Science.gov

Sample records for advanced flame quality

  1. The advanced flame quality indicator system

    SciTech Connect

    Oman, R.; Rossi, M.J.; Calia, V.S.; Davis, F.L.; Rudin, A.

    1997-09-01

    By combining oil tank monitoring, systems diagnostics and flame quality monitoring in an affordable system that communicates directly with dealers by telephone modem, Insight Technologies offers new revenue opportunities and the capability for a new order of customer relations to oil dealers. With co-sponsorship from New York State Energy Research and Development Authority, we have incorporated several valuable functions to a new product based on the original Flame Quality Indicator concept licensed from the US DOE`s Brookhaven National Laboratory. The new system is the Advanced Flame Quality Indicator, or AFQI. As before, the AFQI monitors and reports the intensity of the burner flame relative to a calibration established when the burner is set up at AFQI installation. Repairs or adjustments are summoned by late-night outgoing telephone calls when limits are exceeded in either direction, indicating an impending contamination or other malfunction. A independently, a pressure transducer for monitoring oil tank level and filter condition, safety lockout alarms and a temperature monitor; all reporting automatically at instructed intervals via an on-board modem to a central station PC computer (CSC). Firmware on each AFQI unit and Insight-supplied software on the CSC automatically interact to maintain a customer database for an oil dealer, an OEM, or a regional service contractor. In addition to ensuring continuously clean and efficient operation, the AFQI offers the oil industry a new set of immediate payoffs, among which are reduced outages and emergency service calls, shorter service calls from cleaner operation, larger oil delivery drops, the opportunity to stretch service intervals to as along as three years in some cases, new selling features to keep and attract customers, and greatly enhanced customer contact, quality and reliability.

  2. Removing baseline flame's spectrum by using advanced recovering spectrum techniques.

    PubMed

    Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

    2012-09-01

    In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

  3. FIELD TEST OF THE FLAME QUALITY INDICATOR

    SciTech Connect

    Rudin, Andrew M; Butcher, Thomas; Troost, Henry

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel

  4. Flame quality monitor system for fixed firing rate oil burners

    SciTech Connect

    Butcher, T.A.; Cerniglia, P.

    1990-10-23

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  5. Flame quality monitor system for fixed firing rate oil burners

    DOEpatents

    Butcher, Thomas A.; Cerniglia, Philip

    1992-01-01

    A method and apparatus for determining and indicating the flame quality, or efficiency of the air-fuel ratio, in a fixed firing rate heating unit, such as an oil burning furnace, is provided. When the flame brightness falls outside a preset range, the flame quality, or excess air, has changed to the point that the unit should be serviced. The flame quality indicator output is in the form of lights mounted on the front of the unit. A green light indicates that the flame is about in the same condition as when the burner was last serviced. A red light indicates a flame which is either too rich or too lean, and that servicing of the burner is required. At the end of each firing cycle, the flame quality indicator goes into a hold mode which is in effect during the period that the burner remains off. A yellow or amber light indicates that the burner is in the hold mode. In this mode, the flame quality lights indicate the flame condition immediately before the burner turned off. Thus the unit can be viewed when it is off, and the flame condition at the end of the previous firing cycle can be observed.

  6. FLame

    Energy Science and Technology Software Center (ESTSC)

    1995-03-03

    FLAME is data processing software explicitly written to support the ACAP software of DSP Technologies, Inc., of Fremont, CA. ACAP acquires and processes in-cylinder pressure data for reciprocating engines. However, it also has the capability to acquire data for two Sandia-developed technologies, ionization-probe instrumented head gaskets and fiber-optic instrumented spark plugs. FLAME post processes measurements of flame arrival from data files aquired with ACAP. Flame arrival time is determined from analog ionization-probe or visible-emission signals.more » The resulting data files are integrated with the standard ACAP files, providing a common data base for engine development.« less

  7. Premixing quality and flame stability: A theoretical and experimental study

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, K.; Heywood, J. B.; Tabaczynski, R. J.

    1979-01-01

    Models for predicting flame ignition and blowout in a combustor primary zone are presented. A correlation for the blowoff velocity of premixed turbulent flames is developed using the basic quantities of turbulent flow, and the laminar flame speed. A statistical model employing a Monte Carlo calculation procedure is developed to account for nonuniformities in a combustor primary zone. An overall kinetic rate equation is used to describe the fuel oxidation process. The model is used to predict the lean ignition and blow out limits of premixed turbulent flames; the effects of mixture nonuniformity on the lean ignition limit are explored using an assumed distribution of fuel-air ratios. Data on the effects of variations in inlet temperature, reference velocity and mixture uniformity on the lean ignition and blowout limits of gaseous propane-air flames are presented.

  8. Chemical regulation on fire: rapid policy advances on flame retardants.

    PubMed

    Cordner, Alissa; Mulcahy, Margaret; Brown, Phil

    2013-07-01

    Chemicals that are widely used in consumer products offer challenges to product manufacturers, risk managers, environmental regulators, environmental scientists, and the interested public. However, the factors that cause specific chemicals to rise to the level of regulatory, scientific, and social movement concern and scrutiny are not well documented, and scientists are frequently unclear about exactly how their research impacts policy. Through a case study of advocacy around flame retardant chemicals, this paper traces the pathways through which scientific evidence and concern is marshaled by both advocacy groups and media sources to affect policy change. We focus our analysis around a broad coalition of environmental and public health advocacy organizations and an investigative journalism series published in 2012 in the Chicago Tribune. We demonstrate that the Tribune series both brought the issue to a wider public audience and precipitated government action, including state policy revisions and federal Senate hearings. We also show how a broad and successful flame retardant coalition developed, leveraged a media event, and influenced policy at multiple institutional levels. The analysis draws on over 110 in-depth interviews, literature and Web site reviews, and observations at a flame retardant manufacturing company, government offices, and scientific and advocacy conferences. PMID:23713659

  9. Quality Improvement of Flame Sprayed, Heat Treated, and Remelted NiCrBSi Coatings

    NASA Astrophysics Data System (ADS)

    Bergant, Z.; Grum, J.

    2009-09-01

    In this study, properties of NiCrBSi coatings, produced by a two-step process of flame deposition and furnace posttreatment, are analyzed. Adhesion strength, microstructure, porosity, microhardness, chemical composition, and residual stresses were analyzed after deposition and after heat treatment; that is, remelting. Numerous specimens were made to study the adhesion strength of coatings after flame deposition. The four chosen influential factors, that is, surface roughness, preheat temperature of the substrate, distance of flame torch, and type of oxyacetylene flame, were optimized to maximize the adhesion strength, using the Taguchi parametric method. The confirmation experiment showed that the developed experimental model is suitable for optimization of flame spraying deposition process. Based on the evaluation of coating properties, the best overall quality was obtained after remelting at a peak temperature 1080 °C with 5 minutes of holding time, followed by slow air cooling.

  10. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    NASA Technical Reports Server (NTRS)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  11. Advancements in analyzing food quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This editorial provides insight on investigations regarding advancement in the application of technology and it’s advancement to food quality. The discussion elaborates on the advantages of recent analytical technologies and techniques, along with their impact on food safety, characterization of its...

  12. Advanced treatment process for pharmaceuticals, endocrine disruptors, and flame retardants removal.

    PubMed

    Sundaram, Vijay; Emerick, Robert W; Shumaker, Stanley E

    2014-02-01

    The objective of this project was to demonstrate the effectiveness of an advanced treatment process that did not utilize reverse osmosis for the removal of pharmaceuticals, endocrine disruptors and flame retardants (collectively referred as contaminants of emerging concern [CECs]) from municipal effluent. The advanced treatment process consisted of (in the order of use): membrane filtration, ozonation (O3), and biologically active carbon (BAC) filtration. Ozone dosage of 5 mg/L or more was needed for desired CEC removal. Biologically active carbon removed flame retardants, and ozonation byproducts including NDMA and aldehydes. The project successfully demonstrated 1) the removal of a wide range of CECs, 2) reduction of estrogen activity to background levels, and 3) removal of ozonation byproducts. Treatment was achieved at lower costs and power utilization than reverse osmosis and without generating a concentrate stream. Results from this project could make CEC removal feasible, especially in situations where reverse osmosis treatment is infeasible. PMID:24645541

  13. Flame experiments at the advanced light source: new insights into soot formation processes.

    PubMed

    Hansen, Nils; Skeen, Scott A; Michelsen, Hope A; Wilson, Kevin R; Kohse-Höinghaus, Katharina

    2014-01-01

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory(1-4). This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range(5,6). The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species' profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates(7). The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles(4). The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation

  14. Flame Experiments at the Advanced Light Source: New Insights into Soot Formation Processes

    PubMed Central

    Hansen, Nils; Skeen, Scott A.; Michelsen, Hope A.; Wilson, Kevin R.; Kohse-Höinghaus, Katharina

    2014-01-01

    The following experimental protocols and the accompanying video are concerned with the flame experiments that are performed at the Chemical Dynamics Beamline of the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory1-4. This video demonstrates how the complex chemical structures of laboratory-based model flames are analyzed using flame-sampling mass spectrometry with tunable synchrotron-generated vacuum-ultraviolet (VUV) radiation. This experimental approach combines isomer-resolving capabilities with high sensitivity and a large dynamic range5,6. The first part of the video describes experiments involving burner-stabilized, reduced-pressure (20-80 mbar) laminar premixed flames. A small hydrocarbon fuel was used for the selected flame to demonstrate the general experimental approach. It is shown how species’ profiles are acquired as a function of distance from the burner surface and how the tunability of the VUV photon energy is used advantageously to identify many combustion intermediates based on their ionization energies. For example, this technique has been used to study gas-phase aspects of the soot-formation processes, and the video shows how the resonance-stabilized radicals, such as C3H3, C3H5, and i-C4H5, are identified as important intermediates7. The work has been focused on soot formation processes, and, from the chemical point of view, this process is very intriguing because chemical structures containing millions of carbon atoms are assembled from a fuel molecule possessing only a few carbon atoms in just milliseconds. The second part of the video highlights a new experiment, in which an opposed-flow diffusion flame and synchrotron-based aerosol mass spectrometry are used to study the chemical composition of the combustion-generated soot particles4. The experimental results indicate that the widely accepted H-abstraction-C2H2-addition (HACA) mechanism is not the sole molecular growth process responsible for the formation of the

  15. Advances in Instrumental Analysis of Brominated Flame Retardants: Current Status and Future Perspectives

    PubMed Central

    2014-01-01

    This review aims to highlight the recent advances and methodological improvements in instrumental techniques applied for the analysis of different brominated flame retardants (BFRs). The literature search strategy was based on the recent analytical reviews published on BFRs. The main selection criteria involved the successful development and application of analytical methods for determination of the target compounds in various environmental matrices. Different factors affecting chromatographic separation and mass spectrometric detection of brominated analytes were evaluated and discussed. Techniques using advanced instrumentation to achieve outstanding results in quantification of different BFRs and their metabolites/degradation products were highlighted. Finally, research gaps in the field of BFR analysis were identified and recommendations for future research were proposed. PMID:27433482

  16. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters

    PubMed Central

    Meeker, John D.; Stapleton, Heather M.

    2010-01-01

    Background Organophosphate (OP) compounds, such as tris(1,3-dichloro-2-propyl) phosphate (TDCPP) and triphenyl phosphate (TPP), are commonly used as additive flame retardants and plasticizers in a wide range of materials. Although widespread human exposure to OP flame retardants is likely, there is a lack of human and animal data on potential health effects. Objective We explored relationships of TDCPP and TPP concentrations in house dust with hormone levels and semen quality parameters. Methods We analyzed house dust from 50 men recruited through a U.S. infertility clinic for TDCPP and TPP. Relationships with reproductive and thyroid hormone levels, as well as semen quality parameters, were assessed using crude and multivariable linear regression. Results TDCPP and TPP were detected in 96% and 98% of samples, respectively, with widely varying concentrations up to 1.8 mg/g. In models adjusted for age and body mass index, an interquartile range (IQR) increase in TDCPP was associated with a 3% [95% confidence interval (CI), −5% to −1%) decline in free thyroxine and a 17% (95% CI, 4–32%) increase in prolactin. There was a suggestive inverse association between TDCPP and free androgen index that became less evident in adjusted models. In the adjusted models, an IQR increase in TPP was associated with a 10% (95% CI, 2–19%) increase in prolactin and a 19% (95% CI, −30% to −5%) decrease in sperm concentration. Conclusion OP flame retardants may be associated with altered hormone levels and decreased semen quality in men. More research on sources and levels of human exposure to OP flame retardants and associated health outcomes are needed. PMID:20194068

  17. Advances in enantioselective analysis of chiral brominated flame retardants. Current status, limitations and future perspectives.

    PubMed

    Badea, Silviu-Laurentiu; Niculescu, Violeta Carolina; Ionete, Roxana-Elena; Eljarrat, Ethel

    2016-10-01

    Enantioselective analysis is a powerful tool for the discrimination of biotic and abiotic transformation processes of chiral environmental contaminants because their environmental biodegradation is mostly stereospecific. However, it is challenging when applied to new contaminants since enantioselective analysis methods are currently available only for a limited number of compounds. The enantioselective analysis of chiral novel brominated flame retardants (NBFRs) either using gas chromatography (GC) or liquid chromatography (LC) with various chiral stationary phases (CSP) coupled with various mass spectrometric techniques was extensively discussed. The elution order of hexabromocyclododecane (HBCD) enantiomers in chiral LC was reviewed using the experimental LC data combined also with predictions from a multi-mode Hamiltonian dynamics simulation model based on interaction energies of HBCD enantiomers with β-permethylated cyclodextrin. The further development of analytical methodologies for new chiral BFRs using advanced hyphenated analytical techniques, but also the next generation mass spectrometer analyzers (i.e. GC-Qrbitrap MS-MS, LC-Qrbitrap MS-MS), will contribute to a better characterization of the transformation pathways of chiral BFRs. PMID:27265736

  18. Chemical quality of surface water in the Flaming Gorge Reservoir area, Wyoming and Utah

    USGS Publications Warehouse

    Madison, R.J.; Waddell, Kidd M.

    1973-01-01

    Construction of Flaming Gorge Dam on the Green River by the U.S. Bureau of Reclamation started in 1959, and storage began in November 1962. A reconnaissance study was made during the period 1966-68 to determine the effects of the reservoir on the chemical quality of the effluent water and to describe the quality of the impounded water and inflowing water. The major inflow to the reservoir is from the Green River, which contributes an average of 81 percent of the water and 59 percent of the inflow load of dissolved solids. Together, Blacks Fork and Henrys Fork contribute an average of about 16 percent of the water and about 23 percent of the dissolved-solids load, whereas minor tributaries contribute approximately 3 percent of the total inflow water to the reservoir, but about 18 percent of the total incoming load of dissolved solids. The concentration of dissolved solids in the reservoir in October 1966 was about 150 mg/l (milligrams per liter) greater than the concentration of the 1962-66 inflow and in September 1968 about 95 mg/l greater than the concentration of the 1962-68 inflow. The increased concentration is due. mostly to leaching of minerals from the reservoir bottom. For the 1963-68 water years, about 1.2 million tons of dissolved solids was leached from inundated areas. The major observable difference between the chemical composition of the inflow during 1963-66 and that of the reservoir in 1966 is an increase in the percentage of sulfate and a decrease in the percentage of bicarbonate. Impoundment of water in Flaming Gorge Reservoir during the 1963-68 water years caused the concentration of dissolved solids in the river system to increase by 130 mg/l, or about 32 percent over what would have occurred without the reservoir. Evaporation accounted for an increase of 15 mg/l, and leaching accounted for an increase of 115 mg/l.

  19. Development and technology transfer of the BNL flame quality indicator for oil-fired applications: Project report

    SciTech Connect

    Butcher, T.A.; Litzke, Wai Lin; McDonald, R.J.

    1994-09-01

    The purpose of a flame quality indicator is to continuously and closely monitor the quality of the flame to determine a heating system`s operating performance. The most efficient operation of a system is achieved under clean burning conditions at low excess air level. By adjusting a burner to function in such a manner, monitoring the unit to maintain these conditions can be accomplished with a simple, cheap and reliable device. This report details the development of the Flame Quality Indicator (FQI) at Brookhaven National Laboratory for residential oil-heating equipment. It includes information on the initial testing of the original design, field testing with other cooperating organizations, changes and improvements to the design, and finally technology transfer and commercialization activities geared towards the development of commercially available products designed for the oil heat marketplace. As a result of this work, a patent for the technology was obtained by the U.S. Department of Energy (DOE). Efforts to commercialize the technology have resulted in a high level of interest amongst industry members including boiler manufacturers, controls manufacturers, oil dealers, and service organizations. To date DOE has issued licenses to three different manufacturers, on a non-exclusive basis, to design, build, and sell FQIs.

  20. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames

    NASA Astrophysics Data System (ADS)

    Tovar, Jonathan Michael

    This work examines the three main aspects of bluff-body stabilized flames: stationary combustion, lean blow-out, and thermo-acoustic instabilities. For the cases of stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic instabilities, the effect of boundary conditions on the predictions are studied. The improved version couples the Linear Eddy Model with the full-set of resolved scale Large Eddy Simulation equations for continuity, momentum, energy, and species transport. In traditional implementations the species equations are generally solved using a Lagrangian method which has some significant limitations. The novelty in this work is that the Eulerian species concentration equations are solved at the resolved scale and the Linear Eddy Model is strictly used to close the species production term. In this work, the improved Linear Eddy Model approach is applied to predict the flame properties inside the Volvo rig and it is shown to over-predict the flame temperature and normalized velocity when compared to experimental data using a premixed single step global propane reaction with an equivalence ratio of 0.65. The model is also applied to predict lean blow-out and is shown to predict a stable flame at an equivalence ratio of 0.5 when experiments achieve flame extinction at an equivalence ratio of 0.55. The improved Linear Eddy Model is, however, shown to be closer to experimental data than a comparable reactive flow simulation that uses laminar closure of the species source terms. The thermo-acoustic analysis is performed on a combustor rig designed at the Air Force Research Laboratory. The analysis is performed using a premixed single step global methane reaction for laminar reactive flow and shows that imposing a non-physical boundary condition at the rig exhaust will result in the suppression of acoustic content inside the domain and can alter the temperature contours in non

  1. Emissions and Char Quality of Flame-Curtain "Kon Tiki" Kilns for Farmer-Scale Charcoal/Biochar Production

    PubMed Central

    Cornelissen, Gerard; Pandit, Naba Raj; Taylor, Paul; Pandit, Bishnu Hari; Sparrevik, Magnus; Schmidt, Hans Peter

    2016-01-01

    Flame Curtain Biochar Kilns Pyrolysis of organic waste or woody materials yields charcoal, a stable carbonaceous product that can be used for cooking or mixed into soil, in the latter case often termed "biochar". Traditional kiln technologies for charcoal production are slow and without treatment of the pyrolysis gases, resulting in emissions of gases (mainly methane and carbon monoxide) and aerosols that are both toxic and contribute to greenhouse gas emissions. In retort kilns pyrolysis gases are led back to a combustion chamber. This can reduce emissions substantially, but is costly and consumes a considerable amount of valuable ignition material such as wood during start-up. To overcome these problems, a novel type of technology, the Kon-Tiki flame curtain pyrolysis, is proposed. This technology combines the simplicity of the traditional kiln with the combustion of pyrolysis gases in the flame curtain (similar to retort kilns), also avoiding use of external fuel for start-up. Biochar Characteristics A field study in Nepal using various feedstocks showed char yields of 22 ± 5% on a dry weight basis and 40 ± 11% on a C basis. Biochars with high C contents (76 ± 9%; n = 57), average surface areas (11 to 215 m2 g-1), low EPA16—PAHs (2.3 to 6.6 mg kg-1) and high CECs (43 to 217 cmolc/kg)(average for all feedstocks, mainly woody shrubs) were obtained, in compliance with the European Biochar Certificate (EBC). Gas Emission Factors Mean emission factors for the flame curtain kilns were (g kg-1 biochar for all feedstocks); CO2 = 4300 ± 1700, CO = 54 ± 35, non-methane volatile organic compounds (NMVOC) = 6 ± 3, CH4 = 30 ± 60, aerosols (PM10) = 11 ± 15, total products of incomplete combustion (PIC) = 100 ± 83 and NOx = 0.4 ± 0.3. The flame curtain kilns emitted statistically significantly (p<0.05) lower amounts of CO, PIC and NOx than retort and traditional kilns, and higher amounts of CO2. Implications With benefits such as high quality biochar, low emission

  2. Burning Laminar Jet Diffusion Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence was taken July 15, 1997, MET:14/10:34 (approximate) and shows the ignition and extinction of this flame. LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel -- like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (518KB, 20-second MPEG, screen 160 x 120 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300182.html.

  3. Risk migration and scientific advance: the case of flame-retardant compounds.

    PubMed

    Alcock, Ruth E; Busby, Jerry

    2006-04-01

    It is a common experience that attempts to mitigate a risk lead to new risks, and that risks formerly thought to be of one kind become another kind as technical knowledge evolves. This phenomenon of risk migration suggests that we should take processes over time, rather than specific risks or specific technologies, as a unit of analysis. Several of our existing models of the social management of risks-such as that of social risk amplification-are process models of a kind but are still oriented around the playing out of a particular event or issue. A case study of risk in a group of flame-retardant compounds was used as the basis of a grounded, exploratory analysis of migration processes, the phenomena that influence them, and their consequences. This illustrated how migration naturally occurs from risks that are understood, in which risk bearers have at least some agency, to risks that are not understood and not capable of being influenced by risk bearers. It illustrated how the simultaneous improvement in measuring technology, which detects potential toxins at increasingly small concentrations, combines with intuitive models that ignore concentration to produce conditions likely to generate anxiety. And it illustrated how pressure groups and commercial interests exploit this effect. It also showed how migration makes precautionary action problematic, and how more generally it tends to undermine a society's capacity to cope with risk. PMID:16573627

  4. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations

    PubMed Central

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-01-01

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  5. Advancing predictive models for particulate formation in turbulent flames via massively parallel direct numerical simulations.

    PubMed

    Bisetti, Fabrizio; Attili, Antonio; Pitsch, Heinz

    2014-08-13

    Combustion of fossil fuels is likely to continue for the near future due to the growing trends in energy consumption worldwide. The increase in efficiency and the reduction of pollutant emissions from combustion devices are pivotal to achieving meaningful levels of carbon abatement as part of the ongoing climate change efforts. Computational fluid dynamics featuring adequate combustion models will play an increasingly important role in the design of more efficient and cleaner industrial burners, internal combustion engines, and combustors for stationary power generation and aircraft propulsion. Today, turbulent combustion modelling is hindered severely by the lack of data that are accurate and sufficiently complete to assess and remedy model deficiencies effectively. In particular, the formation of pollutants is a complex, nonlinear and multi-scale process characterized by the interaction of molecular and turbulent mixing with a multitude of chemical reactions with disparate time scales. The use of direct numerical simulation (DNS) featuring a state of the art description of the underlying chemistry and physical processes has contributed greatly to combustion model development in recent years. In this paper, the analysis of the intricate evolution of soot formation in turbulent flames demonstrates how DNS databases are used to illuminate relevant physico-chemical mechanisms and to identify modelling needs. PMID:25024412

  6. Triple flames and flame stabilization

    NASA Technical Reports Server (NTRS)

    Broadwell, James E.

    1994-01-01

    It is now well established that when turbulent jet flames are lifted, combustion begins, i.e., the flame is stabilized, at an axial station where the fuel and air are partially premixed. One might expect, therefore, that the beginning of the combustion zone would be a triple flame. Such flames have been described; however, other experiments provide data that are difficult to reconcile with the presence of triple flames. In particular, laser images of CH and OH, marking combustion zones, do not exhibit shapes typical of triple flames, and, more significantly, the lifted flame appears to have a propagation speed that is an order of magnitude higher than the laminar flame speed. The speed of triple flames studied thus far exceeds the laminar value by a factor less than two. The objective of the present task is the resolution of the apparent conflict between the experiments and the triple flame characteristics, and the clarification of the mechanisms controlling flame stability. Being investigated are the resolution achieved in the experiments, the flow field in the neighborhood of the stabilization point, propagation speeds of triple flames, laboratory flame unsteadiness, and the importance of flame ignition limits in the calculation of triple flames that resemble lifted flames.

  7. Advanced oxidation kinetics of aqueous tri alkyl phosphate flame retardants and plasticizers

    PubMed Central

    Watts, Michael J.; Linden, Karl G.

    2009-01-01

    Tri alkyl phosphate esters are a class of anthropogenic organics commonly found in surface waters of Europe and North America, due to their frequent application as flame retardants, plasticizers, and solvents. Four tri alkyl phosphate esters were evaluated to determine second-order rates of reaction with ultraviolet- and ozone-generated •OH in water. In competition with nitrobenzene in UV irradiated hydrogen peroxide solutions tris(2-butoxyethyl) phosphate (TBEP) was fastest to react with •OH (kOH,TBEP=1.03×1010 M-1s-1), followed sequentially by tributyl phosphate (TBP), tris(2-chloroethyl) phosphate (TCEP), and tris(2-chloroisopropyl) phosphate (TCPP) (kOH,TBEP=6.40×109, kOH,TBEP=5.60×108, & kOH,TBEP=1.98×10 M-1s-1). A two-stage process was used to test the validity of the determined kOH for TBEP and the fastest reacting halogenated alkyl phosphate, TCEP. First, •OH oxidation of TCEP and TBEP, in competition with nitrobenzene, was measured in ozonated hydrogen peroxide solutions. Applying multiple regression analysis, it was determined that the UV-H2O2 and O3-H2O2 data sets were statistically identical for each compound. The subsequent validated kOH were used to predict TCEP and TBEP photodegradation in neutral pH, model surface water after chemical oxidant addition and UV irradiation (up to 1000 mJ/cm2). The insignificant difference, between the predicted TBEP and TCEP photodegradation and a best-fit of the first-order exponential decay function to the observed TBEP and TCEP concentrations with increasing UV fluence, was further evidence of the validity of the determined kOH. TBEP oxidation rates were similar in the surface waters tested. Substantial TCEP oxidation in the model surface water required a significant increase in H2O2. PMID:19475974

  8. Improved method for flame detection in combustion turbines

    SciTech Connect

    Roby, R.J.; Hamer, A.J.; Johnsson, E.L.; Tilstra, S.A.; Burt, T.J.

    1995-04-01

    A fast response chemiluminescent flame detection approach is presented along with field test results from a fiber optic based flame detector device. Chemiluminescence, the light given off by molecules formed in their excited states, has long been recognized as a diagnostics method for use in combustion. The recent advent of higher quality optical fibers with improved transmission properties in the UV, as well as UV optical detectors, has made the use of chemiluminescence for gas turbine diagnostics and monitoring practical. Advances in combustor designs on a new low-emissions machines as well as reliability issues with some existing machines are creating the need for improved flame dynamics measurements as well as improvements in reliability for existing measurements such as combustor flame detection. This paper discusses the technology, principle of operation, and detectors that operate on the chemiluminescence principle.

  9. Improved method for flame detection in combustion turbines

    SciTech Connect

    Roby, R.; Hamer, A.J.; Johnsson, E.L.; Tilstra, S.A.; Burt, T.J.

    1994-12-31

    A fast response chemiluminescent flame detection approach is presented along with field test results from a fiber optic based flame detector device. Chemiluminescence, the light given off by molecules formed in their excited states, has long been recognized as a diagnostics method for use in combustion. The recent advent of higher quality optical fibers with improved transmission properties in the UV, as well as UV optical detectors, has made the use of chemiluminescence for gas turbine diagnostics and monitoring practical. Advances in combustor designs on now low emissions machines as well as reliability issues with some existing machines are creating the need for improved flame dynamics measurements as well as improvements in reliability for existing measurements such as combustor flame detection. This paper discusses the technology, principle of operation, and detectors which operate on the chemiluminescence principle.

  10. Can activated sludge treatments and advanced oxidation processes remove organophosphorus flame retardants?

    PubMed

    Cristale, Joyce; Ramos, Dayana D; Dantas, Renato F; Machulek Junior, Amilcar; Lacorte, Silvia; Sans, Carme; Esplugas, Santiago

    2016-01-01

    This study aims to determine the occurrence of 10 OPFRs (including chlorinated, nonchlorinated alkyl and aryl compounds) in influent, effluent wastewaters and partitioning into sludge of 5 wastewater treatment plants (WWTP) in Catalonia (Spain). All target OPFRs were detected in the WWTPs influents, and the total concentration ranged from 3.67 µg L(-1) to 150 µg L(-1). During activated sludge treatment, most OPFRs were accumulated in the sludge at concentrations from 35.3 to 9980 ng g(-1) dw. Chlorinated compounds tris(2-chloroethyl) phosphate (TCEP), tris(2-chloroisopropyl) phosphate (TCIPP) and tris(2,3-dichloropropyl) phosphate (TDCPP) were not removed by the conventional activated sludge treatment and they were released by the effluents at approximately the same inlet concentration. On the contrary, aryl compounds tris(methylphenyl) phosphate (TMPP) and 2-ethylhexyl diphenyl phosphate (EHDP) together with alkyl tris(2-ethylhexyl) phosphate (TEHP) were not detected in any of the effluents. Advanced oxidation processes (UV/H2O2 and O3) were applied to investigate the degradability of recalcitrant OPFRs in WWTP effluents. Those detected in the effluent sample (TCEP, TCIPP, TDCPP, tributyl phosphate (TNBP), tri-iso-butyl phosphate (TIBP) and tris(2-butoxyethyl) phosphate (TBOEP)) had very low direct UV-C photolysis rates. TBOEP, TNBP and TIBP were degraded by UV/H2O2 and O3. Chlorinated compounds TCEP, TDCPP and TCIPP were the most recalcitrant OPFR to the advanced oxidation processes applied. The study provides information on the partitioning and degradability pathways of OPFR within conventional activated sludge WWTPs. PMID:26540311

  11. Laminar Jet Diffusion Flame Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (983KB, 9-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300184.html.

  12. Rotorcraft flying qualities improvement using advanced control

    NASA Technical Reports Server (NTRS)

    Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.

    1993-01-01

    We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.

  13. Flame Spectra.

    ERIC Educational Resources Information Center

    Cromer, Alan

    1983-01-01

    When salt (NaCl) is introduced into a colorless flame, a bright yellow light (characteristic of sodium) is produced. Why doesn't the chlorine produce a characteristic color of light? The answer to this question is provided, indicating that the flame does not excite the appropriate energy levels in chlorine. (JN)

  14. QUEST FOR AN ADVANCED REGIONAL AIR QUALITY MODEL

    EPA Science Inventory

    Organizations interested in advancing the science and technology of regional air quality modeling on the "grand challenge" scale have joined to form CAMRAQ. hey plan to leverage their research finds by collaborating on the development and evaluation of CMSs so ambitious in scope ...

  15. Flame Detector

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Scientific Instruments, Inc. has now developed a second generation, commercially available instrument to detect flames in hazardous environments, typically refineries, chemical plants and offshore drilling platforms. The Model 74000 detector incorporates a sensing circuit that detects UV radiation in a 100 degree conical field of view extending as far as 250 feet from the instrument. It operates in a bandwidth that makes it virtually 'blind' to solar radiation while affording extremely high sensitivity to ultraviolet flame detection. A 'windowing' technique accurately discriminates between background UV radiation and ultraviolet emitted from an actual flame, hence the user is assured of no false alarms. Model 7410CP is a combination controller and annunciator panel designed to monitor and control as many as 24 flame detectors. *Model 74000 is no longer being manufactured.

  16. Advances in genomics for the improvement of quality in coffee.

    PubMed

    Tran, Hue Tm; Lee, L Slade; Furtado, Agnelo; Smyth, Heather; Henry, Robert J

    2016-08-01

    Coffee is an important crop that provides a livelihood to millions of people living in developing countries. Production of genotypes with improved coffee quality attributes is a primary target of coffee genetic improvement programmes. Advances in genomics are providing new tools for analysis of coffee quality at the molecular level. The recent report of a genomic sequence for robusta coffee, Coffea canephora, is a major development. However, a reference genome sequence for the genetically more complex arabica coffee (C. arabica) will also be required to fully define the molecular determinants controlling quality in coffee produced from this high quality coffee species. Genes responsible for control of the levels of the major biochemical components in the coffee bean that are known to be important in determining coffee quality can now be identified by association analysis. However, the narrow genetic base of arabica coffee suggests that genomics analysis of the wild relatives of coffee (Coffea spp.) may be required to find the phenotypic diversity required for effective association genetic analysis. The genomic resources available for the study of coffee quality are described and the potential for the application of next generation sequencing and association genetic analysis to advance coffee quality research are explored. © 2016 Society of Chemical Industry. PMID:26919810

  17. Flame Hair

    PubMed Central

    Miteva, Mariya; Tosti, Antonella

    2015-01-01

    Background ‘Flame hairs’ is a trichoscopic feature described as hair residue from pulling anagen hairs in trichotillomania. Objective: To detect whether flame hairs are present in other hair loss disorders. Methods We retrospectively, independently and blindly reviewed the trichoscopic images of 454 consecutive patients with alopecia areata (99 cases), trichotillomania (n = 20), acute chemotherapy-induced alopecia (n = 6), acute radiotherapy-induced alopecia (n = 2), tinea capitis (n = 13), lichen planopilaris (n = 33), frontal fibrosing alopecia (n = 60), discoid lupus erythematosus (n = 30), dissecting cellulitis (n = 11), central centrifugal cicatricial alopecia (n = 94) and traction alopecia (n = 86) for the presence of flame hairs. We prospectively obtained trichoscopy-guided scalp biopsies from flame hairs in trichotillomania, alopecia areata, traction alopecia and central centrifugal cicatricial alopecia (1 case each). Results Flame hairs were detected in 100% of the acute chemotherapy- and radiotherapy-induced alopecias, where they were the predominant hair abnormality. They were also found in trichotillomania (55%), alopecia areata (21%), traction alopecia (4%) and central centrifugal cicatricial alopecia (3%). On pathology, they corresponded to distorted hair shafts. Conclusion The flame hair is a type of broken hair which can be seen in various hair loss disorders. It results from traumatic pulling of anagen hairs or from anagen arrest due to inflammation or drugs. © 2015 S. Karger AG, Basel PMID:27171360

  18. Advanced fiber optic face plate quality detector design

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Su, Liping; Zhao, Jingxia

    2010-10-01

    A fiber optic face plate is defined by a plurality of fibers of transparent material that are fused and compressed together to transmit an image from one end to another end. Fiber optic face plates exhibit utility in the image intensifiers, cathoderay tubes, and other media displays. In this paper, the design of an advanced fiber optic face plate quality detector is presented. Modern optoelectronic imaging techniques are being used to form fiber optic plate transmission images that are suitable for analyzing the quality parameters of fiber optic face plate. The diffusing light from a halogen lamp is condensed by condenser lens then through a fiber optic face plate, a set of lenses are used to magnify the transmission image, a computer controls a long linear CCD to scan the transmission image, a data grabber captures the CCD's output data and the computer transforms the data into frame image for further analysis. Digital image processing techniques are adopted to analyze the transmission image to obtain the required quality parameters. The image analysis software combines the API that a company provided and programed API is used to acquire the quality parameter that a relevant criteria required. With the long linear CCD scanning and image analysis being computerized, it accomplishes the detection of quality parameters of fiber optic face plates automaticly. The detector can replace the manual detection method and can be widely used for the quality detection of fiber optic face plate. Manufacturers of fiber optic face plates can benefit from the detector for quality control.

  19. Flame retardants

    NASA Technical Reports Server (NTRS)

    Troitzsch, J.

    1988-01-01

    The use of flame retardants in plastics has grown only slightly in recent years and will probably grow slowly in the future. The reasons for this are slow economic growth and the absence of fundamentally new requirements for future fire prevention. The trends are toward the increasing use of easily handled, dust-free and well-dispersed flame retardant compounds and master batches; there are no spectacular new developments. In the future, questions of smoke evolution, toxicity and corrosiveness of combustion gases will become increasingly important, especially due to new regulations and rising requirements for environmental protection.

  20. Flames in vortices & tulip-flame inversion

    NASA Astrophysics Data System (ADS)

    Dold, J. W.

    This article summarises two areas of research regarding the propagation of flames in flows which involve significant fluid-dynamical motion [1]-[3]. The major difference between the two is that in the first study the fluid motion is present before the arrival of any flame and remains unaffected by the flame [1, 2] while, in the second study it is the flame that is responsible for all of the fluid dynamical effects [3]. It is currently very difficult to study flame-motion in which the medium is both highly disturbed before the arrival of a flame and is further influenced by the passage of the flame.

  1. Quality Assurance Protocol for AFCI Advanced Structural Materials Testing

    SciTech Connect

    Busby, Jeremy T

    2009-05-01

    The objective of this letter is to inform you of recent progress on the development of advanced structural materials in support of advanced fast reactors and AFCI. As you know, the alloy development effort has been initiated in recent months with the procurement of adequate quantities of the NF616 and HT-UPS alloys. As the test alloys become available in the coming days, mechanical testing, evaluation of optimizing treatments, and screening of environmental effects will be possible at a larger scale. It is therefore important to establish proper quality assurance protocols for this testing effort in a timely manner to ensure high technical quality throughout testing. A properly implemented quality assurance effort will also enable preliminary data taken in this effort to be qualified as NQA-1 during any subsequent licensing discussions for an advanced design or actual prototype. The objective of this report is to describe the quality assurance protocols that will be used for this effort. An essential first step in evaluating quality protocols is assessing the end use of the data. Currently, the advanced structural materials effort is part of a long-range, basic research and development effort and not, as yet, involved in licensing discussions for a specific reactor design. After consultation with Mark Vance (an ORNL QA expert) and based on the recently-issued AFCI QA requirements, the application of NQA-1 quality requirements will follow the guidance provided in Part IV, Subpart 4.2 of the NQA-1 standard (Guidance on Graded Application of QA for Nuclear-Related Research and Development). This guidance mandates the application of sound scientific methodology and a robust peer review process in all phases, allowing for the data to be qualified for use even if the programmatic mission changes to include licensing discussions of a specific design or prototype. ORNL has previously implemented a QA program dedicated to GNEP activities and based on an appropriately graded

  2. A Series of Laminar Jet Flame

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Study of the downlink data from the Laminar Soot Processes (LSP) experiment quickly resulted in discovery of a new mechanism of flame extinction caused by radiation of soot. Scientists found that the flames emit soot sooner than expected. These findings have direct impact on spacecraft fire safety, as well as the theories predicting the formation of soot -- which is a major factor as a pollutant and in the spread of unwanted fires. This sequence, using propane fuel, was taken STS-94, July 4 1997, MET:2/05:30 (approximate). LSP investigated fundamental questions regarding soot, a solid byproduct of the combustion of hydrocarbon fuels. The experiment was performed using a laminar jet diffusion flame, which is created by simply flowing fuel-like ethylene or propane -- through a nozzle and igniting it, much like a butane cigarette lighter. The LSP principal investigator was Gerard Faeth, University of Michigan, Arn Arbor. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). LSP results led to a reflight for extended investigations on the STS-107 research mission in January 2003. Advanced combustion experiments will be a part of investigations planned for the International Space Station. (249KB JPEG, 1350 x 1524 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300185.html.

  3. Quality of life and the treatment of advanced lung cancer.

    PubMed

    Plunkett, Tim A; Chrystal, Kathryn F; Harper, Peter G

    2003-07-01

    Lung cancer is the leading cause of cancer deaths worldwide, with the majority of patients presenting with advanced disease. Despite the introduction of newer therapeutic agents and modest survival improvement, the overall prognosis for these patients is poor. The goals of therapy should therefore include improvement in quality of life (QOL), palliation of symptoms, and prolongation of survival. Quality of life has now become recognized as an important outcome measure for cancer therapy. Quality-of-life endpoints are being increasingly incorporated into clinical trials of newer agents to further define meaningful response. The assessment of QOL involves comprehensive measurement tools that address the physical, social, functional, and emotional well-being of the patient. Such measurements should be easy to use, meaningful, and relevant to the patients and clinician. Although these measures assess the longitudinal impact of treatment on QOL, pretreatment QOL scores may also be an important prognostic factor for survival in patients with lung carcinoma. This article reviews QOL measures and the data for QOL benefits from therapy in patients with advanced small-cell and non-small-cell lung cancer. PMID:14596700

  4. Experimental study of turbulent flame kernel propagation

    SciTech Connect

    Mansour, Mohy; Peters, Norbert; Schrader, Lars-Uve

    2008-07-15

    Flame kernels in spark ignited combustion systems dominate the flame propagation and combustion stability and performance. They are likely controlled by the spark energy, flow field and mixing field. The aim of the present work is to experimentally investigate the structure and propagation of the flame kernel in turbulent premixed methane flow using advanced laser-based techniques. The spark is generated using pulsed Nd:YAG laser with 20 mJ pulse energy in order to avoid the effect of the electrodes on the flame kernel structure and the variation of spark energy from shot-to-shot. Four flames have been investigated at equivalence ratios, {phi}{sub j}, of 0.8 and 1.0 and jet velocities, U{sub j}, of 6 and 12 m/s. A combined two-dimensional Rayleigh and LIPF-OH technique has been applied. The flame kernel structure has been collected at several time intervals from the laser ignition between 10 {mu}s and 2 ms. The data show that the flame kernel structure starts with spherical shape and changes gradually to peanut-like, then to mushroom-like and finally disturbed by the turbulence. The mushroom-like structure lasts longer in the stoichiometric and slower jet velocity. The growth rate of the average flame kernel radius is divided into two linear relations; the first one during the first 100 {mu}s is almost three times faster than that at the later stage between 100 and 2000 {mu}s. The flame propagation is slightly faster in leaner flames. The trends of the flame propagation, flame radius, flame cross-sectional area and mean flame temperature are related to the jet velocity and equivalence ratio. The relations obtained in the present work allow the prediction of any of these parameters at different conditions. (author)

  5. Triple flame structure and diffusion flame stabilization

    NASA Technical Reports Server (NTRS)

    Veynante, D.; Vervisch, L.; Poinsot, T.; Linan, A.; Ruetsch, G.

    1994-01-01

    The stabilization of diffusion flames is studied using asymptotic techniques and numerical tools. The configuration studied corresponds to parallel streams of cold oxidizer and fuel initially separated by a splitter plate. It is shown that stabilization of a diffusion flame may only occur in this situation by two processes. First, the flame may be stabilized behind the flame holder in the wake of the splitter plate. For this case, numerical simulations confirm scalings previously predicted by asymptotic analysis. Second, the flame may be lifted. In this case a triple flame is found at longer distances downstream of the flame holder. The structure and propagation speed of this flame are studied by using an actively controlled numerical technique in which the triple flame is tracked in its own reference frame. It is then possible to investigate the triple flame structure and velocity. It is shown, as suggested from asymptotic analysis, that heat release may induce displacement speeds of the triple flame larger than the laminar flame speed corresponding to the stoichiometric conditions prevailing in the mixture approaching the triple flame. In addition to studying the characteristics of triple flames in a uniform flow, their resistance to turbulence is investigated by subjecting triple flames to different vortical configurations.

  6. High quality mask storage in an advanced Logic-Fab

    NASA Astrophysics Data System (ADS)

    Jähnert, Carmen; Fritsche, Silvio

    2012-02-01

    High efficient mask logistics as well as safe and high quality mask storage are essential requirements within an advanced lithography area of a modern logic waferfab. Fast operational availability of the required masks at the exposure tool with excellent mask condition requires a safe mask handling, safeguarding of high mask quality over the whole mask usage time without any quality degradation and an intelligent mask logistics. One big challenge is the prevention of haze on high advanced phase shift masks used in a high volume production line for some thousands of 248nm or 193nm exposures. In 2008 Infineon Dresden qualified a customer specific developed semi-bare mask storage system from DMSDynamic Micro Systems in combination with a high advanced mask handling and an interconnected complex logistic system. This high-capacity mask storage system DMS M1900.22 for more than 3000 masks with fully automated mask and box handling as well as full-blown XCDA purge has been developed and adapted to the Infineon Lithotoollandscape using Nikon and SMIF reticle cases. Advanced features for ESD safety and mask security, mask tracking via RFID and interactions with the exposure tools were developed and implemented. The stocker is remote controlled by the iCADA-RSM system, ordering of the requested mask directly from the affected exposure tool allows fast access. This paper discusses the advantages and challenges for this approach as well as the practical experience gained during the implementation of the new system which improves the fab performance with respect to mask quality, security and throughput. Especially the realization of an extremely low and stable humidity level in addition with a well controlled air flow at each mask surface, preventing masks from haze degradation and particle contamination, turns out to be a notable technical achievement. The longterm stability of haze critical masks has been improved significantly. Relevant environmental parameters like

  7. Knowledge Management Platform in Advanced Product Quality Planning

    NASA Astrophysics Data System (ADS)

    Chiliban, Bogdan; Baral, Lal Mohan; Kifor, Claudiu

    2014-12-01

    Knowledge is an essential part of organizational competitiveness. This vital resource must be managed correctly within organizations in order to achieve desired performance levels within all undertakings. The process of managing knowledge is a very difficult one due to the illusive nature of the resource itself. Knowledge is stored within every aspect of an organization starting from people and ending with documents and processes. The Knowledge Management Platform is designed as a facilitator for managers and employees in all endeavours knowledge related within the Advanced Product Quality Planning Procedure

  8. The discrete regime of flame propagation

    NASA Astrophysics Data System (ADS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew

    The propagation of laminar dust flames in iron dust clouds was studied in a low-gravity envi-ronment on-board a parabolic flight aircraft. The elimination of buoyancy-induced convection and particle settling permitted measurements of fundamental combustion parameters such as the burning velocity and the flame quenching distance over a wide range of particle sizes and in different gaseous mixtures. The discrete regime of flame propagation was observed by substitut-ing nitrogen present in air with xenon, an inert gas with a significantly lower heat conductivity. Flame propagation in the discrete regime is controlled by the heat transfer between neighbor-ing particles, rather than by the particle burning rate used by traditional continuum models of heterogeneous flames. The propagation mechanism of discrete flames depends on the spa-tial distribution of particles, and thus such flames are strongly influenced by local fluctuations in the fuel concentration. Constant pressure laminar dust flames were observed inside 70 cm long, 5 cm diameter Pyrex tubes. Equally-spaced plate assemblies forming rectangular chan-nels were placed inside each tube to determine the quenching distance defined as the minimum channel width through which a flame can successfully propagate. High-speed video cameras were used to measure the flame speed and a fiber optic spectrometer was used to measure the flame temperature. Experimental results were compared with predictions obtained from a numerical model of a three-dimensional flame developed to capture both the discrete nature and the random distribution of particles in the flame. Though good qualitative agreement was obtained between model predictions and experimental observations, residual g-jitters and the short reduced-gravity periods prevented further investigations of propagation limits in the dis-crete regime. The full exploration of the discrete flame phenomenon would require high-quality, long duration reduced gravity environment

  9. Flame spread across liquid pools

    NASA Technical Reports Server (NTRS)

    Ross, Howard; Miller, Fletcher; Schiller, David; Sirignano, William A.

    1993-01-01

    For flame spread over liquid fuel pools, the existing literature suggests three gravitational influences: (1) liquid phase buoyant convection, delaying ignition and assisting flame spread; (2) hydrostatic pressure variation, due to variation in the liquid pool height caused by thermocapillary-induced convection; and (3) gas-phase buoyant convection in the opposite direction to the liquid phase motion. No current model accounts for all three influences. In fact, prior to this work, there was no ability to determine whether ignition delay times and flame spread rates would be greater or lesser in low gravity. Flame spread over liquid fuel pools is most commonly characterized by the relationship of the initial pool temperature to the fuel's idealized flash point temperature, with four or five separate characteristic regimes having been identified. In the uniform spread regime, control has been attributed to: (1) gas-phase conduction and radiation; (2) gas-phase conduction only; (3) gas-phase convection and liquid conduction, and most recently (4) liquid convection ahead of the flame. Suggestions were made that the liquid convection was owed to both vuoyancy and thermocapillarity. Of special interest to this work is the determination of whether, and under what conditions, pulsating spread can and will occur in microgravity in the absence of buoyant flows in both phases. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity experiments and advanced diagnostics; (2) microgravity experiments; and (3) numerical modelling at arbitrary gravitational level.

  10. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; T'ien, J. S.; Chang, P.; Shu, Y.

    1999-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame in microgravity is used as a model of a non-propagating, steady-state, pure diffusion flame. The present work is a continuation of two small-scale, space-based experiments on candle flames, one on the Shuttle and the other on the Mir OS. The previous studies showed nearly steady dim blue flames with flame lifetimes as high as 45 minutes, and 1 Hz spontaneous flame oscillations prior to extinction. The present paper summarizes the results of the modeling efforts to date.

  11. Flame Balls

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Structure of Flameballs at Low Lewis Numbers (SOFBALL) experiments aboard the space shuttle in 1997 a series of sturningly successful burns. This sequence was taken during STS-94, July 12, 1997, MET:10/08:18 (approximate). It was thought these extremely dim flameballs (1/20 the power of a kitchen match) could last up to 200 seconds -- in fact, they can last for at least 500 seconds. This has ramifications in fuel-spray design in combustion engines, as well as fire safety in space. The SOFBALL principal investigator was Paul Ronney, University of Southern California, Los Angeles. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations planned for the International Space Station. (563KB JPEG, 1798 x 1350 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300187.html.

  12. Advanced Morphological — Behavioral Test Platform Reveals Neurodevelopmental Defects in Embryonic Zebrafish Exposed to Comprehensive Suite of Halogenated and Organophosphate Flame Retardants

    PubMed Central

    Noyes, Pamela D.; Haggard, Derik E.; Gonnerman, Greg D.; Tanguay, Robert L.

    2015-01-01

    The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to

  13. Advanced morphological - behavioral test platform reveals neurodevelopmental defects in embryonic zebrafish exposed to comprehensive suite of halogenated and organophosphate flame retardants.

