adult patients: a series of cases.

    PubMed

    Robb, N

    2014-03-01

    The basic techniques of conscious sedation have been found to be safe and effective for the management of anxiety in adult dental patients requiring sedation to allow them to undergo dental treatment. There remains great debate within the profession as to the role of the so called advanced sedation techniques. This paper presents a series of nine patients who were managed with advanced sedation techniques where the basic techniques were either inappropriate or had previously failed to provide adequate relief of anxiety. In these cases, had there not been the availability of advanced sedation techniques, the most likely recourse would have been general anaesthesia--a treatment modality that current guidance indicates should not be used where there is an appropriate alternative. The sedation techniques used have provided that appropriate alternative management strategy.

  3. Numerical characterization of landing gear aeroacoustics using advanced simulation and analysis techniques

    NASA Astrophysics Data System (ADS)

    Redonnet, S.; Ben Khelil, S.; Bulté, J.; Cunha, G.

    2017-09-01

    With the objective of aircraft noise mitigation, we here address the numerical characterization of the aeroacoustics by a simplified nose landing gear (NLG), through the use of advanced simulation and signal processing techniques. To this end, the NLG noise physics is first simulated through an advanced hybrid approach, which relies on Computational Fluid Dynamics (CFD) and Computational AeroAcoustics (CAA) calculations. Compared to more traditional hybrid methods (e.g. those relying on the use of an Acoustic Analogy), and although it is used here with some approximations made (e.g. design of the CFD-CAA interface), the present approach does not rely on restrictive assumptions (e.g. equivalent noise source, homogeneous propagation medium), which allows to incorporate more realism into the prediction. In a second step, the outputs coming from such CFD-CAA hybrid calculations are processed through both traditional and advanced post-processing techniques, thus offering to further investigate the NLG's noise source mechanisms. Among other things, this work highlights how advanced computational methodologies are now mature enough to not only simulate realistic problems of airframe noise emission, but also to investigate their underlying physics.

  4. Advanced techniques for determining long term compatibility of materials with propellants

    NASA Technical Reports Server (NTRS)

    Green, R. L.

    1972-01-01

    The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

  5. A new slit lamp-based technique for anterior chamber angle estimation.

    PubMed

    Gispets, Joan; Cardona, Genís; Tomàs, Núria; Fusté, Cèlia; Binns, Alison; Fortes, Miguel A

    2014-06-01

    To design and test a new noninvasive method for anterior chamber angle (ACA) estimation based on the slit lamp that is accessible to all eye-care professionals. A new technique (slit lamp anterior chamber estimation [SLACE]) that aims to overcome some of the limitations of the van Herick procedure was designed. The technique, which only requires a slit lamp, was applied to estimate the ACA of 50 participants (100 eyes) using two different slit lamp models, and results were compared with gonioscopy as the clinical standard. The Spearman nonparametric correlation between ACA values as determined by gonioscopy and SLACE were 0.81 (p < 0.001) and 0.79 (p < 0.001) for each slit lamp. Sensitivity values of 100 and 87.5% and specificity values of 75 and 81.2%, depending on the slit lamp used, were obtained for the SLACE technique as compared with gonioscopy (Spaeth classification). The SLACE technique, when compared with gonioscopy, displayed good accuracy in the detection of narrow angles, and it may be useful for eye-care clinicians without access to expensive alternative equipment or those who cannot perform gonioscopy because of legal constraints regarding the use of diagnostic drugs.

  6. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research.

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    Discusses small-group apprenticeships (SGAs) as a method for introducing cell culture techniques to high school participants. Teaches cell culture practices and introduces advance imaging techniques to solve various biomedical engineering problems. Clarifies and illuminates the value of small-group laboratory apprenticeships. (Author/KHR)

  7. Comparison of five canopy cover estimation techniques in the western Oregon Cascades.

    Treesearch

    Anne C.S. Fiala; Steven L. Garman; Andrew N. Gray

    2006-01-01

    Estimates of forest canopy cover are widely used in forest research and management, yet methods used to quantify canopy cover and the estimates they provide vary greatly. Four commonly used ground-based techniques for estimating overstory cover - line-intercept, spherical densiometer, moosehorn, and hemispherical photography - and cover estimates generated from crown...

  8. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  9. Carrier Estimation Using Classic Spectral Estimation Techniques for the Proposed Demand Assignment Multiple Access Service

    NASA Technical Reports Server (NTRS)

    Scaife, Bradley James

    1999-01-01

    In any satellite communication, the Doppler shift associated with the satellite's position and velocity must be calculated in order to determine the carrier frequency. If the satellite state vector is unknown then some estimate must be formed of the Doppler-shifted carrier frequency. One elementary technique is to examine the signal spectrum and base the estimate on the dominant spectral component. If, however, the carrier is spread (as in most satellite communications) this technique may fail unless the chip rate-to-data rate ratio (processing gain) associated with the carrier is small. In this case, there may be enough spectral energy to allow peak detection against a noise background. In this thesis, we present a method to estimate the frequency (without knowledge of the Doppler shift) of a spread-spectrum carrier assuming a small processing gain and binary-phase shift keying (BPSK) modulation. Our method relies on an averaged discrete Fourier transform along with peak detection on spectral match filtered data. We provide theory and simulation results indicating the accuracy of this method. In addition, we will describe an all-digital hardware design based around a Motorola DSP56303 and high-speed A/D which implements this technique in real-time. The hardware design is to be used in NMSU's implementation of NASA's demand assignment, multiple access (DAMA) service.

  10. Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls.

    PubMed

    Kopsinis, Yannis; Aboutanios, Elias; Waters, Dean A; McLaughlin, Steve

    2010-02-01

    In this paper, techniques for time-frequency analysis and investigation of bat echolocation calls are studied. Particularly, enhanced resolution techniques are developed and/or used in this specific context for the first time. When compared to traditional time-frequency representation methods, the proposed techniques are more capable of showing previously unseen features in the structure of bat echolocation calls. It should be emphasized that although the study is focused on bat echolocation recordings, the results are more general and applicable to many other types of signal.

  11. Numerically accurate computational techniques for optimal estimator analyses of multi-parameter models

    NASA Astrophysics Data System (ADS)

    Berger, Lukas; Kleinheinz, Konstantin; Attili, Antonio; Bisetti, Fabrizio; Pitsch, Heinz; Mueller, Michael E.

    2018-05-01

    Modelling unclosed terms in partial differential equations typically involves two steps: First, a set of known quantities needs to be specified as input parameters for a model, and second, a specific functional form needs to be defined to model the unclosed terms by the input parameters. Both steps involve a certain modelling error, with the former known as the irreducible error and the latter referred to as the functional error. Typically, only the total modelling error, which is the sum of functional and irreducible error, is assessed, but the concept of the optimal estimator enables the separate analysis of the total and the irreducible errors, yielding a systematic modelling error decomposition. In this work, attention is paid to the techniques themselves required for the practical computation of irreducible errors. Typically, histograms are used for optimal estimator analyses, but this technique is found to add a non-negligible spurious contribution to the irreducible error if models with multiple input parameters are assessed. Thus, the error decomposition of an optimal estimator analysis becomes inaccurate, and misleading conclusions concerning modelling errors may be drawn. In this work, numerically accurate techniques for optimal estimator analyses are identified and a suitable evaluation of irreducible errors is presented. Four different computational techniques are considered: a histogram technique, artificial neural networks, multivariate adaptive regression splines, and an additive model based on a kernel method. For multiple input parameter models, only artificial neural networks and multivariate adaptive regression splines are found to yield satisfactorily accurate results. Beyond a certain number of input parameters, the assessment of models in an optimal estimator analysis even becomes practically infeasible if histograms are used. The optimal estimator analysis in this paper is applied to modelling the filtered soot intermittency in large eddy

  12. An adaptive technique for estimating the atmospheric density profile during the AE mission

    NASA Technical Reports Server (NTRS)

    Argentiero, P.

    1973-01-01

    A technique is presented for processing accelerometer data obtained during the AE missions in order to estimate the atmospheric density profile. A minimum variance, adaptive filter is utilized. The trajectory of the probe and probe parameters are in a consider mode where their estimates are unimproved but their associated uncertainties are permitted an impact on filter behavior. Simulations indicate that the technique is effective in estimating a density profile to within a few percentage points.

  13. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    ERIC Educational Resources Information Center

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss "small-group apprenticeships (SGAs)" as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments…

  14. Estimating numbers of greater prairie-chickens using mark-resight techniques

    USGS Publications Warehouse

    Clifton, A.M.; Krementz, D.G.

    2006-01-01

    Current monitoring efforts for greater prairie-chicken (Tympanuchus cupido pinnatus) populations indicate that populations are declining across their range. Monitoring the population status of greater prairie-chickens is based on traditional lek surveys (TLS) that provide an index without considering detectability. Estimators, such as immigration-emigration joint maximum-likelihood estimator from a hypergeometric distribution (IEJHE), can account for detectability and provide reliable population estimates based on resightings. We evaluated the use of mark-resight methods using radiotelemetry to estimate population size and density of greater prairie-chickens on 2 sites at a tallgrass prairie in the Flint Hills of Kansas, USA. We used average distances traveled from lek of capture to estimate density. Population estimates and confidence intervals at the 2 sites were 54 (CI 50-59) on 52.9 km 2 and 87 (CI 82-94) on 73.6 km2. The TLS performed at the same sites resulted in population ranges of 7-34 and 36-63 and always produced a lower population index than the mark-resight population estimate with a larger range. Mark-resight simulations with varying male:female ratios of marks indicated that this ratio was important in designing a population study on prairie-chickens. Confidence intervals for estimates when no marks were placed on females at the 2 sites (CI 46-50, 76-84) did not overlap confidence intervals when 40% of marks were placed on females (CI 54-64, 91-109). Population estimates derived using this mark-resight technique were apparently more accurate than traditional methods and would be more effective in detecting changes in prairie-chicken populations. Our technique could improve prairie-chicken management by providing wildlife biologists and land managers with a tool to estimate the population size and trends of lekking bird species, such as greater prairie-chickens.

  15. A comparison of small-area estimation techniques to estimate selected stand attributes using LiDAR-derived auxiliary variables

    Treesearch

    Michael E. Goerndt; Vicente J. Monleon; Hailemariam Temesgen

    2011-01-01

    One of the challenges often faced in forestry is the estimation of forest attributes for smaller areas of interest within a larger population. Small-area estimation (SAE) is a set of techniques well suited to estimation of forest attributes for small areas in which the existing sample size is small and auxiliary information is available. Selected SAE methods were...

  16. COLLABORATIVE RESEARCH:USING ARM OBSERVATIONS & ADVANCED STATISTICAL TECHNIQUES TO EVALUATE CAM3 CLOUDS FOR DEVELOPMENT OF STOCHASTIC CLOUD-RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Somerville, Richard

    2013-08-22

    The long-range goal of several past and current projects in our DOE-supported research has been the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data, and the implementation and testing of these parameterizations in global models. The main objective of the present project being reported on here has been to develop and apply advanced statistical techniques, including Bayesian posterior estimates, to diagnose and evaluate features of both observed and simulated clouds. The research carried out under this project has been novel in two important ways. The first is that it is a key stepmore » in the development of practical stochastic cloud-radiation parameterizations, a new category of parameterizations that offers great promise for overcoming many shortcomings of conventional schemes. The second is that this work has brought powerful new tools to bear on the problem, because it has been a collaboration between a meteorologist with long experience in ARM research (Somerville) and a mathematician who is an expert on a class of advanced statistical techniques that are well-suited for diagnosing model cloud simulations using ARM observations (Shen).« less

  17. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  18. Advanced computer graphic techniques for laser range finder (LRF) simulation

    NASA Astrophysics Data System (ADS)

    Bedkowski, Janusz; Jankowski, Stanislaw

    2008-11-01

    This paper show an advanced computer graphic techniques for laser range finder (LRF) simulation. The LRF is the common sensor for unmanned ground vehicle, autonomous mobile robot and security applications. The cost of the measurement system is extremely high, therefore the simulation tool is designed. The simulation gives an opportunity to execute algorithm such as the obstacle avoidance[1], slam for robot localization[2], detection of vegetation and water obstacles in surroundings of the robot chassis[3], LRF measurement in crowd of people[1]. The Axis Aligned Bounding Box (AABB) and alternative technique based on CUDA (NVIDIA Compute Unified Device Architecture) is presented.

  19. Anterior Urethral Advancement as a Single-Stage Technique for Repair of Anterior Hypospadias: Our Experience.

    PubMed

    Gite, Venkat A; Nikose, Jayant V; Bote, Sachin M; Patil, Saurabh R

    2017-07-02

    Many techniques have been described to correct anterior hypospadias with variable results. Anterior urethral advancement as one stage technique was first described by Ti Chang Shing in 1984. It was also used for the repair of strictures and urethrocutaneous fistulae involving distal urethra. We report our experience of using this technique with some modification for the repair of anterior hypospadias. In the period between 2013-2015, 20 cases with anterior hypospadias including 2 cases of glanular, 3 cases of coronal, 12 cases of subcoronal and 3 cases of distal penile hypospadias were treated with anterior urethral advancement technique. Patients' age groups ranged from 18 months to 10 years. Postoperatively, patients were passing urine from tip of neomeatus with satisfactory stream during follow up period of 6 months to 2 years. There were no major complications in any of our patients except in one patient who developed meatal stenosis which was treated by periodic dilatation. Three fold urethral mobilization was sufficient in all cases. Anterior urethral advancement technique is a single-stage procedure with good cosmetic results and least complications for anterior hypospadias repair in properly selected cases.

  20. Trace elemental analysis of human breast cancerous blood by advanced PC-WDXRF technique

    NASA Astrophysics Data System (ADS)

    Singh, Ranjit; Kainth, Harpreet Singh; Prasher, Puneet; Singh, Tejbir

    2018-03-01

    The objective of this work is to quantify the trace elements of healthy and non-healthy blood samples by using advanced polychromatic source based wavelength dispersive X-ray fluorescence (PC-WDXRF) technique. The imbalances in trace elements present in the human blood directly or indirectly lead to the carcinogenic process. The trace elements 11Na, 12Mg, 15P, 16S, 17Cl, 19K, 20Ca, 26Fe, 29Cu and 30Zn are identified and their concentrations are estimated. The experimental results clearly discuss the variation and role of various trace elements present in the non-healthy blood samples relative to the healthy blood samples. These results establish future guidelines to probe the possible roles of essential trace elements in the breast carcinogenic processes. The instrumental sensitivity and detection limits for measuring the elements in the atomic range 11 ≤ Z ≤ 30 have also been discussed in the present work.

  1. Congestion estimation technique in the optical network unit registration process.

    PubMed

    Kim, Geunyong; Yoo, Hark; Lee, Dongsoo; Kim, Youngsun; Lim, Hyuk

    2016-07-01

    We present a congestion estimation technique (CET) to estimate the optical network unit (ONU) registration success ratio for the ONU registration process in passive optical networks. An optical line terminal (OLT) estimates the number of collided ONUs via the proposed scheme during the serial number state. The OLT can obtain congestion level among ONUs to be registered such that this information may be exploited to change the size of a quiet window to decrease the collision probability. We verified the efficiency of the proposed method through simulation and experimental results.

  2. Application of cokriging techniques for the estimation of hail size

    NASA Astrophysics Data System (ADS)

    Farnell, Carme; Rigo, Tomeu; Martin-Vide, Javier

    2018-01-01

    There are primarily two ways of estimating hail size: the first is the direct interpolation of point observations, and the second is the transformation of remote sensing fields into measurements of hail properties. Both techniques have advantages and limitations as regards generating the resultant map of hail damage. This paper presents a new methodology that combines the above mentioned techniques in an attempt to minimise the limitations and take advantage of the benefits of interpolation and the use of remote sensing data. The methodology was tested for several episodes with good results being obtained for the estimation of hail size at practically all the points analysed. The study area presents a large database of hail episodes, and for this reason, it constitutes an optimal test bench.

  3. Techniques for estimating flood-peak discharges from urban basins in Missouri

    USGS Publications Warehouse

    Becker, L.D.

    1986-01-01

    Techniques are defined for estimating the magnitude and frequency of future flood peak discharges of rainfall-induced runoff from small urban basins in Missouri. These techniques were developed from an initial analysis of flood records of 96 gaged sites in Missouri and adjacent states. Final regression equations are based on a balanced, representative sampling of 37 gaged sites in Missouri. This sample included 9 statewide urban study sites, 18 urban sites in St. Louis County, and 10 predominantly rural sites statewide. Short-term records were extended on the basis of long-term climatic records and use of a rainfall-runoff model. Linear least-squares regression analyses were used with log-transformed variables to relate flood magnitudes of selected recurrence intervals (dependent variables) to selected drainage basin indexes (independent variables). For gaged urban study sites within the State, the flood peak estimates are from the frequency curves defined from the synthesized long-term discharge records. Flood frequency estimates are made for ungaged sites by using regression equations that require determination of the drainage basin size and either the percentage of impervious area or a basin development factor. Alternative sets of equations are given for the 2-, 5-, 10-, 25-, 50-, and 100-yr recurrence interval floods. The average standard errors of estimate range from about 33% for the 2-yr flood to 26% for the 100-yr flood. The techniques for estimation are applicable to flood flows that are not significantly affected by storage caused by manmade activities. Flood peak discharge estimating equations are considered applicable for sites on basins draining approximately 0.25 to 40 sq mi. (Author 's abstract)

  4. Improved Battery State Estimation Using Novel Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Abdul Samad, Nassim

    Lithium-ion batteries have been considered a great complement or substitute for gasoline engines due to their high energy and power density capabilities among other advantages. However, these types of energy storage devices are still yet not widespread, mainly because of their relatively high cost and safety issues, especially at elevated temperatures. This thesis extends existing methods of estimating critical battery states using model-based techniques augmented by real-time measurements from novel temperature and force sensors. Typically, temperature sensors are located near the edge of the battery, and away from the hottest core cell regions, which leads to slower response times and increased errors in the prediction of core temperatures. New sensor technology allows for flexible sensor placement at the cell surface between cells in a pack. This raises questions about the optimal locations of these sensors for best observability and temperature estimation. Using a validated model, which is developed and verified using experiments in laboratory fixtures that replicate vehicle pack conditions, it is shown that optimal sensor placement can lead to better and faster temperature estimation. Another equally important state is the state of health or the capacity fading of the cell. This thesis introduces a novel method of using force measurements for capacity fade estimation. Monitoring capacity is important for defining the range of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). Current capacity estimation techniques require a full discharge to monitor capacity. The proposed method can complement or replace current methods because it only requires a shallow discharge, which is especially useful in EVs and PHEVs. Using the accurate state estimation accomplished earlier, a method for downsizing a battery pack is shown to effectively reduce the number of cells in a pack without compromising safety. The influence on the battery performance (e

  5. Recent advancements in nanoelectrodes and nanopipettes used in combined scanning electrochemical microscopy techniques.

    PubMed

    Kranz, Christine

    2014-01-21

    In recent years, major developments in scanning electrochemical microscopy (SECM) have significantly broadened the application range of this electroanalytical technique from high-resolution electrochemical imaging via nanoscale probes to large scale mapping using arrays of microelectrodes. A major driving force in advancing the SECM methodology is based on developing more sophisticated probes beyond conventional micro-disc electrodes usually based on noble metals or carbon microwires. This critical review focuses on the design and development of advanced electrochemical probes particularly enabling combinations of SECM with other analytical measurement techniques to provide information beyond exclusively measuring electrochemical sample properties. Consequently, this critical review will focus on recent progress and new developments towards multifunctional imaging.

  6. Working Group 1 "Advanced GNSS Processing Techniques" of the COST Action GNSS4SWEC: Overview of main achievements

    NASA Astrophysics Data System (ADS)

    Douša, Jan; Dick, Galina; Kačmařík, Michal; Václavovic, Pavel; Pottiaux, Eric; Zus, Florian; Brenot, Hugues; Moeller, Gregor; Hinterberger, Fabian; Pacione, Rosa; Stuerze, Andrea; Eben, Kryštof; Teferle, Norman; Ding, Wenwu; Morel, Laurent; Kaplon, Jan; Hordyniec, Pavel; Rohm, Witold

    2017-04-01

    The COST Action ES1206 GNSS4SWEC addresses new exploitations of the synergy between developments in GNSS and meteorological communities. The Working Group 1 (Advanced GNSS processing techniques) deals with implementing and assessing new methods for GNSS tropospheric monitoring and precise positioning exploiting all modern GNSS constellations, signals, products etc. Besides other goals, WG1 coordinates development of advanced tropospheric products in support of weather numerical and non-numerical nowcasting. These are ultra-fast and high-resolution tropospheric products available in real time or in a sub-hourly fashion and parameters in support of monitoring an anisotropy of the troposphere, e.g. horizontal gradients and tropospheric slant path delays. This talk gives an overview of WG1 activities and, particularly, achievements in two activities, Benchmark and Real-time demonstration campaigns. For the Benchmark campaign a complex data set of GNSS observations and various meteorological data were collected for a two-month period in 2013 (May-June) which included severe weather events in central Europe. An initial processing of data sets from GNSS and numerical weather models (NWM) provided independently estimated reference parameters - ZTDs and tropospheric horizontal gradients. The comparison of horizontal tropospheric gradients from GNSS and NWM data demonstrated a very good agreement among independent solutions with negligible biases and an accuracy of about 0.5 mm. Visual comparisons of maps of zenith wet delays and tropospheric horizontal gradients showed very promising results for future exploitations of advanced GNSS tropospheric products in meteorological applications such as severe weather event monitoring and weather nowcasting. The Benchmark data set is also used for an extensive validation of line-of-sight tropospheric Slant Total Delays (STD) from GNSS, NWM-raytracing and Water Vapour Radiometer (WVR) solutions. Seven institutions delivered their STDs

  7. Technique for estimating depth of 100-year floods in Tennessee

    USGS Publications Warehouse

    Gamble, Charles R.; Lewis, James G.

    1977-01-01

    Preface: A method is presented for estimating the depth of the loo-year flood in four hydrologic areas in Tennessee. Depths at 151 gaging stations on streams that were not significantly affected by man made changes were related to basin characteristics by multiple regression techniques. Equations derived from the analysis can be used to estimate the depth of the loo-year flood if the size of the drainage basin is known.

  8. A direct-measurement technique for estimating discharge-chamber lifetime. [for ion thrusters

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Garvin, H. L.

    1982-01-01

    The use of short-term measurement techniques for predicting the wearout of ion thrusters resulting from sputter-erosion damage is investigated. The laminar-thin-film technique is found to provide high precision erosion-rate data, although the erosion rates are generally substantially higher than those found during long-term erosion tests, so that the results must be interpreted in a relative sense. A technique for obtaining absolute measurements is developed using a masked-substrate arrangement. This new technique provides a means for estimating the lifetimes of critical discharge-chamber components based on direct measurements of sputter-erosion depths obtained during short-duration (approximately 1 hr) tests. Results obtained using the direct-measurement technique are shown to agree with sputter-erosion depths calculated for the plasma conditions of the test. The direct-measurement approach is found to be applicable to both mercury and argon discharge-plasma environments and will be useful for estimating the lifetimes of inert gas and extended performance mercury ion thrusters currently under development.

  9. CMB EB and TB cross-spectrum estimation via pseudospectrum techniques

    NASA Astrophysics Data System (ADS)

    Grain, J.; Tristram, M.; Stompor, R.

    2012-10-01

    We discuss methods for estimating EB and TB spectra of the cosmic microwave background anisotropy maps covering limited sky area. Such odd-parity correlations are expected to vanish whenever parity is not broken. As this is indeed the case in the standard cosmologies, any evidence to the contrary would have a profound impact on our theories of the early Universe. Such correlations could also become a sensitive diagnostic of some particularly insidious instrumental systematics. In this work we introduce three different unbiased estimators based on the so-called standard and pure pseudo-spectrum techniques and later assess their performance by means of extensive Monte Carlo simulations performed for different experimental configurations. We find that a hybrid approach combining a pure estimate of B-mode multipoles with a standard one for E-mode (or T) multipoles, leads to the smallest error bars for both EB (or TB respectively) spectra as well as for the three other polarization-related angular power spectra (i.e., EE, BB, and TE). However, if both E and B multipoles are estimated using the pure technique, the loss of precision for the EB spectrum is not larger than ˜30%. Moreover, for the experimental configurations considered here, the statistical uncertainties-due to sampling variance and instrumental noise-of the pseudo-spectrum estimates is at most a factor ˜1.4 for TT, EE, and TE spectra and a factor ˜2 for BB, TB, and EB spectra, higher than the most optimistic Fisher estimate of the variance.

  10. Irreversible electroporation of stage 3 locally advanced pancreatic cancer: optimal technique and outcomes

    PubMed Central

    2015-01-01

    Objective Irreversible electroporation (IRE) of stage 3 pancreatic adenocarcinoma has been used to provide quality of life time in patients who have undergone appropriate induction therapy. The optimal technique has been reported within the literature, but not in video form. IRE of locally advanced pancreatic cancer is technically demanding requiring precision ultrasound use for continuous imaging in multiple needle placements and during IRE energy delivery. Methods Appropriate patients with locally advanced pancreatic cancer should have undergone appropriate induction chemotherapy for a reasonable duration. The safe and effective technique for irreversible electroporation is preformed through an open approach with the emphasis on intra-operative ultrasound and intra-operative electroporation management. Results The technique of open irreversible electroporation of the pancreas involves bracketing the target tumor with IRE probes and any and all invaded vital structures including the celiac axis, superior mesenteric artery (SMA), superior mesenteric-portal vein, and bile duct with continuous intraoperative ultrasound imaging through a caudal to cranial approach. Optimal IRE delivery requires a change in amperage of at least 12 amps from baseline tissue conductivity in order to achieve technical success. Multiple pull-backs are necessary since the IRE ablation probe lengths are 1 cm and thus needed to achieve technical success along the caudal to cranial plane. Conclusions Irreversible electroporation in combination with multi-modality therapy for locally advanced pancreatic carcinoma is feasible for appropriate patients with locally advanced cancer. Technical demands are high and require the highest quality ultrasound for precise spacing measurements and optimal delivery to ensure adequate change in tissue resistance. PMID:29075594

  11. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery

    PubMed Central

    Zhang, Peipei; Xia, Junfei; Luo, Sida

    2018-01-01

    Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery. PMID:29670013

  12. Estimation of fatigue life using electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Soh, Chee Kiong

    2010-04-01

    Fatigue induced damage is often progressive and gradual in nature. Structures subjected to large number of fatigue load cycles will encounter the process of progressive crack initiation, propagation and finally fracture. Monitoring of structural health, especially for the critical components, is therefore essential for early detection of potential harmful crack. Recent advent of smart materials such as piezo-impedance transducer adopting the electromechanical impedance (EMI) technique and wave propagation technique are well proven to be effective in incipient damage detection and characterization. Exceptional advantages such as autonomous, real-time and online, remote monitoring may provide a cost-effective alternative to the conventional structural health monitoring (SHM) techniques. In this study, the main focus is to investigate the feasibility of characterizing a propagating fatigue crack in a structure using the EMI technique as well as estimating its remaining fatigue life using the linear elastic fracture mechanics (LEFM) approach. Uniaxial cyclic tensile load is applied on a lab-sized aluminum beam up to failure. Progressive shift in admittance signatures measured by the piezo-impedance transducer (PZT patch) corresponding to increase of loading cycles reflects effectiveness of the EMI technique in tracing the process of fatigue damage progression. With the use of LEFM, prediction of the remaining life of the structure at different cycles of loading is possible.

  13. Comparison of different estimation techniques for biomass concentration in large scale yeast fermentation.

    PubMed

    Hocalar, A; Türker, M; Karakuzu, C; Yüzgeç, U

    2011-04-01

    In this study, previously developed five different state estimation methods are examined and compared for estimation of biomass concentrations at a production scale fed-batch bioprocess. These methods are i. estimation based on kinetic model of overflow metabolism; ii. estimation based on metabolic black-box model; iii. estimation based on observer; iv. estimation based on artificial neural network; v. estimation based on differential evaluation. Biomass concentrations are estimated from available measurements and compared with experimental data obtained from large scale fermentations. The advantages and disadvantages of the presented techniques are discussed with regard to accuracy, reproducibility, number of primary measurements required and adaptation to different working conditions. Among the various techniques, the metabolic black-box method seems to have advantages although the number of measurements required is more than that for the other methods. However, the required extra measurements are based on commonly employed instruments in an industrial environment. This method is used for developing a model based control of fed-batch yeast fermentations. Copyright © 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Estimating prevalence of functional iron deficiency anaemia in advanced cancer.

    PubMed

    Neoh, Karen; Stanworth, Simon; Pasricha, Sant-Rayn; Bennett, Michael I

    2017-04-01

    Anaemia is a common complication of cancer causing symptoms including fatigue. It is also associated with shorter survival. Cancer causes systemic inflammation which interrupts iron metabolism leading to a functional iron deficiency (FID). There are few data on prevalence or aetiology of anaemia in those with advanced cancer. We aimed to establish the prevalence of anaemia and estimate extent of FID anaemia in patients with advanced cancer. All patients with advanced cancer referred to two UK specialist palliative care services over 1 year were identified. Demographic and clinical data were linked with routinely collected haematological and biochemical profiles. We assessed the numbers of patients with abnormal values for haemoglobin, % hypochromic red cells (>5% indicates iron-restricted erythropoiesis) and CRP (>10 indicates systemic inflammation). We judged that FID anaemia was likely when patients had all three abnormalities and ferritin 30-800 ng/ml. Out of 2416 patients, 1797 had a cancer diagnosis and laboratory data available. Mean haemoglobin was 116 g/l. Sixty-three percent of patients were anaemic, mild 25%, moderate 35% and severe 3%. Women had significantly higher mean haemoglobin than men, and there was wide variation in anaemia prevalence across tumour sites. Thirty-nine percent of patients who had all four parameters checked met our criteria for FID anaemia. There were significant relationships between haemoglobin, % hypochromic red cells and CRP (p = 0.0001). Anaemia was common in this population, and we estimate this was caused by FID in 66% of anaemic patients. Further research is needed to validate our diagnostic criteria before this approach can be used in clinical practice.

  15. A new surgical technique for concealed penis using an advanced musculocutaneous scrotal flap.

    PubMed

    Han, Dong-Seok; Jang, Hoon; Youn, Chang-Shik; Yuk, Seung-Mo

    2015-06-19

    Until recently, no single, universally accepted surgical method has existed for all types of concealed penis repairs. We describe a new surgical technique for repairing concealed penis by using an advanced musculocutaneous scrotal flap. From January 2010 to June 2014, we evaluated 12 patients (12-40 years old) with concealed penises who were surgically treated with an advanced musculocutaneous scrotal flap technique after degloving through a ventral approach. All the patients were scheduled for regular follow-up at 6, 12, and 24 weeks postoperatively. The satisfaction grade for penile size, morphology, and voiding status were evaluated using a questionnaire preoperatively and at all of the follow-ups. Information regarding complications was obtained during the postoperative hospital stay and at all follow-ups. The patients' satisfaction grades, which included the penile size, morphology, and voiding status, improved postoperatively compared to those preoperatively. All patients had penile lymphedema postoperatively; however, this disappeared within 6 weeks. There were no complications such as skin necrosis and contracture, voiding difficulty, or erectile dysfunction. Our advanced musculocutaneous scrotal flap technique for concealed penis repair is technically easy and safe. In addition, it provides a good cosmetic appearance, functional outcomes and excellent postoperative satisfaction grades. Lastly, it seems applicable in any type of concealed penis, including cases in which the ventral skin defect is difficult to cover.

  16. 48 CFR 15.404-1 - Proposal analysis techniques.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... estimates. (vi) Comparison of proposed prices with prices obtained through market research for the same or...

  17. 48 CFR 15.404-1 - Proposal analysis techniques.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... estimates. (vi) Comparison of proposed prices with prices obtained through market research for the same or...

  18. 48 CFR 15.404-1 - Proposal analysis techniques.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... are: I Price Analysis, II Quantitative Techniques for Contract Pricing, III Cost Analysis, IV Advanced... estimates. (vi) Comparison of proposed prices with prices obtained through market research for the same or...

  19. A straightforward frequency-estimation technique for GPS carrier-phase time transfer.

    PubMed

    Hackman, Christine; Levine, Judah; Parker, Thomas E; Piester, Dirk; Becker, Jürgen

    2006-09-01

    Although Global Positioning System (GPS) carrier-phase time transfer (GPSCPTT) offers frequency stability approaching 10-15 at averaging times of 1 d, a discontinuity occurs in the time-transfer estimates between the end of one processing batch (1-3 d in length) and the beginning of the next. The average frequency over a multiday analysis period often has been computed by first estimating and removing these discontinuities, i.e., through concatenation. We present a new frequency-estimation technique in which frequencies are computed from the individual batches then averaged to obtain the mean frequency for a multiday period. This allows the frequency to be computed without the uncertainty associated with the removal of the discontinuities and requires fewer computational resources. The new technique was tested by comparing the fractional frequency-difference values it yields to those obtained using a GPSCPTT concatenation method and those obtained using two-way satellite time-and-frequency transfer (TWSTFT). The clocks studied were located in Braunschweig, Germany, and in Boulder, CO. The frequencies obtained from the GPSCPTT measurements using either method agreed with those obtained from TWSTFT at several parts in 1016. The frequency values obtained from the GPSCPTT data by use of the new method agreed with those obtained using the concatenation technique at 1-4 x 10(-16).

  20. Comparing techniques for estimating flame temperature of prescribed fires

    Treesearch

    Deborah K. Kennard; Kenneth W. Outcalt; David Jones; Joseph J. O' Brien

    2005-01-01

    A variety of techniques that estimate temperature and/or heat output during fires are available. We assessed the predictive ability of metal and tile pyrometers, calorimeters of different sizes, and fuel consumption to time-temperature metrics derived from thick and thin thermocouples at 140 points distributed over 9 management-scale burns in a longleaf pine forest in...

  1. Wafer hot spot identification through advanced photomask characterization techniques: part 2

    NASA Astrophysics Data System (ADS)

    Choi, Yohan; Green, Michael; Cho, Young; Ham, Young; Lin, Howard; Lan, Andy; Yang, Richer; Lung, Mike

    2017-03-01

    Historically, 1D metrics such as Mean to Target (MTT) and CD Uniformity (CDU) have been adequate for mask end users to evaluate and predict the mask impact on the wafer process. However, the wafer lithographer's process margin is shrinking at advanced nodes to a point that classical mask CD metrics are no longer adequate to gauge the mask contribution to wafer process error. For example, wafer CDU error at advanced nodes is impacted by mask factors such as 3-dimensional (3D) effects and mask pattern fidelity on sub-resolution assist features (SRAFs) used in Optical Proximity Correction (OPC) models of ever-increasing complexity. To overcome the limitation of 1D metrics, there are numerous on-going industry efforts to better define wafer-predictive metrics through both standard mask metrology and aerial CD methods. Even with these improvements, the industry continues to struggle to define useful correlative metrics that link the mask to final device performance. In part 1 of this work, we utilized advanced mask pattern characterization techniques to extract potential hot spots on the mask and link them, theoretically, to issues with final wafer performance. In this paper, part 2, we complete the work by verifying these techniques at wafer level. The test vehicle (TV) that was used for hot spot detection on the mask in part 1 will be used to expose wafers. The results will be used to verify the mask-level predictions. Finally, wafer performance with predicted and verified mask/wafer condition will be shown as the result of advanced mask characterization. The goal is to maximize mask end user yield through mask-wafer technology harmonization. This harmonization will provide the necessary feedback to determine optimum design, mask specifications, and mask-making conditions for optimal wafer process margin.

  2. Theoretical and simulated performance for a novel frequency estimation technique

    NASA Technical Reports Server (NTRS)

    Crozier, Stewart N.

    1993-01-01

    A low complexity, open-loop, discrete-time, delay-multiply-average (DMA) technique for estimating the frequency offset for digitally modulated MPSK signals is investigated. A nonlinearity is used to remove the MPSK modulation and generate the carrier component to be extracted. Theoretical and simulated performance results are presented and compared to the Cramer-Rao lower bound (CRLB) for the variance of the frequency estimation error. For all signal-to-noise ratios (SNR's) above threshold, it is shown that the CRLB can essentially be achieved with linear complexity.

  3. Satellite angular velocity estimation based on star images and optical flow techniques.

    PubMed

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-09-25

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components.

  4. Satellite Angular Velocity Estimation Based on Star Images and Optical Flow Techniques

    PubMed Central

    Fasano, Giancarmine; Rufino, Giancarlo; Accardo, Domenico; Grassi, Michele

    2013-01-01

    An optical flow-based technique is proposed to estimate spacecraft angular velocity based on sequences of star-field images. It does not require star identification and can be thus used to also deliver angular rate information when attitude determination is not possible, as during platform de tumbling or slewing. Region-based optical flow calculation is carried out on successive star images preprocessed to remove background. Sensor calibration parameters, Poisson equation, and a least-squares method are then used to estimate the angular velocity vector components in the sensor rotating frame. A theoretical error budget is developed to estimate the expected angular rate accuracy as a function of camera parameters and star distribution in the field of view. The effectiveness of the proposed technique is tested by using star field scenes generated by a hardware-in-the-loop testing facility and acquired by a commercial-off-the shelf camera sensor. Simulated cases comprise rotations at different rates. Experimental results are presented which are consistent with theoretical estimates. In particular, very accurate angular velocity estimates are generated at lower slew rates, while in all cases the achievable accuracy in the estimation of the angular velocity component along boresight is about one order of magnitude worse than the other two components. PMID:24072023

  5. Evaluation of Techniques Used to Estimate Cortical Feature Maps

    PubMed Central

    Katta, Nalin; Chen, Thomas L.; Watkins, Paul V.; Barbour, Dennis L.

    2011-01-01

    Functional properties of neurons are often distributed nonrandomly within a cortical area and form topographic maps that reveal insights into neuronal organization and interconnection. Some functional maps, such as in visual cortex, are fairly straightforward to discern with a variety of techniques, while other maps, such as in auditory cortex, have resisted easy characterization. In order to determine appropriate protocols for establishing accurate functional maps in auditory cortex, artificial topographic maps were probed under various conditions, and the accuracy of estimates formed from the actual maps was quantified. Under these conditions, low-complexity maps such as sound frequency can be estimated accurately with as few as 25 total samples (e.g., electrode penetrations or imaging pixels) if neural responses are averaged together. More samples are required to achieve the highest estimation accuracy for higher complexity maps, and averaging improves map estimate accuracy even more than increasing sampling density. Undersampling without averaging can result in misleading map estimates, while undersampling with averaging can lead to the false conclusion of no map when one actually exists. Uniform sample spacing only slightly improves map estimation over nonuniform sample spacing typical of serial electrode penetrations. Tessellation plots commonly used to visualize maps estimated using nonuniform sampling are always inferior to linearly interpolated estimates, although differences are slight at higher sampling densities. Within primary auditory cortex, then, multiunit sampling with at least 100 samples would likely result in reasonable feature map estimates for all but the highest complexity maps and the highest variability that might be expected. PMID:21889537

  6. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.; Xu, Li-Ming

    2003-01-01

    This paper presents the development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during summer 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR- based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and t i f m rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  7. A TRMM-Calibrated Infrared Technique for Global Rainfall Estimation

    NASA Technical Reports Server (NTRS)

    Negri, Andrew J.; Adler, Robert F.

    2002-01-01

    The development of a satellite infrared (IR) technique for estimating convective and stratiform rainfall and its application in studying the diurnal variability of rainfall on a global scale is presented. The Convective-Stratiform Technique (CST), calibrated by coincident, physically retrieved rain rates from the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR), is applied over the global tropics during 2001. The technique is calibrated separately over land and ocean, making ingenious use of the IR data from the TRMM Visible/Infrared Scanner (VIRS) before application to global geosynchronous satellite data. The low sampling rate of TRMM PR imposes limitations on calibrating IR-based techniques; however, our research shows that PR observations can be applied to improve IR-based techniques significantly by selecting adequate calibration areas and calibration length. The diurnal cycle of rainfall, as well as the division between convective and stratiform rainfall will be presented. The technique is validated using available data sets and compared to other global rainfall products such as Global Precipitation Climatology Project (GPCP) IR product, calibrated with TRMM Microwave Imager (TMI) data. The calibrated CST technique has the advantages of high spatial resolution (4 km), filtering of non-raining cirrus clouds, and the stratification of the rainfall into its convective and stratiform components, the latter being important for the calculation of vertical profiles of latent heating.

  8. Estimating Single-Event Logic Cross Sections in Advanced Technologies

    NASA Astrophysics Data System (ADS)

    Harrington, R. C.; Kauppila, J. S.; Warren, K. M.; Chen, Y. P.; Maharrey, J. A.; Haeffner, T. D.; Loveless, T. D.; Bhuva, B. L.; Bounasser, M.; Lilja, K.; Massengill, L. W.

    2017-08-01

    Reliable estimation of logic single-event upset (SEU) cross section is becoming increasingly important for predicting the overall soft error rate. As technology scales and single-event transient (SET) pulse widths shrink to widths on the order of the setup-and-hold time of flip-flops, the probability of latching an SET as an SEU must be reevaluated. In this paper, previous assumptions about the relationship of SET pulsewidth to the probability of latching an SET are reconsidered and a model for transient latching probability has been developed for advanced technologies. A method using the improved transient latching probability and SET data is used to predict logic SEU cross section. The presented model has been used to estimate combinational logic SEU cross sections in 32-nm partially depleted silicon-on-insulator (SOI) technology given experimental heavy-ion SET data. Experimental SEU data show good agreement with the model presented in this paper.

  9. AN EVALUATION OF TWO GROUND-BASED CROWN CLOSURE ESTIMATION TECHNIQUES COMPARED TO CROWN CLOSURE ESTIMATES DERIVED FROM HIGH RESOLUTION IMAGERY

    EPA Science Inventory

    Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominant/co-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...

  10. AN EVALUATION OF TWO GROUND-BASED CROWN CLOSURE ESTIMATION TECHNIQUES COMPARED TO CROWN CLOSURE ESTIMATES DERIVED FROM HIGH RESOLUTION IMAGERY

    EPA Science Inventory

    Two ground-based canopy closure estimation techniques, the Spherical Densitometer (SD) and the Vertical Tube (VT), were compared for the effect of deciduous understory on dominantlco-dominant crown closure estimates in even-aged loblolly (Pinus taeda) pine stands located in the N...

  11. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  12. Estimation of Biochemical Constituents From Fresh, Green Leaves By Spectrum Matching Techniques

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Gao, B. C.; Wessman, C. A.; Bowman, W. D.

    1990-01-01

    Estimation of biochemical constituents in vegetation such as lignin, cellulose, starch, sugar and protein by remote sensing methods is an important goal in ecological research. The spectral reflectances of dried leaves exhibit diagnostic absorption features which can be used to estimate the abundance of important constituents. Lignin and nitrogen concentrations have been obtained from canopies by use of imaging spectrometry and multiple linear regression techniques. The difficulty in identifying individual spectra of leaf constituents in the region beyond 1 micrometer is that liquid water contained in the leaf dominates the spectral reflectance of leaves in this region. By use of spectrum matching techniques, originally used to quantify whole column water abundance in the atmosphere and equivalent liquid water thickness in leaves, we have been able to remove the liquid water contribution to the spectrum. The residual spectra resemble spectra for cellulose in the 1.1 micrometer region, lignin in the 1.7 micrometer region, and starch in the 2.0-2.3 micrometer region. In the entire 1.0-2.3 micrometer region each of the major constituents contributes to the spectrum. Quantitative estimates will require using unmixing techniques on the residual spectra.

  13. Investigation of Models and Estimation Techniques for GPS Attitude Determination

    NASA Technical Reports Server (NTRS)

    Garrick, J.

    1996-01-01

    Much work has been done in the Flight Dynamics Analysis Branch (FDAB) in developing algorithms to met the new and growing field of attitude determination using the Global Positioning SYstem (GPS) constellation of satellites. Flight Dynamics has the responsibility to investigate any new technology and incorporate the innovations in the attitude ground support systems developed to support future missions. The work presented here is an investigative analysis that will produce the needed adaptation to allow the Flight Dynamics Support System (FDSS) to incorporate GPS phase measurements and produce observation measurements compatible with the FDSS. A simulator was developed to produce the necessary measurement data to test the models developed for the different estimation techniques used by FDAB. This paper gives an overview of the current modeling capabilities of the simulator models and algorithms for the adaptation of GPS measurement data and results from each of the estimation techniques. Future analysis efforts to evaluate the simulator and models against inflight GPS measurement data are also outlined.

  14. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections.

    PubMed

    Zhang, You; Yin, Fang-Fang; Segars, W Paul; Ren, Lei

    2013-12-01

    To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy. Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes to the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and "ground-truth" onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy. For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)∕COMS (±S.D.) between lesions in prior images and "ground-truth" onboard images were 136.11% (±42.76%)∕15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD∕COMS between the lesion in estimated and "ground

  15. A technique for estimating 4D-CBCT using prior knowledge and limited-angle projections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, You; Yin, Fang-Fang; Ren, Lei

    2013-12-15

    Purpose: To develop a technique to estimate onboard 4D-CBCT using prior information and limited-angle projections for potential 4D target verification of lung radiotherapy.Methods: Each phase of onboard 4D-CBCT is considered as a deformation from one selected phase (prior volume) of the planning 4D-CT. The deformation field maps (DFMs) are solved using a motion modeling and free-form deformation (MM-FD) technique. In the MM-FD technique, the DFMs are estimated using a motion model which is extracted from planning 4D-CT based on principal component analysis (PCA). The motion model parameters are optimized by matching the digitally reconstructed radiographs of the deformed volumes tomore » the limited-angle onboard projections (data fidelity constraint). Afterward, the estimated DFMs are fine-tuned using a FD model based on data fidelity constraint and deformation energy minimization. The 4D digital extended-cardiac-torso phantom was used to evaluate the MM-FD technique. A lung patient with a 30 mm diameter lesion was simulated with various anatomical and respirational changes from planning 4D-CT to onboard volume, including changes of respiration amplitude, lesion size and lesion average-position, and phase shift between lesion and body respiratory cycle. The lesions were contoured in both the estimated and “ground-truth” onboard 4D-CBCT for comparison. 3D volume percentage-difference (VPD) and center-of-mass shift (COMS) were calculated to evaluate the estimation accuracy of three techniques: MM-FD, MM-only, and FD-only. Different onboard projection acquisition scenarios and projection noise levels were simulated to investigate their effects on the estimation accuracy.Results: For all simulated patient and projection acquisition scenarios, the mean VPD (±S.D.)/COMS (±S.D.) between lesions in prior images and “ground-truth” onboard images were 136.11% (±42.76%)/15.5 mm (±3.9 mm). Using orthogonal-view 15°-each scan angle, the mean VPD/COMS between the

  16. 'Boomerang' technique: an improved method for conformal treatment of locally advanced nasopharyngeal cancer.