    PubMed

    Noyes, Pamela D; Haggard, Derik E; Gonnerman, Greg D; Tanguay, Robert L

    2015-05-01

    The increased use of flammable plastics and electronic devices along with stricter fire safety standards has led to the heavy use of flame retardant chemicals in many consumer, commercial, and industrial products. Although flame retardant use has increased, a great deal of uncertainty surrounds their safety with some evidence showing toxicity and risk to human and environmental health. Recent efforts have focused on designing high-throughput biological platforms with nonmammalian models to evaluate and prioritize chemicals with limited hazard information. To complement these efforts, this study used a new morphological and behavioral testing platform with embryonic zebrafish to characterize the developmental toxicity of 44 halogenated and organophosphate flame retardants, including several of their known metabolites. Zebrafish were exposed to flame retardants from 6 to 120 h post fertilization (hpf) across concentrations spanning 4 orders of magnitude (eg, 6.4 nM to 64 µM). Flame retardant effects on survival and development were evaluated at 24 and 120 hpf, and neurobehavioral changes were measured using 2 photomotor response (PMR) assays. Compared to controls, 93% (41/44) of flame retardants studied elicited adverse effects among one or more of the bioassays and concentrations tested with the aryl phosphate ester (APE)-based mono-isopropylated triaryl phosphate and the brominated-bisphenol-A analog tetrabromobisphenol-A producing the greatest array of malformations. Hierarchical clustering showed that APE flame retardants with isopropyl, butyl, and cresyl substituents on phenyl rings clustered tightly and were particularly potent. Both PMR assays were highly predictive of morphological defects supporting their use as nonlethal means of evaluating teratogenicity that could allow for additional evaluations of long-term or delayed effects in older animals. Taken together, evidence presented here indicates that zebrafish neurodevelopment is highly sensitive to

  14. Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion

    SciTech Connect

    Vervisch, Luc; Domingo, Pascale; Lodato, Guido; Veynante, Denis

    2010-04-15

    Large-Eddy Simulation (LES) provides space-filtered quantities to compare with measurements, which usually have been obtained using a different filtering operation; hence, numerical and experimental results can be examined side-by-side in a statistical sense only. Instantaneous, space-filtered and statistically time-averaged signals feature different characteristic length-scales, which can be combined in dimensionless ratios. From two canonical manufactured turbulent solutions, a turbulent flame and a passive scalar turbulent mixing layer, the critical values of these ratios under which measured and computed variances (resolved plus sub-grid scale) can be compared without resorting to additional residual terms are first determined. It is shown that actual Direct Numerical Simulation can hardly accommodate a sufficiently large range of length-scales to perform statistical studies of LES filtered reactive scalar-fields energy budget based on sub-grid scale variances; an estimation of the minimum Reynolds number allowing for such DNS studies is given. From these developments, a reliability mesh criterion emerges for scalar LES and scaling for scalar sub-grid scale energy is discussed. (author)

  15. Turbulent Deflagrated Flame Interaction with a Fluidic Jet Flow for Deflagration-to-Detonation Flame Acceleration

    NASA Astrophysics Data System (ADS)

    Chambers, Jessica; McGarry, Joseph; Ahmed, Kareem

    2015-11-01

    Detonation is a high energetic mode of pressure gain combustion. Detonation combustion exploits the pressure rise to augment high flow momentum and thermodynamic cycle efficiencies. The driving mechanism of deflagrated flame acceleration to detonation is turbulence generation and induction. A fluidic jet is an innovative method for the production of turbulence intensities and flame acceleration. Compared to traditional obstacles, the jet reduces the pressure losses and heat soak effects while providing turbulence generation control. The investigation characterizes the turbulent flame-flow interactions. The focus of the study is on classifying the turbulent flame dynamics and the temporal evolution of turbulent flame regime. The turbulent flame-flow interactions are experimentally studied using a LEGO Detonation facility. Advanced high-speed laser diagnostics, particle image velocimetry (PIV), planar laser induced florescence (PLIF), and Schlieren imaging are used in analyzing the physics of the interaction and flame acceleration. Higher turbulence induction is observed within the turbulent flame after contact with the jet, leading to increased flame burning rates. The interaction with the fluidic jet results in turbulent flame transition from the thin reaction zones to the broken reaction regime.

  16. Flame-vortex interactions imaged in microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Dahm, Werner J. A.; Sichel, Martin

    1995-01-01

    The scientific objective is to obtain high quality color-enhanced digital images of a vortex exerting aerodynamic strain on premixed and nonpremixed flames with the complicating effects of buoyancy removed. The images will provide universal (buoyancy free) scaling relations that are required to improve several types of models of turbulent combustion, including KIVA-3, discrete vortex, and large-eddy simulations. The images will be used to help quantify several source terms in the models, including those due to flame stretch, flame-generated vorticity, flame curvature, and preferential diffusion, for a range of vortex sizes and flame conditions. The experiment is an ideal way to study turbulence-chemistry interactions and isolate the effect of vortices of different sizes and strengths in a repeatable manner. A parallel computational effort is being conducted which considers full chemistry and preferential diffusion.

  17. Fiber optic (flight quality) sensors for advanced aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Poppel, Gary L.

    1994-01-01

    Development of flight prototype, fiber-optic sensing system components for measuring nine sensed parameters (three temperatures, two speeds, three positions, and one flame) on an F404-400 aircraft engine is described. Details of each sensor's design, functionality, and environmental testing, and the electro-optics architecture for sensor signal conditioning are presented. Eight different optical sensing techniques were utilized. Design, assembly, and environmental testing of an engine-mounted, electro-optics chassis unit (EOU), providing MIL-C-1553 data output, are related. Interconnection cables and connectors between the EOU and the sensors are identified. Results of sensor/cable/circuitry integrated testing, and installation and ground testing of the sensor system on an engine in October 1993 and April 1994 are given, including comparisons with the engine control system's electrical sensors. Lessons learned about the design, fabrication, testing, and integration of the sensor system components are included.

  18. Quality Nursing Care for Hospitalized Patients with Advanced Illness: Concept Development

    PubMed Central

    Izumi, Shigeko; Baggs, Judith G.; Knafl, Kathleen A.

    2011-01-01

    The quality of nursing care as perceived by hospitalized patients with advanced illness has not been examined. A concept of quality nursing care for this population was developed by integrating the literature on constructs defining quality nursing care with empirical findings from interviews of 16 patients with advanced illness. Quality nursing care was characterized as competence and personal caring supported by professionalism and delivered with an appropriate demeanor. Although the attributes of competence, caring, professionalism, and demeanor were identified as common components of quality care across various patient populations, the caring domain increased in importance when patients with advanced illness perceived themselves as vulnerable. Assessment of quality nursing care for patients with advanced illness needs to include measures of patient perceptions of vulnerability. PMID:20572095

  19. Understanding flame rods

    SciTech Connect

    McAuley, J.A. Jr.

    1995-11-01

    The flame rod is probably the least understood method of flame detection. Although it is not recommended for oilfired equipment, it is very common on atmospheric, or {open_quotes}in-shot,{close_quotes} gas burners. It is also possible, although not common, to have an application with a constant gas pilot, monitored by a flame rod, and maintaining an oil main flame. Regardless of the application, chances are that flame rods will be encountered during the course of servicing. The technician today must be versatile and able to work on many different types of equipment. One must understand the basic principles of flame rods, and how to correct potential problems. The purpose of a flame detection system is two-fold: (1) to prove there is no flame when there shouldn`t be one, and (2) to prove there is a flame when there should be one. Flame failure response time is very important. This is the amount of time it takes to realize there is a loss of flame, two to four seconds is typical today. Prior to flame rods, either bi-metal or thermocouple type flame detectors were common. The response time for these detectors was up to three minutes, seldom less than one minute.

  20. EPANET - AN ADVANCED WATER QUALITY MODELING PACKAGE FOR DISTRIBUTION SYSTEMS

    EPA Science Inventory

    EPANET is a third generation software package for modeling water quality within drinking water distribution systems. he program performs extended period simulation of hydraulic and water quality conditions within pressurized pipe networks. n addition to substance concentration wa...

  1. The Science of Flames.

    ERIC Educational Resources Information Center

    Cornia, Ray

    1991-01-01

    Describes an exercise using flames that allows students to explore the complexities of a seemingly simple phenomenon, the lighting of a candle. Contains a foldout that provides facts about natural gas flames and suggestions for classroom use. (ZWH)

  2. Advanced control technology and airworthiness flying qualities requirements

    NASA Technical Reports Server (NTRS)

    Snyder, C. T.

    1976-01-01

    Flying quality requirements are specified in terms of the complete pilot-airframe-systems loop, the task, and the environment. Results from a study of flying qualities are reported. A review of the treatment of failure cases in various flying quality requirements is presented along with a description of the methods used and relevant lessons learned from recent Autoland certification programs.

  3. Diagnostics and Control of Natural Gas-Fired furnaces via Flame Image Analysis using Machine Vision & Artificial Intelligence Techniques

    SciTech Connect

    Shahla Keyvan

    2005-12-01

    A new approach for the detection of real-time properties of flames is used in this project to develop improved diagnostics and controls for natural gas fired furnaces. The system utilizes video images along with advanced image analysis and artificial intelligence techniques to provide virtual sensors in a stand-alone expert shell environment. One of the sensors is a flame sensor encompassing a flame detector and a flame analyzer to provide combustion status. The flame detector can identify any burner that has not fired in a multi-burner furnace. Another sensor is a 3-D temperature profiler. One important aspect of combustion control is product quality. The 3-D temperature profiler of this on-line system is intended to provide a tool for a better temperature control in a furnace to improve product quality. In summary, this on-line diagnostic and control system offers great potential for improving furnace thermal efficiency, lowering NOx and carbon monoxide emissions, and improving product quality. The system is applicable in natural gas-fired furnaces in the glass industry and reheating furnaces used in steel and forging industries.

  4. Flame front configuration of turbulent premixed flames

    SciTech Connect

    Furukawa, Junichi; Maruta, Kaoru; Hirano, Toshisuke

    1998-02-01

    The present study is performed to explore dependence of the wrinkle scale of propane-air turbulent premixed flames on the characteristics of turbulence in the nonreacting flow, burner size, and mixture ratio. The wrinkle scales are examined and expressed in the frequency distribution of the radii of flame front curvatures. The average wrinkle scale depends not only on the characteristics of turbulence in the nonreacting flow but also on burner diameter and mixture ratio. The average wrinkle scale of a lean propane-air flame is larger than those of the near stoichiometric and rich flames. The smallest wrinkle scale of turbulent premixed flame is in the range of 0.75--1.0 mm, which is much larger than the Kolmogorov scale of turbulence in the nonreacting flow.

  5. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.; Ross, Howard D.; Frate, David T.; Tien, James S.; Shu, Yong

    1997-01-01

    This work is a study of a candle flame in a microgravity environment. The purpose of the work is to determine if a steady (or quasi-steady) flame can exist in a microgravity environment, study the characteristics of the steady flame, investigate the pre-extinction flame oscillations observed in a previous experiment in more detail, and finally, determine the nature of the interactions between two closely spaced candle flames. The candle flame is used as a model combustion system, in that in microgravity it is one of the only examples of a non-propagating, steady-state, pure diffusion flame. Others have used the candle to study a number of combustion phenomena including flame flicker, flame oscillations, electric field effects and enhanced and reduced gravitational effects in flames. The present work is a continuation of a small-scale Shuttle experiment on candle flames. That study showed that the candle flame lifetimes were on the order of 40 seconds, the flames were dim blue after a transient ignition period, and that just prior to extinction the flames oscillated spontaneously for about five seconds at a frequency of 1 Hz. The authors postulated that the gas phase in the immediate vicinity of the flame was quasi-steady. Further away from the flame, however, the assertion of a quasi-steady flame was less certain, thus the authors did not prove that a steady flame could exist. They also speculated that the short lifetime of the candle flame was due to the presence of the small, weakly perforated box that surrounded the candle. The Candle Flames in Microgravity (CFM) experiment, with revised hardware, was recently flown aboard the Mir orbiting station, and conducted inside the glovebox facility by Dr. Shannon Lucid. In addition to the purposes described above, the experiments were NASA's first ability to ascertain the merits of the Mir environment for combustion science studies. In this article, we present the results of that experiment. We are also in the process

  6. Freely propagating open premixed turbulent flames stabilized by swirl

    SciTech Connect

    Chan, C.K.; Lau, K.S.; Chin, W.K.; Cheng, R.K.

    1991-12-01

    A novel means has been developed for using weak swirl to stabilize freely propagating open premixed turbulent flames (swirl numbers between 0.05 to 0.3). By injecting a small amount of air tangentially into the co-flow of a concentric burner, stationary flames can be maintained above the burner exit for a large range of mixture, turbulence and flow conditions. The absence of physical surfaces in the vicinity of the flame provides free access to laser diagnostics. Laser Doppler anemometry and laser Mie scattering measurements of four flames with and without incident turbulence show that their features are typical of wrinkled laminar flames. The most distinct characteristics is that flame stabilization does not rely on flow recirculation. Centrifugal force induced by swirl causes flow divergence, and the flame is maintained at where the local mass flux balances the burning rate. The flame speeds can be estimated based on the centerline velocity vector, which is locally normal to the flame brush. This flame geometry is the closest approximation to the 1-D planar flame for determining fundamental properties to advance turbulent combustion theories. 18 refs.

  7. How Quality Improvement Practice Evidence Can Advance the Knowledge Base.

    PubMed

    OʼRourke, Hannah M; Fraser, Kimberly D

    2016-01-01

    Recommendations for the evaluation of quality improvement interventions have been made in order to improve the evidence base of whether, to what extent, and why quality improvement interventions affect chosen outcomes. The purpose of this article is to articulate why these recommendations are appropriate to improve the rigor of quality improvement intervention evaluation as a research endeavor, but inappropriate for the purposes of everyday quality improvement practice. To support our claim, we describe the differences between quality improvement interventions that occur for the purpose of practice as compared to research. We then carefully consider how feasibility, ethics, and the aims of evaluation each impact how quality improvement interventions that occur in practice, as opposed to research, can or should be evaluated. Recommendations that fit the evaluative goals of practice-based quality improvement interventions are needed to support fair appraisal of the distinct evidence they produce. We describe a current debate on the nature of evidence to assist in reenvisioning how quality improvement evidence generated from practice might complement that generated from research, and contribute in a value-added way to the knowledge base. PMID:27584696

  8. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  9. Flame Imaging System

    NASA Technical Reports Server (NTRS)

    Barnes, Heidi L. (Inventor); Smith, Harvey S. (Inventor)

    1998-01-01

    A system for imaging a flame and the background scene is discussed. The flame imaging system consists of two charge-coupled-device (CCD) cameras. One camera uses a 800 nm long pass filter which during overcast conditions blocks sufficient background light so the hydrogen flame is brighter than the background light, and the second CCD camera uses a 1100 nm long pass filter, which blocks the solar background in full sunshine conditions such that the hydrogen flame is brighter than the solar background. Two electronic viewfinders convert the signal from the cameras into a visible image. The operator can select the appropriate filtered camera to use depending on the current light conditions. In addition, a narrow band pass filtered InGaAs sensor at 1360 nm triggers an audible alarm and a flashing LED if the sensor detects a flame, providing additional flame detection so the operator does not overlook a small flame.

  10. Flame spraying of polymers

    SciTech Connect

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-08-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs.

  11. Advance Care Planning and the Quality of End-of-Life Care among Older Adults

    PubMed Central

    Bischoff, Kara E.; Sudore, Rebecca; Miao, Yinghui; Boscardin, W. John; Smith, Alexander K.

    2013-01-01

    Background Advance care planning is increasingly common, but whether it influences end-of-life quality of care remains controversial. Design Medicare data and survey data from the Health and Retirement Study were combined to determine whether advance care planning was associated with quality metrics. Setting The nationally representative Health and Retirement Study. Participants 4394 decedent subjects (mean age 82.6 years at death, 55% women). Measurements Advance care planning was defined as having an advance directive, durable power of attorney or having discussed preferences for end-of-life care with a next-of-kin. Outcomes included previously reported quality metrics observed during the last month of life (rates of hospital admission, in-hospital death, >14 days in the hospital, intensive care unit admission, >1 emergency department visit, hospice admission, and length of hospice ≤3 days). Results Seventy-six percent of subjects engaged in advance care planning. Ninety-two percent of advance directives stated a preference to prioritize comfort. After adjustment, subjects who engaged in advance care planning were less likely to die in a hospital (adjusted RR 0.87, 95% CI 0.80-0.94), more likely to be enrolled in hospice (aRR 1.68, 1.43-1.97), and less likely to receive hospice for ≤3 days before death (aRR 0.88, 0.85-0.91). Having an advance directive, a durable-power-of-attorney or an advance care planning discussion were each independently associated with a significant increase in hospice use (p<0.01 for all). Conclusion Advance care planning was associated with improved quality of care at the end of life, including less in-hospital death and increased use of hospice. Having an advance directive, assigning a durable power of attorney and conducting advance care planning discussions are all important elements of advance care planning. PMID:23350921

  12. Prediction of flame velocities of hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Simon, Dorothy M

    1954-01-01

    The laminar-flame-velocity data previously reported by the Lewis Laboratory are surveyed with respect to the correspondence between experimental flame velocities and values predicted by semitheoretical and empirical methods. The combustible mixture variables covered are hydrocarbon structure (56 hydrocarbons), equivalence ratio of fuel-air mixture, mole fraction of oxygen in the primary oxygen-nitrogen mixture (0.17 to 0.50), and initial mixture temperature (200 degrees to 615 degrees k). The semitheoretical method of prediction considered are based on three approximate theoretical equations for flame velocity: the Semenov equation, the Tanford-Pease equation, and the Manson equation.

  13. REFINED PHOTOLYSIS RATES FOR ADVANCED AIR QUALITY MODELING SYSTEM

    EPA Science Inventory

    Accurate modeling of photochemistry is critical and fundamental to reducing the uncertainty in air quality model predictions. lmost all chemical reactions in the atmosphere are initiated by the photodissociation of a number of trace gases. irect measure of this photodissociation ...

  14. Field Effects of Buoyancy on Lean Premixed Turbulent Flames

    NASA Technical Reports Server (NTRS)

    Cheng, R. K.; Johnson, M. R.; Greenberg, P. S.; Wernet, M. P.

    2003-01-01

    The study of field effects of buoyancy on premixed turbulent flames is directed towards the advancement of turbulent combustion theory and the development of cleaner combustion technologies. Turbulent combustion is considered the most important unsolved problem in combustion science and laboratory studies of turbulence flame processes are vital to theoretical development. Although buoyancy is dominant in laboratory flames, most combustion models are not yet capable to consider buoyancy effects. This inconsistency has impeded the validation of theories and numerical simulations with experiments. Conversely, the understanding of buoyancy effects is far too limited to help develop buoyant flame models. Our research is also relevant to combustion technology because lean premixed combustion is a proven method to reduce the formation of oxides of nitrogen (NOx). In industrial lean premixed combustion systems, their operating conditions make them susceptible to buoyancy thus affecting heat distribution, emissions, stability, flashback and blowoff. But little knowledge is available to guide combustion engineers as to how to avoid or overcome these problems. Our hypothesis is that through its influence on the mean pressure field, buoyancy has direct and indirect effects on local flame/turbulence interactions. Although buoyancy acts on the hot products in the farfield the effect is also felt in the nearfield region upstream of the flame. These changes also influence the generation and dissipation of turbulent kinetic energy inside the flame brush and throughout the flowfield. Moreover, the plume of an open flame is unstable and the periodic fluctuations make additional contributions to flame front dynamics in the farfield. Therefore, processes such as flame wrinkling, flow acceleration due to heat release and flame- generated vorticity are all affected. Other global flame properties (e.g. flame stabilization limits and flame speed) may all be coupled to buoyancy. This

  15. Premixed Flame-Vortex Interactions Imaged in Microgravity

    NASA Technical Reports Server (NTRS)

    Driscoll, J. F.; Sichel, M.; Sinibaldi, J. O.

    1997-01-01

    A unique experiment makes it now possible to obtain detailed images in microgravity showing how an individual vortex causes the wrinkling, stretching, area increase, and eventual extinction of a premixed flame. The repeatable, controllable flame-vortex interaction represents the fundamental building block of turbulent combustion concepts. New information is provided that is central to turbulent flame models, including measurements of all components of flame stretch, strain, and vorticity. Simultaneous measurements of all components of these quantities are not possible in fully turbulent flames but are possible in the present axisymmetric, repeatable experiment. Advanced PIV diagnostics have been used at one-g and have been developed for microgravity. Numerical simulations of the interaction are being performed at NRL. It is found that microgravity conditions greatly augment the flame wrinkling process. Flame area and the amplitude of wrinkles at zero-g are typically twice that observed at one-g. It is inferred that turbulent flames in microgravity could have larger surface area and thus propagate significantly faster than those in one-g, which is a potential safety hazard. A new mechanism is identified by PIV images that shows how buoyancy retards flame wrinkling at one-g; buoyancy produces new vorticity (due to baroclinic torques) that oppose the wrinkling and the stretch imposed by the original vortex. Microgravity conditions remove this stabilizing mechanism and the amplitude of flame wrinkling typically is found to double. Microgravity also increases the flame speed by a factor of 1.8 to 2.2. Both methane and propane-air flames were studied at the NASA Lewis drop tower. Results indicate that it is important to add buoyancy to models of turbulent flames to simulate the correct flame wrinkling, stretch and burning velocity.

  16. ANALYSIS ON EFFLUENT WATER QUALITY AND ELECTRICITY CONSUMPTION AFTER INTRODUCING ADVANCED SEWAGE TREATMENT

    NASA Astrophysics Data System (ADS)

    Shiojiri, Yasuo; Maekawa, Shunich

    We analyze effluent water quality and electricity consumption after in troducing advanced treatment in sewage treatment plant. We define 'advanced treatment ratio' as volume of treated water through advanced treatment processes divided by total volume of treated water in plant. Advanced treatment ratio represents degree of introducing advanced treatment. We build two types of equation. One represents relation between effluent water quality and advanced treatment ratio, the other between electricity consumption and advanced treatment ratio. Each equation is fitted by least squares on 808 samples: 8 fiscal years operation data of 101 plants working in Kanagawa, Tokyo, Saitama and Chiba areas, and coefficient of advanced treatment ratio is estimated. The result is as follows. (1) After introducing advanced treatment aimed at nitrogen removal, T-N in effluent water decreases by 51.3% and electricity consum ption increases by 52.2%. (2) After introducing advanced treatment aimed at phosphorus removal, T-P in effluent water decreases by 27.8%. Using the above result, we try prioritizing 71 plants in Tokyo Bay watershed about raising advanced treatment ratio, so that, in total, pollutant in effluent water decreases with minimized increase of electricity consumption.

  17. Candle flames in microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Tien, J. S.

    1995-01-01

    The candle flame in both normal and microgravity is non-propagating. In microgravity, however, the candle flame is also non-convective where (excepting Stefan flow) pure diffusion is the only transport mode. It also shares many characteristics with another classical problem, that of isolated droplet combustion. Given their qualitatively similar flame shapes and the required heat feedback to condensed-phase fuels, the gas-phase flow and temperature fields should be relatively similar for a droplet and a candle in reduced gravity. Unless the droplet diameter is maintained somehow through non-intrusive replenishment of fuel, the quasi-steady burning characteristics of a droplet can be maintained for only a few seconds. In contrast, the candle flame in microgravity may achieve a nearly steady state over a much longer time and is therefore ideal for examining a number of combustion-related phenomena. In this paper, we examine candle flame behavior in both short-duration and long-duration, quiescent, microgravity environments. Interest in this type of flame, especially 'candle flames in weightlessness', is demonstrated by very frequent public inquiries. The question is usually posed as 'will a candle flame burn in zero gravity', or, 'will a candle burn indefinitely (or steadily) in zero gravity in a large volume of quiescent air'. Intuitive speculation suggests to some that, in the absence of buoyancy, the accumulation of products in the vicinity of the flame will cause flame extinction. The classical theory for droplet combustion with its spherically-shaped diffusion flame, however, shows that steady combustion is possible in the absence of buoyancy if the chemical kinetics are fast enough. Previous experimental studies of candle flames in reduced and microgravity environments showed the flame could survive for at least 5 seconds, but did not reach a steady state in the available test time.

  18. Shapes of Buoyant and Nonbuoyant Methane Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.; Yuan, Zeng-Guang; Urban, David L.

    1997-01-01

    Laminar gas jet diffusion flames represent a fundamental combustion configuration. Their study has contributed to numerous advances in combustion, including the development of analytical and computational combustion tools. Laminar jet flames are pertinent also to turbulent flames by use of the laminar flamelet concept. Investigations into the shapes of noncoflowing microgravity laminar jet diffusion flames have primarily been pursued in the NASA Lewis 2.2-second drop tower, by Cochran and coworkers and by Bahadori and coworkers. These studies were generally conducted at atmospheric pressure; they involved soot-containing flames and reported luminosity lengths and widths instead of the flame-sheet dimensions which are of Greater value to theory evaluation and development. The seminal model of laminar diffusion flames is that of Burke and Schumann, who solved the conservation of momentum equation for a jet flame in a coflowing ambient by assuming the velocity of fuel, oxidizer and products to be constant throughout. Roper and coworkers improved upon this model by allowing for axial variations of velocity and found flame shape to be independent of coflow velocity. Roper's suggestion that flame height should be independent of gravity level is not supported by past or present observations. Other models have been presented by Klajn and Oppenheim, Markstein and De Ris, Villermaux and Durox, and Li et al. The common result of all these models (except in the buoyant regime) is that flame height is proportional to fuel mass flowrate, with flame width proving much more difficult to predict. Most existing flame models have been compared with shapes of flames containing soot, which is known to obscure the weak blue emission of flame sheets. The present work involves measurements of laminar gas jet diffusion flame shapes. Flame images have been obtained for buoyant and nonbuoyant methane flames burning in quiescent air at various fuel flow-rates, burner diameters and ambient

  19. Flame front geometry in premixed turbulent flames

    SciTech Connect

    Shepherd, I.G.; Ashurst, W.T.

    1991-12-01

    Experimental and numerical determinations of flame front curvature and orientation in premixed turbulent flames are presented. The experimental data is obtained from planar, cross sectional images of stagnation point flames at high Damkoehler number. A direct numerical simulation of a constant energy flow is combined with a zero-thickness, constant density flame model to provide the numerical results. The computational domain is a 32{sup 3} cube with periodic boundary conditions. The two-dimensional curvature distributions of the experiments and numerical simulations compare well at similar q{prime}/S{sub L} values with means close to zero and marked negative skewness. At higher turbulence levels the simulations show that the distributions become symmetric about zero. These features are also found in the three dimensional distributions of curvature. The simulations support assumptions which make it possible to determine the mean direction cosines from the experimental data. This leads to a reduction of 12% in the estimated flame surface area density in the middle of the flame brush. 18 refs.

  20. Advancing High-Quality Literacy Research in Juvenile Justice: Methodological and Practical Considerations

    ERIC Educational Resources Information Center

    Houchins, David E.; Jolivette, Kristine; Shippen, Margaret E.; Lambert, Richard

    2010-01-01

    Special education researchers have made noteworthy progress toward conceptualizing literacy research questions, designing quality studies, and disseminating the results of their research. These advancements have been made through the establishment and refinement of quality research indicators. Unfortunately, this progress has mostly eluded the…

  1. Cool Flame Quenching

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard

    2001-01-01

    Cool flame quenching distances are generally presumed to be larger than those associated with hot flames, because the quenching distance scales with the inverse of the flame propagation speed, and cool flame propagation speeds are often times slower than those associated with hot flames. To date, this presumption has never been put to a rigorous test, because unstirred, non-isothermal cool flame studies on Earth are complicated by natural convection. Moreover, the critical Peclet number (Pe) for quenching of cool flames has never been established and may not be the same as that associated with wall quenching due to conduction heat loss in hot flames, Pe approx. = 40-60. The objectives of this ground-based study are to: (1) better understand the role of conduction heat loss and species diffusion on cool flame quenching (i.e., Lewis number effects), (2) determine cool flame quenching distances (i.e, critical Peclet number, Pe) for different experimental parameters and vessel surface pretreatments, and (3) understand the mechanisms that govern the quenching distances in premixtures that support cool flames as well as hot flames induced by spark-ignition. Objective (3) poses a unique fire safety hazard if conditions exist where cool flame quenching distances are smaller than those associated with hot flames. For example, a significant, yet unexplored risk, can occur if a multi-stage ignition (a cool flame that transitions to a hot flame) occurs in a vessel size that is smaller than that associated with the hot quenching distance. To accomplish the above objectives, a variety of hydrocarbon-air mixtures will be tested in a static reactor at elevated temperature in the laboratory (1g). In addition, reactions with chemical induction times that are sufficiently short will be tested aboard NASA's KC-135 microgravity (mu-g) aircraft. The mu-g results will be compared to a numerical model that includes species diffusion, heat conduction, and a skeletal kinetic mechanism

  2. Beam quality of the ATA (Advanced Test Accelerator) injector

    SciTech Connect

    Boyd, J.K.; Caporaso, G.J.; Cole, A.G.; Weir, J.T.

    1987-01-01

    The beam quality of the ATA injector has been experimentally measured using a magnetic collimator. These measurements have been performed for a variety of magnetic field profiles, including field strengths where the collimator is shorter than a cyclotron wavelength. The experimental currents transmitted through the collimator have been predicted numerically. The numerical predictions and experimental data are in good agreement.

  3. Recent advances in omic technologies for meat quality management.

    PubMed

    Picard, B; Lebret, B; Cassar-Malek, I; Liaubet, L; Berri, C; Le Bihan-Duval, E; Hocquette, J F; Renand, G

    2015-11-01

    The knowledge of the molecular organization of living organisms evolved considerably during the last years. The methodologies associated also progressed with the development of the high-throughput sequencing (SNP array, RNAseq, etc.) and of genomic tools allowing the simultaneous analysis of hundreds or thousands of genes, proteins or metabolites. In farm animals, some proteins, mRNAs or metabolites whose abundance has been associated with meat quality traits have been detected in pig, cattle, chicken. They constitute biomarkers for the assessment and prediction of qualities of interest in each species, with potential biomarkers across species. The ongoing development of rapid methods will allow their use for decision-making and management tools in slaughterhouses, to better allocate carcasses or cuts to the appropriate markets. Besides, their application on living animals will help to improve genetic selection and to adapt a breeding system to fulfill expected quality level. The ultimate goal is to propose effective molecular tools for the management of product quality in meat production chains. PMID:26002117

  4. Recent advances in soil quality assessment in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil quality is a concept that is useful as an educational and assessment tool. A number of assessment tools have been developed including: the Soil Conditioning Index (SCI), the Soil Management Assessment Framework (SMAF), the AgroEcosystem Performance Assessment Tool (AEPAT), and the new Cornell “...

  5. Detailed Multidimensional Simulations of the Structure and Dynamics of Flames

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    1999-01-01

    Numerical simulations in which the various physical and chemical processes can be independently controlled can significantly advance our understanding of the structure, stability, dynamics and extinction of flames. Therefore, our approach has been to use detailed time-dependent, multidimensional, multispecies numerical models to perform carefully designed computational experiments of flames on Earth and in microgravity environments. Some of these computational experiments are complementary to physical experiments performed under the Microgravity Program while others provide a fundamental understanding that cannot be obtained from physical experiments alone. In this report, we provide a brief summary of our recent research highlighting the contributions since the previous microgravity combustion workshop. There are a number of mechanisms that can cause flame instabilities and result in the formation of dynamic multidimensional structures. In the past, we have used numerical simulations to show that it is the thermo-diffusive instability rather than an instability due to preferential diffusion that is the dominant mechanism for the formation of cellular flames in lean hydrogen-air mixtures. Other studies have explored the role of gravity on flame dynamics and extinguishment, multi-step kinetics and radiative losses on flame instabilities in rich hydrogen-air flames, and heat losses on burner-stabilized flames in microgravity. The recent emphasis of our work has been on exploring flame-vortex interactions and further investigating the structure and dynamics of lean hydrogen-air flames in microgravity. These topics are briefly discussed after a brief discussion of our computational approach for solving these problems.

  6. Flame Holder System

    NASA Technical Reports Server (NTRS)

    Haskin, Henry H. (Inventor); Vasquez, Peter (Inventor)

    2013-01-01

    A flame holder system includes a modified torch body and a ceramic flame holder. Catch pin(s) are coupled to and extend radially out from the torch body. The ceramic flame holder has groove(s) formed in its inner wall that correspond in number and positioning to the catch pin(s). Each groove starts at one end of the flame holder and can be shaped to define at least two 90.degree.turns. Each groove is sized to receive one catch pin therein when the flame holder is fitted over the end of the torch body. The flame holder is then manipulated until the catch pin(s) butt up against the end of the groove(s).

  7. Turbulent Flames in Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, A. M.

    1994-05-01

    First results of three-dimensional simulations of a thermonuclear flame in Type Ia supernovae are obtained using a new flame-capturing algorithm, and a PPM hydrodynamical code. In the absence of gravity, the flame is stabilized with respect to the Landau (1944) instability due to the difference in the behaviour of convex and concave portions of the perturbed flame front. The transition to turbulence in supernovae occurs on scales =~ 0.1 - 10 km in agreement with the non-linear estimate lambda =~ 2pi D(2_l/geff) based on the Zeldovich (1966) model for a perturbed flame when the gravity acceleration increases; D_l is the normal speed of the laminar flame, and geff is the effective acceleration. The turbulent flame is mainly spread by large scale motions driven by the Rayleigh-Taylor instability. Small scale turbulence facilitates rapid incineration of the fuel left behind the front. The turbulent flame speed D_t approaches D_t =~ U', where U' is the root mean square velocity of turbulent motions, when the turbulent flame forgets initial conditions and reaches a steady state. The results indicate that in a steady state the turbulent flame speed should be independent of the normal laminar flame speed D_l. The three-dimensional results are in sharp contrast with the results of previous two-dimensional simulations which underestimate flame speed due to the lack of turbulent cascade directed in three dimensions from big to small spatial scales. The work was supported by the NSF grants AST 92-18035 and AST 93-005P.

  8. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, V. R.

    2006-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated. A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  9. Diffusion Flame Stabilization

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2007-01-01

    Diffusion flames are commonly used for industrial burners in furnaces and flares. Oxygen/fuel burners are usually diffusion burners, primarily for safety reasons, to prevent flashback and explosion in a potentially dangerous system. Furthermore, in most fires, condensed materials pyrolyze, vaporize, and burn in air as diffusion flames. As a result of the interaction of a diffusion flame with burner or condensed-fuel surfaces, a quenched space is formed, thus leaving a diffusion flame edge, which plays an important role in flame holding in combustion systems and fire spread through condensed fuels. Despite a long history of jet diffusion flame studies, lifting/blowoff mechanisms have not yet been fully understood, compared to those of premixed flames. In this study, the structure and stability of diffusion flames of gaseous hydrocarbon fuels in coflowing air at normal earth gravity have been investigated experimentally and computationally. Measurements of the critical mean jet velocity (U(sub jc)) of methane, ethane, or propane at lifting or blowoff were made as a function of the coflowing air velocity (U(sub a)) using a tube burner (i.d.: 2.87 mm) (Fig. 1, left). By using a computational fluid dynamics code with 33 species and 112 elementary reaction steps, the internal chemical-kinetic structures of the stabilizing region of methane and propane flames were investigated (Fig. 1, right). A peak reactivity spot, i.e., reaction kernel, is formed in the flame stabilizing region due to back-diffusion of heat and radical species against an oxygen-rich incoming flow, thus holding the trailing diffusion flame. The simulated flame base moved downstream under flow conditions close to the measured stability limit.

  10. Influence of Cotton Fiber Quality on the Strength Properties of Cotton Fabrics Treated with Flame-resistant and Easy Care Finishes.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many cotton fabrics treated with modern flame-resistant and easy-care finishes cannot meet the high performance standards required by the military, and are being replaced by fabrics made from synthetic fibers, or blends of cotton with synthetic fibers. The objective of this study was to evaluate th...

  11. Does the quality of advanced prosthetic dentistry determine patient satisfaction?

    PubMed

    Hakestam, U; Karlsson, T; Söderfeldt, B; Rydén, O; Glantz, P O

    1997-12-01

    In a clinical follow-up study 42 patients were selected from an original sample of 335 individuals who had undergone extensive prosthetic treatment. The selection was done in accordance with a treatment satisfaction measure. The selected patients' appliances were classified in accordance with the California Dental Association (CDA) quality assessment system. Altogether, most of the new reconstructions were rated as satisfactory. The removable partial dentures had a somewhat higher share of non-acceptable appliances according to the CDA criteria. There was an association between the CDA categories and patient satisfaction. Using logistic regression analysis and knowing the CDA rating, we could correctly classify 67% of the patients with regard to the satisfaction measure. The satisfaction measure was modified on the basis of an interview, improving the model to 83% correctly classified. It was concluded that the technical quality of the prosthodontic treatment was associated with patient satisfaction. PMID:9477029

  12. Recent Advances in Point-of-Access Water Quality Monitoring

    NASA Astrophysics Data System (ADS)

    Korostynska, O.; Arshak, K.; Velusamy, V.; Arshak, A.; Vaseashta, Ashok

    Clean water is one of our most valuable natural resources. In addition to providing safe drinking water it assures functional ecosystems that support fisheries and recreation. Human population growth and its associated increased demands on water pose risks to maintaining acceptable water quality. It is vital to assess source waters and the aquatic systems that receive inputs from industrial waste and sewage treatment plants, storm water systems, and runoff from urban and agricultural lands. Rapid and confident assessments of aquatic resources form the basis for sound environmental management. Current methods engaged in tracing the presence of various bacteria in water employ bulky laboratory equipment and are time consuming. Thus, real-time water quality monitoring is essential for National and International Health and Safety. Environmental water monitoring includes measurements of physical characteristics (e.g. pH, temperature, conductivity), chemical parameters (e.g. oxygen, alkalinity, nitrogen and phosphorus compounds), and abundance of certain biological taxa. Monitoring could also include assays of biological activity such as alkaline phosphatase, tests for toxins such as microcystins and direct measurements of pollutants such as heavy metals or hydrocarbons. Real time detection can significantly reduce the level of damage and also the cost to remedy the problem. This paper presents overview of state-of-the-art methods and devices used for point-of-access water quality monitoring and suggest further developments in this area.

  13. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan : ASC software quality engineering practices Version 3.0.

    SciTech Connect

    Turgeon, Jennifer L.; Minana, Molly A.; Hackney, Patricia; Pilch, Martin M.

    2009-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in the US Department of Energy/National Nuclear Security Agency (DOE/NNSA) Quality Criteria, Revision 10 (QC-1) as 'conformance to customer requirements and expectations'. This quality plan defines the SNL ASC Program software quality engineering (SQE) practices and provides a mapping of these practices to the SNL Corporate Process Requirement (CPR) 001.3.6; 'Corporate Software Engineering Excellence'. This plan also identifies ASC management's and the software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals. This SNL ASC Software Quality Plan establishes the signatories commitments to improving software products by applying cost-effective SQE practices. This plan enumerates the SQE practices that comprise the development of SNL ASC's software products and explains the project teams opportunities for tailoring and implementing the practices.

  14. Turbulent flame propagation in partially premixed flames

    NASA Technical Reports Server (NTRS)

    Poinsot, T.; Veynante, D.; Trouve, A.; Ruetsch, G.

    1996-01-01

    Turbulent premixed flame propagation is essential in many practical devices. In the past, fundamental and modeling studies of propagating flames have generally focused on turbulent flame propagation in mixtures of homogeneous composition, i.e. a mixture where the fuel-oxidizer mass ratio, or equivalence ratio, is uniform. This situation corresponds to the ideal case of perfect premixing between fuel and oxidizer. In practical situations, however, deviations from this ideal case occur frequently. In stratified reciprocating engines, fuel injection and large-scale flow motions are fine-tuned to create a mean gradient of equivalence ratio in the combustion chamber which provides additional control on combustion performance. In aircraft engines, combustion occurs with fuel and secondary air injected at various locations resulting in a nonuniform equivalence ratio. In both examples, mean values of the equivalence ratio can exhibit strong spatial and temporal variations. These variations in mixture composition are particularly significant in engines that use direct fuel injection into the combustion chamber. In this case, the liquid fuel does not always completely vaporize and mix before combustion occurs, resulting in persistent rich and lean pockets into which the turbulent flame propagates. From a practical point of view, there are several basic and important issues regarding partially premixed combustion that need to be resolved. Two such issues are how reactant composition inhomogeneities affect the laminar and turbulent flame speeds, and how the burnt gas temperature varies as a function of these inhomogeneities. Knowledge of the flame speed is critical in optimizing combustion performance, and the minimization of pollutant emissions relies heavily on the temperature in the burnt gases. Another application of partially premixed combustion is found in the field of active control of turbulent combustion. One possible technique of active control consists of pulsating

  15. Quality assessment of digested sludges produced by advanced stabilization processes.

    PubMed

    Braguglia, C M; Coors, A; Gallipoli, A; Gianico, A; Guillon, E; Kunkel, U; Mascolo, G; Richter, E; Ternes, T A; Tomei, M C; Mininni, G

    2015-05-01

    The European Union (EU) Project Routes aimed to discover new routes in sludge stabilization treatments leading to high-quality digested sludge, suitable for land application. In order to investigate the impact of different enhanced sludge stabilization processes such as (a) thermophilic digestion integrated with thermal hydrolysis pretreatment (TT), (b) sonication before mesophilic/thermophilic digestion (UMT), and (c) sequential anaerobic/aerobic digestion (AA) on digested sludge quality, a broad class of conventional and emerging organic micropollutants as well as ecotoxicity was analyzed, extending the assessment beyond the parameters typically considered (i.e., stability index and heavy metals). The stability index was improved by adding aerobic posttreatment or by operating dual-stage process but not by pretreatment integration. Filterability was worsened by thermophilic digestion, either alone (TT) or coupled with mesophilic digestion (UMT). The concentrations of heavy metals, present in ranking order Zn > Cu > Pb > Cr ~ Ni > Cd > Hg, were always below the current legal requirements for use on land and were not removed during the processes. Removals of conventional and emerging organic pollutants were greatly enhanced by performing double-stage digestion (UMT and AA treatment) compared to a single-stage process as TT; the same trend was found as regards toxicity reduction. Overall, all the digested sludges exhibited toxicity to the soil bacterium Arthrobacter globiformis at concentrations about factor 100 higher than the usual application rate of sludge to soil in Europe. For earthworms, a safety margin of factor 30 was generally achieved for all the digested samples. PMID:24903249

  16. State of Health and Quality of Life of Women at Advanced Age.

    PubMed

    Pinkas, Jarosław; Gujski, Mariusz; Humeniuk, Ewa; Raczkiewicz, Dorota; Bejga, Przemysław; Owoc, Alfred; Bojar, Iwona

    2016-01-01

    BACKGROUND Evaluation of the state of health, quality of life, and relationship between the level of the quality of life and health status in a group of women at advanced age (90 and more years) in Poland. MATERIAL AND METHODS The study was conducted in 2014 in an all-Polish sample of 870 women aged 90 and over. The research instruments were: the author's questionnaire, and standardized tests: Katz index of independence in Activities of Daily Living (ADL), Abbreviated Mental Test Score (AMTS), The World Health Organization Quality of Life (WHOQOL) - BREF. The results of the study were statistically analyzed using significant t test for mean and regression analysis. RESULTS The majority of women at advanced age suffered from chronic pain (76%) and such major geriatric problems as hypoacusis (81%), visual disturbances (69%) and urinary incontinence (60%), the minority - fall and fainting (39%) as well as stool incontinence (17%), severe functional and cognitive impairment (24% and 10% respectively). Women at advanced age assessed positively for overall quality of life (mean 3.3 on 1-5 scale), social relationships (3.5) and environment (3.2), but negatively - general, physical and psychological health (2.7, 2.7 and 2.8 respectively). The presence of chronic pain and major geriatric problems: urinary and stool incontinences, falls and fainting, visual disturbances and hypoacusis significantly decreases overall quality of life, general, physical and psychological health, social relationships and environment of women at advanced age. Overall quality of life, general, physical and psychological health, social relationships and environment correlate to functional and cognitive impairments of women at advanced age. CONCLUSIONS Quality of life of women at advanced age decreased if chronic pain, major geriatric problems as well as functional and cognitive impairments occur. PMID:27580565

  17. Advancing the Quality of Solar Occultation Retrievals through Solar Imaging

    NASA Astrophysics Data System (ADS)

    Gordley, L. L.; Hervig, M. E.; Marshall, B. T.; Russell, J. E.; Bailey, S. M.; Brown, C. W.; Burton, J. C.; Deaver, L. E.; Magill, B. E.; McHugh, M. J.; Paxton, G. J.; Thompson, R. E.

    2008-12-01

    The quality of retrieved profiles (e.g. mixing ratio, temperature, pressure, and extinction) from solar occultation sensors is strongly dependent on the angular fidelity of the measurements. The SOFIE instrument, launched on-board the AIM (Aeronomy of Ice in the Mesosphere) satellite on April 25, 2007, was designed to provide very high precision broadband measurements for the study of Polar Mesospheric Clouds (PMCs), that appear near 83km, just below the high latitude summer mesopause. The SOFIE instrument achieves an unprecedented angular fidelity by imaging the sun on a 2D detector array and tracking the edges with an uncertainty of <0.1 arc seconds. This makes possible retrieved profiles of vertical high resolution mixing ratios, refraction base temperature and pressure from tropopause to lower mesosphere, and transmission with accuracy sufficient to infer cosmic smoke extinction. Details of the approach and recent results will be presented.

  18. The Flame Tree

    ERIC Educational Resources Information Center

    Lewis, Richard

    2004-01-01

    Lewis's own experiences living in Indonesia are fertile ground for telling "a ripping good story," one found in "The Flame Tree." He hopes people will enjoy the tale and appreciate the differences of an unfamiliar culture. The excerpt from "The Flame Tree" will reel readers in quickly.

  19. Candle Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Chang, P.; T'ien, J. S.

    2001-01-01

    The goal of this work is to study both experimentally and numerically the behavior of a candle flame burning in a microgravity environment. Two space experiments (Shuttle and Mir) have shown the candle flame in microgravity to be small (approximately 1.5 cm diameter), dim blue, and hemispherical. Near steady flames with very long flame lifetimes (up to 45 minutes in some tests) existed for many of the tests. Most of the flames spontaneously oscillated with a period of approximately 1 Hz just prior to extinction). In a previous model of candle flame in microgravity, a porous sphere wetted with liquid fuel simulated the evaporating wick. The sphere, with a temperature equal to the boiling temperature of the fuel, was at the end of an inert cone that had a prescribed temperature. This inert cone produces the quenching effect of the candle wax in the real configuration. Although the computed flame shape resembled that observed in the microgravity experiment, the model was not able to differentiate the effect of wick geometry, e.g., a long vs. a short wick. This paper presents recent developments in the numerical model of the candle flame. The primary focus has been to more realistically account for the actual shape of the candle.

  20. Brominated Flame Retardants

    EPA Science Inventory

    Brominated flame retardants (BFRs) belong to a large class of compounds known as organohalogens. BFRs are currently the largest marketed flame retardant group due to their high performance efficiency and low cost. In the commercial market, more than 75 different BFRs are recogniz...

  1. Implementation of a TMP Advanced Quality Control System at a Newsprint Manufacturing Plant

    SciTech Connect

    Sebastien Kidd

    2006-02-14

    This project provided for the implementation of an advanced, model predictive multi-variant controller that works with the mill that has existing distributed control system. The method provides real time and online predictive models and modifies control actions to maximize quality and minimize energy costs. Using software sensors, the system can predict difficult-to-measure quality and process variables and make necessary process control decisions to accurately control pulp quality while minimizing electrical usage. This method of control has allowed Augusta Newsprint Company to optimize the operation of its Thermo Mechanical Pulp mill for lower energy consumption and lower pulp quality variance.

  2. Advanced terahertz techniques for quality control and counterfeit detection

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper reports our invented methods for detection of counterfeit electronic. These versatile techniques are also handy in quality control applications. Terahertz pulsed laser systems are capable of giving the material characteristics and thus make it possible to distinguish between the materials used in authentic components and their counterfeit clones. Components with material defects can also be distinguished in section in this manner. In this work different refractive indices and absorption coefficients were observed for counterfeit components compared to their authentic counterparts. Existence of unexpected ingredient materials was detected in counterfeit components by Fourier Transform analysis of the transmitted terahertz pulse. Thicknesses of different layers are obtainable by analyzing the reflected terahertz pulse. Existence of unexpected layers is also detectable in this manner. Recycled, sanded and blacktopped counterfeit electronic components were detected as a result of these analyses. Counterfeit ICs with die dislocations were detected by depicting the terahertz raster scanning data in a coordinate plane which gives terahertz images. In the same manner, raster scanning of the reflected pulse gives terahertz images of the surfaces of the components which were used to investigate contaminant materials and sanded points on the surfaces. The results of the later technique, reveals the recycled counterfeit components.

  3. Particle-Image Velocimetry in Microgravity Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, P. B.; Greenberg, P. S.; Urban, D. L.; Wernet, M. P.; Yanis, W.

    1999-01-01

    This paper discusses planned velocity measurements in microgravity laminar jet diffusion flames. These measurements will be conducted using Particle-Image Velocimetry (PIV) in the NASA Glenn 2.2-second drop tower. The observations are of fundamental interest and may ultimately lead to improved efficiency and decreased emissions from practical combustors. The velocity measurements will support the evaluation of analytical and numerical combustion models. There is strong motivation for the proposed microgravity flame configuration. Laminar jet flames are fundamental to combustion and their study has contributed to myriad advances in combustion science, including the development of theoretical, computational and diagnostic combustion tools. Nonbuoyant laminar jet flames are pertinent to the turbulent flames of more practical interest via the laminar flamelet concept. The influence of gravity on these flames is deleterious: it complicates theoretical and numerical modeling, introduces hydrodynamic instabilities, decreases length scales and spatial resolution, and limits the variability of residence time. Whereas many normal-gravity laminar jet diffusion flames have been thoroughly examined (including measurements of velocities, temperatures, compositions, sooting behavior and emissive and absorptive properties), measurements in microgravity gas-jet flames have been less complete and, notably, have included only cursory velocity measurements. It is envisioned that our velocity measurements will fill an important gap in the understanding of nonbuoyant laminar jet flames.

  4. Advanced Quality Control System for the Thermomechanical Pulping Process Improves Quality and Reduces Energy Costs for Augusta Newsprint

    SciTech Connect

    Not Available

    2002-02-01

    In July 2001, the Augusta Newsprint Company partnered with Invensys' Pacific Simulation group to implement an advanced quality control (AQC) solution for the thermomechanical pulping (TMP) process at Augusta Newsprint's Augusta, Georgia, site. The goal of the project is to decrease energy and raw material costs while maintaining final pulp quality. The project involves coordinating AQC in 3 areas of the paper mill to reduce the amount of energy required for manufacturing. In addition, a time-of-day production (TODP) feature will use current power market pricing data to adjust production rates in the pulping operation to minimize the average cost of purchased energy. The AQC implementation is currently in progress.

  5. The patient perspective: Quality of life in advanced heart failure with frequent hospitalisations.

    PubMed

    Nieminen, Markku S; Dickstein, Kenneth; Fonseca, Cândida; Serrano, Jose Magaña; Parissis, John; Fedele, Francesco; Wikström, Gerhard; Agostoni, Piergiuseppe; Atar, Shaul; Baholli, Loant; Brito, Dulce; Colet, Josep Comín; Édes, István; Gómez Mesa, Juan E; Gorjup, Vojka; Garza, Eduardo Herrera; González Juanatey, José R; Karanovic, Nenad; Karavidas, Apostolos; Katsytadze, Igor; Kivikko, Matti; Matskeplishvili, Simon; Merkely, Béla; Morandi, Fabrizio; Novoa, Angel; Oliva, Fabrizio; Ostadal, Petr; Pereira-Barretto, Antonio; Pollesello, Piero; Rudiger, Alain; Schwinger, Robert H G; Wieser, Manfred; Yavelov, Igor; Zymliński, Robert

    2015-07-15

    End of life is an unfortunate but inevitable phase of the heart failure patients' journey. It is often preceded by a stage in the progression of heart failure defined as advanced heart failure, and characterised by poor quality of life and frequent hospitalisations. In clinical practice, the efficacy of treatments for advanced heart failure is often assessed by parameters such as clinical status, haemodynamics, neurohormonal status, and echo/MRI indices. From the patients' perspective, however, quality-of-life-related parameters, such as functional capacity, exercise performance, psychological status, and frequency of re-hospitalisations, are more significant. The effects of therapies and interventions on these parameters are, however, underrepresented in clinical trials targeted to assess advanced heart failure treatment efficacy, and data are overall scarce. This is possibly due to a non-universal definition of the quality-of-life-related endpoints, and to the difficult standardisation of the data collection. These uncertainties also lead to difficulties in handling trade-off decisions between quality of life and survival by patients, families and healthcare providers. A panel of 34 experts in the field of cardiology and intensive cardiac care from 21 countries around the world convened for reviewing the existing data on quality-of-life in patients with advanced heart failure, discussing and reaching a consensus on the validity and significance of quality-of-life assessment methods. Gaps in routine care and research, which should be addressed, were identified. Finally, published data on the effects of current i.v. vasoactive therapies such as inotropes, inodilators, and vasodilators on quality-of-life in advanced heart failure patients were analysed. PMID:25981363

  6. DIAGNOSTIC EVALUATION OF AIR QUALITY MODELS USING ADVANCED METHODS WITH SPECIALIZED OBSERVATIONS OF SELECTED AMBIENT SPECIES -PART II

    EPA Science Inventory

    This is Part 2 of "Diagnostic Evaluation of Air Quality Models Using Advanced Methods with Specialized Observations of Selected Ambient Species". A limited field campaign to make specialized observations of selected ambient species using advanced and innovative instrumentation f...

  7. Structure of low-stretch methane nonpremixed flames

    SciTech Connect

    Han, Bai; Ibarreta, Alfonso F.; Sung, Chih-Jen; T'ien, James S.

    2007-04-15

    The present study experimentally and numerically investigates the structure associated with extremely low-stretch ({proportional_to}2 s{sup -1}) gaseous nonpremixed flames. The study of low-stretch flames aims to improve our fundamental understanding of the flame radiation effects on flame response and extinction limits. Low-stretch flames are also relevant to fire safety in reduced-gravity environments and to large buoyant fires, where localized areas of low stretch are attainable. In this work, ultra-low-stretch flames are established in normal gravity by bottom burning of a methane/nitrogen mixture discharged from a porous spherically symmetric burner of large radius of curvature. The large thickness of the resulting nonpremixed flame allows detailed mapping of the flame structure. Several advanced nonintrusive optical diagnostics are used to study the flame structure. Gas phase temperatures are measured by Raman scattering, while the burner surface temperatures are obtained by IR imaging. In addition, OH-PLIF and chemiluminescence imaging techniques are used to help characterize the extent of the flame reaction zone. These experimental results allow direct comparison with a quasi-one-dimensional numerical model including detailed chemistry, thermodynamic/transport properties, and radiation treatment. In addition, the radiative interactions between the flame and porous burner (modeled as a gray surface) are accounted for in the present model. The numerical modeling is demonstrated to be able to simulate the low-stretch flame structure. Using the current model, the extinction limits under different conditions are also examined. The computational results are consistent with experimental observations. (author)

  8. Emerging technology: A key enabler for modernizing pharmaceutical manufacturing and advancing product quality.

    PubMed

    O'Connor, Thomas F; Yu, Lawrence X; Lee, Sau L

    2016-07-25

    Issues in product quality have produced recalls and caused drug shortages in United States (U.S.) in the past few years. These quality issues were often due to outdated manufacturing technologies and equipment as well as lack of an effective quality management system. To ensure consistent supply of safe, effective and high-quality drug products available to the patients, the U.S. Food and Drug Administration (FDA) supports modernizing pharmaceutical manufacturing for improvements in product quality. Specifically, five new initiatives are proposed here to achieve this goal. They include: (i) advancing regulatory science for pharmaceutical manufacturing; (ii) establishing a public-private institute for pharmaceutical manufacturing innovation; (iii) creating incentives for investment in the technological upgrade of manufacturing processes and facilities; (iv) leveraging external expertise for regulatory quality assessment of emerging technologies; and (v) promoting the international harmonization of approaches for expediting the global adoption of emerging technologies. PMID:27260134

  9. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames. Appendix K

    NASA Technical Reports Server (NTRS)

    Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue C02 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  10. Flame Shapes of Nonbuoyant Laminar Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z. G. (Technical Monitor)

    2001-01-01

    The shapes (flame-sheet and luminous-flame boundaries) of steady nonbuoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K, ambient pressures of 4-50 kPa, jet exit Reynolds number of 3-54, initial air/fuel velocity ratios of 0-9 and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at micro-gravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smokepoint conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smokepoint conditions. Flame-shape predictions were based on simplified analyses using the boundary layer approximations along with empirical parameters to distinguish flame-sheet and luminous flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions due to the presence of luminous soot particles in the fuel-lean region of the flames.

  11. Advancing Product Quality: a Summary of the Inaugural FDA/PQRI Conference.

    PubMed

    Yu, Lawrence X; Baker, Jeffrey; Berlam, Susan C; Boam, Ashley; Brandreth, E J; Buhse, Lucinda; Cosgrove, Thomas; Doleski, David; Ensor, Lynne; Famulare, Joseph; Ganapathy, Mohan; Grampp, Gustavo; Hussong, David; Iser, Robert; Johnston, Gordon; Kesisoglou, Filippos; Khan, Mansoor; Kozlowski, Steven; Lacana, Emanuela; Lee, Sau L; Miller, Stephen; Miksinski, Sarah Pope; Moore, Christine M V; Mullin, Theresa; Raju, G K; Raw, Andre; Rosencrance, Susan; Rosolowsky, Mark; Stinavage, Paul; Thomas, Hayden; Wesdyk, Russell; Windisch, Joerg; Vaithiyalingam, Sivakumar

    2015-07-01

    On September 16 and 17, 2014, the Food and Drug Administration (FDA) and Product Quality Research Institute (PQRI) inaugurated their Conference on Evolving Product Quality. The Conference is conceived as an annual forum in which scientists from regulatory agencies, industry, and academia may exchange viewpoints and work together to advance pharmaceutical quality. This Conference Summary Report highlights key topics of this conference, including (1) risk-based approaches to pharmaceutical development, manufacturing, regulatory assessment, and post-approval changes; (2) FDA-proposed quality metrics for products, facilities, and quality management systems; (3) performance-based quality assessment and clinically relevant specifications; (4) recent developments and implementation of continuous manufacturing processes, question-based review, and European Medicines Agency (EMA)-FDA pilot for Quality-by-Design (QbD) applications; and (5) breakthrough therapies, biosimilars, and international harmonization, focusing on ICH M7 and Q3D guidelines. The second FDA/PQRI conference on advancing product quality is planned for October 5-7, 2015. PMID:25840884

  12. Extremely weak hydrogen flames

    SciTech Connect

    Lecoustre, V.R.; Sunderland, P.B.; Chao, B.H.; Axelbaum, R.L.

    2010-11-15

    Hydrogen jet diffusion flames were observed near their quenching limits. These involved downward laminar flow of hydrogen from a stainless steel hypodermic tube with an inside diameter of 0.15 mm. Near their quenching limits these flames had hydrogen flow rates of 3.9 and 2.1 {mu}g/s in air and oxygen, respectively. Assuming complete combustion, the associated heat release rates are 0.46 and 0.25 W. To the authors' knowledge, these are the weakest self-sustaining steady flames ever observed. (author)

  13. Advancing a New Image of CTE via High-Quality Teacher Preparation

    ERIC Educational Resources Information Center

    Sass, Heather Boggs

    2011-01-01

    There is perhaps no better place to start in advancing a new image of career and technical education (CTE) than by creating the kind of classroom instruction that will prepare students for further learning and the workplace. The quality of teachers and their capacity to construct rich learning experiences for students represents the "front line"…

  14. A Theory of Oscillating Edge Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Zhang, Yi

    1999-01-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate relative to a frame moving with the mean speed. Each period of oscillation is characterized by long intervals of modest motion during which the edge gases radiate like those of a diffusion flame, punctuated by bursts of rapid advance during which the edge gases radiate like those in a deflagration. Substantial resources have been brought to bear on this issue within the microgravity program, both experimental and numerical. It is also known that when a near-asphyxiated candle-flame burns at zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. Thus a web-surfer, turning to the NASA web-site at http://microgravity.msfc.nasa.gov, and following the trail combustion science/experiments/experimental results/candle flame, will find photographs and a description of candle burning experiments carried out on board both the Space-shuttle and the Russian space station Mir. A brief report can also be found in the proceedings of the Fourth Workshop. And recently, in a third microgravity program, the leading edge of the flame supported by injection of ethane through the porous surface of a plate over which air is blown has been found to oscillate when conditions are close to blow-off. A number of important points can be made with respect to these observations: It is the edge itself which oscillates, advancing and retreating, not the diffusion flame that trails behind the edge; oscillations only occur under near limit conditions; in each case the Lewis number of the fuel is significantly larger than 1; and because of the edge curvature, the heat losses from the reacting edge structure are larger than those from the trailing diffusion flame. We propose a general theory for these oscillations, invoking Occam's 'Law of Parsimony' in an expanded form, to wit: The same mechanism is responsible for the

  15. Flame-resistant textiles

    NASA Technical Reports Server (NTRS)

    Fogg, L. C.; Stringham, R. S.; Toy, M. S.

    1980-01-01

    Flame resistance treatment for acid resistant polyamide fibers involving photoaddition of fluorocarbons to surface has been scaled up to treat 10 yards of commercial width (41 in.) fabric. Process may be applicable to other low cost polyamides, polyesters, and textiles.

  16. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  17. "Magic Eraser" Flame Tests

    NASA Astrophysics Data System (ADS)

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-05-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium.

  18. Oscillating edge-flames

    NASA Astrophysics Data System (ADS)

    Buckmaster, J.; Zhang, Yi

    1999-09-01

    It has been known for some years that when a near-limit flame spreads over a liquid pool of fuel, the edge of the flame can oscillate. It is also known that when a near-asphyxiated candle-flame burns in zero gravity, the edge of the (hemispherical) flame can oscillate violently prior to extinction. We propose that these oscillations are nothing more than a manifestation of the large Lewis number instability well known in chemical reactor studies and in combustion studies, one that is exacerbated by heat losses. As evidence of this we examine an edge-flame confined within a fuel-supply boundary and an oxygen-supply boundary, anchored by a discontinuity in data at the fuel-supply boundary. We show that when the Lewis number of the fuel is 2, and the Lewis number of the oxidizer is 1, oscillations of the edge occur when the Damköhler number is reduced below a critical value. During a single oscillation period there is a short premixed propagation stage and a long diffusion stage, behaviour that has been observed in flame spread experiments. Oscillations do not occur when both Lewis numbers are equal to 1.

  19. Advanced lung disease: quality of life and role of palliative care.

    PubMed

    Gilbert, Christopher R; Smith, Cecilia M

    2009-02-01

    Advanced restrictive lung diseases remain a challenge for both the clinician and patient alike. Because there are few available treatment options that prolong survival for patients with diseases such as idiopathic pulmonary fibrosis, improvement in quality of life and palliation of significant symptoms become realistic treatment goals. Several validated instruments that assess quality of life and health-related quality of life have demonstrated the dramatic impact that lung disease has on patients. Quality-of-life assessments of patients with interstitial lung disease have commonly cited respiratory complaints as problematic, but other distressing symptoms often not addressed include fear, social isolation, anxiety, and depression. Not only do respiratory symptoms limit this patient population, but the awareness of decreased independence and ability for social participation also has an impact on the quality of life. Some patients describe a deepened spiritual well-being during their disease process; however, many patients' mental health suffers with experiences of fear, worry, anxiety, and panic. Many patients express desire for more attention to end-of-life issues from their physicians. Fears of worsening symptoms and suffocation exist with an expressed desire by most to die peacefully with symptom control. Interventions to improve quality of life are largely directed at symptom control. Pharmacologic and nonpharmacologic interventions have been helpful in relieving dyspnea. Studies have demonstrated that the use of supplemental oxygen in the face of advancing hypoxemia can have both positive and negative effects on quality of life. Patients using nasal prongs describe feelings of self-consciousness, embarrassment, and social withdrawal. Pulmonary rehabilitation is recommended, with some studies noting increased quality-of-life scores and decreased sensations of dyspnea. Sleep deprivation and poor sleep quality also have a negative impact on quality of life

  20. Triple flames in microgravity flame spread

    NASA Technical Reports Server (NTRS)

    Wichman, Indrek S.

    1995-01-01

    The purpose of this project is to examine in detail the influence of the triple flame structure on the flame spread problem. It is with an eye to the practical implications that this fundamental research project must be carried out. The microgravity configuration is preferable because buoyancy-induced stratification and vorticity generation are suppressed. A more convincing case can be made for comparing our predictions, which are zero-g, and any projected experiments. Our research into the basic aspects will employ two models. In one, flows of fuel and oxidizer from the lower wall are not considered. In the other, a convective flow is allowed. The non-flow model allows us to develop combined analytical and numerical solution methods that may be used in the more complicated convective-flow model.

  1. Flame hole dynamics simulation of Sandia Flame F

    NASA Astrophysics Data System (ADS)

    Knaus, Robert; Hewson, John; Domino, Stefan; Pantano, Carlos

    2014-11-01

    The Sandia Flame ``F'' is a piloted methane/air diffusion flame containing high levels of local extinction. These regions of local extinction reduce the efficiency of combustion and can increase the production of certain pollutants (e.g. carbon monoxide) as well as limit the overall stability of the flame. We present a flame hole dynamics model describing evolution of local extinction zones (flame holes) in a turbulent diffusion flame and apply it to perform a direct numerical simulation of the Sandia Flame F using Sandia's ``SIERRA low Mach Module, Nalu.'' The flame hole dynamics model is a phase-field model that describes the state of the flame (burning or extinguished) through a surface partial differential equation modeling extinction, reignition and advection of the flame state on the moving stoichiometric surface using edge flame properties. The solution of the surface equation is then extended away from the surface and used for state evaluations using a flamelet library with steady flamelets in the burning region and a transient solution in the quenched regions. The flame hole dynamics approach allows tracking extinction and reignition in turbulent diffusion flames without using the computationally costly detailed chemistry explicitly.

  2. Applying the Advancing Excellence in America's Nursing Homes Circle of Success to improving and sustaining quality.

    PubMed

    Bakerjian, Debra; Zisberg, Anna

    2013-01-01

    Looking forward to the Quality Assurance Performance Improvement (QAPI) program to be implemented and required in 2014, and as nursing home staff provide care for residents with increasingly complex health issues, knowledge of how to implement quality improvement (QI) is imperative. The nursing home administrator and director of nursing (DON) provide overall leadership, but it is the primary responsibility of the DON and other registered nurse staff to implement and manage the day to day QI process. This article describes potential roles of nursing leaders and key components of a QI project using a pressure ulcer case study exemplar to illustrate a quality improvement process. The authors suggest specific methods that RN leaders can employ using the Advancing Excellence Campaign Circle of Success as an organizing framework along with evidence-based resources. Nursing home leaders could use this article as a guideline for implementing any clinical quality improvement process. PMID:23870372

  3. Development of flame resistant treatment for nomex fibrous structures

    NASA Technical Reports Server (NTRS)

    Toy, M. S.

    1978-01-01

    Technology which renders aramid fibrous structures flame resistant through chemical modification was developed. The project scaled up flame resistant treatment from laboratory fabric swatches of a few inches to efficiently producing ten yards of commercial width (41 inches) aromatic polyamide. The radiation intensity problem of the processor was resolved. Further improvement of the processor cooling system was recommended for two reasons: (1) To advance current technology of flame proofing Nomex fabric to higher oxygen enriched atmospheres; and (2) To adapt the processor for direct applicability to low cost commercial fabrics.

  4. DETAIL VIEW IN THE FLAME TRENCH LOOKING NORTH, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW IN THE FLAME TRENCH LOOKING NORTH, FLAME DEFLECTOR IN THE FOREGROUND, WATER PIPES AND VALVE ASSEMBLIES ON THE FOREGROUND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  5. Large Scale Flame Spread Environmental Characterization Testing

    NASA Technical Reports Server (NTRS)

    Clayman, Lauren K.; Olson, Sandra L.; Gokoghi, Suleyman A.; Brooker, John E.; Ferkul, Paul V.; Kacher, Henry F.

    2013-01-01

    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation

  6. Chemical quality and temperature of water in Flaming Gorge Reservoir, Wyoming and Utah, and the effect of the reservoir on the Green River

    USGS Publications Warehouse

    Bolke, E.L.; Waddell, Kidd M.

    1975-01-01

    The major tributaries to Flaming Gorge Reservoir contribute an average of about 97 percent of the total streamflow and 82 percent of the total load of dissolved solids. The Green River is the largest tributary, and for the 1957-72 water years it contributed 81 percent of the total streamflow and 70 percent of the total load of dissolved solids. The principal constituents in the tributary streamflow are calcium and sulfate during periods of lowest flow and calcium and bicarbonate during periods of highest flow. Flaming Gorge Dam was closed in November 1962, and the most significant load changes of chemical constituents due to the net effect of inflow, outflow, leaching, and chemical precipitation in the reservoir have been load changes of sulfate and bicarbonate. The average increase of dissolved load of sulfate in the reservoir for the 1969-72 water years was 110,000 tons (99,790 t) per year, which was 40,000 tons (36,287 t) per year less than for the 1963-66 water years. The average decrease of dissolved load of bicarbonate in the reservoir for 1969-72 was 40,000 tons (36,287 t) per year, which was the same as the decrease for 1963-66. Anaerobic conditions were observed in the deep, uncirculated part of the reservoir near the dam during the 1971 and 1972 water years, and anaerobic or near-anaerobic conditions were observed near the confluence of the Blacks Fork and Green River during the summers of 1971 and 1972. The water in Flaming Gorge Reservoir is in three distinct layers, and the upper two layers (the epilimnion and the metalimnion) mixed twice during each of the 1971-72 water years. The two circulation periods were in the spring and fall. The water in the deepest layer (the hypolimnion) did not mix with the waters of the upper zones because the density difference was too great and because the deep, narrow shape of the basin probably inhibits mixing. The depletion of flow in the Green River downstream from Flaming Gorge Dam between closure of the dam and the

  7. Improving the data quality of Advanced LIGO based on early engineering run results

    NASA Astrophysics Data System (ADS)

    Nuttall, L. K.; Massinger, T. J.; Areeda, J.; Betzwieser, J.; Dwyer, S.; Effler, A.; Fisher, R. P.; Fritschel, P.; Kissel, J. S.; Lundgren, A. P.; Macleod, D. M.; Martynov, D.; McIver, J.; Mullavey, A.; Sigg, D.; Smith, J. R.; Vajente, G.; Williamson, A. R.; Wipf, C. C.

    2015-12-01

    The Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors have completed their initial upgrade phase and will enter the first observing run in late 2015, with detector sensitivity expected to improve in future runs. Through the combined efforts of on-site commissioners and the Detector Characterization Group of the LIGO Scientific Collaboration, interferometer performance, in terms of data quality, at both LIGO observatories has vastly improved from the start of commissioning efforts to present. Advanced LIGO has already surpassed Enhanced LIGO in sensitivity, and the rate of noise transients, which would negatively impact astrophysical searches, has improved. Here we give details of some of the work which has taken place to better the quality of the LIGO data ahead of the first observing run.

  8. Recent advances in MRI technology: Implications for image quality and patient safety

    PubMed Central

    Sobol, Wlad T.

    2012-01-01

    Recent advances in MRI technology are presented, with emphasis on how this new technology impacts clinical operations (better image quality, faster exam times, and improved throughput). In addition, implications for patient safety are discussed with emphasis on the risk of patient injury due to either high local specific absorption rate (SAR) or large cumulative energy doses delivered during long exam times. Patient comfort issues are examined as well. PMID:23961024

  9. A Dramatic Flame Test Demonstration.

    ERIC Educational Resources Information Center

    Johnson, Kristin A.; Schreiner, Rodney

    2001-01-01

    Flame tests are used for demonstration of atomic structure. Describes a demonstration that uses spray bottles filled with methanol and a variety of salts to produce a brilliantly colored flame. (Contains 11 references.) (ASK)

  10. Flame propagation through periodic vortices

    SciTech Connect

    Dold, J.W.; Kerr, O.S.; Nikolova, I.P.

    1995-02-01

    The discovery of a new class of Navier-Stokes solutions representing steady periodic stretched vortices offers a useful test-bed for examining interactions between flames and complex flow-fields. After briefly describing these vortex solutions and their wide-ranging parameterization in terms of wavelength and amplitude, this article examines their effect on flames of constant normal propagation speed as observed through numerical solutions of an eikonal equation. Over certain ranges of vortex amplitude and flame-speed, a corridor of enhanced flame passage is seen to be created as a leading flame-tip managers to leap-frog between successive vortices. However, for large enough amplitudes of vorticity or small enough flame-speeds, the flame fails to be able to benefit from the advection due to the vortices. It is shown that the leading tips of such flames are effectively trapped by the stretched vortices.

  11. Flame resistant elastic elastomeric fibers

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Massucco, A. A.

    1972-01-01

    Development of materials to improve flame resistance of elastic elastomeric fibers is discussed. Two approaches, synthesis of polyether based urethanes and modification of synthesized urethanes with flame ratardant additives, are described. Specific applications of both techniques are presented.

  12. The development of kilohertz planar laser diagnostics for applications in high power turbulent flames

    NASA Astrophysics Data System (ADS)

    Slabaugh, Carson Daniel

    In modern gas-turbine combustors, flame stabilization is achieved by inducing exhaust gas circulation within the flame zone through swirl-induced vortex breakdown. Swirling flows exhibit strong shear regions resulting in high turbulence and effective mixing. In combustion, these flows are characterized by complex unsteady interactions between turbulent flow structures and chemical reactions. Developments in high-resolution, quantitative, experimental measurement techniques must continue to improve fundamental understanding and support modeling efforts. This work describes the development of a gas turbine combustion experiment to support the application of advanced optical measurement techniques in flames operating at realistic engine conditions. Facility requirements are addressed, including instrumentation and control needs for remote operation when working with high energy flows. The methodology employed in the design of the optically-accessible combustion chamber is elucidated, including window considerations and thermal management of the experimental hardware under extremely high heat loads. Experimental uncertainties are also quantified. The stable operation of the experiment is validated using multiple techniques and the boundary conditions are verified. The successful prediction of operating conditions by the design analysis is documented and preliminary data is shown to demonstrate the capability of the experiment to produce high-fidelity datasets for advanced combustion research. Building on this experimental infrastructure, simultaneous measurements of velocity and scalar fields were performed in turbulent nonpremixed flames at gas turbine engine operating conditions using 5 kHz Particle-Image Velocimetry (PIV) and OH Planar Laser Induced Fluorescence (OH-PLIF). The experimental systems and the challenges associated with acquiring useful data at high pressures and high thermal powers are discussed. The quality of the particle scattering images used in the

  13. Flame retardant spandex type polyurethanes

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Sidman, K. R.; Massucco, A. A. (Inventor)

    1978-01-01

    Flame retardant elastomeric compositions were developed, comprised of: (1) spandex type polyurethane having incorporated into the polymer chain, halogen containing polyols; (2) conventional spandex type polyurethanes in physical admixture flame retardant additives; and (3) fluoroelastomeric resins in physical admixture with flame retardant additives. Methods of preparing fibers of the flame retardant elastomeric materials are presented and articles of manufacture comprised of the elastomeric materials are mentioned.

  14. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan part 2 mappings for the ASC software quality engineering practices, version 2.0.

    SciTech Connect

    Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR001.3.2 and CPR001.3.6 and to a Department of Energy document, ''ASCI Software Quality Engineering: Goals, Principles, and Guidelines''. This document also identifies ASC management and software project teams' responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  15. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1: ASC software quality engineering practices, Version 2.0.

    SciTech Connect

    Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Minana, Molly A.; Hackney, Patricia; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2006-09-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  16. Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan. Part 2, Mappings for the ASC software quality engineering practices. Version 1.0.

    SciTech Connect

    Ellis, Molly A.; Heaphy, Robert; Sturtevant, Judith E.; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. The plan defines the ASC program software quality practices and provides mappings of these practices to Sandia Corporate Requirements CPR 1.3.2 and 1.3.6 and to a Department of Energy document, 'ASCI Software Quality Engineering: Goals, Principles, and Guidelines'. This document also identifies ASC management and software project teams responsibilities in implementing the software quality practices and in assessing progress towards achieving their software quality goals.

  17. Flame resistant elastic elastomeric fiber

    NASA Technical Reports Server (NTRS)

    Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.

    1974-01-01

    Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.

  18. NOX FORMATION IN CO FLAMES

    EPA Science Inventory

    The report gives results of an experimental study to determine if early NO and NO2 can be observed in CO flames, since prompt NO is not anticipated and since HO2 levels might be expected to be lower in CO flames. (Previous studies of NO and NO2 production in methane flames with a...

  19. Determinants of Quality Care and Mortality for Patients With Locally Advanced Cervical Cancer in Virginia

    PubMed Central

    Showalter, Timothy N.; Camacho, Fabian; Cantrell, Leigh A.; Anderson, Roger T.

    2016-01-01

    Abstract Outcomes for patients with locally advanced cervical cancer are influenced by receipt of all indicated components of quality care: early diagnosis and receipt of external beam radiation therapy, chemotherapy, and brachytherapy. We performed an observational cohort study to evaluate receipt of quality cancer care and mortality after cancer diagnosis among patients with locally advanced cervical cancer in Virginia. We queried the Virginia state cancer registry to identify patients with International Federation of Gynecology and Obstetrics Stage IB-IVA cervical cancer who were diagnosed during 2002 to 2012. We evaluated the influence of tumor-related, demographic, and geospatial factors on the receipt of indicated therapies and mortality. Treatment quality score of 0 to 3 was defined based upon the extent of receipt of the components of indicated therapy. A total of 1048 patients were identified; 33.1% received all 3 components of treatment and only 54.0% received brachytherapy. Predictors of higher quality score included younger age group versus 66+ years at diagnosis (18–42 odds ratio [OR] = 12.3, 95% confidence interval: 6.6, 23.0; 42–53 OR = 5.6, CI: 3.3, 9.5; 53–66 OR = 5.5, CI: 3.3, 9.1), lower tumor stages versus IVA (IB2 OR = 3.3, CI: 1.8, 6.2; II OR = 2.7, CI: 1.6, 4.5; IIIx OR = 2.1, CI: 1.3, 3.6), and treatment at a high-volume facility (OR 2.2, CI: 1.2, 4.2). Predictors of increased mortality included earlier year of diagnosis, higher tumor stage, treatment at a lower volume facility, and lower treatment quality score. In a cohort of locally advanced cervical cancer patients in Virginia, we identified a low rate of receipt of complete quality care for cervical cancer and a strong effect of facility volume on quality treatment and survival. Further research is needed to develop strategies to improve access to quality treatment and outcomes for cervical cancer. PMID:26937934

  20. Motion-base simulator results of advanced supersonic transport handling qualities with active controls

    NASA Technical Reports Server (NTRS)

    Feather, J. B.; Joshi, D. S.

    1981-01-01

    Handling qualities of the unaugmented advanced supersonic transport (AST) are deficient in the low-speed, landing approach regime. Consequently, improvement in handling with active control augmentation systems has been achieved using implicit model-following techniques. Extensive fixed-based simulator evaluations were used to validate these systems prior to tests with full motion and visual capabilities on a six-axis motion-base simulator (MBS). These tests compared the handling qualities of the unaugmented AST with several augmented configurations to ascertain the effectiveness of these systems. Cooper-Harper ratings, tracking errors, and control activity data from the MBS tests have been analyzed statistically. The results show the fully augmented AST handling qualities have been improved to an acceptable level.

  1. Advanced high quality aerosol data: novel results from the EUSAAR in situ measurement network

    NASA Astrophysics Data System (ADS)

    Laj, P.; Philippin, S.; Putaud, J.-P.; Wiedensohler, A.; de Leeuw, G.; Fjaeraa, A. M.; Platt, U.; Baltensperger, U.; Fiebig, M.

    2009-04-01

    The EU-funded project EUSAAR (EUropean Supersites for Atmospheric Aerosol Research) aims at integrating measurements of atmospheric aerosol properties from a distributed network of 20 high-quality European ground-based stations. The objective is to ensure harmonization, validation and data diffusion of current measurements of particle optical, physical and chemical properties which are critical parameters for quantifying the key processes and the impact of aerosols on climate and air quality. We will present and discuss the results and highlights of the activities and achievements during the first 3 years of the project during which EUSAAR has contributed to improving the comparability of measurements for data users and to adopting best practices in aerosol monitoring procedures, and has started providing high quality aerosol data much needed in the atmospheric research community from the most advanced monitoring stations currently operational in Europe.

  2. Extinction of premixed H{sub 2}/air flames: Chemical kinetics and molecular diffusion effects

    SciTech Connect

    Dong, Yufei; Holley, Adam T.; Andac, Mustafa G.; Egolfopoulos, Fokion N.; Wang, Hai; Davis, Scott G.; Middha, Prankul

    2005-09-01

    Laminar flame speed has traditionally been used for the partial validation of flame kinetics. In most cases, however, its accurate determination requires extensive data processing and/or extrapolations, thus rendering the measurement of this fundamental flame property indirect. Additionally, the presence of flame front instabilities does not conform to the definition of laminar flame speed. This is the case for Le<1 flames, with the most notable example being ultralean H{sub 2}/air flames, which develop cellular structures at low strain rates so that determination of laminar flame speeds for such mixtures is not possible. Thus, this low-temperature regime of H{sub 2} oxidation has not been validated systematically in flames. In the present investigation, an alternative/supplemental approach is proposed that includes the experimental determination of extinction strain rates for these flames, and these rates are compared with the predictions of direct numerical simulations. This approach is meaningful for two reasons: (1) Extinction strain rates can be measured directly, as opposed to laminar flame speeds, and (2) while the unstretched lean H{sub 2}/air flames are cellular, the stretched ones are not, thus making comparisons between experiment and simulations meaningful. Such comparisons revealed serious discrepancies between experiments and simulations for ultralean H{sub 2}/air flames by using four kinetic mechanisms. Additional studies were conducted for lean and near-stoichiometric H{sub 2}/air flames diluted with various amounts of N{sub 2}. Similarly to the ultralean flames, significant discrepancies between experimental and predicted extinction strain rates were also found. To identify the possible sources of such discrepancies, the effect of uncertainties on the diffusion coefficients was assessed and an improved treatment of diffusion coefficients was advanced and implemented. Under the conditions considered in this study, the sensitivity of diffusion

  3. Triaxial Burke-Schumann Flames with Applications to Flame Synthesis

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    2000-01-01

    The problem of a flame generated by three coaxial flows is solved by extending the Burke-Schumann methodology to include a third stream. The solution is particularly relevant to flame synthesis wherein multiple tubes are often employed either to introduce inert as a diffusion barrier or to introduce more than two reactants. The general problem is solved where the inner and outer tubes contain reactants and the middle tube contains either an inert or a third reactant. Relevant examples are considered and the results show that the triaxial Burke-Schumann flame can be substantially more complicated than the traditional Burke-Schumann flame. When the middle flow is inert the flame temperature is no longer constant but increases axially, reaching a maximum at the flame centerline. At the exit the flame does not sit on the tube exit but instead resides between the inner and outer tubes, resulting in an effective barrier for particle build-up on the burner rim. For the case of a third reactant in the middle flow, synthesis chemistry where the inner reaction is endothermic and the outer reaction is exothermic is considered. In addition to showing the flame temperature and flame shape, the results identify conditions wherein reaction is not possible due to insufficient heat transfer from the outer flame to support the inner flame reaction.

  4. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    2001-01-01

    Significant differences have been observed between the structure of laminar, transitional, and turbulent flames under downward, upward, and microgravity conditions. These include flame height, jet shear layer, flame instability, flicker, lift-off height, blow-off Reynolds number, and radiative properties. The primary objective of this investigation is to identify the mechanisms involved in the generation and interaction of large-scale structures in microgravity flames. This involves a study of vortex/flame interactions in a space-flight experiment utilizing a controlled, well-defined set of disturbances imposed on a laminar diffusion flame. The results provide a better understanding of the naturally occurring structures that are an inherent part of microgravity turbulent flames. The paper presents the current progress in this program.

  5. Evaluation of Water Quality Renovation by Advanced Soil-Based Wastewater Treatment Systems

    NASA Astrophysics Data System (ADS)

    Cooper, J.; Loomis, G.; Kalen, D.; Boving, T.; Morales, I.; DeLuca, J.; Amador, J.

    2013-12-01

    25% of US households utilize onsite wastewater treatment systems (OWTS) for wastewater management. Advanced technologies were designed to overcome the inadequate wastewater treatment by conventional OWTS in critical shallow water table areas, such as coastal zones, in order to protect ground water quality. In addition to the septic tank and soil drainfield that comprise a conventional OWTS, advanced systems claim improved water renovation with the addition of sand filtration, timed dosing controls, and shallow placement of the infiltrative zone. We determined water quality renovation functions under current water table and temperature conditions, in anticipation of an experiment to measure OWTS response to a climate change scenario of 30-cm increase in water table elevation and 4C temperature increase. Replicate (n=3) intact soil mesocosms were used to evaluate the effectiveness of drainfields with a conventional wastewater delivery (pipe-and-stone) compared to two types of pressurized, shallow narrow drainfield. Results under steady state conditions indicate complete removal of fecal coliform bacteria, phosphorus and BOD by all soil-based systems. By contrast, removal of total nitrogen inputs was 16% in conventional and 11% for both advanced drainfields. Effluent waters maintained a steady state pH between 3.2 - 3.7 for all technologies. Average DO readings were 2.9mg/L for conventional drainfield effluent and 4.6mg/L for advanced, showing the expected oxygen uptake with shallow placement of the infiltrative zone. The conventional OWTS is outperforming the advanced with respect to nitrogen removal, but renovating wastewater equivalently for all other contaminants of concern. The results of this study are expected to facilitate development of future OWTS regulation and planning guidelines, particularly in coastal zones and in the face of a changing climate.

  6. Quality of life among advanced breast cancer patients with and without distant metastasis.

    PubMed

    Wyatt, G; Sikorskii, A; Tamkus, D; You, M

    2013-03-01

    This study presents the results of a secondary analysis of data collected during a trial of reflexology that aimed to improve health-related quality of life (HRQOL) among women with advanced breast cancer in treatment. A comparison of HRQOL (functioning, symptoms, spirituality) of those with (n = 298) and without (n = 87) distant metastasis is presented. Following the intake interview, 385 women were randomised to reflexology, lay foot manipulation or conventional care control, and were interviewed again at weeks 5 and 11. Those with distant metastasis were older, had fewer comorbid conditions, and a smaller proportion were employed. Longitudinal analysis of HRQOL at intake, 5 and 11 weeks revealed that those with distant metastasis had lower functioning and more pain; however, no differences were found on fatigue, nausea, shortness of breath, sleep quality, anxiety, depressive symptoms or spirituality. Despite advanced disease, 56% of all women in this study were below the clinical screening cut-off for depressive symptoms. These findings may indicate that patients with advanced breast cancer have adapted emotionally and spiritually; however, the management of physical symptoms remains a priority. PMID:23252474

  7. Direct Flame Impingement

    SciTech Connect

    2005-09-01

    During the DFI process, high velocity flame jets impinge upon the material being heated, creating a high heat transfer rate. As a result, refractory walls and exhaust gases are cooler, which increases thermal efficiency and lowers NOx emissions. Because the jet nozzles are located a few inches from the load, furnace size can be reduced significantly.

  8. Flame Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Humenik, F. M.; Neely, G. M.

    1983-01-01

    Spectral and total flame radiation measurements exhibited: (1) that radiant heat flux increases with vision combustor inlet air pressure; (2) the effect of fuel atomization characteristics on radiant heat flux; and (3) that a reduction in fuel hydrogen content produces a significant increase in radiant heat flux primarily at low combustor pressures.

  9. Modeling turbulent flame propagation

    SciTech Connect

    Ashurst, W.T.

    1994-08-01

    Laser diagnostics and flow simulation techniques axe now providing information that if available fifty years ago, would have allowed Damkoehler to show how turbulence generates flame area. In the absence of this information, many turbulent flame speed models have been created, most based on Kolmogorov concepts which ignore the turbulence vortical structure, Over the last twenty years, the vorticity structure in mixing layers and jets has been shown to determine the entrainment and mixing behavior and these effects need to be duplicated by combustion models. Turbulence simulations reveal the intense vorticity structure as filaments and simulations of passive flamelet propagation show how this vorticity Creates flame area and defines the shape of the expected chemical reaction surface. Understanding how volume expansion interacts with flow structure should improve experimental methods for determining turbulent flame speed. Since the last decade has given us such powerful new tools to create and see turbulent combustion microscopic behavior, it seems that a solution of turbulent combustion within the next decade would not be surprising in the hindsight of 2004.

  10. "Magic Eraser" Flame Tests

    ERIC Educational Resources Information Center

    Landis, Arthur M.; Davies, Malonne I.; Landis, Linda

    2009-01-01

    Cleaning erasers are used to support methanol-fueled flame tests. This safe demonstration technique requires only small quantities of materials, provides clean colors for up to 45 seconds, and can be used in the classroom or the auditorium. (Contains 1 note.)

  11. Graphene based multifunctional flame sensor.

    PubMed

    Ferry, Darim B; Pavan Kumar, R; Reddy, Siva K; Mukherjee, Anwesha; Misra, Abha

    2015-05-15

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes. PMID:25900408

  12. Graphene based multifunctional flame sensor

    NASA Astrophysics Data System (ADS)

    Ferry, Darim B.; Pavan Kumar, R.; Reddy, Siva K.; Mukherjee, Anwesha; Misra, Abha

    2015-05-01

    Recently, graphene has attracted much attention due to its unique electrical and thermal properties along with its high surface area, and hence presents an ideal sensing material. We report a novel configuration of a graphene based flame sensor by exploiting the response of few layer graphene to a flame along two different directions, where flame detection results from a difference in heat transfer mechanisms. A complete sensor module was developed with a signal conditioning circuit that compensates for any drift in the baseline of the sensor, along with a flame detection algorithm implemented in a microcontroller to detect the flame. A pre-defined threshold for either of the sensors is tunable, which can be varied based on the nature of the flame, hence presenting a system that can be used for detection of any kind of flame. This finding also presents a scalable method that opens avenues to modify complicated sensing schemes.

  13. Quality of life, resource utilisation and health economics assessment in advanced neuroendocrine tumours: a systematic review.

    PubMed

    Chau, I; Casciano, R; Willet, J; Wang, X; Yao, J C

    2013-11-01

    Neuroendocrine tumours (NET) are often diagnosed at an advanced stage when the prognosis is poor for patients, who often experience diminished quality of life (QoL). As new treatments for NET become available, it is important to characterise the associated outcomes, costs and QoL. A comprehensive search was performed to systematically review available data in advanced NET regarding cost of illness/resource utilisation, economic studies/health technology assessment and QoL. Four rounds of sequential review narrowed the search results to 22 relevant studies. Most focused on surgical procedures and diagnostic tools and contained limited information on the costs and consequences of medical therapies. Multiple tools are used to assess health-related QoL in NET, but few analyses have been conducted to assess the comparative impact of available treatment alternatives on QoL. Limitations include English language and the focus on advanced NET; ongoing terminology and classification changes prevented pooled statistical analyses. This systematic review suggests a lack of comparative economic and outcomes data associated with NET treatments. Further research on disease costs, resource utilisation and QoL for patients with advanced NET is warranted. PMID:23895457

  14. Independent contributors to overall quality of life in people with advanced cancer

    PubMed Central

    M Rodríguez, A; Mayo, N E; Gagnon, B

    2013-01-01

    Background: The definition of health for people with cancer is not focused solely on the physiology of illness and the length of life remaining, but is also concerned with improving the well-being and the quality of the life (QOL) remaining to be lived. This study aimed to identify the constructs most associated with QOL in people with advanced cancer. Methods: Two hundred three persons with recent diagnoses of different advanced cancers were evaluated with 65 variables representing individual and environmental factors, biological factors, symptoms, function, general health perceptions and overall QOL at diagnosis. Three independent stepwise multiple linear regressions identified the most important contributors to overall QOL. R2 ranking and effect sizes were estimated and averaged by construct. Results: The most important contributor of overall QOL for people recently diagnosed with advanced cancer was social support. It was followed by general health perceptions, energy, social function, psychological function and physical function. Conclusions: We used effect sizes to summarise multiple multivariate linear regressions for a more manageable and clinically interpretable picture. The findings emphasise the importance of incorporating the assessment and treatment of relevant symptoms, functions and social support in people recently diagnosed with advanced cancer as part of their clinical care. PMID:23591199

  15. Quality of life, resource utilisation and health economics assessment in advanced neuroendocrine tumours: a systematic review

    PubMed Central

    Chau, I; Casciano, R; Willet, J; Wang, X; Yao, JC

    2013-01-01

    Neuroendocrine tumours (NET) are often diagnosed at an advanced stage when the prognosis is poor for patients, who often experience diminished quality of life (QoL). As new treatments for NET become available, it is important to characterise the associated outcomes, costs and QoL. A comprehensive search was performed to systematically review available data in advanced NET regarding cost of illness/resource utilisation, economic studies/health technology assessment and QoL. Four rounds of sequential review narrowed the search results to 22 relevant studies. Most focused on surgical procedures and diagnostic tools and contained limited information on the costs and consequences of medical therapies. Multiple tools are used to assess health-related QoL in NET, but few analyses have been conducted to assess the comparative impact of available treatment alternatives on QoL. Limitations include English language and the focus on advanced NET; ongoing terminology and classification changes prevented pooled statistical analyses. This systematic review suggests a lack of comparative economic and outcomes data associated with NET treatments. Further research on disease costs, resource utilisation and QoL for patients with advanced NET is warranted. PMID:23895457

  16. Goals of care in advanced dementia: quality of life, dignity and comfort.

    PubMed

    Volicer, L

    2007-01-01

    Prolongation of human lifespan is increasing the number of individuals suffering from Alzheimer's disease and other progressive dementia worldwide. There are about 5 million of these individuals in both United States and European Union and many more in other countries of the world (1). Because there is no curative treatment for these diseases, most individuals with dementia survive to an advanced stage of dementia at which time many of them require institutional care. Home care for individuals with advanced dementia and especially institutional care are very expensive and are becoming major public health problems. The cost of care for advanced dementia is often increased by the use of aggressive medical interventions that may not be in the best interest of the patient. Because advanced dementia is currently incurable, it should be considered a terminal illness, similar to terminal cancer. Therefore, palliative care may be the most appropriate strategy for management of advanced dementia (2). The goals of palliative care are maintenance of quality of life, dignity and comfort and the four articles in this special issue are addressing these goals. Enhancement of quality of life in dementia requires attention to three main domains: provision of meaningful activities, appropriate medical care, and treatment of behavioral symptoms (3). Individuals with advanced dementia may not be able to participate in many activity programs but they still may maintain some quality of life if they are provided care in a pleasant environment with constant presence of a caregiver. Simard describes a program, Namaste Care, which is specifically tailored for individuals with advanced dementia. This program requires neither major expenditure nor increased staffing and should be instituted in all facilities that care for individuals with advanced dementia. Maintaining functional status of individuals with advanced dementia is important because it improves their self esteem and facilitates

  17. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in bottom sediment by gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra Kumar; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from bottom-sediment samples is described. The compound O-ethyl-O-methyl-S-proplyphosphorothioate is reported as an estimated concentration because of variable performance. In this method, the sediment samples are centrifuged to remove excess waster mixed with anhydrous sodium sulfate and Soxhlet extracted overnight with dichloromethane (93 percent) and methanol (7 percent). The extract is concentrated and then filtered through a 0.2-micrometer polytetrafluoroethylene membrane syringe filter. An aliquot of the sample extract is quantitatively injected onto two polystyrene-divinylbenzene gel-permeation chromatographic columns connected in series. The compounds are eluted with dichloromethane and a fraction is collected for analysis, with some coextracted interferences, including elemental sulfur, separated and discarded. The aliquot is concentrated and solvent exchanged to ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in sodium sulfate matrix samples ranged from 0.81 to 2 micrograms per kilogram. Method performance was validated by spiking all compounds into three different solid matrices (sodium sulfate, bed sediment from Clear Creek, and bed sediment from Evergreen Lake) at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of method compounds spiked in Clear Creek samples ranged from 43 to 110 percent, and those in Evergreen Lake samples ranged from 62 to 118 percent for all pesticides. Mean recoveries of method compounds spiked in reagent sodium sulfate samples ranged from 41 to 101 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had an average recovery of 35 percent, and, thus, sample concentration is reported as estimated ('E' remark code).

  18. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory; determination of organophosphate pesticides in filtered water by gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra K.; Wydoski, Duane S.

    2002-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 pesticide degradates from filtered natural-water samples is described. Seven of these compounds are reported permanently with an estimated concentration because of performance issues. Water samples are filtered to remove suspended particulate matter, and then 1 liter of filtrate is pumped through disposable solid-phase extraction columns that contain octadecyl-bonded porous silica to extract the compounds. The C-18 columns are dried with nitrogen gas, and method compounds are eluted from the columns with ethyl acetate. The extract is analyzed by dual capillary-column gas chromatography with flame photometric detection. Single-operator method detection limits in all three water-matrix samples ranged from 0.004 to 0.012 microgram per liter. Method performance was validated by spiking all compounds into three different matrices at three different concentrations. Eight replicates were analyzed at each concentration level in each matrix. Mean recoveries of method compounds spiked in surface-water samples ranged from 39 to 149 percent and those in ground-water samples ranged from 40 to 124 percent for all pesticides except dimethoate. Mean recoveries of method compounds spiked in reagent-water samples ranged from 41 to 119 percent for all pesticides except dimethoate. Dimethoate exhibited reduced recoveries (mean of 43 percent in low- and medium-concentration level spiked samples and 20 percent in high-concentration level spiked samples) in all matrices because of incomplete collection on the C-18 column. As a result, concen-trations of dimethoate and six other compounds (based on performance issues) in samples are reported in this method with an estimated remark code.