    PubMed

    Corry, June; Hornby, Colin; Fisher, Richard; D'Costa, Ieta; Porceddu, Sandro; Rischin, Danny; Peters, Lester J

    2004-06-01

    The primary aim of the present study was to assess radiation dosimetry and subsequent clinical outcomes in patients with locally advanced nasopharyngeal cancer using a novel radiation technique termed the 'Boomerang'. Dosimetric comparisons were made with both conventional and intensity modulated radiation therapy (IMRT) techniques. This is a study of 22 patients treated with this technique from June 1995 to October 1998. The technique used entailed delivery of 36 Gy in 18 fractions via parallel opposed fields, then 24 Gy in 12 fractions via asymmetric rotating arc fields for a total of 60 Gy in 30 fractions. Patients also received induction and concurrent chemotherapy. The radiation dosimetry was excellent. Dose-volume histograms showed that with the arc fields, 90% of the planning target volume received 94% of the prescribed dose. Relative to other conventional radiation therapy off-cord techniques, the Boomerang technique results in a 27% greater proportion of the prescribed dose being received by 90% of the planning target volume. This translates into an overall 10% greater dose received for the same prescribed dose. At 3 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 91, 75 and 91%, respectively. At 5 years, the actuarial loco-regional control rate, the failure-free survival rate and the overall survival rate were 74, 62 and 71%, respectively. The Boomerang technique provided excellent radiation dosimetry with correspondingly good loco-regional control rates (in conjunction with chemotherapy) and very acceptable acute and late toxicity profiles. Because treatment can be delivered with conventional standard treatment planning and delivery systems, it is a validated treatment option for centres that do not have the capability or capacity for IMRT. A derivative of the Boomerang technique, excluding the parallel opposed component, is now our standard for patients with locally advanced

  17. Comparative assessment of bone pose estimation using Point Cluster Technique and OpenSim.

    PubMed

    Lathrop, Rebecca L; Chaudhari, Ajit M W; Siston, Robert A

    2011-11-01

    Estimating the position of the bones from optical motion capture data is a challenge associated with human movement analysis. Bone pose estimation techniques such as the Point Cluster Technique (PCT) and simulations of movement through software packages such as OpenSim are used to minimize soft tissue artifact and estimate skeletal position; however, using different methods for analysis may produce differing kinematic results which could lead to differences in clinical interpretation such as a misclassification of normal or pathological gait. This study evaluated the differences present in knee joint kinematics as a result of calculating joint angles using various techniques. We calculated knee joint kinematics from experimental gait data using the standard PCT, the least squares approach in OpenSim applied to experimental marker data, and the least squares approach in OpenSim applied to the results of the PCT algorithm. Maximum and resultant RMS differences in knee angles were calculated between all techniques. We observed differences in flexion/extension, varus/valgus, and internal/external rotation angles between all approaches. The largest differences were between the PCT results and all results calculated using OpenSim. The RMS differences averaged nearly 5° for flexion/extension angles with maximum differences exceeding 15°. Average RMS differences were relatively small (< 1.08°) between results calculated within OpenSim, suggesting that the choice of marker weighting is not critical to the results of the least squares inverse kinematics calculations. The largest difference between techniques appeared to be a constant offset between the PCT and all OpenSim results, which may be due to differences in the definition of anatomical reference frames, scaling of musculoskeletal models, and/or placement of virtual markers within OpenSim. Different methods for data analysis can produce largely different kinematic results, which could lead to the misclassification

  18. Measurement and modeling of out-of-field doses from various advanced post-mastectomy radiotherapy techniques

    NASA Astrophysics Data System (ADS)

    Yoon, Jihyung; Heins, David; Zhao, Xiaodong; Sanders, Mary; Zhang, Rui

    2017-12-01

    More and more advanced radiotherapy techniques have been adopted for post-mastectomy radiotherapies (PMRT). Patient dose reconstruction is challenging for these advanced techniques because they increase the low out-of-field dose area while the accuracy of out-of-field dose calculations by current commercial treatment planning systems (TPSs) is poor. We aim to measure and model the out-of-field radiation doses from various advanced PMRT techniques. PMRT treatment plans for an anthropomorphic phantom were generated, including volumetric modulated arc therapy with standard and flattening-filter-free photon beams, mixed beam therapy, 4-field intensity modulated radiation therapy (IMRT), and tomotherapy. We measured doses in the phantom where the TPS calculated doses were lower than 5% of the prescription dose using thermoluminescent dosimeters (TLD). The TLD measurements were corrected by two additional energy correction factors, namely out-of-beam out-of-field (OBOF) correction factor K OBOF and in-beam out-of-field (IBOF) correction factor K IBOF, which were determined by separate measurements using an ion chamber and TLD. A simple analytical model was developed to predict out-of-field dose as a function of distance from the field edge for each PMRT technique. The root mean square discrepancies between measured and calculated out-of-field doses were within 0.66 cGy Gy-1 for all techniques. The IBOF doses were highly scattered and should be evaluated case by case. One can easily combine the measured out-of-field dose here with the in-field dose calculated by the local TPS to reconstruct organ doses for a specific PMRT patient if the same treatment apparatus and technique were used.

  19. Application of advanced control techniques to aircraft propulsion systems

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.

    1984-01-01

    Two programs are described which involve the application of advanced control techniques to the design of engine control algorithms. Multivariable control theory is used in the F100 MVCS (multivariable control synthesis) program to design controls which coordinate the control inputs for improved engine performance. A systematic method for handling a complex control design task is given. Methods of analytical redundancy are aimed at increasing the control system reliability. The F100 DIA (detection, isolation, and accommodation) program, which investigates the uses of software to replace or augment hardware redundancy for certain critical engine sensor, is described.

  20. [Advances of Molecular Diagnostic Techniques Application in Clinical Diagnosis.

    PubMed

    Ying, Bin-Wu

    2016-11-01

    Over the past 20 years,clinical molecular diagnostic technology has made rapid development,and became the most promising field in clinical laboratory medicine.In particular,with the development of genomics,clinical molecular diagnostic methods will reveal the nature of clinical diseases in a deeper level,thus guiding the clinical diagnosis and treatments.Many molecular diagnostic projects have been routinely applied in clinical works.This paper reviews the advances on application of clinical diagnostic techniques in infectious disease,tumor and genetic disorders,including nucleic acid amplification,biochip,next-generation sequencing,and automation molecular system,and so on.

  1. Tools and techniques for estimating high intensity RF effects

    NASA Astrophysics Data System (ADS)

    Zacharias, Richard L.; Pennock, Steve T.; Poggio, Andrew J.; Ray, Scott L.

    1992-01-01

    Tools and techniques for estimating and measuring coupling and component disturbance for avionics and electronic controls are described. A finite-difference-time-domain (FD-TD) modeling code, TSAR, used to predict coupling is described. This code can quickly generate a mesh model to represent the test object. Some recent applications as well as the advantages and limitations of using such a code are described. Facilities and techniques for making low-power coupling measurements and for making direct injection test measurements of device disturbance are also described. Some scaling laws for coupling and device effects are presented. A method for extrapolating these low-power test results to high-power full-system effects are presented.

  2. An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma

    PubMed Central

    Mohammadi Ardehali, Mojtaba; Samimi, Seyyed Hadi; Bakhshaee, Mehdi

    2014-01-01

    Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection. Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor. Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases) at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days. Conclusion: Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages. PMID:24505571

  3. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  4. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  5. Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iliescu, Bogdan; Haskal, Ziv J., E-mail: ziv2@mac.com

    Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful,more » with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.« less

  6. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  7. A Rapid Screen Technique for Estimating Nanoparticle Transport in Porous Media

    EPA Science Inventory

    Quantifying the mobility of engineered nanoparticles in hydrologic pathways from point of release to human or ecological receptors is essential for assessing environmental exposures. Column transport experiments are a widely used technique to estimate the transport parameters of ...

  8. Estimation of velocity fluctuation in internal combustion engine exhaust systems through beamforming techniques

    NASA Astrophysics Data System (ADS)

    Piñero, G.; Vergara, L.; Desantes, J. M.; Broatch, A.

    2000-11-01

    The knowledge of the particle velocity fluctuations associated with acoustic pressure oscillation in the exhaust system of internal combustion engines may represent a powerful aid in the design of such systems, from the point of view of both engine performance improvement and exhaust noise abatement. However, usual velocity measurement techniques, even if applicable, are not well suited to the aggressive environment existing in exhaust systems. In this paper, a method to obtain a suitable estimate of velocity fluctuations is proposed, which is based on the application of spatial filtering (beamforming) techniques to instantaneous pressure measurements. Making use of simulated pressure-time histories, several algorithms have been checked by comparison between the simulated and the estimated velocity fluctuations. Then, problems related to the experimental procedure and associated with the proposed methodology are addressed, making application to measurements made in a real exhaust system. The results indicate that, if proper care is taken when performing the measurements, the application of beamforming techniques gives a reasonable estimate of the velocity fluctuations.

  9. Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation

    NASA Technical Reports Server (NTRS)

    Davis, Steven B.

    1990-01-01

    Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

  10. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  11. Republic of Georgia estimates for prevalence of drug use: Randomized response techniques suggest under-estimation.

    PubMed

    Kirtadze, Irma; Otiashvili, David; Tabatadze, Mzia; Vardanashvili, Irina; Sturua, Lela; Zabransky, Tomas; Anthony, James C

    2018-06-01

    Validity of responses in surveys is an important research concern, especially in emerging market economies where surveys in the general population are a novelty, and the level of social control is traditionally higher. The Randomized Response Technique (RRT) can be used as a check on response validity when the study aim is to estimate population prevalence of drug experiences and other socially sensitive and/or illegal behaviors. To apply RRT and to study potential under-reporting of drug use in a nation-scale, population-based general population survey of alcohol and other drug use. For this first-ever household survey on addictive substances for the Country of Georgia, we used the multi-stage probability sampling of 18-to-64-year-old household residents of 111 urban and 49 rural areas. During the interviewer-administered assessments, RRT involved pairing of sensitive and non-sensitive questions about drug experiences. Based upon the standard household self-report survey estimate, an estimated 17.3% [95% confidence interval, CI: 15.5%, 19.1%] of Georgian household residents have tried cannabis. The corresponding RRT estimate was 29.9% [95% CI: 24.9%, 34.9%]. The RRT estimates for other drugs such as heroin also were larger than the standard self-report estimates. We remain unsure about what is the "true" value for prevalence of using illegal psychotropic drugs in the Republic of Georgia study population. Our RRT results suggest that standard non-RRT approaches might produce 'under-estimates' or at best, highly conservative, lower-end estimates. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis.

    PubMed

    Deeb, Sami El; Wätzig, Hermann; El-Hady, Deia Abd; Albishri, Hassan M; de Griend, Cari Sänger-van; Scriba, Gerhard K E

    2014-01-01

    Since the introduction about 30 years ago, CE techniques have gained a significant impact in pharmaceutical analysis. The present review covers recent advances and applications of CE for the analysis of pharmaceuticals. Both small molecules and biomolecules such as proteins are considered. The applications range from the determination of drug-related substances to the analysis of counterions and the determination of physicochemical parameters. Furthermore, general considerations of CE methods in pharmaceutical analysis are described. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Applications of Advanced, Waveform Based AE Techniques for Testing Composite Materials

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    1996-01-01

    Advanced, waveform based acoustic emission (AE) techniques have been previously used to evaluate damage progression in laboratory tests of composite coupons. In these tests, broad band, high fidelity acoustic sensors were used to detect signals which were then digitized and stored for analysis. Analysis techniques were based on plate mode wave propagation characteristics. This approach, more recently referred to as Modal AE, provides an enhanced capability to discriminate and eliminate noise signals from those generated by damage mechanisms. This technique also allows much more precise source location than conventional, threshold crossing arrival time determination techniques. To apply Modal AE concepts to the interpretation of AE on larger composite structures, the effects of wave propagation over larger distances and through structural complexities must be well characterized and understood. In this research, measurements were made of the attenuation of the extensional and flexural plate mode components of broad band simulated AE signals in large composite panels. As these materials have applications in a cryogenic environment, the effects of cryogenic insulation on the attenuation of plate mode AE signals were also documented.

  14. Technique for estimation of streamflow statistics in mineral areas of interest in Afghanistan

    USGS Publications Warehouse

    Olson, Scott A.; Mack, Thomas J.

    2011-01-01

    A technique for estimating streamflow statistics at ungaged stream sites in areas of mineral interest in Afghanistan using drainage-area-ratio relations of historical streamflow data was developed and is documented in this report. The technique can be used to estimate the following streamflow statistics at ungaged sites: (1) 7-day low flow with a 10-year recurrence interval, (2) 7-day low flow with a 2-year recurrence interval, (3) daily mean streamflow exceeded 90 percent of the time, (4) daily mean streamflow exceeded 80 percent of the time, (5) mean monthly streamflow for each month of the year, (6) mean annual streamflow, and (7) minimum monthly streamflow for each month of the year. Because they are based on limited historical data, the estimates of streamflow statistics at ungaged sites are considered preliminary.

  15. Noncoherent sampling technique for communications parameter estimations

    NASA Technical Reports Server (NTRS)

    Su, Y. T.; Choi, H. J.

    1985-01-01

    This paper presents a method of noncoherent demodulation of the PSK signal for signal distortion analysis at the RF interface. The received RF signal is downconverted and noncoherently sampled for further off-line processing. Any mismatch in phase and frequency is then compensated for by the software using the estimation techniques to extract the baseband waveform, which is needed in measuring various signal parameters. In this way, various kinds of modulated signals can be treated uniformly, independent of modulation format, and additional distortions introduced by the receiver or the hardware measurement instruments can thus be eliminated. Quantization errors incurred by digital sampling and ensuing software manipulations are analyzed and related numerical results are presented also.

  16. Use of environmental isotope tracer and GIS techniques to estimate basin recharge

    NASA Astrophysics Data System (ADS)

    Odunmbaku, Abdulganiu A. A.

    The extensive use of ground water only began with the advances in pumping technology at the early portion of 20th Century. Groundwater provides the majority of fresh water supply for municipal, agricultural and industrial uses, primarily because of little to no treatment it requires. Estimating the volume of groundwater available in a basin is a daunting task, and no accurate measurements can be made. Usually water budgets and simulation models are primarily used to estimate the volume of water in a basin. Precipitation, land surface cover and subsurface geology are factors that affect recharge; these factors affect percolation which invariably affects groundwater recharge. Depending on precipitation, soil chemistry, groundwater chemical composition, gradient and depth, the age and rate of recharge can be estimated. This present research proposes to estimate the recharge in Mimbres, Tularosa and Diablo Basin using the chloride environmental isotope; chloride mass-balance approach and GIS. It also proposes to determine the effect of elevation on recharge rate. Mimbres and Tularosa Basin are located in southern New Mexico State, and extend southward into Mexico. Diablo Basin is located in Texas in extends southward. This research utilizes the chloride mass balance approach to estimate the recharge rate through collection of groundwater data from wells, and precipitation. The data were analysed statistically to eliminate duplication, outliers, and incomplete data. Cluster analysis, piper diagram and statistical significance were performed on the parameters of the groundwater; the infiltration rate was determined using chloride mass balance technique. The data was then analysed spatially using ArcGIS10. Regions of active recharge were identified in Mimbres and Diablo Basin, but this could not be clearly identified in Tularosa Basin. CMB recharge for Tularosa Basin yields 0.04037mm/yr (0.0016in/yr), Diablo Basin was 0.047mm/yr (0.0016 in/yr), and 0.2153mm/yr (0.00848in

  17. Aerodynamic parameter estimation via Fourier modulating function techniques

    NASA Technical Reports Server (NTRS)

    Pearson, A. E.

    1995-01-01

    Parameter estimation algorithms are developed in the frequency domain for systems modeled by input/output ordinary differential equations. The approach is based on Shinbrot's method of moment functionals utilizing Fourier based modulating functions. Assuming white measurement noises for linear multivariable system models, an adaptive weighted least squares algorithm is developed which approximates a maximum likelihood estimate and cannot be biased by unknown initial or boundary conditions in the data owing to a special property attending Shinbrot-type modulating functions. Application is made to perturbation equation modeling of the longitudinal and lateral dynamics of a high performance aircraft using flight-test data. Comparative studies are included which demonstrate potential advantages of the algorithm relative to some well established techniques for parameter identification. Deterministic least squares extensions of the approach are made to the frequency transfer function identification problem for linear systems and to the parameter identification problem for a class of nonlinear-time-varying differential system models.

  18. A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis.

    PubMed

    Brassey, Charlotte A; O'Mahoney, Thomas G; Chamberlain, Andrew T; Sellers, William I

    2018-02-01

    Fossil body mass estimation is a well established practice within the field of physical anthropology. Previous studies have relied upon traditional allometric approaches, in which the relationship between one/several skeletal dimensions and body mass in a range of modern taxa is used in a predictive capacity. The lack of relatively complete skeletons has thus far limited the potential application of alternative mass estimation techniques, such as volumetric reconstruction, to fossil hominins. Yet across vertebrate paleontology more broadly, novel volumetric approaches are resulting in predicted values for fossil body mass very different to those estimated by traditional allometry. Here we present a new digital reconstruction of Australopithecus afarensis (A.L. 288-1; 'Lucy') and a convex hull-based volumetric estimate of body mass. The technique relies upon identifying a predictable relationship between the 'shrink-wrapped' volume of the skeleton and known body mass in a range of modern taxa, and subsequent application to an articulated model of the fossil taxa of interest. Our calibration dataset comprises whole body computed tomography (CT) scans of 15 species of modern primate. The resulting predictive model is characterized by a high correlation coefficient (r 2  = 0.988) and a percentage standard error of 20%, and performs well when applied to modern individuals of known body mass. Application of the convex hull technique to A. afarensis results in a relatively low body mass estimate of 20.4 kg (95% prediction interval 13.5-30.9 kg). A sensitivity analysis on the articulation of the chest region highlights the sensitivity of our approach to the reconstruction of the trunk, and the incomplete nature of the preserved ribcage may explain the low values for predicted body mass here. We suggest that the heaviest of previous estimates would require the thorax to be expanded to an unlikely extent, yet this can only be properly tested when more complete fossils

  19. Estimating plant biomass in early-successional subtropical vegetation using a visual obstruction technique

    Treesearch

    Genie M. Fleming; Joseph M. Wunderle; David N. Ewert; Joseph O' Brien

    2014-01-01

    Aim: Non-destructive methods for quantifying above-ground plant biomass are important tools in many ecological studies and management endeavours, but estimation methods can be labour intensive and particularly difficult in structurally diverse vegetation types. We aimed to develop a low-cost, but reasonably accurate, estimation technique within early-successional...

  20. Reduced-rank technique for joint channel estimation in TD-SCDMA systems

    NASA Astrophysics Data System (ADS)

    Kamil Marzook, Ali; Ismail, Alyani; Mohd Ali, Borhanuddin; Sali, Adawati; Khatun, Sabira

    2013-02-01

    In time division-synchronous code division multiple access systems, increasing the system capacity by exploiting the inserting of the largest number of users in one time slot (TS) requires adding more estimation processes to estimate the joint channel matrix for the whole system. The increase in the number of channel parameters due the increase in the number of users in one TS directly affects the precision of the estimator's performance. This article presents a novel channel estimation with low complexity, which relies on reducing the rank order of the total channel matrix H. The proposed method exploits the rank deficiency of H to reduce the number of parameters that characterise this matrix. The adopted reduced-rank technique is based on truncated singular value decomposition algorithm. The algorithms for reduced-rank joint channel estimation (JCE) are derived and compared against traditional full-rank JCEs: least squares (LS) or Steiner and enhanced (LS or MMSE) algorithms. Simulation results of the normalised mean square error showed the superiority of reduced-rank estimators. In addition, the channel impulse responses founded by reduced-rank estimator for all active users offers considerable performance improvement over the conventional estimator along the channel window length.

  1. Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques

    NASA Astrophysics Data System (ADS)

    Chung, Kit Man

    Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one

  2. Review of recent advances in analytical techniques for the determination of neurotransmitters

    PubMed Central

    Perry, Maura; Li, Qiang; Kennedy, Robert T.

    2009-01-01

    Methods and advances for monitoring neurotransmitters in vivo or for tissue analysis of neurotransmitters over the last five years are reviewed. The review is organized primarily by neurotransmitter type. Transmitter and related compounds may be monitored by either in vivo sampling coupled to analytical methods or implanted sensors. Sampling is primarily performed using microdialysis, but low-flow push-pull perfusion may offer advantages of spatial resolution while minimizing the tissue disruption associated with higher flow rates. Analytical techniques coupled to these sampling methods include liquid chromatography, capillary electrophoresis, enzyme assays, sensors, and mass spectrometry. Methods for the detection of amino acid, monoamine, neuropeptide, acetylcholine, nucleoside, and soluable gas neurotransmitters have been developed and improved upon. Advances in the speed and sensitivity of these methods have enabled improvements in temporal resolution and increased the number of compounds detectable. Similar advances have enabled improved detection at tissue samples, with a substantial emphasis on single cell and other small samples. Sensors provide excellent temporal and spatial resolution for in vivo monitoring. Advances in application to catecholamines, indoleamines, and amino acids have been prominent. Improvements in stability, sensitivity, and selectivity of the sensors have been of paramount interest. PMID:19800472

  3. A NOVEL TECHNIQUE APPLYING SPECTRAL ESTIMATION TO JOHNSON NOISE THERMOMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, N Dianne Bull; Britton Jr, Charles L; Roberts, Michael

    Johnson noise thermometry (JNT) is one of many important measurements used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed in this document. Spectral estimation is a key component in the signal processing algorithm utilized for EMI removal and temperature calculation. Applying these techniques requires the simple addition of the electronics and signal processing tomore » existing resistive thermometers.« less

  4. Comparing Benefit Estimation Techniques: Residential Flood Hazard Reduction Benefits in Roanoke, Virginia

    DTIC Science & Technology

    1998-03-01

    benefit estimation techniques used to monetize the value of flood hazard reduction in the City of Roanoke. Each method was then used to estimate...behavior. This framework justifies interpreting people’s choices to infer and then monetize their preferences. If individuals have well-ordered and...Journal of Agricultural Economics. 68 (1986) 2: 280-290. Soule, Don M. and Claude M. Vaughn, "Flood Protection Benefits as Reflected in Property

  5. Peak-picking fundamental period estimation for hearing prostheses.

    PubMed

    Howard, D M

    1989-09-01

    A real-time peak-picking fundamental period estimation device is described which is used in advanced hearing prostheses for the totally and profoundly deafened. The operation of the peak picker is compared with three well-established fundamental frequency estimation techniques: the electrolaryngograph, which is used as a "standard" hardware implementations of the cepstral technique, and the Gold/Rabiner parallel processing algorithm. These comparisons illustrate and highlight some of the important advantages and disadvantages that characterize the operation of these techniques. The special requirements of the hearing prostheses are discussed with respect to the operation of each device, and the choice of the peak picker is found to be felicitous in this application.

  6. New test techniques and analytical procedures for understanding the behavior of advanced propellers

    NASA Technical Reports Server (NTRS)

    Stefko, G. L.; Bober, L. J.; Neumann, H. E.

    1983-01-01

    Analytical procedures and experimental techniques were developed to improve the capability to design advanced high speed propellers. Some results from the propeller lifting line and lifting surface aerodynamic analysis codes are compared with propeller force data, probe data and laser velocimeter data. In general, the code comparisons with data indicate good qualitative agreement. A rotating propeller force balance demonstrated good accuracy and reduced test time by 50 percent. Results from three propeller flow visualization techniques are shown which illustrate some of the physical phenomena occurring on these propellers.

  7. A technique for estimating seed production of common moist soil plants

    USGS Publications Warehouse

    Laubhan, Murray K.

    1992-01-01

    Seeds of native herbaceous vegetation adapted to germination in hydric soils (i.e., moist-soil plants) provide waterfowl with nutritional resources including essential amino acids, vitamins, and minerals that occur only in small amounts or are absent in other foods. These elements are essential for waterfowl to successfully complete aspects of the annual cycle such as molt and reproduction. Moist-soil vegetation also has the advantages of consistent production of foods across years with varying water availability, low management costs, high tolerance to diverse environmental conditions, and low deterioration rates of seeds after flooding. The amount of seed produced differs among plant species and varies annually depending on environmental conditions and management practices. Further, many moist-soil impoundments contain diverse vegetation, and seed production by a particular plant species usually is not uniform across an entire unit. Consequently, estimating total seed production within an impoundment is extremely difficult. The chemical composition of seeds also varies among plant species. For example, beggartick seeds contain high amounts of protein but only an intermediate amount of minerals. In contrast, barnyardgrass is a good source of minerals but is low in protein. Because of these differences, it is necessary to know the amount of seed produced by each plant species if the nutritional resources provided in an impoundment are to be estimated. The following technique for estimating seed production takes into account the variation resulting from different environmental conditions and management practices as well as differences in the amount of seed produced by various plant species. The technique was developed to provide resource managers with the ability to make quick and reliable estimates of seed production. Although on-site information must be collected, the amount of field time required is small (i.e., about 1 min per sample); sampling normally is

  8. Optimization of advanced Wiener estimation methods for Raman reconstruction from narrow-band measurements in the presence of fluorescence background

    PubMed Central

    Chen, Shuo; Ong, Yi Hong; Lin, Xiaoqian; Liu, Quan

    2015-01-01

    Raman spectroscopy has shown great potential in biomedical applications. However, intrinsically weak Raman signals cause slow data acquisition especially in Raman imaging. This problem can be overcome by narrow-band Raman imaging followed by spectral reconstruction. Our previous study has shown that Raman spectra free of fluorescence background can be reconstructed from narrow-band Raman measurements using traditional Wiener estimation. However, fluorescence-free Raman spectra are only available from those sophisticated Raman setups capable of fluorescence suppression. The reconstruction of Raman spectra with fluorescence background from narrow-band measurements is much more challenging due to the significant variation in fluorescence background. In this study, two advanced Wiener estimation methods, i.e. modified Wiener estimation and sequential weighted Wiener estimation, were optimized to achieve this goal. Both spontaneous Raman spectra and surface enhanced Raman spectra were evaluated. Compared with traditional Wiener estimation, two advanced methods showed significant improvement in the reconstruction of spontaneous Raman spectra. However, traditional Wiener estimation can work as effectively as the advanced methods for SERS spectra but much faster. The wise selection of these methods would enable accurate Raman reconstruction in a simple Raman setup without the function of fluorescence suppression for fast Raman imaging. PMID:26203387

  9. A novel technique for fetal heart rate estimation from Doppler ultrasound signal

    PubMed Central

    2011-01-01

    Background The currently used fetal monitoring instrumentation that is based on Doppler ultrasound technique provides the fetal heart rate (FHR) signal with limited accuracy. It is particularly noticeable as significant decrease of clinically important feature - the variability of FHR signal. The aim of our work was to develop a novel efficient technique for processing of the ultrasound signal, which could estimate the cardiac cycle duration with accuracy comparable to a direct electrocardiography. Methods We have proposed a new technique which provides the true beat-to-beat values of the FHR signal through multiple measurement of a given cardiac cycle in the ultrasound signal. The method consists in three steps: the dynamic adjustment of autocorrelation window, the adaptive autocorrelation peak detection and determination of beat-to-beat intervals. The estimated fetal heart rate values and calculated indices describing variability of FHR, were compared to the reference data obtained from the direct fetal electrocardiogram, as well as to another method for FHR estimation. Results The results revealed that our method increases the accuracy in comparison to currently used fetal monitoring instrumentation, and thus enables to calculate reliable parameters describing the variability of FHR. Relating these results to the other method for FHR estimation we showed that in our approach a much lower number of measured cardiac cycles was rejected as being invalid. Conclusions The proposed method for fetal heart rate determination on a beat-to-beat basis offers a high accuracy of the heart interval measurement enabling reliable quantitative assessment of the FHR variability, at the same time reducing the number of invalid cardiac cycle measurements. PMID:21999764

  10. Advances in Time Estimation Methods for Molecular Data.

    PubMed

    Kumar, Sudhir; Hedges, S Blair

    2016-04-01

    Molecular dating has become central to placing a temporal dimension on the tree of life. Methods for estimating divergence times have been developed for over 50 years, beginning with the proposal of molecular clock in 1962. We categorize the chronological development of these methods into four generations based on the timing of their origin. In the first generation approaches (1960s-1980s), a strict molecular clock was assumed to date divergences. In the second generation approaches (1990s), the equality of evolutionary rates between species was first tested and then a strict molecular clock applied to estimate divergence times. The third generation approaches (since ∼2000) account for differences in evolutionary rates across the tree by using a statistical model, obviating the need to assume a clock or to test the equality of evolutionary rates among species. Bayesian methods in the third generation require a specific or uniform prior on the speciation-process and enable the inclusion of uncertainty in clock calibrations. The fourth generation approaches (since 2012) allow rates to vary from branch to branch, but do not need prior selection of a statistical model to describe the rate variation or the specification of speciation model. With high accuracy, comparable to Bayesian approaches, and speeds that are orders of magnitude faster, fourth generation methods are able to produce reliable timetrees of thousands of species using genome scale data. We found that early time estimates from second generation studies are similar to those of third and fourth generation studies, indicating that methodological advances have not fundamentally altered the timetree of life, but rather have facilitated time estimation by enabling the inclusion of more species. Nonetheless, we feel an urgent need for testing the accuracy and precision of third and fourth generation methods, including their robustness to misspecification of priors in the analysis of large phylogenies and data

  11. Advanced IMCW Lidar Techniques for ASCENDS CO2 Column Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel; lin, bing; nehrir, amin; harrison, fenton; obland, michael

    2015-04-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation.

  12. Rotation Elastogram Estimation Using Synthetic Transmit-aperture Technique: A Feasibility Study.

    PubMed

    B, Lokesh; Chintada, Bhaskara Rao; Thittai, Arun Kumar

    2017-05-01

    It is well-documented in literature that benign breast lesions, such as fibroadenomas, are loosely bonded to their surrounding tissue and tend to slip under a small quasi-static compression, whereas malignant lesions being firmly bonded to their surrounding tissue do not slip. Recent developments in quasi-static ultrasound elastography have shown that an image of the axial-shear strain distribution can provide information about the bonding condition at the lesion-surrounding tissue boundary. Further studies analyzing the axial-shear strain elastograms revealed that nonzero axial-shear strain values appear inside the lesion, referred to as fill-in, only when a lesion is loosely bonded and asymmetrically oriented to the axis of compression. It was argued that the fill-in observed in axial-shear strain elastogram is a surrogate of the actual rigid-body rotation undergone by such a benign lesion due to slip boundary condition. However, it may be useful and perhaps easy to interpret, if the actual rigid-body rotation of the lesion can itself be visualized directly. To estimate this rotation tensor and its spatial distribution map (called a Rotation Elastogram [RE]), it would be necessary to improve the quality of lateral displacement estimates. Recently, it has been shown in the context of Non-Invasive Vascular Elastography (NIVE) that the Synthetic Transmit Aperture (STA) technique can be adapted for elastography to improve the lateral displacement estimates. Therefore, the focus of this work was to investigate the feasibility of employing the STA technique to improve the lateral displacement estimation and assess the resulting improvement in the RE quality. This investigation was done using both simulation and experimental studies. The image quality metric of contrast-to-noise ratio (CNR) was used to evaluate the quality of rotation elastograms. The results demonstrate that the contrast appeared in RE only in the case of loosely bonded inclusion, and the quality of RE

  13. The Pilot Training Study: A Cost-Estimating Model for Advanced Pilot Training (APT).

    ERIC Educational Resources Information Center

    Knollmeyer, L. E.

    The Advanced Pilot Training Cost Model is a statement of relationships that may be used, given the necessary inputs, for estimating the resources required and the costs to train pilots in the Air Force formal flying training schools. Resources and costs are computed by weapon system on an annual basis for use in long-range planning or sensitivity…

  14. Real time estimation of ship motions using Kalman filtering techniques

    NASA Technical Reports Server (NTRS)

    Triantafyllou, M. S.; Bodson, M.; Athans, M.

    1983-01-01

    The estimation of the heave, pitch, roll, sway, and yaw motions of a DD-963 destroyer is studied, using Kalman filtering techniques, for application in VTOL aircraft landing. The governing equations are obtained from hydrodynamic considerations in the form of linear differential equations with frequency dependent coefficients. In addition, nonminimum phase characteristics are obtained due to the spatial integration of the water wave forces. The resulting transfer matrix function is irrational and nonminimum phase. The conditions for a finite-dimensional approximation are considered and the impact of the various parameters is assessed. A detailed numerical application for a DD-963 destroyer is presented and simulations of the estimations obtained from Kalman filters are discussed.

  15. Advanced spacecraft thermal control techniques

    NASA Technical Reports Server (NTRS)

    Fritz, C. H.

    1977-01-01

    The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

  16. Estimation and filtering techniques for high-accuracy GPS applications

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1989-01-01

    Techniques for determination of very precise orbits for satellites of the Global Positioning System (GPS) are currently being studied and demonstrated. These techniques can be used to make cm-accurate measurements of station locations relative to the geocenter, monitor earth orientation over timescales of hours, and provide tropospheric and clock delay calibrations during observations made with deep space radio antennas at sites where the GPS receivers have been collocated. For high-earth orbiters, meter-level knowledge of position will be available from GPS, while at low altitudes, sub-decimeter accuracy will be possible. Estimation of satellite orbits and other parameters such as ground station positions is carried out with a multi-satellite batch sequential pseudo-epoch state process noise filter. Both square-root information filtering (SRIF) and UD-factorized covariance filtering formulations are implemented in the software.

  17. Evaluation of an advanced physical diagnosis course using consumer preferences methods: the nominal group technique.

    PubMed

    Coker, Joshua; Castiglioni, Analia; Kraemer, Ryan R; Massie, F Stanford; Morris, Jason L; Rodriguez, Martin; Russell, Stephen W; Shaneyfelt, Terrance; Willett, Lisa L; Estrada, Carlos A

    2014-03-01

    Current evaluation tools of medical school courses are limited by the scope of questions asked and may not fully engage the student to think on areas to improve. The authors sought to explore whether a technique to study consumer preferences would elicit specific and prioritized information for course evaluation from medical students. Using the nominal group technique (4 sessions), 12 senior medical students prioritized and weighed expectations and topics learned in a 100-hour advanced physical diagnosis course (4-week course; February 2012). Students weighted their top 3 responses (top = 3, middle = 2 and bottom = 1). Before the course, 12 students identified 23 topics they expected to learn; the top 3 were review sensitivity/specificity and high-yield techniques (percentage of total weight, 18.5%), improving diagnosis (13.8%) and reinforce usual and less well-known techniques (13.8%). After the course, students generated 22 topics learned; the top 3 were practice and reinforce advanced maneuvers (25.4%), gaining confidence (22.5%) and learn the evidence (16.9%). The authors observed no differences in the priority of responses before and after the course (P = 0.07). In a physical diagnosis course, medical students elicited specific and prioritized information using the nominal group technique. The course met student expectations regarding education of the evidence-based physical examination, building skills and confidence on the proper techniques and maneuvers and experiential learning. The novel use for curriculum evaluation may be used to evaluate other courses-especially comprehensive and multicomponent courses.

  18. 75 FR 44015 - Certain Semiconductor Products Made by Advanced Lithography Techniques and Products Containing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-729] Certain Semiconductor Products Made by... the sale within the United States after importation of certain semiconductor products made by advanced lithography techniques and products containing same by reason of infringement of certain claims of U.S. Patent...

  19. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Obland, M. D.; Liu, Z.; Kooi, S. A.; Fan, T. F.; Nehrir, A. R.; Meadows, B.; Browell, E. V.

    2016-12-01

    Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 MeasurementsJoel F. Campbell1, Bing Lin1, Michael D. Obland1, Zhaoyan Liu1, Susan Kooi2, Tai-Fang Fan2, Amin R. Nehrir1, Byron Meadows1, Edward V. Browell31NASA Langley Research Center, Hampton, VA 23681 2SSAI, NASA Langley Research Center, Hampton, VA 23681 3STARSS-II Affiliate, NASA Langley Research Center, Hampton, VA 23681 AbstractGlobal and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and the Atmospheric Carbon and Transport (ACT) - America project are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the ASCENDS and ACT-America science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new sub-meter hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. These techniques are used in a new data processing

  20. Advancement of Techniques for Modeling the Effects of Atmospheric Gravity-Wave-Induced Inhomogeneities on Infrasound Propagation

    DTIC Science & Technology

    2010-09-01

    ADVANCEMENT OF TECHNIQUES FOR MODELING THE EFFECTS OF ATMOSPHERIC GRAVITY-WAVE-INDUCED INHOMOGENEITIES ON INFRASOUND PROPAGATION Robert G...number of infrasound observations indicate that fine-scale atmospheric inhomogeneities contribute to infrasonic arrivals that are not predicted by...standard modeling techniques. In particular, gravity waves, or buoyancy waves, are believed to contribute to the multipath nature of infrasound

  1. A photographic technique for estimating egg density of the white pine weevil, Pissodes strobi (Peck)

    Treesearch

    Roger T. Zerillo

    1975-01-01

    Compares a photographic technique with visual and dissection techniques for estimating egg density of the white pine weevil, Pissodes strobi (Peck). The relatively high correlations (.67 and .79) between counts from photographs and those obtained by dissection indicate that the non-destructive photographic technique could be a useful tool for...

  2. Comparative assessment of techniques for initial pose estimation using monocular vision

    NASA Astrophysics Data System (ADS)

    Sharma, Sumant; D`Amico, Simone

    2016-06-01

    This work addresses the comparative assessment of initial pose estimation techniques for monocular navigation to enable formation-flying and on-orbit servicing missions. Monocular navigation relies on finding an initial pose, i.e., a coarse estimate of the attitude and position of the space resident object with respect to the camera, based on a minimum number of features from a three dimensional computer model and a single two dimensional image. The initial pose is estimated without the use of fiducial markers, without any range measurements or any apriori relative motion information. Prior work has been done to compare different pose estimators for terrestrial applications, but there is a lack of functional and performance characterization of such algorithms in the context of missions involving rendezvous operations in the space environment. Use of state-of-the-art pose estimation algorithms designed for terrestrial applications is challenging in space due to factors such as limited on-board processing power, low carrier to noise ratio, and high image contrasts. This paper focuses on performance characterization of three initial pose estimation algorithms in the context of such missions and suggests improvements.

  3. Techniques for estimating magnitude and frequency of floods in Minnesota

    USGS Publications Warehouse

    Guetzkow, Lowell C.

    1977-01-01

     Estimating relations have been developed to provide engineers and designers with improved techniques for defining flow-frequency characteristics to satisfy hydraulic planning and design requirements. The magnitude and frequency of floods up to the 100-year recurrence interval can be determined for most streams in Minnesota by methods presented. By multiple regression analysis, equations have been developed for estimating flood-frequency relations at ungaged sites on natural flow streams. Eight distinct hydrologic regions are delineated within the State with boundaries defined generally by river basin divides. Regression equations are provided for each region which relate selected frequency floods to significant basin parameters. For main-stem streams, graphs are presented showing floods for selected recurrence intervals plotted against contributing drainage area. Flow-frequency estimates for intervening sites along the Minnesota River, Mississippi River, and the Red River of the North can be derived from these graphs. Flood-frequency characteristics are tabulated for 201 paging stations having 10 or more years of record.

  4. Estimation of Alpine Skier Posture Using Machine Learning Techniques

    PubMed Central

    Nemec, Bojan; Petrič, Tadej; Babič, Jan; Supej, Matej

    2014-01-01

    High precision Global Navigation Satellite System (GNSS) measurements are becoming more and more popular in alpine skiing due to the relatively undemanding setup and excellent performance. However, GNSS provides only single-point measurements that are defined with the antenna placed typically behind the skier's neck. A key issue is how to estimate other more relevant parameters of the skier's body, like the center of mass (COM) and ski trajectories. Previously, these parameters were estimated by modeling the skier's body with an inverted-pendulum model that oversimplified the skier's body. In this study, we propose two machine learning methods that overcome this shortcoming and estimate COM and skis trajectories based on a more faithful approximation of the skier's body with nine degrees-of-freedom. The first method utilizes a well-established approach of artificial neural networks, while the second method is based on a state-of-the-art statistical generalization method. Both methods were evaluated using the reference measurements obtained on a typical giant slalom course and compared with the inverted-pendulum method. Our results outperform the results of commonly used inverted-pendulum methods and demonstrate the applicability of machine learning techniques in biomechanical measurements of alpine skiing. PMID:25313492

  5. An Automated Technique for Estimating Daily Precipitation over the State of Virginia

    NASA Technical Reports Server (NTRS)

    Follansbee, W. A.; Chamberlain, L. W., III

    1981-01-01

    Digital IR and visible imagery obtained from a geostationary satellite located over the equator at 75 deg west latitude were provided by NASA and used to obtain a linear relationship between cloud top temperature and hourly precipitation. Two computer programs written in FORTRAN were used. The first program computes the satellite estimate field from the hourly digital IR imagery. The second program computes the final estimate for the entire state area by comparing five preliminary estimates of 24 hour precipitation with control raingage readings and determining which of the five methods gives the best estimate for the day. The final estimate is then produced by incorporating control gage readings into the winning method. In presenting reliable precipitation estimates for every cell in Virginia in near real time on a daily on going basis, the techniques require on the order of 125 to 150 daily gage readings by dependable, highly motivated observers distributed as uniformly as feasible across the state.

  6. Advanced Transportation System Studies. Technical Area 3: Alternate Propulsion Subsystems Concepts. Volume 3; Program Cost Estimates

    NASA Technical Reports Server (NTRS)

    Levack, Daniel J. H.

    2000-01-01

    The objective of this contract was to provide definition of alternate propulsion systems for both earth-to-orbit (ETO) and in-space vehicles (upper stages and space transfer vehicles). For such propulsion systems, technical data to describe performance, weight, dimensions, etc. was provided along with programmatic information such as cost, schedule, needed facilities, etc. Advanced technology and advanced development needs were determined and provided. This volume separately presents the various program cost estimates that were generated under three tasks: the F- IA Restart Task, the J-2S Restart Task, and the SSME Upper Stage Use Task. The conclusions, technical results , and the program cost estimates are described in more detail in Volume I - Executive Summary and in individual Final Task Reports.

  7. 75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... Semiconductor Products Made by Advanced Lithography Techniques and Products Containing Same; Notice of... Mexico) (``STC''), alleging a violation of section 337 in the importation, sale for [[Page 81644

  8. Exploratory Study for Continuous-time Parameter Estimation of Ankle Dynamics

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Boyle, Richard D.

    2014-01-01

    Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.

  9. Innovative Techniques for Estimating Illegal Activities in a Human-Wildlife-Management Conflict

    PubMed Central

    Cross, Paul; St. John, Freya A. V.; Khan, Saira; Petroczi, Andrea

    2013-01-01

    Effective management of biological resources is contingent upon stakeholder compliance with rules. With respect to disease management, partial compliance can undermine attempts to control diseases within human and wildlife populations. Estimating non-compliance is notoriously problematic as rule-breakers may be disinclined to admit to transgressions. However, reliable estimates of rule-breaking are critical to policy design. The European badger (Meles meles) is considered an important vector in the transmission and maintenance of bovine tuberculosis (bTB) in cattle herds. Land managers in high bTB prevalence areas of the UK can cull badgers under license. However, badgers are also known to be killed illegally. The extent of illegal badger killing is currently unknown. Herein we report on the application of three innovative techniques (Randomized Response Technique (RRT); projective questioning (PQ); brief implicit association test (BIAT)) for investigating illegal badger killing by livestock farmers across Wales. RRT estimated that 10.4% of farmers killed badgers in the 12 months preceding the study. Projective questioning responses and implicit associations relate to farmers' badger killing behavior reported via RRT. Studies evaluating the efficacy of mammal vector culling and vaccination programs should incorporate estimates of non-compliance. Mitigating the conflict concerning badgers as a vector of bTB requires cross-disciplinary scientific research, departure from deep-rooted positions, and the political will to implement evidence-based management. PMID:23341973

  10. Innovative techniques for estimating illegal activities in a human-wildlife-management conflict.

    PubMed

    Cross, Paul; St John, Freya A V; Khan, Saira; Petroczi, Andrea

    2013-01-01

    Effective management of biological resources is contingent upon stakeholder compliance with rules. With respect to disease management, partial compliance can undermine attempts to control diseases within human and wildlife populations. Estimating non-compliance is notoriously problematic as rule-breakers may be disinclined to admit to transgressions. However, reliable estimates of rule-breaking are critical to policy design. The European badger (Meles meles) is considered an important vector in the transmission and maintenance of bovine tuberculosis (bTB) in cattle herds. Land managers in high bTB prevalence areas of the UK can cull badgers under license. However, badgers are also known to be killed illegally. The extent of illegal badger killing is currently unknown. Herein we report on the application of three innovative techniques (Randomized Response Technique (RRT); projective questioning (PQ); brief implicit association test (BIAT)) for investigating illegal badger killing by livestock farmers across Wales. RRT estimated that 10.4% of farmers killed badgers in the 12 months preceding the study. Projective questioning responses and implicit associations relate to farmers' badger killing behavior reported via RRT. Studies evaluating the efficacy of mammal vector culling and vaccination programs should incorporate estimates of non-compliance. Mitigating the conflict concerning badgers as a vector of bTB requires cross-disciplinary scientific research, departure from deep-rooted positions, and the political will to implement evidence-based management.

  11. Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.

    PubMed

    Rose, Tracy L; Lotan, Yair

    2018-03-01

    Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Coarse-Grain Bandwidth Estimation Techniques for Large-Scale Space Network

    NASA Technical Reports Server (NTRS)

    Cheung, Kar-Ming; Jennings, Esther

    2013-01-01

    In this paper, we describe a top-down analysis and simulation approach to size the bandwidths of a store-andforward network for a given network topology, a mission traffic scenario, and a set of data types with different latency requirements. We use these techniques to estimate the wide area network (WAN) bandwidths of the ground links for different architecture options of the proposed Integrated Space Communication and Navigation (SCaN) Network.

  13. An evaluation of population index and estimation techniques for tadpoles in desert pools

    USGS Publications Warehouse

    Jung, Robin E.; Dayton, Gage H.; Williamson, Stephen J.; Sauer, John R.; Droege, Sam

    2002-01-01

    Using visual (VI) and dip net indices (DI) and double-observer (DOE), removal (RE), and neutral red dye capture-recapture (CRE) estimates, we counted, estimated, and censused Couch's spadefoot (Scaphiopus couchii) and canyon treefrog (Hyla arenicolor) tadpole populations in Big Bend National Park, Texas. Initial dye experiments helped us determine appropriate dye concentrations and exposure times to use in mesocosm and field trials. The mesocosm study revealed higher tadpole detection rates, more accurate population estimates, and lower coefficients of variation among pools compared to those from the field study. In both mesocosm and field studies, CRE was the best method for estimating tadpole populations, followed by DOE and RE. In the field, RE, DI, and VI often underestimated populations in pools with higher tadpole numbers. DI improved with increased sampling. Larger pools supported larger tadpole populations, and tadpole detection rates in general decreased with increasing pool volume and surface area. Hence, pool size influenced bias in tadpole sampling. Across all techniques, tadpole detection rates differed among pools, indicating that sampling bias was inherent and techniques did not consistently sample the same proportion of tadpoles in each pool. Estimating bias (i.e., calculating detection rates) therefore was essential in assessing tadpole abundance. Unlike VI and DOE, DI, RE, and CRE could be used in turbid waters in which tadpoles are not visible. The tadpole population estimates we used accommodated differences in detection probabilities in simple desert pool environments but may not work in more complex habitats.

  14. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  15. Location estimation in wireless sensor networks using spring-relaxation technique.

    PubMed

    Zhang, Qing; Foh, Chuan Heng; Seet, Boon-Chong; Fong, A C M

    2010-01-01

    Accurate and low-cost autonomous self-localization is a critical requirement of various applications of a large-scale distributed wireless sensor network (WSN). Due to its massive deployment of sensors, explicit measurements based on specialized localization hardware such as the Global Positioning System (GPS) is not practical. In this paper, we propose a low-cost WSN localization solution. Our design uses received signal strength indicators for ranging, light weight distributed algorithms based on the spring-relaxation technique for location computation, and the cooperative approach to achieve certain location estimation accuracy with a low number of nodes with known locations. We provide analysis to show the suitability of the spring-relaxation technique for WSN localization with cooperative approach, and perform simulation experiments to illustrate its accuracy in localization.

  16. A solar energy estimation procedure using remote sensing techniques. [watershed hydrologic models

    NASA Technical Reports Server (NTRS)

    Khorram, S.

    1977-01-01

    The objective of this investigation is to design a remote sensing-aided procedure for daily location-specific estimation of solar radiation components over the watershed(s) of interest. This technique has been tested on the Spanish Creek Watershed, Northern California, with successful results.

  17. Estimating the concrete compressive strength using hard clustering and fuzzy clustering based regression techniques.

    PubMed

    Nagwani, Naresh Kumar; Deo, Shirish V

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm.

  18. Estimating the Concrete Compressive Strength Using Hard Clustering and Fuzzy Clustering Based Regression Techniques

    PubMed Central

    Nagwani, Naresh Kumar; Deo, Shirish V.

    2014-01-01

    Understanding of the compressive strength of concrete is important for activities like construction arrangement, prestressing operations, and proportioning new mixtures and for the quality assurance. Regression techniques are most widely used for prediction tasks where relationship between the independent variables and dependent (prediction) variable is identified. The accuracy of the regression techniques for prediction can be improved if clustering can be used along with regression. Clustering along with regression will ensure the more accurate curve fitting between the dependent and independent variables. In this work cluster regression technique is applied for estimating the compressive strength of the concrete and a novel state of the art is proposed for predicting the concrete compressive strength. The objective of this work is to demonstrate that clustering along with regression ensures less prediction errors for estimating the concrete compressive strength. The proposed technique consists of two major stages: in the first stage, clustering is used to group the similar characteristics concrete data and then in the second stage regression techniques are applied over these clusters (groups) to predict the compressive strength from individual clusters. It is found from experiments that clustering along with regression techniques gives minimum errors for predicting compressive strength of concrete; also fuzzy clustering algorithm C-means performs better than K-means algorithm. PMID:25374939

  19. A comparative study of shear wave speed estimation techniques in optical coherence elastography applications

    NASA Astrophysics Data System (ADS)

    Zvietcovich, Fernando; Yao, Jianing; Chu, Ying-Ju; Meemon, Panomsak; Rolland, Jannick P.; Parker, Kevin J.

    2016-03-01

    Optical Coherence Elastography (OCE) is a widely investigated noninvasive technique for estimating the mechanical properties of tissue. In particular, vibrational OCE methods aim to estimate the shear wave velocity generated by an external stimulus in order to calculate the elastic modulus of tissue. In this study, we compare the performance of five acquisition and processing techniques for estimating the shear wave speed in simulations and experiments using tissue-mimicking phantoms. Accuracy, contrast-to-noise ratio, and resolution are measured for all cases. The first two techniques make the use of one piezoelectric actuator for generating a continuous shear wave propagation (SWP) and a tone-burst propagation (TBP) of 400 Hz over the gelatin phantom. The other techniques make use of one additional actuator located on the opposite side of the region of interest in order to create an interference pattern. When both actuators have the same frequency, a standing wave (SW) pattern is generated. Otherwise, when there is a frequency difference df between both actuators, a crawling wave (CrW) pattern is generated and propagates with less speed than a shear wave, which makes it suitable for being detected by the 2D cross-sectional OCE imaging. If df is not small compared to the operational frequency, the CrW travels faster and a sampled version of it (SCrW) is acquired by the system. Preliminary results suggest that TBP (error < 4.1%) and SWP (error < 6%) techniques are more accurate when compared to mechanical measurement test results.

  20. Tenon advancement and duplication technique to prevent postoperative Ahmed valve tube exposure in patients with refractory glaucoma.

    PubMed

    Tamcelik, Nevbahar; Ozkok, Ahmet; Sarıcı, Ahmet Murat; Atalay, Eray; Yetik, Huseyin; Gungor, Kivanc

    2013-07-01

    To present and compare the long-term results of Dr. Tamcelik's previously described technique of Tenon advancement and duplication with the conventional Ahmed glaucoma valve (AGV) implantation technique in patients with refractory glaucoma. This study was a multicenter, retrospective case series that included 303 eyes of 276 patients with refractory glaucoma who underwent glaucoma valve implantation surgery. The patients were divided into three groups according to the surgical technique applied and the outcomes compared. In group 1, 96 eyes of 86 patients underwent AGV implant surgery without patch graft; in group 2, 78 eyes of 72 patients underwent AGV implant surgery with donor scleral patch; in group 3, 129 eyes of 118 patients underwent Ahmed valve implant surgery with "combined short scleral tunnel with Tenon advancement and duplication technique". The endpoint assessed was tube exposure through the conjunctiva. In group 1, conjunctival tube exposure was seen in 11 eyes (12.9 %) after a mean 9.2 ± 3.7 years of follow-up. In group 2, conjunctival tube exposure was seen in six eyes (2.2 %) after a mean 8.9 ± 3.3 years of follow-up. In group 3, there was no conjunctival exposure after a mean 7.8 ± 2.8 years of follow-up. The difference between the groups was statistically significant. (P = 0.0001, Chi-square test). This novel surgical technique combining a short scleral tunnel with Tenon advancement and duplication was found to be effective and safe to prevent conjunctival tube exposure after AGV implantation surgery in patients with refractory glaucoma.

  1. Advances in Procedural Techniques - Antegrade

    PubMed Central

    Wilson, William; Spratt, James C.

    2014-01-01

    There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the “hybrid’ approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited “interventional” collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

  2. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy.

    PubMed

    Panigrahy, Ashok; Blüml, Stefan

    2007-02-01

    Magnetic resonance (MR) imaging has become an essential tool in the evaluation of neonatal encephalopathy. Magnetic resonance-compatible neonatal incubators allow sick neonates to be transported to the MR scanner, and neonatal head coils can improve signal-to-noise ratio, critical for advanced MR imaging techniques. Refinement of conventional imaging techniques include the use of PROPELLER techniques for motion correction. Magnetic resonance spectroscopic imaging and diffusion tensor imaging provide quantitative assessment of both brain development and brain injury in the newborn with respect to metabolite abnormalities and hypoxic-ischemic injury. Knowledge of normal developmental changes in MR spectroscopy metabolite concentration and diffusion tensor metrics is essential to interpret pathological cases. Perfusion MR and functional MR can provide additional physiological information. Both MR spectroscopy and diffusion tensor imaging can provide additional information in the differential of neonatal encephalopathy, including perinatal white matter injury, hypoxic-ischemic brain injury, metabolic disease, infection, and birth injury.

  3. Advancing understanding in the face of data limitations and difficult conditions: Estimating storage contributions to streamflow in Tanzania's rapidly developing Kilombero Valley

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Koutsouris, A. J.

    2016-12-01

    Robust natural variability and experimental design may help to overcome the data limitations and difficult conditions that typify much of the global south. This, in turn, can facilitate the application of advanced techniques to help inform management with science (which is sorely needed for guiding development). As an example on this concept, we used a limited amount of weekly water chemistry as well as stable water isotope data to perform end-member mixing analysis in a glue frame work (G-EMMA) in one main catchment and two sub-catchments of Kilombero Valley, Tanzania. How water interacts across the various storages in this region, which has been targeted for rapid agricultural intensification and expansion, is still largely unknown making estimation of potential impacts (not to mention sustainability) associated with various development scenarios difficult. Our results showed that there were, as would be expected, considerable uncertainties related to the characterization of end-members in this remote system. Regardless, some robust estimates could be made on contributions to seasonal streamflow variability. For example, it appears that there is a low connectivity between the deep groundwater and the stream system throughout the year. Also, there is a considerable wetting up period required before overland flow occurs. We demonstrate that the apparent miss-match between state-of-the-science techniques and data limitations (not to mention the issues associated with difficult working environments) can be bridged by leveraging experimental design and natural system variability. This is promising as we seek to advance our science in more and more remote (and in particular developing) regions to allow for important improvements for management of less and less available resources. Thus, in spite of large uncertainties this work highlights how research may still provide an improved system understanding of hydrological flows even when working under less than perfect

  4. Cost and Economics for Advanced Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  5. A technique for estimating the absolute gain of a photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Takahashi, M.; Inome, Y.; Yoshii, S.; Bamba, A.; Gunji, S.; Hadasch, D.; Hayashida, M.; Katagiri, H.; Konno, Y.; Kubo, H.; Kushida, J.; Nakajima, D.; Nakamori, T.; Nagayoshi, T.; Nishijima, K.; Nozaki, S.; Mazin, D.; Mashuda, S.; Mirzoyan, R.; Ohoka, H.; Orito, R.; Saito, T.; Sakurai, S.; Takeda, J.; Teshima, M.; Terada, Y.; Tokanai, F.; Yamamoto, T.; Yoshida, T.

    2018-06-01

    Detection of low-intensity light relies on the conversion of photons to photoelectrons, which are then multiplied and detected as an electrical signal. To measure the actual intensity of the light, one must know the factor by which the photoelectrons have been multiplied. To obtain this amplification factor, we have developed a procedure for estimating precisely the signal caused by a single photoelectron. The method utilizes the fact that the photoelectrons conform to a Poisson distribution. The average signal produced by a single photoelectron can then be estimated from the number of noise events, without requiring analysis of the distribution of the signal produced by a single photoelectron. The signal produced by one or more photoelectrons can be estimated experimentally without any assumptions. This technique, and an example of the analysis of a signal from a photomultiplier tube, are described in this study.

  6. The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics

    NASA Technical Reports Server (NTRS)

    Deepak, A.; Becher, J.

    1979-01-01

    Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

  7. Advanced techniques and technology for efficient data storage, access, and transfer

    NASA Technical Reports Server (NTRS)

    Rice, Robert F.; Miller, Warner

    1991-01-01

    Advanced techniques for efficiently representing most forms of data are being implemented in practical hardware and software form through the joint efforts of three NASA centers. These techniques adapt to local statistical variations to continually provide near optimum code efficiency when representing data without error. Demonstrated in several earlier space applications, these techniques are the basis of initial NASA data compression standards specifications. Since the techniques clearly apply to most NASA science data, NASA invested in the development of both hardware and software implementations for general use. This investment includes high-speed single-chip very large scale integration (VLSI) coding and decoding modules as well as machine-transferrable software routines. The hardware chips were tested in the laboratory at data rates as high as 700 Mbits/s. A coding module's definition includes a predictive preprocessing stage and a powerful adaptive coding stage. The function of the preprocessor is to optimally process incoming data into a standard form data source that the second stage can handle.The built-in preprocessor of the VLSI coder chips is ideal for high-speed sampled data applications such as imaging and high-quality audio, but additionally, the second stage adaptive coder can be used separately with any source that can be externally preprocessed into the 'standard form'. This generic functionality assures that the applicability of these techniques and their recent high-speed implementations should be equally broad outside of NASA.

  8. Use of LANDSAT 2 data technique to estimate silverleaf sunflower infestation

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Escobar, D. E.; Gausman, H. W.; Everitt, J. H. (Principal Investigator)

    1982-01-01

    The feasibility of the technique using the Earth Resources Technology Satellite (LANDSAT-2) multispectral scanner (MSS) was tested; to distinguish silverleaf sunflowers (Helianthus argophyllus Torr. and Gray) from other plant species and to estimate the hectarage percent of its infestation. Sunflowers gave high mean digital counts in all four LANDSAT MSS bands that were manifested as a pinkish image response on the LANDSAT color composite imagery. Photo- and LANDSAT-estimated hectare percentages for silverleaf sunflower within a 23,467 ha study area were 9.1 and 9.5%, respectively. The geographic occurrence of sunflower areas on the line-printer recognition map was in good agreement with their known aerial photographic locations.

  9. Cloud cover estimation optical package: New facility, algorithms and techniques

    NASA Astrophysics Data System (ADS)

    Krinitskiy, Mikhail

    2017-02-01

    Short- and long-wave radiation is an important component of surface heat budget over sea and land. For estimating them accurate observations of the cloud cover are needed. While massively observed visually, for building accurate parameterizations cloud cover needs also to be quantified using precise instrumental measurements. Major disadvantages of the most of existing cloud-cameras are associated with their complicated design and inaccuracy of post-processing algorithms which typically result in the uncertainties of 20% to 30% in the camera-based estimates of cloud cover. The accuracy of these types of algorithm in terms of true scoring compared to human-observed values is typically less than 10%. We developed new generation package for cloud cover estimating, which provides much more accurate results and also allows for measuring additional characteristics. New algorithm, namely SAIL GrIx, based on routine approach, also developed for this package. It uses the synthetic controlling index ("grayness rate index") which allows to suppress the background sunburn effect. This makes it possible to increase the reliability of the detection of the optically thin clouds. The accuracy of this algorithm in terms of true scoring became 30%. One more approach, namely SAIL GrIx ML, we have used to increase the cloud cover estimating accuracy is the algorithm that uses machine learning technique along with some other signal processing techniques. Sun disk condition appears to be a strong feature in this kind of models. Artificial Neural Networks type of model demonstrates the best quality. This model accuracy in terms of true scoring increases up to 95,5%. Application of a new algorithm lets us to modify the design of the optical sensing package and to avoid the use of the solar trackers. This made the design of the cloud camera much more compact. New cloud-camera has already been tested in several missions across Atlantic and Indian oceans on board of IORAS research vessels.

  10. The a priori SDR Estimation Techniques with Reduced Speech Distortion for Acoustic Echo and Noise Suppression

    NASA Astrophysics Data System (ADS)

    Thoonsaengngam, Rattapol; Tangsangiumvisai, Nisachon

    This paper proposes an enhanced method for estimating the a priori Signal-to-Disturbance Ratio (SDR) to be employed in the Acoustic Echo and Noise Suppression (AENS) system for full-duplex hands-free communications. The proposed a priori SDR estimation technique is modified based upon the Two-Step Noise Reduction (TSNR) algorithm to suppress the background noise while preserving speech spectral components. In addition, a practical approach to determine accurately the Echo Spectrum Variance (ESV) is presented based upon the linear relationship assumption between the power spectrum of far-end speech and acoustic echo signals. The ESV estimation technique is then employed to alleviate the acoustic echo problem. The performance of the AENS system that employs these two proposed estimation techniques is evaluated through the Echo Attenuation (EA), Noise Attenuation (NA), and two speech distortion measures. Simulation results based upon real speech signals guarantee that our improved AENS system is able to mitigate efficiently the problem of acoustic echo and background noise, while preserving the speech quality and speech intelligibility.

  11. Precise estimation of tropospheric path delays with GPS techniques

    NASA Technical Reports Server (NTRS)

    Lichten, S. M.

    1990-01-01

    Tropospheric path delays are a major source of error in deep space tracking. However, the tropospheric-induced delay at tracking sites can be calibrated using measurements of Global Positioning System (GPS) satellites. A series of experiments has demonstrated the high sensitivity of GPS to tropospheric delays. A variety of tests and comparisons indicates that current accuracy of the GPS zenith tropospheric delay estimates is better than 1-cm root-mean-square over many hours, sampled continuously at intervals of six minutes. These results are consistent with expectations from covariance analyses. The covariance analyses also indicate that by the mid-1990s, when the GPS constellation is complete and the Deep Space Network is equipped with advanced GPS receivers, zenith tropospheric delay accuracy with GPS will improve further to 0.5 cm or better.

  12. Study of advanced techniques for determining the long term performance of components

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

  13. Recognizing and Managing Complexity: Teaching Advanced Programming Concepts and Techniques Using the Zebra Puzzle

    ERIC Educational Resources Information Center

    Crabtree, John; Zhang, Xihui

    2015-01-01

    Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…

  14. Low-complexity DOA estimation from short data snapshots for ULA systems using the annihilating filter technique

    NASA Astrophysics Data System (ADS)

    Bellili, Faouzi; Amor, Souheib Ben; Affes, Sofiène; Ghrayeb, Ali

    2017-12-01

    This paper addresses the problem of DOA estimation using uniform linear array (ULA) antenna configurations. We propose a new low-cost method of multiple DOA estimation from very short data snapshots. The new estimator is based on the annihilating filter (AF) technique. It is non-data-aided (NDA) and does not impinge therefore on the whole throughput of the system. The noise components are assumed temporally and spatially white across the receiving antenna elements. The transmitted signals are also temporally and spatially white across the transmitting sources. The new method is compared in performance to the Cramér-Rao lower bound (CRLB), the root-MUSIC algorithm, the deterministic maximum likelihood estimator and another Bayesian method developed precisely for the single snapshot case. Simulations show that the new estimator performs well over a wide SNR range. Prominently, the main advantage of the new AF-based method is that it succeeds in accurately estimating the DOAs from short data snapshots and even from a single snapshot outperforming by far the state-of-the-art techniques both in DOA estimation accuracy and computational cost.

  15. Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques.

    PubMed

    Barzaghi, Riccardo; Cazzaniga, Noemi Emanuela; De Gaetani, Carlo Iapige; Pinto, Livio; Tornatore, Vincenza

    2018-03-02

    Global Navigation Satellite Systems (GNSS) receivers are nowadays commonly used in monitoring applications, e.g., in estimating crustal and infrastructure displacements. This is basically due to the recent improvements in GNSS instruments and methodologies that allow high-precision positioning, 24 h availability and semiautomatic data processing. In this paper, GNSS-estimated displacements on a dam structure have been analyzed and compared with pendulum data. This study has been carried out for the Eleonora D'Arborea (Cantoniera) dam, which is in Sardinia. Time series of pendulum and GNSS over a time span of 2.5 years have been aligned so as to be comparable. Analytical models fitting these time series have been estimated and compared. Those models were able to properly fit pendulum data and GNSS data, with standard deviation of residuals smaller than one millimeter. These encouraging results led to the conclusion that GNSS technique can be profitably applied to dam monitoring allowing a denser description, both in space and time, of the dam displacements than the one based on pendulum observations.

  16. Estimating and Comparing Dam Deformation Using Classical and GNSS Techniques

    PubMed Central

    Barzaghi, Riccardo; De Gaetani, Carlo Iapige

    2018-01-01

    Global Navigation Satellite Systems (GNSS) receivers are nowadays commonly used in monitoring applications, e.g., in estimating crustal and infrastructure displacements. This is basically due to the recent improvements in GNSS instruments and methodologies that allow high-precision positioning, 24 h availability and semiautomatic data processing. In this paper, GNSS-estimated displacements on a dam structure have been analyzed and compared with pendulum data. This study has been carried out for the Eleonora D’Arborea (Cantoniera) dam, which is in Sardinia. Time series of pendulum and GNSS over a time span of 2.5 years have been aligned so as to be comparable. Analytical models fitting these time series have been estimated and compared. Those models were able to properly fit pendulum data and GNSS data, with standard deviation of residuals smaller than one millimeter. These encouraging results led to the conclusion that GNSS technique can be profitably applied to dam monitoring allowing a denser description, both in space and time, of the dam displacements than the one based on pendulum observations. PMID:29498650

  17. Advances in the surface modification techniques of bone-related implants for last 10 years

    PubMed Central

    Qiu, Zhi-Ye; Chen, Cen; Wang, Xiu-Mei; Lee, In-Seop

    2014-01-01

    At the time of implanting bone-related implants into human body, a variety of biological responses to the material surface occur with respect to surface chemistry and physical state. The commonly used biomaterials (e.g. titanium and its alloy, Co–Cr alloy, stainless steel, polyetheretherketone, ultra-high molecular weight polyethylene and various calcium phosphates) have many drawbacks such as lack of biocompatibility and improper mechanical properties. As surface modification is very promising technology to overcome such problems, a variety of surface modification techniques have been being investigated. This review paper covers recent advances in surface modification techniques of bone-related materials including physicochemical coating, radiation grafting, plasma surface engineering, ion beam processing and surface patterning techniques. The contents are organized with different types of techniques to applicable materials, and typical examples are also described. PMID:26816626

  18. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework.

    PubMed

    Krishan, Kewal; Chatterjee, Preetika M; Kanchan, Tanuj; Kaur, Sandeep; Baryah, Neha; Singh, R K

    2016-04-01

    Sex estimation is considered as one of the essential parameters in forensic anthropology casework, and requires foremost consideration in the examination of skeletal remains. Forensic anthropologists frequently employ morphologic and metric methods for sex estimation of human remains. These methods are still very imperative in identification process in spite of the advent and accomplishment of molecular techniques. A constant boost in the use of imaging techniques in forensic anthropology research has facilitated to derive as well as revise the available population data. These methods however, are less reliable owing to high variance and indistinct landmark details. The present review discusses the reliability and reproducibility of various analytical approaches; morphological, metric, molecular and radiographic methods in sex estimation of skeletal remains. Numerous studies have shown a higher reliability and reproducibility of measurements taken directly on the bones and hence, such direct methods of sex estimation are considered to be more reliable than the other methods. Geometric morphometric (GM) method and Diagnose Sexuelle Probabiliste (DSP) method are emerging as valid methods and widely used techniques in forensic anthropology in terms of accuracy and reliability. Besides, the newer 3D methods are shown to exhibit specific sexual dimorphism patterns not readily revealed by traditional methods. Development of newer and better methodologies for sex estimation as well as re-evaluation of the existing ones will continue in the endeavour of forensic researchers for more accurate results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Optimizing focal plane electric field estimation for detecting exoplanets

    NASA Astrophysics Data System (ADS)

    Groff, T.; Kasdin, N. J.; Riggs, A. J. E.

    Detecting extrasolar planets with angular separations and contrast levels similar to Earth requires a large space-based observatory and advanced starlight suppression techniques. This paper focuses on techniques employing an internal coronagraph, which is highly sensitive to optical errors and must rely on focal plane wavefront control techniques to achieve the necessary contrast levels. To maximize the available science time for a coronagraphic mission we demonstrate an estimation scheme using a discrete time Kalman filter. The state estimate feedback inherent to the filter allows us to minimize the number of exposures required to estimate the electric field. We also show progress including a bias estimate into the Kalman filter to eliminate incoherent light from the estimate. Since the exoplanets themselves are incoherent to the star, this has the added benefit of using the control history to gain certainty in the location of exoplanet candidates as the signal-to-noise between the planets and speckles improves. Having established a purely focal plane based wavefront estimation technique, we discuss a sensor fusion concept where alternate wavefront sensors feedforward a time update to the focal plane estimate to improve robustness to time varying speckle. The overall goal of this work is to reduce the time required for wavefront control on a target, thereby improving the observatory's planet detection performance by increasing the number of targets reachable during the lifespan of the mission.

  20. Third molar development: evaluation of nine tooth development registration techniques for age estimations.

    PubMed

    Thevissen, Patrick W; Fieuws, Steffen; Willems, Guy

    2013-03-01

    Multiple third molar development registration techniques exist. Therefore the aim of this study was to detect which third molar development registration technique was most promising to use as a tool for subadult age estimation. On a collection of 1199 panoramic radiographs the development of all present third molars was registered following nine different registration techniques [Gleiser, Hunt (GH); Haavikko (HV); Demirjian (DM); Raungpaka (RA); Gustafson, Koch (GK); Harris, Nortje (HN); Kullman (KU); Moorrees (MO); Cameriere (CA)]. Regression models with age as response and the third molar registration as predictor were developed for each registration technique separately. The MO technique disclosed highest R(2) (F 51%, M 45%) and lowest root mean squared error (F 3.42 years; M 3.67 years) values, but differences with other techniques were small in magnitude. The amount of stages utilized in the explored staging techniques slightly influenced the age predictions. © 2013 American Academy of Forensic Sciences.

  1. Application of the multiple PRF technique to resolve Doppler centroid estimation ambiguity for spaceborne SAR

    NASA Technical Reports Server (NTRS)

    Chang, C. Y.; Curlander, J. C.

    1992-01-01

    Estimation of the Doppler centroid ambiguity is a necessary element of the signal processing for SAR systems with large antenna pointing errors. Without proper resolution of the Doppler centroid estimation (DCE) ambiguity, the image quality will be degraded in the system impulse response function and the geometric fidelity. Two techniques for resolution of DCE ambiguity for the spaceborne SAR are presented; they include a brief review of the range cross-correlation technique and presentation of a new technique using multiple pulse repetition frequencies (PRFs). For SAR systems, where other performance factors control selection of the PRF's, an algorithm is devised to resolve the ambiguity that uses PRF's of arbitrary numerical values. The performance of this multiple PRF technique is analyzed based on a statistical error model. An example is presented that demonstrates for the Shuttle Imaging Radar-C (SIR-C) C-band SAR, the probability of correct ambiguity resolution is higher than 95 percent for antenna attitude errors as large as 3 deg.

  2. Variational Bayesian Parameter Estimation Techniques for the General Linear Model

    PubMed Central

    Starke, Ludger; Ostwald, Dirk

    2017-01-01

    Variational Bayes (VB), variational maximum likelihood (VML), restricted maximum likelihood (ReML), and maximum likelihood (ML) are cornerstone parametric statistical estimation techniques in the analysis of functional neuroimaging data. However, the theoretical underpinnings of these model parameter estimation techniques are rarely covered in introductory statistical texts. Because of the widespread practical use of VB, VML, ReML, and ML in the neuroimaging community, we reasoned that a theoretical treatment of their relationships and their application in a basic modeling scenario may be helpful for both neuroimaging novices and practitioners alike. In this technical study, we thus revisit the conceptual and formal underpinnings of VB, VML, ReML, and ML and provide a detailed account of their mathematical relationships and implementational details. We further apply VB, VML, ReML, and ML to the general linear model (GLM) with non-spherical error covariance as commonly encountered in the first-level analysis of fMRI data. To this end, we explicitly derive the corresponding free energy objective functions and ensuing iterative algorithms. Finally, in the applied part of our study, we evaluate the parameter and model recovery properties of VB, VML, ReML, and ML, first in an exemplary setting and then in the analysis of experimental fMRI data acquired from a single participant under visual stimulation. PMID:28966572

  3. Comparison of the egg flotation and egg candling techniques for estimating incubation day of Canada Goose nests

    USGS Publications Warehouse

    Reiter, M.E.; Andersen, D.E.

    2008-01-01

    Both egg flotation and egg candling have been used to estimate incubation day (often termed nest age) in nesting birds, but little is known about the relative accuracy of these two techniques. We used both egg flotation and egg candling to estimate incubation day for Canada Geese (Branta canadensis interior) nesting near Cape Churchill, Manitoba, from 2000 to 2007. We modeled variation in the difference between estimates of incubation day using each technique as a function of true incubation day, as well as, variation in error rates with each technique as a function of the true incubation day. We also evaluated the effect of error in the estimated incubation day on estimates of daily survival rate (DSR) and nest success using simulations. The mean difference between concurrent estimates of incubation day based on egg flotation minus egg candling at the same nest was 0.85 ?? 0.06 (SE) days. The positive difference in favor of egg flotation and the magnitude of the difference in estimates of incubation day did not vary as a function of true incubation day. Overall, both egg flotation and egg candling overestimated incubation day early in incubation and underestimated incubation day later in incubation. The average difference between true hatch date and estimated hatch date did not differ from zero (days) for egg flotation, but egg candling overestimated true hatch date by about 1 d (true - estimated; days). Our simulations suggested that error associated with estimating the incubation day of nests and subsequently exposure days using either egg candling or egg flotation would have minimal effects on estimates of DSR and nest success. Although egg flotation was slightly less biased, both methods provided comparable and accurate estimates of incubation day and subsequent estimates of hatch date and nest success throughout the entire incubation period. ?? 2008 Association of Field Ornithologists.

  4. Estimation of discrimination errors in the technique for determining the geographic origin of onions by mineral composition: interlaboratory study.

    PubMed

    Ariyama, Kaoru; Kadokura, Masashi; Suzuki, Tadanao

    2008-01-01

    Techniques to determine the geographic origin of foods have been developed for various agricultural and fishery products, and they have used various principles. Some of these techniques are already in use for checking the authenticity of the labeling. Many are based on multielement analysis and chemometrics. We have developed such a technique to determine the geographic origin of onions (Allium cepa L.). This technique, which determines whether an onion is from outside Japan, is designed for onions labeled as having a geographic origin of Hokkaido, Hyogo, or Saga, the main onion production areas in Japan. However, estimations of discrimination errors for this technique have not been fully conducted; they have been limited to those for discrimination models and do not include analytical errors. Interlaboratory studies were conducted to estimate the analytical errors of the technique. Four collaborators each determined 11 elements (Na, Mg, P, Mn, Zn, Rb, Sr, Mo, Cd, Cs, and Ba) in 4 test materials of fresh and dried onions. Discrimination errors in this technique were estimated by summing (1) individual differences within lots, (2) variations between lots from the same production area, and (3) analytical errors. The discrimination errors for onions from Hokkaido, Hyogo, and Saga were estimated to be 2.3, 9.5, and 8.0%, respectively. Those for onions from abroad in determinations targeting Hokkaido, Hyogo, and Saga were estimated to be 28.2, 21.6, and 21.9%, respectively.

  5. Enhancing resolution and contrast in second-harmonic generation microscopy using an advanced maximum likelihood estimation restoration method

    NASA Astrophysics Data System (ADS)

    Sivaguru, Mayandi; Kabir, Mohammad M.; Gartia, Manas Ranjan; Biggs, David S. C.; Sivaguru, Barghav S.; Sivaguru, Vignesh A.; Berent, Zachary T.; Wagoner Johnson, Amy J.; Fried, Glenn A.; Liu, Gang Logan; Sadayappan, Sakthivel; Toussaint, Kimani C.

    2017-02-01

    Second-harmonic generation (SHG) microscopy is a label-free imaging technique to study collagenous materials in extracellular matrix environment with high resolution and contrast. However, like many other microscopy techniques, the actual spatial resolution achievable by SHG microscopy is reduced by out-of-focus blur and optical aberrations that degrade particularly the amplitude of the detectable higher spatial frequencies. Being a two-photon scattering process, it is challenging to define a point spread function (PSF) for the SHG imaging modality. As a result, in comparison with other two-photon imaging systems like two-photon fluorescence, it is difficult to apply any PSF-engineering techniques to enhance the experimental spatial resolution closer to the diffraction limit. Here, we present a method to improve the spatial resolution in SHG microscopy using an advanced maximum likelihood estimation (AdvMLE) algorithm to recover the otherwise degraded higher spatial frequencies in an SHG image. Through adaptation and iteration, the AdvMLE algorithm calculates an improved PSF for an SHG image and enhances the spatial resolution by decreasing the full-width-at-halfmaximum (FWHM) by 20%. Similar results are consistently observed for biological tissues with varying SHG sources, such as gold nanoparticles and collagen in porcine feet tendons. By obtaining an experimental transverse spatial resolution of 400 nm, we show that the AdvMLE algorithm brings the practical spatial resolution closer to the theoretical diffraction limit. Our approach is suitable for adaptation in micro-nano CT and MRI imaging, which has the potential to impact diagnosis and treatment of human diseases.

  6. EPS in Environmental Microbial Biofilms as Examined by Advanced Imaging Techniques

    NASA Astrophysics Data System (ADS)

    Neu, T. R.; Lawrence, J. R.

    2006-12-01

    Biofilm communities are highly structured associations of cellular and polymeric components which are involved in biogenic and geogenic environmental processes. Furthermore, biofilms are also important in medical (infection), industrial (biofouling) and technological (biofilm engineering) processes. The interfacial microbial communities in a specific habitat are highly dynamic and change according to the environmental parameters affecting not only the cellular but also the polymeric constituents of the system. Through their EPS biofilms interact with dissolved, colloidal and particulate compounds from the bulk water phase. For a long time the focus in biofilm research was on the cellular constituents in biofilms and the polymer matrix in biofilms has been rather neglected. The polymer matrix is produced not only by different bacteria and archaea but also by eukaryotic micro-organisms such as algae and fungi. The mostly unidentified mixture of EPS compounds is responsible for many biofilm properties and is involved in biofilm functionality. The chemistry of the EPS matrix represents a mixture of polymers including polysaccharides, proteins, nucleic acids, neutral polymers, charged polymers, amphiphilic polymers and refractory microbial polymers. The analysis of the EPS may be done destructively by means of extraction and subsequent chemical analysis or in situ by means of specific probes in combination with advanced imaging. In the last 15 years laser scanning microscopy (LSM) has been established as an indispensable technique for studying microbial communities. LSM with 1-photon and 2-photon excitation in combination with fluorescence techniques allows 3-dimensional investigation of fully hydrated, living biofilm systems. This approach is able to reveal data on biofilm structural features as well as biofilm processes and interactions. The fluorescent probes available allow the quantitative assessment of cellular as well as polymer distribution. For this purpose

  7. Forensic age estimation based on development of third molars: a staging technique for magnetic resonance imaging.

    PubMed

    De Tobel, J; Phlypo, I; Fieuws, S; Politis, C; Verstraete, K L; Thevissen, P W

    2017-12-01

    The development of third molars can be evaluated with medical imaging to estimate age in subadults. The appearance of third molars on magnetic resonance imaging (MRI) differs greatly from that on radiographs. Therefore a specific staging technique is necessary to classify third molar development on MRI and to apply it for age estimation. To develop a specific staging technique to register third molar development on MRI and to evaluate its performance for age estimation in subadults. Using 3T MRI in three planes, all third molars were evaluated in 309 healthy Caucasian participants from 14 to 26 years old. According to the appearance of the developing third molars on MRI, descriptive criteria and schematic representations were established to define a specific staging technique. Two observers, with different levels of experience, staged all third molars independently with the developed technique. Intra- and inter-observer agreement were calculated. The data were imported in a Bayesian model for age estimation as described by Fieuws et al. (2016). This approach adequately handles correlation between age indicators and missing age indicators. It was used to calculate a point estimate and a prediction interval of the estimated age. Observed age minus predicted age was calculated, reflecting the error of the estimate. One-hundred and sixty-six third molars were agenetic. Five percent (51/1096) of upper third molars and 7% (70/1044) of lower third molars were not assessable. Kappa for inter-observer agreement ranged from 0.76 to 0.80. For intra-observer agreement kappa ranged from 0.80 to 0.89. However, two stage differences between observers or between staging sessions occurred in up to 2.2% (20/899) of assessments, probably due to a learning effect. Using the Bayesian model for age estimation, a mean absolute error of 2.0 years in females and 1.7 years in males was obtained. Root mean squared error equalled 2.38 years and 2.06 years respectively. The performance to

  8. Global precipitation estimates based on a technique for combining satellite-based estimates, rain gauge analysis, and NWP model precipitation information

    NASA Technical Reports Server (NTRS)

    Huffman, George J.; Adler, Robert F.; Rudolf, Bruno; Schneider, Udo; Keehn, Peter R.

    1995-01-01

    The 'satellite-gauge model' (SGM) technique is described for combining precipitation estimates from microwave satellite data, infrared satellite data, rain gauge analyses, and numerical weather prediction models into improved estimates of global precipitation. Throughout, monthly estimates on a 2.5 degrees x 2.5 degrees lat-long grid are employed. First, a multisatellite product is developed using a combination of low-orbit microwave and geosynchronous-orbit infrared data in the latitude range 40 degrees N - 40 degrees S (the adjusted geosynchronous precipitation index) and low-orbit microwave data alone at higher latitudes. Then the rain gauge analysis is brougth in, weighting each field by its inverse relative error variance to produce a nearly global, observationally based precipitation estimate. To produce a complete global estimate, the numerical model results are used to fill data voids in the combined satellite-gauge estimate. Our sequential approach to combining estimates allows a user to select the multisatellite estimate, the satellite-gauge estimate, or the full SGM estimate (observationally based estimates plus the model information). The primary limitation in the method is imperfections in the estimation of relative error for the individual fields. The SGM results for one year of data (July 1987 to June 1988) show important differences from the individual estimates, including model estimates as well as climatological estimates. In general, the SGM results are drier in the subtropics than the model and climatological results, reflecting the relatively dry microwave estimates that dominate the SGM in oceanic regions.

  9. Estimation of some transducer parameters in a broadband piezoelectric transmitter by using an artificial intelligence technique.

    PubMed

    Ruíz, A; Ramos, A; San Emeterio, J L

    2004-04-01

    An estimation procedure to efficiently find approximate values of internal parameters in ultrasonic transducers intended for broadband operation would be a valuable tool to discover internal construction data. This information is necessary in the modelling and simulation of acoustic and electrical behaviour related to ultrasonic systems containing commercial transducers. There is not a general solution for this generic problem of parameter estimation in the case of broadband piezoelectric probes. In this paper, this general problem is briefly analysed for broadband conditions. The viability of application in this field of an artificial intelligence technique supported on the modelling of the transducer internal components is studied. A genetic algorithm (GA) procedure is presented and applied to the estimation of different parameters, related to two transducers which are working as pulsed transmitters. The efficiency of this GA technique is studied, considering the influence of the number and variation range of the estimated parameters. Estimation results are experimentally ratified.

  10. Estimating surface soil moisture from SMAP observations using a Neural Network technique.

    PubMed

    Kolassa, J; Reichle, R H; Liu, Q; Alemohammad, S H; Gentine, P; Aida, K; Asanuma, J; Bircher, S; Caldwell, T; Colliander, A; Cosh, M; Collins, C Holifield; Jackson, T J; Martínez-Fernández, J; McNairn, H; Pacheco, A; Thibeault, M; Walker, J P

    2018-01-01

    A Neural Network (NN) algorithm was developed to estimate global surface soil moisture for April 2015 to March 2017 with a 2-3 day repeat frequency using passive microwave observations from the Soil Moisture Active Passive (SMAP) satellite, surface soil temperatures from the NASA Goddard Earth Observing System Model version 5 (GEOS-5) land modeling system, and Moderate Resolution Imaging Spectroradiometer-based vegetation water content. The NN was trained on GEOS-5 soil moisture target data, making the NN estimates consistent with the GEOS-5 climatology, such that they may ultimately be assimilated into this model without further bias correction. Evaluated against in situ soil moisture measurements, the average unbiased root mean square error (ubRMSE), correlation and anomaly correlation of the NN retrievals were 0.037 m 3 m -3 , 0.70 and 0.66, respectively, against SMAP core validation site measurements and 0.026 m 3 m -3 , 0.58 and 0.48, respectively, against International Soil Moisture Network (ISMN) measurements. At the core validation sites, the NN retrievals have a significantly higher skill than the GEOS-5 model estimates and a slightly lower correlation skill than the SMAP Level-2 Passive (L2P) product. The feasibility of the NN method was reflected by a lower ubRMSE compared to the L2P retrievals as well as a higher skill when ancillary parameters in physically-based retrievals were uncertain. Against ISMN measurements, the skill of the two retrieval products was more comparable. A triple collocation analysis against Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced Scatterometer (ASCAT) soil moisture retrievals showed that the NN and L2P retrieval errors have a similar spatial distribution, but the NN retrieval errors are generally lower in densely vegetated regions and transition zones.

  11. Empirical performance of interpolation techniques in risk-neutral density (RND) estimation

    NASA Astrophysics Data System (ADS)

    Bahaludin, H.; Abdullah, M. H.

    2017-03-01

    The objective of this study is to evaluate the empirical performance of interpolation techniques in risk-neutral density (RND) estimation. Firstly, the empirical performance is evaluated by using statistical analysis based on the implied mean and the implied variance of RND. Secondly, the interpolation performance is measured based on pricing error. We propose using the leave-one-out cross-validation (LOOCV) pricing error for interpolation selection purposes. The statistical analyses indicate that there are statistical differences between the interpolation techniques:second-order polynomial, fourth-order polynomial and smoothing spline. The results of LOOCV pricing error shows that interpolation by using fourth-order polynomial provides the best fitting to option prices in which it has the lowest value error.

  12. Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation

    NASA Astrophysics Data System (ADS)

    Bonin, Jennifer; Chambers, Don

    2013-07-01

    The low spatial resolution of GRACE causes leakage, where signals in one location spread out into nearby regions. Because of this leakage, using simple techniques such as basin averages may result in an incorrect estimate of the true mass change in a region. A fairly simple least squares inversion technique can be used to more specifically localize mass changes into a pre-determined set of basins of uniform internal mass distribution. However, the accuracy of these higher resolution basin mass amplitudes has not been determined, nor is it known how the distribution of the chosen basins affects the results. We use a simple `truth' model over Greenland as an example case, to estimate the uncertainties of this inversion method and expose those design parameters which may result in an incorrect high-resolution mass distribution. We determine that an appropriate level of smoothing (300-400 km) and process noise (0.30 cm2 of water) gets the best results. The trends of the Greenland internal basins and Iceland can be reasonably estimated with this method, with average systematic errors of 3.5 cm yr-1 per basin. The largest mass losses found from GRACE RL04 occur in the coastal northwest (-19.9 and -33.0 cm yr-1) and southeast (-24.2 and -27.9 cm yr-1), with small mass gains (+1.4 to +7.7 cm yr-1) found across the northern interior. Acceleration of mass change is measurable at the 95 per cent confidence level in four northwestern basins, but not elsewhere in Greenland. Due to an insufficiently detailed distribution of basins across internal Canada, the trend estimates of Baffin and Ellesmere Islands are expected to be incorrect due to systematic errors caused by the inversion technique.

  13. Advanced fabrication techniques for hydrogen-cooled engine structures

    NASA Technical Reports Server (NTRS)

    Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

    1985-01-01

    Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

  14. Evaluation of small area crop estimation techniques using LANDSAT- and ground-derived data. [South Dakota

    NASA Technical Reports Server (NTRS)

    Amis, M. L.; Martin, M. V.; Mcguire, W. G.; Shen, S. S. (Principal Investigator)

    1982-01-01

    Studies completed in fiscal year 1981 in support of the clustering/classification and preprocessing activities of the Domestic Crops and Land Cover project. The theme throughout the study was the improvement of subanalysis district (usually county level) crop hectarage estimates, as reflected in the following three objectives: (1) to evaluate the current U.S. Department of Agriculture Statistical Reporting Service regression approach to crop area estimation as applied to the problem of obtaining subanalysis district estimates; (2) to develop and test alternative approaches to subanalysis district estimation; and (3) to develop and test preprocessing techniques for use in improving subanalysis district estimates.

  15. Linear regression techniques for use in the EC tracer method of secondary organic aerosol estimation

    NASA Astrophysics Data System (ADS)

    Saylor, Rick D.; Edgerton, Eric S.; Hartsell, Benjamin E.

    A variety of linear regression techniques and simple slope estimators are evaluated for use in the elemental carbon (EC) tracer method of secondary organic carbon (OC) estimation. Linear regression techniques based on ordinary least squares are not suitable for situations where measurement uncertainties exist in both regressed variables. In the past, regression based on the method of Deming [1943. Statistical Adjustment of Data. Wiley, London] has been the preferred choice for EC tracer method parameter estimation. In agreement with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], we find that in the limited case where primary non-combustion OC (OC non-comb) is assumed to be zero, the ratio of averages (ROA) approach provides a stable and reliable estimate of the primary OC-EC ratio, (OC/EC) pri. In contrast with Chu [2005. Stable estimate of primary OC/EC ratios in the EC tracer method. Atmospheric Environment 39, 1383-1392], however, we find that the optimal use of Deming regression (and the more general York et al. [2004. Unified equations for the slope, intercept, and standard errors of the best straight line. American Journal of Physics 72, 367-375] regression) provides excellent results as well. For the more typical case where OC non-comb is allowed to obtain a non-zero value, we find that regression based on the method of York is the preferred choice for EC tracer method parameter estimation. In the York regression technique, detailed information on uncertainties in the measurement of OC and EC is used to improve the linear best fit to the given data. If only limited information is available on the relative uncertainties of OC and EC, then Deming regression should be used. On the other hand, use of ROA in the estimation of secondary OC, and thus the assumption of a zero OC non-comb value, generally leads to an overestimation of the contribution of secondary OC to total measured OC.

  16. ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Pratim; Al-Dahhan, Muthanna

    2012-11-01

    work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US

  17. A Comparison of Several Techniques For Estimating The Average Volume Per Acre For Multipanel Data With Missing Panels

    Treesearch

    Dave Gartner; Gregory A. Reams

    2001-01-01

    As Forest Inventory and Analysis changes from a periodic survey to a multipanel annual survey, a transition will occur where only some of the panels have been resurveyed. Several estimation techniques use data from the periodic survey in addition to the data from the partially completed multipanel data. These estimation techniques were compared using data from two...