  19. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Two critical challenges facing the application of flames for synthesis of nanopowder materials are: (1) overcoming formation of agglomerates and (2) ensuring that the highly reactive nanopowders that are synthesized in flames can be produced in such a manner that their purity is maintained during subsequent processing. Agglomerates are produced in flames because particle formation occurs in a high temperature and high number density environment. They are undesirable in most advanced applications of powders. For example, agglomerates have a deleterious effect on compaction density, leading to voids when nanopowders are consolidated. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Powder purity must also be maintained during subsequent handling of nanopowders and this poses a significant challenge for any synthesis route because nanopowders, particularly metals and non-oxide ceramic powders, are inherently reactive. Impurities acquired during handling of nanopowders have slowed the advancement of the nanostructured materials industry. One promising approach that has been proposed to address these problems is nano-encapsulation. In this approach, the core particles are encapsulated in a removable material while they are within the flame but before excessive agglomeration has occurred. Condensation can be very rapid so that core particles are trapped within the condensed material and agglomeration is limited. Nano-encapsulation also addresses the handling concerns for post-synthesis processing. Results have shown that when nano-encapsulated powders are exposed to atmosphere the core particles are protected from oxidation and/or hydrolysis. Thus, handling of the powders does not require extreme care. If, for example, at the time of consolidation the encapsulation material is removed by vacuum annealing, the resulting powder remains unagglomerated and free of

  20. Identifying nutritional, functional, and quality of life correlates with male hypogonadism in advanced cancer patients

    PubMed Central

    Fuoco, Domenico; di Tomasso, Jonathan; Boulos, Caroline; Kilgour, Robert D; Morais, Jose A; Borod, Manuel; Vigano, Antonio

    2015-01-01

    With the availability of a potential treatment to reverse male hypogonadism (MH), the primary aim of this case series study was to determine independent relationships between this condition and the nutritional, functional, and quality of life characteristics of advanced cancer patients (ACP). Free testosterone levels were measured in 100 male patients with advanced lung and gastrointestinal (GI) cancer. Routine blood markers of nutrition and inflammation, self-reporting questionnaires for symptom, nutrition, and functional status along with handgrip dynamometry were assessed for all patients at bedside. Almost half of this cohort underwent further assessments (body composition, lower body strength, in depth quality of life and fatigue questionnaires) at the McGill Nutrition and Performance Laboratory (mnupal.mcgill.ca). Multiple regression analyses were performed to identify independent correlations between free testosterone and the above measures. Seventy-six percent of patients were diagnosed with MH. Using multiple linear regression, low free testosterone (31.2 pmol/L) was independently associated with lower albumin (B = –3.8 g/L; 95% confidence interval CI –6.8:–0.8), muscle strength (–11.7 lbs; –20.4: –3.0) and mass in upper limbs (–0.8 kg; –1.4: –0.1), overall performance status (Eastern Cooperative Oncology Group Performance Scale, ECOG PS 0.6; 0.1:1.1), cancer-related fatigue (Brief Fatigue Inventory, BFI 16.7; 2.0: 31.3), and overall quality of life (MQoL total score –1.42; –2.5: –0.3). Thus MH seems to be highly prevalent in ACP, and it is independently associated with important nutritional, functional, and quality of life characteristics in this patient population. PMID:26316882

  1. Candle Flames in Microgravity Video

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This video of a candle flame burning in space was taken by the Candle Flames in Microgravity (CFM) experiment on the Russian Mir space station. It is actually a composite of still photos from a 35mm camera since the video images were too dim. The images show a hemispherically shaped flame, primarily blue in color, with some yellow early int the flame lifetime. The actual flame is quite dim and difficult to see with the naked eye. Nearly 80 candles were burned in this experiment aboard Mir. NASA scientists have also studied how flames spread in space and how to detect fire in microgravity. Researchers hope that what they learn about fire and combustion from the flame ball experiments will help out here on Earth. Their research could help create things such as better engines for cars and airplanes. Since they use very weak flames, flame balls require little fuel. By studying how this works, engineers may be able to design engines that use far less fuel. In addition, microgravity flame research is an important step in creating new safety precautions for astronauts living in space. By understanding how fire works in space, the astronauts can be better prepared to fight it.

  2. Advances in spinel optical quality, size/shape capacity, and applications

    NASA Astrophysics Data System (ADS)

    Roy, Donald W.; Martin, Gay G., Jr.

    1992-12-01

    Polycrystalline MgAl2O4 Spinel, transparent from two hundred nanometers to six microns, offers a unique combination of optical and physical properties. A superior dome and window material with respect to rain and particle erosion, solar radiation, high temperatures and humidity, it is resistant to attack by strong acids, alkali solutions, sea water and jet fuels. Residual microporosity from the powder process used for fabricating Spinel which previously limited the use of Spinel to thin wall thicknesses and small sizes, has been significantly reduced by advanced hot press and hot isostatic press (HIP) technology. It is now possible to manufacture high quality shallow domes up to seven inches in diameter with a two tenths inch thick wall thickness. Eight inch diameter flat windows have been produced for an advanced missile system. Proof of process near hemispherical 8 inch dome blanks have been fabricated. Recent measurements of refractive index, homogeneity, scatter and surface roughness are available for design purposes. Improvement in the optical quality and in size/shape capability along with several successful prototype tests demonstrate that Spinel is ready for inclusion in appropriate production systems.

  3. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  4. Vortex/Flame Interactions in Microgravity Pulsed Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Bahadori, M. Y.; Hegde, U.; Stocker, D. P.

    1999-01-01

    The problem of vortex/flame interaction is of fundamental importance to turbulent combustion. These interactions have been studied in normal gravity. It was found that due to the interactions between the imposed disturbances and buoyancy induced instabilities, several overall length scales dominated the flame. The problem of multiple scales does not exist in microgravity for a pulsed laminar flame, since there are no buoyancy induced instabilities. The absence of buoyant convection therefore provides an environment to study the role of vortices interacting with flames in a controlled manner. There are strong similarities between imposed and naturally occurring perturbations, since both can be described by the same spatial instability theory. Hence, imposing a harmonic disturbance on a microgravity laminar flame creates effects similar to those occurring naturally in transitional/turbulent diffusion flames observed in microgravity. In this study, controlled, large-scale, axisymmetric vortices are imposed on a microgravity laminar diffusion flame. The experimental results and predictions from a numerical model of transient jet diffusion flames are presented and the characteristics of pulsed flame are described.

  5. Turbulent Flame Propagation Characteristics of High Hydrogen Content Fuels

    SciTech Connect

    Seitzman, Jerry; Lieuwen, Timothy

    2014-09-30

    This final report describes the results of an effort to better understand turbulent flame propagation, especially at conditions relevant to gas turbines employing fuels with syngas or hydrogen mixtures. Turbulent flame speeds were measured for a variety of hydrogen/carbon monoxide (H2/CO) and hydrogen/methane (H2/CH4) fuel mixtures with air as the oxidizer. The measurements include global consumption speeds (ST,GC) acquired in a turbulent jet flame at pressures of 1-10 atm and local displacement speeds (ST,LD) acquired in a low-swirl burner at atmospheric pressure. The results verify the importance of fuel composition in determining turbulent flame speeds. For example, different fuel-air mixtures having the same unstretched laminar flame speed (SL,0) but different fuel compositions resulted in significantly different ST,GC for the same turbulence levels (u'). This demonstrates the weakness of turbulent flame speed correlations based simply on u'/SL,0. The results were analyzed using a steady-steady leading points concept to explain the sensitivity of turbulent burning rates to fuel (and oxidizer) composition. Leading point theories suggest that the premixed turbulent flame speed is controlled by the flame front characteristics at the flame brush leading edge, or, in other words, by the flamelets that advance farthest into the unburned mixture (the so-called leading points). For negative Markstein length mixtures, this is assumed to be close to the maximum stretched laminar flame speed (SL,max) for the given fuel-oxidizer mixture. For the ST,GC measurements, the data at a given pressure were well-correlated with an SL,max scaling. However the variation with pressure was not captured, which may be due to non-quasi-steady effects that are not included in the current model. For the ST,LD data, the leading points model again faithfully captured the variation of turbulent flame speed over a wide range of fuel-compositions and turbulence intensities. These results provide

  6. Evaluation of water quality functions of conventional and advanced soil-based onsite wastewater treatment systems.

    PubMed

    Cooper, Jennifer A; Loomis, George W; Kalen, David V; Amador, Jose A

    2015-05-01

    Shallow narrow drainfields are assumed to provide better wastewater renovation than conventional drainfields and are used for protection of surface and ground water. To test this assumption, we evaluated the water quality functions of two advanced onsite wastewater treatment system (OWTS) drainfields-shallow narrow (SND) and Geomat (GEO)-and a conventional pipe and stone (P&S) drainfield over 12 mo using replicated ( = 3) intact soil mesocosms. The SND and GEO mesocosms received effluent from a single-pass sand filter, whereas the P&S received septic tank effluent. Between 97.1 and 100% of 5-d biochemical oxygen demand (BOD), fecal coliform bacteria, and total phosphorus (P) were removed in all drainfield types. Total nitrogen (N) removal averaged 12.0% for P&S, 4.8% for SND, and 5.4% for GEO. A mass balance analysis accounted for 95.1% (SND), 94.1% (GEO), and 87.6% (P&S) of N inputs. When the whole treatment train (excluding the septic tank) is considered, advanced systems, including sand filter pretreatment and SND or GEO soil-based treatment, removed 99.8 to 99.9% of BOD, 100% of fecal coliform bacteria and P, and 26.0 to 27.0% of N. In contrast, the conventional system removed 99.4% of BOD and 100% of fecal coliform bacteria and P but only 12.0% of N. All drainfield types performed similarly for most water quality functions despite differences in placement within the soil profile. However, inclusion of the pretreatment step in advanced system treatment trains results in better N removal than in conventional treatment systems despite higher drainfield N removal rates in the latter. PMID:26024275

  7. Trajectories of Quality of Life in Older Persons with Advanced Illness

    PubMed Central

    Solomon, Rachel; Kirwin, Paul; Van Ness, Peter H.; O’Leary, John; Fried, Terri R.

    2010-01-01

    Objective To examine subjective ratings of QoL among older adults with advanced illness. Design Observational cohort study with interviews at least every 4 months for up to 2 years conducted between December, 1999 and December, 2002. Setting Participants’ homes. Participants 185 community-dwelling individuals age 60 years or older with advanced cancer, heart failure, or chronic obstructive pulmonary disease. Main Outcome Measure Participants were asked, “How would you rate your overall quality of life?” Results Among participants who died, 46% reported good or best possible quality of life at their final interview, 21% reported improvement in QoL from their penultimate to final interview, and 39% reported no change. Nearly one-half (49%), of participants reported two or more changes in the direction of their QoL trajectories (e.g. QoL improved then declined). As measured over time in a multivariable longitudinal regression analysis, greater ADL disability (adjusted odds ratio [AOR] 0.85, 95% confidence interval [CI] 0.75, 0.95) and depressed mood (AOR 0.42, 95%CI 0.27, 0.66) were associated with a lower QoL while higher self-rated health (AOR 4.79, 95% CI 2.99, 7.69) and having grown closer to one’s church (AOR 1.99, 95% CI 1.17, 3.39) were associated with a higher QoL. Conclusions While declining QoL is not an inevitable consequence of advancing illness, individuals’ ratings of QoL are highly variable over time, suggesting that subjective QoL may be influenced by temporary factors. Functional status, depression, and connection to one’s religious community are shared determinants of QoL. PMID:20406309

  8. Combustor flame flashback

    NASA Technical Reports Server (NTRS)

    Proctor, M. P.; Tien, J. S.

    1985-01-01

    A stainless steel, two-dimensional (rectangular), center-dump, premixed-prevaporized combustor with quartz window sidewalls for visual access was designed, built, and used to study flashback. A parametric study revealed that the flashback equivalence ratio decreased slightly as the inlet air temperature increased. It also indicated that the average premixer velocity and premixer wall temperature were not governing parameters of flashback. The steady-state velocity balance concept as the flashback mechanism was not supported. From visual observation several stages of burning were identified. High speed photography verified upstream flame propagation with the leading edge of the flame front near the premixer wall. Combustion instabilities (spontaneous pressure oscillations) were discovered during combustion at the dump plane and during flashback. The pressure oscillation frequency ranged from 40 to 80 Hz. The peak-to-peak amplitude (up to 1.4 psi) increased as the fuel/air equivalence ratio was increased attaining a maximum value just before flashback. The amplitude suddenly decreased when the flame stabilized in the premixer. The pressure oscillations were large enough to cause a local flow reversal. A simple test using ceramic fiber tufts indicated flow reversals existed at the premixer exit during flickering. It is suspected that flashback occurs through the premixer wall boundary layer flow reversal caused by combustion instability. A theoretical analysis of periodic flow in the premixing channel has been made. The theory supports the flow reversal mechanism.

  9. Japan's research on gaseous flames

    NASA Technical Reports Server (NTRS)

    Niioka, Takashi

    1995-01-01

    Although research studies on gaseous flames in microgravity in Japan have not been one-sided, they have been limited, for the most part, to comparatively fundamental studies. At present it is only possible to achieve a microgravity field by the use of drop towers, as far as gaseous flames are concerned. Compared with experiments on droplets, including droplet arrays, which have been vigorously performed in Japan, studies on gaseous flames have just begun. Experiments on ignition of gaseous fuel, flammability limits, flame stability, effect of magnetic field on flames, and carbon formation from gaseous flames are currently being carried out in microgravity. Seven subjects related to these topics are introduced and discussed herein.

  10. Flame Imaging for Safety Surveillance

    NASA Astrophysics Data System (ADS)

    Fukuchi, Tetsuo

    Flame detection is important for prevention of spreading of accidental fires. When combustible gas is ignited under daylight conditions, the flame is often difficult to detect by conventional imaging because of the high background radiation. The flame can be visualized by selectively detecting the emission of the OH radical, which is present in hydrocarbon or hydrogen flames. By detecting the OH radical emission in the solar blind region of wavelength below 290 nm, the background radiation can be effectively eliminated. In this study, an experimental device for visualization of flame at wavelength 285 nm was constructed. A combination of two narrowband interference filters was found to be sufficient to eliminate background radiation and selectively image the OH emission. The device could detect butane burner flame under daylight conditions.

  11. Monte Carlo Simulation of Nanoparticle Encapsulation in Flames

    NASA Technical Reports Server (NTRS)

    Sun, Z.; Huertas, J. I.; Axelbaum, R. L.

    1999-01-01

    Gas-phase combustion (flame) synthesis has been an essential industrial process for producing large quantities of powder materials such as carbon black, titanium dioxide, and silicon dioxide. Flames typically produce simple oxides, with carbon black being the noted exception because the oxides of carbon are gaseous and are easily separated from the particulate matter that is formed during fuel pyrolysis. Furthermore, the powders produced in flames are usually agglomerated, nanometer-sized particles (nanoparticles). This composition and morphology is acceptable for many applications. However, the present interest in nanoparticles for advanced materials application has led to efforts to employ flames for the synthesis of unagglomerated nanoparticles (2 to 100 nm) of metals and non-oxide ceramics. Sodium-halide chemistry has proven to be viable for producing metals and non-oxide ceramics in flames. Materials that have been produced to date include Si (Calcote and Felder, 1993), TiN, TiB2, TiC, TiSi2, SiC, B4C (Glassman et al, 1993) Al, W, Ti, TiB2, AlN, and W-Ti and Al-AlN composites (DuFaux and Axelbaum, 1995, Axelbaum et al 1996,1997). Many more materials are possible. The main challenge that faces application of flame synthesis for advanced materials is overcoming formation of agglomerates in flames (Brezinsky, 1997). The high temperatures and high number densities in the flame environment favor the formation of agglomerates. Agglomerates must be avoided for many reasons. For example, when nanopowders are consolidated, agglomerates have a deleterious effect on compaction density, leading to voids in the final part. Efforts to avoid agglomeration in flames without substantially reducing particle number density and, consequently, production rate, have had limited success. Another critical challenge that faces all synthesis routes for nanopowders is ensuring that the powders are high purity and that the process is scaleable. Though the containerless, high temperature

  12. [Advanced nursing practice: a must for the quality of care and mental health services].

    PubMed

    Ricard, Nicole; Page, Claire; Laflamme, France

    2014-01-01

    New professional legislation and reorganization of mental health services have had a significant influence on mental health nursing practice. Many nurses have demonstrated clinical leadership and have been able to adapt their services to the needs of the population specially in the primary health care setting. However, many believe that the role of nurses is not sufficiently known and optimally utilized in mental health services. In this article we take a critical look at the mental health nursing practice in Quebec and at the essential requirements for its development. This review aims to: 1) describe current trends in the changing roles and the modernization of mental health nursing practice in Quebec, 2) provide an overview of the development of advanced nursing practice and its impact on the quality of mental health services; 3) clarify the concept of advanced nursing practice and position its development in Quebec and 4) propose various strategies for optimizing the role of nurses and their complementarity with other professionals providing mental health services. This review presents innovative practices developed by nurses in the context of the restructuring of mental health services. For example, new nursing roles have been developed to improve the collaboration with general practitioners groups in primary care settings and facilitate the evaluation and monitoring of patient presenting medical and psychological problems. Another interesting innovation was set up by nurses in developing a new service to allow timely access to integrated care for patients with substance abuse and mental health problems. The various testimonies reported in this article illustrate the potential contribution of these nursing innovations in improving the mental health services in Quebec. Also, in few countries, the reform of mental health services has been a good time to recognize this potential. Thus, some countries have repositioned the role of mental health nurses and

  13. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Tien, J. S.

    1999-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station (OS). On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. 'Me flames on the Mir OS were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration. The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of candle flame. The model is detailed in the gas-phase, but uses a simplified liquid/wick phase. 'Me model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. ne model also predicts pre-extinction flame oscillations if the decrease in ambient oxygen is small enough.

  14. Symptom clusters and quality of life among patients with advanced heart failure

    PubMed Central

    Yu, Doris SF; Chan, Helen YL; Leung, Doris YP; Hui, Elsie; Sit, Janet WH

    2016-01-01

    Objectives To identify symptom clusters among patients with advanced heart failure (HF) and the independent relationships with their quality of life (QoL). Methods This is the secondary data analysis of a cross-sectional study which interviewed 119 patients with advanced HF in the geriatric unit of a regional hospital in Hong Kong. The symptom profile and QoL were assessed by using the Edmonton Symptom Assessment Scale (ESAS) and the McGill QoL Questionnaire. Exploratory factor analysis was used to identify the symptom clusters. Hierarchical regression analysis was used to examine the independent relationships with their QoL, after adjusting the effects of age, gender, and comorbidities. Results The patients were at an advanced age (82.9 ± 6.5 years). Three distinct symptom clusters were identified: they were the distress cluster (including shortness of breath, anxiety, and depression), the decondition cluster (fatigue, drowsiness, nausea, and reduced appetite), and the discomfort cluster (pain, and sense of generalized discomfort). These three symptom clusters accounted for 63.25% of variance of the patients' symptom experience. The small to moderate correlations between these symptom clusters indicated that they were rather independent of one another. After adjusting the age, gender and comorbidities, the distress (β = −0.635, P < 0.001), the decondition (β = −0.148, P = 0.01), and the discomfort (β = −0.258, P < 0.001) symptom clusters independently predicted their QoL. Conclusions This study identified the distinctive symptom clusters among patients with advanced HF. The results shed light on the need to develop palliative care interventions for optimizing the symptom control for this life-limiting disease. PMID:27403150

  15. NCN detection in atmospheric flames

    SciTech Connect

    Sun, Z.W.; Li, Z.S.; Alden, M.; Dam, N.J.

    2010-04-15

    The first extensive spectra of NCN in atmospheric pressure flames are reported, as well as qualitative planar LIF images of its spatial distribution. The spectra have been recorded by LIF in lifted, fuel-rich CH4/N2O/N2 and CH4/air flames, and are compared to simulations. In the CH4/air flames, the NCN LIF signal peaks around {phi} = 1.2. Planar LIF imaging illustrates the very confined NCN distribution in the CH4/N2O/N2 flame.

  16. Recent advances in rapid and non-destructive assessment of meat quality using hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Ngadi, Michael

    2016-05-01

    Meat is an important food item in human diet. Its production and consumption has greatly increased in the last decades with the development of economies and improvement of peoples' living standards. However, most of the traditional methods for evaluation of meat quality are time-consuming, laborious, inconsistent and destructive to samples, which make them not appropriate for a fast-paced production and processing environment. Development of innovative and non-destructive optical sensing techniques to facilitate simple, fast, and accurate evaluation of quality are attracting increasing attention in the food industry. Hyperspectral imaging is one of the promising techniques. It integrates the combined merits of imaging and spectroscopic techniques. This paper provides a comprehensive review on recent advances in evaluation of the important quality attributes of meat including color, marbling, tenderness, pH, water holding capacity, and also chemical composition attributes such as moisture content, protein content and fat content in pork, beef and lamb. In addition, the future potential applications and trends of hyperspectral imaging are also discussed in this paper.

  17. Effects of advanced wastewater treatment on the quality of White River, Indiana

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1991-01-01

    In 1983, the City of Indianapolis, Indiana, completed construction of advanced wastewater treatment (AWT) systems to enlarge and upgrade its existing Belmont Road and Southport Road secondary treatment plants. A nonparametric statistical procedure, a modified form of the Wilcoxon-Mann-Whitney rank-sum test, was used to test for trends in water quality at two upstream and two downstream sites on White River and at the two treatment plants. Results comparing the pre- (1978-1980) and post- (1983-1988) AWT periods show statistically significant improvements in the quality of the treated effluent and of the White River downstream from the plants. Water quality at sites upstream from the city was relatively constant during the period of study. Total ammonia (as N) decreased 14.6 mg/L and BOD5 (five-day biochemical oxygen demand) decreased 10 to 19 mg/L in the two effluents. Total ammonia in the river downstream from the plants decreased 0.8 to 1.9 mg/L and BOD5 decreased 2.3 to 2.5 mg/L. Nitrate (as N) increased 14.5 mg/L in the plant effluents and 2.0 to 2.4 mg/L in the river because of in-plant nitrification. Dissolved oxygen concentration in the river increased about 3 mg/L because of reduced oxygen demand for nitrification and biochemical oxidation processes.

  18. DICOM index tracker enterprise: advanced system for enterprise-wide quality assurance and patient safety monitoring

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Pavlicek, William; Panda, Anshuman; Langer, Steve G.; Morin, Richard; Fetterly, Kenneth A.; Paden, Robert; Hanson, James; Wu, Lin-Wei; Wu, Teresa

    2015-03-01

    DICOM Index Tracker (DIT) is an integrated platform to harvest rich information available from Digital Imaging and Communications in Medicine (DICOM) to improve quality assurance in radiology practices. It is designed to capture and maintain longitudinal patient-specific exam indices of interests for all diagnostic and procedural uses of imaging modalities. Thus, it effectively serves as a quality assurance and patient safety monitoring tool. The foundation of DIT is an intelligent database system which stores the information accepted and parsed via a DICOM receiver and parser. The database system enables the basic dosimetry analysis. The success of DIT implementation at Mayo Clinic Arizona calls for the DIT deployment at the enterprise level which requires significant improvements. First, for geographically distributed multi-site implementation, the first bottleneck is the communication (network) delay; the second is the scalability of the DICOM parser to handle the large volume of exams from different sites. To address this issue, DICOM receiver and parser are separated and decentralized by site. To facilitate the enterprise wide Quality Assurance (QA), a notable challenge is the great diversities of manufacturers, modalities and software versions, as the solution DIT Enterprise provides the standardization tool for device naming, protocol naming, physician naming across sites. Thirdly, advanced analytic engines are implemented online which support the proactive QA in DIT Enterprise.

  19. Quality assurance and risk management: Perspectives on Human Factors Certification of Advanced Aviation Systems

    NASA Technical Reports Server (NTRS)

    Taylor, Robert M.; Macleod, Iain S.

    1994-01-01

    This paper is based on the experience of engineering psychologists advising the U.K. Ministry of Defense (MoD) on the procurement of advanced aviation systems that conform to good human engineering (HE) practice. Traditional approaches to HE in systems procurement focus on the physical nature of the human-machine interface. Advanced aviation systems present increasingly complex design requirements for human functional integration, information processing, and cognitive task performance effectiveness. These developing requirements present new challenges for HE quality assurance (QA) and risk management, requiring focus on design processes as well as on design content or product. A new approach to the application of HE, recently adopted by NATO, provides more systematic ordering and control of HE processes and activities to meet the challenges of advanced aircrew systems design. This systematic approach to HE has been applied by MoD to the procurement of mission systems for the Royal Navy Merlin helicopter. In MoD procurement, certification is a judicial function, essentially independent of the service customer and industry contractor. Certification decisions are based on advice from MoD's appointed Acceptance Agency. Test and evaluation (T&E) conducted by the contractor and by the Acceptance Agency provide evidence for certification. Certification identifies limitations of systems upon release to the service. Evidence of compliance with HE standards traditionally forms the main basis of HE certification and significant non-compliance could restrict release. The systems HE approach shows concern for the quality of processes as well as for the content of the product. Human factors certification should be concerned with the quality of HE processes as well as products. Certification should require proof of process as well as proof of content and performance. QA criteria such as completeness, consistency, timeliness, and compatibility provide generic guidelines for

  20. Continuous Diffusion Flames and Flame Streets in Micro-Channels

    NASA Astrophysics Data System (ADS)

    Mohan, Shikhar; Matalon, Moshe

    2015-11-01

    Experiments of non-premixed combustion in micro-channels have shown different modes of burning. Normally, a flame is established along, or near the axis of a channel that spreads the entire mixing layer and separates a region of fuel but no oxidizer from a region with only oxidizer. Often, however, a periodic sequence of extinction and reignition events, termed collectively as ``flame streets'', are observed. They constitute a series of diffusion flames, each with a tribrachial leading edge stabilized along the channel. This work focuses on understanding the underlying mechanism responsible for these distinct observations. Numerical simulations were conducted in the thermo-diffusive limit in order to study the effects of confinement and heat loss on non-premixed flames in three-dimensional micro-channels with low aspect ratios. The three dimensionality of the channel was captured qualitatively through a systematic asymptotic analysis that led to a two dimensional problem with an effective parameter representing heat losses in the vertical direction. There exist three key flame regimes: (1) a stable continuous diffusion flame, (2) an unsteady flame, and (3) a stable ``flame street'' the transition between regimes demarcated primarily by Reynolds and Nusselt numbers.

  1. Effects of Flame Structure and Hydrodynamics on Soot Particle Inception and Flame Extinction in Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Axelbaum, R. L.; Chen, R.; Sunderland, P. B.; Urban, D. L.; Liu, S.; Chao, B. H.

    2001-01-01

    This paper summarizes recent studies of the effects of stoichiometric mixture fraction (structure) and hydrodynamics on soot particle inception and flame extinction in diffusion flames. Microgravity experiments are uniquely suited for these studies because, unlike normal gravity experiments, they allow structural and hydrodynamic effects to be independently studied. As part of this recent flight definition program, microgravity studies have been performed in the 2.2 second drop tower. Normal gravity counterflow studies also have been employed and analytical and numerical models have been developed. A goal of this program is to develop sufficient understanding of the effects of flame structure that flames can be "designed" to specifications - consequently, the program name Flame Design. In other words, if a soot-free, strong, low temperature flame is required, can one produce such a flame by designing its structure? Certainly, as in any design, there will be constraints imposed by the properties of the available "materials." For hydrocarbon combustion, the base materials are fuel and air. Additives could be considered, but for this work only fuel, oxygen and nitrogen are considered. Also, the structure of these flames is "designed" by varying the stoichiometric mixture fraction. Following this line of reasoning, the studies described are aimed at developing the understanding of flame structure that is needed to allow for optimum design.

  2. Sandia National Laboratories Advanced Simulation and Computing (ASC) software quality plan. Part 1 : ASC software quality engineering practices version 1.0.

    SciTech Connect

    Minana, Molly A.; Sturtevant, Judith E.; Heaphy, Robert; Hodges, Ann Louise; Boucheron, Edward A.; Drake, Richard Roy; Forsythe, Christi A.; Schofield, Joseph Richard, Jr.; Pavlakos, Constantine James; Williamson, Charles Michael; Edwards, Harold Carter

    2005-01-01

    The purpose of the Sandia National Laboratories (SNL) Advanced Simulation and Computing (ASC) Software Quality Plan is to clearly identify the practices that are the basis for continually improving the quality of ASC software products. Quality is defined in DOE/AL Quality Criteria (QC-1) as conformance to customer requirements and expectations. This quality plan defines the ASC program software quality practices and provides mappings of these practices to the SNL Corporate Process Requirements (CPR 1.3.2 and CPR 1.3.6) and the Department of Energy (DOE) document, ASCI Software Quality Engineering: Goals, Principles, and Guidelines (GP&G). This quality plan identifies ASC management and software project teams' responsibilities for cost-effective software engineering quality practices. The SNL ASC Software Quality Plan establishes the signatories commitment to improving software products by applying cost-effective software engineering quality practices. This document explains the project teams opportunities for tailoring and implementing the practices; enumerates the practices that compose the development of SNL ASC's software products; and includes a sample assessment checklist that was developed based upon the practices in this document.

  3. An Advanced Orbiting Systems Approach to Quality of Service in Space-Based Intelligent Communication Networks

    NASA Technical Reports Server (NTRS)

    Riha, Andrew P.

    2005-01-01

    As humans and robotic technologies are deployed in future constellation systems, differing traffic services will arise, e.g., realtime and non-realtime. In order to provide a quality of service framework that would allow humans and robotic technologies to interoperate over a wide and dynamic range of interactions, a method of classifying data as realtime or non-realtime is needed. In our paper, we present an approach that leverages the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) data link protocol. Specifically, we redefine the AOS Transfer Frame Replay Flag in order to provide an automated store-and-forward approach on a per-service basis for use in the next-generation Interplanetary Network. In addition to addressing the problem of intermittent connectivity and associated services, we propose a follow-on methodology for prioritizing data through further modification of the AOS Transfer Frame.

  4. Children with Advanced Cancer: Responses to a Spiritual Quality of Life Interview

    PubMed Central

    Kamper, RosaLee; Van Cleve, Lois; Savedra, Marilyn

    2010-01-01

    Purpose The purpose of this study was to describe the responses of children with advanced cancer to a spiritual quality of life (SQL) interview. Design and Methods Sixty children, ages 6 to 17, responded to an SQL interview every 2 weeks, for 5 months. The questionnaires were analyzed using content analysis. Results Children’s responses were primarily relational in nature, particularly to their parents. Seventy-eight percent of the interviewees reported they did something to “feel close to God.” Children prayed for a “sense of normalcy” (59%) and relational concerns (31%). Practice Implications Children’s care will be enhanced when given the opportunity to express their spiritual and relational concerns. PMID:20880278

  5. The space shuttle advanced solid rocket motor: Quality control and testing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Congressional committees that authorize the activities of NASA requested that the National Research Council (NRC) review the testing and quality assurance programs for the Advanced Solid Rocket Motor (ASRM) program. The proposed ASRM design incorporates numerous features that are significant departures from the Redesigned Solid Rocket Motor (RSRM). The NRC review concentrated mainly on these features. Primary among these are the steel case material, welding rather than pinning of case factory joints, a bolted field joint designed to close upon firing the rocket, continuous mixing and casting of the solid propellant in place of the current batch processes, use of asbestos-free insulation, and a lightweight nozzle. The committee's assessment of these and other features of the ASRM are presented in terms of their potential impact on flight safety.

  6. Time-dependent Computational Studies of Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Kailasanath, K.; Patnaik, Gopal; Oran, Elaine S.

    1993-01-01

    This report describes the research performed at the Center for Reactive Flow and Dynamical Systems in the Laboratory for Computational Physics and Fluid Dynamics, at the Naval Research Laboratory, in support of NASA Microgravity Science and Applications Program. The primary focus of this research is on investigating fundamental questions concerning the propagation and extinction of premixed flames in earth gravity and in microgravity environments. Our approach is to use detailed time-dependent, multispecies, numerical models as tools to simulate flames in different gravity environments. The models include a detailed chemical kinetics mechanism consisting of elementary reactions among the eight reactive species involved in hydrogen combustion, coupled to algorithms for convection, thermal conduction, viscosity, molecular and thermal diffusion, and external forces. The external force, gravity, can be put in any direction relative to flame propagation and can have a range of values. Recently more advanced wall boundary conditions such as isothermal and no-slip have been added to the model. This enables the simulation of flames propagating in more practical systems than before. We have used the numerical simulations to investigate the effects of heat losses and buoyancy forces on the structure and stability of flames, to help resolve fundamental questions on the existence of flammability limits when there are no external losses or buoyancy forces in the system, to understand the interaction between the various processes leading to flame instabilities and extinguishment, and to study the dynamics of cell formation and splitting. Our studies have been able to bring out the differences between upward- and downward-propagating flames and predict the zero-gravity behavior of these flames. The simulations have also highlighted the dominant role of wall heat losses in the case of downward-propagating flames. The simulations have been able to qualitatively predict the

  7. Quality of advance care planning policy and practice in residential aged care facilities in Australia

    PubMed Central

    Silvester, William; Fullam, Rachael S; Parslow, Ruth A; Lewis, Virginia J; Sjanta, Rebekah; Jackson, Lynne; White, Vanessa; Gilchrist, Jane

    2013-01-01

    Objectives To assess existing advance care planning (ACP) practices in residential aged care facilities (RACFs) in Victoria, Australia before a systematic intervention; to assess RACF staff experience, understanding of and attitudes towards ACP. Design Surveys of participating organisations concerning ACP-related policies and procedures, review of existing ACP-related documentation, and pre-intervention survey of RACF staff covering their role, experiences and attitudes towards ACP-related procedures. Setting 19 selected RACFs in Victoria. Participants 12 aged care organisations (representing 19 RACFs) who provided existing ACP-related documentation for review, 12 RACFs who completed an organisational survey and 45 staff (from 19 RACFs) who completed a pre-intervention survey of knowledge, attitudes and behaviour. Results Findings suggested that some ACP-related practices were already occurring in RACFs; however, these activities were inconsistent and variable in quality. Six of the 12 responding RACFs had written policies and procedures for ACP; however, none of the ACP-related documents submitted covered all information required to meet ACP best practice. Surveyed staff had limited experience of ACP, and discrepancies between self reported comfort, and levels of knowledge and confidence to undertake ACP-related activities, indicated a need for training and ongoing organisational support. Conclusions Surveyed organisations â policies and procedures related to ACP were limited and the quality of existing documentation was poor. RACF staff had relatively limited experience in developing advance care plans with facility residents, although attitudes were positive. A systematic approach to the implementation of ACP in residential aged care settings is required to ensure best practice is implemented and sustained. PMID:24644755

  8. The Use of Advanced Hydroelectric Turbines to Improve Water Quality and Fish Populations

    SciTech Connect

    Brookshier, P A; Cada, G F; Flynn, J V; Rinehart, B N; Sale, M J; Sommers, G L

    1999-09-20

    Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world's electrical energy. It is a renewable energy source that can contribute significantly to reduction of greenhouse gases by offsetting conventional carbon-based electricity generation. However, rather than growing in importance, hydroelectric generation has actually declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, "environmentally friendly" turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been developed in the initial phases of the AHTS program are described.

  9. Advanced, Environmentally Friendly Hydroelectric Turbines for the Restoration of Fish and Water Quality

    SciTech Connect

    Brookshier, P.A.; Cada, G.F.; Flynn, J.V.; Rinehart, B.N.; Sale, M.J.; Sommers, G.L.

    1999-09-06

    Hydroelectric power contributes about 10 percent of the electrical energy generated in the United States, and nearly 20 percent of the world�s electrical energy. The contribution of hydroelectric generation has declined in recent years, often as a consequence of environmental concerns centering around (1) restriction of upstream and downstream fish passage by the dam, and (2) alteration of water quality and river flows by the impoundment. The Advanced Hydropower Turbine System (AHTS) Program of the U.S. Department of Energy is developing turbine technology which would help to maximize global hydropower resources while minimizing adverse environmental effects. Major technical goals for the Program are (1) the reduction of mortality among turbine-passed fish to 2 percent or less, compared to current levels ranging up to 30 percent or greater; and (2) development of aerating turbines that would ensure that water discharged from reservoirs has a dissolved oxygen concentration of at least 6 mg/L. These advanced, �environmentally friendly� turbines would be suitable both for new hydropower installations and for retrofitting at existing dams. Several new turbine designs that have been he AHTS program are described.

  10. How Oncologists and Their Patients with Advanced Cancer Communicate about Health-Related Quality of Life

    PubMed Central

    Rodriguez, Keri L.; Bayliss, Nichole; Alexander, Stewart C.; Jeffreys, Amy S.; Olsen, Maren K.; Pollak, Kathryn I.; Kennifer, Sarah L.; Tulsky, James A.; Arnold, Robert M.

    2011-01-01

    Objective To describe the content and frequency of communication about health-related quality of life (HRQOL) during outpatient encounters between oncologists and their patients with advanced cancer. Methods We coded for HRQOL talk in a subset of audio recorded conversations (each previously found to contain prognostic talk by the oncologist) from the Study of Communication in Oncologist-Patient Encounters (SCOPE) Trial, a randomized controlled trial conducted from 2003 to 2008 in two large U.S. academic medical centers and one Veterans Affairs Medical Center. Results Seventy-three encounters that involved 70 patients and 37 oncologists. Patients were more likely to be female (53%), white (86%), married (78%), and possessing some college education (62%). Most oncologists were male (78%) and white (78%). Mean ages were 59 years for patients and 44 years for oncologists. Every encounter included some talk about HRQOL and HRQOL discussions made up, on average, 25% of the visit time. HRQOL segments described symptoms (50%); general HRQOL (27%); and the following concerns: physical (27%), functional (22%), psychological (9%), social (7%), spiritual (1%), and other (28%). Topics included treatment (56%), disease (14%), and testing (3%), and conversations focused on past (44%), present (68%), and future HRQOL (59%). Conclusions HRQOL discussions between oncologists and patients are common, but the emphasis is often on treatment (e.g., side effects) and symptoms (e.g., pain) even in patients with advanced disease. Given the often intense emotional experience of patients with advanced cancer, oncologists may need to pay more attention to psychological, social, and spiritual HRQOL concerns. PMID:19449348

  11. Flame Resistant Foam

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Solimide manufactured by Imi-Tech Corporation, is a lightweight fire resistant material produced under a manufacturing process that allows it to be uniformly foamed. Can be produced in a variety of densities and structural configurations and remains resilient under exposure to temperatures ranging from minus 300 to plus 500 degrees Fahrenheit. Is resistant to open flame and generates virtually no smoke or toxic by-products. Used in aircraft for its superior damping characteristics, lighter weight and fire barrier properties, it's also applicable to ships and surface transportation systems such as transit cars, trains, buses and automobiles.

  12. Flame retarded asphalt blend composition

    SciTech Connect

    Walters, R.B.

    1987-04-21

    This patent describes a flame retarded asphalt composition consisting essentially of a blend of: (a) thermoplastic elastomer modified bitumen; (b) 20-30 wt % inert filler; (c) 1-20 wt % of at least one halogenated flame retardant; and (d) 1-5 wt % of at least one inorganic phosphorus containing compound selected from the group consisting of ammonium phosphate compounds and red phosphorus.

  13. Statistics of premixed flame cells

    NASA Technical Reports Server (NTRS)

    Noever, David A.

    1991-01-01

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks-metal grains, soap foams, bioconvection, and Langmuir monolayers.

  14. Statistics of premixed flame cells

    SciTech Connect

    Noever, D.A. )

    1991-07-15

    The statistics of random cellular patterns in premixed flames are analyzed. Agreement is found with a variety of topological relations previously found for other networks, namely, Lewis's law and Aboav's law. Despite the diverse underlying physics, flame cells are shown to share a broad class of geometric properties with other random networks---metal grains, soap foams, bioconvection, and Langmuir monolayers.

  15. MECHANISMS OF NITROUS OXIDE FORMATION IN COAL FLAMES

    EPA Science Inventory

    The paper gives results of a study, using both detailed kinetic modeling and plug-flow simulator experiments, to investigate an unknown mechanism by which N2O is formed in coal flames. This mechanism has considerable importance in determining the influence of common and advanced ...

  16. Fluid mechanical properties of flames in enclosures

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.; Oppenheim, A.K.

    1988-07-01

    In an enclosure where the reacting medium is initially at rest, the flame first generates a flowfield that then gets stretched, i.e., its front is pulled along the surface by the flowfield in which it then finds itself residing. A methodology developed for numerical modeling of such fields is described. Of key significance in this respect is the zero Mach number model/endash/a reasonable idealization in view of the relatively high temperature, and hence sound speed, that exists, concomitantly with a comparatively low particle velocity, in the confinement of a combustion chamber. According to this model, the density gradient in the field is nullified, while across the flame front it approaches infinity. One has thus two regimes: one of the unburned medium and the other of the burned gas, each of spatially uniform density, separated by a flame front interface. The latter is endowed with four properties, of which the first two are purely kinematic and the others dynamic in nature, namely: 1) it is advected at the local velocity of flow; 2) it self-advances at the normal burning speed, the eigenvalue of the system; 3) it acts as the velocity source due to the exothermicity of the combustion process; and 4) it acts as the vorticity source due to the baroclinic effect generated by the pressure gradient along its surface and the density gradient across it. A solution obtained for a flame propagating in an oblong rectangular enclosure demonstrates that the latter has a significant influence upon the formation of the well known tulip shape. 12 refs., 4 figs.

  17. Dynamics and structure of stretched flames

    SciTech Connect

    Law, C.K.

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  18. Transition from cool flame to thermal flame in compression ignition process

    SciTech Connect

    Yamada, Hiroyuki; Suzaki, Kotaro; Goto, Yuichi; Tezaki, Atsumu

    2008-07-15

    The mechanism that initiates thermal flames in compression ignition has been studied. Experimentally, a homogeneous charge compression ignition (HCCI) engine was used with DME, n-heptane, and n-decane. Arrhenius plots of the heat release rate in the HCCI experiments showed that rates of heat release with DME, n-heptane, and n-decane exhibited a certain activation energy that is identical to that of the H{sub 2}O{sub 2} decomposition reaction. The same feature was observed in diesel engine operation using ordinary diesel fuel with advanced ignition timing to make ignition occur after the end of fuel injection. These experimental results were reproduced in nondimensional simulations using kinetic mechanisms for DME, n-heptane, and n-decane, the last being developed by extending the n-heptane mechanism. Methanol addition, which suppresses low-temperature oxidation (LTO) and delays the ignition timing, had no effect on the activation energy obtained from the Arrhenius plot of heat release rate. Nevertheless, methanol addition lowered the heat release rates during the prethermal flame process. This is because H{sub 2}O{sub 2} formation during cool flame was reduced by adding methanol. The mechanism during the transition process from cool flame to thermal flame can be explained quantitatively using thermal explosion theory, in which the rate-determining reaction is H{sub 2}O{sub 2} decomposition, assuming that heat release in this period is caused by partial oxidation of DME and HCHO initiated with the reaction with OH produced though H{sub 2}O{sub 2} decomposition. (author)

  19. Flame retardant polyphosphazenes

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1973-01-01

    Six polyphosphazene compositions were prepared by reaction of three bis-tertiary phosphines with two phenyl-s-triazine derived diazides. All six polyphosphazenes produced were completely characterized, four of them were furthermore subjected to isothermal gravimetric analysis, smoke density measurements, flammability and oxidative thermal degradation testing. The results of the characterization studies indicate that only low molecular weight oligomers, possibly of a cyclic structure, were obtained in the polymerization reactions. Despite this, however, two of the materials showed no weight loss after 96 hr at 200 C, one did not autoignite at 500 C in air, and all four self extinguished when exposed to a flame as soon as contact between flame and resin was lost. The only toxic decomposition products to be concerned about were found to be hydrogen cyanide and benzene. Under the conditions employed it was proven, however, that the quantities of toxic products are greatly reduced if no ignition takes place, e.g., if thermal decomposition proceeds at a sufficiently low rate.

  20. Turbulent Flame Processes Via Diffusion Flame-Vortex Ring Interactions

    NASA Technical Reports Server (NTRS)

    Dahm, Werner J. A.; Chen, Shin-Juh; Silver, Joel A.; Piltch, Nancy D.; VanderWal, Randall L.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in turbulent reacting flows. This configuration contains many of the fundamental aspects of the coupling between fluid dynamics and combustion that could be investigated with more controllable conditions than are possible under direct investigations of turbulent flames. Diffusion flame-vortex ring interaction contains many of the fundamental elements of flow, transport, combustion, and soot processes found in turbulent diffusion flames. Some of these elements include concentrated vorticity, entrainment and mixing, strain and nonequilibrium phenomena, diffusion and differential diffusion, partial premixing and diluent effects, soot formation and oxidation, and heat release effects. Such simplified flowfield allows the complex processes to be examined more closely and yet preserving the physical processes present in turbulent reacting flows. Furthermore, experimental results from the study of flame-vortex interactions are useful for the validation of numerical simulations and more importantly to deepen our understanding of the fundamental processes present in reacting flows. Experimental and numerical results obtained under microgravity conditions of the diffusion flame-vortex ring interaction are summarized in this paper. Results are obtained using techniques that include Flame Luminosity Imaging (FLI), Laser Soot-Mie Scattering (LSMS), Computational Fluid Dynamics and Combustion (CFDC), and Diode Laser Spectroscopy/Iterative Temperature with Assumed Chemistry (DLS/ITAC).

  1. The Cool Flames Experiment

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard; Neville, Donna; Sheredy, William; Wu, Ming-Shin; Tornabene, Robert

    2001-01-01

    A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles via the Arrhenius temperature dependence of the reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when the Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of the Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters the temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. This point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on the characteristic length scale associated with the natural convection. Moreover, natural convection in unstirred reactors is never "sufficiently strong to generate a spatially uniform temperature distribution throughout the reacting gas." Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of the form: q=h(S/V)(T(bar) - Tw) where q is the heat loss per unit volume, h is the heat transfer coefficient, S/V is the surface to

  2. Several Flame Balls Burning

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Structure of Flameballs at Low Lewis Numbers (SOFBALL) experiments aboard the space shuttle in 1997 a series of sturningly successful burns. This sequence was taken during STS-94, July 12, 1997, MET:10/08:18 (approximate). It was thought these extremely dim flameballs (1/20 the power of a kitchen match) could last up to 200 seconds -- in fact, they can last for at least 500 seconds. This has ramifications in fuel-spray design in combustion engines, as well as fire safety in space. The SOFBALL principal investigator was Paul Ronney, University of Southern California, Los Angeles. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations planned for the International Space Station. (925KB, 9-second MPEG spanning 10 minutes, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300186.html.

  3. Computational Studies of Flame Structures

    NASA Astrophysics Data System (ADS)

    Amin, Vaishali

    This thesis is concerned with computational studies of laminar flame structures using detailed and skeletal chemical kinetic mechanisms. Elementary reactions in these mechanisms control the observable combustion properties such as flame speed, autoignition temperature, ignition delay time, and extinction characteristics in nonpremixed and premixed flame phenomena. First part of thesis deals with computational investigations of influence of carbon monoxide and hydrogen addition on methane flames stabilized in counterflow configuration. Computations were performed employing detailed chemical kinetic mechanism---the San Diego mechanism. In case of nonpremixed flames, effect of carbon xvi monoxide addition on structure and critical condition of extinction were examined. Differences between addition on fuel and oxidizer sides were investigated and plausible explanation given for the differences. For premixed flames, effect of addition of hydrogen and carbon monoxide to reactant mixture was studied. Critical conditions of extinction were predicted using computations for various compositions. Rates of production and consumption of various species were calculated and flame structure was analyzed for nonpremixed and premixed flames. It was found that moderate amount of carbon monoxide addition to methane enhances flame reactivity. However, with large amount of carbon monoxide addition, additive chemistry dominates. Addition of increasing amounts of hydrogen in premixed reactant stream enhances methane flame reactivity. In second part of thesis, kinetic modeling was performed to elucidate the structure and mechanism of extinction and autoignition of nonpremixed toluene flames in counterflow configuration. Computations were performed using detailed chemistry to determine flame structure and to obtain values for critical conditions of extinction and autoignition. Sensitivity analysis of rate parameters, reaction pathway analysis, and spatial reaction rate profiles were used to

  4. Candle Flames in Non-Buoyant Atmospheres

    NASA Technical Reports Server (NTRS)

    Dietrich, D. L.; Ross, H. D.; Shu, Y.; Chang, P.; Tien, J. S.

    2000-01-01

    This paper addresses the behavior of a candle flame in a long-duration, quiescent microgravity environment both on the space Shuttle and the Mir Orbiting Station. On the Shuttle, the flames became dim blue after an initial transient where there was significant yellow (presumably soot) in the flame. The flame lifetimes were typically less than 60 seconds. The safety-mandated candlebox that contained the candle flame inhibited oxygen transport to the flame and thus limited the flame lifetime. The flames on the Mir were similar, except that the yellow luminosity persisted longer into the flame lifetime because of a higher initial oxygen concentration, The Mir flames burned for as long as 45 minutes. The difference in the flame lifetime between the Shuttle and Mir flames was primarily the redesigned candlebox that did not inhibit oxygen transport to the flame. In both environments, the flame intensity and the height-to-width ratio gradually decreased as the ambient oxygen content in the sealed chamber slowly decreased. Both sets of experiments showed spontaneous, axisymmetric flame oscillations just prior to extinction. The paper also presents a numerical model of a candle flame. The formulation is two-dimensional and time-dependent in the gas phase with constant specific heats, thermal conductivity and Lewis number (although different species can have different Lewis numbers), one-step finite-rate kinetics, and gas-phase radiative losses from CO2 and H2O. The treatment of the liquid/wick phase assumes that the, fuel evaporates from a constant diameter sphere connected to an inert cone. The model predicts a steady flame with a shape and size quantitatively similar to the Shuttle and Mir flames. The computation predicts that the flame size will increase slightly with increasing ambient oxygen mole fraction. The model also predicts pre-extinction flame oscillations if the rate of decrease in ambient oxygen is small enough, such as that which would occur for a flame

  5. The Quality-of-Life Effects of Neoadjuvant Chemoradiation in Locally Advanced Rectal Cancer

    SciTech Connect

    Herman, Joseph M.; Narang, Amol K.; Griffith, Kent A.; Zalupski, Mark M.; Reese, Jennifer B.; Gearhart, Susan L.; Azad, Nolifer S.; Chan, June; Olsen, Leah; Efron, Jonathan E.; Lawrence, Theodore S.; Ben-Josef, Edgar

    2013-01-01

    Purpose: Existing studies that examine the effect of neoadjuvant chemoradiation (CRT) for locally advanced rectal cancer on patient quality of life (QOL) are limited. Our goals were to prospectively explore acute changes in patient-reported QOL endpoints during and after treatment and to establish a distribution of scores that could be used for comparison as new treatment modalities emerge. Methods and Materials: Fifty patients with locally advanced rectal cancer were prospectively enrolled at 2 institutions. Validated cancer-specific European Organization for Research and Treatment of Cancer (EORTC QLQ-CR30) and colorectal cancer-specific (EORTC QLQ-CR38 and EORTC QLQ-CR 29) QOL questionnaires were administered to patients 1 month before they began CRT, at week 4 of CRT, and 1 month after they had finished CRT. The questionnaires included multiple symptom scales, functional domains, and a composite global QOL score. Additionally, a toxicity scale was completed by providers 1 month before the beginning of CRT, weekly during treatment, and 1 month after the end of CRT. Results: Global QOL showed a statistically significant and borderline clinically significant decrease during CRT (-9.50, P=.0024) but returned to baseline 1 month after the end of treatment (-0.33, P=.9205). Symptoms during treatment were mostly gastrointestinal (nausea/vomiting +9.94, P<.0001; and diarrhea +16.67, P=.0022), urinary (dysuria +13.33, P<.0001; and frequency +11.82, P=.0006) or fatigue (+16.22, P<.0001). These symptoms returned to baseline after therapy. However, sexual enjoyment (P=.0236) and sexual function (P=.0047) remained persistently diminished after therapy. Conclusions: Rectal cancer patients undergoing neoadjuvant CRT may experience a reduction in global QOL along with significant gastrointestinal and genitourinary symptoms during treatment. Moreover, provider-rated toxicity scales may not fully capture this decrease in patient-reported QOL. Although most symptoms are transient

  6. Flame Movement and Pressure Development in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Marvin, Charles F , Jr; Best, Robert D

    1932-01-01

    This investigation describes a visual method for making stroboscopic observations, through a large number of small windows, of the spread of flame throughout the combustion chamber of a gasoline engine. Data, secured by this method on a small engine burning gaseous fuels, are given to show the effects of mixture ratio, spark advance, engine speed, charge density, degree of dilution, compression ratio, and fuel composition on flame movement in the cylinder. Partial indicator diagrams showing pressure development during the combustion period are included. Although present knowledge is not sufficient to permit qualitative evaluation of the separate effects on flame movement of chemical reaction velocity, thermal expansion of burned gases, resonance, turbulence, and piston movement, the qualitative influence of certain of these factors on some of the diagrams is indicated.