  18. Reducing uncertainty in estimating virus reduction by advanced water treatment processes.

    PubMed

    Gerba, Charles P; Betancourt, Walter Q; Kitajima, Masaaki; Rock, Channah M

    2018-04-15

    Treatment of wastewater for potable reuse requires the reduction of enteric viruses to levels that pose no significant risk to human health. Advanced water treatment trains (e.g., chemical clarification, reverse osmosis, ultrafiltration, advanced oxidation) have been developed to provide reductions of viruses to differing levels of regulatory control depending upon the levels of human exposure and associated health risks. Importance in any assessment is information on the concentration and types of viruses in the untreated wastewater, as well as the degree of removal by each treatment process. However, it is critical that the uncertainty associated with virus concentration and removal or inactivation by wastewater treatment be understood to improve these estimates and identifying research needs. We reviewed the critically literature to assess to identify uncertainty in these estimates. Biological diversity within families and genera of viruses (e.g. enteroviruses, rotaviruses, adenoviruses, reoviruses, noroviruses) and specific virus types (e.g. serotypes or genotypes) creates the greatest uncertainty. These aspects affect the methods for detection and quantification of viruses and anticipated removal efficiency by treatment processes. Approaches to reduce uncertainty may include; 1) inclusion of a virus indicator for assessing efficiency of virus concentration and detection by molecular methods for each sample, 2) use of viruses most resistant to individual treatment processes (e.g. adenoviruses for UV light disinfection and reoviruses for chlorination), 3) data on ratio of virion or genome copies to infectivity in untreated wastewater, and 4) assessment of virus removal at field scale treatment systems to verify laboratory and pilot plant data for virus removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Space shuttle propulsion parameter estimation using optional estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A regression analyses on tabular aerodynamic data provided. A representative aerodynamic model for coefficient estimation. It also reduced the storage requirements for the "normal' model used to check out the estimation algorithms. The results of the regression analyses are presented. The computer routines for the filter portion of the estimation algorithm and the :"bringing-up' of the SRB predictive program on the computer was developed. For the filter program, approximately 54 routines were developed. The routines were highly subsegmented to facilitate overlaying program segments within the partitioned storage space on the computer.

  20. Estimating the Celestial Reference Frame via Intra-Technique Combination

    NASA Astrophysics Data System (ADS)

    Iddink, Andreas; Artz, Thomas; Halsig, Sebastian; Nothnagel, Axel

    2016-12-01

    One of the primary goals of Very Long Baseline Interferometry (VLBI) is the determination of the International Celestial Reference Frame (ICRF). Currently the third realization of the internationally adopted CRF, the ICRF3, is under preparation. In this process, various optimizations are planned to realize a CRF that does not benefit only from the increased number of observations since the ICRF2 was published. The new ICRF can also benefit from an intra-technique combination as is done for the Terrestrial Reference Frame (TRF). Here, we aim at estimating an optimized CRF by means of an intra-technique combination. The solutions are based on the input to the official combined product of the International VLBI Service for Geodesy and Astrometry (IVS), also providing the radio source parameters. We discuss the differences in the setup using a different number of contributions and investigate the impact on TRF and CRF as well as on the Earth Orientation Parameters (EOPs). Here, we investigate the differences between the combined CRF and the individual CRFs from the different analysis centers.

  1. Optimization of spatial frequency domain imaging technique for estimating optical properties of food and biological materials

    USDA-ARS?s Scientific Manuscript database

    Spatial frequency domain imaging technique has recently been developed for determination of the optical properties of food and biological materials. However, accurate estimation of the optical property parameters by the technique is challenging due to measurement errors associated with signal acquis...

  2. REVIEW ARTICLE: Emission measurement techniques for advanced powertrains

    NASA Astrophysics Data System (ADS)

    Adachi, Masayuki

    2000-10-01

    Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

  3. A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance

    Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less

  4. A Novel Technique Applying Spectral Estimation to Johnson Noise Thermometry

    DOE PAGES

    Ezell, N. Dianne Bull; Britton, Chuck; Ericson, Nance; ...

    2018-03-30

    Johnson noise thermometry is one of many important measurement techniques used to monitor the safety levels and stability in a nuclear reactor. However, this measurement is very dependent on the minimal electromagnetic environment. Properly removing unwanted electromagnetic interference (EMI) is critical for accurate drift-free temperature measurements. The two techniques developed by Oak Ridge National Laboratory (ORNL) to remove transient and periodic EMI are briefly discussed here. Spectral estimation is a key component in the signal processing algorithm used for EMI removal and temperature calculation. The cross-power spectral density is a key component in the Johnson noise temperature computation. Applying eithermore » technique requires the simple addition of electronics and signal processing to existing resistive thermometers. With minimal installation changes, the system discussed here can be installed on existing nuclear power plants. The Johnson noise system developed is tested at three locations: ORNL, Sandia National Laboratory, and the Tennessee Valley Authority’s Kingston Fossil Plant. Each of these locations enabled improvement on the EMI removal algorithm. Finally, the conclusions made from the results at each of these locations is discussed, as well as possible future work.« less

  5. Space shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The first twelve system state variables are presented with the necessary mathematical developments for incorporating them into the filter/smoother algorithm. Other state variables, i.e., aerodynamic coefficients can be easily incorporated into the estimation algorithm, representing uncertain parameters, but for initial checkout purposes are treated as known quantities. An approach for incorporating the NASA propulsion predictive model results into the optimal estimation algorithm was identified. This approach utilizes numerical derivatives and nominal predictions within the algorithm with global iterations of the algorithm. The iterative process is terminated when the quality of the estimates provided no longer significantly improves.

  6. Estimating Global Seafloor Total Organic Carbon Using a Machine Learning Technique and Its Relevance to Methane Hydrates

    NASA Astrophysics Data System (ADS)

    Lee, T. R.; Wood, W. T.; Dale, J.

    2017-12-01

    Empirical and theoretical models of sub-seafloor organic matter transformation, degradation and methanogenesis require estimates of initial seafloor total organic carbon (TOC). This subsurface methane, under the appropriate geophysical and geochemical conditions may manifest as methane hydrate deposits. Despite the importance of seafloor TOC, actual observations of TOC in the world's oceans are sparse and large regions of the seafloor yet remain unmeasured. To provide an estimate in areas where observations are limited or non-existent, we have implemented interpolation techniques that rely on existing data sets. Recent geospatial analyses have provided accurate accounts of global geophysical and geochemical properties (e.g. crustal heat flow, seafloor biomass, porosity) through machine learning interpolation techniques. These techniques find correlations between the desired quantity (in this case TOC) and other quantities (predictors, e.g. bathymetry, distance from coast, etc.) that are more widely known. Predictions (with uncertainties) of seafloor TOC in regions lacking direct observations are made based on the correlations. Global distribution of seafloor TOC at 1 x 1 arc-degree resolution was estimated from a dataset of seafloor TOC compiled by Seiter et al. [2004] and a non-parametric (i.e. data-driven) machine learning algorithm, specifically k-nearest neighbors (KNN). Built-in predictor selection and a ten-fold validation technique generated statistically optimal estimates of seafloor TOC and uncertainties. In addition, inexperience was estimated. Inexperience is effectively the distance in parameter space to the single nearest neighbor, and it indicates geographic locations where future data collection would most benefit prediction accuracy. These improved geospatial estimates of TOC in data deficient areas will provide new constraints on methane production and subsequent methane hydrate accumulation.

  7. The photoload sampling technique: estimating surface fuel loadings from downward-looking photographs of synthetic fuelbeds

    Treesearch

    Robert E. Keane; Laura J. Dickinson

    2007-01-01

    Fire managers need better estimates of fuel loading so they can more accurately predict the potential fire behavior and effects of alternative fuel and ecosystem restoration treatments. This report presents a new fuel sampling method, called the photoload sampling technique, to quickly and accurately estimate loadings for six common surface fuel components (1 hr, 10 hr...

  8. Comparing the Advanced REACH Tool's (ART) Estimates With Switzerland's Occupational Exposure Data.

    PubMed

    Savic, Nenad; Gasic, Bojan; Schinkel, Jody; Vernez, David

    2017-10-01

    The Advanced REACH Tool (ART) is the most sophisticated tool used for evaluating exposure levels under the European Union's Registration, Evaluation, Authorisation and restriction of CHemicals (REACH) regulations. ART provides estimates at different percentiles of exposure and within different confidence intervals (CIs). However, its performance has only been tested on a limited number of exposure data. The present study compares ART's estimates with exposure measurements collected over many years in Switzerland. Measurements from 584 cases of exposure to vapours, mists, powders, and abrasive dusts (wood/stone and metal) were extracted from a Swiss database. The corresponding exposures at the 50th and 90th percentiles were calculated in ART. To characterize the model's performance, the 90% CI of the estimates was considered. ART's performance at the 50th percentile was only found to be insufficiently conservative with regard to exposure to wood/stone dusts, whereas the 90th percentile showed sufficient conservatism for all the types of exposure processed. However, a trend was observed with the residuals, where ART overestimated lower exposures and underestimated higher ones. The median was more precise, however, and the majority (≥60%) of real-world measurements were within a factor of 10 from ART's estimates. We provide recommendations based on the results and suggest further, more comprehensive, investigations. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Airway emergencies presenting to the paediatric emergency department requiring advanced management techniques.

    PubMed

    Simma, Leopold; Cincotta, Domenic; Sabato, Stefan; Long, Elliot

    2017-09-01

    Airway emergencies presenting to the emergency department (ED) are usually managed with conventional equipment and techniques. The patient group managed urgently in the operating room (OR) has not been described. This study aims to describe a case series of children presenting to the ED with airway emergencies managed urgently in the OR, particularly the anaesthetic equipment and techniques used and airway findings. A retrospective cohort study undertaken at The Royal Children's Hospital, Melbourne, Australia. All patients presenting to the ED between 1 January 2012 and 30 July 2015 (42 months) with an airway emergency who were subsequently managed in the OR were included. Patient characteristics, anaesthetic equipment and technique and airway findings were recorded. Twenty-two airway emergencies in 21 patients were included over the study period, on average one every 2 months. Median age was 18 months and 43% were male. Inhalational induction was used in 77.3%, combined inhalational and intravenous induction in 9.1%, and intravenous induction alone in 13.6%. The most commonly used inhalational induction agent was sevoflurane, and the most commonly used intravenous induction agents were ketamine and propofol. Ten airway emergencies did not require intubation, seven for removal of inhaled foreign body, two with progressive tracheal stenosis requiring emergent dilatation and one examination under anaesthesia to rule out inhaled foreign body. Of the 12 airway emergencies that required immediate intubation, direct laryngoscopy was used in 9 and fibre-optic intubating bronchoscopy in 3. For intubations performed by direct laryngoscopy, one was difficult (Cormack and Lehane grade 3). First pass success was 83.3%. Adverse events occurred in 3/22 (13.6%) cases. Advanced airway techniques, including inhalational induction and intubation via fibre-optic intubating bronchoscope, are rarely but predictably required in the management of patients presenting to the ED

  10. Application of split window technique to TIMS data

    NASA Technical Reports Server (NTRS)

    Matsunaga, Tsuneo; Rokugawa, Shuichi; Ishii, Yoshinori

    1992-01-01

    Absorptions by the atmosphere in thermal infrared region are mainly due to water vapor, carbon dioxide, and ozone. As the content of water vapor in the atmosphere greatly changes according to weather conditions, it is important to know its amount between the sensor and the ground for atmospheric corrections of thermal Infrared Multispectral Scanner (TIMS) data (i.e. radiosonde). On the other hand, various atmospheric correction techniques were already developed for sea surface temperature estimations from satellites. Among such techniques, Split Window technique, now widely used for AVHRR (Advanced Very High Resolution Radiometer), uses no radiosonde or any kind of supplementary data but a difference between observed brightness temperatures in two channels for estimating atmospheric effects. Applications of Split Window technique to TIMS data are discussed because availability of atmospheric profile data is not clear when ASTER operates. After these theoretical discussions, the technique is experimentally applied to TIMS data at three ground targets and results are compared with atmospherically corrected data using LOWTRAN 7 with radiosonde data.

  11. Use of the forced-oscillation technique to estimate spirometry values.

    PubMed

    Yamamoto, Shoichiro; Miyoshi, Seigo; Katayama, Hitoshi; Okazaki, Mikio; Shigematsu, Hisayuki; Sano, Yoshifumi; Matsubara, Minoru; Hamaguchi, Naohiko; Okura, Takafumi; Higaki, Jitsuo

    2017-01-01

    Spirometry is sometimes difficult to perform in elderly patients and in those with severe respiratory distress. The forced-oscillation technique (FOT) is a simple and noninvasive method of measuring respiratory impedance. The aim of this study was to determine if FOT data reflect spirometric indices. Patients underwent both FOT and spirometry procedures prior to inclusion in development (n=1,089) and validation (n=552) studies. Multivariate linear regression analysis was performed to identify FOT parameters predictive of vital capacity (VC), forced VC (FVC), and forced expiratory volume in 1 second (FEV 1 ). A regression equation was used to calculate estimated VC, FVC, and FEV 1 . We then determined whether the estimated data reflected spirometric indices. Agreement between actual and estimated spirometry data was assessed by Bland-Altman analysis. Significant correlations were observed between actual and estimated VC, FVC, and FEV 1 values (all r >0.8 and P <0.001). These results were deemed robust by a separate validation study (all r >0.8 and P <0.001). Bias between the actual data and estimated data for VC, FVC, and FEV 1 in the development study was 0.007 L (95% limits of agreement [LOA] 0.907 and -0.893 L), -0.064 L (95% LOA 0.843 and -0.971 L), and -0.039 L (95% LOA 0.735 and -0.814 L), respectively. On the other hand, bias between the actual data and estimated data for VC, FVC, and FEV 1 in the validation study was -0.201 L (95% LOA 0.62 and -1.022 L), -0.262 L (95% LOA 0.582 and -1.106 L), and -0.174 L (95% LOA 0.576 and -0.923 L), respectively, suggesting that the estimated data in the validation study did not have high accuracy. Further studies are needed to generate more accurate regression equations for spirometric indices based on FOT measurements.

  12. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  13. Novel SVM-based technique to improve rainfall estimation over the Mediterranean region (north of Algeria) using the multispectral MSG SEVIRI imagery

    NASA Astrophysics Data System (ADS)

    Sehad, Mounir; Lazri, Mourad; Ameur, Soltane

    2017-03-01

    In this work, a new rainfall estimation technique based on the high spatial and temporal resolution of the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) aboard the Meteosat Second Generation (MSG) is presented. This work proposes efficient scheme rainfall estimation based on two multiclass support vector machine (SVM) algorithms: SVM_D for daytime and SVM_N for night time rainfall estimations. Both SVM models are trained using relevant rainfall parameters based on optical, microphysical and textural cloud proprieties. The cloud parameters are derived from the Spectral channels of the SEVIRI MSG radiometer. The 3-hourly and daily accumulated rainfall are derived from the 15 min-rainfall estimation given by the SVM classifiers for each MSG observation image pixel. The SVMs were trained with ground meteorological radar precipitation scenes recorded from November 2006 to March 2007 over the north of Algeria located in the Mediterranean region. Further, the SVM_D and SVM_N models were used to estimate 3-hourly and daily rainfall using data set gathered from November 2010 to March 2011 over north Algeria. The results were validated against collocated rainfall observed by rain gauge network. Indeed, the statistical scores given by correlation coefficient, bias, root mean square error and mean absolute error, showed good accuracy of rainfall estimates by the present technique. Moreover, rainfall estimates of our technique were compared with two high accuracy rainfall estimates methods based on MSG SEVIRI imagery namely: random forests (RF) based approach and an artificial neural network (ANN) based technique. The findings of the present technique indicate higher correlation coefficient (3-hourly: 0.78; daily: 0.94), and lower mean absolute error and root mean square error values. The results show that the new technique assign 3-hourly and daily rainfall with good and better accuracy than ANN technique and (RF) model.

  14. Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research

    PubMed Central

    Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

  15. Biotechnology apprenticeship for secondary-level students: teaching advanced cell culture techniques for research.

    PubMed

    Lewis, Jennifer R; Kotur, Mark S; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A; Ferrell, Nick; Sullivan, Kathryn D; Ferrari, Mauro

    2002-01-01

    The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors.

  16. Alternative oil extraction methods from Echium plantagineum L. seeds using advanced techniques and green solvents.

    PubMed

    Castejón, Natalia; Luna, Pilar; Señoráns, Francisco J

    2018-04-01

    The edible oil processing industry involves large losses of organic solvent into the atmosphere and long extraction times. In this work, fast and environmentally friendly alternatives for the production of echium oil using green solvents are proposed. Advanced extraction techniques such as Pressurized Liquid Extraction (PLE), Microwave Assisted Extraction (MAE) and Ultrasound Assisted Extraction (UAE) were evaluated to efficiently extract omega-3 rich oil from Echium plantagineum seeds. Extractions were performed with ethyl acetate, ethanol, water and ethanol:water to develop a hexane-free processing method. Optimal PLE conditions with ethanol at 150 °C during 10 min produced a very similar oil yield (31.2%) to Soxhlet using hexane for 8 h (31.3%). UAE optimized method with ethanol at mild conditions (55 °C) produced a high oil yield (29.1%). Consequently, advanced extraction techniques showed good lipid yields and furthermore, the produced echium oil had the same omega-3 fatty acid composition than traditionally extracted oil. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Development of Advanced Nuclide Separation and Recovery Methods using Ion-Exchanhge Techniques in Nuclear Backend

    NASA Astrophysics Data System (ADS)

    Miura, Hitoshi

    The development of compact separation and recovery methods using selective ion-exchange techniques is very important for the reprocessing and high-level liquid wastes (HLLWs) treatment in the nuclear backend field. The selective nuclide separation techniques are effective for the volume reduction of wastes and the utilization of valuable nuclides, and expected for the construction of advanced nuclear fuel cycle system and the rationalization of waste treatment. In order to accomplish the selective nuclide separation, the design and synthesis of novel adsorbents are essential for the development of compact and precise separation processes. The present paper deals with the preparation of highly functional and selective hybrid microcapsules enclosing nano-adsorbents in the alginate gel polymer matrices by sol-gel methods, their characterization and the clarification of selective adsorption properties by batch and column methods. The selective separation of Cs, Pd and Re in real HLLW was further accomplished by using novel microcapsules, and an advanced nuclide separation system was proposed by the combination of selective processes using microcapsules.

  18. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Two techniques for mapping and area estimation of small grains in California using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Sheffner, E. J.; Hlavka, C. A.; Bauer, E. M.

    1984-01-01

    Two techniques have been developed for the mapping and area estimation of small grains in California from Landsat digital data. The two techniques are Band Ratio Thresholding, a semi-automated version of a manual procedure, and LCLS, a layered classification technique which can be fully automated and is based on established clustering and classification technology. Preliminary evaluation results indicate that the two techniques have potential for providing map products which can be incorporated into existing inventory procedures and automated alternatives to traditional inventory techniques and those which currently employ Landsat imagery.

  20. Estimation of the monthly average daily solar radiation using geographic information system and advanced case-based reasoning.

    PubMed

    Koo, Choongwan; Hong, Taehoon; Lee, Minhyun; Park, Hyo Seon

    2013-05-07

    The photovoltaic (PV) system is considered an unlimited source of clean energy, whose amount of electricity generation changes according to the monthly average daily solar radiation (MADSR). It is revealed that the MADSR distribution in South Korea has very diverse patterns due to the country's climatic and geographical characteristics. This study aimed to develop a MADSR estimation model for the location without the measured MADSR data, using an advanced case based reasoning (CBR) model, which is a hybrid methodology combining CBR with artificial neural network, multiregression analysis, and genetic algorithm. The average prediction accuracy of the advanced CBR model was very high at 95.69%, and the standard deviation of the prediction accuracy was 3.67%, showing a significant improvement in prediction accuracy and consistency. A case study was conducted to verify the proposed model. The proposed model could be useful for owner or construction manager in charge of determining whether or not to introduce the PV system and where to install it. Also, it would benefit contractors in a competitive bidding process to accurately estimate the electricity generation of the PV system in advance and to conduct an economic and environmental feasibility study from the life cycle perspective.

  1. Applications of Advanced Nondestructive Measurement Techniques to Address Safety of Flight Issues on NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Prosser, Bill

    2016-01-01

    Advanced nondestructive measurement techniques are critical for ensuring the reliability and safety of NASA spacecraft. Techniques such as infrared thermography, THz imaging, X-ray computed tomography and backscatter X-ray are used to detect indications of damage in spacecraft components and structures. Additionally, sensor and measurement systems are integrated into spacecraft to provide structural health monitoring to detect damaging events that occur during flight such as debris impacts during launch and assent or from micrometeoroid and orbital debris, or excessive loading due to anomalous flight conditions. A number of examples will be provided of how these nondestructive measurement techniques have been applied to resolve safety critical inspection concerns for the Space Shuttle, International Space Station (ISS), and a variety of launch vehicles and unmanned spacecraft.

  2. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  3. Assessing statistical differences between parameters estimates in Partial Least Squares path modeling.

    PubMed

    Rodríguez-Entrena, Macario; Schuberth, Florian; Gelhard, Carsten

    2018-01-01

    Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

  4. A Time Series Separation and Reconstruction (TSSR) Technique to Estimate Daily Suspended Sediment Concentrations

    EPA Science Inventory

    High suspended sediment concentrations (SSCs) from natural and anthropogenic sources are responsible for biological impairments of many streams, rivers, lakes, and estuaries, but techniques to estimate sediment concentrations or loads accurately at the daily temporal resolution a...

  5. Advances in Tissue Engineering Techniques for Articular Cartilage Repair

    PubMed Central

    Haleem, AM; Chu, CR

    2010-01-01

    The limited repair potential of human articular cartilage contributes to development of debilitating osteoarthritis and remains a great clinical challenge. This has led to evolution of cartilage treatment strategies from palliative to either reconstructive or reparative methods in an attempt to delay or “bridge the gap” to joint replacement. Further development of tissue engineering-based cartilage repair methods have been pursued to provide a more functional biological tissue. Currently, tissue engineering of articular cartilage has three cornerstones; a cell population capable of proliferation and differentiation into mature chondrocytes, a scaffold that can host these cells, provide a suitable environment for cellular functioning and serve as a sustained-release delivery vehicle of chondrogenic growth factors and thirdly, signaling molecules and growth factors that stimulate the cellular response and the production of a hyaline extracellular matrix (ECM). The aim of this review is to summarize advances in each of these three fields of tissue engineering with specific relevance to surgical techniques and technical notes. PMID:29430164

  6. Use of Advanced Machine-Learning Techniques for Non-Invasive Monitoring of Hemorrhage

    DTIC Science & Technology

    2010-04-01

    that state-of-the-art machine learning techniques when integrated with novel non-invasive monitoring technologies could detect subtle, physiological...decompensation. Continuous, non-invasively measured hemodynamic signals (e.g., ECG, blood pressures, stroke volume) were used for the development of machine ... learning algorithms. Accuracy estimates were obtained by building models using 27 subjects and testing on the 28th. This process was repeated 28 times

  7. Computational techniques for ECG analysis and interpretation in light of their contribution to medical advances

    PubMed Central

    Mincholé, Ana; Martínez, Juan Pablo; Laguna, Pablo; Rodriguez, Blanca

    2018-01-01

    Widely developed for clinical screening, electrocardiogram (ECG) recordings capture the cardiac electrical activity from the body surface. ECG analysis can therefore be a crucial first step to help diagnose, understand and predict cardiovascular disorders responsible for 30% of deaths worldwide. Computational techniques, and more specifically machine learning techniques and computational modelling are powerful tools for classification, clustering and simulation, and they have recently been applied to address the analysis of medical data, especially ECG data. This review describes the computational methods in use for ECG analysis, with a focus on machine learning and 3D computer simulations, as well as their accuracy, clinical implications and contributions to medical advances. The first section focuses on heartbeat classification and the techniques developed to extract and classify abnormal from regular beats. The second section focuses on patient diagnosis from whole recordings, applied to different diseases. The third section presents real-time diagnosis and applications to wearable devices. The fourth section highlights the recent field of personalized ECG computer simulations and their interpretation. Finally, the discussion section outlines the challenges of ECG analysis and provides a critical assessment of the methods presented. The computational methods reported in this review are a strong asset for medical discoveries and their translation to the clinical world may lead to promising advances. PMID:29321268

  8. Advances in regional anaesthesia: A review of current practice, newer techniques and outcomes

    PubMed Central

    Wahal, Christopher; Kumar, Amanda; Pyati, Srinivas

    2018-01-01

    Advances in ultrasound guided regional anaesthesia and introduction of newer long acting local anaesthetics have given clinicians an opportunity to apply novel approaches to block peripheral nerves with ease. Consequently, improvements in outcomes such as quality of analgesia, early rehabilitation and patient satisfaction have been observed. In this article we will review some of the newer regional anaesthetic techniques, long acting local anaesthetics and adjuvants, and discuss evidence for key outcomes such as cancer recurrence and safety with ultrasound guidance. PMID:29491513

  9. Advanced endografting techniques: snorkels, chimneys, periscopes, fenestrations, and branched endografts.

    PubMed

    Kansagra, Kartik; Kang, Joseph; Taon, Matthew-Czar; Ganguli, Suvranu; Gandhi, Ripal; Vatakencherry, George; Lam, Cuong

    2018-04-01

    The anatomy of aortic aneurysms from the proximal neck to the access vessels may create technical challenges for endovascular repair. Upwards of 30% of patients with abdominal aortic aneurysms (AAA) have unsuitable proximal neck morphology for endovascular repair. Anatomies considered unsuitable for conventional infrarenal stent grafting include short or absent necks, angulated necks, conical necks, or large necks exceeding size availability for current stent grafts. A number of advanced endovascular techniques and devices have been developed to circumvent these challenges, each with unique advantages and disadvantages. These include snorkeling procedures such as chimneys, periscopes, and sandwich techniques; "homemade" or "back-table" fenestrated endografts as well as manufactured, customized fenestrated endografts; and more recently, physician modified branched devices. Furthermore, new devices in the pipeline under investigation, such as "off-the-shelf" fenestrated stent grafts, branched stent grafts, lower profile devices, and novel sealing designs, have the potential of solving many of the aforementioned problems. The treatment of aortic aneurysms continues to evolve, further expanding the population of patients that can be treated with an endovascular approach. As the technology grows so do the number of challenging aortic anatomies that endovascular specialists take on, further pushing the envelope in the arena of aortic repair.

  10. Advanced Instrumentation and Measurement Techniques for Near Surface Flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel R.

    The development of aerodynamic boundary layers on wind turbine blades is an important consideration in their performance. It can be quite challenging to replicate full scale conditions in laboratory experiments, and advanced diagnostics become valuable in providing data not available from traditional means. A new variant of Doppler global velocimetry (DGV) known as cross-correlation DGV is developed to measure boundary layer profiles on a wind turbine blade airfoil in the large scale Virginia Tech Stability Wind Tunnel. The instrument provides mean velocity vectors with reduced sensitivity to external conditions, a velocity measurement range from 0 ms-1 to over 3000 ms-1, and an absolute uncertainty. Monte Carlo simulations with synthetic signals reveal that the processing routine approaches the Cramer-Rao lower bound in optimized conditions. A custom probe-beam technique is implanted to eliminate laser flare for measuring boundary layer profiles on a DU96-W-180 wind turbine airfoil model. Agreement is seen with laser Doppler velocimetry data within the uncertainty estimated for the DGV profile. Lessons learned from the near-wall flow diagnostics development were applied to a novel benchmark model problem incorporating the relevant physical mechanisms of the high amplitude periodic turbulent flow experienced by turbine blades in the field. The model problem is developed for experimentally motivated computational model development. A circular cylinder generates a periodic turbulent wake, in which a NACA 63215b airfoil with a chord Reynolds number Rec = 170,000 is embedded for a reduced frequency k = pi f c/V = 1.53. Measurements are performed with particle image velocimetry on the airfoil suction side and in highly magnified planes within the boundary layer. Outside of the viscous region, the Reynolds stress profile is consistent with the prediction of Rapid Distortion Theory (RDT), confirming that the redistribution of normal stresses is an inviscid effect. The

  11. An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques

    NASA Technical Reports Server (NTRS)

    Mclees, Robert E.; Cohen, Gerald C.

    1991-01-01

    The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

  12. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  13. A TECHNIQUE FOR ASSESSING THE ACCURACY OF SUB-PIXEL IMPERVIOUS SURFACE ESTIMATES DERIVED FROM LANDSAT TM IMAGERY

    EPA Science Inventory

    We developed a technique for assessing the accuracy of sub-pixel derived estimates of impervious surface extracted from LANDSAT TM imagery. We utilized spatially coincident
    sub-pixel derived impervious surface estimates, high-resolution planimetric GIS data, vector--to-
    r...

  14. Recent advances in stable isotope labeling based techniques for proteome relative quantification.

    PubMed

    Zhou, Yuan; Shan, Yichu; Zhang, Lihua; Zhang, Yukui

    2014-10-24

    The large scale relative quantification of all proteins expressed in biological samples under different states is of great importance for discovering proteins with important biological functions, as well as screening disease related biomarkers and drug targets. Therefore, the accurate quantification of proteins at proteome level has become one of the key issues in protein science. Herein, the recent advances in stable isotope labeling based techniques for proteome relative quantification were reviewed, from the aspects of metabolic labeling, chemical labeling and enzyme-catalyzed labeling. Furthermore, the future research direction in this field was prospected. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Evaluating uses of data mining techniques in propensity score estimation: a simulation study.

    PubMed

    Setoguchi, Soko; Schneeweiss, Sebastian; Brookhart, M Alan; Glynn, Robert J; Cook, E Francis

    2008-06-01

    In propensity score modeling, it is a standard practice to optimize the prediction of exposure status based on the covariate information. In a simulation study, we examined in what situations analyses based on various types of exposure propensity score (EPS) models using data mining techniques such as recursive partitioning (RP) and neural networks (NN) produce unbiased and/or efficient results. We simulated data for a hypothetical cohort study (n = 2000) with a binary exposure/outcome and 10 binary/continuous covariates with seven scenarios differing by non-linear and/or non-additive associations between exposure and covariates. EPS models used logistic regression (LR) (all possible main effects), RP1 (without pruning), RP2 (with pruning), and NN. We calculated c-statistics (C), standard errors (SE), and bias of exposure-effect estimates from outcome models for the PS-matched dataset. Data mining techniques yielded higher C than LR (mean: NN, 0.86; RPI, 0.79; RP2, 0.72; and LR, 0.76). SE tended to be greater in models with higher C. Overall bias was small for each strategy, although NN estimates tended to be the least biased. C was not correlated with the magnitude of bias (correlation coefficient [COR] = -0.3, p = 0.1) but increased SE (COR = 0.7, p < 0.001). Effect estimates from EPS models by simple LR were generally robust. NN models generally provided the least numerically biased estimates. C was not associated with the magnitude of bias but was with the increased SE.

  16. Estimation of flood environmental effects using flood zone mapping techniques in Halilrood Kerman, Iran.

    PubMed

    Boudaghpour, Siamak; Bagheri, Majid; Bagheri, Zahra

    2014-01-01

    High flood occurrences with large environmental damages have a growing trend in Iran. Dynamic movements of water during a flood cause different environmental damages in geographical areas with different characteristics such as topographic conditions. In general, environmental effects and damages caused by a flood in an area can be investigated from different points of view. The current essay is aiming at detecting environmental effects of flood occurrences in Halilrood catchment area of Kerman province in Iran using flood zone mapping techniques. The intended flood zone map was introduced in four steps. Steps 1 to 3 pave the way to calculate and estimate flood zone map in the understudy area while step 4 determines the estimation of environmental effects of flood occurrence. Based on our studies, wide range of accuracy for estimating the environmental effects of flood occurrence was introduced by using of flood zone mapping techniques. Moreover, it was identified that the existence of Jiroft dam in the study area can decrease flood zone from 260 hectares to 225 hectares and also it can decrease 20% of flood peak intensity. As a result, 14% of flood zone in the study area can be saved environmentally.

  17. Application of selection techniques to electric-propulsion options on an advanced synchronous satellite

    NASA Technical Reports Server (NTRS)

    Holcomb, L. B.; Degrey, S. P.

    1973-01-01

    This paper addresses the comparison of several candidate auxiliary-propulsion systems and system combinations for an advanced synchronous satellite. Economic selection techniques, evolved at the Jet Propulsion Laboratory, are used as a basis for system option comparisons. Electric auxiliary-propulsion types considered include pulsed plasma and ion bombardment, with hydrazine systems used as a state-of-the-art reference. Current as well as projected electric-propulsion system performance data are used, as well as projected hydrazine system costs resulting from NASA standardization program projections.

  18. A field technique for estimating aquifer parameters using flow log data

    USGS Publications Warehouse

    Paillet, Frederick L.

    2000-01-01

    A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The theory shows that the amount of inflow to or outflow from the borehole under any one flow condition may not indicate relative zone transmissivity. A unique inversion for both hydraulic-head and transmissivity values is possible if flow is measured under two different conditions such as ambient and quasi-steady pumping, and if the difference in open-borehole water level between the two flow conditions is measured. The technique is shown to give useful estimates of water levels and transmissivities of two or more water-producing zones intersecting a single interval of open borehole under typical field conditions. Although the modeling technique involves some approximation, the principle limit on the accuracy of the method under field conditions is the measurement error in the flow log data. Flow measurements and pumping conditions are usually adjusted so that transmissivity estimates are most accurate for the most transmissive zones, and relative measurement error is proportionately larger for less transmissive zones. The most effective general application of the borehole-flow model results when the data are fit to models that systematically include more production zones of progressively smaller transmissivity values until model results show that all accuracy in the data set is exhausted.A numerical model is used to predict flow along intervals between producing zones in open boreholes for comparison with measurements of borehole flow. The model gives flow under quasi-steady conditions as a function of the transmissivity and hydraulic head in an arbitrary number of zones communicating with each other along open boreholes. The

  19. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for Column CO2 Measurements

    NASA Astrophysics Data System (ADS)

    Campbell, J. F.; Lin, B.; Nehrir, A. R.; Obland, M. D.; Liu, Z.; Browell, E. V.; Chen, S.; Kooi, S. A.; Fan, T. F.

    2015-12-01

    Global and regional atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission and Atmospheric Carbon and Transport (ACT) - America airborne investigation are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity-Modulated Continuous-Wave (IM-CW) lidar techniques are being investigated as a means of facilitating CO2 measurements from space and airborne platforms to meet the mission science measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud returns. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of intervening optically thin clouds, thereby minimizing bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the Earth's surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques and provides very high (at sub-meter level) range resolution. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These techniques are used in a new data processing architecture to support the ASCENDS CarbonHawk Experiment Simulator (ACES) and ACT-America programs.

  20. A spectral reflectance estimation technique using multispectral data from the Viking lander camera

    NASA Technical Reports Server (NTRS)

    Park, S. K.; Huck, F. O.

    1976-01-01

    A technique is formulated for constructing spectral reflectance curve estimates from multispectral data obtained with the Viking lander camera. The multispectral data are limited to six spectral channels in the wavelength range from 0.4 to 1.1 micrometers and most of these channels exhibit appreciable out-of-band response. The output of each channel is expressed as a linear (integral) function of the (known) solar irradiance, atmospheric transmittance, and camera spectral responsivity and the (unknown) spectral responsivity and the (unknown) spectral reflectance. This produces six equations which are used to determine the coefficients in a representation of the spectral reflectance as a linear combination of known basis functions. Natural cubic spline reflectance estimates are produced for a variety of materials that can be reasonably expected to occur on Mars. In each case the dominant reflectance features are accurately reproduced, but small period features are lost due to the limited number of channels. This technique may be a valuable aid in selecting the number of spectral channels and their responsivity shapes when designing a multispectral imaging system.

  1. Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.

    PubMed

    Wasik, S M; Wallace, A M

    2014-11-01

    A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. © 2014 Australian Veterinary Association.

  2. Comparative evaluation of features and techniques for identifying activity type and estimating energy cost from accelerometer data

    PubMed Central

    Kate, Rohit J.; Swartz, Ann M.; Welch, Whitney A.; Strath, Scott J.

    2016-01-01

    Wearable accelerometers can be used to objectively assess physical activity. However, the accuracy of this assessment depends on the underlying method used to process the time series data obtained from accelerometers. Several methods have been proposed that use this data to identify the type of physical activity and estimate its energy cost. Most of the newer methods employ some machine learning technique along with suitable features to represent the time series data. This paper experimentally compares several of these techniques and features on a large dataset of 146 subjects doing eight different physical activities wearing an accelerometer on the hip. Besides features based on statistics, distance based features and simple discrete features straight from the time series were also evaluated. On the physical activity type identification task, the results show that using more features significantly improve results. Choice of machine learning technique was also found to be important. However, on the energy cost estimation task, choice of features and machine learning technique were found to be less influential. On that task, separate energy cost estimation models trained specifically for each type of physical activity were found to be more accurate than a single model trained for all types of physical activities. PMID:26862679

  3. Development of sensors for ceramic components in advanced propulsion systems: Survey and evaluation of measurement techniques for temperature, strain and heat flux for ceramic components in advanced propulsion systems

    NASA Technical Reports Server (NTRS)

    Atkinson, W. H.; Cyr, M. A.; Strange, R. R.

    1988-01-01

    The report presents the final results of Tasks 1 and 2, Development of Sensors for Ceramic Components in Advanced Propulsion Systems (NASA program NAS3-25141). During Task 1, an extensive survey was conducted of sensor concepts which have the potential for measuring surface temperature, strain and heat flux on ceramic components for advanced propulsion systems. Each sensor concept was analyzed and evaluated under Task 2; sensor concepts were then recommended for further development. For temperature measurement, both pyrometry and thermographic phosphors are recommended for measurements up to and beyond the melting point of ceramic materials. For lower temperature test programs, the thin-film techniques offer advantages in the installation of temperature sensors. Optical strain measurement techniques are recommended because they offer the possibility of being useful at very high temperature levels. Techniques for the measurement of heat flux are recommended for development based on both a surface mounted sensor and the measurement of the temperature differential across a portion of a ceramic component or metallic substrate.

  4. Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques

    PubMed Central

    2010-01-01

    In clinical neurology, a comprehensive understanding of consciousness has been regarded as an abstract concept - best left to philosophers. However, times are changing and the need to clinically assess consciousness is increasingly becoming a real-world, practical challenge. Current methods for evaluating altered levels of consciousness are highly reliant on either behavioural measures or anatomical imaging. While these methods have some utility, estimates of misdiagnosis are worrisome (as high as 43%) - clearly this is a major clinical problem. The solution must involve objective, physiologically based measures that do not rely on behaviour. This paper reviews recent advances in physiologically based measures that enable better evaluation of consciousness states (coma, vegetative state, minimally conscious state, and locked in syndrome). Based on the evidence to-date, electroencephalographic and neuroimaging based assessments of consciousness provide valuable information for evaluation of residual function, formation of differential diagnoses, and estimation of prognosis. PMID:20113490

  5. Neural Network Technique for Global Ocean Color (Chl-a) Estimates Bridging Multiple Satellite Missions

    NASA Astrophysics Data System (ADS)

    Garraffo, Z. D.; Nadiga, S.; Krasnopolsky, V.; Mehra, A.; Bayler, E. J.; Kim, H. C.; Behringer, D.

    2016-02-01

    A Neural Network (NN) technique is used to produce consistent global ocean color estimates, bridging multiple satellite ocean color missions by linking ocean color variability - primarily driven by biological processes - with the physical processes of the upper ocean. Satellite-derived surface variables - sea-surface temperature (SST) and sea-surface height (SSH) fields - are used as signatures of upper-ocean dynamics. The NN technique employs adaptive weights that are tuned by applying statistical learning (training) algorithms to past data sets, providing robustness with respect to random noise, accuracy, fast emulations, and fault-tolerance. This study employs Sea-viewing Wide Field-of-View Sensor (SeaWiFS) chlorophyll-a data for 1998-2010 in conjunction with satellite SSH and SST fields. After interpolating all data sets to the same two-degree latitude-longitude grid, the annual mean was removed and monthly anomalies extracted . The NN technique wass trained for even years of that period and tested for errors and bias for the odd years. The NN output are assessed for: (i) bias, (ii) variability, (iii) root-mean-square error (RMSE), and (iv) cross-correlation. A Jacobian is evaluated to estimate the impact of each input (SSH, SST) on the NN chlorophyll-a estimates. The differences between an ensemble of NNs vs a single NN are examined. After the NN is trained for the SeaWiFS period, the NN is then applied and validated for 2005-2015, a period covered by other satellite missions — the Moderate Resolution Imaging Spectroradiometer (MODIS AQUA) and the Visible Imaging Infrared Radiometer Suite (VIIRS).

  6. Application of the guided lock technique to Advanced Virgo's high-finesse cavities using reduced actuation

    NASA Astrophysics Data System (ADS)

    Bersanetti, Diego

    2018-02-01

    The recent upgrades of the Advanced Virgo experiment required an update of the locking strategy for the long, high-finesse arm cavities of the detector. In this work we will present a full description of the requirements and the constraints of such system in relation to the lock acquisition of the cavities; the focus of this work is the strategy used to accomplish this goal, which is the adaptation and use of the guided lock technique, which dynamically slows down a suspended optical cavity in order to make the lock possible. This work describes the first application of such locking technique to 3km long optical cavities, which are affected by stringent constraints as the low force available on the actuators, the high finesse and the maximum sustainable speed of the cavities, which is quite low due to a number of technical reasons that will be explained. A full set of optical time domain simulations has been developed in order to study the feasibility and the performance of this algorithm and will be throughout discussed, while finally the application on the real Advanced Virgo's arm cavities will be reported.

  7. A Novel Continuous Blood Pressure Estimation Approach Based on Data Mining Techniques.

    PubMed

    Miao, Fen; Fu, Nan; Zhang, Yuan-Ting; Ding, Xiao-Rong; Hong, Xi; He, Qingyun; Li, Ye

    2017-11-01

    Continuous blood pressure (BP) estimation using pulse transit time (PTT) is a promising method for unobtrusive BP measurement. However, the accuracy of this approach must be improved for it to be viable for a wide range of applications. This study proposes a novel continuous BP estimation approach that combines data mining techniques with a traditional mechanism-driven model. First, 14 features derived from simultaneous electrocardiogram and photoplethysmogram signals were extracted for beat-to-beat BP estimation. A genetic algorithm-based feature selection method was then used to select BP indicators for each subject. Multivariate linear regression and support vector regression were employed to develop the BP model. The accuracy and robustness of the proposed approach were validated for static, dynamic, and follow-up performance. Experimental results based on 73 subjects showed that the proposed approach exhibited excellent accuracy in static BP estimation, with a correlation coefficient and mean error of 0.852 and -0.001 ± 3.102 mmHg for systolic BP, and 0.790 and -0.004 ± 2.199 mmHg for diastolic BP. Similar performance was observed for dynamic BP estimation. The robustness results indicated that the estimation accuracy was lower by a certain degree one day after model construction but was relatively stable from one day to six months after construction. The proposed approach is superior to the state-of-the-art PTT-based model for an approximately 2-mmHg reduction in the standard derivation at different time intervals, thus providing potentially novel insights for cuffless BP estimation.

  8. A new technique for fire risk estimation in the wildland urban interface

    NASA Astrophysics Data System (ADS)

    Dasgupta, S.; Qu, J. J.; Hao, X.

    A novel technique based on the physical variable of pre-ignition energy is proposed for assessing fire risk in the Grassland-Urban-Interface The physical basis lends meaning a site and season independent applicability possibilities for computing spread rates and ignition probabilities features contemporary fire risk indices usually lack The method requires estimates of grass moisture content and temperature A constrained radiative-transfer inversion scheme on MODIS NIR-SWIR reflectances which reduces solution ambiguity is used for grass moisture retrieval while MODIS land surface temperature emissivity products are used for retrieving grass temperature Subpixel urban contamination of the MODIS reflective and thermal signals over a Grassland-Urban-Interface pixel is corrected using periodic estimates of urban influence from high spatial resolution ASTER

  9. Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets

    NASA Technical Reports Server (NTRS)

    Mathur, Rohit

    1997-01-01

    This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

  10. An estimator-predictor approach to PLL loop filter design

    NASA Technical Reports Server (NTRS)

    Statman, J. I.; Hurd, W. J.

    1986-01-01

    An approach to the design of digital phase locked loops (DPLLs), using estimation theory concepts in the selection of a loop filter, is presented. The key concept is that the DPLL closed-loop transfer function is decomposed into an estimator and a predictor. The estimator provides recursive estimates of phase, frequency, and higher order derivatives, while the predictor compensates for the transport lag inherent in the loop. This decomposition results in a straightforward loop filter design procedure, enabling use of techniques from optimal and sub-optimal estimation theory. A design example for a particular choice of estimator is presented, followed by analysis of the associated bandwidth, gain margin, and steady state errors caused by unmodeled dynamics. This approach is under consideration for the design of the Deep Space Network (DSN) Advanced Receiver Carrier DPLL.

  11. A review of hemorheology: Measuring techniques and recent advances

    NASA Astrophysics Data System (ADS)

    Sousa, Patrícia C.; Pinho, Fernando T.; Alves, Manuel A.; Oliveira, Mónica S. N.

    2016-02-01

    Significant progress has been made over the years on the topic of hemorheology, not only in terms of the development of more accurate and sophisticated techniques, but also in terms of understanding the phenomena associated with blood components, their interactions and impact upon blood properties. The rheological properties of blood are strongly dependent on the interactions and mechanical properties of red blood cells, and a variation of these properties can bring further insight into the human health state and can be an important parameter in clinical diagnosis. In this article, we provide both a reference for hemorheological research and a resource regarding the fundamental concepts in hemorheology. This review is aimed at those starting in the field of hemodynamics, where blood rheology plays a significant role, but also at those in search of the most up-to-date findings (both qualitative and quantitative) in hemorheological measurements and novel techniques used in this context, including technical advances under more extreme conditions such as in large amplitude oscillatory shear flow or under extensional flow, which impose large deformations comparable to those found in the microcirculatory system and in diseased vessels. Given the impressive rate of increase in the available knowledge on blood flow, this review is also intended to identify areas where current knowledge is still incomplete, and which have the potential for new, exciting and useful research. We also discuss the most important parameters that can lead to an alteration of blood rheology, and which as a consequence can have a significant impact on the normal physiological behavior of blood.