  7. "I Don't Want to Die like that...": The Impact of Significant Others' Death Quality on Advance Care Planning

    ERIC Educational Resources Information Center

    Carr, Deborah

    2012-01-01

    Purpose of the Study: I examine whether 5 aspects of a significant other's death quality (pain, decision-making capacity, location, problems with end-of life care, and preparation) affect whether one does advance care planning (ACP). I also identify specific aspects of others' deaths that respondents say triggered their own planning. Design and…

  8. Disc stabilized flame afterburner

    SciTech Connect

    Weber, R.; Huddleston, B.C.

    1984-08-21

    Industrial pollution is directed into an afterburner conduit. An air cooled conical bluff body positioned in the conduit near the entrance acts as a flow condensing element. A recirculation zone consists of a toroidal vortex adjacent the downstream edge of the bluff body. In the zone, flow is reversed and particles in the reversed flow are reintroduced into the afterburner flow. A ring of burners located near the midpoint of the bluff body heats the gas stream flowing past the bluff body to near auto-ignition temperature. A second ring of burners located downstream of the bluff body assists in the establishment of a stabilized flame downstream of the bluff body. Air is heated as it flows through tubes wrapped around the conduit. The heated air is introduced tangentially to the afterburner flow by air injectors positioned downstream of the bluff body and downstream of the second ring of burners.

  9. Invisible Flame Imaging

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Stennis Space Center uses more than one million gallons of liquid hydrogen per month in its rocket testing program. Firefighters responding to a hydrogen fire had to give the area "the broom test" to determine the presence and location of a fire. This technique has significant safety and accuracy shortfalls. Stennis then developed technology to visually assess the presence, location and extent of hydrogen fires. SafetyScan, LLC. is now manufacturing FIRESCAPE, the first affordable commercial product for invisible (or ashless) fire imaging based on the original technology, to aid firefighters in seeing the invisible flames from alcohol and hydrogen fires during the day and even through smoke. The hand-held device weighs five pounds, is used like a pair of binoculars and can run for up to two hours before recharging.

  10. Electrical Aspects of Impinging Flames

    NASA Astrophysics Data System (ADS)

    Chien, Yu-Chien

    This dissertation examines the use of electric fields as one mechanism for controlling combustion as flames are partially extinguished when impinging on nearby surfaces. Electrical aspects of flames, specifically, the production of chemi-ions in hydrocarbon flames and the use of convective flows driven by these ions, have been investigated in a wide range of applications in prior work but despite this fairly comprehensive effort to study electrical aspects of combustion, relatively little research has focused on electrical phenomena near flame extinguishment, nor for flames near impingement surfaces. Electrical impinging flames have complex properties under global influences of ion-driven winds and flow field disturbances from the impingement surface. Challenges of measurements when an electric field is applied in the system have limited an understanding of changes to the flame behavior and species concentrations caused by the field. This research initially characterizes the ability of high voltage power supplies to respond on sufficiently short time scales to permit real time electrical flame actuation. The study then characterizes the influence of an electric field on the impinging flame shape, ion current and flow field of the thermal plume associated with the flame. The more significant further examinations can be separated into two parts: 1) the potential for using electric fields to control the release of carbon monoxide (CO) from surface-impinging flames, and 2) an investigation of controlling electrically the heat transfer to a plate on which the flame impinges. Carbon monoxide (CO) results from the incomplete oxidation of hydrocarbon fuels and, while CO can be desirable in some syngas processes, it is usually a dangerous emission from forest fires, gas heaters, gas stoves, or furnaces where insufficient oxygen in the core reaction does not fully oxidize the fuel to carbon dioxide and water. Determining how carbon monoxide is released and how heat transfer

  11. Role of buoyant flame dynamics in wildfire spread

    PubMed Central

    Finney, Mark A.; Cohen, Jack D.; Forthofer, Jason M.; McAllister, Sara S.; Gollner, Michael J.; Gorham, Daniel J.; Saito, Kozo; Akafuah, Nelson K.; Adam, Brittany A.; English, Justin D.

    2015-01-01

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  12. Role of buoyant flame dynamics in wildfire spread.

    PubMed

    Finney, Mark A; Cohen, Jack D; Forthofer, Jason M; McAllister, Sara S; Gollner, Michael J; Gorham, Daniel J; Saito, Kozo; Akafuah, Nelson K; Adam, Brittany A; English, Justin D

    2015-08-11

    Large wildfires of increasing frequency and severity threaten local populations and natural resources and contribute carbon emissions into the earth-climate system. Although wildfires have been researched and modeled for decades, no verifiable physical theory of spread is available to form the basis for the precise predictions needed to manage fires more effectively and reduce their environmental, economic, ecological, and climate impacts. Here, we report new experiments conducted at multiple scales that appear to reveal how wildfire spread derives from the tight coupling between flame dynamics induced by buoyancy and fine-particle response to convection. Convective cooling of the fine-sized fuel particles in wildland vegetation is observed to efficiently offset heating by thermal radiation until convective heating by contact with flames and hot gasses occurs. The structure and intermittency of flames that ignite fuel particles were found to correlate with instabilities induced by the strong buoyancy of the flame zone itself. Discovery that ignition in wildfires is critically dependent on nonsteady flame convection governed by buoyant and inertial interaction advances both theory and the physical basis for practical modeling. PMID:26183227

  13. Cancer Related Fatigue and Quality of Life in Patients with Advanced Prostate Cancer Undergoing Chemotherapy

    PubMed Central

    Charalambous, Andreas; Kouta, Christiana

    2016-01-01

    Cancer related fatigue (CRF) is a common and debilitating symptom that can influence quality of life (QoL) in cancer patients. The increase in survival times stresses for a better understanding of how CRF affects patients' QoL. This was a cross-sectional descriptive study with 148 randomly recruited prostate cancer patients aiming to explore CRF and its impact on QoL. Assessments included the Cancer Fatigue Scale, EORTC QLQ-C30, and EORTC QLQ-PR25. Additionally, 15 in-depth structured interviews were performed. Quantitative data were analyzed with simple and multiple regression analysis and independent samples t-test. Qualitative data were analyzed with the use of thematic content analysis. The 66.9% of the patients experienced CRF with higher levels being recorded for the affective subscale. Statistically significant differences were found between the patients reporting CRF and lower levels of QoL (mean = 49.1) and those that did not report fatigue and had higher levels of QoL (mean = 72.1). The interviews emphasized CRF's profound impact on the patients' lives that was reflected on the following themes: “dependency on others,” “loss of power over decision making,” and “daily living disruption.” Cancer related fatigue is a significant problem for patients with advanced prostate cancer and one that affects their QoL in various ways. PMID:26981530

  14. Advancing the quality of oncology nursing care: Interlink Community Cancer Nurses' model for reflective practice.

    PubMed

    Howell, D; Pelton, B

    2001-01-01

    Since 1996, Interlink Community Cancer Nurses have been using reflective practice as a team to share knowledge and experience amongst peers. The use of reflective practice enables the nurse to examine decision-making in patient situations and uncover the knowledge and artistry that is embedded in nursing practice. This article describes how reflection is practised by specialist cancer nurses to advance the quality of caregiving. The use of a structured framework for reflection which incorporates ways of knowing in nursing is an essential feature of the Interlink model for reflection. The development of a process for reflection within the Interlink program has at times been challenging. However, the Interlink nurses' experience with reflection is believed to be critical to the ongoing development of the program and the individual nurse. Interlink nurses have found that guided reflection, the creation of an environmental milieu for reflection and personal knowing, and self-evaluation are critical to the process of becoming a self-reflective practitioner. PMID:11842450

  15. Refractory Materials for Flame Deflector Protection System Corrosion Control: Flame Deflector Protection System Life Cycle Cost Analysis Report

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Coffman, Brekke E.; Kolody, Mark R.; Curran, Jerome P.; Trejo, David; Reinschmidt, Ken; Kim, Hyung-Jin

    2009-01-01

    A 20-year life cycle cost analysis was performed to compare the operational life cycle cost, processing/turnaround timelines, and operations manpower inspection/repair/refurbishment requirements for corrosion protection of the Kennedy Space Center launch pad flame deflector associated with the existing cast-in-place materials and a newer advanced refractory ceramic material. The analysis compared the estimated costs of(1) continuing to use of the current refractory material without any changes; (2) completely reconstructing the flame trench using the current refractory material; and (3) completely reconstructing the flame trench with a new high-performance refractory material. Cost estimates were based on an analysis of the amount of damage that occurs after each launch and an estimate of the average repair cost. Alternative 3 was found to save $32M compared to alternative 1 and $17M compared to alternative 2 over a 20-year life cycle.

  16. Neurotoxicity of brominated flame retardants

    EPA Science Inventory

    Polybrominated diphenyl ethers (PBDEs) have been commonly used as commercial flame retardants in a variety of products including plastics and textiles. Despite their decreasing usage worldwide, congeners continue to accumulate in the environment, including soil, dust, food, anima...

  17. INTRODUCTION TO BROMINATED FLAME RETARDANTS

    EPA Science Inventory

    Brominated flame retardants (BFRs) are a large and diverse class of major industrial products used to provide fire safety. Tetrabromobisphenol A (TBBPA), Hexabromocylocodecane (HBCD), and Polybrominated Diphenyl Ethers (PBDEs) are the major commercial compounds. TBBPA is a react...

  18. Making Thermoplastics Flame-Resistant

    NASA Technical Reports Server (NTRS)

    Mueller, W. A.; Ingham, J. D.; Reilly, W. W.

    1984-01-01

    Inorganic hydrate-salt filler coated with elastomer containing acidic groups imparts flame and smoke retardancy to thermoplastics while preventing degradation of impact resistance that results from high filler loadings in thermoplastic.

  19. Advanced Satellite Research Project: SCAR Research Database. Bibliographic analysis

    NASA Technical Reports Server (NTRS)

    Pelton, Joseph N.

    1991-01-01

    The literature search was provided to locate and analyze the most recent literature that was relevant to the research. This was done by cross-relating books, articles, monographs, and journals that relate to the following topics: (1) Experimental Systems - Advanced Communications Technology Satellite (ACTS), and (2) Integrated System Digital Network (ISDN) and Advance Communication Techniques (ISDN and satellites, ISDN standards, broadband ISDN, flame relay and switching, computer networks and satellites, satellite orbits and technology, satellite transmission quality, and network configuration). Bibliographic essay on literature citations and articles reviewed during the literature search task is provided.

  20. FABRICATION PROCESS AND PRODUCT QUALITY IMPROVEMENTS IN ADVANCED GAS REACTOR UCO KERNELS

    SciTech Connect

    Charles M Barnes

    2008-09-01

    A major element of the Advanced Gas Reactor (AGR) program is developing fuel fabrication processes to produce high quality uranium-containing kernels, TRISO-coated particles and fuel compacts needed for planned irradiation tests. The goals of the AGR program also include developing the fabrication technology to mass produce this fuel at low cost. Kernels for the first AGR test (“AGR-1) consisted of uranium oxycarbide (UCO) microspheres that werre produced by an internal gelation process followed by high temperature steps tot convert the UO3 + C “green” microspheres to first UO2 + C and then UO2 + UCx. The high temperature steps also densified the kernels. Babcock and Wilcox (B&W) fabricated UCO kernels for the AGR-1 irradiation experiment, which went into the Advance Test Reactor (ATR) at Idaho National Laboratory in December 2006. An evaluation of the kernel process following AGR-1 kernel production led to several recommendations to improve the fabrication process. These recommendations included testing alternative methods of dispersing carbon during broth preparation, evaluating the method of broth mixing, optimizing the broth chemistry, optimizing sintering conditions, and demonstrating fabrication of larger diameter UCO kernels needed for the second AGR irradiation test. Based on these recommendations and requirements, a test program was defined and performed. Certain portions of the test program were performed by Oak Ridge National Laboratory (ORNL), while tests at larger scale were performed by B&W. The tests at B&W have demonstrated improvements in both kernel properties and process operation. Changes in the form of carbon black used and the method of mixing the carbon prior to forming kernels led to improvements in the phase distribution in the sintered kernels, greater consistency in kernel properties, a reduction in forming run time, and simplifications to the forming process. Process parameter variation tests in both forming and sintering steps led

  1. Application of nontargeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Kirkpatrick, Kaylyn R; Prenni, Jessica E

    2014-02-01

    The process of breeding superior varieties for the agricultural industry is lengthy and expensive. Plant metabolites may act as markers of quality traits, potentially expediting the appraisal of experimental lines during breeding. Here, we evaluated the utility of metabolites as markers by assessing metabolic variation influenced by genetic and environmental factors in an advanced breeding setting and in relation to the phenotypic distribution of 20 quality traits. Nontargeted liquid chromatography-mass spectrometry metabolite profiling was performed on barley (Hordeum vulgare L.) grain and malt from 72 advanced malting barley lines grown at two distinct but climatically similar locations, with 2-row and 6-row barley as the main genetic factors. 27 420 molecular features were detected, and the metabolite and quality trait profiles were similarly influenced by genotype and environment; however, malt was more influenced by genotype compared with barley. An O2PLS model characterized molecular features and quality traits that covaried, and 1319 features associated with at least one of 20 quality traits. An indiscriminant MS/MS acquisition and novel data analysis method facilitated the identification of metabolites. The analysis described 216 primary and secondary metabolites that correlated with multiple quality traits and included amines, amino acids, alkaloids, polyphenolics and lipids. The mechanisms governing quality trait-metabolite associations were interpreted based on colocalization to genetic markers and their gene annotations. The results of this study support the hypothesis that metabolism and quality traits are co-influenced by relatively narrow genetic and environmental factors and illustrate the utility of grain metabolites as functional markers of quality traits. PMID:24119106

  2. Coupling of wrinkled laminar flames with gravity

    NASA Technical Reports Server (NTRS)

    Bedat, Benoit; Kostiuk, Larry W.; Cheng, Robert K.

    1995-01-01

    The overall objective of our research is to understand flame-gravity coupling processes in laminar and low turbulent Reynolds number, Re(sub l), premixed flames (i.e. wrinkled- laminar flames). The approach we have developed is to compare the flowfields and mean flame properties under different gravitational orientations. Key to our study is the investigation of microgravity (mu g) flames. These mu g experiments provide vital information to reconcile the differences between flames in normal gravity (+g, flame pointing upward) and reverse gravity (-g, flame pointing downwards). Traditionally, gravity effects are assumed to be insignificant or circumvented in the laboratory, therefore, not much is available in the literature on the behavior of -g flames.

  3. Land Surface Microwave Emissivities Derived from AMSR-E and MODIS Measurements with Advanced Quality Control

    NASA Technical Reports Server (NTRS)

    Moncet, Jean-Luc; Liang, Pan; Galantowicz, John F.; Lipton, Alan E.; Uymin, Gennady; Prigent, Catherine; Grassotti, Christopher

    2011-01-01

    A microwave emissivity database has been developed with data from the Advanced Microwave Scanning Radiometer-EOS (AMSR-E) and with ancillary land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same Aqua spacecraft. The primary intended application of the database is to provide surface emissivity constraints in atmospheric and surface property retrieval or assimilation. An additional application is to serve as a dynamic indicator of land surface properties relevant to climate change monitoring. The precision of the emissivity data is estimated to be significantly better than in prior databases from other sensors due to the precise collocation with high-quality MODIS LST data and due to the quality control features of our data analysis system. The accuracy of the emissivities in deserts and semi-arid regions is enhanced by applying, in those regions, a version of the emissivity retrieval algorithm that accounts for the penetration of microwave radiation through dry soil with diurnally varying vertical temperature gradients. These results suggest that this penetration effect is more widespread and more significant to interpretation of passive microwave measurements than had been previously established. Emissivity coverage in areas where persistent cloudiness interferes with the availability of MODIS LST data is achieved using a classification-based method to spread emissivity data from less-cloudy areas that have similar microwave surface properties. Evaluations and analyses of the emissivity products over homogeneous snow-free areas are presented, including application to retrieval of soil temperature profiles. Spatial inhomogeneities are the largest in the vicinity of large water bodies due to the large water/land emissivity contrast and give rise to large apparent temporal variability in the retrieved emissivities when satellite footprint locations vary over time. This issue will be dealt with in the future by

  4. Free Speech, Quality Control, and Flame Wars

    ERIC Educational Resources Information Center

    Leary, Patrick; Labanowski, Jan K.; Korenman, Joan

    2007-01-01

    The authors who happened to be moderators of academic online discussions bring tales from the trenches. Whether it's computational chemistry, the history of the book, or women's studies, the technology and the users can both prove difficult. The first author talks about two scholarly discussion lists. SHARP-L, whose name comes from the Society for…

  5. Thin-Filament Pyrometry Developed for Measuring Temperatures in Flames

    NASA Technical Reports Server (NTRS)

    Sunderland, Peter B.

    2004-01-01

    Many valuable advances in combustion science have come from observations of microgravity flames. This research is contributing to the improved efficiency and reduced emissions of practical combustors and is benefiting terrestrial and spacecraft fire safety. Unfortunately, difficulties associated with microgravity have prevented many types of measurements in microgravity flames. In particular, temperature measurements in flames are extremely important but have been limited in microgravity. A novel method of measuring temperatures in microgravity flames is being developed in-house at the National Center for Microgravity Research and the NASA Glenn Research Center and is described here. Called thin-filament pyrometry, it involves using a camera to determine the local gas temperature from the intensity of inserted fibers glowing in a flame. It is demonstrated here to provide accurate measurements of gas temperatures in a flame simultaneously at many locations. The experiment is shown. The flame is a laminar gas jet diffusion flame fueled by methane (CH4) flowing from a 14-mm round burner at a pressure of 1 atm. A coflowing stream of air is used to prevent flame flicker. Nine glowing fibers are visible. These fibers are made of silicon carbide (SiC) and have a diameter of 15 m (for comparison, the average human hair is 75 m in diameter). Because the fibers are so thin, they do little to disturb the flame and their temperature remains close to that of the local gas. The flame and glowing filaments were imaged with a digital black-and-white video camera. This camera has an imaging area of 1000 by 1000 pixels and a wide dynamic range of 12 bits. The resolution of the camera and optics was 0.1 mm. Optical filters were placed in front of the camera to limit incoming light to 750, 850, 950, and 1050 nm. Temperatures were measured in the same flame in the absence of fibers using 50-m Btype thermocouples. These thermocouples provide very accurate temperatures, but they

  6. Why Do Electricity Policy and Competitive Markets Fail to Use Advanced PV Systems to Improve Distribution Power Quality?

    DOE PAGESBeta

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. We discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  7. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Hickman, Scott T.; Justice James L.; Taylor, Archie R.

    1999-10-28

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs.

  8. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR

    SciTech Connect

    Unknown

    2003-01-15

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

  9. Advanced Quality Control Theory for Training and Education: A Guide to Optimizing Training and Education Efforts

    ERIC Educational Resources Information Center

    Heppler, Brad

    2008-01-01

    This is a book about quality and how to control quality through deliberate actions on the part of the professionals developing and implementing the instances of instruction available at an organization. Quality control theory favors no particular learning philosophy and is only directed towards aspects of how, what, where and when measurements are…

  10. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Abid, M.; Aung, K.; Ronney, P. D.; Sharif, J. A.; Wu, M.-S.

    1999-01-01

    Several topics relating to combustion limits in premixed flames at reduced gravity have been studied. These topics include: (1) flame balls; (2) numerical simulation of flame ball and planar flame structure and stability; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells.

  11. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Disseau, M.; Chakravarthy, V. K.; Jagoda, J.

    1997-01-01

    Papers included address the following topics: (1) Turbulent premixed flame propagation in microgravity; (2) The effect of gravity on turbulent premixed flame propagation - a preliminary cold flow study; and (3) Characteristics of a subgrid model for turbulent premixed combustion.

  12. Large-Scale Flow Structure in Turbulent Nonpremixed Flames under Normal- And Low-Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Clemens, N. T.; Idicheria, C. A.; Boxx, I. G.

    2001-01-01

    It is well known that buoyancy has a major influence on the flow structure of turbulent nonpremixed jet flames. Buoyancy acts by inducing baroclinic torques, which generate large-scale vortical structures that can significantly modify the flow field. Furthermore, some suggest that buoyancy can substantially influence the large-scale structure of even nominally momentum-dominated flames, since the low velocity flow outside of the flame will be more susceptible to buoyancy effects. Even subtle buoyancy effects may be important because changes in the large-scale structure affects the local entrainment and fluctuating strain rate, and hence the structure of the flame. Previous studies that have compared the structure of normal- and micro-gravity nonpremixed jet flames note that flames in microgravity are longer and wider than in normal-gravity. This trend was observed for jet flames ranging from laminar to turbulent regimes. Furthermore, imaging of the flames has shown possible evidence of helical instabilities and disturbances starting from the base of the flame in microgravity. In contrast, these characteristics were not observed in normal-gravity. The objective of the present study is to further advance our knowledge of the effects of weak levels of buoyancy on the structure of transitional and turbulent nonpremixed jet flames. In later studies we will utilize the drop tower facilities at NASA Glenn Research Center (GRC), but the preliminary work described in this paper was conducted using the 1.25-second drop tower located at the University of Texas at Austin. A more detailed description of these experiments can be found in Idicheria et al.

  13. Cyberinfrastructure for Online Access to High-Quality Data: Advances and Opportunities (Invited)

    NASA Astrophysics Data System (ADS)

    Baru, C.

    2010-12-01

    Advanced cyberinfrastructure capabilities are enabling end-to-end management of data flows in observing system networks and online access to very large data archives. We provide an overview of several projects in earth and environmental sciences that have developed and deployed cyberinfrastructure for collecting and organizing field observations and remote sensing data, to make them available to a community of users. The data cyberinfrastructure framework should cover the range from data acquisition, quality control, data archiving, discovery, access, integration, and modeling. Using examples from different earth and environmental science cyberinfrastructure efforts, we will describe the state of the art in data cyberinfrastructure and future directions and challenges. The Tropical Ecology, Assessment and Monitoring (TEAM) Network (http://teamnetwork.org), which is a network of forested sites—currently consisting of 15 sites, and growing—distributed across Central America, South America, Africa, and Asia. Each site implements a standardized set of data collection protocols, all under the control of a common cyberinfrastructure. The data are available via a portal from a central site, but with appropriate access controls. The TEAM Network is run by Conservation International, in partnership with the Wildlife Conservation Society, Smithsonian Institute, and the Missouri Botanical Gardens, and is funded by the Moore Foundation. The EarthScope Data Portal (portal.earthscope.org) implements a virtual metadata catalog and a data cart to provides a means for simultaneously exploring EarthScope's various instrument networks, as well as seamlessly downloading data from multiple stations and instrument types. The prototype of the US Geoinformatics Information Network (US GIN) project is implementing a federated catalog, using the Catalog Services for Web (CSW) standard. The NSF-funded Opentopography.org—a spinoff of the GEON project, www.geongrid.org—provides online

  14. Radiant Extinction Of Gaseous Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Berhan, S.; Chernovsky, M.; Atreya, A.; Baum, Howard R.; Sacksteder, Kurt R.

    2003-01-01

    The absence of buoyancy-induced flows in microgravity (mu:g) and the resulting increase in the reactant residence time significantly alters the fundamentals of many combustion processes. Substantial differences between normal gravity (ng) and :g flames have been reported in experiments on candle flames [1, 2], flame spread over solids [3, 4], droplet combustion [5,6], and others. These differences are more basic than just in the visible flame shape. Longer residence times and higher concentration of combustion products in the flame zone create a thermochemical environment that changes the flame chemistry and the heat and mass transfer processes. Processes such as flame radiation, that are often ignored in ng, become very important and sometimes even controlling. Furthermore, microgravity conditions considerably enhance flame radiation by: (i) the build-up of combustion products in the high-temperature reaction zone which increases the gas radiation, and (ii) longer residence times make conditions appropriate for substantial amounts of soot to form which is also responsible for radiative heat loss. Thus, it is anticipated that radiative heat loss may eventually extinguish the Aweak@ (low burning rate per unit flame area) :g diffusion flame. Yet, space shuttle experiments on candle flames show that in an infinite ambient atmosphere, the hemispherical candle flame in :g will burn indefinitely [1]. This may be because of the coupling between the fuel production rate and the flame via the heat-feedback mechanism for candle flames, flames over solids and fuel droplet flames. Thus, to focus only on the gas-phase phenomena leading to radiative extinction, aerodynamically stabilized gaseous diffusion flames are examined. This enables independent control of the fuel flow rate to help identify conditions under which radiative extinction occurs. Also, spherical geometry is chosen for the :g experiments and modeling because: (i) It reduces the complexity by making the problem

  15. Lifted Partially Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Lock, Andrew J.; Ganguly, Ranjan; Puri, Ishwar K.; Aggarwal, Suesh K.; Hegde, Uday

    2004-01-01

    Lifted Double and Triple flames are established in the UIC-NASA Partially Premixed microgravity rig. The flames examined in this paper are established above a coannular burner because its axisymmetric geometry allows for future implementation of other non-intrusive optical diagnostic techniques easily. Both burner-attached stable flames and lifted flames are established at normal and microgravity conditions in the drop tower facility.

  16. Oscillatory Extinction Of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Yoo, S. W.; Christianson, E. W.

    2003-01-01

    Since extinction has been observed in an oscillatory manner in Le greater than 1 premixed flames, it is not unreasonable to expect that extinction could occur in an unsteady manner for diffusion flames. Indeed, near-limit oscillations have been observed experimentally under microgravity conditions for both candle flames and droplet flames. Furthermore, the analysis of Cheatham and Matalon on the unsteady behavior of diffusion flames with heat loss, identified an oscillatory regime which could be triggered by either a sufficiently large Lewis number (even without heat loss) or an appreciable heat loss (even for Le=1). In light of these recent understanding, the present investigation aims to provide a well-controlled experiment that can unambiguously demonstrate the oscillation of diffusion flames near both the transport- and radiation-induced limits. That is, since candle and jet flames are stabilized through flame segments that are fundamentally premixed in nature, and since premixed flames are prone to oscillate, there is the possibility that the observed oscillation of these bulk diffusion flames could be triggered and sustained by the oscillation of the premixed flame segments. Concerning the observed oscillatory droplet extinction, it is well-known that gas-phase oscillation in heterogeneous burning can be induced by and is thereby coupled with condensed-phase unsteadiness. Consequently, a convincing experiment on diffusion flame oscillation must exclude any ingredients of premixed flames and other sources that may either oscillate themselves or promote the oscillation of the diffusion flame. The present experiment on burner-generated spherical flames with a constant reactant supply endeavored to accomplish this goal. The results are further compared with those from computational simulation for further understanding and quantification of the flame dynamics and extinction.

  17. Production of fullerenic nanostructures in flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    1999-01-01

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  18. Production Of Fullerenic Soot In Flames

    DOEpatents

    Howard, Jack B.; Vander Sande, John B.; Chowdhury, K. Das

    2000-12-19

    A method for the production of fullerenic nanostructures is described in which unsaturated hydrocarbon fuel and oxygen are combusted in a burner chamber at a sub-atmospheric pressure, thereby establishing a flame. The condensibles of the flame are collected at a post-flame location. The condensibles contain fullerenic nanostructures, such as single and nested nanotubes, single and nested nanoparticles and giant fullerenes. The method of producing fullerenic soot from flames is also described.

  19. Displacement speeds in turbulent premixed flame simulations

    SciTech Connect

    Day, Marcus S.; Shepherd, Ian G.; Bell, J.; Grcar, Joseph F.; Lijewski, Michael J.

    2007-07-01

    The theory of turbulent premixed flames is based on acharacterization of the flame as a discontinuous surface propagatingthrough the fluid. The displacement speed, defined as the local speed ofthe flame front normal to itself, relative to the unburned fluid,provides one characterization of the burning velocity. In this paper, weintroduce a geometric approach to computing displacement speed anddiscuss the efficacy of the displacement speed for characterizing aturbulent flame.

  20. Self-turbulizing flame fronts

    NASA Astrophysics Data System (ADS)

    Clavin, P.; Searby, G.

    A heuristic derivation of a flame front model is presented that takes into account the effects of gravity, nonlinear effects introduced by advection of the front, and gradients in the tangential component of the flow. A local equation is defined to relate the normal flame speed to the upstream gas flow characteristics. Jump conditions are obtained from an asymptotic analysis of the local structure of the wrinkled flame in order to address the hydrodynamic problem possed by the front being treated as a free boundary between fresh and burnt gases. The expression for the jump conditions is defined in Fourier space. The model extends the equations defined in Fourier space. The model extends the equations defined by Sivashinsky (1977) to cover the effects of gas expansion.

  1. Global properties of high liquid loading turbulent crude oil + methane/air spray flames

    SciTech Connect

    Dutta, P.; Gore, J.P.; Sivathanu, Y.R.; Sojka, P.E. . School of Mechanical Engineering)

    1994-06-01

    Measurements of atomization quality, flame heights, radiative fractions, emission temperatures, and transmittance for Alberta sweet crude oil/methane flames established on a novel burner for simulating well-blowout fires are reported. The results show the effects of two-phase flow on flame heights. The measurements of radiative fractions and the optical properties suggest relatively low soot loading. The measured high temperatures suggest almost complete combustion of crude-oil. However, larger-scale tests as well as information concerning the physical processes in the present atomizer and burner are essential for the application to practical fires and combustion devices.

  2. Soot Formation in Purely-Curved Premixed Flames and Laminar Flame Speeds of Soot-Forming Flames

    NASA Technical Reports Server (NTRS)

    Buchanan, Thomas; Wang, Hai

    2005-01-01

    The research addressed here is a collaborative project between University of Delaware and Case Western Reserve University. There are two basic and related scientific objectives. First, we wish to demonstrate the suitability of spherical/cylindrical, laminar, premixed flames in the fundamental study of the chemical and physical processes of soot formation. Our reasoning is that the flame standoff distance in spherical/cylindrical flames under microgravity can be substantially larger than that in a flat burner-stabilized flame. Therefore the spherical/cylindrical flame is expected to give better spatial resolution to probe the soot inception and growth chemistry than flat flames. Second, we wish to examine the feasibility of determining the laminar flame speed of soot forming flames. Our basic assumption is that under the adiabatic condition (in the absence of conductive heat loss), the amount and dynamics of soot formed in the flame is unique for a given fuel/air mixture. The laminar flame speed can be rigorously defined as long as the radiative heat loss can be determined. This laminar flame speed characterizes the flame soot formation and dynamics in addition to the heat release rate. The research involves two integral parts: experiments of spherical and cylindrical sooting flames in microgravity (CWRU), and the computational counterpart (UD) that aims to simulate sooting laminar flames, and the sooting limits of near adiabatic flames. The computations work is described in this report, followed by a summary of the accomplishments achieved to date. Details of the microgra+ experiments will be discussed in a separate, final report prepared by the co-PI, Professor C-J. Sung of CWRU. Here only a brief discussion of these experiments will be given.

  3. 30 CFR 14.20 - Flame resistance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... test determined by MSHA to be equivalent under 30 CFR §§ 6.20 and 14.4(e). ... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  4. 30 CFR 14.20 - Flame resistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... test determined by MSHA to be equivalent under 30 CFR §§ 6.20 and 14.4(e). ... MINING PRODUCTS REQUIREMENTS FOR THE APPROVAL OF FLAME-RESISTANT CONVEYOR BELTS Technical Requirements § 14.20 Flame resistance. Conveyor belts for use in underground coal mines must be flame-resistant...

  5. Environmental Considerations for Flame Resistant Textiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Virtually all common textiles will ignite and burn. There are mandatory and voluntary cigarette and open-flame ignition regulations to address unreasonable fire risks associated with textile products that require them to be treated with and/or contain flame retardant chemicals to make them flame res...

  6. Studies of Flame Structure in Microgravity

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Sung, C. J.; Zhu, D. L.

    1997-01-01

    The present research endeavor is concerned with gaining fundamental understanding of the configuration, structure, and dynamics of laminar premixed and diffusion flames under conditions of negligible effects of gravity. Of particular interest is the potential to establish and hence study the properties of spherically- and cylindrically-symmetric flames and their response to external forces not related to gravity. For example, in an earlier experimental study of the burner-stabilized cylindrical premixed flames, the possibility of flame stabilization through flow divergence was established, while the resulting one-dimensional, adiabatic, stretchless flame also allowed an accurate means of determining the laminar flame speeds of combustible mixtures. We have recently extended our studies of the flame structure in microgravity along the following directions: (1) Analysis of the dynamics of spherical premixed flames; (2) Analysis of the spreading of cylindrical diffusion flames; (3) Experimental observation of an interesting dual luminous zone structure of a steady-state, microbuoyancy, spherical diffusion flame of air burning in a hydrogen/methane mixture environment, and its subsequent quantification through computational simulation with detailed chemistry and transport; (4) Experimental quantification of the unsteady growth of a spherical diffusion flame; and (5) Computational simulation of stretched, diffusionally-imbalanced premixed flames near and beyond the conventional limits of flammability, and the substantiation of the concept of extended limits of flammability. Motivation and results of these investigations are individually discussed.

  7. Premixed flame propagation in vertical tubes

    NASA Astrophysics Data System (ADS)

    Kazakov, Kirill A.

    2016-04-01

    Analytical treatment of the premixed flame propagation in vertical tubes with smooth walls is given. Using the on-shell flame description, equations for a quasi-steady flame with a small but finite front thickness are obtained and solved numerically. It is found that near the limits of inflammability, solutions describing upward flame propagation come in pairs having close propagation speeds and that the effect of gravity is to reverse the burnt gas velocity profile generated by the flame. On the basis of these results, a theory of partial flame propagation driven by a strong gravitational field is developed. A complete explanation is given of the intricate observed behavior of limit flames, including dependence of the inflammability range on the size of the combustion domain, the large distances of partial flame propagation, and the progression of flame extinction. The role of the finite front-thickness effects is discussed in detail. Also, various mechanisms governing flame acceleration in smooth tubes are identified. Acceleration of methane-air flames in open tubes is shown to be a combined effect of the hydrostatic pressure difference produced by the ambient cold air and the difference of dynamic gas pressure at the tube ends. On the other hand, a strong spontaneous acceleration of the fast methane-oxygen flames at the initial stage of their evolution in open-closed tubes is conditioned by metastability of the quasi-steady propagation regimes. An extensive comparison of the obtained results with the experimental data is made.

  8. Model flames in a hydrostatic atmosphere

    NASA Astrophysics Data System (ADS)

    Caceres Calleja, Alvaro

    A model flame system based on the advection-diffusion-reaction method is defined and used to numerically study the problem of a flame propagating up an initially hydrostatic atmosphere, in 2-D. We identify and characterize the flame's steady states over a range of parameters, in the case where the gravitational scale height is much greater than the size of the flame, which itself is much greater than the flame's laminar width. We observe both laminar and turbulent steady flames and verify that, for strong enough gravity G, the turbulent flame speed is independent of the laminar flame speed and scales like the square root of GL, where L is the size of our domain. As this scaling law is commonly used to implement flame subgrid models, one of the aims of this thesis is to understand its robustness. We describe the flame geometry and discuss its relationship with the flame speed. The flow statistics inside turbulent flames are measured and found to be gaussian and isotropic, corresponding to strong mixing.

  9. Flight evaluations of the effect of advanced control systems and displays on the handling qualities of a general aviation airplane.

    NASA Technical Reports Server (NTRS)

    Loschke, P. C.; Barber, M. R.; Jarvis, C. R.; Enevoldson, E. K.

    1972-01-01

    Flight tests have shown that, by means of improved displays and advanced control systems, it is possible to transform a typical light airplane into a flying machine that borders on being perfect from a handling-qualities standpoint. A flight-director display and an attitude-command control system used in combination transformed a vehicle with poor handling qualities during ILS approaches in turbulent air into a vehicle with extremely good handling qualities. The attitude-command control system also improved the ride qualities of the airplane. A rate-command control system was less beneficial than an attitude-command control system. Although this paper deals primarily with general aviation aircraft, the results presented pertain to other types of aircraft. Short-takeoff-and-landing (STOL) aircraft would be a natural application of the control systems because, as a result of their low speeds, they encounter many of the handling-qualities problems noted on light aircraft. The improved ride qualities should be of interest to all airline operations, and for STOL aircraft in particular, because of their prolonged exposure to low-altitude turbulence.

  10. Flame and Soot Boundaries of Laminar Jet Diffusion Flames. Appendix A

    NASA Technical Reports Server (NTRS)

    Xu, F.; Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2002-01-01

    The shapes (flame-sheet and luminous-flame boundaries) or steady weakly buoyant round hydrocarbon-fueled laminar-jet diffusion flames in still and coflowing air were studied both experimentally and theoretically. Flame-sheet shapes were measured from photographs using a CH optical filter to distinguish flame-sheet boundaries in the presence of blue CO2 and OH emissions and yellow continuum radiation from soot. Present experimental conditions included acetylene-, methane-, propane-, and ethylene-fueled flames having initial reactant temperatures of 300 K. ambient pressures of 4-50 kPa, jet-exit Reynolds numbers of 3-54, initial air/fuel velocity ratios of 0-9, and luminous flame lengths of 5-55 mm; earlier measurements for propylene- and 1,3-butadiene-fueled flames for similar conditions were considered as well. Nonbuoyant flames in still air were observed at microgravity conditions; essentially nonbuoyant flames in coflowing air were observed at small pressures to control effects of buoyancy. Predictions of luminous flame boundaries from soot luminosity were limited to laminar smoke-point conditions, whereas predictions of flame-sheet boundaries ranged from soot-free to smoke-point conditions. Flame-shape predictions were based on simplified analyses using the boundary-layer approximations along with empirical parameters to distinguish flame-sheet and luminous-flame (at the laminar smoke point) boundaries. The comparison between measurements and predictions was remarkably good and showed that both flame-sheet and luminous-flame lengths are primarily controlled by fuel flow rates with lengths in coflowing air approaching 2/3 of the lengths in still air as coflowing air velocities are increased. Finally, luminous flame lengths at laminar smoke-point conditions were roughly twice as long as flame-sheet lengths at comparable conditions because of the presence of luminous soot particles in the fuel-lean region of the flames.

  11. Flame Speed and Spark Intensity

    NASA Technical Reports Server (NTRS)

    Randolph, D W; Silsbee, F B

    1925-01-01

    This report describes a series of experiments undertaken to determine whether or not the electrical characteristics of the igniting spark have any effect on the rapidity of flame spread in the explosive gas mixtures which it ignites. The results show very clearly that no such effect exists. The flame velocity in carbon-monoxide oxygen, acetylene oxygen, and gasoline-air mixtures was found to be unaffected by changes in spark intensity from sparks which were barely able to ignite the mixture up to intense condenser discharge sparks having fifty time this energy. (author)

  12. Advancing children's health care and outcomes through the pediatric quality measures program.

    PubMed

    Mistry, Kamila B; Chesley, Francis; LLanos, Karen; Dougherty, Denise

    2014-01-01

    In 2009 Congress passed the Children's Health Insurance Program Reauthorization Act (CHIPRA), which presented an unprecedented opportunity to measure and improve health care quality and outcomes for children. The Agency for Healthcare Research and Quality, in partnership with the Centers for Medicare & Medicaid Services, has worked to fulfill a number of quality measurement provisions under CHIPRA, including establishing the Pediatric Quality Measures Program (PQMP). The PQMP was charged with establishing a publicly available portfolio of new and enhanced evidence-based pediatric quality measures for use by Medicaid/Children's Health Insurance Program and other public and private programs and to also provide opportunities to improve and strengthen the Child Core Set of quality measures. This article focuses on the PQMP and provides an overview of the program's goals and related activities, lessons learned, and future opportunities. PMID:25169453

  13. Classifying glitches and improving data quality of Advanced LIGO gravitational-wave searches

    NASA Astrophysics Data System (ADS)

    Cavaglia, Marco; Powell, Jade; Trifiro, Daniele; Heng, Ik Siong; LIGO Collaboration

    2016-03-01

    Noise of non-astrophysical origin contaminates science data taken by the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) and Advanced Virgo gravitational-wave detectors. Characterization of instrumental and environmental noise transients has proven critical in identifying false positives in the first aLIGO observing run O1. In this talk, we present three algorithms designed for the automatic classification of non-astrophysical transients in advanced detectors. Principal Component Analysis for Transients (PCAT) and an adaptation of LALInference Burst (LIB) are based on Principal Component Analysis. The third algorithm is a combination of a glitch finder called Wavelet Detection Filter (WDF) and machine learning techniques for classification. PCAT was used in O1 and earlier engineering runs to identify and characterize observed noise transients in aLIGO data. LIB and WDF are expected to join the quest in the upcoming aLIGO-Advanced Virgo observing run O2. NSF PHY-1404139.

  14. Temperature response of turbulent premixed flames to inlet velocity oscillations

    NASA Astrophysics Data System (ADS)

    Ayoola, B.; Hartung, G.; Armitage, C. A.; Hult, J.; Cant, R. S.; Kaminski, C. F.

    2009-01-01

    Flame-turbulence interactions are at the heart of modern combustion research as they have a major influence on efficiency, stability of operation and pollutant emissions. The problem remains a formidable challenge, and predictive modelling and the implementation of active control measures both rely on further fundamental measurements. Model burners with simple geometry offer an opportunity for the isolation and detailed study of phenomena that take place in real-world combustors, in an environment conducive to the application of advanced laser diagnostic tools. Lean premixed combustion conditions are currently of greatest interest since these are able to provide low NO x and improved increased fuel economy, which in turn leads to lower CO2 emissions. This paper presents an experimental investigation of the response of a bluff-body-stabilised flame to periodic inlet fluctuations under lean premixed turbulent conditions. Inlet velocity fluctuations were imposed acoustically using loudspeakers. Spatially resolved heat release rate imaging measurements, using simultaneous planar laser-induced fluorescence (PLIF) of OH and CH2O, have been performed to explore the periodic heat release rate response to various acoustic forcing amplitudes and frequencies. For the first time we use this method to evaluate flame transfer functions and we compare these results with chemiluminescence measurements. Qualitative thermometry based on two-line OH PLIF was also used to compare the periodic temperature distribution around the flame with the periodic fluctuation of local heat release rate during acoustic forcing cycles.

  15. The Flames Stop Here.

    ERIC Educational Resources Information Center

    Brunette, Len

    2000-01-01

    Explains how advancements in glass manufacturing can help prevent fire and smoke from spreading through a building. The benefit of using wired glass and see-through ceramics are highlighted, and is the importance of glass in minimizing smoke and reducing smoke-related mortality. (GR)

  16. Water quality improvements of CAFO wastewater after advanced treatment and its reuse potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a study to determine the water quality improvements by an alternative on-farm technology operating at full-scale during a 2-yr evaluation period. In addition, we evaluated water quality changes in the converted lagoon that were compared with an adjacent traditional lagoon with similar p...

  17. Intumescent flame-retardant and self-healing superhydrophobic coatings on cotton fabric.

    PubMed

    Chen, Shanshan; Li, Xiang; Li, Yang; Sun, Junqi

    2015-04-28

    Flame-retardant and self-healing superhydrophobic coatings are fabricated on cotton fabric by a convenient solution-dipping method, which involves the sequential deposition of a trilayer of branched poly(ethylenimine) (bPEI), ammonium polyphosphate (APP), and fluorinated-decyl polyhedral oligomeric silsesquioxane (F-POSS). When directly exposed to flame, such a trilayer coating generates a porous char layer because of its intumescent effect, successfully giving the coated fabric a self-extinguishing property. Furthermore, the F-POSS embedded in cotton fabric and APP/bPEI coating produces a superhydrophobic surface with a self-healing function. The coating can repetitively and autonomically restore the superhydrophobicity when the superhydrophobicity is damaged. The resulting cotton fabric, which is flame-resistant, waterproof, and self-cleaning, can be easily cleaned by simple water rinsing. Thus, the integration of self-healing superhydrophobicity with flame retardancy provides a practical way to resolve the problem of washing durability of the flame-retardant coatings. The flame-retardant and superhydrophobic fabric can endure more than 1000 cycles of abrasion under a pressure of 44.8 kPa without losing its flame retardancy and self-healing superhydrophobicity, showing potential applications as multifunctional advanced textiles. PMID:25777158

  18. Effects of a ketogenic diet on the quality of life in 16 patients with advanced cancer: A pilot trial

    PubMed Central

    2011-01-01

    Background Tumor patients exhibit an increased peripheral demand of fatty acids and protein. Contrarily, tumors utilize glucose as their main source of energy supply. Thus, a diet supplying the cancer patient with sufficient fat and protein for his demands while restricting the carbohydrates (CHO) tumors thrive on, could be a helpful strategy in improving the patients' situation. A ketogenic diet (KD) fulfills these requirements. Therefore, we performed a pilot study to investigate the feasibility of a KD and its influence on the quality of life of patients with advanced metastatic tumors. Methods Sixteen patients with advanced metastatic tumors and no conventional therapeutic options participated in the study. The patients were instructed to follow a KD (less than 70 g CHO per day) with normal groceries and were provided with a supply of food additives to mix a protein/fat shake to simplify the 3-month intervention period. Quality of life [assessed by EORTC QLQ-C30 (version 2)], serum and general health parameters were determined at baseline, after every two weeks of follow-up, or after drop out. The effect of dietary change on metabolism was monitored daily by measuring urinary ketone bodies. Results One patient did not tolerate the diet and dropped out within 3 days. Among those who tolerated the diet, two patients died early, one stopped after 2 weeks due to personal reasons, one felt unable to stick to the diet after 4 weeks, one stopped after 6 and two stopped after 7 and 8 weeks due to progress of the disease, one had to discontinue after 6 weeks to resume chemotherapy and five completed the 3 month intervention period. These five and the one who resumed chemotherapy after 6 weeks report an improved emotional functioning and less insomnia, while several other parameters of quality of life remained stable or worsened, reflecting their very advanced disease. Except for temporary constipation and fatigue, we found no severe adverse side effects, especially no

  19. Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed in the same direction as the flame spread. Previous research has shown that in low-speed concurrent airflows, some materials are more flammable in microgravity than earth. This image shows a 10-cm flame in microgravity that burns almost entirely blue on both sides of a thin sheet of paper. The glowing thermocouple in the lower half of the flame provides temperature measurements.

  20. Flame stabilizer for stagnation flow reactor

    DOEpatents

    Hahn, David W.; Edwards, Christopher F.

    1999-01-01

    A method of stabilizing a strained flame in a stagnation flow reactor. By causing a highly strained flame to be divided into a large number of equal size segments it is possible to stablize a highly strained flame that is on the verge of extinction, thereby providing for higher film growth rates. The flame stabilizer is an annular ring mounted coaxially and coplanar with the substrate upon which the film is growing and having a number of vertical pillars mounted on the top surface, thereby increasing the number of azimuthal nodes into which the flame is divided and preserving an axisymmetric structure necessary for stability.

  1. KSC Launch Pad Flame Trench Environment Assessment

    NASA Technical Reports Server (NTRS)

    Calle, Luz Marina; Hintze, Paul E.; Parlier, Christopher R.; Curran, Jerome P.; Kolody, Mark R.; Sampson, Jeffrey W.

    2010-01-01

    This report summarizes conditions in the Launch Complex 39 (LC-39) flame trenches during a Space Shuttle Launch, as they have been measured to date. Instrumentation of the flame trench has been carried out by NASA and United Space Alliance for four Shuttle launches. Measurements in the flame trench are planned to continue for the duration of the Shuttle Program. The assessment of the launch environment is intended to provide guidance in selecting appropriate test methods for refractory materials used in the flame trench and to provide data used to improve models of the launch environment in the flame trench.

  2. Hysteresis and transition in swirling nonpremixed flames

    SciTech Connect

    Tummers, M.J.; Huebner, A.W.; van Veen, E.H.; Hanjalic, K.; van der Meer, T.H.

    2009-02-15

    Strongly swirling nonpremixed flames are known to exhibit a hysteresis when transiting from an attached long, sooty, yellow flame to a short lifted blue flame, and vice versa. The upward transition (by increasing the air and fuel flow rates) corresponds to a vortex breakdown, i.e. an abrupt change from an attached swirling flame (unidirectional or with a weak bluff-body recirculation), to a lifted flame with a strong toroidal vortex occupying the bulk of the flame. Despite dramatic differences in their structures, mixing intensities and combustion performance, both flame types can be realised at identical flow rates, equivalence ratio and swirl intensity. We report here on comprehensive investigations of the two flame regimes at the same conditions in a well-controlled experiment in which the swirl was generated by the rotating outer pipe of the annular burner air passage. Fluid velocity measured with PIV (particle image velocimetry), the qualitative detection of reaction zones from OH PLIF (planar laser-induced fluorescence) and the temperature measured by CARS (coherent anti-Stokes Raman spectroscopy) revealed major differences in vortical structures, turbulence, mixing and reaction intensities in the two flames. We discuss the transition mechanism and arguments for the improved mixing, compact size and a broader stability range of the blue flame in comparison to the long yellow flame. (author)

  3. Flex-flame burner and combustion method

    DOEpatents

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  4. Soot Formation in Laminar Premixed Flames

    NASA Technical Reports Server (NTRS)

    Xu, F.; Krishnan, S. S.; Faeth, G. M.

    1999-01-01

    Soot processes within hydrocarbon-fueled flames affect emissions of pollutant soot, thermal loads on combustors, hazards of unwanted fires and capabilities for computational combustion. In view of these observations, the present study is considering processes of soot formation in both burner-stabilized and freely-propagating laminar premixed flames. These flames are being studied in order to simplify the interpretation of measurements and to enhance computational tractability compared to the diffusion flame environments of greatest interest for soot processes. In addition, earlier studies of soot formation in laminar premixed flames used approximations of soot optical and structure properties that have not been effective during recent evaluations, as well as questionable estimates of flow residence times). The objective of present work was to exploit methods of avoiding these difficulties developed for laminar diffusion flames to study soot growth in laminar premixed flames. The following description of these studies is brief.

  5. Simulation of flame surface density and burning rate of a premixed turbulent flame using contour advection

    SciTech Connect

    Tang, B.H.Y.; Chan, C.K.

    2006-10-15

    In this paper, a 2-dimensional rod-stabilized V-shaped flame is simulated using contour advection with surgery as well as the random vortex method. Effects of turbulence on various quantities, such as flame brush thickness and flame surface density, are investigated. The flame surface density S is estimated using the Bray-Moss-Libby formulation, which involves the use of a mean orientation factor {sigma}{sub c}. As a comparison, values of S are also obtained using Shepherd's model, which employs the values of mean flame surface area and mean flame length. Local flame structure is characterized in terms of turbulent flame brush, orientation factor, and flame surface density. Profiles of S obtained using the two different models are compared and show that discrepancy is more evident with increasing turbulence intensity. (author)

  6. Patient, Carer and Professional Perspectives on Barriers and Facilitators to Quality Care in Advanced Heart Failure

    PubMed Central

    Browne, Susan; Macdonald, Sara; May, Carl R.; Macleod, Una; Mair, Frances S.

    2014-01-01

    Background Those with advanced heart failure (HF) experience high levels of morbidity and mortality, similar to common cancers. However, there remains evidence of inequity of access to palliative care services compared to people with cancer. This study examines patient, carer, and professional perspectives on current management of advanced HF and barriers and facilitators to improved care. Methods Qualitative study involving semi-structured interviews and focus groups with advanced HF patients (n = 30), carers (n = 20), and professionals (n = 65). Data analysed using Normalisation Process Theory (NPT) as the underpinning conceptual framework. Findings Uncertainty is ubiquitous in accounts from advanced HF patients and their caregivers. This uncertainty relates to understanding of the implications of their diagnosis, appropriate treatments, and when and how to seek effective help. Health professionals agree this is a major problem but feel they lack knowledge, opportunities, or adequate support to improve the situation. Fragmented care with lack of coordination and poor communication makes life difficult. Poor understanding of the condition extends to the wider circle of carers and means that requests for help may not be perceived as legitimate, and those with advanced HF are not prioritised for social and financial supports. Patient and caregiver accounts of emergency care are uniformly poor. Managing polypharmacy and enduring concomitant side effects is a major burden, and the potential for rationalisation exists. This study has potential limitations because it was undertaken within a single geographical location within the United Kingdom. Conclusions Little progress is being made to improve care experiences for those with advanced HF. Even in the terminal stages, patients and caregivers are heavily and unnecessarily burdened by health care services that are poorly coordinated and offer fragmented care. There is evidence that these poor experiences

  7. Designing relevant biochars to revitalize soil quality: Current status and advances

    EPA Science Inventory

    Biochars chemical and physical properties can be designed to improve specific soil quality issues. In order to make appropriate selections, evaluations are required of different feedstocks, pyrolysis conditions, and gross biochar particle sizes. We conducted laboratory soil incu...

  8. Development of Gridded Fields of Urban Canopy Parameters for Advanced Urban Meteorological and Air Quality Models

    EPA Science Inventory

    Urban dispersion and air quality simulation models applied at various horizontal scales require different levels of fidelity for specifying the characteristics of the underlying surfaces. As the modeling scales approach the neighborhood level (~1 km horizontal grid spacing), the...

  9. Development of longitudinal handling qualities criteria for large advanced supersonic aircraft

    NASA Technical Reports Server (NTRS)

    Sudderth, R. W.; Bohn, J. G.; Caniff, M. A.; Bennett, G. R.

    1975-01-01

    Longitudinal handling qualities criteria in terms of airplane response characteristics were developed. The criteria cover high speed cruise maneuvering, landing approach, and stall recovery. Data substantiating the study results are reported.

  10. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    EPA Science Inventory

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evalua...

  11. Radiant extinction of gaseous diffusion flames

    NASA Technical Reports Server (NTRS)

    Atreya, Arvind; Agrawal, Sanjay; Shamim, Tariq; Pickett, Kent; Sacksteder, Kurt R.; Baum, Howard R.

    1995-01-01

    The absence of buoyancy-induced flows in microgravity significantly alters the fundamentals of many combustion processes. Substantial differences between normal-gravity and microgravity flames have been reported during droplet combustion, flame spread over solids, candle flames, and others. These differences are more basic than just in the visible flame shape. Longer residence time and higher concentration of combustion products create a thermochemical environment which changes the flame chemistry. Processes such as flame radiation, that are often ignored under normal gravity, become very important and sometimes even controlling. This is particularly true for conditions at extinction of a microgravity diffusion flame. Under normal-gravity, the buoyant flow, which may be characterized by the strain rate, assists the diffusion process to transport the fuel and oxidizer to the combustion zone and remove the hot combustion products from it. These are essential functions for the survival of the flame which needs fuel and oxidizer. Thus, as the strain rate is increased, the diffusion flame which is 'weak' (reduced burning rate per unit flame area) at low strain rates is initially 'strengthened' and eventually it may be 'blown-out'. Most of the previous research on diffusion flame extinction has been conducted at the high strain rate 'blow-off' limit. The literature substantially lacks information on low strain rate, radiation-induced, extinction of diffusion flames. At the low strain rates encountered in microgravity, flame radiation is enhanced due to: (1) build-up of combustion products in the flame zone which increases the gas radiation, and (2) low strain rates provide sufficient residence time for substantial amounts of soot to form which further increases the flame radiation. It is expected that this radiative heat loss will extinguish the already 'weak' diffusion flame under certain conditions. Identifying these conditions (ambient atmosphere, fuel flow rate, fuel

  12. Photodiode-based sensor for flame sensing and combustion-process monitoring.

    PubMed

    Arias, Luis; Torres, Sergio; Sbarbaro, Daniel; Farias, Oscar

    2008-10-10

    A nonintrusive low-cost sensor based on silicon photodiode detectors has been designed to analyze the formation and behavior of excited CH(*) and C(2)(*) radicals in the combustion process by sensing the spectral emission of hydrocarbon flames. The sensor was validated by performing two sets of experiments for both nonconfined and confined flames. For a nonconfined oil flame, the sensor responses for the axial intensity were highly correlated with the measurements obtained with a radiometer. For confined gas flames the ratio between the signal corresponding to C(2)(*) and CH(*) was successfully correlated with the CO pollutant emissions and the combustion efficiency. These results give additional insight on how to prevent an incomplete combustion using spectral information. The fast response, the nonintrusive character, and the instantaneous measurement of the needed spectral information makes the proposed optical sensor a key element in the development of advanced control strategies for combustion processes. PMID:18846197

  13. CFD simulation of vented explosion and turbulent flame propagation

    NASA Astrophysics Data System (ADS)

    Tulach, Aleš; Mynarz, Miroslav; Kozubková, Milada

    2015-05-01

    Very rapid physical and chemical processes during the explosion require both quality and quantity of detection devices. CFD numerical simulations are suitable instruments for more detailed determination of explosion parameters. The paper deals with mathematical modelling of vented explosion and turbulent flame spread with use of ANSYS Fluent software. The paper is focused on verification of preciseness of calculations comparing calculated data with the results obtained in realised experiments in the explosion chamber.

  14. Comparison of Quality Oncology Practice Initiative (QOPI) Measure Adherence Between Oncology Fellows, Advanced Practice Providers, and Attending Physicians.

    PubMed

    Zhu, Jason; Zhang, Tian; Shah, Radhika; Kamal, Arif H; Kelley, Michael J

    2015-12-01

    Quality improvement measures are uniformly applied to all oncology providers, regardless of their roles. Little is known about differences in adherence to these measures between oncology fellows, advance practice providers (APP), and attending physicians. We investigated conformance across Quality Oncology Practice Initiative (QOPI) measures for oncology fellows, advance practice providers, and attending physicians at the Durham Veterans Affairs Medical Center (DVAMC). Using data collected from the Spring 2012 and 2013 QOPI cycles, we abstracted charts of patients and separated them based on their primary provider. Descriptive statistics and the chi-square test were calculated for each QOPI measure between fellows, advanced practice providers (APPs), and attending physicians. A total of 169 patients were reviewed. Of these, 31 patients had a fellow, 39 had an APP, and 99 had an attending as their primary oncology provider. Fellows and attending physicians performed similarly on 90 of 94 QOPI metrics. High-performing metrics included several core QOPI measures including documenting consent for chemotherapy, recommending adjuvant chemotherapy when appropriate, and prescribing serotonin antagonists when prescribing emetogenic chemotherapies. Low-performing metrics included documentation of treatment summary and taking action to address problems with emotional well-being by the second office visit. Attendings documented the plan for oral chemotherapy more often (92 vs. 63%, P=0.049). However, after the chart audit, we found that fellows actually documented the plan for oral chemotherapy 88% of the time (p=0.73). APPs and attendings performed similarly on 88 of 90 QOPI measures. The quality of oncology care tends to be similar between attendings and fellows overall; some of the significant differences do not remain significant after a second manual chart review, highlighting that the use of manual data collection for QOPI analysis is an imperfect system, and there may

  15. Turbulent Jet Flames Into a Vitiated Coflow. PhD Thesis awarded Spring 2003

    NASA Technical Reports Server (NTRS)

    Holdeman, James D. (Technical Monitor); Cabra, Ricardo

    2004-01-01

    Examined is the vitiated coflow flame, an experimental condition that decouples the combustion processes of flows found in practical combustors from the associated recirculating fluid mechanics. The configuration consists of a 4.57 mm diameter fuel jet into a coaxial flow of hot combustion products from a lean premixed flame. The 210 mm diameter coflow isolates the jet flame from the cool ambient, providing a hot environment similar to the operating conditions of advanced combustors; this important high temperature element is lacking in the traditional laboratory experiments of jet flames into cool (room) air. A family of flows of increasing complexity is presented: 1) nonreacting flow, 2) all hydrogen flame (fuel jet and premixed coflow), and 3) set of methane flames. This sequence of experiments provides a convenient ordering of validation data for combustion models. Laser Raman-Rayleigh-LIF diagnostics at the Turbulent Diffusion Flame laboratory of Sandia National Laboratories produced instantaneous multiscalar point measurements. These results attest to the attractive features of the vitiated coflow burner and the well-defined boundary conditions provided by the coflow. The coflow is uniform and steady, isolating the jet flame from the laboratory air for a downstream distance ranging from z/d = 50-70. The statistical results show that differential diffusion effects in this highly turbulent flow are negligible. Complementing the comprehensive set of multiscalar measurements is a parametric study of lifted methane flames that was conducted to analyze flame sensitivity to jet and coflow velocity, as well as coflow temperature. The linear relationship found between the lift-off height and the jet velocity is consistent with previous experiments. New linear sensitivities were found correlating the lift-off height to coflow velocity and temperature. A blow-off study revealed that the methane flame blows off at a common coflow temperature (1260 K), regardless of

  16. Quality of Life and Cost of Care at the End of Life: The Role of Advance Directives

    PubMed Central

    Garrido, Melissa M.; Balboni, Tracy A.; Maciejewski, Paul K.; Bao, Yuhua; Prigerson, Holly G.

    2014-01-01

    Context Advance directives (ADs) are expected to improve patients’ end-of-life outcomes, but retrospective analyses, surrogate recall of patients’ preferences, and selection bias have hampered efforts to determine ADs’ effects on patient outcomes. Objectives To examine associations among ADs, quality of life, and estimated costs of care in the week before death. Methods We used prospective data from interviews of 336 patients with advanced cancer and their caregivers, and analyzed patient baseline interview and caregiver and provider post-mortem evaluation data from the Coping with Cancer study. Cost estimates were from the Healthcare Cost and Utilization Project Nationwide Inpatient Sample and published Medicare payment rates and cost estimates. Outcomes were quality of life (range 0-10) and estimated costs of care received in the week before death. Because patient end-of-life care preferences influence both AD completion and care use, analyses were stratified by preferences regarding heroic endof-life measures (everything possible to remain alive). Results Most patients did not want heroic measures (76%). Do-not-resuscitate (DNR) orders were associated with higher quality of life (β=0.75, standard error=0.30, P=0.01) across the entire sample. There were no statistically significant relationships between DNR orders and outcomes among patients when we stratified by patient preference, or between living wills/durable powers of attorney and outcomes in any of the patient groups. Conclusion The associations between DNR orders and better quality of life in the week before death indicate that documenting preferences against resuscitation in medical orders may be beneficial to many patients. PMID:25498855

  17. Nanoparticle synthesis in low pressure flames

    NASA Astrophysics Data System (ADS)

    Colibaba-Evulet, Andrei

    The results of an experimental and computational study of nanoparticle synthesis in low pressure flames are presented. In a stagnation point flow configuration, hydrogen/oxygen low pressure flat flames were supplied with metalorganic vapor precursors and the flame conditions were identified for nanoparticle formation and growth, followed by deposition on a cooled substrate. The effects of pressure, burner to substrate distance, stoichiometry and flowrate on the particle size, morphology and phase were examined. Titania, alumina and zirconia non-agglomerated nanopowders were synthesized and analyzed using X-ray diffraction, BET gas absorption and TEM. A flame model with complex chemistry is used for the prediction of the temperature and flow fields. Thermophoretic effects upon the particle dynamics are estimated and the time/temperature profiles for several flames are predicted. A collision/coalescence mechanism growth model based on the predicted time/temperature is employed for computation of the deposited particle size. Laser induced fluorescence is used for determination of temperature and monoxide concentration profiles in the flame. Temperature measurements using two line fluorescence thermometry in an nitric oxide seeded flame indicate that the flame model predicts temperatures to within 200 K for simple flames. The temperatures of the precursor fed flames exceed the simple flame temperatures by as much as 600 K, showing that precursor decomposition/pyrolysls highly affects the thermochemistry of the flame. Radical concentration measurements in flames synthesizing titania, alumina and zirconia indicate that try monitoring the respective metal monoxides, the location of precursor decomposition and monomer formation in the flame can be inferred. A parametric study of the zirconia synthesis flame showed a certain degree of control on the particle size, agglomeration and crystallinity. Flames hotter than 1700 K and with high quenching rates produced a mixture of

  18. A Continuous Quality Improvement Program to Focus a College of Pharmacy on Programmatic Advancement

    PubMed Central

    DiPiro, Joseph T.; Rowen, Randall C.; McNair, David

    2013-01-01

    Objective. To enhance the achievement of a college of pharmacy’s goals for education, research, and service missions by implementing an excellence program based on the Studer Group model for continuous quality improvement. Methods. The Studer model was combined with university strategic planning for a comprehensive quality-improvement program that was implemented over 5 years. The program included identifying and measuring key performance indicators, establishing specific “pillar” goals, aligning behaviors with goals and values, and training leaders. Results. Assessment of key performance indicators over 5 years demonstrated progress toward achieving college goals for student and faculty satisfaction, research funding, numbers of students seeking formal postgraduate training, and private giving. Conclusions. Implementation of a continuous quality-improvement program based on the Studer program enabled the college to focus on and meet its yearly and strategic goals for all components of its mission. PMID:23966720

  19. Advanced Water Quality Modelling in Marine Systems: Application to the Wadden Sea, the Netherlands

    NASA Astrophysics Data System (ADS)

    Boon, J.; Smits, J. G.

    2006-12-01

    There is an increasing demand for knowledge and models that arise from water management in relation to water quality, sediment quality (ecology) and sediment accumulation (ecomorphology). Recently, models for sediment diagenesis and erosion developed or incorporated by Delft Hydraulics integrates the relevant physical, (bio)chemical and biological processes for the sediment-water exchange of substances. The aim of the diagenesis models is the prediction of both sediment quality and the return fluxes of substances such as nutrients and micropollutants to the overlying water. The resulting so-called DELWAQ-G model is a new, generic version of the water and sediment quality model of the DELFT3D framework. One set of generic water quality process formulations is used to calculate process rates in both water and sediment compartments. DELWAQ-G involves the explicit simulation of sediment layers in the water quality model with state-of-the-art process kinetics. The local conditions in a water layer or sediment layer such as the dissolved oxygen concentration determine if and how individual processes come to expression. New processes were added for sulphate, sulphide, methane and the distribution of the electron-acceptor demand over dissolved oxygen, nitrate, sulphate and carbon dioxide. DELWAQ-G also includes the dispersive and advective transport processes in the sediment and across the sediment-water interface. DELWAQ-G has been applied for the Wadden Sea. A very dynamic tidal and ecologically active estuary with a complex hydrodynamic behaviour located at the north of the Netherlands. The predicted profiles in the sediment reflect the typical interactions of diagenesis processes.

  20. The initial development of a tulip flame

    SciTech Connect

    Matalon, M.; Mcgreevy, J.L.

    1994-12-31

    The initial development of a ``tulip flame``, often observed during flame propagation in closed tubes, is attributed to a combustion instability. The roles of hydrodynamic and of the diffusional-thermal processes on the onset of instability are investigated through a linear stability analysis in which the growth or decay of small disturbances, superimposed on an otherwise smooth and planar flame front, are followed. A range of the Markstein parameter, related to the mixture composition through an appropriately defined Lewis number, has been identified where a tulip flame could be observed. For a given value of the Markstein parameter within this range, a critical wavelength is identified as the most unstable mode. This wavelength is directly related to the minimal aspect ratio of the tube where a tulip flame could be observed. The time of onset of instability is identified as the time when the most unstable disturbance, associated with the critical wavelength, grows at a faster rate than the flame front itself and exceeds a certain threshold. This occurs after the flame has propagated a certain distance down the tube: a value which has been explicitly determined in terms of the relevant parameters. Experimental records on the tulip flame phenomenon support the finding of the analysis. That is, the tulip flame forms after the flame has traveled half the tube`s length, it does not form in short tubes, and its formation depends on the mixture composition and on the initial pressure in the tube.

  1. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a ``tulip flame`` in the literature, occurred. The ``tulip flame`` was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  2. A numerical study of thin flame representations

    SciTech Connect

    Rotman, D.A.; Pindera, M.Z.

    1989-08-11

    In studies of reacting flows, the flame may be viewed as a moving discontinuity endowed with certain properties; notably, it acts as a source of velocity and vorticity. Asymptotic analysis shows this to be justified provided that the flame curvature is small compared to the flame thickness. Such an approach is useful when one is interested in the hydrodynamic effects of the flame on the surrounding flowfield. In numerical models of this kind it is customary to treat the discontinuity as a collection of discrete velocity blobs. In this study, we show that the velocities associated with such a representation can be very non-smooth, particularly very near to the flame surface. As an alternative, we propose the use of a finite line source as the basic flame element. Comparisons of the two flame representations are made for several simple test cases as well as for a flame propagating through an enclosure forming the tulip shape. The results show that the use of line sources eliminates spurious fluctuations in nearfield velocities thus allowing for a more accurate calculation of flame propagation and flame-flowfield interactions. 7 refs., 15 figs.

  3. Numerical simulation of tulip flame dynamics

    SciTech Connect

    Cloutman, L.D.

    1991-11-30

    A finite difference reactive flow hydrodynamics program based on the full Navier-Stokes equations was used to simulate the combustion process in a homogeneous-charge, constant-volume combustion bomb in which an oddly shaped flame, known as a tulip flame'' in the literature, occurred. The tulip flame'' was readily reproduced in the numerical simulations, producing good agreement with the experimental flame shapes and positions at various times. The calculations provide sufficient detail about the dynamics of the experiment to provide some insight into the physical mechanisms responsible for the peculiar flame shape. Several factors seem to contribute to the tulip formation. The most important process is the baroclinic production of vorticity by the flame front, and this rate of production appears to be dramatically increased by the nonaxial flow generated when the initial semicircular flame front burns out along the sides of the chamber. The vorticity produces a pair of vortices behind the flame that advects the flame into the tulip shape. Boundary layer effects contribute to the details of the flame shape next to the walls of the chamber, but are otherwise not important. 24 refs.

  4. Structure of laminar sooting inverse diffusion flames

    SciTech Connect

    Mikofski, Mark A.; Fernandez-Pello, A. Carlos; Williams, Timothy C.; Shaddix, Christopher R.; Blevins, Linda G.

    2007-06-15

    The flame structure of laminar inverse diffusion flames (IDFs) was studied to gain insight into soot formation and growth in underventilated combustion. Both ethylene-air and methane-air IDFs were examined, fuel flow rates were kept constant for all flames of each fuel type, and airflow rates were varied to observe the effect on flame structure and soot formation. Planar laser-induced fluorescence of hydroxyl radicals (OH PLIF) and polycyclic aromatic hydrocarbons (PAH PLIF), planar laser-induced incandescence of soot (soot PLII), and thermocouple-determined gas temperatures were used to draw conclusions about flame structure and soot formation. Flickering, caused by buoyancy-induced vortices, was evident above and outside the flames. The distances between the OH, PAH, and soot zones were similar in IDFs and normal diffusion flames (NDFs), but the locations of those zones were inverted in IDFs relative to NDFs. Peak OH PLIF coincided with peak temperature and marked the flame front. Soot appeared outside the flame front, corresponding to temperatures around the minimum soot formation temperature of 1300 K. PAHs appeared outside the soot layer, with characteristic temperature depending on the wavelength detection band. PAHs and soot began to appear at a constant axial position for each fuel, independent of the rate of air flow. PAH formation either preceded or coincided with soot formation, indicating that PAHs are important components in soot formation. Soot growth continued for some time downstream of the flame, at temperatures below the inception temperature, probably through reaction with PAHs. (author)

  5. Fully Modulated Turbulent Diffusion Flames in Microgravity*

    NASA Astrophysics Data System (ADS)

    Sangras, Ravikiran; Hermanson, James C.; Johari, Hamid; Stocker, Dennis P.; Hegde, Uday G.

    2001-11-01

    Fully modulated, turbulent diffusion flames are studied in microgravity in 2.2 s drop-tower tests with a co-flow combustor. The fuel consists of pure ethylene or a 50/50 mixture with nitrogen; the oxidizer is either normal air or up to 40% oxygen in nitrogen. A fast solenoid valve is used to fully modulate (completely shut off) the fuel flow. The injection times range from 5 to 400 ms with a duty-cycle of 0.1 - 0.5. The fuel nozzle is 2 mm in diameter with a jet Reynolds number of 5000. The shortest injection times yield compact puffs with a mean flame length as little as 20% of that of the steady-state flame. The reduction in flame length appears to be somewhat greater in microgravity than in normal gravity. As the injection time increases, elongated flames result with a mean flame length comparable to that of a steady flame. The injection time for which the steady-state flame length is approached is shorter for lower air/fuel ratios. For a given duty-cycle, the separation between puffs is greater in microgravity than in normal gravity. For compact puffs, increasing the duty-cycle appears to increase the flame length more in microgravity than in normal gravity. The microgravity flame puffs do not exhibit the vortex-ring-like structure seen in normal gravity.

  6. Effects of Buoyancy on Lean Premixed V-Flames Part I: Laminar and Turblent Flame Structure

    NASA Technical Reports Server (NTRS)

    Cheng, Robert K.; Bedat, Benoit; Kostiuk, Larry W.

    1998-01-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in +g, -g, and micro g under flow conditions that span the regimes of momentum domination (Ri < 0. 1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and -g flame angles decrease with Ri (i.e., increasing Re) and converge to the microgravity flame angle at the momentum limit (Ri - 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and -g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and -g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in -g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy effects on flame instability mechanisms. It seems to be associated with the field effects of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in -g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  7. Bifurcation characteristics and flame dynamics of a ducted non-premixed flame with finite rate chemistry

    NASA Astrophysics Data System (ADS)

    Rana, Subhas Chandra; Sujith, Raman

    2015-09-01

    The influence of system parameters such as the flame location, Peclet number and Damköhler number on the bifurcation characteristics and flame dynamics of a ducted non-premixed flame with finite rate chemistry is presented in this paper. In the bifurcation plot with flame location as the bifurcation parameter, subcritical Hopf bifurcation is found for lower values of flame location and supercritical Hopf bifurcation for higher values of flame location, for all the Damköhler numbers used in this study. The flame shapes are captured at eight different phases of a cycle of time series data of acoustic velocity at both the fold and Hopf points for bifurcation with flame location as the parameter. We find that the range of flame height variations at the Hopf point is more than the range of flame height variations obtained at the fold point. We also find that the flame oscillates in the same phase as pressure fluctuation but in a phase different from both velocity and heat release rate fluctuations in the region of hysteresis for bifurcation with flame location. The non-dimensional hysteresis width is plotted as a function of Damköhler number for variation of flame location in the subcritical region. An inverse power law relation is found between the non-dimensional hysteresis width and the Damköhler number. The bifurcation plot with Peclet number as parameter shows a subcritical Hopf bifurcation.

  8. Confronting the Quiet Crisis: How Chief State School Officers Are Advancing Quality Early Childhood Opportunities

    ERIC Educational Resources Information Center

    Council of Chief State School Officers, 2012

    2012-01-01

    In 2009, the Council of Chief State School Officers (CCSSO) adopted a new policy statement on early childhood education. Based on the work of a task force of 13 chiefs, "A Quiet Crisis: The Urgent Need to Build Early Childhood Systems and Quality Programs for Children Birth to Age Five" presents a compelling argument for why public education…

  9. Leveraging effective clinical registries to advance medical care quality and transparency.

    PubMed

    Klaiman, Tamar; Pracilio, Valerie; Kimberly, Laura; Cecil, Kate; Legnini, Mark

    2014-04-01

    Policy makers, payers, and the general public are increasingly focused on health care quality improvement. Measuring quality requires robust data systems that collect data over time, can be integrated with other systems, and can be analyzed easily for trends. The goal of this project was to study effective tools and strategies in the design and use of clinical registries with the potential to facilitate quality improvement, value-based purchasing, and public reporting on the quality of care. The research team worked with an expert panel to define characteristics of effectiveness, and studied examples of effective registries in cancer, cardiovascular care, maternity, and joint replacement. The research team found that effective registries were successful in 1 or more of 6 key areas: data standardization, transparency, accuracy/completeness of data, participation by providers, financial sustainability, and/or providing feedback to providers. The findings from this work can assist registry designers, sponsors, and researchers in implementing strategies to increase the use of clinical registries to improve patient care and outcomes. PMID:24152057

  10. Advancing High-Quality Preschool Inclusion: A Discussion and Recommendations for the Field

    ERIC Educational Resources Information Center

    Barton, Erin E.; Smith, Barbara J.

    2015-01-01

    Although considerable progress has been achieved regarding the research and laws supporting preschool inclusion, access to inclusive preschool environments remains intangible for many children with disabilities in the United States. The purpose of this article is to discuss current challenges and solutions to high-quality preschool inclusion. We…

  11. "Advances in Coupled Air Quality, Farm Management and Biogeochemistry to address bidirectional ammonia flux"

    EPA Science Inventory

    A cropland farm management modeling system for regional air quality and field-scale applications of bi-directional ammonia exchange was presented at ITM XXI. The goal of this research is to improve estimates of nitrogen deposition to terrestrial and aquatic ecosystems and ambien...

  12. Designing relevant biochars to revitalize soil quality: Current status and advances

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Chemical and physical properties of biochars can be designed to improve specific soil quality issues. In order to make appropriate biochar selections, evaluations are required of different feedstocks, pyrolysis conditions, and gross biochar particle sizes. We conducted laboratory soil incubations us...

  13. Particle Generation and Evolution in Silane/Acetylene Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2001-01-01

    The objective of this new experimental program is to advance the understanding of the formation of particles from gas phase combustion processes. The work will utilize the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio. A key goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release necessary to drive the combustion wave, and to locate the parts of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like "highly sooty" hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  14. Higher Education Administrators' Perceptions of the Academic Quality Improvement Project as Compared to the Program to Evaluate and Advance Quality within the North Central Association of Colleges and Schools

    ERIC Educational Resources Information Center

    McDonough, Jennifer Nobles

    2012-01-01

    The purpose of this study was to examine higher education administrators' perceptions of the effectiveness of the Academic Quality Improvement Project (AQIP) as compared to the Program to Evaluate and Advance Quality (PEAQ) within the North Central Association of Colleges and Schools (NCA). The Higher Learning Commission (HLC), a commission…

  15. Numerical investigations of gaseous spherical diffusion flames

    NASA Astrophysics Data System (ADS)

    Lecoustre, Vivien R.

    Spherical diffusion flames have several unique characteristics that make them attractive from experimental and theoretical perspectives. They can be modeled with one spatial dimension, which frees computational resources for detailed chemistry, transport, and radiative loss models. This dissertation is a numerical study of two classes of spherical diffusion flames: hydrogen micro-diffusion flames, emphasizing kinetic extinction, and ethylene diffusion flames, emphasizing sooting limits. The flames were modeled using a one-dimensional, time-accurate diffusion flame code with detailed chemistry and transport. Radiative losses from products were modeled using a detailed absorption/emission statistical narrow band model and the discrete ordinates method. During this work the code has been enhanced by the implementation of a soot formation/oxidation model using the method of moments. Hydrogen micro-diffusion flames were studied experimentally and numerically. The experiments involved gas jets of hydrogen. At their quenching limits, these flames had heat release rates of 0.46 and 0.25 W in air and in oxygen, respectively. These are the weakest flames ever observed. The modeling results confirmed the quenching limits and revealed high rates of reactant leakage near the limits. The effects of the burner size and mass flow rate were predicted to have a significant impact on the flame chemistry and species distribution profiles, favoring kinetic extinction. Spherical ethylene diffusion flames at their sooting limits were also examined. Seventeen normal and inverse spherical flames were considered. Initially sooty, these flames were experimentally observed to reach their sooting limits 2 s after ignition. Structure of the flames at 2 s was considered, with an emphasis on the relationships among local temperature, carbon to oxygen atom ratio (C/O), and scalar dissipation rate. A critical C/O ratio was identified, along with two different sooting limit regimes. Diffusion flames

  16. Does quality of life impact the decision to pursue stem cell transplantation for elderly patients with advanced MDS?

    PubMed

    El-Jawahri, A; Kim, H T; Steensma, D P; Cronin, A M; Stone, R M; Watts, C D; Chen, Y-B; Cutler, C S; Soiffer, R J; Abel, G A

    2016-08-01

    The factors that influence utilization of reduced-intensity conditioning (RIC) allogeneic hematopoietic stem cell transplantation (HCT) among medically fit older patients with advanced myelodysplastic syndromes (MDS) are largely unknown. The MDS Transplant-Associated Outcomes (MDS-TAO) study is an ongoing prospective observational study at the Dana-Farber Cancer Institute and Massachusetts General Hospital that enrolls transplant-eligible fit patients aged 60-75 years with advanced MDS and follows them through RIC HCT vs non-HCT treatment. In this analysis of 127 patients enrolled from May 2011 to June 2014, we examined the influence of age, gender, cytogenetics, International Prognostic Scoring System (IPSS) category, performance status, distance from HCT center and baseline patient-reported quality of life (QOL) from the EORTC QLQ-C30 (European Organization for Research and Treatment of Cancer Quality of Life Questionnaire) on the likelihood of receiving RIC HCT using competing risk regression modeling. With a median follow-up of 16 months, 44 patients (35%) had undergone RIC HCT. In multivariable analyses, age (hazard ratio (HR) 0.87 per year, 95% confidence interval (CI): 0.81-0.92, P<0.001) and higher IPSS (intermediate-2/high; HR 2.29, 95% CI: 1.25-4.19, P=0.007) were significantly predictive of receipt of RIC HCT; neither global QOL score nor any QOL subscales scores were predictive. These data suggest that baseline patient-reported QOL has little influence on the decision to undergo RIC HCT for older patients with advanced MDS. PMID:26999469

  17. Premixed flames in closed cylindrical tubes

    NASA Astrophysics Data System (ADS)

    Metzener, Philippe; Matalon, Moshe

    2001-09-01

    We consider the propagation of a premixed flame, as a two-dimensional sheet separating unburned gas from burned products, in a closed cylindrical tube. A nonlinear evolution equation, that describes the motion of the flame front as a function of its mean position, is derived. The equation contains a destabilizing term that results from the gas motion induced by thermal expansion and has a memory term associated with vorticity generation. Numerical solutions of this equation indicate that, when diffusion is stabilizing, the flame evolves into a non-planar form whose shape, and its associated symmetry properties, are determined by the Markstein parameter, and by the initial data. In particular, we observe the development of convex axisymmetric or non-axisymmetric flames, tulip flames and cellular flames.

  18. Heat and mass transfer in flames

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1986-01-01

    Heat- and mass-transfer processes in turbulent diffusion flames are discussed, considering turbulent mixing and the structure of single-phase flames, drop processes in spray flames, and nonluminous and luminous flame radiation. Interactions between turbulence and other phenomena are emphasized, concentrating on past work of the author and his associates. The conserved-scalar formalism, along with the laminar-flamelet approximation, is shown to provide reasonable estimates of the structure of gas flames, with modest levels of empiricism. Extending this approach to spray flames has highlighted the importance of drop/turbulence interactions; e.g., turbulent dispersion of drops, modification of turbulence by drops, etc. Stochastic methods being developed to treat these phenomena are yielding encouraging results.

  19. Nongradient diffusion in premixed turbulent flames

    NASA Technical Reports Server (NTRS)

    Libby, Paul A.

    1988-01-01

    Recent theoretical and experimental results demonstrating the interaction between force fields and density inhomogeneities as they arise in premixed turbulent flames are discussed. In such flames, the density fluctuates between two levels, the high density in reactants rho sub r and the low density in products rho sub p, with the ratio rho sub r/rho sub p on the order of five to ten in flows of applied interest. The force fields in such flames arise from the mean pressure drop across the flame or from the Reynolds shear stresses in tangential flames with constrained streamlines. The consequence of the interaction is nongradient turbulent transport, countergradient in the direction normal to the flame and nongradient in the tangential direction. The theoretical basis for these results, the presently available experimental support therefore and the implications for other variable density turbulent flows are discussed.

  20. Transitional Gas Jet Diffusion Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Alammar, Khalid; Gollahalli, S. R.; Griffin, DeVon (Technical Monitor)

    2000-01-01

    Drop tower experiments were performed to identify buoyancy effects in transitional hydrogen gas jet diffusion flames. Quantitative rainbow schlieren deflectometry was utilized to optically visualize the flame and to measure oxygen concentration in the laminar portion of the flame. Test conditions consisted of atmospheric pressure flames burning in quiescent air. Fuel from a 0.3mm inside diameter tube injector was issued at jet exit Reynolds numbers (Re) of 1300 to 1700. Helium mole percentage in the fuel was varied from 0 to 40%. Significant effects of buoyancy were observed in near field of the flame even-though the fuel jets were momentum-dominated. Results show an increase of breakpoint length in microgravity. Data suggest that transitional flames in earth-gravity at Re<1300 might become laminar in microgravity.

  1. Quality.

    ERIC Educational Resources Information Center

    Evans, Judith L.; Schaeffer, Sheldon

    1996-01-01

    This issue of the Coordinator's Notebook focuses on the quality of Early Childhood Care and Development (ECCD) programs. The bulk of the issue is devoted to an article "Quality in ECCD: Everyone's Concern" (Judith Evans), which reviews the need for a definition of high quality in ECCD programs and discusses how diverse stakeholders define quality.…

  2. Advanced practice quality improvement project: how to influence physician radiologic imaging ordering behavior.

    PubMed

    Durand, Daniel J; Kohli, Marc D

    2014-12-01

    With growing pressure on the health care sector to improve quality and reduce costs, the stakes associated with imaging appropriateness have never been higher. Although radiologists historically functioned as imaging gatekeepers, this role has been deprioritized in the recent past. This article discusses several potential practice quality improvement projects that can help radiologists regain their role as valued consultants and integral members of the care team. By applying the PDSA framework, radiologists can incrementally optimize their practice's consultation service. While it can be expected that different strategies will gain traction in different environments, it is our hope that the methodology described here will prove useful to most or all practices as a starting point. In addition, we discuss several other influencing techniques that extend beyond traditional consultation services. PMID:25467728

  3. Effects of buoyancy on lean premixed v-flames. Part 1: Laminar and turbulent flame structures

    SciTech Connect

    Cheng, R.K.; Bedat, B.; Kostiuk, L.W.

    1999-02-01

    Laser schlieren and planar laser-induced fluorescence techniques have been used to investigate laminar and turbulent v-flames in normal, inverse, and microgravity conditions under flow conditions that span the regimes of momentum domination (Ri < 0.1) and buoyancy domination (Ri > 0.1). Overall flame features shown by schlieren indicate that buoyancy dominates the entire flow field for conditions close to Ri = 1. With decreasing Ri, buoyancy effects are observed only in the far-field regions. Analyses of the mean flame angles demonstrate that laminar and turbulent flames do not have similar responses to buoyancy. Difference in the laminar +g and {minus}g flame angles decrease with Ri (i.e., increasing Re) and converge to the {micro}g flame angle at the momentum limit (Ri = 0). This is consistent with the notion that the effects of buoyancy diminish with increasing flow momentum. The +g and {minus}g turbulent flame angles, however, do not converge at Ri = 0. As shown by OH-PLIF images, the inconsistency in +g and {minus}g turbulent flame angles is associated with the differences in flame wrinkles. Turbulent flame wrinkles evolve more slowly in +g than in {minus}g. The difference in flame wrinkle structures, however, cannot be explained in terms of buoyancy that stretches the turbulent flame brushes in +g and compresses the flame brush in {minus}g. Flame wrinkling offers a mechanism through which the flame responds to the field effects of buoyancy despite increasing flow momentum. These observations point to the need to include both upstream and downstream contributions in theoretical analysis of flame turbulence interactions.

  4. [Advances in psychosocial interventions on quality of life of cancer survivors].

    PubMed

    Chen, Xuefen; Wang, Jiwei; Gong, Xiaohuan; Yu, Jinming

    2015-02-01

    In recent years, there has been increasing recognition of the importance of psychosocial interventions' studies on quality of life in cancer survivors because of improving cancer survival rate. This paper was an integrative literatures review of various psychosocial interventions including cognitive behavioral therapy, group-based supportive therapy, counseling or psychotherapy, education or psychoeducation and music therapy et al, and analyzing the complexity of psychosocial interventions' RCTs in oncology and the current characteristic of these studies in China. PMID:26081409

  5. Flame Suppression Agent, System and Uses

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F. (Inventor)

    2013-01-01

    Aqueous droplets encapsulated in a flame retardant polymer are useful in suppressing combustion. Upon exposure to a flame, the encapsulated aqueous droplets rupture and vaporize, removing heat and displacing oxygen to retard the combustion process. The polymer encapsulant, through decomposition, may further add free radicals to the combustion atmosphere, thereby further retarding the combustion process. The encapsulated aqueous droplets may be used as a replacement to halon, water mist and dry powder flame suppression systems.

  6. Kinetics of Chemical Reactions in Flames

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y.; Semenov, N.

    1946-01-01

    In part I of the paper the theory of flame propagation is developed along the lines followed by Frank-Kamenetsky and one of the writers. The development of chain processes in flames is considered. A basis is given for the application of the method of stationary concentrations to reactions in flames; reactions with branching chains are analyzed. The case of a diffusion coefficient different from the coefficient of temperature conductivity is considered.

  7. Microgravity Turbulent Gas-Jet Diffusion Flames

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A gas-jet diffusion flame is similar to the flame on a Bunsen burner, where a gaseous fuel (e.g., propane) flows from a nozzle into an oxygen-containing atmosphere (e.g., air). The difference is that a Bunsen burner allows for (partial) premixing of the fuel and the air, whereas a diffusion flame is not premixed and gets its oxygen (principally) by diffusion from the atmosphere around the flame. Simple gas-jet diffusion flames are often used for combustion studies because they embody the mechanisms operating in accidental fires and in practical combustion systems. However, most practical combustion is turbulent (i.e., with random flow vortices), which enhances the fuel/air mixing. These turbulent flames are not well understood because their random and transient nature complicates analysis. Normal gravity studies of turbulence in gas-jet diffusion flames can be impeded by buoyancy-induced instabilities. These gravitycaused instabilities, which are evident in the flickering of a candle flame in normal gravity, interfere with the study of turbulent gas-jet diffusion flames. By conducting experiments in microgravity, where buoyant instabilities are avoided, we at the NASA Lewis Research Center hope to improve our understanding of turbulent combustion. Ultimately, this could lead to improvements in combustor design, yielding higher efficiency and lower pollutant emissions. Gas-jet diffusion flames are often researched as model flames, because they embody mechanisms operating in both accidental fires and practical combustion systems (see the first figure). In normal gravity laboratory research, buoyant air flows, which are often negligible in practical situations, dominate the heat and mass transfer processes. Microgravity research studies, however, are not constrained by buoyant air flows, and new, unique information on the behavior of gas-jet diffusion flames has been obtained.

  8. 33 CFR 154.822 - Detonation arresters, flame arresters, and flame screens.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Detonation arresters, flame... BULK Vapor Control Systems § 154.822 Detonation arresters, flame arresters, and flame screens. (a) Each detonation arrester required by this part must: (1) Be capable of arresting a detonation from either side...

  9. Gravitational Effects on Cellular Flame Structure

    NASA Technical Reports Server (NTRS)

    Dunsky, C. M.; Fernandez-Pello, A. C.

    1991-01-01

    An experimental investigation has been conducted of the effect of gravity on the structure of downwardly propagating, cellular premixed propane-oxygen-nitrogen flames anchored on a water-cooled porous-plug burner. The flame is subjected to microgravity conditions in the NASA Lewis 2.2-second drop tower, and flame characteristics are recorded on high-speed film. These are compared to flames at normal gravity conditions with the same equivalence ratio, dilution index, mixture flow rate, and ambient pressure. The results show that the cellular instability band, which is located in the rich mixture region, changes little under the absence of gravity. Lifted normal-gravity flames near the cellular/lifted limits, however, are observed to become cellular when gravity is reduced. Observations of a transient cell growth period following ignition point to heat loss as being an important mechanism in the overall flame stability, dominating the stabilizing effect of buoyancy for these downwardly-propagating burner-anchored flames. The pulsations that are observed in the plume and diffusion flame generated downstream of the premixed flame in the fuel rich cases disappear in microgravity, verifying that these fluctuations are gravity related.

  10. Confined superadiabatic premixed flame-flow interaction

    SciTech Connect

    Najm, H.N.

    1995-12-31

    Laminar premixed unity-Lewis number flames are studied numerically, to examine flow-flame interaction in a two-dimensional closed domain. Two opposed planar flame fronts are perturbed sinusoidally and allowed to develop by consuming premixed reactants. Combustion heat release leads to global pressure and temperature rise in the domain, due to confinement. A superadiabatic condition, with products temperature rising with distance behind the flame front, is observed due to stagnation pressure rise. Variations in tangential strain rate behind the perturbed flame fronts, due to flame curvature and heat release, result in a modified local superadiabatic temperature gradient in the products. These variations in temperature gradients are shown to determine the net local confinement-heating rate in the products, leading to corresponding deviations in products temperature, and the local reaction rate along the flame front. These observations, which are not consistent with one-dimensional superadiabatic stagnation flame behavior, are a direct result of the unrestrained unsteady nature of two-dimensional flame-flow interaction.

  11. Imaging of premixed flames in microgravity

    NASA Astrophysics Data System (ADS)

    Kostiuk, L. W.; Cheng, R. K.

    1994-12-01

    A laser schlieren system which uses video recording and digital images analysis has been developed and applied successfully to microgravity combustion experiments performed in a drop-tower. The optical system and the experiment are installed within a small package which is subjected to free-fall. The images are recorded on video tape and are digitized and analyzed by a computer-controlled image processor. The experimental results include laminar and turbulent premixed conical flames in microgravity, normal positive gravity (upward), and reverse gravity (downward). The procedures to extract frequency information from the digitized images are described. Many gross features of the effects of gravity on premixed conical flames are found. Flames that ignite easily in normal gravity fail to ignite in microgravity. Buoyancy driven instabilities associated with an interface formed between the hot products and the cold surrounding air is the mechanism through which gravity influences premixed laminar and turbulent flames. In normal gravity, this causes the flame to flicker. In reverse gravity, - g, and microgravity, μg, the interface is stable and flame flickering ceases. The flickering frequencies of + g flames vary with changing upstream boundary conditions. The absence of flame flickering in μg suggest that μg flames would be less sensitive to these changes.

  12. Atomic absorption spectroscopy with high temperature flames.

    PubMed

    Willis, J B

    1968-07-01

    An account is given of the history of the development of high temperature flames for the atomic absorption measurement of metals forming refractory oxides. The principles governing the design of premix burners for such flames, and the relative merits of different types of nebulizer burner systems are described. After a brief account of the structure and emission characteristics of the premixed oxygen-acetylene and nitrous oxide-acetylene flames, the scope and limitations of the latter flame in chemical analysis are discussed. PMID:20068790

  13. Conditions for a split diffusion flame

    SciTech Connect

    Hertzberg, J.R.

    1997-05-01

    An unusual phenomenon has been observed in a methane jet diffusion flame subjected to axial acoustic forcing. At specific excitation frequencies and amplitudes, the driven flame splits into a central jet and one or two side jets. The splitting is accompanied by a partial detachment of the flame from the nozzle exit, a shortening of the flame by a factor of 2, and a change from the common yellow color of soot radiation to a clear blue flame. Such a phenomenon may be useful for the control of soot production or product species. The splitting is intermittent in time, bifurcating between the split flame and an ordinary single jet diffusion flame. The experiment consists of an unconfined axisymmetric methane jet formed by a short length of 0.4 cm diameter pipe. The pipe is connected to a large plenum surrounding a bass reflex loudspeaker enclosure that provides the excitation. Conditions producing split and bifurcated flames are presented. The drive frequencies required to cause bifurcation correspond to the first two peaks in the system`s frequency response curve. Bifurcating behavior was observed at a wide range of flow rates, ranging from very small flames of Reynolds number 240 up to turbulent lift-off, at Re = 1,000, based on the inner pipe diameter. It was not sensitive to nozzle length, but the details of the nozzle tip, such as orifice or pipe geometry, can affect the frequency range.

  14. Flow/Soot-Formation Interactions in Nonbuoyant Laminar Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Dai, Z.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.

    2002-01-01

    This is the final report of a research program considering interactions between flow and soot properties within laminar diffusion flames. Laminar diffusion flames were considered because they provide model flame systems that are far more tractable for theoretical and experimental studies than more practical turbulent diffusion flames. In particular, understanding the transport and chemical reaction processes of laminar flames is a necessary precursor to understanding these processes in practical turbulent flames and many aspects of laminar diffusion flames have direct relevance to turbulent diffusion flames through application of the widely recognized laminar flamelet concept of turbulent diffusion flames. The investigation was divided into three phases, considering the shapes of nonbuoyant round laminar jet diffusion flames in still air, the shapes of nonbuoyant round laminar jet diffusion flames in coflowing air, and the hydrodynamic suppression of soot formation in laminar diffusion flames.

  15. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    NASA Technical Reports Server (NTRS)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  16. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine

    PubMed Central

    Xiao, Wenming; Wu, Leihong; Yavas, Gokhan; Simonyan, Vahan; Ning, Baitang; Hong, Huixiao

    2016-01-01

    Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging “third generation sequencing” technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune

  17. Advanced industrial fluorescence metrology used for qualification of high quality optical materials

    NASA Astrophysics Data System (ADS)

    Engel, Axel; Becker, Hans-Juergen; Sohr, Oliver; Haspel, Rainer; Rupertus, Volker

    2003-11-01

    Schott Glas is developing and producing the optical material for various specialized applications in telecommunication, biomedical, optical, and micro lithography technology. The requirements on quality for optical materials are extremely high and still increasing. For example in micro lithography applications the impurities of the material are specified to be in the low ppb range. Usually the impurities in the lower ppb range are determined using analytical methods like LA ICP-MS and Neutron Activation Analysis. On the other hand absorption and laser resistivity of optical material is qualified with optical methods like precision spectral photometers and in-situ transmission measurements having UV lasers. Analytical methods have the drawback that they are time consuming and rather expensive, whereas the sensitivity for the absorption method will not be sufficient to characterize the future needs (coefficient much below 10-3 cm-1). In order to achieve the current and future quality requirements a Jobin Yvon FLUOROLOG 3.22 fluorescence spectrometer is employed to enable fast and precise qualification and analysis. The main advantage of this setup is the combination of highest sensitivity (more than one order of magnitude higher sensitivity that state of the art UV absorption spectroscopy) and fast measurement and evaluation cycles (several minutes compared to several hours necessary for chemical analytics). An overview is given for spectral characteristics and using specified standards. Moreover correlations to the material qualities are shown. In particular we have investigated the elementary fluorescence and absorption of rare earth element impurities as well as defects induced luminescence originated by impurities.