  12. Methodologies for Adaptive Flight Envelope Estimation and Protection

    NASA Technical Reports Server (NTRS)

    Tang, Liang; Roemer, Michael; Ge, Jianhua; Crassidis, Agamemnon; Prasad, J. V. R.; Belcastro, Christine

    2009-01-01

    This paper reports the latest development of several techniques for adaptive flight envelope estimation and protection system for aircraft under damage upset conditions. Through the integration of advanced fault detection algorithms, real-time system identification of the damage/faulted aircraft and flight envelop estimation, real-time decision support can be executed autonomously for improving damage tolerance and flight recoverability. Particularly, a bank of adaptive nonlinear fault detection and isolation estimators were developed for flight control actuator faults; a real-time system identification method was developed for assessing the dynamics and performance limitation of impaired aircraft; online learning neural networks were used to approximate selected aircraft dynamics which were then inverted to estimate command margins. As off-line training of network weights is not required, the method has the advantage of adapting to varying flight conditions and different vehicle configurations. The key benefit of the envelope estimation and protection system is that it allows the aircraft to fly close to its limit boundary by constantly updating the controller command limits during flight. The developed techniques were demonstrated on NASA s Generic Transport Model (GTM) simulation environments with simulated actuator faults. Simulation results and remarks on future work are presented.

  13. Good Manufacturing Practices (GMP) manufacturing of advanced therapy medicinal products: a novel tailored model for optimizing performance and estimating costs.

    PubMed

    Abou-El-Enein, Mohamed; Römhild, Andy; Kaiser, Daniel; Beier, Carola; Bauer, Gerhard; Volk, Hans-Dieter; Reinke, Petra

    2013-03-01

    Advanced therapy medicinal products (ATMP) have gained considerable attention in academia due to their therapeutic potential. Good Manufacturing Practice (GMP) principles ensure the quality and sterility of manufacturing these products. We developed a model for estimating the manufacturing costs of cell therapy products and optimizing the performance of academic GMP-facilities. The "Clean-Room Technology Assessment Technique" (CTAT) was tested prospectively in the GMP facility of BCRT, Berlin, Germany, then retrospectively in the GMP facility of the University of California-Davis, California, USA. CTAT is a two-level model: level one identifies operational (core) processes and measures their fixed costs; level two identifies production (supporting) processes and measures their variable costs. The model comprises several tools to measure and optimize performance of these processes. Manufacturing costs were itemized using adjusted micro-costing system. CTAT identified GMP activities with strong correlation to the manufacturing process of cell-based products. Building best practice standards allowed for performance improvement and elimination of human errors. The model also demonstrated the unidirectional dependencies that may exist among the core GMP activities. When compared to traditional business models, the CTAT assessment resulted in a more accurate allocation of annual expenses. The estimated expenses were used to set a fee structure for both GMP facilities. A mathematical equation was also developed to provide the final product cost. CTAT can be a useful tool in estimating accurate costs for the ATMPs manufactured in an optimized GMP process. These estimates are useful when analyzing the cost-effectiveness of these novel interventions. Copyright © 2013 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Advanced Intellect-Augmentation Techniques.

    ERIC Educational Resources Information Center

    Engelbart, D. C.

    This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

  15. Advanced Ecosystem Mapping Techniques for Large Arctic Study Domains Using Calibrated High-Resolution Imagery

    NASA Astrophysics Data System (ADS)

    Macander, M. J.; Frost, G. V., Jr.

    2015-12-01

    Regional-scale mapping of vegetation and other ecosystem properties has traditionally relied on medium-resolution remote sensing such as Landsat (30 m) and MODIS (250 m). Yet, the burgeoning availability of high-resolution (<=2 m) imagery and ongoing advances in computing power and analysis tools raises the prospect of performing ecosystem mapping at fine spatial scales over large study domains. Here we demonstrate cutting-edge mapping approaches over a ~35,000 km² study area on Alaska's North Slope using calibrated and atmospherically-corrected mosaics of high-resolution WorldView-2 and GeoEye-1 imagery: (1) an a priori spectral approach incorporating the Satellite Imagery Automatic Mapper (SIAM) algorithms; (2) image segmentation techniques; and (3) texture metrics. The SIAM spectral approach classifies radiometrically-calibrated imagery to general vegetation density categories and non-vegetated classes. The SIAM classes were developed globally and their applicability in arctic tundra environments has not been previously evaluated. Image segmentation, or object-based image analysis, automatically partitions high-resolution imagery into homogeneous image regions that can then be analyzed based on spectral, textural, and contextual information. We applied eCognition software to delineate waterbodies and vegetation classes, in combination with other techniques. Texture metrics were evaluated to determine the feasibility of using high-resolution imagery to algorithmically characterize periglacial surface forms (e.g., ice-wedge polygons), which are an important physical characteristic of permafrost-dominated regions but which cannot be distinguished by medium-resolution remote sensing. These advanced mapping techniques provide products which can provide essential information supporting a broad range of ecosystem science and land-use planning applications in northern Alaska and elsewhere in the circumpolar Arctic.

  16. SAFIS Area Estimation Techniques

    Treesearch

    Gregory A. Reams

    2000-01-01

    The Southern Annual Forest inventory System (SAFIS) is in various stages of implementation in 8 of the 13 southern states served by the Southern Research Station of the USDA Forest Service. Compared to periodic inventories, SAFIS requires more rapid generation of land use and land cover maps. The current photo system for phase one area estimation has changed little...

  17. SAFIS area estimation techniques

    Treesearch

    Gregory A. Reams

    2000-01-01

    The Southern Annual Forest Inventory System (SAFIS) is in various stages of implementation in 8 of the 13 southern states served by the Southern Research Station of the USDA Forest Service. Compared to periodic inventories, SAFIS requires more rapid generation of land use and land cover maps. The current photo system for phase one area estimation has changed little...

  18. A spline-based parameter estimation technique for static models of elastic structures

    NASA Technical Reports Server (NTRS)

    Dutt, P.; Taasan, S.

    1986-01-01

    The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.

  19. Advanced lighting guidelines: 1993. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, C.; Tolen, T.M.; Benya, J.R.

    1993-12-31

    The 1993 Advanced Lighting Guidelines document consists of twelve guidelines that provide an overview of specific lighting technologies and design application techniques utilizing energy-efficient lighting practice. Lighting Design Practice assesses energy-efficient lighting strategies, discusses lighting issues, and explains how to obtain quality lighting design and consulting services. Luminaires and Lighting Systems surveys luminaire equipment designed to take advantage of advanced technology lamp products and includes performance tables that allow for accurate estimation of luminaire light output and power input. The additional ten guidelines -- Computer-Aided Lighting Design, Energy-Efficient Fluorescent Ballasts, Full-Size Fluorescent Lamps, Compact Fluorescent Lamps, Tungsten-Halogen Lamps, Metal Halidemore » and HPS Lamps, Daylighting and Lumen Maintenance, Occupant Sensors, Time Scheduling Systems, and Retrofit Control Technologies -- each provide a product technology overview, discuss current products on the lighting equipment market, and provide application techniques. This document is intended for use by electric utility personnel involved in lighting programs, lighting designers, electrical engineers, architects, lighting manufacturers` representatives, and other lighting professionals.« less

  20. Removal of Lattice Imperfections that Impact the Optical Quality of Ti:Sapphire using Advanced Magnetorheological Finishing Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menapace, J A; Schaffers, K I; Bayramian, A J

    2008-02-26

    Advanced magnetorheological finishing (MRF) techniques have been applied to Ti:sapphire crystals to compensate for sub-millimeter lattice distortions that occur during the crystal growing process. Precise optical corrections are made by imprinting topographical structure onto the crystal surfaces to cancel out the effects of the lattice distortion in the transmitted wavefront. This novel technique significantly improves the optical quality for crystals of this type and sets the stage for increasing the availability of high-quality large-aperture sapphire and Ti:sapphire optics in critical applications.

  1. Estimating increases in outpatient dialysis costs resulting from scientific and technological advancement.

    PubMed

    Ozminkowski, R J; Hassol, A; Firkusny, I; Noether, M; Miles, M A; Newmann, J; Sharda, C; Guterman, S; Schmitz, R

    1995-04-01

    The Medicare program's base payment rate for outpatient dialysis services has never been adjusted for the effects of inflation, productivity changes, or scientific and technological advancement on the costs of treating patients with end-stage renal disease. In recognition of this, Congress asked the Prospective Payment Assessment Commission to annually recommend an adjustment to Medicare's base payment rate to dialysis facilities. One component of this adjustment addresses the cost-increasing effects of technological change--the scientific and technological advances (S&TA) component. The S&TA component is intended to encourage dialysis facilities to adopt technologies that, when applied appropriately, enhance the quality of patient care, even though they may also increase costs. We found the appropriate increase to the composite payment rate for Medicare outpatient dialysis services in fiscal year 1995 to vary from 0.18% to 2.18%. These estimates depend on whether one accounts for the lack of previous adjustments to the composite rate. Mathematically, the S&TA adjustment also depends on whether one considers the likelihood of missing some dialysis sessions because of illness or hospitalization. The S&TA estimates also allow for differences in the incremental costs of technological change that are based on the varying advice of experts in the dialysis industry. The major contributors to the cost of technological change in dialysis services are the use of twin-bag disconnect peritoneal dialysis systems, automated peritoneal dialysis cyclers, and the new generation of hemodialysis machines currently on the market. Factors beyond the control of dialysis facility personnel that influence the cost of patient care should be considered when payment rates are set, and those rates should be updated as market conditions change. The S&TA adjustment is one example of how the composite rate payment system for outpatient dialysis services can be modified to provide appropriate

  2. Use of advanced modeling techniques to optimize thermal packaging designs.

    PubMed

    Formato, Richard M; Potami, Raffaele; Ahmed, Iftekhar

    2010-01-01

    Through a detailed case study the authors demonstrate, for the first time, the capability of using advanced modeling techniques to correctly simulate the transient temperature response of a convective flow-based thermal shipper design. The objective of this case study was to demonstrate that simulation could be utilized to design a 2-inch-wall polyurethane (PUR) shipper to hold its product box temperature between 2 and 8 °C over the prescribed 96-h summer profile (product box is the portion of the shipper that is occupied by the payload). Results obtained from numerical simulation are in excellent agreement with empirical chamber data (within ±1 °C at all times), and geometrical locations of simulation maximum and minimum temperature match well with the corresponding chamber temperature measurements. Furthermore, a control simulation test case was run (results taken from identical product box locations) to compare the coupled conduction-convection model with a conduction-only model, which to date has been the state-of-the-art method. For the conduction-only simulation, all fluid elements were replaced with "solid" elements of identical size and assigned thermal properties of air. While results from the coupled thermal/fluid model closely correlated with the empirical data (±1 °C), the conduction-only model was unable to correctly capture the payload temperature trends, showing a sizeable error compared to empirical values (ΔT > 6 °C). A modeling technique capable of correctly capturing the thermal behavior of passively refrigerated shippers can be used to quickly evaluate and optimize new packaging designs. Such a capability provides a means to reduce the cost and required design time of shippers while simultaneously improving their performance. Another advantage comes from using thermal modeling (assuming a validated model is available) to predict the temperature distribution in a shipper that is exposed to ambient temperatures which were not bracketed

  3. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.

    2003-01-01

    Regional equations for estimating 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood-peak discharges at ungaged sites on rural, unregulated streams in Ohio were developed by means of ordinary and generalized least-squares (GLS) regression techniques. One-variable, simple equations and three-variable, full-model equations were developed on the basis of selected basin characteristics and flood-frequency estimates determined for 305 streamflow-gaging stations in Ohio and adjacent states. The average standard errors of prediction ranged from about 39 to 49 percent for the simple equations, and from about 34 to 41 percent for the full-model equations. Flood-frequency estimates determined by means of log-Pearson Type III analyses are reported along with weighted flood-frequency estimates, computed as a function of the log-Pearson Type III estimates and the regression estimates. Values of explanatory variables used in the regression models were determined from digital spatial data sets by means of a geographic information system (GIS), with the exception of drainage area, which was determined by digitizing the area within basin boundaries manually delineated on topographic maps. Use of GIS-based explanatory variables represents a major departure in methodology from that described in previous reports on estimating flood-frequency characteristics of Ohio streams. Examples are presented illustrating application of the regression equations to ungaged sites on ungaged and gaged streams. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site on the same stream. A region-of-influence method, which employs a computer program to estimate flood-frequency characteristics for ungaged sites based on data from gaged sites with similar characteristics, was also tested and compared to the GLS full-model equations. For all recurrence intervals, the GLS full-model equations had superior prediction accuracy relative to

  4. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery

    Treesearch

    Ronald E. McRoberts; Erkki O. Tomppo; Andrew O. Finley; Heikkinen Juha

    2007-01-01

    The k-Nearest Neighbor (k-NN) technique has become extremely popular for a variety of forest inventory mapping and estimation applications. Much of this popularity may be attributed to the non-parametric, multivariate features of the technique, its intuitiveness, and its ease of use. When used with satellite imagery and forest...

  5. SVPWM Technique with Varying DC-Link Voltage for Common Mode Voltage Reduction in a Matrix Converter and Analytical Estimation of its Output Voltage Distortion

    NASA Astrophysics Data System (ADS)

    Padhee, Varsha

    Common Mode Voltage (CMV) in any power converter has been the major contributor to premature motor failures, bearing deterioration, shaft voltage build up and electromagnetic interference. Intelligent control methods like Space Vector Pulse Width Modulation (SVPWM) techniques provide immense potential and flexibility to reduce CMV, thereby targeting all the afore mentioned problems. Other solutions like passive filters, shielded cables and EMI filters add to the volume and cost metrics of the entire system. Smart SVPWM techniques therefore, come with a very important advantage of being an economical solution. This thesis discusses a modified space vector technique applied to an Indirect Matrix Converter (IMC) which results in the reduction of common mode voltages and other advanced features. The conventional indirect space vector pulse-width modulation (SVPWM) method of controlling matrix converters involves the usage of two adjacent active vectors and one zero vector for both rectifying and inverting stages of the converter. By suitable selection of space vectors, the rectifying stage of the matrix converter can generate different levels of virtual DC-link voltage. This capability can be exploited for operation of the converter in different ranges of modulation indices for varying machine speeds. This results in lower common mode voltage and improves the harmonic spectrum of the output voltage, without increasing the number of switching transitions as compared to conventional modulation. To summarize it can be said that the responsibility of formulating output voltages with a particular magnitude and frequency has been transferred solely to the rectifying stage of the IMC. Estimation of degree of distortion in the three phase output voltage is another facet discussed in this thesis. An understanding of the SVPWM technique and the switching sequence of the space vectors in detail gives the potential to estimate the RMS value of the switched output voltage of any

  6. Performance estimation for a highly loaded eight-blade propeller combined with an advanced technology turboshaft engine

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.

    1979-01-01

    Performance estimation, weights, and scaling laws for an eight-blade highly loaded propeller combined with an advanced turboshaft engine are presented. The data are useful for planned aircraft mission studies using the turboprop propulsion system. Comparisons are made between the performance of the 1990+ technology turboprop propulsion system and the performance of both a current technology turbofan and an 1990+ technology turbofan.

  7. Advanced Atmospheric Ensemble Modeling Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckley, R.; Chiswell, S.; Kurzeja, R.

    Ensemble modeling (EM), the creation of multiple atmospheric simulations for a given time period, has become an essential tool for characterizing uncertainties in model predictions. We explore two novel ensemble modeling techniques: (1) perturbation of model parameters (Adaptive Programming, AP), and (2) data assimilation (Ensemble Kalman Filter, EnKF). The current research is an extension to work from last year and examines transport on a small spatial scale (<100 km) in complex terrain, for more rigorous testing of the ensemble technique. Two different release cases were studied, a coastal release (SF6) and an inland release (Freon) which consisted of two releasemore » times. Observations of tracer concentration and meteorology are used to judge the ensemble results. In addition, adaptive grid techniques have been developed to reduce required computing resources for transport calculations. Using a 20- member ensemble, the standard approach generated downwind transport that was quantitatively good for both releases; however, the EnKF method produced additional improvement for the coastal release where the spatial and temporal differences due to interior valley heating lead to the inland movement of the plume. The AP technique showed improvements for both release cases, with more improvement shown in the inland release. This research demonstrated that transport accuracy can be improved when models are adapted to a particular location/time or when important local data is assimilated into the simulation and enhances SRNL’s capability in atmospheric transport modeling in support of its current customer base and local site missions, as well as our ability to attract new customers within the intelligence community.« less

  8. Precision of four otolith techniques for estimating age of white perch from a thermally altered reservoir

    USGS Publications Warehouse

    Snow, Richard A.; Porta, Michael J.; Long, James M.

    2018-01-01

    The White Perch Morone americana is an invasive species in many Midwestern states and is widely distributed in reservoir systems, yet little is known about the species' age structure and population dynamics. White Perch were first observed in Sooner Reservoir, a thermally altered cooling reservoir in Oklahoma, by the Oklahoma Department of Wildlife Conservation in 2006. It is unknown how thermally altered systems like Sooner Reservoir may affect the precision of White Perch age estimates. Previous studies have found that age structures from Largemouth Bass Micropterus salmoides and Bluegills Lepomis macrochirus from thermally altered reservoirs had false annuli, which increased error when estimating ages. Our objective was to quantify the precision of White Perch age estimates using four sagittal otolith preparation techniques (whole, broken, browned, and stained). Because Sooner Reservoir is thermally altered, we also wanted to identify the best month to collect a White Perch age sample based on aging precision. Ages of 569 White Perch (20–308 mm TL) were estimated using the four techniques. Age estimates from broken, stained, and browned otoliths ranged from 0 to 8 years; whole‐view otolith age estimates ranged from 0 to 7 years. The lowest mean coefficient of variation (CV) was obtained using broken otoliths, whereas the highest CV was observed using browned otoliths. July was the most precise month (lowest mean CV) for estimating age of White Perch, whereas April was the least precise month (highest mean CV). These results underscore the importance of knowing the best method to prepare otoliths for achieving the most precise age estimates and the best time of year to obtain those samples, as these factors may affect other estimates of population dynamics.

  9. The investigation of advanced remote sensing, radiative transfer and inversion techniques for the measurement of atmospheric constituents

    NASA Technical Reports Server (NTRS)

    Deepak, Adarsh; Wang, Pi-Huan

    1985-01-01

    The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.

  10. Accounting for estimated IQ in neuropsychological test performance with regression-based techniques.

    PubMed

    Testa, S Marc; Winicki, Jessica M; Pearlson, Godfrey D; Gordon, Barry; Schretlen, David J

    2009-11-01

    Regression-based normative techniques account for variability in test performance associated with multiple predictor variables and generate expected scores based on algebraic equations. Using this approach, we show that estimated IQ, based on oral word reading, accounts for 1-9% of the variability beyond that explained by individual differences in age, sex, race, and years of education for most cognitive measures. These results confirm that adding estimated "premorbid" IQ to demographic predictors in multiple regression models can incrementally improve the accuracy with which regression-based norms (RBNs) benchmark expected neuropsychological test performance in healthy adults. It remains to be seen whether the incremental variance in test performance explained by estimated "premorbid" IQ translates to improved diagnostic accuracy in patient samples. We describe these methods, and illustrate the step-by-step application of RBNs with two cases. We also discuss the rationale, assumptions, and caveats of this approach. More broadly, we note that adjusting test scores for age and other characteristics might actually decrease the accuracy with which test performance predicts absolute criteria, such as the ability to drive or live independently.

  11. Convex-hull mass estimates of the dodo (Raphus cucullatus): application of a CT-based mass estimation technique

    PubMed Central

    O’Mahoney, Thomas G.; Kitchener, Andrew C.; Manning, Phillip L.; Sellers, William I.

    2016-01-01

    The external appearance of the dodo (Raphus cucullatus, Linnaeus, 1758) has been a source of considerable intrigue, as contemporaneous accounts or depictions are rare. The body mass of the dodo has been particularly contentious, with the flightless pigeon alternatively reconstructed as slim or fat depending upon the skeletal metric used as the basis for mass prediction. Resolving this dichotomy and obtaining a reliable estimate for mass is essential before future analyses regarding dodo life history, physiology or biomechanics can be conducted. Previous mass estimates of the dodo have relied upon predictive equations based upon hind limb dimensions of extant pigeons. Yet the hind limb proportions of dodo have been found to differ considerably from those of their modern relatives, particularly with regards to midshaft diameter. Therefore, application of predictive equations to unusually robust fossil skeletal elements may bias mass estimates. We present a whole-body computed tomography (CT) -based mass estimation technique for application to the dodo. We generate 3D volumetric renders of the articulated skeletons of 20 species of extant pigeons, and wrap minimum-fit ‘convex hulls’ around their bony extremities. Convex hull volume is subsequently regressed against mass to generate predictive models based upon whole skeletons. Our best-performing predictive model is characterized by high correlation coefficients and low mean squared error (a = − 2.31, b = 0.90, r2 = 0.97, MSE = 0.0046). When applied to articulated composite skeletons of the dodo (National Museums Scotland, NMS.Z.1993.13; Natural History Museum, NHMUK A.9040 and S/1988.50.1), we estimate eviscerated body masses of 8–10.8 kg. When accounting for missing soft tissues, this may equate to live masses of 10.6–14.3 kg. Mass predictions presented here overlap at the lower end of those previously published, and support recent suggestions of a relatively slim dodo. CT-based reconstructions provide a

  12. A spline-based parameter and state estimation technique for static models of elastic surfaces

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Daniel, P. L.; Armstrong, E. S.

    1983-01-01

    Parameter and state estimation techniques for an elliptic system arising in a developmental model for the antenna surface in the Maypole Hoop/Column antenna are discussed. A computational algorithm based on spline approximations for the state and elastic parameters is given and numerical results obtained using this algorithm are summarized.

  13. Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials

    NASA Astrophysics Data System (ADS)

    Guz, Nataliia

    In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

  14. Correlation Techniques as Applied to Pose Estimation in Space Station Docking

    NASA Technical Reports Server (NTRS)

    Rollins, J. Michael; Juday, Richard D.; Monroe, Stanley E., Jr.

    2002-01-01

    The telerobotic assembly of space-station components has become the method of choice for the International Space Station (ISS) because it offers a safe alternative to the more hazardous option of space walks. The disadvantage of telerobotic assembly is that it does not provide for direct arbitrary views of mating interfaces for the teleoperator. Unless cameras are present very close to the interface positions, such views must be generated graphically, based on calculated pose relationships derived from images. To assist in this photogrammetric pose estimation, circular targets, or spots, of high contrast have been affixed on each connecting module at carefully surveyed positions. The appearance of a subset of spots essentially must form a constellation of specific relative positions in the incoming digital image stream in order for the docking to proceed. Spot positions are expressed in terms of their apparent centroids in an image. The precision of centroid estimation is required to be as fine as 1I20th pixel, in some cases. This paper presents an approach to spot centroid estimation using cross correlation between spot images and synthetic spot models of precise centration. Techniques for obtaining sub-pixel accuracy and for shadow, obscuration and lighting irregularity compensation are discussed.

  15. An analysis of I/O efficient order-statistic-based techniques for noise power estimation in the HRMS sky survey's operational system

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Olsen, E. T.

    1992-01-01

    Noise power estimation in the High-Resolution Microwave Survey (HRMS) sky survey element is considered as an example of a constant false alarm rate (CFAR) signal detection problem. Order-statistic-based noise power estimators for CFAR detection are considered in terms of required estimator accuracy and estimator dynamic range. By limiting the dynamic range of the value to be estimated, the performance of an order-statistic estimator can be achieved by simpler techniques requiring only a single pass of the data. Simple threshold-and-count techniques are examined, and it is shown how several parallel threshold-and-count estimation devices can be used to expand the dynamic range to meet HRMS system requirements with minimal hardware complexity. An input/output (I/O) efficient limited-precision order-statistic estimator with wide but limited dynamic range is also examined.

  16. A NOVEL TECHNIQUE FOR QUANTITATIVE ESTIMATION OF UPTAKE OF DIESEL EXHAUST PARTICLES BY LUNG CELLS

    EPA Science Inventory

    While airborne particulates like diesel exhaust particulates (DEP) exert significant toxicological effects on lungs, quantitative estimation of accumulation of DEP inside lung cells has not been reported due to a lack of an accurate and quantitative technique for this purpose. I...

  17. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs).

    PubMed

    Zepon Tarpani, Raphael Ricardo; Azapagic, Adisa

    2018-06-01

    Pharmaceutical and personal care products (PPCPs) are of increasing interest because of their ecotoxicological properties and environmental impacts. Wastewater treatment plants (WWTPs) are the main pathway for their release into freshwaters due to the inefficiency of conventional WWTPs in removing many of these contaminants from effluents. Therefore, different advanced effluent treatment techniques have been proposed for their treatment. However, it is not known at present how effective these treatment methods are and whether on a life cycle basis they cause other environmental impacts which may outweigh the benefits of the treatment. In an effort to provide an insight into this question, this paper considers life cycle environmental impacts of the following advanced treatment techniques aimed at reducing freshwater ecotoxicity potential of PPCPs: granular activated carbon (GAC), nanofiltration (NF), solar photo-Fenton (SPF) and ozonation. The results suggest that on average NF has the lowest impacts for 13 out of 18 categories considered. GAC is the best alternative for five impacts, including metals and water depletion, but it has the highest marine eutrophication. SPF and ozonation are the least sustainable for eight impacts, including ecotoxicity and climate change. GAC and NF are also more efficient in treating heavy metals while avoiding generation of harmful by-products during the treatment, thus being more suitable for potable reuse of wastewater. However, releasing the effluent without advanced treatment to agricultural land achieves a much higher reduction of freshwater ecotoxicity than treating it by any of the advanced treatments and releasing to the environment. Therefore, the use of advanced effluent treatment for agricultural purposes is not recommended. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Estimating the sources of global sea level rise with data assimilation techniques.

    PubMed

    Hay, Carling C; Morrow, Eric; Kopp, Robert E; Mitrovica, Jerry X

    2013-02-26

    A rapidly melting ice sheet produces a distinctive geometry, or fingerprint, of sea level (SL) change. Thus, a network of SL observations may, in principle, be used to infer sources of meltwater flux. We outline a formalism, based on a modified Kalman smoother, for using tide gauge observations to estimate the individual sources of global SL change. We also report on a series of detection experiments based on synthetic SL data that explore the feasibility of extracting source information from SL records. The Kalman smoother technique iteratively calculates the maximum-likelihood estimate of Greenland ice sheet (GIS) and West Antarctic ice sheet (WAIS) melt at each time step, and it accommodates data gaps while also permitting the estimation of nonlinear trends. Our synthetic tests indicate that when all tide gauge records are used in the analysis, it should be possible to estimate GIS and WAIS melt rates greater than ∼0.3 and ∼0.4 mm of equivalent eustatic sea level rise per year, respectively. We have also implemented a multimodel Kalman filter that allows us to account rigorously for additional contributions to SL changes and their associated uncertainty. The multimodel filter uses 72 glacial isostatic adjustment models and 3 ocean dynamic models to estimate the most likely models for these processes given the synthetic observations. We conclude that our modified Kalman smoother procedure provides a powerful method for inferring melt rates in a warming world.

  19. Estimating the sources of global sea level rise with data assimilation techniques

    PubMed Central

    Hay, Carling C.; Morrow, Eric; Kopp, Robert E.; Mitrovica, Jerry X.

    2013-01-01

    A rapidly melting ice sheet produces a distinctive geometry, or fingerprint, of sea level (SL) change. Thus, a network of SL observations may, in principle, be used to infer sources of meltwater flux. We outline a formalism, based on a modified Kalman smoother, for using tide gauge observations to estimate the individual sources of global SL change. We also report on a series of detection experiments based on synthetic SL data that explore the feasibility of extracting source information from SL records. The Kalman smoother technique iteratively calculates the maximum-likelihood estimate of Greenland ice sheet (GIS) and West Antarctic ice sheet (WAIS) melt at each time step, and it accommodates data gaps while also permitting the estimation of nonlinear trends. Our synthetic tests indicate that when all tide gauge records are used in the analysis, it should be possible to estimate GIS and WAIS melt rates greater than ∼0.3 and ∼0.4 mm of equivalent eustatic sea level rise per year, respectively. We have also implemented a multimodel Kalman filter that allows us to account rigorously for additional contributions to SL changes and their associated uncertainty. The multimodel filter uses 72 glacial isostatic adjustment models and 3 ocean dynamic models to estimate the most likely models for these processes given the synthetic observations. We conclude that our modified Kalman smoother procedure provides a powerful method for inferring melt rates in a warming world. PMID:22543163

  20. Updated techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada

    USGS Publications Warehouse

    Hess, Glen W.

    2002-01-01

    Techniques for estimating monthly streamflow-duration characteristics at ungaged and partial-record sites in central Nevada have been updated. These techniques were developed using streamflow records at six continuous-record sites, basin physical and climatic characteristics, and concurrent streamflow measurements at four partial-record sites. Two methods, the basin-characteristic method and the concurrent-measurement method, were developed to provide estimating techniques for selected streamflow characteristics at ungaged and partial-record sites in central Nevada. In the first method, logarithmic-regression analyses were used to relate monthly mean streamflows (from all months and by month) from continuous-record gaging sites of various percent exceedence levels or monthly mean streamflows (by month) to selected basin physical and climatic variables at ungaged sites. Analyses indicate that the total drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the equations developed from all months of monthly mean streamflow, the coefficient of determination averaged 0.84 and the standard error of estimate of the relations for the ungaged sites averaged 72 percent. For the equations derived from monthly means by month, the coefficient of determination averaged 0.72 and the standard error of estimate of the relations averaged 78 percent. If standard errors are compared, the relations developed in this study appear generally to be less accurate than those developed in a previous study. However, the new relations are based on additional data and the slight increase in error may be due to the wider range of streamflow for a longer period of record, 1995-2000. In the second method, streamflow measurements at partial-record sites were correlated with concurrent streamflows at nearby gaged sites by the use of linear-regression techniques. Statistical measures of results using the second method typically

  1. Accoustic waveform logging--Advances in theory and application

    USGS Publications Warehouse

    Paillet, F.L.; Cheng, C.H.; Pennington , W.D.

    1992-01-01

    Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of formations. Advances in theory provide the analytical tools required to understand the properties of measured seismic waves, and to relate those properties to such quantities as shear and compressional velocity and attenuation, and primary and fracture porosity and permeability of potential reservoir rocks. The theory demonstrates that all parts of recorded waveforms are related to various modes of propagation, even in the case of dipole and quadrupole source logging. However, the theory also indicates that these mode properties can be used to design velocity and attenuation picking schemes, and shows how source frequency spectra can be selected to optimize results in specific applications. Synthetic microseismogram computations are an effective tool in waveform interpretation theory; they demonstrate how shear arrival picks and mode attenuation can be used to compute shear velocity and intrinsic attenuation, and formation permeability for monopole, dipole and quadrupole sources. Array processing of multi-receiver data offers the opportunity to apply even more sophisticated analysis techniques. Synthetic microseismogram data is used to illustrate the application of the maximum-likelihood method, semblance cross-correlation, and Prony's method analysis techniques to determine seismic velocities and attenuations. The interpretation of acoustic waveform logs is illustrated by reviews of various practical applications, including synthetic seismogram generation, lithology determination, estimation of geomechanical properties in situ, permeability estimation, and design of hydraulic fracture operations.

  2. Techniques for Estimating the Magnitude and Frequency of Peak Flows on Small Streams in Minnesota Based on Data through Water Year 2005

    USGS Publications Warehouse

    Lorenz, David L.; Sanocki, Chris A.; Kocian, Matthew J.

    2010-01-01

    Knowledge of the peak flow of floods of a given recurrence interval is essential for regulation and planning of water resources and for design of bridges, culverts, and dams along Minnesota's rivers and streams. Statistical techniques are needed to estimate peak flow at ungaged sites because long-term streamflow records are available at relatively few places. Because of the need to have up-to-date peak-flow frequency information in order to estimate peak flows at ungaged sites, the U.S. Geological Survey (USGS) conducted a peak-flow frequency study in cooperation with the Minnesota Department of Transportation and the Minnesota Pollution Control Agency. Estimates of peak-flow magnitudes for 1.5-, 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals are presented for 330 streamflow-gaging stations in Minnesota and adjacent areas in Iowa and South Dakota based on data through water year 2005. The peak-flow frequency information was subsequently used in regression analyses to develop equations relating peak flows for selected recurrence intervals to various basin and climatic characteristics. Two statistically derived techniques-regional regression equation and region of influence regression-can be used to estimate peak flow on ungaged streams smaller than 3,000 square miles in Minnesota. Regional regression equations were developed for selected recurrence intervals in each of six regions in Minnesota: A (northwestern), B (north central and east central), C (northeastern), D (west central and south central), E (southwestern), and F (southeastern). The regression equations can be used to estimate peak flows at ungaged sites. The region of influence regression technique dynamically selects streamflow-gaging stations with characteristics similar to a site of interest. Thus, the region of influence regression technique allows use of a potentially unique set of gaging stations for estimating peak flow at each site of interest. Two methods of selecting streamflow

  3. Estimating groundwater recharge

    USGS Publications Warehouse

    Healy, Richard W.; Scanlon, Bridget R.

    2010-01-01

    Understanding groundwater recharge is essential for successful management of water resources and modeling fluid and contaminant transport within the subsurface. This book provides a critical evaluation of the theory and assumptions that underlie methods for estimating rates of groundwater recharge. Detailed explanations of the methods are provided - allowing readers to apply many of the techniques themselves without needing to consult additional references. Numerous practical examples highlight benefits and limitations of each method. Approximately 900 references allow advanced practitioners to pursue additional information on any method. For the first time, theoretical and practical considerations for selecting and applying methods for estimating groundwater recharge are covered in a single volume with uniform presentation. Hydrogeologists, water-resource specialists, civil and agricultural engineers, earth and environmental scientists and agronomists will benefit from this informative and practical book. It can serve as the primary text for a graduate-level course on groundwater recharge or as an adjunct text for courses on groundwater hydrology or hydrogeology.

  4. Advanced Spectroscopy Technique for Biomedicine

    NASA Astrophysics Data System (ADS)

    Zhao, Jianhua; Zeng, Haishan

    This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

  5. Advanced intellect-augmentation techniques

    NASA Technical Reports Server (NTRS)

    Engelbart, D. C.

    1972-01-01

    User experience in applying our augmentation tools and techniques to various normal working tasks within our center is described so as to convey a subjective impression of what it is like to work in an augmented environment. It is concluded that working-support, computer-aid systems for augmenting individuals and teams, are undoubtedly going to be widely developed and used. A very special role in this development is seen for multi-access computer networks.

  6. Advancement on Visualization Techniques

    DTIC Science & Technology

    1980-10-01

    proposed STOL airport , a missed approach requires a go-around path = that must simultaneously (1) avoid existing reserved flight corridors ( JFK and Newark...absent but the aim is still to produce a particular colour sensation at a given spatio-temporal position on the display. Economical representation of...and p, q, r ... respectively. 1.5.1 Selection techniques An element is selected by applying a suitable signal between one of the row and one of the

  7. Techniques for estimating 7-day, 10-year low-flow characteristics for ungaged sites on streams in Mississippi

    USGS Publications Warehouse

    Telis, Pamela A.

    1992-01-01

    Mississippi State water laws require that the 7-day, 10-year low-flow characteristic (7Q10) of streams be used as a criterion for issuing wastedischarge permits to dischargers to streams and for limiting withdrawals of water from streams. This report presents techniques for estimating the 7Q10 for ungaged sites on streams in Mississippi based on the availability of baseflow discharge measurements at the site, location of nearby gaged sites on the same stream, and drainage area of the ungaged site. These techniques may be used to estimate the 7Q10 at sites on natural, unregulated or partially regulated, and non-tidal streams. Low-flow characteristics for streams in the Mississippi River alluvial plain were not estimated because the annual lowflow data exhibit decreasing trends with time. Also presented are estimates of the 7Q10 for 493 gaged sites on Mississippi streams.Techniques for estimating the 7Q10 have been developed for ungaged sites with base-flow discharge measurements, for ungaged sites on gaged streams, and for ungaged sites on ungaged streams. For an ungaged site with one or more base-flow discharge measurements, base-flow discharge data at the ungaged site are related to concurrent discharge data at a nearby gaged site. For ungaged sites on gaged streams, several methods of transferring the 7Q10 from a gaged site to an ungaged site were developed; the resulting 7Q10 values are based on drainage area prorations for the sites. For ungaged sites on ungaged streams, the 7Q10 is estimated from a map developed for. this study that shows the unit 7Q10 (7Q10 per square mile of drainage area) for ungaged basins in the State. The mapped values were estimated from the unit 7Q10 determined for nearby gaged basins, adjusted on the basis of the geology and topography of the ungaged basins.

  8. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  9. Estimating snow leopard population abundance using photography and capture-recapture techniques

    USGS Publications Warehouse

    Jackson, R.M.; Roe, J.D.; Wangchuk, R.; Hunter, D.O.

    2006-01-01

    Conservation and management of snow leopards (Uncia uncia) has largely relied on anecdotal evidence and presence-absence data due to their cryptic nature and the difficult terrain they inhabit. These methods generally lack the scientific rigor necessary to accurately estimate population size and monitor trends. We evaluated the use of photography in capture-mark-recapture (CMR) techniques for estimating snow leopard population abundance and density within Hemis National Park, Ladakh, India. We placed infrared camera traps along actively used travel paths, scent-sprayed rocks, and scrape sites within 16- to 30-km2 sampling grids in successive winters during January and March 2003-2004. We used head-on, oblique, and side-view camera configurations to obtain snow leopard photographs at varying body orientations. We calculated snow leopard abundance estimates using the program CAPTURE. We obtained a total of 66 and 49 snow leopard captures resulting in 8.91 and 5.63 individuals per 100 trap-nights during 2003 and 2004, respectively. We identified snow leopards based on the distinct pelage patterns located primarily on the forelimbs, flanks, and dorsal surface of the tail. Capture probabilities ranged from 0.33 to 0.67. Density estimates ranged from 8.49 (SE = 0.22; individuals per 100 km2 in 2003 to 4.45 (SE = 0.16) in 2004. We believe the density disparity between years is attributable to different trap density and placement rather than to an actual decline in population size. Our results suggest that photographic capture-mark-recapture sampling may be a useful tool for monitoring demographic patterns. However, we believe a larger sample size would be necessary for generating a statistically robust estimate of population density and abundance based on CMR models.

  10. 2D Flood Modelling Using Advanced Terrain Analysis Techniques And A Fully Continuous DEM-Based Rainfall-Runoff Algorithm

    NASA Astrophysics Data System (ADS)

    Nardi, F.; Grimaldi, S.; Petroselli, A.

    2012-12-01

    Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.

  11. Advanced Techniques for Simulating the Behavior of Sand

    NASA Astrophysics Data System (ADS)

    Clothier, M.; Bailey, M.

    2009-12-01

    research is to simulate the look and behavior of sand, this work will go beyond simple particle collision. In particular, we can continue to use our parallel algorithms not only on single particles but on particle “clumps” that consist of multiple combined particles. Since sand is typically not spherical in nature, these particle “clumps” help to simulate the coarse nature of sand. In a simulation environment, multiple combined particles could be used to simulate the polygonal and granular nature of sand grains. Thus, a diversity of sand particles can be generated. The interaction between these particles can then be parallelized using GPU hardware. As such, this research will investigate different graphics and physics techniques and determine the tradeoffs in performance and visual quality for sand simulation. An enhanced sand model through the use of high performance computing and GPUs has great potential to impact research for both earth and space scientists. Interaction with JPL has provided an opportunity for us to refine our simulation techniques that can ultimately be used for their vehicle simulator. As an added benefit of this work, advancements in simulating sand can also benefit scientists here on earth, especially in regard to understanding landslides and debris flows.

  12. A technique for estimating dry deposition velocities based on similarity with latent heat flux

    NASA Astrophysics Data System (ADS)

    Pleim, Jonathan E.; Finkelstein, Peter L.; Clarke, John F.; Ellestad, Thomas G.

    Field measurements of chemical dry deposition are needed to assess impacts and trends of airborne contaminants on the exposure of crops and unmanaged ecosystems as well as for the development and evaluation of air quality models. However, accurate measurements of dry deposition velocities require expensive eddy correlation measurements and can only be practically made for a few chemical species such as O 3 and CO 2. On the other hand, operational dry deposition measurements such as those used in large area networks involve relatively inexpensive standard meteorological and chemical measurements but rely on less accurate deposition velocity models. This paper describes an intermediate technique which can give accurate estimates of dry deposition velocity for chemical species which are dominated by stomatal uptake such as O 3 and SO 2. This method can give results that are nearly the quality of eddy correlation measurements of trace gas fluxes at much lower cost. The concept is that bulk stomatal conductance can be accurately estimated from measurements of latent heat flux combined with standard meteorological measurements of humidity, temperature, and wind speed. The technique is tested using data from a field experiment where high quality eddy correlation measurements were made over soybeans. Over a four month period, which covered the entire growth cycle, this technique showed very good agreement with eddy correlation measurements for O 3 deposition velocity.

  13. Effective gene prediction by high resolution frequency estimator based on least-norm solution technique

    PubMed Central

    2014-01-01

    Linear algebraic concept of subspace plays a significant role in the recent techniques of spectrum estimation. In this article, the authors have utilized the noise subspace concept for finding hidden periodicities in DNA sequence. With the vast growth of genomic sequences, the demand to identify accurately the protein-coding regions in DNA is increasingly rising. Several techniques of DNA feature extraction which involves various cross fields have come up in the recent past, among which application of digital signal processing tools is of prime importance. It is known that coding segments have a 3-base periodicity, while non-coding regions do not have this unique feature. One of the most important spectrum analysis techniques based on the concept of subspace is the least-norm method. The least-norm estimator developed in this paper shows sharp period-3 peaks in coding regions completely eliminating background noise. Comparison of proposed method with existing sliding discrete Fourier transform (SDFT) method popularly known as modified periodogram method has been drawn on several genes from various organisms and the results show that the proposed method has better as well as an effective approach towards gene prediction. Resolution, quality factor, sensitivity, specificity, miss rate, and wrong rate are used to establish superiority of least-norm gene prediction method over existing method. PMID:24386895

  14. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate ('dynamic fatigue') testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rate in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  15. Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

    2001-01-01

    Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

  16. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator advanced studies, Mercury mission transport requirements, definition of super solar electric propulsion/solar sail mission discriminators, and advanced planning activities.

  17. Advanced intensity-modulation continuous-wave lidar techniques for ASCENDS CO2 column measurements

    NASA Astrophysics Data System (ADS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. W.; Obland, Michael D.; Meadows, Byron

    2015-10-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  18. Advanced Intensity-Modulation Continuous-Wave Lidar Techniques for ASCENDS O2 Column Measurements

    NASA Technical Reports Server (NTRS)

    Campbell, Joel F.; Lin, Bing; Nehrir, Amin R.; Harrison, F. Wallace; Obland, Michael D.; Meadows, Byron

    2015-01-01

    Global atmospheric carbon dioxide (CO2) measurements for the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) space mission are critical for improving our understanding of global CO2 sources and sinks. Advanced Intensity- Modulated Continuous-Wave (IM-CW) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS measurement requirements. In recent numerical, laboratory and flight experiments we have successfully used the Binary Phase Shift Keying (BPSK) modulation technique to uniquely discriminate surface lidar returns from intermediate aerosol and cloud contamination. We demonstrate the utility of BPSK to eliminate sidelobes in the range profile as a means of making Integrated Path Differential Absorption (IPDA) column CO2 measurements in the presence of optically thin clouds, thereby eliminating the need to correct for sidelobe bias errors caused by the clouds. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate cloud layers, which is a requirement for the inversion of column CO2 number density measurements to column CO2 mixing ratios, has been demonstrated using new hyperfine interpolation techniques that takes advantage of the periodicity of the modulation waveforms. This approach works well for both BPSK and linear swept-frequency modulation techniques. The BPSK technique under investigation has excellent auto-correlation properties while possessing a finite bandwidth. A comparison of BPSK and linear swept-frequency is also discussed in this paper. These results are extended to include Richardson-Lucy deconvolution techniques to extend the resolution of the lidar beyond that implied by limit of the bandwidth of the modulation, where it is shown useful for making tree canopy measurements.

  19. Development of advanced strain diagnostic techniques for reactor environments.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.

    2013-02-01

    The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding.more » During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.« less

  20. Adaptive neuro fuzzy inference system-based power estimation method for CMOS VLSI circuits

    NASA Astrophysics Data System (ADS)

    Vellingiri, Govindaraj; Jayabalan, Ramesh

    2018-03-01

    Recent advancements in very large scale integration (VLSI) technologies have made it feasible to integrate millions of transistors on a single chip. This greatly increases the circuit complexity and hence there is a growing need for less-tedious and low-cost power estimation techniques. The proposed work employs Back-Propagation Neural Network (BPNN) and Adaptive Neuro Fuzzy Inference System (ANFIS), which are capable of estimating the power precisely for the complementary metal oxide semiconductor (CMOS) VLSI circuits, without requiring any knowledge on circuit structure and interconnections. The ANFIS to power estimation application is relatively new. Power estimation using ANFIS is carried out by creating initial FIS modes using hybrid optimisation and back-propagation (BP) techniques employing constant and linear methods. It is inferred that ANFIS with the hybrid optimisation technique employing the linear method produces better results in terms of testing error that varies from 0% to 0.86% when compared to BPNN as it takes the initial fuzzy model and tunes it by means of a hybrid technique combining gradient descent BP and mean least-squares optimisation algorithms. ANFIS is the best suited for power estimation application with a low RMSE of 0.0002075 and a high coefficient of determination (R) of 0.99961.

  1. A Technique for Measuring Rotocraft Dynamic Stability in the 40 by 80 Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Gupta, N. K.; Bohn, J. G.

    1977-01-01

    An on-line technique is described for the measurement of tilt rotor aircraft dynamic stability in the Ames 40- by 80-Foot Wind Tunnel. The technique is based on advanced system identification methodology and uses the instrumental variables approach. It is particulary applicable to real time estimation problems with limited amounts of noise-contaminated data. Several simulations are used to evaluate the algorithm. Estimated natural frequencies and damping ratios are compared with simulation values. The algorithm is also applied to wind tunnel data in an off-line mode. The results are used to develop preliminary guidelines for effective use of the algorithm.