  18. Challenges, Solutions, and Quality Metrics of Personal Genome Assembly in Advancing Precision Medicine.

    PubMed

    Xiao, Wenming; Wu, Leihong; Yavas, Gokhan; Simonyan, Vahan; Ning, Baitang; Hong, Huixiao

    2016-01-01

    Even though each of us shares more than 99% of the DNA sequences in our genome, there are millions of sequence codes or structure in small regions that differ between individuals, giving us different characteristics of appearance or responsiveness to medical treatments. Currently, genetic variants in diseased tissues, such as tumors, are uncovered by exploring the differences between the reference genome and the sequences detected in the diseased tissue. However, the public reference genome was derived with the DNA from multiple individuals. As a result of this, the reference genome is incomplete and may misrepresent the sequence variants of the general population. The more reliable solution is to compare sequences of diseased tissue with its own genome sequence derived from tissue in a normal state. As the price to sequence the human genome has dropped dramatically to around $1000, it shows a promising future of documenting the personal genome for every individual. However, de novo assembly of individual genomes at an affordable cost is still challenging. Thus, till now, only a few human genomes have been fully assembled. In this review, we introduce the history of human genome sequencing and the evolution of sequencing platforms, from Sanger sequencing to emerging "third generation sequencing" technologies. We present the currently available de novo assembly and post-assembly software packages for human genome assembly and their requirements for computational infrastructures. We recommend that a combined hybrid assembly with long and short reads would be a promising way to generate good quality human genome assemblies and specify parameters for the quality assessment of assembly outcomes. We provide a perspective view of the benefit of using personal genomes as references and suggestions for obtaining a quality personal genome. Finally, we discuss the usage of the personal genome in aiding vaccine design and development, monitoring host immune-response, tailoring

  19. Advanced feedback control of indoor air quality using real-time computational fluid dynamics

    SciTech Connect

    Ratnam, E.; Campbell, T.; Bradley, R.

    1998-10-01

    This paper describes the partial implementation of a novel method of controlling indoor air quality (IAQ) for critical applications. The proposed method uses a numerical modeling technique known as computational fluid dynamics (CFD) for modeling the effect of variable ventilation rates for intelligent and rapid control of air contamination in space. This paper describes how a CFD model is made to run in real time linked to a feedback control loop. The technique was simulated in a graphical programming language. The simulation results indicate that a quasi-transient potential flow CFD model is a viable technique for feedback control of IAQ, and it is currently being implemented in an experimental validation.

  20. Advances in recreational water quality monitoring at Indiana Dunes National Lakeshore

    USGS Publications Warehouse

    Smith, Wendy; Nevers, Meredith; Whitman, Richard L.

    2006-01-01

    Indiana Dunes has improved its ability to protect the health of swimmers through better science-based management and increased understanding of contaminants. Most research has focused on Escherichia coli and its nature, sources, and distribution because it is widely accepted as an indicator of potential pathogens. Though research on E. coli and recreational water quality is continually generating new information, public beach managers may gain valuable insight into this management issue from our experience at Indiana Dunes. This article reviews one of the longest maintained indicator bacteria monitoring programs in the National Park System, highlights lessons learned, and summarizes research findings that may be of interest to public beach managers.

  1. Advances in clinical NK cell studies: Donor selection, manufacturing and quality control

    PubMed Central

    Koehl, U.; Kalberer, C.; Spanholtz, J.; Lee, D. A.; Miller, J. S.; Cooley, S.; Lowdell, M.; Uharek, L.; Klingemann, H.; Curti, A.; Leung, W.; Alici, E.

    2016-01-01

    ABSTRACT Natural killer (NK) cells are increasingly used in clinical studies in order to treat patients with various malignancies. The following review summarizes platform lectures and 2013–2015 consortium meetings on manufacturing and clinical use of NK cells in Europe and United States. A broad overview of recent pre-clinical and clinical results in NK cell therapies is provided based on unstimulated, cytokine-activated, as well as genetically engineered NK cells using chimeric antigen receptors (CAR). Differences in donor selection, manufacturing and quality control of NK cells for cancer immunotherapies are described and basic recommendations are outlined for harmonization in future NK cell studies. PMID:27141397

  2. In-flight quality and accuracy of attitude measurements from the CHAMP advanced stellar compass

    NASA Astrophysics Data System (ADS)

    Jørgensen, Peter S.; Jørgensen, John L.; Denver, Troelz; Betto, Maurizio

    2005-01-01

    The German geo-observations satellite CHAMP carries highly accurate vector instruments. The orientation of these relative to the inertial reference frame is obtained using star trackers. These advanced stellar compasses (ASC) are fully autonomous units, which provide, in real time, the absolute attitude with accuracy in the arc second range. In order to investigate the in-flight accuracy of the ASC, the terminology to characterize noise and biases is introduced. Relative instrument accuracy (RIA) and absolute instrument accuracy (AIA) can in principle be determined in-flight. However problems with modeling external noise sources often arise. The special CHAMP configuration with two star tracker cameras mounted fixed together provides an excellent opportunity to determine the AIA in-flight using the inter boresight angle.

  3. Evaluation of performance quality of an advanced scope physiotherapy role in a hospital emergency department

    PubMed Central

    Morris, J; Vine, K; Grimmer, K

    2015-01-01

    Background Physiotherapists working in advanced and extended scope roles internationally make a difference to workflow, performance targets, and patient satisfaction in areas traditionally served by medicine and nursing. Aim To assess the impact of an advanced scope of practice physiotherapist (ASoP-PT) service in a large Australian hospital emergency department (ED) by measuring national service and triage category indicators, patient and staff satisfaction. Methods Consecutive patients consulting the ASoP-PT were recruited over 53 weeks following service inception. Descriptions of ASoP-PT activities and patients were collected. Performance was assessed against national ED indicators for length of stay and wait. Patient and staff perspectives were assessed independently by semi-structured interviews. The physiotherapist was formally trained to extended scope of practice including competency in medicines, prescription and application. The legislation prevented him from applying these skills, therefore he worked in an ASoP-PT role in ED. Results The ASoP-PT treated on average, 72 patients per month in ten shifts per fortnight, consulting patients aged from 1 to 88 years. Patients largely presented with musculoskeletal problems in triage Categories 4 and 5. There were shorter length of wait and length of stay, when the ASoP-PT was on shift. However overall compliance with national performance targets was similar with and without the ASoP-PT. Staff and patient satisfaction was high, particularly valuing the ASoP-PT’s expertise in musculoskeletal injuries. Conclusion The ASoP-PT performed at least as well as other ED health care providers in meeting national triage targets. Had the legislation permitted his independent prescription of medicines, the ASoP-PT could have worked in an extended scope role, and his performance in meeting targets may have been better. PMID:26229515

  4. OH radical imaging in a DI diesel engine and the structure of the early diffusion flame

    SciTech Connect

    Dec, J.E.; Coy, E.B.

    1996-03-01

    Laser-sheet imaging studies have considerably advanced our understanding of diesel combustion; however, the location and nature of the flame zones within the combusting fuel jet have been largely unstudied. To address this issue, planar laser-induced fluorescence (PLIF) imaging of the OH radical has been applied to the reacting fuel jet of a direct-injection diesel engine of the ``heavy-duty`` size class, modified for optical access. An Nd:YAG-based laser system was used to pump the overlapping Q{sub 1}9 and Q{sub 2}8 lines of the (1,0) band of the A{yields}X transition at 284.01 nm, while the fluorescent emission from both the (0,O) and (1, I) bands (308 to 320 nm) was imaged with an intensified video camera. This scheme allowed rejection of elastically scattered laser light, PAH fluorescence, and laser-induced incandescence. OH PLIF is shown to be an excellent diagnostic for diesel diffusion flames. The signal is strong, and it is confined to a narrow region about the flame front because the threebody recombination reactions that reduce high flame-front OH concentrations to equilibrium levels occur rapidly at diesel pressures. No signal was evident in the fuel-rich premixed flame regions where calculations and burner experiments indicate that OH concentrations will be below detectable limits. Temporal sequences of OH PLIF images are presented showing the onset and development of the early diffusion flame up to the time that soot obscures the images. These images show that the diffusion flame develops around the periphery of the-downstream portion of the reacting fuel jet about half way through the premixed burn spike. Although affected by turbulence, the diffusion flame remains at the jet periphery for the rest of the imaged sequence.

  5. Health related quality of life as a prognostic in advanced cancer patients

    PubMed Central

    Steel, Jennifer; Geller, David; Robinson, Tiana; Savkova, Alexandra; Brower, Deborah; Marsh, J. Wallis; Tsung, Allan

    2014-01-01

    Background and Aims Evidence continues to accumulate regarding the association between health related quality of life (HRQL) and survival across chronic diseases. The aims of the present study were to investigate the prognostic value of HRQL in patients with hepatocellular carcinoma and cholangio carcinoma after adjusting for sociodemographic, disease-, and treatment-related factors. Methods A total of 321 patients diagnosed with hepatocellular or cholangio carcinoma were administered the Functional Assessment of Cancer Therapy-Hepatobiliary (FACT-Hep) instrument. Cox regression and Kaplan Meier survival analyses were performed to test the association between the five domains of HRQL and survival. Results Using Cox regression, overall HRQL was found to be significantly associated with survival (p=0.003), after adjusting for demographic, disease-specific factors and treatment. Subscales of the FACT-Hepatobiliary, including the physical well-being (p=0.02) and the Symptoms and Side Effects subscale (p=0.05), were also found to be significantly associated with survival after adjusting for demographic, disease specific factors, and treatment. Conclusion Health related quality of life was found to be prognostic of survival in patients with hepatocellular and cholangio carcinoma while covarying for demographic, disease-specific factors, and treatment. Stratifyng patients based on HRQL when testing novel treatments may be recommended. PMID:25104581

  6. Advances in a study of sky quality for astronomical observations in Colombia

    NASA Astrophysics Data System (ADS)

    González-Díaz, D.; Pinzón, G.

    2015-10-01

    The aim of this study is to determine the sky quality in Colombia for astronomical observations in the optic. About 10,000 images in infrared (6.7 mu m and 10.7 mu m) were analyzed from the GOES meteorological satellites in three night times taken during a period of five years (2008 to 2014). A novel methodology was followed to determine how clear or covered was the sky in a given image. Meteorological data also were used from the weather stations network of the national meteorological institute, IDEAM. A correlation between threshold temperature and altitude was found for a historical data series of about 30 years. The results of the average percentage of nights with clear skies per year or clear sky fraction (CSF) were validated with the reports on the number of hours of astronomical observation from the logbooks of Llano del Hato Observatory in Merida-Venezuela, obtaining a cumulative percentage difference during the five years less than 10%. Annual cloud covering was computed over the whole country and it was classified the nights as clear or usable based on the definition of a quality factor.

  7. Content and quality of websites supporting self-management of chronic breathlessness in advanced illness: a systematic review.

    PubMed

    Luckett, Tim; Disler, Rebecca; Hosie, Annmarie; Johnson, Miriam; Davidson, Patricia; Currow, David; Sumah, Anthony; Phillips, Jane

    2016-01-01

    Chronic breathlessness is a common, burdensome and distressing symptom in many advanced chronic illnesses. Self-management strategies are essential to optimise treatment, daily functioning and emotional coping. People with chronic illness commonly search the internet for advice on self-management. A review was undertaken in June 2015 to describe the content and quality of online advice on breathlessness self-management, to highlight under-served areas and to identify any unsafe content. Google was searched from Sydney, Australia, using the five most common search terms for breathlessness identified by Google Trends. We also hand-searched the websites of national associations. Websites were included if they were freely available in English and provided practical advice on self-management. Website quality was assessed using the American Medical Association Benchmarks. Readability was assessed using the Flesch-Kincaid grades, with grade 8 considered the maximum acceptable for enabling access. Ninety-one web pages from 44 websites met the inclusion criteria, including 14 national association websites not returned by Google searches. Most websites were generated in the USA (n=28, 64%) and focused on breathing techniques (n=38, 86%) and chronic obstructive pulmonary disease (n=27, 61%). No websites were found to offer unsafe advice. Adherence to quality benchmarks ranged from 9% for disclosure to 77% for currency. Fifteen (54%) of 28 written websites required grade ⩾9 reading level. Future development should focus on advice and tools to support goal setting, problem solving and monitoring of breathlessness. National associations are encouraged to improve website visibility and comply with standards for quality and readability. PMID:27225898

  8. Content and quality of websites supporting self-management of chronic breathlessness in advanced illness: a systematic review

    PubMed Central

    Luckett, Tim; Disler, Rebecca; Hosie, Annmarie; Johnson, Miriam; Davidson, Patricia; Currow, David; Sumah, Anthony; Phillips, Jane

    2016-01-01

    Chronic breathlessness is a common, burdensome and distressing symptom in many advanced chronic illnesses. Self-management strategies are essential to optimise treatment, daily functioning and emotional coping. People with chronic illness commonly search the internet for advice on self-management. A review was undertaken in June 2015 to describe the content and quality of online advice on breathlessness self-management, to highlight under-served areas and to identify any unsafe content. Google was searched from Sydney, Australia, using the five most common search terms for breathlessness identified by Google Trends. We also hand-searched the websites of national associations. Websites were included if they were freely available in English and provided practical advice on self-management. Website quality was assessed using the American Medical Association Benchmarks. Readability was assessed using the Flesch–Kincaid grades, with grade 8 considered the maximum acceptable for enabling access. Ninety-one web pages from 44 websites met the inclusion criteria, including 14 national association websites not returned by Google searches. Most websites were generated in the USA (n=28, 64%) and focused on breathing techniques (n=38, 86%) and chronic obstructive pulmonary disease (n=27, 61%). No websites were found to offer unsafe advice. Adherence to quality benchmarks ranged from 9% for disclosure to 77% for currency. Fifteen (54%) of 28 written websites required grade ⩾9 reading level. Future development should focus on advice and tools to support goal setting, problem solving and monitoring of breathlessness. National associations are encouraged to improve website visibility and comply with standards for quality and readability. PMID:27225898

  9. Flame acceleration studies in the MINIFLAME facility

    SciTech Connect

    Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

    1989-07-01

    Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

  10. Unsteady planar diffusion flames: Ignition, travel, burnout

    NASA Technical Reports Server (NTRS)

    Fendell, F.; Wu, F.

    1995-01-01

    In microgravity, a thin planar diffusion flame is created and thenceforth travels so that the flame is situated at all times at an interface at which the hydrogen and oxygen meet in stoichiometric proportion. If the initial amount of hydrogen is deficient relative to the initial amount of oxygen, then the planar flame will travel further and further into the half volume initially containing hydrogen, until the hydrogen is (virtually) fully depleted. Of course, when the amount of residual hydrogen becomes small, the diffusion flame is neither vigorous nor thin; in practice, the flame is extinguished before the hydrogen is fully depleted, owing to the finite rate of the actual chemical-kinetic mechanism. The rate of travel of the hydrogen-air diffusion flame is much slower than the rate of laminar flame propagation through a hydrogen-air mixture. This slow travel facilitates diagnostic detection of the flame position as a function of time, but the slow travel also means that the time to burnout (extinction) probably far exceeds the testing time (typically, a few seconds) available in earth-sited facilities for microgravity-environment experiments. We undertake an analysis to predict (1) the position and temperature of the diffusion flame as a function of time, (2) the time at which extinction of the diffusion flame occurs, and (3) the thickness of quench layers formed on side walls (i.e., on lateral boundaries, with normal vectors parallel to the diffusion-flame plane), and whether, prior to extinction, water vapor formed by burning will condense on these cold walls.

  11. Advanced Taste Sensors Based on Artificial Lipids with Global Selectivity to Basic Taste Qualities and High Correlation to Sensory Scores

    PubMed Central

    Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi

    2010-01-01

    Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306

  12. Assessing the quality of a deliberative democracy mini-public event about advanced biofuel production and development in Canada.

    PubMed

    Longstaff, Holly; Secko, David M

    2016-02-01

    The importance of evaluating deliberative public engagement events is well recognized, but such activities are rarely conducted for a variety of theoretical, political and practical reasons. In this article, we provide an assessment of the criteria presented in the 2008 National Research Council report on Public Participation in Environmental Assessment and Decision Making (NRC report) as explicit indicators of quality for the 2012 'Advanced Biofuels' deliberative democracy event. The National Research Council's criteria were selected to evaluate this event because they are decision oriented, are the products of an exhaustive review of similar past events, are intended specifically for environmental processes and encompass many of the criteria presented in other evaluation frameworks. It is our hope that the results of our study may encourage others to employ and assess the National Research Council's criteria as a generalizable benchmark that may justifiably be used in forthcoming deliberative events exploring different topics with different audiences. PMID:25164558

  13. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    NASA Astrophysics Data System (ADS)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  14. Flame temperature and location measurements of sooting premixed Bunsen flames by rainbow schlieren deflectometry.

    PubMed

    Ibarreta, Alfonso F; Sung, Chih-Jen

    2005-06-10

    Rainbow schlieren deflectometry (RSD) provides a simple and nonintrusive way of determining the temperature field of axisymmetric flames. This technique is specially suited for the detection of large temperature gradients, such as those near the flame location. We explore the feasibility and accuracy of using RSD to obtain the flame location and thermal structure of premixed Bunsen flames for varying fuel types, equivalence ratios, and soot loadings. Uncertainty analysis is also carried out to provide various ways to reduce RSD experimental error. The RSD technique is demonstrated to give useful data even for moderately and heavily sooting flames. PMID:16007857

  15. Biomass cofiring impacts on flame structure and emissions

    SciTech Connect

    Bradley Damstedt; Jesper M. Pederson; Dane Hansen; Todd Knighton; Justin Jones; Craig Christensen; Larry Baxter; Dale Tree

    2007-07-01

    The impacts of cofiring biomass and coal on flame structure and NO emissions are investigated in the context of a swirl-stabilized, pilot-scale burner with straw and coal fired independently. The comparatively low energy density of biomass generally leads to higher transport air requirements per unit energy, increasing the momentum of biomass streams relative to an energy equivalent coal stream in burner feeds. Increasing the primary momentum in this manner alters the flow field and stoichiometry patterns of the burner. Detailed species concentration measurements as well as particle sampling were employed to investigate the flame structures of both high and low straw primary air flowrates. Large straw particles penetrate the internal recirculation zone at the high primary air flowrate, elongating the flame structure by forming fuel-rich eddies. The knees (relatively dense sections of straw) of the straw penetrated much further into the reactor, forming a secondary combustion zone. The NO emission was seen to decrease as the straw primary air flowrate increased because of increased numbers of fuel-rich eddies providing more reducing zone, where the fuel nitrogen from the large particles was released. It is also shown that the fuel-rich eddies served as reburning and/or advanced reburning centers, reducing the effluent NO emission further. 27 refs., 9 figs., 2 tabs.

  16. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Advanced Cell Therapy Applications

    NASA Astrophysics Data System (ADS)

    Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter

    2015-09-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  17. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  18. NON-PREMIXED TURBULENT JET FLAMES

    EPA Science Inventory

    The paper, part of a general investigation of mixing and chemical reaction in turbulent jets, concerns the length of non-premixed turbulent jet flames in a stationary environment. Experimental results for the turbulent flame length of chemically reacting jets in water show both i...

  19. Flaming in CMC: Prometheus' Fire or Inferno's?

    ERIC Educational Resources Information Center

    Abrams, Zsuzsanna Ittzes

    2003-01-01

    Reports on a descriptive study with 75 intermediate college learners of German participating in two sessions of synchronous computer mediated communication during the course of a semester that investigated students' flaming behavior--aggressive interpersonal language and rude behavior. Shows that not only is flaming a very infrequent occurrence,…

  20. Active control for turbulent premixed flame simulations

    SciTech Connect

    Bell, John B.; Day, Marcus S.; Grcar, Joseph F.; Lijewski, Michael J.

    2004-03-26

    Many turbulent premixed flames of practical interest are statistically stationary. They occur in combustors that have anchoring mechanisms to prevent blow-off and flashback. The stabilization devices often introduce a level of geometric complexity that is prohibitive for detailed computational studies of turbulent flame dynamics. As a result, typical detailed simulations are performed in simplified model configurations such as decaying isotropic turbulence or inflowing turbulence. In these configurations, the turbulence seen by the flame either decays or, in the latter case, increases as the flame accelerates toward the turbulent inflow. This limits the duration of the eddy evolutions experienced by the flame at a given level of turbulent intensity, so that statistically valid observations cannot be made. In this paper, we apply a feedback control to computationally stabilize an otherwise unstable turbulent premixed flame in two dimensions. For the simulations, we specify turbulent in flow conditions and dynamically adjust the integrated fueling rate to control the mean location of the flame in the domain. We outline the numerical procedure, and illustrate the behavior of the control algorithm. We use the simulations to study the propagation and the local chemical variability of turbulent flame chemistry.

  1. Simple Flame Test Techniques Using Cotton Swabs

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Phelps, Amy J.; Banks, Catherine

    2004-01-01

    Three alternative methods for performing flame tests using cheaply and easily available cotton swabs are described. These flame tests are useful for chemical demonstrations or laboratory experiments because they are quick and easy to perform with easy cleanup and disposal methods.

  2. Analysis of Stabilization Mechanisms in Lifted Flames

    NASA Astrophysics Data System (ADS)

    Navarro-Martinez, S.; Kronenburg, A.

    2009-12-01

    Flame stabilization and the mechanisms that govern the dynamics at the flame base have been subject to numerous studies in recent years. Recent results using a combined Large Eddy Simulation-Conditional Moment Closure (LES-CMC) approach to model the turbulent flow field and the turbulence-chemistry interactions has been successful in predicting flame ignition and stabilization by auto-ignition, but LES-CMCs capability of the accurate modelling of the competition between turbulent quenching and laminar and turbulent flame propagation at the anchor point has not been resolved. This paper will consolidate LES-CMC results by analysing a wide range of lifted flame geometries with different prevailing stabilization mechanisms. The simulations allow a clear distinction of the prevailing stabilization mechanisms for the different flames, LES-CMC accurately predicts the competition between turbulence and chemistry during the auto-ignition process, however, the dynamics of the extinction process and turbulent flame propagation are not well captured. The averaging process inherent in the CMC methods does not allow for an instant response of the transported conditionally averaged reactive species to the changes in the flow conditions and any response of the scalars will therefore be delayed. Stationary or quasi-stationary conditions, however, can be well predicted for all flame configurations.

  3. Flame retardant cotton based highloft nonwovens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Flame retardancy has been a serious bottleneck to develop cotton blended very high specific volume bulky High loft fabrics. Alternately, newer approach to produce flame retardant cotton blended High loft fabrics must be employed that retain soft feel characteristics desirable of furnishings. Hence, ...

  4. Development of PIV for Microgravity Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Wernet, Mark P.; Yanis, William; Urban, David L.; Sunderland, Peter B.

    2003-01-01

    Results are presented from the application of Particle Image Velocimetry(PIV) to the overfire region of a laminar gas jet diffusion flame in normal gravity. A methane flame burning in air at 0.98 bar was considered. The apparatus demonstrated here is packaged in a drop rig designed for use in the 2.2 second drop tower.

  5. Dynamics of premixed confined swirling flames

    NASA Astrophysics Data System (ADS)

    Palies, P.; Durox, D.; Schuller, T.; Morenton, P.; Candel, S.

    2009-06-01

    Considerable effort is currently being extended to examine the fundamental mechanisms of combustion instabilities and develop methods allowing predictions of these phenomena. One central aspect of this problem is the dynamical response of the flame to incoming perturbations. This question is examined in the present article, which specifically considers the response of premixed swirling flames to perturbations imposed on the upstream side of the flame in the feeding manifold. The flame response is characterized by measuring the unsteady heat release induced by imposed velocity perturbations. A flame describing function is defined by taking the ratio of the relative heat release rate fluctuation to the relative velocity fluctuation. This quantity is determined for a range of frequencies and for different levels of incoming velocity perturbations. The flame dynamics is also documented by calculating conditional phase averages of the light emission from the flame and taking the Abel transform of these average images to obtain the flame geometry at various instants during the cycle of oscillation. These data can be useful to the determination of possible regimes of instability. To cite this article: P. Palies et al., C. R. Mecanique 337 (2009).

  6. Advances in the cryopreservation of sea-urchin embryos: Potential application in marine water quality assessment.

    PubMed

    Bellas, Juan; Paredes, Estefanía

    2011-06-01

    Among the most widely used biological techniques in marine pollution assessment, the sea-urchin embryo-larval bioassay is in an advanced developmental stage. Cryopreservation might help to overcome the problem of the spawning seasonality and therefore strengthen the use of those embryo-larval bioassays. This work investigates different factors influencing cryopreservation of sea-urchin embryos, including the cooling rates and holding temperatures, the seeding, or the impact of plunging into liquid nitrogen. The blastula stage yielded better results than the fertilised egg, and the most effective cryoprotectants combination was dimethyl sulfoxide 1.5M plus trehalose 0.04M. The optimised protocol developed begins with an initial hold at 4°C for 2min, followed by cooling at -1°Cmin(-1) to -12°C. At this point a seeding step was incorporated with a 2min hold, followed by a second cooling at -1°Cmin(-1) to -80°C. After a final hold of 2min the cryovials are transferred into liquid nitrogen for storage. Although the cryopreservation processes might cause a delay in the development of sea-urchin embryos, high larval growth (71-98% of controls) was obtained when cryopreserved blastulae were further incubated for 72-96h in artificial seawater. We conclude that embryo-larval bioassays with cryopreserved sea-urchin blastulae are suitable for use in marine pollution monitoring programs and may be considered as an acceptable solution to the reproductive seasonality of sea-urchin species. PMID:21338597

  7. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir, Class II

    SciTech Connect

    Hickman, T. Scott; Justice, James J.; Egg, Rebecca

    2001-08-07

    The Oxy operated Class 2 Project at West Welch Project is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO2 injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir demonstration characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO2 flood design based on the reservoir characterization.

  8. Public health implications of components of plastics manufacture. Flame retardants.

    PubMed Central

    Pearce, E M; Liepins, R

    1975-01-01

    The four processes involved in the flammability of materials are described and related to the various flame retardance mechanisms that may operate. Following this the four practical approaches used in improving flame retardance of materials are described. Each approach is illustrated with a number of typical examples of flame retardants or synthetic procedures used. This overview of flammability, flame retardance, and flame retardants used is followed by a more detailed examination of most of the plastics manufactured in the United States during 1973, their consumption patterns, and the primary types of flame retardants used in the flame retardance of the most used plastics. The main types of flame retardants are illustrated with a number of typical commercial examples. Statistical data on flame retardant market size, flame retardant growth in plastics, and price ranges of common flame retardants are presented. Images FIGURE 1. FIGURE 2. FIGURE 3. FIGURE 4. PMID:1175568

  9. Swirl effects on combustion characteristics of premixed flames

    SciTech Connect

    Daurer, M.; Gupta, A.K.; Lewis, M.J.

    1998-07-01

    The effects of swirl direction on the structure of two different premixed flames are investigated in a double concentric premixed swirl burner. The flames were stabilized with two annular jets and a central pipe. Mean and fluctuating temperatures, thermal integral and micro time scales and direct flame photographs were taken to receive information about global flame structures, flame stability and the distribution of the thermal field in these flames. Direct flame photographs, compensated temperature data as well as thermal micro-time scales of temperature data are presented to give a complete insight in the thermal distribution in these flames. It was found that the swirl direction of the stabilizing annular jets seems to take great influence on flame symmetry. The flame with the counter-swirling jets showed a very unsymmetrical behavior which was confirmed in flame photographs, temperature maps and time scales.

  10. Propagation of a Free Flame in a Turbulent Gas Stream

    NASA Technical Reports Server (NTRS)

    Mickelsen, William R; Ernstein, Norman E

    1956-01-01

    Effective flame speeds of free turbulent flames were measured by photographic, ionization-gap, and photomultiplier-tube methods, and were found to have a statistical distribution attributed to the nature of the turbulent field. The effective turbulent flame speeds for the free flame were less than those previously measured for flames stabilized on nozzle burners, Bunsen burners, and bluff bodies. The statistical spread of the effective turbulent flame speeds was markedly wider in the lean and rich fuel-air-ratio regions, which might be attributed to the greater sensitivity of laminar flame speed to flame temperature in those regions. Values calculated from the turbulent free-flame-speed analysis proposed by Tucker apparently form upper limits for the statistical spread of free-flame-speed data. Hot-wire anemometer measurements of the longitudinal velocity fluctuation intensity and longitudinal correlation coefficient were made and were employed in the comparison of data and in the theoretical calculation of turbulent flame speed.

  11. Flame propagation in partially premixed conditions

    NASA Astrophysics Data System (ADS)

    Ruetsch, G.; Poinsot, T.; Veynante, D.; Trouvé, A.

    1996-11-01

    Turbulent flame propagation is studied under inhomogenously premixed conditions via data from direct numerical simulations. Departures from the premixed case are studied using four different configurations, ranging from one dimensional unsteady flames to turbulent three-dimensional simulations. Simulations are performed in these cases with various values of the mean equivalence ratio, fluctuations about the mean equivlalence ratio, correlation length scales, and probability denisty functions of the mixture composition. Propagation characteristics are described in terms of the flamelet approach, where the the main contribution of partial premixing on flame propagation is due to flame wrinkling relative to modification of the mean flamelet structure. This behavior is consistent over a broad range of conditions, with the exception being extreme departures from stoichiometric conditions where flamability limits are exceeded and flame quenching is observed.

  12. Explosion triggering by an accelerating flame.

    PubMed

    Bychkov, Vitaly; Akkerman, V'yacheslav

    2006-06-01

    The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes the structure of a one-dimensional isentropic compression wave pushed by the flame front. The condition of explosion in the gas mixture ahead of the flame front is derived; the instant of the explosion is determined provided that a mechanism of chemical kinetics is known. As an example, it is demonstrated how the problem is solved in the case of a single reaction of Arrhenius type, controlling combustion both inside the flame front and ahead of the flame. The model of an Arrhenius reaction with a cutoff temperature is also considered. The limitations of the theory due to the shock formation in the compression wave are found. Comparison of the theoretical results to the previous numerical simulations shows good agreement. PMID:16906974

  13. Interaction Between Flames and Electric Fields Studied

    NASA Technical Reports Server (NTRS)

    Yuan, Zeng-Guang; Hegde, Uday

    2003-01-01

    The interaction between flames and electric fields has long been an interesting research subject that has theoretical importance as well as practical significance. Many of the reactions in a flame follow an ionic pathway: that is, positive and negative ions are formed during the intermediate steps of the reaction. When an external electric field is applied, the ions move according to the electric force (the Coulomb force) exerted on them. The motion of the ions modifies the chemistry because the reacting species are altered, it changes the velocity field of the flame, and it alters the electric field distribution. As a result, the flame will change its shape and location to meet all thermal, chemical, and electrical constraints. In normal gravity, the strong buoyant effect often makes the flame multidimensional and, thus, hinders the detailed study of the problem.

  14. Outwardly Propagating Flames at Elevated Pressures

    NASA Technical Reports Server (NTRS)

    Law, C. K.; Rozenchan, G.; Tse, S. D.; Zhu, D. L.

    2001-01-01

    Spherical, outwardly-propagating flames of CH4-O2-inert and H2-O2-inert mixtures were experimentally studied in a high pressure apparatus. Stretch-free flame speeds and Markstein lengths were extracted for a wide range of pressures and equivalence ratios for spherically-symmetric, smooth flamefronts and compared to numerical computations with detailed chemistry and transport, as well as existing data in the literature. Wrinkle development was examined for propagating flames that were unstable under our experimental conditions. Hydrodynamic cells developed for most H2-air and CH4-air flames at elevated pressures, while thermal-diffusive instabilities were also observed for lean and near-stoichiometric hydrogen flames at pressures above atmospheric. Strategies in suppressing or delaying the onset of cell formation have been assessed. Buoyancy effects affected sufficiently off-stoichiometric CH4 mixtures at high pressures.

  15. The Structure and Stability of Laminar Flames

    NASA Technical Reports Server (NTRS)

    Buckmaster, John

    1993-01-01

    This review paper on the structure and stability of laminar flames considers such phenomena as heterogeneous mixtures, acoustic instabilities, flame balls and related phenomena, radiation effects, the iodate oxidation of arsenous acid and 'liquid flame fronts', approximate kinetic mechanisms and asymptotic approximations, and tribrachial or triple flames. The topics examined here indicate three themes that may play an important role in laminar flame theory in the coming years: microgravity experiments, kinetic modeling, and turbulence modeling. In the discussion of microgravity experiments it is pointed out that access to drop towers, the Space Shuttle and, in due course, the Space Station Freedom will encourage the development of experiments well designed to isolate the fundamental physics of combustion.

  16. Effects of gravity on turbulent nonpremixed flames

    NASA Astrophysics Data System (ADS)

    Elghobashi, S.; Zhong, R.; Boratav, O.

    1999-10-01

    The paper examines the effects of buoyancy on the behavior of turbulent nonpremixed flames using the method of direct numerical simulation. We examine the effects of the interactions between turbulence, chemical reaction, and buoyancy on the fields of vorticity, turbulence kinetic energy, scalar dissipation, and reaction rate. In the buoyant flame, the baroclinic torque creates strong counter-rotating vortices saddling the flame surface. These vortices result in a significantly more wrinkled flame surface than in the nonbuoyant case. One of the effects of wrinkling is that it reduces the distances between the isosurfaces of the mixture fraction F, thus augmenting the local ∇F and the scalar dissipation ɛF, and consequently the reaction rate ṙT. The zones of maximum ṙT coincide with those of maximum tangential extensional strain. Our results show a direct correlation between ɛF and ṙT for both the buoyant and nonbuoyant flames.

  17. Propagation Regime of Iron Dust Flames

    NASA Technical Reports Server (NTRS)

    Tang, Francois-David; Goroshin, Samuel; Higgins, Andrew J.

    2012-01-01

    A flame propagating through an iron-dust mixture can propagate in two asymptotic regimes. When the characteristic time of heat transfer between particles is much smaller than the characteristic time of particle combustion, the flame propagates in the continuum regime where the heat released by reacting particles can be modelled as a space-averaged function. In contrast, when the characteristic time of heat transfer is much larger than the particle reaction time, the flame can no longer be treated as a continuum due to dominating effects associated with the discrete nature of the particle reaction. The discrete regime is characterized by weak dependence of the flame speed on the oxygen concentration compared to the continuum regime. The discrete regime is observed in flames propagating through an iron dust cloud within a gas mixture containing xenon, while the continuum regime is obtained when xenon is substituted with helium.

  18. Density fluctuations in premixed turbulent flames

    SciTech Connect

    Namazian, M.; Talbot, L.; Robben, F.

    1984-03-01

    The simultaneous two-point density fluctuations in a V-shaped turbulent flame are measured using a two-point Rayleigh scattering method. A wrinkle laminar flame model with finite instantaneous flame thickness is developed for the flames studied. The reaction front probability density function (pdf) is both measured directly and also calculated from the measured mean density. An analytical expression for this pdf is given which is derived based on a thin flame model. The mean, rms and correlation coefficients are calculated using the finite reaction front thickness model and the results are compared with the experimental data. The pdf of the intermediate states are shown to be due to the reaction front thickness.

  19. Edge Diffusion Flame Propagation and Stabilization Studied

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath R.

    2004-01-01

    In most practical combustion systems or fires, fuel and air are initially unmixed, thus forming diffusion flames. As a result of flame-surface interactions, the diffusion flame often forms an edge, which may attach to burner walls, spread over condensed fuel surfaces, jump to another location through the fuel-air mixture formed, or extinguish by destabilization (blowoff). Flame holding in combustors is necessary to achieve design performance and safe operation of the system. Fires aboard spacecraft behave differently from those on Earth because of the absence of buoyancy in microgravity. This ongoing in-house flame-stability research at the NASA Glenn Research Center is important in spacecraft fire safety and Earth-bound combustion systems.

  20. Rayleigh-Taylor Unstable Flames -- Fast or Faster?

    NASA Astrophysics Data System (ADS)

    Hicks, E. P.

    2015-04-01

    Rayleigh-Taylor (RT) unstable flames play a key role in the explosions of supernovae Ia. However, the dynamics of these flames are still not well understood. RT unstable flames are affected by both the RT instability of the flame front and by RT-generated turbulence. The coexistence of these factors complicates the choice of flame speed subgrid models for full-star Type Ia simulations. Both processes can stretch and wrinkle the flame surface, increasing its area and, therefore, the burning rate. In past research, subgrid models have been based on either the RT instability or turbulence setting the flame speed. We evaluate both models, checking their assumptions and their ability to correctly predict the turbulent flame speed. Specifically, we analyze a large parameter study of 3D direct numerical simulations of RT unstable model flames. This study varies both the simulation domain width and the gravity in order to probe a wide range of flame behaviors. We show that RT unstable flames are different from traditional turbulent flames: they are thinner rather than thicker when turbulence is stronger. We also show that none of the several different types of turbulent flame speed models accurately predicts measured flame speeds. In addition, we find that the RT flame speed model only correctly predicts the measured flame speed in a certain parameter regime. Finally, we propose that the formation of cusps may be the factor causing the flame to propagate more quickly than predicted by the RT model.

  1. Obesity and Cancer: The Oil that Feeds the Flame.

    PubMed

    Font-Burgada, Joan; Sun, Beicheng; Karin, Michael

    2016-01-12

    Although discussion of the obesity epidemic had become a cocktail party cliché, its impact on public health cannot be dismissed. In the past decade, cancer had joined the list of chronic debilitating diseases whose risk is substantially increased by hypernutrition. Here we discuss recent advances in understanding how obesity increases cancer risk and propose a unifying hypothesis according to which the major tumor-promoting mechanism triggered by hypernutrition is the indolent inflammation that takes place at particular organ sites, including liver, pancreas, and gastrointestinal tract. The mechanisms by which excessive fat deposition feeds this tumor-promoting inflammatory flame are diverse and tissue specific. PMID:26771116

  2. DOE ARM Climate Research Facility - Providing Research Quality Data Products for Climate Model Evaluation and Advancement

    NASA Astrophysics Data System (ADS)

    Voyles, J.; Mather, J. H.

    2012-12-01

    a third Mobile Facility will be deployed at Oliktok Point, Alaska. The new array of ARM instruments and sites are intended to build upon the existing ARM capabilities to better study the interactions among aerosol, clouds, and precipitation. Data from these instruments are now available and the development of advanced data products is underway.

  3. Fuel effects on flame lift-off under diesel conditions

    SciTech Connect

    Persson, Helena; Andersson, Oeivind; Egnell, Rolf

    2011-01-15

    An apparent relation between the lift-off length under diesel conditions and the ignition quality of a fuel has previously been reported. To cast light on the underlying mechanism, the current study aims to separate flame lift-off effects of the chemical ignition delay from those of other fuel properties under diesel conditions. Flame lift-off was measured in an optical diesel engine by high-speed video imaging of OH-chemiluminescence. Fuel and ambient-gas properties were varied during the experiment. Only a weak correlation was found between ignition delay and lift-off length. The data indicate that this correlation is due to a common, stronger correlation with the ambient oxygen concentration. The chemical ignition delay and the fuel type had similar, weak effects on the lift-off length. A recently proposed mechanism for lift-off stabilization was used to interpret the results. It assumes that reactants approaching the lift-off position of the jet are mixed with high-temperature products found along the edges of the flame, which trigger autoignition. In this picture, the fuel effect is most likely due to differences in the amount of mixing with high-temperature products that is required for autoignition. In the current experiment, all lift-off effects seem to arise from variations in the reactant and product temperatures, induced by fuel and ambient properties. (author)

  4. The flaming gypsy skirt injury.

    PubMed

    Leong, S C L; Emecheta, I E; James, M I

    2007-01-01

    On review of admissions over a 12-month period, we noted a significant number of women presenting with gypsy skirt burns. We describe all six cases to highlight the unique distribution of the wounds and the circumstances in which the accidents occurred. Four skirts were ignited by open fire heaters: two skirts ignited whilst the women were standing nearby, distracted with a telephone conversation; one brushed over the flame as she was walking past the heater; other whilst dancing in the lounge. One skirt was ignited by decorative candles placed on the floor during a social gathering. Another skirt was set alight by cigarette ember, whilst smoking in the toilet. Percentage surface area burned, estimated according to the rule of nines, showed that gypsy skirt burns were significant ranging from 7 to 14% total body surface area (TBSA) and averaging 9% TBSA. Two patients required allogenic split-skin grafts. Common sense care with proximity to naked flame is all that is needed to prevent this injury. PMID:17081546

  5. Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl

    NASA Astrophysics Data System (ADS)

    Liao, Ying-Hao

    This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO

  6. Analysis of the laminar flamelet concept for nonpremixed laminar flames

    SciTech Connect

    Claramunt, K.; Consul, R.; Carbonell, D.; Perez-Segarra, C.D.

    2006-06-15

    The goal of this paper is to investigate the application of the laminar flamelet concept to the multidimensional numerical simulation of nonpremixed laminar flames. The performance of steady and unsteady flamelets is analyzed. The deduction of the mathematical formulation of flamelet modeling is exposed and some commonly used simplifications are examined. Different models for the scalar dissipation rate dependence on the mixture fraction variable are analyzed. Moreover, different criteria to evaluate the Lagrangian-type flamelet lifetime for unsteady flamelets are investigated. Inclusion of phenomena such as differential diffusion with constant Lewis number for each species and radiation heat transfer are also studied. A confined co-flow axisymmetric nonpremixed methane/air laminar flame experimentally investigated by McEnally and Pfefferle (Combust. Sci. Technol. 116-117 (1996) 183-209) and numerically investigated by Bennett, McEnally, Pfefferle, and Smooke (Combust. Flame 123 (2000) 522-546), Consul, Perez-Segarra, Claramunt, Cadafalch, and Oliva (Combust. Theory Modelling 7 (3) (2003) 525-544), and Claramunt, Consul, Perez-Segarra, and Oliva (Combust. Flame 137 (2004) 444-457) has been used as a test case. Results obtained using the flamelet concept have been compared to data obtained from the full resolution of the complete transport equations using primitive variables. Finite-volume techniques over staggered grids are used to discretize the governing equations. A parallel multiblock algorithm based on domain decomposition techniques running with loosely coupled computers has been used. To assess the quality of the numerical solutions presented in this paper, a verification process based on the generalized Richardson extrapolation technique and on the grid convergence index (GCI) has been applied. (author)

  7. The Effects of Flame Structure on Extinction of CH4-O2-N2 Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Du, J.; Axelbaum, R. L.; Gokoglu, S. (Technical Monitor)

    1996-01-01

    The effects of flame structure on the extinction limits of CH4-O2-N2 counterflow diffusion flames were investigated experimentally and numerically by varying the stoichiometric mixture fraction Z(sub st), Z(sub st) was varied by varying free-stream concentrations, while the adiabatic flame temperature T(sub ad) was held fixed by maintaining a fixed amount of nitrogen at the flame. Z(sub st) was varied between 0.055 (methane-air flame) and 0.78 (diluted- methane-oxygen flame). The experimental results yielded an extinction strain rate K(sub ext) of 375/s for the methane-air flame, increasing monotonically to 1042/s for the diluted-methane-oxygen flame. Numerical results with a 58-step Cl mechanism yielded 494/s and 1488/s, respectively. The increase in K(sub ext) with Z(sub st) for a fixed T(sub ad) is explained by the shift in the O2 profile toward the region of maximum temperature and the subsequent increase in rates for chain-branching reactions. The flame temperature at extinction reached a minimum at Z(sub st) = 0.65, where it was 200 C lower than that of the methane-air flame. This significant increase in resistance to extinction is seen to correspond to the condition in which the OH and O production zones are centered on the location of maximum temperature.

  8. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K.

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a ReT,f0.5 scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given ReT,f, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by ReT,M0.5 irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames.

  9. Scaling of turbulent flame speed for expanding flames with Markstein diffusion considerations.

    PubMed

    Chaudhuri, Swetaprovo; Wu, Fujia; Law, Chung K

    2013-09-01

    In this paper we clarify the role of Markstein diffusivity, which is the product of the planar laminar flame speed and the Markstein length, on the turbulent flame speed and its scaling, based on experimental measurements on constant-pressure expanding turbulent flames. Turbulent flame propagation data are presented for premixed flames of mixtures of hydrogen, methane, ethylene, n-butane, and dimethyl ether with air, in near-isotropic turbulence in a dual-chamber, fan-stirred vessel. For each individual fuel-air mixture presented in this work and the recently published iso-octane data from Leeds, normalized turbulent flame speed data of individual fuel-air mixtures approximately follow a Re_{T,f}^{0.5} scaling, for which the average radius is the length scale and thermal diffusivity is the transport property of the turbulence Reynolds number. At a given Re_{T,f}^{}, it is experimentally observed that the normalized turbulent flame speed decreases with increasing Markstein number, which could be explained by considering Markstein diffusivity as the leading dissipation mechanism for the large wave number flame surface fluctuations. Consequently, by replacing thermal diffusivity with the Markstein diffusivity in the turbulence Reynolds number definition above, it is found that normalized turbulent flame speeds could be scaled by Re_{T,M}^{0.5} irrespective of the fuel, equivalence ratio, pressure, and turbulence intensity for positive Markstein number flames. PMID:24125342

  10. Flame Speeds and Energy Considerations for Explosions in a Spherical Bomb

    NASA Technical Reports Server (NTRS)

    Fiock, Ernest F; Marvin, Charles F , Jr; Caldwell, Frank R; Roeder, Carl H

    1940-01-01

    Simultaneous measurements were made of the speed of flame and the rise in pressure during explosions of mixtures of carbon monoxide, normal heptane, iso-octane, and benzene in a 10-inch spherical bomb with central ignition. From these records, fundamental properties of the explosive mixtures, which are independent of the apparatus, were computed. The transformation velocity, or speed at which flame advances into and transforms the explosive mixture, increases with both the temperature and the pressure of the unburned gas. The rise in pressure was correlated with the mass of charge inflamed to show the course of the energy developed.

  11. Flaming: More than a Necessary Evil for Academic Mailing Lists?

    ERIC Educational Resources Information Center

    Wang, Hongjie

    1996-01-01

    States that although Internet "gurus" advocate that users refrain from "flaming," in fact, flaming permeates the Internet. Explores the nature of flaming in its characteristics and forms as seen in academic discussion groups. Argues that flaming educates the ignorant, tames the uncouth, and promotes effective communication. (PA)

  12. Laminar Soot Processes Experiment Shedding Light on Flame Radiation

    NASA Technical Reports Server (NTRS)

    Urban, David L.

    1998-01-01

    The Laminar Soot Processes (LSP) experiment investigated soot processes in nonturbulent, round gas jet diffusion flames in still air. The soot processes within these flames are relevant to practical combustion in aircraft propulsion systems, diesel engines, and furnaces. However, for the LSP experiment, the flames were slowed and spread out to allow measurements that are not tractable for practical, Earth-bound flames.

  13. Application of Reservoir Characterization and Advanced Technology to Improve Recovery and Economics in a Lower Quality Shallow Shelf Carbonate Reservoir

    SciTech Connect

    Rebecca Egg

    2002-09-30

    The OXY-operated Class 2 Project at West Welch is designed to demonstrate how the use of advanced technology can improve the economics of miscible CO{sub 2} injection projects in lower quality Shallow Shelf Carbonate reservoirs. The research and design phase (Budget Period 1) primarily involved advanced reservoir characterization. The current demonstration phase (Budget Period 2) is the implementation of the reservoir management plan for an optimum miscible CO{sub 2} flood design based on the reservoir characterization. Although Budget Period 1 for the Project officially ended 12/31/96, reservoir characterization and simulation work continued during the Budget Period 2. During the fifth and sixth annual reporting periods (8/3/98-8/2/00) covered by this report, work continued on interpretation of the cross well seismic data to create porosity and permeability profiles which were distributed into the reservoir geostatistically. The initial interwell seismic CO{sub 2} monitor survey was conducted, the acquired data processed and interpretation started. Only limited well work and facility construction was conducted in the project area. The CO{sub 2} injection initiated in October 1997 was continued, although the operator had to modify the operating plan in response to low injection rates, well performance and changes in CO{sub 2} supply. CO{sub 2} injection was focused in a smaller area to increase the reservoir processing rate. By the end of the reporting period three producers had shown sustained oil rate increases and ten wells had experienced gas (CO{sub 2}) breakthrough.

  14. Variability, heritability and genetic advance in some agronomic and forage quality characters of spring triticale in western Canada.