  2. Using remote sensing and GIS techniques to estimate discharge and recharge fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Turner, A.K.; ,

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were used to calculate discharge volumes for these area. An empirical method of groundwater recharge estimation was modified to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter

  3. A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus)

    USGS Publications Warehouse

    Ellison, L.E.; O'Shea, T.J.; Neubaum, D.J.; Neubaum, M.A.; Pearce, R.D.; Bowen, R.A.

    2007-01-01

    We compared conventional capture (primarily mist nets and harp traps) and passive integrated transponder (PIT) tagging techniques for estimating capture and survival probabilities of big brown bats (Eptesicus fuscus) roosting in buildings in Fort Collins, Colorado. A total of 987 female adult and juvenile bats were captured and marked by subdermal injection of PIT tags during the summers of 2001-2005 at five maternity colonies in buildings. Openings to roosts were equipped with PIT hoop-style readers, and exit and entry of bats were passively monitored on a daily basis throughout the summers of 2002-2005. PIT readers 'recaptured' adult and juvenile females more often than conventional capture events at each roost. Estimates of annual capture probabilities for all five colonies were on average twice as high when estimated from PIT reader data (P?? = 0.93-1.00) than when derived from conventional techniques (P?? = 0.26-0.66), and as a consequence annual survival estimates were more precisely estimated when using PIT reader encounters. Short-term, daily capture estimates were also higher using PIT readers than conventional captures. We discuss the advantages and limitations of using PIT tags and passive encounters with hoop readers vs. conventional capture techniques for estimating these vital parameters in big brown bats. ?? Museum and Institute of Zoology PAS.

  4. Validity of Three-Dimensional Photonic Scanning Technique for Estimating Percent Body Fat.

    PubMed

    Shitara, K; Kanehisa, H; Fukunaga, T; Yanai, T; Kawakami, Y

    2013-01-01

    Three-dimensional photonic scanning (3DPS) was recently developed to measure dimensions of a human body surface. The purpose of this study was to explore the validity of body volume measured by 3DPS for estimating the percent body fat (%fat). Design, setting, participants, and measurement: The body volumes were determined by 3DPS in 52 women. The body volume was corrected for residual lung volume. The %fat was estimated from body density and compared with the corresponding reference value determined by the dual-energy x-ray absorptiometry (DXA). No significant difference was found for the mean values of %fat obtained by 3DPS (22.2 ± 7.6%) and DXA (23.5 ± 4.9%). The root mean square error of %fat between 3DPS and reference technique was 6.0%. For each body segment, there was a significant positive correlation between 3DPS- and DXA-values, although the corresponding value for the head was slightly larger in 3DPS than in DXA. Residual lung volume was negatively correlated with the estimated error in %fat. The body volume determined with 3DPS is potentially useful for estimating %fat. A possible strategy for enhancing the measurement accuracy of %fat might be to refine the protocol for preparing the subject's hair prior to scanning and to improve the accuracy in the measurement of residual lung volume.

  5. Techniques for estimating flood-peak discharges of rural, unregulated streams in Ohio

    USGS Publications Warehouse

    Koltun, G.F.; Roberts, J.W.

    1990-01-01

    Multiple-regression equations are presented for estimating flood-peak discharges having recurrence intervals of 2, 5, 10, 25, 50, and 100 years at ungaged sites on rural, unregulated streams in Ohio. The average standard errors of prediction for the equations range from 33.4% to 41.4%. Peak discharge estimates determined by log-Pearson Type III analysis using data collected through the 1987 water year are reported for 275 streamflow-gaging stations. Ordinary least-squares multiple-regression techniques were used to divide the State into three regions and to identify a set of basin characteristics that help explain station-to- station variation in the log-Pearson estimates. Contributing drainage area, main-channel slope, and storage area were identified as suitable explanatory variables. Generalized least-square procedures, which include historical flow data and account for differences in the variance of flows at different gaging stations, spatial correlation among gaging station records, and variable lengths of station record were used to estimate the regression parameters. Weighted peak-discharge estimates computed as a function of the log-Pearson Type III and regression estimates are reported for each station. A method is provided to adjust regression estimates for ungaged sites by use of weighted and regression estimates for a gaged site located on the same stream. Limitations and shortcomings cited in an earlier report on the magnitude and frequency of floods in Ohio are addressed in this study. Geographic bias is no longer evident for the Maumee River basin of northwestern Ohio. No bias is found to be associated with the forested-area characteristic for the range used in the regression analysis (0.0 to 99.0%), nor is this characteristic significant in explaining peak discharges. Surface-mined area likewise is not significant in explaining peak discharges, and the regression equations are not biased when applied to basins having approximately 30% or less

  6. Recent advances in lossless coding techniques

    NASA Astrophysics Data System (ADS)

    Yovanof, Gregory S.

    Current lossless techniques are reviewed with reference to both sequential data files and still images. Two major groups of sequential algorithms, dictionary and statistical techniques, are discussed. In particular, attention is given to Lempel-Ziv coding, Huffman coding, and arithmewtic coding. The subject of lossless compression of imagery is briefly discussed. Finally, examples of practical implementations of lossless algorithms and some simulation results are given.

  7. Stitching Techniques Advance Optics Manufacturing

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Because NASA depends on the fabrication and testing of large, high-quality aspheric (nonspherical) optics for applications like the James Webb Space Telescope, it sought an improved method for measuring large aspheres. Through Small Business Innovation Research (SBIR) awards from Goddard Space Flight Center, QED Technologies, of Rochester, New York, upgraded and enhanced its stitching technology for aspheres. QED developed the SSI-A, which earned the company an R&D 100 award, and also developed a breakthrough machine tool called the aspheric stitching interferometer. The equipment is applied to advanced optics in telescopes, microscopes, cameras, medical scopes, binoculars, and photolithography."

  8. Basin Visual Estimation Technique (BVET) and Representative Reach Approaches to Wadeable Stream Surveys: Methodological Limitations and Future Directions

    Treesearch

    Lance R. Williams; Melvin L. Warren; Susan B. Adams; Joseph L. Arvai; Christopher M. Taylor

    2004-01-01

    Basin Visual Estimation Techniques (BVET) are used to estimate abundance for fish populations in small streams. With BVET, independent samples are drawn from natural habitat units in the stream rather than sampling "representative reaches." This sampling protocol provides an alternative to traditional reach-level surveys, which are criticized for their lack...

  9. Development of a surface isolation estimation technique suitable for application of polar orbiting satellite data

    NASA Technical Reports Server (NTRS)

    Davis, P. A.; Penn, L. M. (Principal Investigator)

    1981-01-01

    A technique is developed for the estimation of total daily insolation on the basis of data derivable from operational polar-orbiting satellites. Although surface insolation and meteorological observations are used in the development, the algorithm is constrained in application by the infrequent daytime polar-orbiter coverage.

  10. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimes, Joshua, E-mail: grimes.joshua@mayo.edu; Celler, Anna

    2014-09-15

    Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming themore » same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume

  11. Event triggered state estimation techniques for power systems with integrated variable energy resources.

    PubMed

    Francy, Reshma C; Farid, Amro M; Youcef-Toumi, Kamal

    2015-05-01

    For many decades, state estimation (SE) has been a critical technology for energy management systems utilized by power system operators. Over time, it has become a mature technology that provides an accurate representation of system state under fairly stable and well understood system operation. The integration of variable energy resources (VERs) such as wind and solar generation, however, introduces new fast frequency dynamics and uncertainties into the system. Furthermore, such renewable energy is often integrated into the distribution system thus requiring real-time monitoring all the way to the periphery of the power grid topology and not just the (central) transmission system. The conventional solution is two fold: solve the SE problem (1) at a faster rate in accordance with the newly added VER dynamics and (2) for the entire power grid topology including the transmission and distribution systems. Such an approach results in exponentially growing problem sets which need to be solver at faster rates. This work seeks to address these two simultaneous requirements and builds upon two recent SE methods which incorporate event-triggering such that the state estimator is only called in the case of considerable novelty in the evolution of the system state. The first method incorporates only event-triggering while the second adds the concept of tracking. Both SE methods are demonstrated on the standard IEEE 14-bus system and the results are observed for a specific bus for two difference scenarios: (1) a spike in the wind power injection and (2) ramp events with higher variability. Relative to traditional state estimation, the numerical case studies showed that the proposed methods can result in computational time reductions of 90%. These results were supported by a theoretical discussion of the computational complexity of three SE techniques. The work concludes that the proposed SE techniques demonstrate practical improvements to the computational complexity of

  12. An Advanced Framework for Improving Situational Awareness in Electric Power Grid Operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Huang, Zhenyu; Zhou, Ning

    With the deployment of new smart grid technologies and the penetration of renewable energy in power systems, significant uncertainty and variability is being introduced into power grid operation. Traditionally, the Energy Management System (EMS) operates the power grid in a deterministic mode, and thus will not be sufficient for the future control center in a stochastic environment with faster dynamics. One of the main challenges is to improve situational awareness. This paper reviews the current status of power grid operation and presents a vision of improving wide-area situational awareness for a future control center. An advanced framework, consisting of parallelmore » state estimation, state prediction, parallel contingency selection, parallel contingency analysis, and advanced visual analytics, is proposed to provide capabilities needed for better decision support by utilizing high performance computing (HPC) techniques and advanced visual analytic techniques. Research results are presented to support the proposed vision and framework.« less

  13. Advanced Millimeter-Wave Security Portal Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  14. Clinical Application of a Hybrid RapidArc Radiotherapy Technique for Locally Advanced Lung Cancer.

    PubMed

    Silva, Scott R; Surucu, Murat; Steber, Jennifer; Harkenrider, Matthew M; Choi, Mehee

    2017-04-01

    Radiation treatment planning for locally advanced lung cancer can be technically challenging, as delivery of ≥60 Gy to large volumes with concurrent chemotherapy is often associated with significant risk of normal tissue toxicity. We clinically implemented a novel hybrid RapidArc technique in patients with lung cancer and compared these plans with 3-dimensional conformal radiotherapy and RapidArc-only plans. Hybrid RapidArc was used to treat 11 patients with locally advanced lung cancer having bulky mediastinal adenopathy. All 11 patients received concurrent chemotherapy. All underwent a 4-dimensional computed tomography planning scan. Hybrid RapidArc plans concurrently combined static (60%) and RapidArc (40%) beams. All cases were replanned using 3- to 5-field 3-dimensional conformal radiotherapy and RapidArc technique as controls. Significant reductions in dose were observed in hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans for total lung V20 and mean (-2% and -0.6 Gy); contralateral lung mean (-2.92 Gy); and esophagus V60 and mean (-16.0% and -2.2 Gy; all P < .05). Contralateral lung doses were significantly lower for hybrid RapidArc plans compared to RapidArc-only plans (all P < .05). Compared to 3-dimensional conformal radiotherapy, heart V60 and mean dose were significantly improved with hybrid RapidArc (3% vs 5%, P = .04 and 16.32 Gy vs 16.65 Gy, P = .03). However, heart V40 and V45 and maximum spinal cord dose were significantly lower with RapidArc plans compared to hybrid RapidArc plans. Conformity and homogeneity were significantly better with hybrid RapidArc plans compared to 3-dimensional conformal radiotherapy plans ( P < .05). Treatment was well tolerated, with no grade 3+ toxicities. To our knowledge, this is the first report on the clinical application of hybrid RapidArc in patients with locally advanced lung cancer. Hybrid RapidArc permitted safe delivery of 60 to 66 Gy to large lung tumors with concurrent

  15. ROV advanced magnetic survey for revealing archaeological targets and estimating medium magnetization

    NASA Astrophysics Data System (ADS)

    Eppelbaum, Lev

    2013-04-01

    Magnetic survey is one of most applied geophysical method for searching and localization of any objects with contrast magnetic properties (for instance, in Israel detailed magneric survey has been succesfully applied at more than 60 archaeological sites (Eppelbaum, 2010, 2011; Eppelbaum et al., 2011, 2010)). However, land magnetic survey at comparatively large archaeological sites (with observation grids 0.5 x 0.5 or 1 x 1 m) may occupy 5-10 days. At the same time the new Remote Operation Vehicle (ROV) generation - small and maneuvering vehicles - can fly at levels of few (and even one) meters over the earth's surface (flowing the relief forms or straight). Such ROV with precise magnetic field measurements (with a frequency of 20-25 observations per second) may be performed during 10-30 minutes, moreover at different levels over the earth's surface. Such geophysical investigations should have an extremely low exploitation cost. Finally, measurements of geophysical fields at different observation levels could provide new unique geophysical-archaeological information (Eppelbaum, 2005; Eppelbaum and Mishne, 2011). The developed interpretation methodology for magnetic anomalies advanced analysis (Khesin et al., 1996; Eppelbaum et al., 2001; Eppelbaum et al., 2011) may be successfully applied for ROV magnetic survey for delineation of archaeological objects and estimation averaged magnetization of geological medium. This methodology includes: (1) non-conventional procedure for elimination of secondary effect of magnetic temporary variations, (2) calculation of rugged relief influence by the use of a correlation method, (3) estimation of medium magnetization, (4) application of various informational and wavelet algorithms for revealing low anomalous effects against the strong noise background, (5) advanced procedures for magnetic anomalies quantitative analysis (they are applicable in conditions of rugged relief, inclined magnetization, and an unknown level of the total

  16. Advances in High-Fidelity Multi-Physics Simulation Techniques

    DTIC Science & Technology

    2008-01-01

    predictor - corrector method is used to advance the solution in time. 33 x (m) y (m ) 0 1 2 3.00001 0 1 2 3 4 5 40 x 50 Grid 3 Figure 17: Typical...Unclassified c . THIS PAGE Unclassified 17. LIMITATION OF ABSTRACT: SAR 18. NUMBER OF PAGES 60 Datta Gaitonde 19b. TELEPHONE...advanced parallel computing platforms. The motivation to develop high-fidelity algorithms derives from considerations in various areas of current

  17. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  18. SU-E-T-398: Feasibility of Automated Tools for Robustness Evaluation of Advanced Photon and Proton Techniques in Oropharyngeal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, H; Liang, X; Kalbasi, A

    2014-06-01

    Purpose: Advanced radiotherapy (RT) techniques such as proton pencil beam scanning (PBS) and photon-based volumetric modulated arc therapy (VMAT) have dosimetric advantages in the treatment of head and neck malignancies. However, anatomic or alignment changes during treatment may limit robustness of PBS and VMAT plans. We assess the feasibility of automated deformable registration tools for robustness evaluation in adaptive PBS and VMAT RT of oropharyngeal cancer (OPC). Methods: We treated 10 patients with bilateral OPC with advanced RT techniques and obtained verification CT scans with physician-reviewed target and OAR contours. We generated 3 advanced RT plans for each patient: protonmore » PBS plan using 2 posterior oblique fields (2F), proton PBS plan using an additional third low-anterior field (3F), and a photon VMAT plan using 2 arcs (Arc). For each of the planning techniques, we forward calculated initial (Ini) plans on the verification scans to create verification (V) plans. We extracted DVH indicators based on physician-generated contours for 2 target and 14 OAR structures to investigate the feasibility of two automated tools (contour propagation (CP) and dose deformation (DD)) as surrogates for routine clinical plan robustness evaluation. For each verification scan, we compared DVH indicators of V, CP and DD plans in a head-to-head fashion using Student's t-test. Results: We performed 39 verification scans; each patient underwent 3 to 6 verification scan. We found no differences in doses to target or OAR structures between V and CP, V and DD, and CP and DD plans across all patients (p > 0.05). Conclusions: Automated robustness evaluation tools, CP and DD, accurately predicted dose distributions of verification (V) plans using physician-generated contours. These tools may be further developed as a potential robustness screening tool in the workflow for adaptive treatment of OPC using advanced RT techniques, reducing the need for physician

  19. Estimation techniques and simulation platforms for 77 GHz FMCW ACC radars

    NASA Astrophysics Data System (ADS)

    Bazzi, A.; Kärnfelt, C.; Péden, A.; Chonavel, T.; Galaup, P.; Bodereau, F.

    2012-01-01

    This paper presents two radar simulation platforms that have been developed and evaluated. One is based on the Advanced Design System (ADS) and the other on Matlab. Both platforms are modeled using homodyne front-end 77 GHz radar, based on commercially available monolithic microwave integrated circuits (MMIC). Known linear modulation formats such as the frequency modulation continuous wave (FMCW) and three-segment FMCW have been studied, and a new variant, the dual FMCW, is proposed for easier association between beat frequencies, while maintaining an excellent distance estimation of the targets. In the signal processing domain, new algorithms are proposed for the three-segment FMCW and for the dual FMCW. While both of these algorithms present the choice of either using complex or real data, the former allows faster signal processing, whereas the latter enables a simplified front-end architecture. The estimation performance of the modulation formats has been evaluated using the Cramer-Rao and Barankin bounds. It is found that the dual FMCW modulation format is slightly better than the other two formats tested in this work. A threshold effect is found at a signal-to-noise ratio (SNR) of 12 dB which means that, to be able to detect a target, the SNR should be above this value. In real hardware, the SNR detection limit should be set to about at least 15 dB.

  20. Advanced Coating Removal Techniques

    NASA Technical Reports Server (NTRS)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  1. Comparison of Erosion Rates Estimated by Sediment Budget Techniques and Suspended Sediment Monitoring and Regulatory Implications

    NASA Astrophysics Data System (ADS)

    O'Connor, M.; Eads, R.

    2007-12-01

    Watersheds in the northern California Coast Range have been designated as "impaired" with respect to water quality because of excessive sediment loads and/or high water temperature. Sediment budget techniques have typically been used by regulatory authorities to estimate current erosion rates and to develop targets for future desired erosion rates. This study examines erosion rates estimated by various methods for portions of the Gualala River watershed, designated as having water quality impaired by sediment under provisions of the Clean Water Act Section 303(d), located in northwest Sonoma County (~90 miles north of San Francisco). The watershed is underlain by Jurassic age sedimentary and meta-sedimentary rocks of the Franciscan formation. The San Andreas Fault passes through the western edge of watershed, and other active faults are present. A substantial portion of the watershed is mantled by rock slides and earth flows, many of which are considered dormant. The Coast Range is geologically young, and rapid rates of uplift are believed to have contributed to high erosion rates. This study compares quantitative erosion rate estimates developed at different spatial and temporal scales. It is motivated by a proposed vineyard development project in the watershed, and the need to document conditions in the project area, assess project environmental impacts and meet regulatory requirements pertaining to water quality. Erosion rate estimates were previously developed using sediment budget techniques for relatively large drainage areas (~100 to 1,000 km2) by the North Coast Regional Water Quality Control Board and US EPA and by the California Geological Survey. In this study, similar sediment budget techniques were used for smaller watersheds (~3 to 8 km2), and were supplemented by a suspended sediment monitoring program utilizing Turbidity Threshold Sampling techniques (as described in a companion study in this session). The duration of the monitoring program to date

  2. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique.

    PubMed

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer.

  3. Lake Metabolism: Comparison of Lake Metabolic Rates Estimated from a Diel CO2- and the Common Diel O2-Technique

    PubMed Central

    Peeters, Frank; Atamanchuk, Dariia; Tengberg, Anders; Encinas-Fernández, Jorge; Hofmann, Hilmar

    2016-01-01

    Lake metabolism is a key factor for the understanding of turnover of energy and of organic and inorganic matter in lake ecosystems. Long-term time series on metabolic rates are commonly estimated from diel changes in dissolved oxygen. Here we present long-term data on metabolic rates based on diel changes in total dissolved inorganic carbon (DIC) utilizing an open-water diel CO2-technique. Metabolic rates estimated with this technique and the traditional diel O2-technique agree well in alkaline Lake Illmensee (pH of ~8.5), although the diel changes in molar CO2 concentrations are much smaller than those of the molar O2 concentrations. The open-water diel CO2- and diel O2-techniques provide independent measures of lake metabolic rates that differ in their sensitivity to transport processes. Hence, the combination of both techniques can help to constrain uncertainties arising from assumptions on vertical fluxes due to gas exchange and turbulent diffusion. This is particularly important for estimates of lake respiration rates because these are much more sensitive to assumptions on gradients in vertical fluxes of O2 or DIC than estimates of lake gross primary production. Our data suggest that it can be advantageous to estimate respiration rates assuming negligible gradients in vertical fluxes rather than including gas exchange with the atmosphere but neglecting vertical mixing in the water column. During two months in summer the average lake net production was close to zero suggesting at most slightly autotrophic conditions. However, the lake emitted O2 and CO2 during the entire time period suggesting that O2 and CO2 emissions from lakes can be decoupled from the metabolism in the near surface layer. PMID:28002477

  4. Combined point and distributed techniques for multidimensional estimation of spatial groundwater-stream water exchange in a heterogeneous sand bed-stream.

    NASA Astrophysics Data System (ADS)

    Gaona Garcia, J.; Lewandowski, J.; Bellin, A.

    2017-12-01

    Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using

  5. New Technique for TOC Estimation Based on Thermal Core Logging in Low-Permeable Formations (Bazhen fm.)

    NASA Astrophysics Data System (ADS)

    Popov, Evgeny; Popov, Yury; Spasennykh, Mikhail; Kozlova, Elena; Chekhonin, Evgeny; Zagranovskaya, Dzhuliya; Belenkaya, Irina; Alekseev, Aleksey

    2016-04-01

    A practical method of organic-rich intervals identifying within the low-permeable dispersive rocks based on thermal conductivity measurements along the core is presented. Non-destructive non-contact thermal core logging was performed with optical scanning technique on 4 685 full size core samples from 7 wells drilled in four low-permeable zones of the Bazhen formation (B.fm.) in the Western Siberia (Russia). The method employs continuous simultaneous measurements of rock anisotropy, volumetric heat capacity, thermal anisotropy coefficient and thermal heterogeneity factor along the cores allowing the high vertical resolution (of up to 1-2 mm). B.fm. rock matrix thermal conductivity was observed to be essentially stable within the range of 2.5-2.7 W/(m*K). However, stable matrix thermal conductivity along with the high thermal anisotropy coefficient is characteristic for B.fm. sediments due to the low rock porosity values. It is shown experimentally that thermal parameters measured relate linearly to organic richness rather than to porosity coefficient deviations. Thus, a new technique employing the transformation of the thermal conductivity profiles into continuous profiles of total organic carbon (TOC) values along the core was developed. Comparison of TOC values, estimated from the thermal conductivity values, with experimental pyrolytic TOC estimations of 665 samples from the cores using the Rock-Eval and HAWK instruments demonstrated high efficiency of the new technique for the organic rich intervals separation. The data obtained with the new technique are essential for the SR hydrocarbon generation potential, for basin and petroleum system modeling application, and estimation of hydrocarbon reserves. The method allows for the TOC richness to be accurately assessed using the thermal well logs. The research work was done with financial support of the Russian Ministry of Education and Science (unique identification number RFMEFI58114X0008).

  6. Estimating the settling velocity of bioclastic sediment using common grain-size analysis techniques

    USGS Publications Warehouse

    Cuttler, Michael V. W.; Lowe, Ryan J.; Falter, James L.; Buscombe, Daniel D.

    2017-01-01

    Most techniques for estimating settling velocities of natural particles have been developed for siliciclastic sediments. Therefore, to understand how these techniques apply to bioclastic environments, measured settling velocities of bioclastic sedimentary deposits sampled from a nearshore fringing reef in Western Australia were compared with settling velocities calculated using results from several common grain-size analysis techniques (sieve, laser diffraction and image analysis) and established models. The effects of sediment density and shape were also examined using a range of density values and three different models of settling velocity. Sediment density was found to have a significant effect on calculated settling velocity, causing a range in normalized root-mean-square error of up to 28%, depending upon settling velocity model and grain-size method. Accounting for particle shape reduced errors in predicted settling velocity by 3% to 6% and removed any velocity-dependent bias, which is particularly important for the fastest settling fractions. When shape was accounted for and measured density was used, normalized root-mean-square errors were 4%, 10% and 18% for laser diffraction, sieve and image analysis, respectively. The results of this study show that established models of settling velocity that account for particle shape can be used to estimate settling velocity of irregularly shaped, sand-sized bioclastic sediments from sieve, laser diffraction, or image analysis-derived measures of grain size with a limited amount of error. Collectively, these findings will allow for grain-size data measured with different methods to be accurately converted to settling velocity for comparison. This will facilitate greater understanding of the hydraulic properties of bioclastic sediment which can help to increase our general knowledge of sediment dynamics in these environments.

  7. Recent advances in endovascular techniques for management of acute nonvariceal upper gastrointestinal bleeding

    PubMed Central

    Loffroy, Romaric F; Abualsaud, Basem A; Lin, Ming D; Rao, Pramod P

    2011-01-01

    Over the past two decades, transcatheter arterial embolization has become the first-line therapy for the management of upper gastrointestinal bleeding that is refractory to endoscopic hemostasis. Advances in catheter-based techniques and newer embolic agents, as well as recognition of the effectiveness of minimally invasive treatment options, have expanded the role of interventional radiology in the management of hemorrhage for a variety of indications, such as peptic ulcer bleeding, malignant disease, hemorrhagic Dieulafoy lesions and iatrogenic or trauma bleeding. Transcatheter interventions include the following: selective embolization of the feeding artery, sandwich coil occlusion of the gastroduodenal artery, blind or empiric embolization of the supposed bleeding vessel based on endoscopic findings and coil pseudoaneurysm or aneurysm embolization by three-dimensional sac packing with preservation of the parent artery. Transcatheter embolization is a fast, safe and effective, minimally invasive alternative to surgery when endoscopic treatment fails to control bleeding from the upper gastrointestinal tract. This article reviews the various transcatheter endovascular techniques and devices that are used in a variety of clinical scenarios for the management of hemorrhagic gastrointestinal emergencies. PMID:21860697

  8. Evaluation and modification of five techniques for estimating stormwater runoff for watersheds in west-central Florida

    USGS Publications Warehouse

    Trommer, J.T.; Loper, J.E.; Hammett, K.M.

    1996-01-01

    Several traditional techniques have been used for estimating stormwater runoff from ungaged watersheds. Applying these techniques to water- sheds in west-central Florida requires that some of the empirical relationships be extrapolated beyond tested ranges. As a result, there is uncertainty as to the accuracy of these estimates. Sixty-six storms occurring in 15 west-central Florida watersheds were initially modeled using the Rational Method, the U.S. Geological Survey Regional Regression Equations, the Natural Resources Conservation Service TR-20 model, the U.S. Army Corps of Engineers Hydrologic Engineering Center-1 model, and the Environmental Protection Agency Storm Water Management Model. The techniques were applied according to the guidelines specified in the user manuals or standard engineering textbooks as though no field data were available and the selection of input parameters was not influenced by observed data. Computed estimates were compared with observed runoff to evaluate the accuracy of the techniques. One watershed was eliminated from further evaluation when it was determined that the area contributing runoff to the stream varies with the amount and intensity of rainfall. Therefore, further evaluation and modification of the input parameters were made for only 62 storms in 14 watersheds. Runoff ranged from 1.4 to 99.3 percent percent of rainfall. The average runoff for all watersheds included in this study was about 36 percent of rainfall. The average runoff for the urban, natural, and mixed land-use watersheds was about 41, 27, and 29 percent, respectively. Initial estimates of peak discharge using the rational method produced average watershed errors that ranged from an underestimation of 50.4 percent to an overestimation of 767 percent. The coefficient of runoff ranged from 0.20 to 0.60. Calibration of the technique produced average errors that ranged from an underestimation of 3.3 percent to an overestimation of 1.5 percent. The average

  9. System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Matijevic, J. R.

    1987-01-01

    Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

  10. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  11. A comparison of non-parametric techniques to estimate incident photosynthetically active radiation from MODIS for monitoring primary production

    NASA Astrophysics Data System (ADS)

    Brown, M. G. L.; He, T.; Liang, S.

    2016-12-01

    Satellite-derived estimates of incident photosynthetically active radiation (PAR) can be used to monitor global change, are required by most terrestrial ecosystem models, and can be used to estimate primary production according to the theory of light use efficiency. Compared with parametric approaches, non-parametric techniques that include an artificial neural network (ANN), support vector machine regression (SVM), an artificial bee colony (ABC), and a look-up table (LUT) do not require many ancillary data as inputs for the estimation of PAR from satellite data. In this study, a selection of machine learning methods to estimate PAR from MODIS top of atmosphere (TOA) radiances are compared to a LUT approach to determine which techniques might best handle the nonlinear relationship between TOA radiance and incident PAR. Evaluation of these methods (ANN, SVM, and LUT) is performed with ground measurements at seven SURFRAD sites. Due to the design of the ANN, it can handle the nonlinear relationship between TOA radiance and PAR better than linearly interpolating between the values in the LUT; however, training the ANN has to be carried out on an angular-bin basis, which results in a LUT of ANNs. The SVM model may be better for incorporating multiple viewing angles than the ANN; however, both techniques require a large amount of training data, which may introduce a regional bias based on where the most training and validation data are available. Based on the literature, the ABC is a promising alternative to an ANN, SVM regression and a LUT, but further development for this application is required before concrete conclusions can be drawn. For now, the LUT method outperforms the machine-learning techniques, but future work should be directed at developing and testing the ABC method. A simple, robust method to estimate direct and diffuse incident PAR, with minimal inputs and a priori knowledge, would be very useful for monitoring global change of primary production

  12. Estimating the Size of the Methamphetamine-Using Population in New York City Using Network Sampling Techniques.

    PubMed

    Dombrowski, Kirk; Khan, Bilal; Wendel, Travis; McLean, Katherine; Misshula, Evan; Curtis, Ric

    2012-12-01

    As part of a recent study of the dynamics of the retail market for methamphetamine use in New York City, we used network sampling methods to estimate the size of the total networked population. This process involved sampling from respondents' list of co-use contacts, which in turn became the basis for capture-recapture estimation. Recapture sampling was based on links to other respondents derived from demographic and "telefunken" matching procedures-the latter being an anonymized version of telephone number matching. This paper describes the matching process used to discover the links between the solicited contacts and project respondents, the capture-recapture calculation, the estimation of "false matches", and the development of confidence intervals for the final population estimates. A final population of 12,229 was estimated, with a range of 8235 - 23,750. The techniques described here have the special virtue of deriving an estimate for a hidden population while retaining respondent anonymity and the anonymity of network alters, but likely require larger sample size than the 132 persons interviewed to attain acceptable confidence levels for the estimate.

  13. NREL Triples Previous Estimates of U.S. Wind Power Potential (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The National Renewable Energy Laboratory (NREL) recently released new estimates of the U.S. potential for wind-generated electricity, using advanced wind mapping and validation techniques to triple previous estimates of the size of the nation's wind resources. The new study, conducted by NREL and AWS TruePower, finds that the contiguous 48 states have the potential to generate up to 37 million gigawatt-hours annually. In comparison, the total U.S. electricity generation from all sources was roughly 4 million gigawatt-hours in 2009.

  14. Estimation of VOC emissions from produced-water treatment ponds in Uintah Basin oil and gas field using modeling techniques

    NASA Astrophysics Data System (ADS)

    Tran, H.; Mansfield, M. L.; Lyman, S. N.; O'Neil, T.; Jones, C. P.

    2015-12-01

    Emissions from produced-water treatment ponds are poorly characterized sources in oil and gas emission inventories that play a critical role in studying elevated winter ozone events in the Uintah Basin, Utah, U.S. Information gaps include un-quantified amounts and compositions of gases emitted from these facilities. The emitted gases are often known as volatile organic compounds (VOCs) which, beside nitrogen oxides (NOX), are major precursors for ozone formation in the near-surface layer. Field measurement campaigns using the flux-chamber technique have been performed to measure VOC emissions from a limited number of produced water ponds in the Uintah Basin of eastern Utah. Although the flux chamber provides accurate measurements at the point of sampling, it covers just a limited area of the ponds and is prone to altering environmental conditions (e.g., temperature, pressure). This fact raises the need to validate flux chamber measurements. In this study, we apply an inverse-dispersion modeling technique with evacuated canister sampling to validate the flux-chamber measurements. This modeling technique applies an initial and arbitrary emission rate to estimate pollutant concentrations at pre-defined receptors, and adjusts the emission rate until the estimated pollutant concentrations approximates measured concentrations at the receptors. The derived emission rates are then compared with flux-chamber measurements and differences are analyzed. Additionally, we investigate the applicability of the WATER9 wastewater emission model for the estimation of VOC emissions from produced-water ponds in the Uintah Basin. WATER9 estimates the emission of each gas based on properties of the gas, its concentration in the waste water, and the characteristics of the influent and treatment units. Results of VOC emission estimations using inverse-dispersion and WATER9 modeling techniques will be reported.

  15. Bringing Advanced Computational Techniques to Energy Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Julie C

    2012-11-17

    Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

  16. Performance estimation for highly loaded six and ten blade propellers combined with an advanced technology turboshaft engine

    NASA Technical Reports Server (NTRS)

    Morris, S. J., Jr.

    1980-01-01

    Performance estimations, weights, and scaling laws for the six blade and ten blade highly loaded propellers combined with an advanced turboshaft engine are presented. These data are useful for aircraft mission studies using the turboprop system. Comparisons are made between the performance of post 1980 technology turboprop propulsion systems and the performance of both a current technology turbofan and a post 1990 technology turbofan.

  17. Irrigated rice area estimation using remote sensing techniques: Project's proposal and preliminary results. [Rio Grande do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Moreira, M. A.; Novaes, R. A.

    1984-01-01

    The development of a methodology for annual estimates of irrigated rice crop in the State of Rio Grande do Sul, Brazil, using remote sensing techniques is proposed. The project involves interpretation, digital analysis, and sampling techniques of LANDSAT imagery. Results are discussed from a preliminary phase for identifying and evaluating irrigated rice crop areas in four counties of the State, for the crop year 1982/1983. This first phase involved just visual interpretation techniques of MSS/LANDSAT images.

  18. An advanced shape-fitting algorithm applied to quadrupedal mammals: improving volumetric mass estimates

    PubMed Central

    Brassey, Charlotte A.; Gardiner, James D.

    2015-01-01

    Body mass is a fundamental physical property of an individual and has enormous bearing upon ecology and physiology. Generating reliable estimates for body mass is therefore a necessary step in many palaeontological studies. Whilst early reconstructions of mass in extinct species relied upon isolated skeletal elements, volumetric techniques are increasingly applied to fossils when skeletal completeness allows. We apply a new ‘alpha shapes’ (α-shapes) algorithm to volumetric mass estimation in quadrupedal mammals. α-shapes are defined by: (i) the underlying skeletal structure to which they are fitted; and (ii) the value α, determining the refinement of fit. For a given skeleton, a range of α-shapes may be fitted around the individual, spanning from very coarse to very fine. We fit α-shapes to three-dimensional models of extant mammals and calculate volumes, which are regressed against mass to generate predictive equations. Our optimal model is characterized by a high correlation coefficient and mean square error (r2=0.975, m.s.e.=0.025). When applied to the woolly mammoth (Mammuthus primigenius) and giant ground sloth (Megatherium americanum), we reconstruct masses of 3635 and 3706 kg, respectively. We consider α-shapes an improvement upon previous techniques as resulting volumes are less sensitive to uncertainties in skeletal reconstructions, and do not require manual separation of body segments from skeletons. PMID:26361559

  19. Sculpting 3D worlds with music: advanced texturing techniques

    NASA Astrophysics Data System (ADS)

    Greuel, Christian; Bolas, Mark T.; Bolas, Niko; McDowall, Ian E.

    1996-04-01

    Sound within the virtual environment is often considered to be secondary to the graphics. In a typical scenario, either audio cues are locally associated with specific 3D objects or a general aural ambiance is supplied in order to alleviate the sterility of an artificial experience. This paper discusses a completely different approach, in which cues are extracted from live or recorded music in order to create geometry and control object behaviors within a computer- generated environment. Advanced texturing techniques used to generate complex stereoscopic images are also discussed. By analyzing music for standard audio characteristics such as rhythm and frequency, information is extracted and repackaged for processing. With the Soundsculpt Toolkit, this data is mapped onto individual objects within the virtual environment, along with one or more predetermined behaviors. Mapping decisions are implemented with a user definable schedule and are based on the aesthetic requirements of directors and designers. This provides for visually active, immersive environments in which virtual objects behave in real-time correlation with the music. The resulting music-driven virtual reality opens up several possibilities for new types of artistic and entertainment experiences, such as fully immersive 3D `music videos' and interactive landscapes for live performance.

  20. An experimental result of estimating an application volume by machine learning techniques.

    PubMed

    Hasegawa, Tatsuhito; Koshino, Makoto; Kimura, Haruhiko

    2015-01-01

    In this study, we improved the usability of smartphones by automating a user's operations. We developed an intelligent system using machine learning techniques that periodically detects a user's context on a smartphone. We selected the Android operating system because it has the largest market share and highest flexibility of its development environment. In this paper, we describe an application that automatically adjusts application volume. Adjusting the volume can be easily forgotten because users need to push the volume buttons to alter the volume depending on the given situation. Therefore, we developed an application that automatically adjusts the volume based on learned user settings. Application volume can be set differently from ringtone volume on Android devices, and these volume settings are associated with each specific application including games. Our application records a user's location, the volume setting, the foreground application name and other such attributes as learning data, thereby estimating whether the volume should be adjusted using machine learning techniques via Weka.

  1. Ballpark Reliability Estimation Techniques

    DTIC Science & Technology

    1984-04-01

    containing 1955 integrated cir- cuits, yielded average values of "A" and "B" of Aav a.047 and Bay -0024 Using "av and Bav as estimates of A and B in the...wave to board (csw); hand solder ( hsc ); crimp (cmp); and weld (wld). The basic failure rate model for connections is: xp b (11E xfT x fQ) 14 where...connectors in general (Ref. Table 5.1.14-1 of MIL-HDBK-217D), the "W" value of the other types of connections (i.e., hsc , csr, and ww-) differ by orders of

  2. Planning and scheduling the Hubble Space Telescope: Practical application of advanced techniques

    NASA Technical Reports Server (NTRS)

    Miller, Glenn E.

    1994-01-01

    NASA's Hubble Space Telescope (HST) is a major astronomical facility that was launched in April, 1990. In late 1993, the first of several planned servicing missions refurbished the telescope, including corrections for a manufacturing flaw in the primary mirror. Orbiting above the distorting effects of the Earth's atmosphere, the HST provides an unrivaled combination of sensitivity, spectral coverage and angular resolution. The HST is arguably the most complex scientific observatory ever constructed and effective use of this valuable resource required novel approaches to astronomical observation and the development of advanced software systems including techniques to represent scheduling preferences and constraints, a constraint satisfaction problem (CSP) based scheduler and a rule based planning system. This paper presents a discussion of these systems and the lessons learned from operational experience.

  3. Rainfall Estimation over the Nile Basin using Multi-Spectral, Multi- Instrument Satellite Techniques

    NASA Astrophysics Data System (ADS)

    Habib, E.; Kuligowski, R.; Sazib, N.; Elshamy, M.; Amin, D.; Ahmed, M.

    2012-04-01

    Management of Egypt's Aswan High Dam is critical not only for flood control on the Nile but also for ensuring adequate water supplies for most of Egypt since rainfall is scarce over the vast majority of its land area. However, reservoir inflow is driven by rainfall over Sudan, Ethiopia, Uganda, and several other countries from which routine rain gauge data are sparse. Satellite- derived estimates of rainfall offer a much more detailed and timely set of data to form a basis for decisions on the operation of the dam. A single-channel infrared (IR) algorithm is currently in operational use at the Egyptian Nile Forecast Center (NFC). In this study, the authors report on the adaptation of a multi-spectral, multi-instrument satellite rainfall estimation algorithm (Self- Calibrating Multivariate Precipitation Retrieval, SCaMPR) for operational application by NFC over the Nile Basin. The algorithm uses a set of rainfall predictors that come from multi-spectral Infrared cloud top observations and self-calibrate them to a set of predictands that come from the more accurate, but less frequent, Microwave (MW) rain rate estimates. For application over the Nile Basin, the SCaMPR algorithm uses multiple satellite IR channels that have become recently available to NFC from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). Microwave rain rates are acquired from multiple sources such as the Special Sensor Microwave/Imager (SSM/I), the Special Sensor Microwave Imager and Sounder (SSMIS), the Advanced Microwave Sounding Unit (AMSU), the Advanced Microwave Scanning Radiometer on EOS (AMSR-E), and the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI). The algorithm has two main steps: rain/no-rain separation using discriminant analysis, and rain rate estimation using stepwise linear regression. We test two modes of algorithm calibration: real- time calibration with continuous updates of coefficients with newly coming MW rain rates, and calibration using static

  4. Accuracy of advanced cancer patients' life expectancy estimates: The role of race and source of life expectancy information.

    PubMed

    Trevino, Kelly M; Zhang, Baohui; Shen, Megan J; Prigerson, Holly G

    2016-06-15

    The objective of this study was to examine the source of advanced cancer patients' information about their prognosis and determine whether this source of information could explain racial disparities in the accuracy of patients' life expectancy estimates (LEEs). Coping With Cancer was a prospective, longitudinal, multisite study of terminally ill cancer patients followed until death. In structured interviews, patients reported their LEEs and the sources of these estimates (ie, medical providers, personal beliefs, religious beliefs, and other). The accuracy of LEEs was calculated through a comparison of patients' self-reported LEEs with their actual survival. The sample for this analysis included 229 patients: 31 black patients and 198 white patients. Only 39.30% of the patients estimated their life expectancy within 12 months of their actual survival. Black patients were more likely to have an inaccurate LEE than white patients. A minority of the sample (18.3%) reported that a medical provider was the source of their LEEs; none of the black patients (0%) based their LEEs on a medical provider. Black race remained a significant predictor of an inaccurate LEE, even after the analysis had been controlled for sociodemographic characteristics and the source of LEEs. The majority of advanced cancer patients have an inaccurate understanding of their life expectancy. Black patients with advanced cancer are more likely to have an inaccurate LEE than white patients. Medical providers are not the source of information for LEEs for most advanced cancer patients and especially for black patients. The source of LEEs does not explain racial differences in LEE accuracy. Additional research into the mechanisms underlying racial differences in prognostic understanding is needed. Cancer 2016;122:1905-12. © 2016 The Authors. Cancer published by Wiley Periodicals, Inc. on behalf of American Cancer Society. This is an open access article under the terms of the Creative Commons

  5. The Novel Nonlinear Adaptive Doppler Shift Estimation Technique and the Coherent Doppler Lidar System Validation Lidar

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.

    2006-01-01

    The signal processing aspect of a 2-m wavelength coherent Doppler lidar system under development at NASA Langley Research Center in Virginia is investigated in this paper. The lidar system is named VALIDAR (validation lidar) and its signal processing program estimates and displays various wind parameters in real-time as data acquisition occurs. The goal is to improve the quality of the current estimates such as power, Doppler shift, wind speed, and wind direction, especially in low signal-to-noise-ratio (SNR) regime. A novel Nonlinear Adaptive Doppler Shift Estimation Technique (NADSET) is developed on such behalf and its performance is analyzed using the wind data acquired over a long period of time by VALIDAR. The quality of Doppler shift and power estimations by conventional Fourier-transform-based spectrum estimation methods deteriorates rapidly as SNR decreases. NADSET compensates such deterioration in the quality of wind parameter estimates by adaptively utilizing the statistics of Doppler shift estimate in a strong SNR range and identifying sporadic range bins where good Doppler shift estimates are found. The authenticity of NADSET is established by comparing the trend of wind parameters with and without NADSET applied to the long-period lidar return data.

  6. Practical Repair Method for Unilateral Cleft Lips: Straight-Line Advanced Release Technique.

    PubMed

    Baek, Rong-Min; Choi, Jun-Ho; Kim, Baek-Kyu

    2016-04-01

    Straight-line closure repair of unilateral cleft lips was first introduced in the 1840s, and since then, many different techniques have been attempted for cleft repair. However, these methods have several disadvantages and are difficult to adopt. In this study, we describe our novel technique, known as Straight-Line Advanced Release Technique (StART), and its application in treating several cases of unilateral cleft lip. The preoperative design of the surgical method is drawn on the skin, the vermilion, and the oral mucosa. A total of 13 points are marked (points 0-12). The A flap, B flap, triangular flap, M (medial mucosal) flap, and L (lateral mucosal) flap are designed. After completion of the preoperative marking, the wide dissection is performed to separate the orbicularis oris muscle completely from the abnormally inserted bony structure and the enveloped skin-mucosal flap. The freed orbicularis oris muscle is then reconstructed with full width. After all planes of the lip wound are closed, a straight vertical skin suture line is achieved without any unnecessary transverse scar. Unilateral cleft lip repair using StART was conducted in 145 patients between 1993 and 2012. Cases of microform cleft lip were excluded. A total of 21 patients (14%) required a secondary operation on the lip after the first unilateral cheiloplasty. In all patients, satisfactory surgical outcomes were obtained with an indistinct straight-lined scar and a well-aligned lip contour. To acquire a natural and balanced shape in unilateral cleft lip repair, we recommend the novel StART.

  7. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  8. Advanced techniques for modeling avian nest survival

    USGS Publications Warehouse

    Dinsmore, S.J.; White, Gary C.; Knopf, F.L.

    2002-01-01

    Estimation of avian nest survival has traditionally involved simple measures of apparent nest survival or Mayfield constant-nest-survival models. However, these methods do not allow researchers to build models that rigorously assess the importance of a wide range of biological factors that affect nest survival. Models that incorporate greater detail, such as temporal variation in nest survival and covariates representative of individual nests represent a substantial improvement over traditional estimation methods. In an attempt to improve nest survival estimation procedures, we introduce the nest survival model now available in the program MARK and demonstrate its use on a nesting study of Mountain Plovers (Charadrius montanus Townsend) in Montana, USA. We modeled the daily survival of Mountain Plover nests as a function of the sex of the incubating adult, nest age, year, linear and quadratic time trends, and two weather covariates (maximum daily temperature and daily precipitation) during a six-year study (1995–2000). We found no evidence for yearly differences or an effect of maximum daily temperature on the daily nest survival of Mountain Plovers. Survival rates of nests tended by female and male plovers differed (female rate = 0.33; male rate = 0.49). The estimate of the additive effect for males on nest survival rate was 0.37 (95% confidence limits were 0.03, 0.71) on a logit scale. Daily survival rates of nests increased with nest age; the estimate of daily nest-age change in survival in the best model was 0.06 (95% confidence limits were 0.04, 0.09) on a logit scale. Daily precipitation decreased the probability that the nest would survive to the next day; the estimate of the additive effect of daily precipitation on the nest survival rate was −1.08 (95% confidence limits were −2.12, −0.13) on a logit scale. Our approach to modeling daily nest-survival rates allowed several biological factors of interest to be easily included in nest survival models

  9. Development of a real-time aeroperformance analysis technique for the X-29A advanced technology demonstrator

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Hicks, J. W.; Alexander, R. I.

    1988-01-01

    The X-29A advanced technology demonstrator has shown the practicality and advantages of the capability to compute and display, in real time, aeroperformance flight results. This capability includes the calculation of the in-flight measured drag polar, lift curve, and aircraft specific excess power. From these elements many other types of aeroperformance measurements can be computed and analyzed. The technique can be used to give an immediate postmaneuver assessment of data quality and maneuver technique, thus increasing the productivity of a flight program. A key element of this new method was the concurrent development of a real-time in-flight net thrust algorithm, based on the simplified gross thrust method. This net thrust algorithm allows for the direct calculation of total aircraft drag.

  10. ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    EPA Science Inventory

    ESTIMATING CHLOROFORM BIOTRANSFORMATION IN F-344 RAT LIVER USING IN VITRO TECHNIQUES AND PHARMACOKINETIC MODELING

    Linskey, C.F.1, Harrison, R.A.2., Zhao, G.3., Barton, H.A., Lipscomb, J.C4., and Evans, M.V2., 1UNC, ESE, Chapel Hill, NC ; 2USEPA, ORD, NHEERL, RTP, NC; 3 UN...

  11. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  12. Treatment of multiple adjacent Miller Class I and II gingival recessions with collagen matrix and the modified coronally advanced tunnel technique.

    PubMed

    Molnár, Bálint; Aroca, Sofia; Keglevich, Tibor; Gera, István; Windisch, Péter; Stavropoulos, Andreas; Sculean, Anton

    2013-01-01

    To clinically evaluate the treatment of Miller Class I and II multiple adjacent gingival recessions using the modified coronally advanced tunnel technique combined with a newly developed bioresorbable collagen matrix of porcine origin. Eight healthy patients exhibiting at least three multiple Miller Class I and II multiple adjacent gingival recessions (a total of 42 recessions) were consecutively treated by means of the modified coronally advanced tunnel technique and collagen matrix. The following clinical parameters were assessed at baseline and 12 months postoperatively: full mouth plaque score (FMPS), full mouth bleeding score (FMBS), probing depth (PD), recession depth (RD), recession width (RW), keratinized tissue thickness (KTT), and keratinized tissue width (KTW). The primary outcome variable was complete root coverage. Neither allergic reactions nor soft tissue irritations or matrix exfoliations occurred. Postoperative pain and discomfort were reported to be low, and patient acceptance was generally high. At 12 months, complete root coverage was obtained in 2 out of the 8 patients and 30 of the 42 recessions (71%). Within their limits, the present results indicate that treatment of Miller Class I and II multiple adjacent gingival recessions by means of the modified coronally advanced tunnel technique and collagen matrix may result in statistically and clinically significant complete root coverage. Further studies are warranted to evaluate the performance of collagen matrix compared with connective tissue grafts and other soft tissue grafts.

  13. SEOM-SERAM-SEMNIM guidelines on the use of functional and molecular imaging techniques in advanced non-small-cell lung cancer.

    PubMed

    Fernández Pérez, G; Sánchez Escribano, R; García Vicente, A M; Luna Alcalá, A; Ceballos Viro, J; Delgado Bolton, R C; Vilanova Busquets, J C; Sánchez Rovira, P; Fierro Alanis, M P; García Figueiras, R; Alés Martínez, J E

    2018-05-25

    Imaging in oncology is an essential tool for patient management but its potential is being profoundly underutilized. Each of the techniques used in the diagnostic process also conveys functional information that can be relevant in treatment decision making. New imaging algorithms and techniques enhance our knowledge about the phenotype of the tumor and its potential response to different therapies. Functional imaging can be defined as the one that provides information beyond the purely morphological data, and include all the techniques that make it possible to measure specific physiological functions of the tumor, whereas molecular imaging would include techniques that allow us to measure metabolic changes. Functional and molecular techniques included in this document are based on multi-detector computed tomography (CT), 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET), magnetic resonance imaging (MRI), and hybrid equipments, integrating PET with CT (PET/CT) or MRI (PET-MRI). Lung cancer is one of the most frequent and deadly tumors although survival is increasing thanks to advances in diagnostic methods and new treatments. This increased survival poises challenges in terms of proper follow-up and definitions of response and progression, as exemplified by immune therapy-related pseudoprogression. In this consensus document, the use of functional and molecular imaging techniques will be addressed to exploit their current potential and explore future applications in the diagnosis, evaluation of response and detection of recurrence of advanced NSCLC. Copyright © 2018 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  15. Depth estimation of features in video frames with improved feature matching technique using Kinect sensor

    NASA Astrophysics Data System (ADS)

    Sharma, Kajal; Moon, Inkyu; Kim, Sung Gaun

    2012-10-01

    Estimating depth has long been a major issue in the field of computer vision and robotics. The Kinect sensor's active sensing strategy provides high-frame-rate depth maps and can recognize user gestures and human pose. This paper presents a technique to estimate the depth of features extracted from video frames, along with an improved feature-matching method. In this paper, we used the Kinect camera developed by Microsoft, which captured color and depth images for further processing. Feature detection and selection is an important task for robot navigation. Many feature-matching techniques have been proposed earlier, and this paper proposes an improved feature matching between successive video frames with the use of neural network methodology in order to reduce the computation time of feature matching. The features extracted are invariant to image scale and rotation, and different experiments were conducted to evaluate the performance of feature matching between successive video frames. The extracted features are assigned distance based on the Kinect technology that can be used by the robot in order to determine the path of navigation, along with obstacle detection applications.

  16. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  17. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The fifth monthly progress report includes corrections and additions to the previously submitted reports. The addition of the SRB propellant thickness as a state variable is included with the associated partial derivatives. During this reporting period, preliminary results of the estimation program checkout was presented to NASA technical personnel.

  18. Fatigue life estimation of a 1D aluminum beam under mode-I loading using the electromechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Lim, Yee Yan; Kiong Soh, Chee

    2011-12-01

    Structures in service are often subjected to fatigue loads. Cracks would develop and lead to failure if left unnoticed after a large number of cyclic loadings. Monitoring the process of fatigue crack propagation as well as estimating the remaining useful life of a structure is thus essential to prevent catastrophe while minimizing earlier-than-required replacement. The advent of smart materials such as piezo-impedance transducers (lead zirconate titanate, PZT) has ushered in a new era of structural health monitoring (SHM) based on non-destructive evaluation (NDE). This paper presents a series of investigative studies to evaluate the feasibility of fatigue crack monitoring and estimation of remaining useful life using the electromechanical impedance (EMI) technique employing a PZT transducer. Experimental tests were conducted to study the ability of the EMI technique in monitoring fatigue crack in 1D lab-sized aluminum beams. The experimental results prove that the EMI technique is very sensitive to fatigue crack propagation. A proof-of-concept semi-analytical damage model for fatigue life estimation has been developed by incorporating the linear elastic fracture mechanics (LEFM) theory into the finite element (FE) model. The prediction of the model matches closely with the experiment, suggesting the possibility of replacing costly experiments in future.

  19. A time series deformation estimation in the NW Himalayas using SBAS InSAR technique

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Venkataraman, G.

    2012-12-01

    A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of

  20. Estimating the Burden of Pneumococcal Pneumonia among Adults: A Systematic Review and Meta-Analysis of Diagnostic Techniques

    PubMed Central

    Said, Maria A.; Johnson, Hope L.; Nonyane, Bareng A. S.; Deloria-Knoll, Maria; O′Brien, Katherine L.

    2013-01-01

    Background Pneumococcal pneumonia causes significant morbidity and mortality among adults. Given limitations of diagnostic tests for non-bacteremic pneumococcal pneumonia, most studies report the incidence of bacteremic or invasive pneumococcal disease (IPD), and thus, grossly underestimate the pneumococcal pneumonia burden. We aimed to develop a conceptual and quantitative strategy to estimate the non-bacteremic disease burden among adults with community-acquired pneumonia (CAP) using systematic study methods and the availability of a urine antigen assay. Methods and Findings We performed a systematic literature review of studies providing information on the relative yield of various diagnostic assays (BinaxNOW® S. pneumoniae urine antigen test (UAT) with blood and/or sputum culture) in diagnosing pneumococcal pneumonia. We estimated the proportion of pneumococcal pneumonia that is bacteremic, the proportion of CAP attributable to pneumococcus, and the additional contribution of the Binax UAT beyond conventional diagnostic techniques, using random effects meta-analytic methods and bootstrapping. We included 35 studies in the analysis, predominantly from developed countries. The estimated proportion of pneumococcal pneumonia that is bacteremic was 24.8% (95% CI: 21.3%, 28.9%). The estimated proportion of CAP attributable to pneumococcus was 27.3% (95% CI: 23.9%, 31.1%). The Binax UAT diagnosed an additional 11.4% (95% CI: 9.6, 13.6%) of CAP beyond conventional techniques. We were limited by the fact that not all patients underwent all diagnostic tests and by the sensitivity and specificity of the diagnostic tests themselves. We address these resulting biases and provide a range of plausible values in order to estimate the burden of pneumococcal pneumonia among adults. Conclusions Estimating the adult burden of pneumococcal disease from bacteremic pneumococcal pneumonia data alone significantly underestimates the true burden of disease in adults. For every case of

  1. Quantitative estimation of climatic parameters from vegetation data in North America by the mutual climatic range technique

    USGS Publications Warehouse

    Anderson, Katherine H.; Bartlein, Patrick J.; Strickland, Laura E.; Pelltier, Richard T.; Thompson, Robert S.; Shafer, Sarah L.

    2012-01-01

    The mutual climatic range (MCR) technique is perhaps the most widely used method for estimating past climatic parameters from fossil assemblages, largely because it can be conducted on a simple list of the taxa present in an assemblage. When applied to plant macrofossil data, this unweighted approach (MCRun) will frequently identify a large range for a given climatic parameter where the species in an assemblage can theoretically live together. To narrow this range, we devised a new weighted approach (MCRwt) that employs information from the modern relations between climatic parameters and plant distributions to lessen the influence of the "tails" of the distributions of the climatic data associated with the taxa in an assemblage. To assess the performance of the MCR approaches, we applied them to a set of modern climatic data and plant distributions on a 25-km grid for North America, and compared observed and estimated climatic values for each grid point. In general, MCRwt was superior to MCRun in providing smaller anomalies, less bias, and better correlations between observed and estimated values. However, by the same measures, the results of Modern Analog Technique (MAT) approaches were superior to MCRwt. Although this might be reason to favor MAT approaches, they are based on assumptions that may not be valid for paleoclimatic reconstructions, including that: 1) the absence of a taxon from a fossil sample is meaningful, 2) plant associations were largely unaffected by past changes in either levels of atmospheric carbon dioxide or in the seasonal distributions of solar radiation, and 3) plant associations of the past are adequately represented on the modern landscape. To illustrate the application of these MCR and MAT approaches to paleoclimatic reconstructions, we applied them to a Pleistocene paleobotanical assemblage from the western United States. From our examinations of the estimates of modern and past climates from vegetation assemblages, we conclude that

  2. Cost estimating methods for advanced space systems

    NASA Technical Reports Server (NTRS)

    Cyr, Kelley

    1994-01-01

    NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.

  3. Aerodynamic measurement techniques. [laser based diagnostic techniques

    NASA Technical Reports Server (NTRS)

    Hunter, W. W., Jr.

    1976-01-01

    Laser characteristics of intensity, monochromatic, spatial coherence, and temporal coherence were developed to advance laser based diagnostic techniques for aerodynamic related research. Two broad categories of visualization and optical measurements were considered, and three techniques received significant attention. These are holography, laser velocimetry, and Raman scattering. Examples of the quantitative laser velocimeter and Raman scattering measurements of velocity, temperature, and density indicated the potential of these nonintrusive techniques.

  4. On estimating the phase of a periodic waveform in additive Gaussian noise, part 3

    NASA Technical Reports Server (NTRS)

    Rauch, L. L.

    1991-01-01

    Motivated by advances in signal processing technology that support more complex algorithms, researchers have taken a new look at the problem of estimating the phase and other parameters of a nearly periodic waveform in additive Gaussian noise, based on observation during a given time interval. Parts 1 and 2 are very briefly reviewed. In part 3, the actual performances of some of the highly nonlinear estimation algorithms of parts 1 and 2 are evaluated by numerical simulation using Monte Carlo techniques.

  5. Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?

    PubMed

    Pita, Inês; Magro, Fernando

    2018-01-01

    Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.

  6. Conference Proceedings on Guidance and Control Techniques for Advanced Space Vehicles (37th) Held at Florence, Italy on 27-30 September 1983.

    DTIC Science & Technology

    1984-01-01

    P AD-A14l 969 CONFERENCE PROCEEDINGS ON GUIDANCE AND CONTROL 1 TECHNIQUES FOR ADVANCED SP-.(U,) ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT...findings of these various planning groups relativie to the ’e for advanced controls technology, and the perceived status of the technology t. me-,t... control of large flexible spacecraft. The program has also involved experimental activities to guide Ind validate the theoretical work. The

  7. Estimate of mortality reduction with implementation of advanced automatic collision notification.

    PubMed

    Lee, Ellen; Wu, Jingshu; Kang, Thomas; Craig, Matthew

    2017-05-29

    Advanced Automatic Collision Notification (AACN) is a system on a motor vehicle that notifies a public safety answering point (PSAP), either directly or through a third party, that the vehicle has had a crash. AACN systems enable earlier notification of a motor vehicle crash and provide an injury prediction that can help dispatchers and first responders make better decisions about how and where to transport the patient, thus getting the patient to definitive care sooner. The purposes of the current research are to identify the target population that could benefit from AACN, and to develop a reasonable estimate range of potential lives saved with implementation of AACN within the vehicle fleet. Data from the Fatality Analysis Reporting System (FARS) years 2009-2015 and National Automotive Sampling System-Crashworthiness Data System (NASS-CDS) years 2000-2015 were obtained. FARS data were used to determine absolute estimates of the target population who may receive benefit from AACN. These estimates accounted for a number of factors, such as whether a fatal occupant had nearby access to a trauma center and also was correctly identified by the injury severity prediction algorithm as having a "high probability of severe injury." NASS-CDS data were used to provide relative comparisons among subsets of the population. Specifically, relative survival rate ratios between occupants treated at trauma centers versus at non-trauma centers were determined using the nonparametric Kaplan-Meier estimator. Finally, the fatality reduction rate associated with trauma center care was combined with the previously published fatality reduction rate for faster notification time to develop a range for possible lives saved. Two relevant target populations were identified. A larger subset of 6893 fatalities can benefit only from earlier notification associated with AACN. A smaller subgroup of between 1495 and 2330 fatalities can benefit from both earlier notification and change in treatment

  8. PREFACE: Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques

    NASA Astrophysics Data System (ADS)

    Sakurai, Kenji

    2010-12-01

    measurement. Advances in such technologies are bringing with them new opportunities in surface and buried interface science. In the not too distant future, we will publish a special issue or a book detailing such progress. Exploring surfaces and buried interfaces of functional materials by advanced x-ray and neutron techniques contents Lateral uniformity in chemical composition along a buried reaction front in polymers using off-specular reflectivity Kristopher A Lavery, Vivek M Prabhu, Sushil Satija and Wen-li Wu Orientation dependence of Pd growth on Au electrode surfaces M Takahasi, K Tamura, J Mizuki, T Kondo and K Uosaki A grazing incidence small-angle x-ray scattering analysis on capped Ge nanodots in layer structures Hiroshi Okuda, Masayuki Kato, Keiji Kuno, Shojiro Ochiai, Noritaka Usami, Kazuo Nakajima and Osami Sakata High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer Kazuhiko Omote X-ray analysis of mesoporous silica thin films templated by Brij58 surfactant S Fall, M Kulij and A Gibaud Review of the applications of x-ray refraction and the x-ray waveguide phenomenon to estimation of film structures Kouichi Hayashi Epitaxial growth of largely mismatched crystals on H-terminated Si(111) surfaces Hidehito Asaoka Novel TiO2/ZnO multilayer mirrors at 'water-window' wavelengths fabricated by atomic layer epitaxy H Kumagai, Y Tanaka, M Murata, Y Masuda and T Shinagawa Depth-selective structural analysis of thin films using total-external-reflection x-ray diffraction Tomoaki Kawamura and Hiroo Omi Structures of Yb nanoparticle thin films grown by deposition in He and N2 gas atmospheres: AFM and x-ray reflectivity studies Martin Jerab and Kenji Sakurai Ga and As composition profiles in InP/GaInAs/InP heterostructures—x-ray CTR scattering and cross-sectional STM measurements Yoshikazu Takeda, Masao Tabuchi and Arao Nakamura Polarized neutron reflectivity study of a thermally treated MnIr/CoFe exchange bias system Naoki

  9. Estimating rainfall time series and model parameter distributions using model data reduction and inversion techniques

    NASA Astrophysics Data System (ADS)

    Wright, Ashley J.; Walker, Jeffrey P.; Pauwels, Valentijn R. N.

    2017-08-01

    Floods are devastating natural hazards. To provide accurate, precise, and timely flood forecasts, there is a need to understand the uncertainties associated within an entire rainfall time series, even when rainfall was not observed. The estimation of an entire rainfall time series and model parameter distributions from streamflow observations in complex dynamic catchments adds skill to current areal rainfall estimation methods, allows for the uncertainty of entire rainfall input time series to be considered when estimating model parameters, and provides the ability to improve rainfall estimates from poorly gauged catchments. Current methods to estimate entire rainfall time series from streamflow records are unable to adequately invert complex nonlinear hydrologic systems. This study aims to explore the use of wavelets in the estimation of rainfall time series from streamflow records. Using the Discrete Wavelet Transform (DWT) to reduce rainfall dimensionality for the catchment of Warwick, Queensland, Australia, it is shown that model parameter distributions and an entire rainfall time series can be estimated. Including rainfall in the estimation process improves streamflow simulations by a factor of up to 1.78. This is achieved while estimating an entire rainfall time series, inclusive of days when none was observed. It is shown that the choice of wavelet can have a considerable impact on the robustness of the inversion. Combining the use of a likelihood function that considers rainfall and streamflow errors with the use of the DWT as a model data reduction technique allows the joint inference of hydrologic model parameters along with rainfall.

  10. Using remote sensing and GIS techniques to estimate discharge and recharge. fluxes for the Death Valley regional groundwater flow system, USA

    USGS Publications Warehouse

    D'Agnese, F. A.; Faunt, C.C.; Keith, Turner A.

    1996-01-01

    The recharge and discharge components of the Death Valley regional groundwater flow system were defined by remote sensing and GIS techniques that integrated disparate data types to develop a spatially complex representation of near-surface hydrological processes. Image classification methods were applied to multispectral satellite data to produce a vegetation map. This map provided a basis for subsequent evapotranspiration and infiltration estimations. The vegetation map was combined with ancillary data in a GIS to delineate different types of wetlands, phreatophytes and wet playa areas. Existing evapotranspiration-rate estimates were then used to calculate discharge volumes for these areas. A previously used empirical method of groundwater recharge estimation was modified by GIS methods to incorporate data describing soil-moisture conditions, and a recharge potential map was produced. These discharge and recharge maps were readily converted to data arrays for numerical modelling codes. Inverse parameter estimation techniques also used these data to evaluate the reliability and sensitivity of estimated values.

  11. SPRUCE Advanced Molecular Techniques Provide a Rigorous Method for Characterizing Organic Matter Quality in Complex Systems: Supporting Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, Rachel M; Tfaily, Malak M

    These data are provided in support of the Commentary, Advanced molecular techniques provide a rigorous method for characterizing organic matter quality in complex systems, Wilson and Tfaily (2018). Measurement results demonstrate that optical characterization of peatland dissolved organic matter (DOM) may not fully capture classically identified chemical characteristics and may, therefore, not be the best measure of organic matter quality.

  12. Food consumption and digestion time estimation of spotted scat, Scatophagus argus, using X-radiography technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.

    The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (S{sub max}) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W{sup 2.93}. Gastric emptying time was estimated using a qualitative X-radiographymore » technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO{sub 4}) paste injected in the wet shrimp in proportion to the body weight. The BaSO{sub 4} was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.« less

  13. Food consumption and digestion time estimation of spotted scat, Scatophagus argus, using X-radiography technique

    NASA Astrophysics Data System (ADS)

    Hashim, Marina; Abidin, Diana Atiqah Zainal; Das, Simon K.; Ghaffar, Mazlan Abd.

    2014-09-01

    The present study was conducted to investigate the food consumption pattern and gastric emptying time using x-radiography technique in scats fish, Scatophagus argus feeding to satiation in laboratory conditions. Prior to feeding experiment, fish of various sizes were examined their stomach volume, using freshly prepared stomachs ligatured at the tips of the burret, where the maximum amount of distilled water collected in the stomach were measured (ml). Stomach volume is correlated with maximum food intake (Smax) and it can estimate the maximum stomach distension by allometric model i.e volume=0.0000089W2.93. Gastric emptying time was estimated using a qualitative X-radiography technique, where the fish of various sizes were fed to satiation at different time since feeding. All the experimental fish was feed into satiation using radio-opaque barium sulphate (BaSO4) paste injected in the wet shrimp in proportion to the body weight. The BaSO4 was found suitable to track the movement of feed/prey in the stomach over time and gastric emptying time of scats fish can be estimated. The results of qualitative X-Radiography observation of gastric motility, showed the fish (200 gm) that fed to maximum satiation meal (circa 11 gm) completely emptied their stomach within 30 - 36 hrs. The results of the present study will provide the first baseline information on the stomach volume, gastric emptying of scats fish in captivity.

  14. Robust Bayesian Fluorescence Lifetime Estimation, Decay Model Selection and Instrument Response Determination for Low-Intensity FLIM Imaging

    PubMed Central

    Rowley, Mark I.; Coolen, Anthonius C. C.; Vojnovic, Borivoj; Barber, Paul R.

    2016-01-01

    We present novel Bayesian methods for the analysis of exponential decay data that exploit the evidence carried by every detected decay event and enables robust extension to advanced processing. Our algorithms are presented in the context of fluorescence lifetime imaging microscopy (FLIM) and particular attention has been paid to model the time-domain system (based on time-correlated single photon counting) with unprecedented accuracy. We present estimates of decay parameters for mono- and bi-exponential systems, offering up to a factor of two improvement in accuracy compared to previous popular techniques. Results of the analysis of synthetic and experimental data are presented, and areas where the superior precision of our techniques can be exploited in Förster Resonance Energy Transfer (FRET) experiments are described. Furthermore, we demonstrate two advanced processing methods: decay model selection to choose between differing models such as mono- and bi-exponential, and the simultaneous estimation of instrument and decay parameters. PMID:27355322

  15. The area-time-integral technique to estimate convective rain volumes over areas applied to satellite data - A preliminary investigation

    NASA Technical Reports Server (NTRS)

    Doneaud, Andre A.; Miller, James R., Jr.; Johnson, L. Ronald; Vonder Haar, Thomas H.; Laybe, Patrick

    1987-01-01

    The use of the area-time-integral (ATI) technique, based only on satellite data, to estimate convective rain volume over a moving target is examined. The technique is based on the correlation between the radar echo area coverage integrated over the lifetime of the storm and the radar estimated rain volume. The processing of the GOES and radar data collected in 1981 is described. The radar and satellite parameters for six convective clusters from storm events occurring on June 12 and July 2, 1981 are analyzed and compared in terms of time steps and cluster lifetimes. Rain volume is calculated by first using the regression analysis to generate the regression equation used to obtain the ATI; the ATI versus rain volume relation is then employed to compute rain volume. The data reveal that the ATI technique using satellite data is applicable to the calculation of rain volume.

  16. Porosity and hydraulic conductivity estimation of the basaltic aquifer in Southern Syria by using nuclear and electrical well logging techniques

    NASA Astrophysics Data System (ADS)

    Asfahani, Jamal

    2017-08-01

    An alternative approach using nuclear neutron-porosity and electrical resistivity well logging of long (64 inch) and short (16 inch) normal techniques is proposed to estimate the porosity and the hydraulic conductivity ( K) of the basaltic aquifers in Southern Syria. This method is applied on the available logs of Kodana well in Southern Syria. It has been found that the obtained K value by applying this technique seems to be reasonable and comparable with the hydraulic conductivity value of 3.09 m/day obtained by the pumping test carried out at Kodana well. The proposed alternative well logging methodology seems as promising and could be practiced in the basaltic environments for the estimation of hydraulic conductivity parameter. However, more detailed researches are still required to make this proposed technique very performed in basaltic environments.

  17. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John M.; Herren, Kenneth A.

    2008-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  18. Space Vehicle Pose Estimation via Optical Correlation and Nonlinear Estimation

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Herren, Kenneth

    2007-01-01

    A technique for 6-degree-of-freedom (6DOF) pose estimation of space vehicles is being developed. This technique draws upon recent developments in implementing optical correlation measurements in a nonlinear estimator, which relates the optical correlation measurements to the pose states (orientation and position). For the optical correlator, the use of both conjugate filters and binary, phase-only filters in the design of synthetic discriminant function (SDF) filters is explored. A static neural network is trained a priori and used as the nonlinear estimator. New commercial animation and image rendering software is exploited to design the SDF filters and to generate a large filter set with which to train the neural network. The technique is applied to pose estimation for rendezvous and docking of free-flying spacecraft and to terrestrial surface mobility systems for NASA's Vision for Space Exploration. Quantitative pose estimation performance will be reported. Advantages and disadvantages of the implementation of this technique are discussed.

  19. Constraining the atmosphere of GJ 1214b using an optimal estimation technique

    NASA Astrophysics Data System (ADS)

    Barstow, J. K.; Aigrain, S.; Irwin, P. G. J.; Fletcher, L. N.; Lee, J.-M.

    2013-09-01

    We explore cloudy, extended H2-He atmosphere scenarios for the warm super-Earth GJ 1214b using an optimal estimation retrieval technique. This planet, orbiting an M4.5 star only 13 pc from the Earth, is of particular interest because it lies between the Earth and Neptune in size and may be a member of a new class of planet that is neither terrestrial nor gas giant. Its relatively flat transmission spectrum has so far made atmospheric characterization difficult. The Non-linear optimal Estimator for MultivariateE spectral analySIS (NEMESIS) algorithm is used to explore the degenerate model parameter space for a cloudy, H2-He-dominated atmosphere scenario. Optimal estimation is a data-led approach that allows solutions beyond the range permitted by ab initio equilibrium model atmosphere calculations, and as such prevents restriction from prior expectations. We show that optimal estimation retrieval is a powerful tool for this kind of study, and present an exploration of the degenerate atmospheric scenarios for GJ 1214b. Whilst we find a family of solutions that provide a very good fit to the data, the quality and coverage of these data are insufficient for us to more precisely determine the abundances of cloud and trace gases given an H2-He atmosphere, and we also cannot rule out the possibility of a high molecular weight atmosphere. Future ground- and space-based observations will provide the opportunity to confirm or rule out an extended H2-He atmosphere, but more precise constraints will be limited by intrinsic degeneracies in the retrieval problem, such as variations in cloud top pressure and temperature.

  20. Advanced Neuroimaging in Traumatic Brain Injury

    PubMed Central

    Edlow, Brian L.; Wu, Ona

    2013-01-01

    Advances in structural and functional neuroimaging have occurred at a rapid pace over the past two decades. Novel techniques for measuring cerebral blood flow, metabolism, white matter connectivity, and neural network activation have great potential to improve the accuracy of diagnosis and prognosis for patients with traumatic brain injury (TBI), while also providing biomarkers to guide the development of new therapies. Several of these advanced imaging modalities are currently being implemented into clinical practice, whereas others require further development and validation. Ultimately, for advanced neuroimaging techniques to reach their full potential and improve clinical care for the many civilians and military personnel affected by TBI, it is critical for clinicians to understand the applications and methodological limitations of each technique. In this review, we examine recent advances in structural and functional neuroimaging and the potential applications of these techniques to the clinical care of patients with TBI. We also discuss pitfalls and confounders that should be considered when interpreting data from each technique. Finally, given the vast amounts of advanced imaging data that will soon be available to clinicians, we discuss strategies for optimizing data integration, visualization and interpretation. PMID:23361483

  1. Advanced Visualization and Interactive Display Rapid Innovation and Discovery Evaluation Research (VISRIDER) Program Task 6: Point Cloud Visualization Techniques for Desktop and Web Platforms

    DTIC Science & Technology

    2017-04-01

    ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH (VISRIDER) PROGRAM TASK 6: POINT CLOUD...To) OCT 2013 – SEP 2014 4. TITLE AND SUBTITLE ADVANCED VISUALIZATION AND INTERACTIVE DISPLAY RAPID INNOVATION AND DISCOVERY EVALUATION RESEARCH...various point cloud visualization techniques for viewing large scale LiDAR datasets. Evaluate their potential use for thick client desktop platforms

  2. Documenting for Posterity: Advocating the Use of Advanced Recording Techniques for Documentation in the Field of Building Archaeology

    NASA Astrophysics Data System (ADS)

    De Vos, P. J.

    2017-08-01

    Since the new millennium, living in historic cities has become extremely popular in the Netherlands. As a consequence, historic environments are being adapted to meet modern living standards. Houses are constantly subjected to development, restoration and renovation. Although most projects are carried out with great care and strive to preserve and respect as much historic material as possible, nevertheless a significant amount of historical fabric disappears. This puts enormous pressure on building archaeologists that struggle to rapidly and accurately capture in situ authentic material and historical evidence in the midst of construction works. In Leiden, a medieval city that flourished during the seventeenth century and that today counts over 3,000 listed monuments, a solution to the problem has been found with the implementation of advanced recording techniques. Since 2014, building archaeologists of the city council have experienced first-hand that new recording techniques, such as laser scanning and photogrammetry, have dramatically decreased time spent on site with documentation. Time they now use to uncover, analyse and interpret the recovered historical data. Nevertheless, within building archaeology education, a strong case is made for hand drawing as a method for understanding a building, emphasising the importance of close observation and physical contact with the subject. In this paper, the use of advanced recording techniques in building archaeology is being advocated, confronting traditional educational theory with practise, and research tradition with the rapid rise of new recording technologies.

  3. Boundary methods for mode estimation

    NASA Astrophysics Data System (ADS)

    Pierson, William E., Jr.; Ulug, Batuhan; Ahalt, Stanley C.

    1999-08-01

    This paper investigates the use of Boundary Methods (BMs), a collection of tools used for distribution analysis, as a method for estimating the number of modes associated with a given data set. Model order information of this type is required by several pattern recognition applications. The BM technique provides a novel approach to this parameter estimation problem and is comparable in terms of both accuracy and computations to other popular mode estimation techniques currently found in the literature and automatic target recognition applications. This paper explains the methodology used in the BM approach to mode estimation. Also, this paper quickly reviews other common mode estimation techniques and describes the empirical investigation used to explore the relationship of the BM technique to other mode estimation techniques. Specifically, the accuracy and computational efficiency of the BM technique are compared quantitatively to the a mixture of Gaussian (MOG) approach and a k-means approach to model order estimation. The stopping criteria of the MOG and k-means techniques is the Akaike Information Criteria (AIC).

  4. Rain estimation from satellites: An examination of the Griffith-Woodley technique

    NASA Technical Reports Server (NTRS)

    Negri, A. J.; Adler, R. F.; Wetzel, P. J.

    1983-01-01

    The Griffith-Woodley Technique (GWT) is an approach to estimating precipitation using infrared observations of clouds from geosynchronous satellites. It is examined in three ways: an analysis of the terms in the GWT equations; a case study of infrared imagery portraying convective development over Florida; and the comparison of a simplified equation set and resultant rain map to results using the GWT. The objective is to determine the dominant factors in the calculation of GWT rain estimates. Analysis of a single day's convection over Florida produced a number of significant insights into various terms in the GWT rainfall equations. Due to the definition of clouds by a threshold isotherm the majority of clouds on this day did not go through an idealized life cycle before losing their identity through merger, splitting, etc. As a result, 85% of the clouds had a defined life of 0.5 or 1 h. For these clouds the terms in the GWT which are dependent on cloud life history become essentially constant. The empirically derived ratio of radar echo area to cloud area is given a singular value (0.02) for 43% of the sample, while the rainrate term is 20.7 mmh-1 for 61% of the sample. For 55% of the sampled clouds the temperature weighting term is identically 1.0. Cloud area itself is highly correlated (r=0.88) with GWT computed rain volume. An important, discriminating parameter in the GWT is the temperature defining the coldest 10% cloud area. The analysis further shows that the two dominant parameters in rainfall estimation are the existence of cold cloud and the duration of cloud over a point.

  5. Technique for estimating the 2- to 500-year flood discharges on unregulated streams in rural Missouri

    USGS Publications Warehouse

    Alexander, Terry W.; Wilson, Gary L.

    1995-01-01

    A generalized least-squares regression technique was used to relate the 2- to 500-year flood discharges from 278 selected streamflow-gaging stations to statistically significant basin characteristics. The regression relations (estimating equations) were defined for three hydrologic regions (I, II, and III) in rural Missouri. Ordinary least-squares regression analyses indicate that drainage area (Regions I, II, and III) and main-channel slope (Regions I and II) are the only basin characteristics needed for computing the 2- to 500-year design-flood discharges at gaged or ungaged stream locations. The resulting generalized least-squares regression equations provide a technique for estimating the 2-, 5-, 10-, 25-, 50-, 100-, and 500-year flood discharges on unregulated streams in rural Missouri. The regression equations for Regions I and II were developed from stream-flow-gaging stations with drainage areas ranging from 0.13 to 11,500 square miles and 0.13 to 14,000 square miles, and main-channel slopes ranging from 1.35 to 150 feet per mile and 1.20 to 279 feet per mile. The regression equations for Region III were developed from streamflow-gaging stations with drainage areas ranging from 0.48 to 1,040 square miles. Standard errors of estimate for the generalized least-squares regression equations in Regions I, II, and m ranged from 30 to 49 percent.

  6. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  7. Recent advances in molecular medicine techniques for the diagnosis, prevention, and control of infectious diseases.

    PubMed

    França, R F O; da Silva, C C; De Paula, S O

    2013-06-01

    In recent years we have observed great advances in our ability to combat infectious diseases. Through the development of novel genetic methodologies, including a better understanding of pathogen biology, pathogenic mechanisms, advances in vaccine development, designing new therapeutic drugs, and optimization of diagnostic tools, significant infectious diseases are now better controlled. Here, we briefly describe recent reports in the literature concentrating on infectious disease control. The focus of this review is to describe the molecular methods widely used in the diagnosis, prevention, and control of infectious diseases with regard to the innovation of molecular techniques. Since the list of pathogenic microorganisms is extensive, we emphasize some of the major human infectious diseases (AIDS, tuberculosis, malaria, rotavirus, herpes virus, viral hepatitis, and dengue fever). As a consequence of these developments, infectious diseases will be more accurately and effectively treated; safe and effective vaccines are being developed and rapid detection of infectious agents now permits countermeasures to avoid potential outbreaks and epidemics. But, despite considerable progress, infectious diseases remain a strong challenge to human survival.

  8. An estimate of the noise shielding on the fuselage resulting from installing a short duct around an advanced propeller

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.

    1988-01-01

    A simple barrier shielding model was used to estimate the amount of noise shielding on the fuselage that could result from installing a short duct around a wing-mounted advanced propeller. With the propeller located one-third of the duct length from the inlet, estimates for the maximum blade passing tone attenuation varied from 7 dB for a duct 0.25 propeller diameter long to 16.75 dB for a duct 1 diameter long. Attenuations for the higher harmonics would be even larger because of their shorter wavelengths relative to the duct length. These estimates show that the fuselage noise reduction potential of a ducted compared with an unducted propeller is significant. Even more reduction might occur if acoustic attenuation material were installed in the duct.

  9. The advantages, and challenges, in using multiple techniques in the estimation of surface water-groundwater fluxes.

    NASA Astrophysics Data System (ADS)

    Shanafield, M.; Cook, P. G.

    2014-12-01

    When estimating surface water-groundwater fluxes, the use of complimentary techniques helps to fill in uncertainties in any individual method, and to potentially gain a better understanding of spatial and temporal variability in a system. It can also be a way of preventing the loss of data during infrequent and unpredictable flow events. For example, much of arid Australia relies on groundwater, which is recharged by streamflow through ephemeral streams during flood events. Three recent surface water/groundwater investigations from arid Australian systems provide good examples of how using multiple field and analysis techniques can help to more fully characterize surface water-groundwater fluxes, but can also result in conflicting values over varying spatial and temporal scales. In the Pilbara region of Western Australia, combining streambed radon measurements, vertical heat transport modeling, and a tracer test helped constrain very low streambed residence times, which are on the order of minutes. Spatial and temporal variability between the methods yielded hyporheic exchange estimates between 10-4 m2 s-1 and 4.2 x 10-2 m2 s-1. In South Australia, three-dimensional heat transport modeling captured heterogeneity within 20 square meters of streambed, identifying areas of sandy soil (flux rates of up to 3 m d-1) and clay (flux rates too slow to be accurately characterized). Streamflow front modeling showed similar flux rates, but averaged over 100 m long stream segments for a 1.6 km reach. Finally, in central Australia, several methods are used to decipher whether any of the flow down a highly ephemeral river contributes to regional groundwater recharge, showing that evaporation and evapotranspiration likely accounts for all of the infiltration into the perched aquifer. Lessons learned from these examples demonstrate the influences of the spatial and temporal variability between techniques on estimated fluxes.

  10. Advances in hypersonic vehicle synthesis with application to studies of advanced thermal protection system

    NASA Technical Reports Server (NTRS)

    Ardema, Mark D.

    1995-01-01

    This report summarizes the work entitled 'Advances in Hypersonic Vehicle Synthesis with Application to Studies of Advanced Thermal Protection Systems.' The effort was in two areas: (1) development of advanced methods of trajectory and propulsion system optimization; and (2) development of advanced methods of structural weight estimation. The majority of the effort was spent in the trajectory area.

  11. Space Shuttle propulsion parameter estimation using optimal estimation techniques

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This fourth monthly progress report again contains corrections and additions to the previously submitted reports. The additions include a simplified SRB model that is directly incorporated into the estimation algorithm and provides the required partial derivatives. The resulting partial derivatives are analytical rather than numerical as would be the case using the SOBER routines. The filter and smoother routine developments have continued. These routines are being checked out.

  12. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  13. Comparing the accuracy and precision of three techniques used for estimating missing landmarks when reconstructing fossil hominin crania.

    PubMed

    Neeser, Rudolph; Ackermann, Rebecca Rogers; Gain, James

    2009-09-01

    Various methodological approaches have been used for reconstructing fossil hominin remains in order to increase sample sizes and to better understand morphological variation. Among these, morphometric quantitative techniques for reconstruction are increasingly common. Here we compare the accuracy of three approaches--mean substitution, thin plate splines, and multiple linear regression--for estimating missing landmarks of damaged fossil specimens. Comparisons are made varying the number of missing landmarks, sample sizes, and the reference species of the population used to perform the estimation. The testing is performed on landmark data from individuals of Homo sapiens, Pan troglodytes and Gorilla gorilla, and nine hominin fossil specimens. Results suggest that when a small, same-species fossil reference sample is available to guide reconstructions, thin plate spline approaches perform best. However, if no such sample is available (or if the species of the damaged individual is uncertain), estimates of missing morphology based on a single individual (or even a small sample) of close taxonomic affinity are less accurate than those based on a large sample of individuals drawn from more distantly related extant populations using a technique (such as a regression method) able to leverage the information (e.g., variation/covariation patterning) contained in this large sample. Thin plate splines also show an unexpectedly large amount of error in estimating landmarks, especially over large areas. Recommendations are made for estimating missing landmarks under various scenarios. Copyright 2009 Wiley-Liss, Inc.

  14. A new Bayesian recursive technique for parameter estimation

    NASA Astrophysics Data System (ADS)

    Kaheil, Yasir H.; Gill, M. Kashif; McKee, Mac; Bastidas, Luis

    2006-08-01

    The performance of any model depends on how well its associated parameters are estimated. In the current application, a localized Bayesian recursive estimation (LOBARE) approach is devised for parameter estimation. The LOBARE methodology is an extension of the Bayesian recursive estimation (BARE) method. It is applied in this paper on two different types of models: an artificial intelligence (AI) model in the form of a support vector machine (SVM) application for forecasting soil moisture and a conceptual rainfall-runoff (CRR) model represented by the Sacramento soil moisture accounting (SAC-SMA) model. Support vector machines, based on statistical learning theory (SLT), represent the modeling task as a quadratic optimization problem and have already been used in various applications in hydrology. They require estimation of three parameters. SAC-SMA is a very well known model that estimates runoff. It has a 13-dimensional parameter space. In the LOBARE approach presented here, Bayesian inference is used in an iterative fashion to estimate the parameter space that will most likely enclose a best parameter set. This is done by narrowing the sampling space through updating the "parent" bounds based on their fitness. These bounds are actually the parameter sets that were selected by BARE runs on subspaces of the initial parameter space. The new approach results in faster convergence toward the optimal parameter set using minimum training/calibration data and fewer sets of parameter values. The efficacy of the localized methodology is also compared with the previously used BARE algorithm.

  15. Utilization of advanced calibration techniques in stochastic rock fall analysis of quarry slopes

    NASA Astrophysics Data System (ADS)

    Preh, Alexander; Ahmadabadi, Morteza; Kolenprat, Bernd

    2016-04-01

    In order to study rock fall dynamics, a research project was conducted by the Vienna University of Technology and the Austrian Central Labour Inspectorate (Federal Ministry of Labour, Social Affairs and Consumer Protection). A part of this project included 277 full-scale drop tests at three different quarries in Austria and recording key parameters of the rock fall trajectories. The tests involved a total of 277 boulders ranging from 0.18 to 1.8 m in diameter and from 0.009 to 8.1 Mg in mass. The geology of these sites included strong rock belonging to igneous, metamorphic and volcanic types. In this paper the results of the tests are used for calibration and validation a new stochastic computer model. It is demonstrated that the error of the model (i.e. the difference between observed and simulated results) has a lognormal distribution. Selecting two parameters, advanced calibration techniques including Markov Chain Monte Carlo Technique, Maximum Likelihood and Root Mean Square Error (RMSE) are utilized to minimize the error. Validation of the model based on the cross validation technique reveals that in general, reasonable stochastic approximations of the rock fall trajectories are obtained in all dimensions, including runout, bounce heights and velocities. The approximations are compared to the measured data in terms of median, 95% and maximum values. The results of the comparisons indicate that approximate first-order predictions, using a single set of input parameters, are possible and can be used to aid practical hazard and risk assessment.

  16. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.

    PubMed

    Murphy, James D; Chang, Daniel T; Abelson, Jon; Daly, Megan E; Yeung, Heidi N; Nelson, Lorene M; Koong, Albert C

    2012-02-15

    Radiotherapy may improve the outcome of patients with pancreatic cancer but at an increased cost. In this study, the authors evaluated the cost-effectiveness of modern radiotherapy techniques in the treatment of locally advanced pancreatic cancer. A Markov decision-analytic model was constructed to compare the cost-effectiveness of 4 treatment regimens: gemcitabine alone, gemcitabine plus conventional radiotherapy, gemcitabine plus intensity-modulated radiotherapy (IMRT); and gemcitabine with stereotactic body radiotherapy (SBRT). Patients transitioned between the following 5 health states: stable disease, local progression, distant failure, local and distant failure, and death. Health utility tolls were assessed for radiotherapy and chemotherapy treatments and for radiation toxicity. SBRT increased life expectancy by 0.20 quality-adjusted life years (QALY) at an increased cost of $13,700 compared with gemcitabine alone (incremental cost-effectiveness ratio [ICER] = $69,500 per QALY). SBRT was more effective and less costly than conventional radiotherapy and IMRT. An analysis that excluded SBRT demonstrated that conventional radiotherapy had an ICER of $126,800 per QALY compared with gemcitabine alone, and IMRT had an ICER of $1,584,100 per QALY compared with conventional radiotherapy. A probabilistic sensitivity analysis demonstrated that the probability of cost-effectiveness at a willingness to pay of $50,000 per QALY was 78% for gemcitabine alone, 21% for SBRT, 1.4% for conventional radiotherapy, and 0.01% for IMRT. At a willingness to pay of $200,000 per QALY, the probability of cost-effectiveness was 73% for SBRT, 20% for conventional radiotherapy, 7% for gemcitabine alone, and 0.7% for IMRT. The current results indicated that IMRT in locally advanced pancreatic cancer exceeds what society considers cost-effective. In contrast, combining gemcitabine with SBRT increased clinical effectiveness beyond that of gemcitabine alone at a cost potentially acceptable by

  17. Comparison on three classification techniques for sex estimation from the bone length of Asian children below 19 years old: an analysis using different group of ages.

    PubMed

    Darmawan, M F; Yusuf, Suhaila M; Kadir, M R Abdul; Haron, H

    2015-02-01

    Sex estimation is used in forensic anthropology to assist the identification of individual remains. However, the estimation techniques tend to be unique and applicable only to a certain population. This paper analyzed sex estimation on living individual child below 19 years old using the length of 19 bones of left hand applied for three classification techniques, which were Discriminant Function Analysis (DFA), Support Vector Machine (SVM) and Artificial Neural Network (ANN) multilayer perceptron. These techniques were carried out on X-ray images of the left hand taken from an Asian population data set. All the 19 bones of the left hand were measured using Free Image software, and all the techniques were performed using MATLAB. The group of age "16-19" years old and "7-9" years old were the groups that could be used for sex estimation with as their average of accuracy percentage was above 80%. ANN model was the best classification technique with the highest average of accuracy percentage in the two groups of age compared to other classification techniques. The results show that each classification technique has the best accuracy percentage on each different group of age. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Atrial fibrillation ablation using cryoballoon technology: Recent advances and practical techniques.

    PubMed

    Chen, Shaojie; Schmidt, Boris; Bordignon, Stefano; Bologna, Fabrizio; Perrotta, Laura; Nagase, Takahiko; Chun, K R Julian

    2018-04-16

    Atrial fibrillation (AF) affects 1-2% of the population, and its prevalence is estimated to double in the next 50 years as the population ages. AF results in impaired patients' life quality, deteriorated cardiac function, and even increased mortality. Antiarrhythmic drugs frequently fail to restore sinus rhythm. Catheter ablation is a valuable treatment approach for AF, even as a first-line therapy strategy in selected patients. Effective electrical pulmonary vein isolation (PVI) is the cornerstone of all AF ablation strategies. Use of radiofrequency (RF) catheter in combination of a three-dimensional electroanatomical mapping system is the most established ablation approach. However, catheter ablation of AF is challenging even sometimes for experienced operators. To facilitate catheter ablation of AF without compromising the durability of the pulmonary vein isolation, "single shot" ablation devices have been developed; of them, cryoballoon ablation, is by far the most widely investigated. In this report, we review the current knowledge of AF and discuss the recent evidence in catheter ablation of AF, particularly cryoballoon ablation. Moreover, we review relevant data from the literature as well as our own experience and summarize the key procedural practical techniques in PVI using cryoballoon technology, aiming to shorten the learning curve of the ablation technique and to contribute further to reduction of the disease burden. © 2018 Wiley Periodicals, Inc.

  19. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection.

    PubMed

    Rostami, Ali; Karanis, Panagiotis; Fallahi, Shirzad

    2018-06-01

    Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.

  20. Advanced applications of numerical modelling techniques for clay extruder design

    NASA Astrophysics Data System (ADS)

    Kandasamy, Saravanakumar

    Ceramic materials play a vital role in our day to day life. Recent advances in research, manufacture and processing techniques and production methodologies have broadened the scope of ceramic products such as bricks, pipes and tiles, especially in the construction industry. These are mainly manufactured using an extrusion process in auger extruders. During their long history of application in the ceramic industry, most of the design developments of extruder systems have resulted from expensive laboratory-based experimental work and field-based trial and error runs. In spite of these design developments, the auger extruders continue to be energy intensive devices with high operating costs. Limited understanding of the physical process involved in the process and the cost and time requirements of lab-based experiments were found to be the major obstacles in the further development of auger extruders.An attempt has been made herein to use Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) based numerical modelling techniques to reduce the costs and time associated with research into design improvement by experimental trials. These two techniques, although used widely in other engineering applications, have rarely been applied for auger extruder development. This had been due to a number of reasons including technical limitations of CFD tools previously available. Modern CFD and FEA software packages have much enhanced capabilities and allow the modelling of the flow of complex fluids such as clay.This research work presents a methodology in using Herschel-Bulkley's fluid flow based CFD model to simulate and assess the flow of clay-water mixture through the extruder and the die of a vacuum de-airing type clay extrusion unit used in ceramic extrusion. The extruder design and the operating parameters were varied to study their influence on the power consumption and the extrusion pressure. The model results were then validated using results from

  1. Conditional survival estimates improve over time for patients with advanced melanoma: results from a population-based analysis.

    PubMed

    Xing, Yan; Chang, George J; Hu, Chung-Yuan; Askew, Robert L; Ross, Merrick I; Gershenwald, Jeffrey E; Lee, Jeffrey E; Mansfield, Paul F; Lucci, Anthony; Cormier, Janice N

    2010-05-01

    Conditional survival (CS) has emerged as a clinically relevant measure of prognosis for cancer survivors. The objective of this analysis was to provide melanoma-specific CS estimates to help clinicians promote more informed patient decision making. Patients with melanoma and at least 5 years of follow-up were identified from the Surveillance Epidemiology and End Results registry (1988-2000). By using the methods of Kaplan and Meier, stage-specific, 5-year CS estimates were independently calculated for survivors for each year after diagnosis. Stage-specific multivariate Cox regression models including baseline survivor functions were used to calculate adjusted melanoma-specific CS for different subgroups of patients further stratified by age, gender, race, marital status, anatomic tumor location, and tumor histology. Five-year CS estimates for patients with stage I disease remained constant at 97% annually, while for patients with stages II, III, and IV disease, 5-year CS estimates from time 0 (diagnosis) to 5 years improved from 72% to 86%, 51% to 87%, and 19% to 84%, respectively. Multivariate CS analysis revealed that differences in stages II through IV CS based on age, gender, and race decreased over time. Five-year melanoma-specific CS estimates improve dramatically over time for survivors with advanced stages of disease. These prognostic data are critical to patients for both treatment and nontreatment related life decisions. (c) 2010 American Cancer Society.

  2. Multielemental speciation analysis by advanced hyphenated technique - HPLC/ICP-MS: A review.

    PubMed

    Marcinkowska, Monika; Barałkiewicz, Danuta

    2016-12-01

    Speciation analysis has become an invaluable tool in human health risk assessment, environmental monitoring or food quality control. Another step is to develop reliable multielemental speciation methodologies, to reduce costs, waste and time needed for the analysis. Separation and detection of species of several elements in a single analytical run can be accomplished by high performance liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC/ICP-MS). Our review assembles articles concerning multielemental speciation determination of: As, Se, Cr, Sb, I, Br, Pb, Hg, V, Mo, Te, Tl, Cd and W in environmental, biological, food and clinical samples analyzed with HPLC/ICP-MS. It addresses the procedures in terms of following issues: sample collection and pretreatment, selection of optimal conditions for elements species separation by HPLC and determination using ICP-MS as well as metrological approach. The presented work is the first review article concerning multielemental speciation analysis by advanced hyphenated technique HPLC/ICP-MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Advanced planetary studies

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of planetary advanced studies and planning support are summarized. The scope of analyses includes cost estimation research, planetary mission performance, penetrator mission concepts for airless planets/satellites, geology orbiter payload adaptability, lunar mission performance, and advanced planning activities. Study reports and related publications are included in a bibliography section.

  4. Estimation of cocaine consumption in the community: a critical comparison of the results from three complimentary techniques

    PubMed Central

    Reid, Malcolm J; Langford, Katherine H; Grung, Merete; Gjerde, Hallvard; Amundsen, Ellen J; Morland, Jorg; Thomas, Kevin V

    2012-01-01

    Objectives A range of approaches are now available to estimate the level of drug use in the community so it is desirable to critically compare results from the differing techniques. This paper presents a comparison of the results from three methods for estimating the level of cocaine use in the general population. Design The comparison applies to; a set of regional-scale sample survey questionnaires, a representative sample survey on drug use among drivers and an analysis of the quantity of cocaine-related metabolites in sewage. Setting 14 438 participants provided data for the set of regional-scale sample survey questionnaires; 2341 drivers provided oral-fluid samples and untreated sewage from 570 000 people was analysed for biomarkers of cocaine use. All data were collected in Oslo, Norway. Results 0.70 (0.36–1.03) % of drivers tested positive for cocaine use which suggest a prevalence that is higher than the 0.22 (0.13–0.30) % (per day) figure derived from regional-scale survey questionnaires, but the degree to which cocaine consumption in the driver population follows the general population is an unanswered question. Despite the comparatively low-prevalence figure the survey questionnaires did provide estimates of the volume of consumption that are comparable with the amount of cocaine-related metabolites in sewage. Per-user consumption estimates are however highlighted as a significant source of uncertainty as little or no data on the quantities consumed by individuals are available, and much of the existing data are contradictory. Conclusions The comparison carried out in the present study can provide an excellent means of checking the quality and accuracy of the three measurement techniques because they each approach the problem from a different viewpoint. Together the three complimentary techniques provide a well-balanced assessment of the drug-use situation in a given community and identify areas where more research is needed. PMID:23144259

  5. Advances in radiotherapy techniques and delivery for non-small cell lung cancer: benefits of intensity-modulated radiation therapy, proton therapy, and stereotactic body radiation therapy

    PubMed Central

    Diwanji, Tejan P.; Mohindra, Pranshu; Vyfhuis, Melissa; Snider, James W.; Kalavagunta, Chaitanya; Mossahebi, Sina; Yu, Jen; Feigenberg, Steven

    2017-01-01

    The 21st century has seen several paradigm shifts in the treatment of non-small cell lung cancer (NSCLC) in early-stage inoperable disease, definitive locally advanced disease, and the postoperative setting. A key driver in improvement of local disease control has been the significant evolution of radiation therapy techniques in the last three decades, allowing for delivery of definitive radiation doses while limiting exposure of normal tissues. For patients with locally-advanced NSCLC, the advent of volumetric imaging techniques has allowed a shift from 2-dimensional approaches to 3-dimensional conformal radiation therapy (3DCRT). The next generation of 3DCRT, intensity-modulated radiation therapy and volumetric-modulated arc therapy (VMAT), have enabled even more conformal radiation delivery. Clinical evidence has shown that this can improve the quality of life for patients undergoing definitive management of lung cancer. In the early-stage setting, conventional fractionation led to poor outcomes. Evaluation of altered dose fractionation with the previously noted technology advances led to advent of stereotactic body radiation therapy (SBRT). This technique has dramatically improved local control and expanded treatment options for inoperable, early-stage patients. The recent development of proton therapy has opened new avenues for improving conformity and the therapeutic ratio. Evolution of newer proton therapy techniques, such as pencil-beam scanning (PBS), could improve tolerability and possibly allow reexamination of dose escalation. These new progresses, along with significant advances in systemic therapies, have improved survival for lung cancer patients across the spectrum of non-metastatic disease. They have also brought to light new challenges and avenues for further research and improvement. PMID:28529896

  6. Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada

    USGS Publications Warehouse

    Hess, G.W.; Bohman, L.R.

    1996-01-01

    Techniques for estimating monthly mean streamflow at gaged sites and monthly streamflow duration characteristics at ungaged sites in central Nevada were developed using streamflow records at six gaged sites and basin physical and climatic characteristics. Streamflow data at gaged sites were related by regression techniques to concurrent flows at nearby gaging stations so that monthly mean streamflows for periods of missing or no record can be estimated for gaged sites in central Nevada. The standard error of estimate for relations at these sites ranged from 12 to 196 percent. Also, monthly streamflow data for selected percent exceedence levels were used in regression analyses with basin and climatic variables to determine relations for ungaged basins for annual and monthly percent exceedence levels. Analyses indicate that the drainage area and percent of drainage area at altitudes greater than 10,000 feet are the most significant variables. For the annual percent exceedence, the standard error of estimate of the relations for ungaged sites ranged from 51 to 96 percent and standard error of prediction for ungaged sites ranged from 96 to 249 percent. For the monthly percent exceedence values, the standard error of estimate of the relations ranged from 31 to 168 percent, and the standard error of prediction ranged from 115 to 3,124 percent. Reliability and limitations of the estimating methods are described.

  7. Estimating the age of oil palm trees using remote sensing technique

    NASA Astrophysics Data System (ADS)

    Fitrianto, A. C.; Darmawan, A.; Tokimatsu, K.; Sufwandika, M.

    2018-04-01

    One of renewable energy that can be converted into electricity is biomass. Biomass energy or bio energy is the largest source of domestic renewable energy in Indonesia. Since palm oil development is rapidly increasing, Empty Fruit Bunch (EFB) and Mesocarp Fiber (MF) are becoming the highest contributor of oil palm waste. Understanding biomass waste potential is very important for further utilization. Remote sensing technique can be used to detect oil palm trees age based on the canopy density and to estimate the amount of EFB in further analysis. In this research, the percentage of canopy density of oil palm trees/stands depends on their ages and the age is divided into four classes; seeds (<3 years old; <10%), young (3-8 years old; 10-40 %), teenage (9-14 years old; 41-80 %), and mature (15-25 years old; >80 %).

  8. Estimation of Premature Deaths From Lack of Access to Anti-HER2 Therapy for Advanced Breast Cancer in the Brazilian Public Health System.

    PubMed

    Debiasi, Márcio; Reinert, Tomás; Kaliks, Rafael; Amorim, Gilberto; Caleffi, Maira; Sampaio, Carlos; Fernandes, Gustavo Dos Santos; Barrios, Carlos H

    2017-06-01

    Patients with human epidermal growth factor receptor 2 (HER2) -positive metastatic tumors treated in the public health system in Brazil do not have access to trastuzumab. This study aimed to estimate the impact of the lack of access to anti-HER2 therapies on the mortality of these patients. On the basis of published data, the number of patients with HER2-positive advanced breast cancer in 2016 who should receive anti-HER2 targeted therapy was estimated. Three different treatment groups were considered for this hypothetical cohort: chemotherapy alone, chemotherapy plus trastuzumab, and chemotherapy plus trastuzumab and pertuzumab. The number of patients alive after 2 years of follow-up was estimated on the basis of the efficacy results of the pivotal trials considering these interventions. It was calculated that 2,008 women will be diagnosed with advanced HER2-positive breast cancer in Brazil in 2016. It was estimated that only 808 women would be alive in 2018 if they receive only chemotherapy (which is the treatment offered by the public health system). On the other hand, the bar rises to 1,408 women alive in 2018 if they receive chemotherapy plus trastuzumab and 1,576 women alive in 2018 if they receive the gold standard of chemotherapy plus trastuzumab and pertuzumab. Trastuzumab is included in the WHO's list of essential medications, but the Brazilian public health system does not yet provide this treatment to its population with advanced disease. The introduction of trastuzumab and pertuzumab would have a positive effect, preventing premature deaths in women with metastatic HER2-positive breast cancer in Brazil.

  9. Estimation of Premature Deaths From Lack of Access to Anti-HER2 Therapy for Advanced Breast Cancer in the Brazilian Public Health System

    PubMed Central

    Debiasi, Márcio; Reinert, Tomás; Kaliks, Rafael; Amorim, Gilberto; Caleffi, Maira; Sampaio, Carlos; Fernandes, Gustavo dos Santos

    2017-01-01

    Purpose Patients with human epidermal growth factor receptor 2 (HER2) -positive metastatic tumors treated in the public health system in Brazil do not have access to trastuzumab. This study aimed to estimate the impact of the lack of access to anti-HER2 therapies on the mortality of these patients. Methods On the basis of published data, the number of patients with HER2-positive advanced breast cancer in 2016 who should receive anti-HER2 targeted therapy was estimated. Three different treatment groups were considered for this hypothetical cohort: chemotherapy alone, chemotherapy plus trastuzumab, and chemotherapy plus trastuzumab and pertuzumab. The number of patients alive after 2 years of follow-up was estimated on the basis of the efficacy results of the pivotal trials considering these interventions. Results It was calculated that 2,008 women will be diagnosed with advanced HER2-positive breast cancer in Brazil in 2016. It was estimated that only 808 women would be alive in 2018 if they receive only chemotherapy (which is the treatment offered by the public health system). On the other hand, the bar rises to 1,408 women alive in 2018 if they receive chemotherapy plus trastuzumab and 1,576 women alive in 2018 if they receive the gold standard of chemotherapy plus trastuzumab and pertuzumab. Conclusion Trastuzumab is included in the WHO’s list of essential medications, but the Brazilian public health system does not yet provide this treatment to its population with advanced disease. The introduction of trastuzumab and pertuzumab would have a positive effect, preventing premature deaths in women with metastatic HER2-positive breast cancer in Brazil. PMID:28717761

  10. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE PAGES

    Hess, Nancy J.; Pasa-Tolic, Ljiljana; Bailey, Vanessa L.; ...

    2017-04-12

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  11. New understanding of rhizosphere processes enabled by advances in molecular and spatially resolved techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Nancy J.; Paša-Tolić, Ljiljana; Bailey, Vanessa L.

    Understanding the role played by microorganisms within soil systems is challenged by the unique intersection of physics, chemistry, mineralogy and biology in fostering habitat for soil microbial communities. To address these challenges will require observations across multiple spatial and temporal scales to capture the dynamics and emergent behavior from complex and interdependent processes. The heterogeneity and complexity of the rhizosphere require advanced techniques that press the simultaneous frontiers of spatial resolution, analyte sensitivity and specificity, reproducibility, large dynamic range, and high throughput. Fortunately many exciting technical advancements are now available to inform and guide the development of new hypotheses. Themore » aim of this Special issue is to provide a holistic view of the rhizosphere in the perspective of modern molecular biology methodologies that enabled a highly-focused, detailed view on the processes in the rhizosphere, including numerous, strong and complex interactions between plant roots, soil constituents and microorganisms. We discuss the current rhizosphere research challenges and knowledge gaps, as well as perspectives and approaches using newly available state-of-the-art toolboxes. These new approaches and methodologies allow the study of rhizosphere processes and properties, and rhizosphere as a central component of ecosystems and biogeochemical cycles.« less

  12. Dynamic rain fade compensation techniques for the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.

  13. New advanced surface modification technique: titanium oxide ceramic surface implants: long-term clinical results

    NASA Astrophysics Data System (ADS)

    Szabo, Gyorgy; Kovacs, Lajos; Barabas, Jozsef; Nemeth, Zsolt; Maironna, Carlo

    2001-11-01

    The purpose of this paper is to discuss the background to advanced surface modification technologies and to present a new technique, involving the formation of a titanium oxide ceramic coating, with relatively long-term results of its clinical utilization. Three general techniques are used to modify surfaces: the addition or removal of material and the change of material already present. Surface properties can also be changed without the addition or removal of material, through the laser or electron beam thermal treatment. The new technique outlined in this paper relates to the production of a corrosion-resistant 2000-2500 A thick, ceramic oxide layer with a coherent crystalline structure on the surface of titanium implants. The layer is grown electrochemically from the bulk of the metal and is modified by heat treatment. Such oxide ceramic-coated implants have a number of advantageous properties relative to implants covered with various other coatings: a higher external hardness, a greater force of adherence between the titanium and the oxide ceramic coating, a virtually perfect insulation between the organism and the metal (no possibility of metal allergy), etc. The coated implants were subjected to various physical, chemical, electronmicroscopic, etc. tests for a qualitative characterization. Finally, these implants (plates, screws for maxillofacial osteosynthesis and dental root implants) were applied in surgical practice for a period of 10 years. Tests and the experience acquired demonstrated the good properties of the titanium oxide ceramic-coated implants.

  14. A new validation technique for estimations of body segment inertia tensors: Principal axes of inertia do matter.

    PubMed

    Rossi, Marcel M; Alderson, Jacqueline; El-Sallam, Amar; Dowling, James; Reinbolt, Jeffrey; Donnelly, Cyril J

    2016-12-08

    The aims of this study were to: (i) establish a new criterion method to validate inertia tensor estimates by setting the experimental angular velocity data of an airborne objects as ground truth against simulations run with the estimated tensors, and (ii) test the sensitivity of the simulations to changes in the inertia tensor components. A rigid steel cylinder was covered with reflective kinematic markers and projected through a calibrated motion capture volume. Simulations of the airborne motion were run with two models, using inertia tensor estimated with geometric formula or the compound pendulum technique. The deviation angles between experimental (ground truth) and simulated angular velocity vectors and the root mean squared deviation angle were computed for every simulation. Monte Carlo analyses were performed to assess the sensitivity of simulations to changes in magnitude of principal moments of inertia within ±10% and to changes in orientation of principal axes of inertia within ±10° (of the geometric-based inertia tensor). Root mean squared deviation angles ranged between 2.9° and 4.3° for the inertia tensor estimated geometrically, and between 11.7° and 15.2° for the compound pendulum values. Errors up to 10% in magnitude of principal moments of inertia yielded root mean squared deviation angles ranging between 3.2° and 6.6°, and between 5.5° and 7.9° when lumped with errors of 10° in principal axes of inertia orientation. The proposed technique can effectively validate inertia tensors from novel estimation methods of body segment inertial parameter. Principal axes of inertia orientation should not be neglected when modelling human/animal mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Assessment of Demirjian's 8-teeth technique of age estimation and Indian-specific formulas in an East Indian population: A cross-sectional study.

    PubMed

    Rath, Hemamalini; Rath, Rachna; Mahapatra, Sandeep; Debta, Tribikram

    2017-01-01

    The age of an individual can be assessed by a plethora of widely available tooth-based techniques, among which radiological methods prevail. The Demirjian's technique of age assessment based on tooth development stages has been extensively investigated in different populations of the world. The present study is to assess the applicability of Demirjian's modified 8-teeth technique in age estimation of population of East India (Odisha), utilizing Acharya's Indian-specific cubic functions. One hundred and six pretreatment orthodontic radiographs of patients in an age group of 7-23 years with representation from both genders were assessed for eight left mandibular teeth and scored as per the Demirjian's 9-stage criteria for teeth development stages. Age was calculated on the basis of Acharya's Indian formula. Statistical analysis was performed to compare the estimated and actual age. All data were analyzed using SPSS 20.0 (SPSS Inc., Chicago, Illinois, USA) and MS Excel Package. The results revealed that the mean absolute error (MAE) in age estimation of the entire sample was 1.3 years with 50% of the cases having an error rate within ± 1 year. The MAE in males and females (7-16 years) was 1.8 and 1.5, respectively. Likewise, the MAE in males and females (16.1-23 years) was 1.1 and 1.3, respectively. The low error rate in estimating age justifies the application of this modified technique and Acharya's Indian formulas in the present East Indian population.

  16. WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops

    NASA Astrophysics Data System (ADS)

    Li, Dong; Cheng, Tao; Zhou, Kai; Zheng, Hengbiao; Yao, Xia; Tian, Yongchao; Zhu, Yan; Cao, Weixing

    2017-07-01

    Red edge position (REP), defined as the wavelength of the inflexion point in the red edge region (680-760 nm) of the reflectance spectrum, has been widely used to estimate foliar chlorophyll content from reflectance spectra. A number of techniques have been developed for REP extraction in the past three decades, but most of them require data-specific parameterization and the consistence of their performance from leaf to canopy levels remains poorly understood. In this study, we propose a new technique (WREP) to extract REPs based on the application of continuous wavelet transform to reflectance spectra. The REP is determined by the zero-crossing wavelength in the red edge region of a wavelet transformed spectrum for a number of scales of wavelet decomposition. The new technique is simple to implement and requires no parameterization from the user as long as continuous wavelet transforms are applied to reflectance spectra. Its performance was evaluated for estimating leaf chlorophyll content (LCC) and canopy chlorophyll content (CCC) of cereal crops (i.e. rice and wheat) and compared with traditional techniques including linear interpolation, linear extrapolation, polynomial fitting and inverted Gaussian. Our results demonstrated that WREP obtained the best estimation accuracy for both LCC and CCC as compared to traditional techniques. High scales of wavelet decomposition were favorable for the estimation of CCC and low scales for the estimation of LCC. The difference in optimal scale reveals the underlying mechanism of signature transfer from leaf to canopy levels. In addition, crop-specific models were required for the estimation of CCC over the full range. However, a common model could be built with the REPs extracted with Scale 5 of the WREP technique for wheat and rice crops when CCC was less than 2 g/m2 (R2 = 0.73, RMSE = 0.26 g/m2). This insensitivity of WREP to crop type indicates the potential for aerial mapping of chlorophyll content between growth seasons

  17. Quantitative coronary angiography using image recovery techniques for background estimation in unsubtracted images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Jerry T.; Kamyar, Farzad; Molloi, Sabee

    2007-10-15

    Densitometry measurements have been performed previously using subtracted images. However, digital subtraction angiography (DSA) in coronary angiography is highly susceptible to misregistration artifacts due to the temporal separation of background and target images. Misregistration artifacts due to respiration and patient motion occur frequently, and organ motion is unavoidable. Quantitative densitometric techniques would be more clinically feasible if they could be implemented using unsubtracted images. The goal of this study is to evaluate image recovery techniques for densitometry measurements using unsubtracted images. A humanoid phantom and eight swine (25-35 kg) were used to evaluate the accuracy and precision of the followingmore » image recovery techniques: Local averaging (LA), morphological filtering (MF), linear interpolation (LI), and curvature-driven diffusion image inpainting (CDD). Images of iodinated vessel phantoms placed over the heart of the humanoid phantom or swine were acquired. In addition, coronary angiograms were obtained after power injections of a nonionic iodinated contrast solution in an in vivo swine study. Background signals were estimated and removed with LA, MF, LI, and CDD. Iodine masses in the vessel phantoms were quantified and compared to known amounts. Moreover, the total iodine in left anterior descending arteries was measured and compared with DSA measurements. In the humanoid phantom study, the average root mean square errors associated with quantifying iodine mass using LA and MF were approximately 6% and 9%, respectively. The corresponding average root mean square errors associated with quantifying iodine mass using LI and CDD were both approximately 3%. In the in vivo swine study, the root mean square errors associated with quantifying iodine in the vessel phantoms with LA and MF were approximately 5% and 12%, respectively. The corresponding average root mean square errors using LI and CDD were both 3%. The standard

  18. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.

    PubMed

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-03-15

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

  19. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique

    PubMed Central

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-01-01

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733

  20. A pilot study of a simple screening technique for estimation of salivary flow.

    PubMed

    Kanehira, Takashi; Yamaguchi, Tomotaka; Takehara, Junji; Kashiwazaki, Haruhiko; Abe, Takae; Morita, Manabu; Asano, Kouzo; Fujii, Yoshinori; Sakamoto, Wataru

    2009-09-01

    The purpose of this study was to develop a simple screening technique for estimation of salivary flow and to test the usefulness of the method for determining decreased salivary flow. A novel assay system comprising 3 spots containing 30 microg starch and 49.6 microg potassium iodide per spot on filter paper and a coloring reagent, based on the color reaction of iodine-starch and theory of paper chromatography, was designed. We investigated the relationship between resting whole salivary rates and the number of colored spots on the filter produced by 41 hospitalized subjects. A significant negative correlation was observed between the number of colored spots and the resting salivary flow rate (n = 41; r = -0.803; P < .01). For all complaints of decreased salivary flow (n = 9) having cutoff values <100 microL/min for the salivary flow rate, 3 colored spots appeared on the paper, whereas for healthy subjects there was < or =1 colored spot. This novel assay system might be effective for estimation of salivary flow not only in healthy but also in bedridden and disabled elderly people.

  1. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    NASA Astrophysics Data System (ADS)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire

  2. Estimation of Phase in Fringe Projection Technique Using High-order Instantaneous Moments Based Method

    NASA Astrophysics Data System (ADS)

    Gorthi, Sai Siva; Rajshekhar, G.; Rastogi, Pramod

    2010-04-01

    For three-dimensional (3D) shape measurement using fringe projection techniques, the information about the 3D shape of an object is encoded in the phase of a recorded fringe pattern. The paper proposes a high-order instantaneous moments based method to estimate phase from a single fringe pattern in fringe projection. The proposed method works by approximating the phase as a piece-wise polynomial and subsequently determining the polynomial coefficients using high-order instantaneous moments to construct the polynomial phase. Simulation results are presented to show the method's potential.

  3. PREFACE: 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014)

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Lokajicek, M.; Tumova, N.

    2015-05-01

    This volume of the IOP Conference Series is dedicated to scientific contributions presented at the 16th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2014), this year the motto was ''bridging disciplines''. The conference took place on September 1-5, 2014, at the Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic. The 16th edition of ACAT explored the boundaries of computing system architectures, data analysis algorithmics, automatic calculations, and theoretical calculation technologies. It provided a forum for confronting and exchanging ideas among these fields, where new approaches in computing technologies for scientific research were explored and promoted. This year's edition of the workshop brought together over 140 participants from all over the world. The workshop's 16 invited speakers presented key topics on advanced computing and analysis techniques in physics. During the workshop, 60 talks and 40 posters were presented in three tracks: Computing Technology for Physics Research, Data Analysis - Algorithms and Tools, and Computations in Theoretical Physics: Techniques and Methods. The round table enabled discussions on expanding software, knowledge sharing and scientific collaboration in the respective areas. ACAT 2014 was generously sponsored by Western Digital, Brookhaven National Laboratory, Hewlett Packard, DataDirect Networks, M Computers, Bright Computing, Huawei and PDV-Systemhaus. Special appreciations go to the track liaisons Lorenzo Moneta, Axel Naumann and Grigory Rubtsov for their work on the scientific program and the publication preparation. ACAT's IACC would also like to express its gratitude to all referees for their work on making sure the contributions are published in the proceedings. Our thanks extend to the conference liaisons Andrei Kataev and Jerome Lauret who worked with the local contacts and made this conference possible as well as to the program

  4. Advance of RNA interference technique in Hemipteran insects.

    PubMed

    Li, Jie; Wang, Xiaoping; Wang, Manqun; Ma, Weihua; Hua, Hongxia

    2012-07-24

    RNA interference (RNAi) suppressed the expression of the target genes by post transcriptional regulation and the double-stranded RNA (dsRNA) mediated gene silencing has been a conserved mechanism in many eukaryotes, which prompted RNAi to become a valuable tool for unveiling the gene function in many model insects. Recent research attested that RNAi technique can be also effective in downregulation target genes in Hemipteran insects. In this review, we collected the researches of utilizing RNAi technique in gene functional analysis in Hemipteran insects, highlighted the methods of dsRNA/siRNA uptake by insects and discussed the knock-down efficiency of these techniques. Although the RNA interference technique has drawbacks and obscure points, our primary goal of this review is try to exploit it for further discovering gene functions and pest control tactic in the Hemipteran insects. © 2012 The Societies and Blackwell Publishing Asia Pty Ltd.

  5. Estimation of Human Body Volume (BV) from Anthropometric Measurements Based on Three-Dimensional (3D) Scan Technique.

    PubMed

    Liu, Xingguo; Niu, Jianwei; Ran, Linghua; Liu, Taijie

    2017-08-01

    This study aimed to develop estimation formulae for the total human body volume (BV) of adult males using anthropometric measurements based on a three-dimensional (3D) scanning technique. Noninvasive and reliable methods to predict the total BV from anthropometric measurements based on a 3D scan technique were addressed in detail. A regression analysis of BV based on four key measurements was conducted for approximately 160 adult male subjects. Eight total models of human BV show that the predicted results fitted by the regression models were highly correlated with the actual BV (p < 0.001). Two metrics, the mean value of the absolute difference between the actual and predicted BV (V error ) and the mean value of the ratio between V error and actual BV (RV error ), were calculated. The linear model based on human weight was recommended as the most optimal due to its simplicity and high efficiency. The proposed estimation formulae are valuable for estimating total body volume in circumstances in which traditional underwater weighing or air displacement plethysmography is not applicable or accessible. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.

  6. The issues of current rainfall estimation techniques in mountain natural multi-hazard investigation

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei; Chen, Ningsheng; Wang, Tao

    2017-04-01

    Mountain hazards (e.g., landslides, debris flows, and floods) induced by rainfall are complex phenomena that require good knowledge of rainfall representation at different spatiotemporal scales. This study reveals rainfall estimation from gauges is rather unrepresentative over a large spatial area in mountain regions. As a result, the conventional practice of adopting the triggering threshold for hazard early warning purposes is insufficient. The main reason is because of the huge orographic influence on rainfall distribution. Modern rainfall estimation methods such as numerical weather prediction modelling and remote sensing utilising radar from the space or on land are able to provide spatially more representative rainfall information in mountain areas. But unlike rain gauges, they only indirectly provide rainfall measurements. Remote sensing suffers from many sources of errors such as weather conditions, attenuation and sampling methods, while numerical weather prediction models suffer from spatiotemporal and amplitude errors depending on the model physics, dynamics, and model configuration. A case study based on Sichuan, China is used to illustrate the significant difference among the three aforementioned rainfall estimation methods. We argue none of those methods can be relied on individually, and the challenge is on how to make the full utilisation of the three methods conjunctively because each of them only provides partial information. We propose that a data fusion approach should be adopted based on the Bayesian inference method. However such an approach requires the uncertainty information from all those estimation techniques which still need extensive research. We hope this study will raise the awareness of this important issue and highlight the knowledge gap that should be filled in so that such a challenging problem could be tackled collectively by the community.

  7. Quantitative Functional Imaging Using Dynamic Positron Computed Tomography and Rapid Parameter Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Koeppe, Robert Allen

    Positron computed tomography (PCT) is a diagnostic imaging technique that provides both three dimensional imaging capability and quantitative measurements of local tissue radioactivity concentrations in vivo. This allows the development of non-invasive methods that employ the principles of tracer kinetics for determining physiological properties such as mass specific blood flow, tissue pH, and rates of substrate transport or utilization. A physiologically based, two-compartment tracer kinetic model was derived to mathematically describe the exchange of a radioindicator between blood and tissue. The model was adapted for use with dynamic sequences of data acquired with a positron tomograph. Rapid estimation techniques were implemented to produce functional images of the model parameters by analyzing each individual pixel sequence of the image data. A detailed analysis of the performance characteristics of three different parameter estimation schemes was performed. The analysis included examination of errors caused by statistical uncertainties in the measured data, errors in the timing of the data, and errors caused by violation of various assumptions of the tracer kinetic model. Two specific radioindicators were investigated. ('18)F -fluoromethane, an inert freely diffusible gas, was used for local quantitative determinations of both cerebral blood flow and tissue:blood partition coefficient. A method was developed that did not require direct sampling of arterial blood for the absolute scaling of flow values. The arterial input concentration time course was obtained by assuming that the alveolar or end-tidal expired breath radioactivity concentration is proportional to the arterial blood concentration. The scale of the input function was obtained from a series of venous blood concentration measurements. The method of absolute scaling using venous samples was validated in four studies, performed on normal volunteers, in which directly measured arterial concentrations

  8. Q-adjusting technique applied to vertical deflections estimation in a single-axis rotation INS/GPS integrated system

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Xingshu; Wang, Jun; Dai, Dongkai; Xiong, Hao

    2016-10-01

    Former studies have proved that the attitude error in a single-axis rotation INS/GPS integrated system tracks the high frequency component of the deflections of the vertical (DOV) with a fixed delay and tracking error. This paper analyses the influence of the nominal process noise covariance matrix Q on the tracking error as well as the response delay, and proposed a Q-adjusting technique to obtain the attitude error which can track the DOV better. Simulation results show that different settings of Q lead to different response delay and tracking error; there exists optimal Q which leads to a minimum tracking error and a comparatively short response delay; for systems with different accuracy, different Q-adjusting strategy should be adopted. In this way, the DOV estimation accuracy of using the attitude error as the observation can be improved. According to the simulation results, the DOV estimation accuracy after using the Q-adjusting technique is improved by approximate 23% and 33% respectively compared to that of the Earth Model EGM2008 and the direct attitude difference method.

  9. The Application of Advanced Cultivation Techniques in the Long Term Maintenance of Space Flight Plant Biological Systems

    NASA Technical Reports Server (NTRS)

    Heyenga, A. G.

    2003-01-01

    The development of the International Space Station (ISS) presents extensive opportunities for the implementation of long duration space life sciences studies. Continued attention has been placed in the development of plant growth chamber facilities capable of supporting the cultivation of plants in space flight microgravity conditions. The success of these facilities is largely dependent on their capacity to support the various growth requirements of test plant species. The cultivation requirements for higher plant species are generally complex, requiring specific levels of illumination, temperature, humidity, water, nutrients, and gas composition in order to achieve normal physiological growth and development. The supply of water, nutrients, and oxygen to the plant root system is a factor, which has proven to be particularly challenging in a microgravity space flight environment. The resolution of this issue is particularly important for the more intensive crop cultivation of plants envisaged in Nasa's advanced life support initiative. BioServe Space Technologies is a NASA, Research Partnership Center (RPC) at the University of Colorado, Boulder. BioServe has designed and operated various space flight plant habitat systems, and placed specific emphasis on the development and enhanced performance of subsystem components such as water and nutrient delivery, illumination, gas exchange and atmosphere control, temperature and humidity control. The further development and application of these subsystems to next generation habitats is of significant benefit and contribution towards the development of both the Space Plant biology and the Advanced Life Support Programs. The cooperative agreement between NASA Ames Research center and BioServe was established to support the further implementation of advanced cultivation techniques and protocols to plant habitat systems being coordinated at NASA Ames Research Center. Emphasis was placed on the implementation of passive

  10. Laparoscopic Pelvic Exenteration for Locally Advanced Rectal Cancer, Technique and Short-Term Outcomes.

    PubMed

    Pokharkar, Ashish; Kammar, Praveen; D'souza, Ashwin; Bhamre, Rahul; Sugoor, Pavan; Saklani, Avanish

    2018-05-09

    Since last two decades minimally invasive techniques have revolutionized surgical field. In 2003 Pomel first described laparoscopic pelvic exenteration, since then very few reports have described minimally invasive approaches for total pelvic exenteration. We report the 10 cases of locally advanced rectal adenocarcinoma which were operated between the periods from March 1, 2017 to November 11, 2017 at the Tata Memorial Hospital, Mumbai. All male patients had lower rectal cancer with prostate involvement on magnetic resonance imaging (MRI). One female patient had uterine and fornix involvement. All perioperative and intraoperative parameters were collected retrospectively from prospectively maintained electronic data. Nine male patients with diagnosis of nonmetastatic locally advanced lower rectal adenocarcinoma were selected. All patients were operated with minimally invasive approach. All patients underwent abdominoperineal resection with permanent sigmoid stoma. Ileal conduit was constructed with Bricker's procedure through small infraumbilical incision (4-5 cm). Lateral pelvic lymph node dissection was done only when postchemoradiotherapy MRI showed enlarged pelvic nodes. All 10 patients received neoadjuvant chemo radiotherapy, whereas 8 patients received additional neoadjuvant chemotherapy. Mean body mass index was 21.73 (range 19.5-26.3). Mean blood loss was 1000 mL (range 300-2000 mL). Mean duration of surgery was 9.13 hours (range 7-13 hours). One patient developed paralytic ileus, which was managed conservatively. One patient developed intestinal obstruction due to herniation of small intestine behind the left ureter and ileal conduit. The same patient developed acute pylonephritis, which was managed with antibiotics. Mean postoperative stay was 14.6 days (range 9-25 days). On postoperative histopathology, all margins were free of tumor in all cases. Minimally invasive approaches can be used safely for total pelvic exenteration in locally advanced

  11. Estimating monthly temperature using point based interpolation techniques

    NASA Astrophysics Data System (ADS)

    Saaban, Azizan; Mah Hashim, Noridayu; Murat, Rusdi Indra Zuhdi

    2013-04-01

    This paper discusses the use of point based interpolation to estimate the value of temperature at an unallocated meteorology stations in Peninsular Malaysia using data of year 2010 collected from the Malaysian Meteorology Department. Two point based interpolation methods which are Inverse Distance Weighted (IDW) and Radial Basis Function (RBF) are considered. The accuracy of the methods is evaluated using Root Mean Square Error (RMSE). The results show that RBF with thin plate spline model is suitable to be used as temperature estimator for the months of January and December, while RBF with multiquadric model is suitable to estimate the temperature for the rest of the months.

  12. A technique for estimating time of concentration and storage coefficient values for Illinois streams

    USGS Publications Warehouse

    Graf, Julia B.; Garklavs, George; Oberg, Kevin A.

    1982-01-01

    Values of the unit hydrograph parameters time of concentration (TC) and storage coefficient (R) can be estimated for streams in Illinois by a two-step technique developed from data for 98 gaged basins in the State. The sum of TC and R is related to stream length (L) and main channel slope (S) by the relation (TC + R)e = 35.2L0.39S-0.78. The variable R/(TC + R) is not significantly correlated with drainage area, slope, or length, but does exhibit a regional trend. Regional values of R/(TC + R) are used with the computed values of (TC + R)e to solve for estimated values of time of concentration (TCe) and storage coefficient (Re). The use of the variable R/(TC + R) is thought to account for variations in unit hydrograph parameters caused by physiographic variables such as basin topography, flood-plain development, and basin storage characteristics. (USGS)

  13. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    PubMed Central

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  14. An evaluation of three-dimensional photogrammetric and morphometric techniques for estimating volume and mass in Weddell seals Leptonychotes weddellii

    PubMed Central

    Ruscher-Hill, Brandi; Kirkham, Amy L.; Burns, Jennifer M.

    2018-01-01

    “cones” approaches, researchers may find one technique more useful for certain study programs. In combination or exclusively, these three-dimensional mass estimation techniques have great utility in field studies with repeated measures sampling designs or where logistic constraints preclude weighing animals. PMID:29320573

  15. Parametric, bootstrap, and jackknife variance estimators for the k-Nearest Neighbors technique with illustrations using forest inventory and satellite image data

    Treesearch

    Ronald E. McRoberts; Steen Magnussen; Erkki O. Tomppo; Gherardo Chirici

    2011-01-01

    Nearest neighbors techniques have been shown to be useful for estimating forest attributes, particularly when used with forest inventory and satellite image data. Published reports of positive results have been truly international in scope. However, for these techniques to be more useful, they must be able to contribute to scientific inference which, for sample-based...

  16. A novel technique: Carbon dioxide gas-assisted total peritonectomy, diaphragm and intestinal meso stripping in open surgery for advanced ovarian cancer (Çukurova technique).

    PubMed

    Khatib, Ghanim; Guzel, Ahmet Baris; Gulec, Umran Kucukgoz; Vardar, Mehmet Ali

    2017-09-01

    Most of the ovarian cancers are diagnosed at advanced stages. As peritoneal carcinomatosis increases, especially when it extends to the diaphragm and intestinal mesos, probability of obtaining complete cytoreduction is reduced. Complete cytoreduction (residue zero: R0) is one of the main factors affecting survival [1-3]. Here we present a novel technique of stripping the peritoneal surfaces as a part of cytoreductive surgery in such cases. A 55year-old woman diagnosed with peritoneal carcinomatosis was considered appropriate for primary cytoreduction after assessment of her thorax-abdominopelvic tomography, which revealed resectable intra-abdominal disease. Upon laparotomy, omental cake adherent to pelvis-filling mass, disseminated implants on the diaphragm, meso of the descending colon and small intestine were observed. The mass invaded the rectosigmoid colon, uterus, adnexa and the bladder resulting in frozen pelvis. Palpable retroperitoneal pelvic and para-aortic lymph nodes were detected. On the other side, stomach, anti-mesenteric surfaces and mesentery root of the small bowel were tumor-free. Hence, upon these perioperative and preoperative imaging findings, complete cytoreduction was thought to be achievable. Therefore, primary cytoreduction was performed. Total omentectomy, hysterectomy with bilateral salpingo-oophorectomy, rectosigmoid low anterior resection and retroperitoneal lymphadenectomy were performed. With the assistance of an injector needle connected to the insufflator tube (as in laparoscopic surgery), carbon dioxide gas was blown into the right retroperitoneal area and subsequently peritoneum was rapidly stripped up to the right diaphragm. The same procedure was then applied to the diaphragm and meso of the bowels, respectively. Owing to this technique, total stripping of all involved peritoneal surfaces was clearly facilitated and R0 goal was reached. Gas insufflation caused convenient detachment of the peritoneal surfaces along their

  17. Techniques for estimating streamflow characteristics in the Eastern and Interior coal provinces of the United States

    USGS Publications Warehouse

    Wetzel, Kim L.; Bettandorff, J.M.

    1986-01-01

    Techniques are presented for estimating various streamflow characteristics, such as peak flows, mean monthly and annual flows, flow durations, and flow volumes, at ungaged sites on unregulated streams in the Eastern Coal region. Streamflow data and basin characteristics for 629 gaging stations were used to develop multiple-linear-regression equations. Separate equations were developed for the Eastern and Interior Coal Provinces. Drainage area is an independent variable common to all equations. Other variables needed, depending on the streamflow characteristic, are mean annual precipitation, mean basin elevation, main channel length, basin storage, main channel slope, and forest cover. A ratio of the observed 50- to 90-percent flow durations was used in the development of relations to estimate low-flow frequencies in the Eastern Coal Province. Relations to estimate low flows in the Interior Coal Province are not presented because the standard errors were greater than 0.7500 log units and were considered to be of poor reliability.

  18. Investigation of advanced phase-shifting projected fringe profilometry techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hongyu

    1999-11-01

    The phase-shifting projected fringe profilometry (PSPFP) technique is a powerful tool in the profile measurements of rough engineering surfaces. Compared with other competing techniques, this technique is notable for its full-field measurement capacity, system simplicity, high measurement speed, and low environmental vulnerability. The main purpose of this dissertation is to tackle three important problems, which severely limit the capability and the accuracy of the PSPFP technique, with some new approaches. Chapter 1 provides some background information of the PSPFP technique including the measurement principles, basic features, and related techniques is briefly introduced. The objectives and organization of the thesis are also outlined. Chapter 2 gives a theoretical treatment to the absolute PSPFP measurement. The mathematical formulations and basic requirements of the absolute PSPFP measurement and its supporting techniques are discussed in detail. Chapter 3 introduces the experimental verification of the proposed absolute PSPFP technique. Some design details of a prototype system are discussed as supplements to the previous theoretical analysis. Various fundamental experiments performed for concept verification and accuracy evaluation are introduced together with some brief comments. Chapter 4 presents the theoretical study of speckle- induced phase measurement errors. In this analysis, the expression for speckle-induced phase errors is first derived based on the multiplicative noise model of image- plane speckles. The statistics and the system dependence of speckle-induced phase errors are then thoroughly studied through numerical simulations and analytical derivations. Based on the analysis, some suggestions on the system design are given to improve measurement accuracy. Chapter 5 discusses a new technique combating surface reflectivity variations. The formula used for error compensation is first derived based on a simplified model of the detection process

  19. Estimation of distributional parameters for censored trace level water quality data: 1. Estimation techniques

    USGS Publications Warehouse

    Gilliom, Robert J.; Helsel, Dennis R.

    1986-01-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensored observations, for determining the best performing parameter estimation method for any particular data set. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.

  20. Estimation of distributional parameters for censored trace level water quality data. 1. Estimation Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilliom, R.J.; Helsel, D.R.

    1986-02-01

    A recurring difficulty encountered in investigations of many metals and organic contaminants in ambient waters is that a substantial portion of water sample concentrations are below limits of detection established by analytical laboratories. Several methods were evaluated for estimating distributional parameters for such censored data sets using only uncensored observations. Their reliabilities were evaluated by a Monte Carlo experiment in which small samples were generated from a wide range of parent distributions and censored at varying levels. Eight methods were used to estimate the mean, standard deviation, median, and interquartile range. Criteria were developed, based on the distribution of uncensoredmore » observations, for determining the best performing parameter estimation method for any particular data det. The most robust method for minimizing error in censored-sample estimates of the four distributional parameters over all simulation conditions was the log-probability regression method. With this method, censored observations are assumed to follow the zero-to-censoring level portion of a lognormal distribution obtained by a least squares regression between logarithms of uncensored concentration observations and their z scores. When method performance was separately evaluated for each distributional parameter over all simulation conditions, the log-probability regression method still had the smallest errors for the mean and standard deviation, but the lognormal maximum likelihood method had the smallest errors for the median and interquartile range. When data sets were classified prior to parameter estimation into groups reflecting their probable parent distributions, the ranking of estimation methods was similar, but the accuracy of error estimates was markedly improved over those without classification.« less