    PubMed

    Aljarrah, Mazen; Oatway, Lori; Albers, Susan; Bergen, Colin

    2014-01-01

    The aim of this study was to estimate variability, broad sense heritability, and genetic advance for dry matter yield (DMY), days to anthesis (ANTH), plant height (HT), in-vitro fiber digestibility-30h (IVFD), lignin (LIGN), starch (STAR %), crude protein content (CP %), acid detergent fiber (ADF) and neutral detergent fiber (NDF) in spring triticale genotypes. Eighteen genotypes were tested at the Field Crop Development Centre (FCDC) in Lacombe, Alberta in 2010-2011 and 2011-2012 growing season. The experimental design was randomized complete block design with 3 replicates. Combined analysis of variance was carried out using SAS Enterprise 4.2 statistical package. Heritability was estimated following the variance component method. Simple correlation coefficients were determined among all traits using two years average data. The genotype mean squares were significant (P ≤ 0.05) for DMY, ANTH, HT, IFVD, ADF, NDF, STAR %, LIGN, and CP %. The effect of year was also highly significant on all studied traits. The phenotypic coefficient of variation was higher than the genetic coefficient of variation for all traits, indicating high influence of the environment on these traits. The significant genetic variability and the high heritability combined with high genetic advance of HT, STAR% and ADF in triticale genotypes suggested that selection could be successfully practiced for those traits. Correlation analysis showed significant and positive correlation of DMY with ANTH and HT, indicating that late and tall genotypes are more suitable as a forage type and they tend to produce more biomass yield. However, DMY did not show any significant correlation with the digestibility. IVFD and STAR % were negatively correlated with LIGN. In general, these results indicated that breeding for low lignin and high starch content will improve the digestibility in triticale genotypes. The preliminary results of this study were promising. Further research must include more diverse

  15. Advanced biosensing methodologies developed for evaluating performance quality and safety of emerging biophotonics technologies and medical devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilev, Ilko K.; Walker, Bennett; Calhoun, William; Hassan, Moinuddin

    2016-03-01

    Biophotonics is an emerging field in modern biomedical technology that has opened up new horizons for transfer of state-of-the-art techniques from the areas of lasers, fiber optics and biomedical optics to the life sciences and medicine. This field continues to vastly expand with advanced developments across the entire spectrum of biomedical applications ranging from fundamental "bench" laboratory studies to clinical patient "bedside" diagnostics and therapeutics. However, in order to translate these technologies to clinical device applications, the scientific and industrial community, and FDA are facing the requirement for a thorough evaluation and review of laser radiation safety and efficacy concerns. In many cases, however, the review process is complicated due the lack of effective means and standard test methods to precisely analyze safety and effectiveness of some of the newly developed biophotonics techniques and devices. There is, therefore, an immediate public health need for new test protocols, guidance documents and standard test methods to precisely evaluate fundamental characteristics, performance quality and safety of these technologies and devices. Here, we will overview our recent developments of novel test methodologies for safety and efficacy evaluation of some emerging biophotonics technologies and medical devices. These methodologies are based on integrating the advanced features of state-of-the-art optical sensor technologies and approaches such as high-resolution fiber-optic sensing, confocal and optical coherence tomography imaging, and infrared spectroscopy. The presentation will also illustrate some methodologies developed and implemented for testing intraocular lens implants, biochemical contaminations of medical devices, ultrahigh-resolution nanoscopy, and femtosecond laser therapeutics.

  16. Flame Oscillations In Non-Premixed Systems Diffusion Flames and Edge-Flames

    NASA Technical Reports Server (NTRS)

    Matalon, Moshe

    2003-01-01

    Diffusive-thermal instabilities are well known features of premixed and diffusion flames. In one of its form the instability appears as spontaneous oscillations. In premixed systems oscillations are predicted to occur when the effective Lewis number, defined as the ratio of the thermal diffusivity of the mixture to the mass diffusivity of the deficient component, is sufficiently larger than one. Oscillations would therefore occur in mixtures that are deficient in the less mobile reactant, namely in lean hydrocarbon-air or rich hydrogen-air mixtures. The theoretical predictions summarized above are in general agreement with experimental results; see for example [5] where a jet configuration was used and experiments were conducted for various inert-diluted propane and methane flames burning in inert-diluted oxygen. Nitrogen, argon and SF6 were used as inert in order to produce conditions of substantially different Lewis numbers and mixture strength. In accord with the predicted trend, it was found that oscillations arise at near extinction conditions, that for oscillations to occur it suffices that one of the two Lewis numbers be sufficiently large, and that oscillations are more likely to be observed when is relatively large.

  17. Structure of Propagating and Attached Hydrocarbon Flames

    NASA Technical Reports Server (NTRS)

    Takahashi, Fumiaki; Katta, Viswanath

    2004-01-01

    Direct numerical simulations with C3-chemistry and radiative heat-loss models have been performed to reveal the internal structure of propagating and attached flames in an axisymmetric fuel jet of methane, ethane, ethylene, acetylene, or propane in air under normal and zero gravity. Observations of the flames were also made at the NASA Glenn 2.2-Second Drop Tower. In computations, the fuel issued into quasi-quiescent air for a fixed mixing time before it was ignited along the centerline at stoichiometry. The edge of the flame propagated through a flammable layer at the laminar flame speed of the stoichiometric fuel-air mixture independent of gravity. For all cases, a peak reactivity spot, i.e., reaction kernel, was formed in the flame base, thereby holding a trailing diffusion flame. The location of the reaction kernel in the attached flames depended inversely on the reactivity. The reaction-kernel correlations between the reactivity and the velocity were developed further using variables related to local Damkahler and Peclet numbers.

  18. Progress and challenges in swirling flame dynamics

    NASA Astrophysics Data System (ADS)

    Candel, Sébastien; Durox, Daniel; Schuller, Thierry; Palies, Paul; Bourgouin, Jean-François; Moeck, Jonas P.

    2012-11-01

    In many continuous combustion processes the flame is stabilized by swirling the injected flow. This is the case for example in aeroengine combustors or in gas turbines where aerodynamic injectors impart a rotating component to the flow to create a central recirculation zone which anchors the flame. Swirling flame dynamics is of technical interest and also gives rise to interesting scientific issues. Some of the recent progress in this field will be reviewed. It is first shown that the swirler response to incident acoustic perturbations generates a vorticity wave which is convected by the flow. A result of this process is that the swirl number fluctuates. It is then shown that the flame response is defined by a combination of heat release rate fluctuations induced by the incoming acoustic and convective perturbations. This is confirmed by experimental measurements and by large eddy simulations of the reactive flow. Measured flame describing functions (FDFs) are then used to characterize the nonlinear response of swirling flames to incident perturbations and determine the regimes of instability of a generic system comprising an upstream manifold, an injector equipped with a swirler and a combustion chamber confining the flame. The last part of this article is concerned with interactions of the precessing vortex core (PVC) with incoming acoustic perturbations. The PVC is formed at high swirl number and this hydrodynamic helical instability gives rise to some interesting nonlinear interactions between the acoustic frequency, the PVC frequency and their difference frequency.

  19. Fluid-Plasma Coupling in Hydrogen Flames

    NASA Astrophysics Data System (ADS)

    Massa, Luca; Retter, Jonathan; Glumac, Nick; Elliot, Gregg; Freund, Jonathan

    2015-11-01

    Recent experiments show that hydrogen diffusion flames at low Reynolds number can be markedly affected by a dielectric barrier discharge (DBD) plasma. The flame surface deforms and flattens, and light emissions increase. We develop a simulation model to analyze the mechanisms that causes these changes, and apply it to numerical calculations of axisymmetric flames with co-annular DBD, matching the corresponding experiments. Body forces due to charge sheaths are found to be the main mechanism, with radicals produced by plasma excitation playing a secondary role for the present conditions. The non-actuated flame flickers at approximately 10 Hz, in good agreement with the experiments. As the DBD voltage is increased, the flame flattens and oscillations decrease, eventually ceasing above a threshold value. The fully flattened case has a stoichiometric surface lying flat across the fuel orifice, with flame temperature exceeding significantly the adiabatic flame value. A force based on a linearized plasma sheath model, calibrated against air experiments, reproduces the main features of the experiments and provides a good estimate for the threshold flattening potential. In faster flowing regimes, radical production by the plasma becomes more important.

  20. Premixed turbulent flame propagation in microgravity

    NASA Technical Reports Server (NTRS)

    Menon, S.; Jagoda, J.; Sujith, R.

    1995-01-01

    To reduce pollutant formation there is, at present, an increased interest in employing premixed fuel/air mixture in combustion devices. It is well known that greater control over local temperature can be achieved with premixed flames and with lean premixed mixtures, significant reduction of pollutants such as NO(x) can be achieved. However, an issue that is still unresolved is the predictability of the flame propagation speed in turbulent premixed mixtures, especially in lean mixtures. Although substantial progress has been made in recent years, there is still no direct verification that flame speeds in turbulent premixed flows are highly predictable in complex flow fields found in realistic combustors. One of the problems associated with experimental verification is the difficulty in obtaining access to all scales of motion in typical high Reynolds number flows, since, such flows contain scales of motion that range from the size of the device to the smallest Kolmogorov scale. The overall objective of this study is to characterize the behavior of turbulent premixed flames at reasonable high Reynolds number, Re(sub L). Of particular interest here is the thin flame limit where the laminar flame thickness is much smaller than the Kolmogorov scale. Thin flames occur in many practical combustion devices and will be numerically studied using a recently developed new formulation that is briefly described.

  1. Particle clustering in turbulent premixed flames

    NASA Astrophysics Data System (ADS)

    F, Battista; F, Picano; G, Troiani; M, Casciola C.

    2011-12-01

    Transport of inertial particles in turbulent reacting flows is frequent in a number of engineering and natural systems. Aim of this work is to illustrate the effect of the fluctuating instantaneous flame front on the particle spatial distribution. To this purpose a Direct Numerical Simulation of a Bunsen premixed flame seeded with small inertial particles is performed. The flamelet Stokes number Stfl, defined as the ratio between the particle relaxation time and the flame front time scale, is found to be the proper parameter to characterize the particle dynamics in a premixed flame. Clustering of inertial particles is apparent, especially beyond the flame front. The amount of particle segregation is here quantified by the clustering index and two distinct contributions are found to interplay. The first is independent of the particle inertia and affects also tracers. Actually it is associated to the abrupt variation of the particle concentration induced by the fluid expansion across the flame front. The second effect is mainly due to the time lag associated to the particle inertia that, in proximity of the front, affects both the mean and the fluctuation of the particle number in a fixed volume. The global effect results in an intense clustering of the inertial particles in the flame brush region with a maximum for particles with flamelet Stokes number: Stfl = Script O(1).

  2. Manipulating Flames with AC Electric Fields

    NASA Astrophysics Data System (ADS)

    Bishop, Kyle

    2013-11-01

    Time-oscillating electric fields applied to plasmas present in flames create steady flows of gas capable of shaping, directing, enhancing, or even extinguishing flames. Interestingly, electric winds induced by AC electric fields can be stronger that those due to static fields of comparable magnitude. Furthermore, unlike static fields, the electric force due to AC fields is localized near the surface of the flame. Consequently, the AC response depends only on the local field at the surface of the flame - not on the position of the electrodes used to generate the field. These results suggest that oscillating electric fields can be used to manipulate and control combustion processes at a distance. To characterize and explain these effects, we investigate a simple experimental system comprising a laminar methane-air flame positioned between two parallel-plate electrodes. We quantify both the electric and hydrodynamic response of the flame as a function of frequency and magnitude of the applied field. A theoretical model shows how steady gas flows emerge from the time-averaged electrical force due to the field-induced motion of ions generated within the flame and by their disappearance by recombination. These results provide useful insights into the application of AC fields to direct combustion processes.

  3. Role of compressibility in moderating flame acceleration in tubes.

    PubMed

    Bychkov, Vitaly; Akkerman, V'yacheslav; Valiev, Damir; Law, Chung K

    2010-02-01

    The effect of gas compression on spontaneous flame acceleration leading to deflagration-to-detonation transition is studied theoretically for small Reynolds number flame propagation from the closed end of a tube. The theory assumes weak compressibility through expansion in small Mach number. Results show that the flame front accelerates exponentially during the initial stage of propagation when the Mach number is negligible. With continuous increase in the flame velocity with respect to the tube wall, the flame-generated compression waves subsequently moderate the acceleration process by affecting the flame shape and velocity, as well as the flow driven by the flame. PMID:20365653

  4. Plasma-assisted combustion: Systematic decoupling of the kinetic enhancement mechanisms of ignition, flame propagation, and flame stabilization by long-lifetime species

    NASA Astrophysics Data System (ADS)

    Ombrello, Timothy M.

    The advancement of propulsion devices and combustion systems has created ever increasingly more restrictive reactive environments that push the limits of combustion technology. Precise combustion control for higher efficiencies, reduced emissions, and limited residence times to react can exceed what is possible with traditional combustion chemistry, and therefore require new and creative solutions. The application of plasma to combustion systems offers a promising solution, with significant enhancement having been shown by many researchers. Nevertheless, there remain many unknowns with respect to the key species and mechanisms of enhancement. Detailed systematic experimental and numerical investigations were performed to identify the kinetic mechanisms of combustion enhancement by long-lifetime species generated by non-equilibrium plasma discharges. Two burner systems were adopted and integrated with plasma discharge devices to establish unique combustion platforms to study ignition, flame propagation, and flame stabilization phenomena. A counterflow diffusion flame burner was adopted for the investigation of the effects of plasma on flame stabilization. A newly developed non-equilibrium magnetic gliding arc plasma discharge was integrated with a counterflow diffusion flame burner and was found to significantly extend the limits of flame stabilization when activating air. Laser diagnostic methods of planar Rayleigh scattering and OH planar laser-induced fluorescence were applied and comparison to numerical simulations showed that the extension of the extinction limits was predominately through thermal effects due to rapid recombination of radicals. To elucidate the kinetic effects of plasma, the counterflow burner was augmented for ignition experiments. The application of Fourier transform infrared spectroscopy and comparison to numerical simulations showed significant kinetic ignition enhancement by plasma-produced NOx when activating air. The results established

  5. Development of the High-Order Decoupled Direct Method in Three Dimensions for Particulate Matter: Enabling Advanced Sensitivity Analysis in Air Quality Models

    EPA Science Inventory

    The high-order decoupled direct method in three dimensions for particular matter (HDDM-3D/PM) has been implemented in the Community Multiscale Air Quality (CMAQ) model to enable advanced sensitivity analysis. The major effort of this work is to develop high-order DDM sensitivity...

  6. Characteristics of a direct flame-fired annealing furnace

    SciTech Connect

    Kojima, Toshio

    1997-04-01

    The No. 3 continuous annealing and pickling line with a direct flame vertical furnace, incorporating a flexible furnace control, has been designed to achieve improvement in product quality, operating cost and productivity. The actual capability index indicates a smooth operation: the productivity with ferritic type steel is higher than with austenitic. The development and introduction of the new large vertical furnace, coupled with the development of the flexible furnace control, has contributed to the technique of operating annealing furnaces at high temperatures of more than 1,000 C. It has enhanced the production of stainless steel together with a reduction in cost.

  7. Flame-Generated Vorticity Production in Premixed Flame-Vortex Interactions

    NASA Technical Reports Server (NTRS)

    Patnaik, G.; Kailasanath, K.

    2003-01-01

    In this study, we use detailed time-dependent, multi-dimensional numerical simulations to investigate the relative importance of the processes leading to FGV in flame-vortex interactions in normal gravity and microgravity and to determine if the production of vorticity in flames in gravity is the same as that in zero gravity except for the contribution of the gravity term. The numerical simulations will be performed using the computational model developed at NRL, FLAME3D. FLAME3D is a parallel, multi-dimensional (either two- or three-dimensional) flame model based on FLIC2D, which has been used extensively to study the structure and stability of premixed hydrogen and methane flames.

  8. Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory : determination of organophosphate pesticides in whole water by continuous liquid-liquid extraction and capillary-column gas chromatography with flame photometric detection

    USGS Publications Warehouse

    Jha, Virendra K.; Wydoski, Duane S.

    2003-01-01

    A method for the isolation of 20 parent organophosphate pesticides and 5 organophosphate pesticide degradates from natural-water samples is described. Compounds are extracted from water samples with methylene chloride using a continuous liquid-liquid extractor for 6 hours. The solvent is evaporated using heat and a flow of nitrogen to a volume of 1 milliliter and solvent exchanged to ethyl acetate. Extracted compounds are determined by capillary-column gas chromatography with flame photometric detection. Single-operator derived method detection limits in three water-matrix samples ranged from 0.003 to 0.009 microgram per liter. Method performance was validated by spiking all compounds in three different matrices at three different concentrations. Eight replicates were analyzed at each concentration in each matrix. Mean recoveries of most method compounds spiked in surface-water samples ranged from 54 to 137 percent and those in ground-water samples ranged from 40 to 109 percent for all pesticides. Recoveries in reagent-water samples ranged from 42 to 104 percent for all pesticides. The only exception was O-ethyl-O-methyl-S-propylphosphorothioate, which had variable recovery in all three matrices ranging from 27 to 79 percent. As a result, the detected concentration of O-ethyl-O-methyl-S-propylphosphorothioate in samples is reported in this method with an estimated remark code. Based on the performance issue, two more compounds, disulfoton and ethion monoxon, also will be reported in this method with an estimated remark code. Estimated-value compounds, which are ?E-coded? in the data base, do not meet the performance criteria for unqualified quantification, but are retained in the method because the compounds are important owing to high use or potential environmental effects and because analytical performance has been consistent and reproducible.

  9. Modeling studies of a turbulent pulsed jet flame using LES/PDF

    NASA Astrophysics Data System (ADS)

    Zhang, Pei; Wang, Haifeng

    2015-11-01

    The combustion field in a pulsed turbulent piloted jet flame is studied using an advanced large eddy simulation (LES) / probability density function (PDF) method. Measurement data with a joint OH-PLIF/OH* chemiluminescence/LDV system are available including the temporal series of the axial velocity and planar OH images. A time-dependent inflow condition is specified based on the measurement data. A direct comparison of the mean and rms velocities from the calculations and from the measurement shows a satisfactory prediction of the flow fields by using the employed modeling methods. The predicted OH mass fractions are compared qualitatively with the measured OH images at selected temporal and spatial locations. The comparison shows a good agreement. Conditional quantities and flame index are extracted from the simulations to examine the bimodal and multi-regime combustion dynamics in the flame. This paper is based upon work supported by the National Science Foundation under Grant No. CBET-1336075.

  10. Flaming alcoholic drinks: flirting with danger.

    PubMed

    Tan, Alethea; Frew, Quentin; Yousif, Ali; Ueckermann, Nicola; Dziewulksi, Peter

    2014-01-01

    Alcohol-related burn injuries carry significant mortality and morbidity rates. Flaming alcoholic beverages served in trendy bars and clubs are becoming increasingly popular. The dangers associated with an ignited alcoholic drink are often underestimated by party goers whose risk assessment ability is already impaired by heavy alcohol consumption. The authors present two cases demonstrating the varied severity of burn injuries associated with flaming alcoholic drinks, and their clinical management. Consumption of flaming alcoholic drinks poses potential risks for burn injuries. Further support is required to enable national and local agencies to implement effective interventions in drinking environments. PMID:24043236

  11. Biodegradation of brominated and organophosphorus flame retardants.

    PubMed

    Waaijers, Susanne L; Parsons, John R

    2016-04-01

    Brominated flame retardants account for about 21% of the total production of flame retardants and many of these have been identified as persistent, bioaccumulative and toxic. Nevertheless, debromination of these chemicals under anaerobic conditions is well established, although this can increase their toxicity. Consequently, the production and use of these chemicals has been restricted and alternative products have been developed. Many of these are brominated compounds and share some of the disadvantages of the chemicals they are meant to replace. Therefore, other, nonbrominated, flame retardants such as organophosphorus compounds are also being used in increasing quantities, despite the fact that knowledge of their biodegradation and environmental fate is often lacking. PMID:26748263

  12. Aromatics oxidation and soot formation in flames

    SciTech Connect

    Howard, J.B.; Pope, C.J.; Shandross, R.A.; Yadav, T.

    1993-12-01

    This project is concerned with the kinetics and mechanisms of aromatics oxidation and soot and fullerenes formation in flames. The scope includes detailed measurements of profiles of stable and radical species concentrations in low-pressure one-dimensional premixed flames. Intermediate species identifications and mole fractions, fluxes, and net reaction rates calculated from the measured profiles are used to test postulated reaction mechanisms. Particular objectives are to identify and to determine or confirm rate constants for the main benzene oxidation reactions in flames, and to characterize fullerenes and their formation mechanisms and kinetics.

  13. Flame Resistant Fibrous Materials Development

    NASA Technical Reports Server (NTRS)

    Coskren, R. J.

    1982-01-01

    Since 1973, Albany International Research Co. has been engaged by NASA-JSC under Contract No. NAS9-13673 to conduct studies aimed at developing fibers and flexible structures made therefrom which would provide improved flame resistance over existing commercially available materials in oxygen enriched atmospheres. A portion of the crew bay area life support system and crew equipment for the space shuttle was initially designed to function at a 30% oxygen, 70% nitrogen atmosphere at 9 psia pressure. This oxygen concentration imposed certain fire safety and smoke generation requirements which could not be completely met by commonly accepted textiles. Potentially useful new polymers were investigated both for fire safety and mechanical properties. During the course of the work, three candidate fibers were studied and evaluated and the results of each of these efforts are summarized.

  14. Flame resistant nontoxic polymer development

    NASA Technical Reports Server (NTRS)

    Paciorek, K. L.; Karle, D. W.; Kratzer, R. H.

    1975-01-01

    A number of homopolymers, copolymers, and terpolymers were synthesized employing styrene and four derivatives of diphenyl-p-styrylphosphine. The various polymeric compositions were prepared by two processes, (1) monomer bulk polymerizations and (2) substitution of preformed polydiphenyl-p-styrylphosphine. Results indicate that the majority of the compositions exhibit superior melting and flame retardant characteristics as compared to polystyrene, but are inferior in molding and film forming capability. Terpolymerization appears to result in the materials with the best overall combination of properties. Toxicological evaluation of three representative basic compositions in the form of molded washers showed that no mortalities occurred among the test animals exposed to the products of the oxidative thermal decomposition of the three materials.

  15. Flame tolerant secondary fuel nozzle

    SciTech Connect

    Khan, Abdul Rafey; Ziminsky, Willy Steve; Wu, Chunyang; Zuo, Baifang; Stevenson, Christian Xavier

    2015-02-24

    A combustor for a gas turbine engine includes a plurality of primary nozzles configured to diffuse or premix fuel into an air flow through the combustor; and a secondary nozzle configured to premix fuel with the air flow. Each premixing nozzle includes a center body, at least one vane, a burner tube provided around the center body, at least two cooling passages, a fuel cooling passage to cool surfaces of the center body and the at least one vane, and an air cooling passage to cool a wall of the burner tube. The cooling passages prevent the walls of the center body, the vane(s), and the burner tube from overheating during flame holding events.

  16. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Kwon, O. C.; Abid, M.; Porres, J.; Liu, J. B.; Ronney, P. D.; Struk, P. M.; Weiland, K. J.

    2003-01-01

    Several topics relating to premixed flame behavior at reduced gravity have been studied. These topics include: (1) flame balls; (2) flame structure and stability at low Lewis number; (3) experimental simulation of buoyancy effects in premixed flames using aqueous autocatalytic reactions; and (4) premixed flame propagation in Hele-Shaw cells. Because of space limitations, only topic (1) is discussed here, emphasizing results from experiments on the recent STS-107 Space Shuttle mission, along with numerical modeling efforts.

  17. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    SciTech Connect

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W.; King, Galen B.

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  18. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  19. The impact of groundwater quality on the removal of methyl tertiary-butyl ether (MTBE) using advanced oxidation technology.

    PubMed

    Tawabini, B; Fayad, N; Morsy, M

    2009-01-01

    In this study, the removal of methyl tertiary-butyl ether (MTBE) from contaminated groundwater using advanced oxidation technology was investigated. The UV/H(2)O(2) treatment process was applied to remove MTBE from two Saudi groundwater sources that have different quality characteristics with regard to their contents of inorganic species such as chloride, bromide, sulfates and alkalinity. MTBE was spiked into water samples collected from the two sources to a concentration level of about 250 microg/L. A 500 mL bench-scale forced-liquid circulation photoreactor was used to conduct the experiments. Two different UV lamps were utilized: 15 Watt low pressure (LP) and 150 Watt medium pressure (MP). Results of the study showed that the UV/H(2)O(2) process removed more than 90% of MTBE in 20 minutes when the MP lamp was used at an MTBE/H(2)O(2) molar ratio of 1:200. The results also showed that groundwater sources with higher levels of radical scavengers such as alkalinity, bromide, nitrate and sulfate showed lower rate of MTBE removal. PMID:19844063

  20. Time resolved three-dimensional flamebase imaging of a lifted jet flame by laser scanning

    NASA Astrophysics Data System (ADS)

    Weinkauff, J.; Greifenstein, M.; Dreizler, A.; Böhm, B.

    2015-10-01

    The measurement of flame surface evolution in both space and time is necessary for the advancement of knowledge concerning the physical processes contributing to lifted jet flame stabilisation. Previous studies either reproduce the flame front accurately in three-dimensional space or in time. In this study a measurement system capable of both is presented. Based on the Mie-scattering of oil droplets added to the jet flow, the system reconstructs the volumetric surface at the base of a lifted jet flame from a series of two-dimensional slices. The slices are created using a pulsed high-speed laser and a polygonal laser scanner unit which serves to sweep the laser beam through the measurement volume. A single high-speed camera is used for recording the subsequent measurement slices. The achieved temporal and spatial resolution as well as the accuracy and precision of the sheet placement are discussed in respect to the flames’ scales. The first results of the reconstruction of the lifted jet flame at its stabilisation point show the potential of such measurements to avoid the ambiguities in interpreting conventional 2D-data.

  1. Financial Distress and Its Associations With Physical and Emotional Symptoms and Quality of Life Among Advanced Cancer Patients

    PubMed Central

    Ferrer, Jeanette; Rieber, Alyssa G.; Rhondali, Wadih; Tayjasanant, Supakarn; Ochoa, Jewel; Cantu, Hilda; Chisholm, Gary; Williams, Janet; Frisbee-Hume, Susan; Bruera, Eduardo

    2015-01-01

    Objective. There are limited data on the effects of financial distress (FD) on overall suffering and quality of life (QOL) of patients with advanced cancer (AdCa). In this cross-sectional study, we examined the frequency of FD and its correlates in AdCa. Patients and Methods. We interviewed 149 patients, 77 at a comprehensive cancer center (CCC) and 72 at a general public hospital (GPH). AdCa completed a self-rated FD (subjective experience of distress attributed to financial problems) numeric rating scale (0 = best, 10 = worst) and validated questionnaires assessing symptoms (Edmonton Symptom Assessment System [ESAS]), psychosocial distress (Hospital Anxiety and Depression Scale [HADS]), and QOL (Functional Assessment of Cancer Therapy-General [FACT-G]). Results. The patients’ median age was 60 years (95% confidence interval [CI]: 58.6–61.5 years); 74 (50%) were female; 48 of 77 at CCC (62%) versus 13 of 72 at GPH (18%) were white; 21 of 77 (27%) versus 32 of 72 (38%) at CCC and GPH, respectively, were black; and 7 of 77 (9%) versus 27 of 72 (38%) at CCC and GPH, respectively, were Hispanic (p < .0001). FD was present in 65 of 75 at CCC (86%; 95% CI: 76%–93%) versus 65 of 72 at GPH (90%; 95% CI: 81%–96%; p = .45). The median intensity of FD at CCC and GPH was 4 (interquartile range [IQR]: 1–7) versus 8 (IQR: 3–10), respectively (p = .0003). FD was reported as more severe than physical distress, distress about physical functioning, social/family distress, and emotional distress by 45 (30%), 46 (31%), 64 (43%), and 55 (37%) AdCa, respectively (all significantly worse for patients at GPH) (p < .05). AdCa reported that FD was affecting their general well-being (0 = not at all, 10 = very much) with a median score of 5 (IQR: 1–8). FD correlated (Spearman correlation) with FACT-G (r = −0.23, p = .0057); HADS-anxiety (r = .27, p = .0014), ESAS-anxiety (r = .2, p = .0151), and ESAS-depression (r = .18, p = .0336). Conclusion. FD was very frequent in both

  2. Partially premixed flames in stagnating turbulence: The merging of planar triple flames

    SciTech Connect

    Bray, Ken; Champion, Michel; Libby, Paul A.

    2008-07-15

    The aim of this work, which takes a RANS perspective, is to consider the prospect of establishing a planar turbulent triple flame whose mean consists of two parallel premixed flame brushes separated by a nonpremixed flame brush. Experiments involving a counterflow between fuel-rich and fuel-lean turbulent streams are considered. A correlation of published experimental data is used to estimate premixed turbulent flame brush locations and brush thicknesses. Previously validated model calculations then allow an estimate to be made of the thickness of a central nonpremixed flame or mixing layer, a thickness which is shown to be strongly influenced by flame-turbulence interactions in the premixed flames. This thickness turns out to be orders-of-magnitude greater than the width of the hot burned gas region between the two premixed flames strongly suggesting that the three reacting flow regions will merge with each other. It is concluded that unlike the corresponding laminar counterflow planar turbulent triple flames will be difficult to establish in laboratory scale experiments. (author)

  3. Triple flame structure and dynamics at the stabilization point of a lifted jet diffusion flame

    SciTech Connect

    Najm, H.N.; Milne, R.B.; Devine, K.D.; Kempka, S.N.

    1998-03-01

    A coupled Lagrangian-Eulerian low-Mach-number numerical scheme is developed, using the vortex method for the momentum equations, and a finite difference approach with adaptive mesh refinement for the scalar conservation equations. The scheme is used to study the structure and dynamics of a forced lifted buoyant planar jet flame. Outer buoyant structures, driven by baroclinic vorticity generation, are observed. The flame base is found to stabilize in a region where flow velocities are sufficiently small to allow its existence. A triple flame is observed at the flame base, a result of premixing of fuel and oxidizer upstream of the ignition point. The structure and dynamics of the triple flame, and its modulation by jet vortex structures, are studied. The spatial extent of the triple flame is small, such that it fits wholly within the rounded flame base temperature field. The dilatation rate field outlines the edge of the hot fluid at the flame base. Neither the temperature field nor the dilatation rate field seem appropriate for experimental measurement of the triple flame in this flow.

  4. High pressure flame system for pollution studies with results for methane-air diffusion flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.; Maahs, H. G.

    1977-01-01

    A high pressure flame system was designed and constructed for studying nitrogen oxide formation in fuel air combustion. Its advantages and limitations were demonstrated by tests with a confined laminar methane air diffusion flame over the pressure range from 1 to 50 atm. The methane issued from a 3.06 mm diameter port concentrically into a stream of air contained within a 20.5 mm diameter chimney. As the combustion pressure is increased, the flame changes in shape from wide and convex to slender and concave, and there is a marked increase in the amount of luminous carbon. The height of the flame changes only moderately with pressure.

  5. Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames

    SciTech Connect

    Burke, Michael P.; Chen, Zheng; Ju, Yiguang; Dryer, Frederick L.

    2009-04-15

    The effect of nonspherical (i.e. cylindrical) bomb geometry on the evolution of outwardly propagating flames and the determination of laminar flame speeds using the conventional constant-pressure technique is investigated experimentally and theoretically. The cylindrical chamber boundary modifies the propagation rate through the interaction of the wall with the flow induced by thermal expansion across the flame (even with constant pressure), which leads to significant distortion of the flame surface for large flame radii. These departures from the unconfined case, especially the resulting nonzero burned gas velocities, can lead to significant errors in flame speeds calculated using the conventional assumptions, especially for large flame radii. For example, at a flame radius of 0.5 times the wall radius, the flame speed calculated neglecting confinement effects can be low by {proportional_to}15% (even with constant pressure). A methodology to estimate the effect of nonzero burned gas velocities on the measured flame speed in cylindrical chambers is presented. Modeling and experiments indicate that the effect of confinement can be neglected for flame radii less than 0.3 times the wall radius while still achieving acceptable accuracy (within 3%). The methodology is applied to correct the flame speed for nonzero burned gas speeds, in order to extend the range of flame radii useful for flame speed measurements. Under the proposed scaling, the burned gas speed can be well approximated as a function of only flame radius for a given chamber geometry - i.e. the correction function need only be determined once for an apparatus and then it can be used for any mixture. Results indicate that the flow correction can be used to extract flame speeds for flame radii up to 0.5 times the wall radius with somewhat larger, yet still acceptable uncertainties for the cases studied. Flow-corrected burning velocities are measured for hydrogen and syngas mixtures at atmospheric and

  6. Laminar Diffusion Flame Studies (Ground- and Space-Based Studies)

    NASA Technical Reports Server (NTRS)

    Dai, Z.; El-Leathy, A. M.; Lin, K.-C.; Sunderland, P. B.; Xu, F.; Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2000-01-01

    Laminar diffusion flames are of interest because they provide model flame systems that are far more tractable for analysis and experiments than more practical turbulent diffusion flames. Certainly, understanding flame processes within laminar diffusion flames must precede understanding these processes in more complex turbulent diffusion flames. In addition, many properties of laminar diffusion flames are directly relevant to turbulent diffusion flames using laminar flamelet concepts. Laminar jet diffusion flame shapes (luminous flame boundaries) have been of particular interest since the classical study of Burke and Schumann because they are a simple nonintrusive measurement that is convenient for evaluating flame structure predictions. Thus, consideration of laminar flame shapes is undertaken in the following, emphasizing conditions where effects of gravity are small, due to the importance of such conditions to practical applications. Another class of interesting properties of laminar diffusion flames are their laminar soot and smoke point properties (i.e., the flame length, fuel flow rate, characteristic residence time, etc., at the onset of soot appearance in the flame (the soot point) and the onset of soot emissions from the flame (the smoke point)). These are useful observable soot properties of nonpremixed flames because they provide a convenient means to rate several aspects of flame sooting properties: the relative propensity of various fuels to produce soot in flames; the relative effects of fuel structure, fuel dilution, flame temperature and ambient pressure on the soot appearance and emission properties of flames; the relative levels of continuum radiation from soot in flames; and effects of the intrusion of gravity (or buoyant motion) on emissions of soot from flames. An important motivation to define conditions for soot emissions is that observations of laminar jet diffusion flames in critical environments, e.g., space shuttle and space station

  7. The conductive propagation of nuclear flames. 2: Convectively bounded flames in C + O and O + Ne + Mg cores

    NASA Technical Reports Server (NTRS)

    Timmes, F. X.; Woosley, S. E.; Taam, Ronald E.

    1994-01-01

    We determine the speeds, and many other physical properties, of flame fronts that propagate inward into degenerate and semidegenerate cores of carbon and oxygen (CO) and neon and oxygen (NeOMg) white dwarfs when such flames are bounded on their exterior by a convective region. Combustion in such fronts, per se, is incomplete, with only a small part of the initial mass function burned. A condition of balanced power is set up in the star where the rate of energy emitted as neutrinos from the convective region equals the power available from the unburned fuel that crosses the burning front. The propagation of the burning front itself is in turn limited by the temperature at the base of the convective shell, while cannot greatly exceed the adiabatic value. Solving for consistency between these two conditions gives a unique speed for the flame. Typical values for CO white dwarfs are a few hundredths of a centimeter per second. Flames in NeOMg mixtures are slower. Tables are presented in a form that can easily be implemented in stellar evolution codes and yield the rate at which the convective shell advances into the interior. Combining these velocities with the local equations for stellar structure, we find a minimum density for each gravitational potential below with the local equations for stellar structure, we find a minimum density for each gravitational potential below which the flame cannot propagate, and must die. Although detailed stellar models will have to be constructed to reslove some issues conclusively, our results that a CO white dwarf inginted at its edge will not burn carbon all the way to its center unless the mass of the white dwarf exceeds 0.8 solar mass. On the other hand, it is difficult to ignite carbon burning by compression alone anywhere in a white dwarf whose mass does not exceed 1.0 solar mass. Thus, compressionally ignited shell carbon burning in an accerting CO dwarf almost certainly propagates all the way to the center of the star

  8. Brominated Flame Retardants and Perfluorinated Chemicals

    EPA Science Inventory

    Brominated flame retardants (BFRs) and perfluorinated chemicals (PFCs) belong to a large class of chemicals known as organohalogens. It is believed that both BFRs and PFCs saved lives by reducing flammability of materials commonly used and bactericidal (biocidal) properties. Thes...

  9. Numerical calculations of strained premixed laminar flames

    NASA Astrophysics Data System (ADS)

    Darabiha, N.; Candel, S.; Marble, F. E.

    The structure of a strained laminar flame in the vicinity of a stagnation point is examined numerically. The stagnation point is established by the counterflow of fresh mixture and hot products. This situation is described by standard reactive boundary layer equations. The numerical scheme used to solve the similar boundary layer equations put in F-V form (block-implicit) is an adaptation of the schemes proposed by Blottner (1979). The calculations are performed first on an uniform grid and then confirmed with an adaptive grid method due to Smooke (1982). Numerical calculations allow an exact description of the flame structure in physical and also reduced coordinates. Predictions of Libby and Williams (1982) for high and intermediate values of the strain rate based on activation energy asymptotics are confirmed. For low strain rates (ordinary unstrained laminar flame) the mass rate of reaction per unit flame area differs from that obtained by activation energy asymptotics.

  10. Stability of the porous plug burner flame

    SciTech Connect

    Buckmaster, J.

    1983-12-01

    The linear stability of a premixed flame attached to a porous plug burner, using activaton energy asymptotics, is examined. Limit function-expansions are not an appropriate mathematical framework for this problem, and are avoided. A dispersion relation is obtained which defines the stability boundaries in the wave-, Lewis-number plane, and the movement of these boundaries is followed as the mass flux is reduced below the adiabatic value and the flame moves towards the burner from infinity. Cellular instability is suppressed by the burner, but the pulsating instability usually associated with Lewis numbers greater than 1 is, at first, enhanced. For some parameter values the flame is never stable for all wavenumbers the Lewis number stability band that exists for the unbounded flame disappears. For sufficiently small values of the stand-off distance the pulsating instability is suppressed. 9 references.

  11. Light collection device for flame emission detectors

    DOEpatents

    Woodruff, Stephen D.; Logan, Ronald G.; Pineault, Richard L.

    1990-01-01

    A light collection device for use in a flame emission detection system such as an on-line, real-time alkali concentration process stream monitor is disclosed which comprises a sphere coated on its interior with a highly diffuse reflective paint which is positioned over a flame emission source, and one or more fiber optic cables which transfer the light generated at the interior of the sphere to a detecting device. The diffuse scattering of the light emitted by the flame uniformly distributes the light in the sphere, and the collection efficiency of the device is greater than that obtainable in the prior art. The device of the present invention thus provides enhanced sensitivity and reduces the noise associated with flame emission detectors, and can achieve substantial improvements in alkali detection levels.

  12. DNS of autoigniting turbulent jet flame

    NASA Astrophysics Data System (ADS)

    Asaithambi, Rajapandiyan; Mahesh, Krishnan

    2014-11-01

    Direct numerical simulation of a round turbulent hydrogen jet injected into vitiated coflowing air is performed at a jet Reynolds number of 10,000 and the results are discussed. A predictor-corrector density based method for DNS/LES of compressible chemically reacting flows is developed and used on a cylindrical grid. A novel strategy to remove the center-line stiffness is developed. A fully developed turbulent pipe flow simulation is prescribed as the velocity inlet for the fuel jet. The flame base is observed to be stabilized primarily by autoignition. Further downstream the flame exhibits a diffusion flame structure with regions of rich and lean premixed regimes flanking the central diffusion flame. The lift-off height is well predicted by a simple relation between the ignition delay of the most-reactive mixture fraction and the streamwise velocity of the jet and coflow.

  13. Shatter-Resistant, Flame-Resistant Window

    NASA Technical Reports Server (NTRS)

    Richardson, William R.; Walker, Ernie D.

    1989-01-01

    Combustion-chamber window combines properties of polycarbonate and sapphire. Inner layer of sapphire, withstands flame in chamber. Outer layer of polycarbonate tough but susceptible to weakening by flame and protected from flame by sapphire layer. Resists flames, shattering, and high pressure. Windows withstand 60 lb/in. to second power (414 kPa) in hydrostatic pressure vessel. Also survives leak test under internal pressure of 2 atm (0.2 MPa) of helium and external pressure of 10 to negative fifth power torr (1.3 mPa). Has transmission density of 0.08 to 0.11 in visible light. In contrast, unbonded layers have transmission density of 0.13 to 0.16.

  14. Flame balls - Past, present and future

    NASA Technical Reports Server (NTRS)

    Buckmaster, J.; Ronney, P.; Smooke, M.

    1993-01-01

    This paper discusses analytical and numerical work that has been carried out in order to understand flame-balls and related phenomena that have been observed in microgravity experiments. The importance of heat losses is identified, whether from conduction, convection, or radiation. Accurate numerical simulations for hydrogen-air mixtures with radiation losses reveal a flammability limit of 3.5 percent of hydrogen by volume, a value close to the experimental one. The important role of stability analyses is emphasized, with particular attention to the role of three-dimensional instabilities in explaining unsteady spheroidal flames and flame-strings, objects that are observed in the experiments. We speculate that the dynamics of flame-strings is affected by in-depth radiation absorption for mixtures containing SF6, and report on some preliminary calculations in which this phenomenon is accounted for.

  15. Dynamics and structure of turbulent premixed flames

    NASA Technical Reports Server (NTRS)

    Bilger, R. W.; Swaminathan, N.; Ruetsch, G. R.; Smith, N. S. A.

    1995-01-01

    In earlier work (Mantel & Bilger, 1994) the structure of the turbulent premixed flame was investigated using statistics based on conditional averaging with the reaction progress variable as the conditioning variable. The DNS data base of Trouve and Poinsot (1994) was used in this investigation. Attention was focused on the conditional dissipation and conditional axial velocity in the flame with a view to modeling these quantities for use in the conditional moment closure (CMC) approach to analysis of kinetics in premixed flames (Bilger, 1993). Two remarkable findings were made: there was almost no acceleration of the axial velocity in the flame front itself; and the conditional scalar dissipation remained as high, or higher, than that found in laminar premixed flames. The first finding was surprising since in laminar flames all the fluid acceleration occurs through the flame front, and this could be expected also for turbulent premixed flames at the flamelet limit. The finding gave hope of inventing a new approach to the dynamics of turbulent premixed flames through use of rapid distortion theory or an unsteady Bernoulli equation. This could lead to a new second order closure for turbulent premixed flames. The second finding was contrary to our measurements with laser diagnostics in lean hydrocarbon flames where it is found that conditional scalar dissipation drops dramatically below that for laminar flamelets when the turbulence intensity becomes high. Such behavior was not explainable with a one-step kinetic model, even at non-unity Lewis number. It could be due to depletion of H2 from the reaction zone by preferential diffusion. The capacity of the flame to generate radicals is critically dependent on the levels of H2 present (Bilger, et al., 1991). It seemed that a DNS computation with a multistep reduced mechanism would be worthwhile if a way could be found to make this feasible. Truly innovative approaches to complex problems often come only when there is the

  16. PCBs, PBBs and Brominated Flame Retardants

    EPA Science Inventory

    This chapter introduces selected organohalogen chemicals such as polychlorinated biphenyls (PCB5), polychiorinated biphenyls (PBBs), and brominated flame retardants (BFRs) with emphasis on the background, physicochemical properties, environmental levels, health effects and possib...

  17. Modeling of hydrogen-air diffusion flame

    NASA Technical Reports Server (NTRS)

    Isaac, K. M.

    1988-01-01

    Work performed during the first six months of the project duration for NASA Grant (NAG-1-861) is reported. An analytical and computational study of opposed jet diffusion flame for the purpose of understanding the effects of contaminants in the reactants and thermal diffusion of light species on extinction and reignition of diffusion flames is in progress. The methodologies attempted so far are described.

  18. Flame resistant fibrous materials. [developed from chlorofluoropolymers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Four chlorofluoropolymer systems were developed that satisfactorily met the criteria for classification as self-extinguishing. Three of these systems consisted of Halar (a copolymer of chlorotrifluoroethylene and ethylene) and tin-based flame retardants. The fourth system was a copolymer of chlorotrifluoroethylene and tetrafluoroethylene with no flame retardants added. Production of fibers from all four candidates, by melt extrusion, was demonstrated. Fibers produced from the chlorotrifluoroethylene tetrafluoroethylene copolymer showed the most promise.

  19. Propagation of Turbulent Flames in Supernovae

    NASA Astrophysics Data System (ADS)

    Khokhlov, Alexei M.

    1995-08-01

    Turbulent thermonuclear burning is studied on scales relevant to the explosion of Type Ia supernovae. A scaling law is formulated for turbulent burning in a uniform gravitational field. The steady state turbulent flame speed is Dδt = f(α) √gL in the regime where the Froude number F = D2l/gL ≪ 1; g, L, Dl, and α = ρ0/P1 > 1 are the acceleration, characteristic scale of the problem, normal speed of the laminar flame, and ratio of the densities ahead and behind the flame, respectively; and f ≃ 1 is a universal function. In this regime, the turbulent flame speed does not depend on the laminar speed Dl and on details of burning on scales ≪L. A flame-capturing technique for modeling turbulent burning is described. It is used to numerically study the transition to turbulence and turbulent flame propagation in three dimensions. The results confirm the scaling law. The self-regulating mechanism underlying the scaling law is discussed. In Type Ia supernovae, steady state burning takes place on scales less than the radius of the flame, where the effects of spherical geometry and expansion are small. Larger scales influenced by these effects need to be resolved explicitly. Direct, ab initio three-dimensional numerical simulations of deflagration in supernovae thus become feasible. Effects of spherical geometry and expansion of matter on the propagation of turbulent flames are discussed. The expansion decreases large-scale turbulent motions and reduces the bulk rate of deflagration in a massive carbon-oxygen white dwarf. Results of a large-scale three-dimensional simulation of the deflagration explosion of a Type Ia supernova are presented.

  20. Fuel properties to enable lifted-flame combustion

    SciTech Connect

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  1. The structure of particle cloud premixed flames

    NASA Technical Reports Server (NTRS)

    Seshadri, K.; Berlad, A. L.

    1992-01-01

    The structure of premixed flames propagating in combustible systems containing uniformly distributed volatile fuel particles in an oxidizing gas mixture is analyzed. This analysis is motivated by experiments conducted at NASA Lewis Research Center on the structure of flames propagating in combustible mixtures of lycopodium particles and air. Several interesting modes of flame propagation were observed in these experiments depending on the number density and the initial size of the fuel particle. The experimental results show that steady flame propagation occurs even if the initial equivalence ratio of the combustible mixture based on the gaseous fuel available in the particles, phi sub u, is substantially larger than unity. A model is developed to explain these experimental observations. In the model, it is presumed that the fuel particles vaporize first to yield a gaseous fuel of known chemical composition which then reacts with oxygen in a one-step overall process. The activation energy of the chemical reaction is presumed to be large. The activation energy characterizing the kinetics of vaporization is also presumed to be large. The equations governing the structure of the flame were integrated numerically. It is shown that the interplay of vaporization kinetics and oxidation process can result in steady flame propagation in combustible mixtures where the value of phi sub u is substantially larger than unity. This prediction is in agreement with experimental observations.

  2. Premixed Turbulent Flame Propagation in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1999-01-01

    A combined numerical-experimental study has been carried out to investigate the structure and propagation characteristics of turbulent premixed flames with and without the influence of buoyancy. Experimentally, the premixed flame characteristics are studied in the wrinkled regime using a Couette flow facility and an isotropic flow facility in order to resolve the scale of flame wrinkling. Both facilities were chosen for their ability to achieve sustained turbulence at low Reynolds number. This implies that conventional diagnostics can be employed to resolve the smallest scales of wrinkling. The Couette facility was also built keeping in mind the constraints imposed by the drop tower requirements. Results showed that the flow in this Couette flow facility achieves full-developed turbulence at low Re and all turbulence statistics are in good agreement with past measurements on large-scale facilities. Premixed flame propagation studies were then carried out both using the isotropic box and the Couette facility. Flame imaging showed that fine scales of wrinkling occurs during flame propagation. Both cases in Ig showed significant buoyancy effect. To demonstrate that micro-g can remove this buoyancy effect, a small drop tower was built and drop experiments were conducted using the isotropic box. Results using the Couette facility confirmed the ability to carry out these unique reacting flow experiments at least in 1g. Drop experiments at NASA GRC were planned but were not completed due to termination of this project.

  3. Soot formation in unstrained diffusion flames

    NASA Astrophysics Data System (ADS)

    Robert, Etienne; Olofsson, Nils-Erik; Johnsson, Jonathan; Bladh, Henrik; Bengtsson, Per-Erik

    2011-11-01

    The formation of soot particles has been investigated in CH4/O2 diffusion flames using a burner which allows the creation of a nearly unstrained planar reaction sheet. The sooting limits, soot volume fraction and particle size were measured as a function of bulk flow across the flame mixture strength and transport properties of the reactants. Mass spectrometry was used to measure the effective mixture composition close to the flame and Laser Induced Incandescence (LII)for the soot volume fraction and particle size. The parameter space was mapped as follows: Starting from a stable non-sooting baseline flame, the mixture strength was progressively increased by raising the fuel volume fraction while keeping other parameters constant (bulk flow across the flame, oxidant and inert composition). As the mixture strength was increased, the soot volume fraction and particle size increased up to a point where very big soot particle aggregates became visible to the naked eye on the flame side of the sooting layer. The exact mechanism by which these super aggregates arise is unknown but it is postulated that the absence of strain in the flow field and the thermophoretic effect allows soot particles to remain in a region of the burning chamber suitable for growth for an extended period of time.

  4. Polydisperse spray diffusion flames in oscillating flow

    NASA Astrophysics Data System (ADS)

    Greenberg, Jerrold Barry; Katoshevski, David

    2016-03-01

    The phenomenon of droplet clustering or grouping found when a spray of droplets is moving in an oscillating host flow field is investigated for the case of a polydisperse spray that fuels a laminar co-flow diffusion flame. A mathematical solution is developed for the liquid phase based on use of small Stokes numbers for size sections into which the polydisperse spray size distribution is divided. Droplet clustering in the oscillatory flow field is accounted for by constructing a special model for the sectional vaporization Damkohler numbers in accordance with droplet size. Combining this with a formal solution for a gas phase Schvab-Zel'dovich variable yields the means whereby flame dynamics can be described. Results calculated from this solution demonstrate that preferential droplet size behaviour (with smaller droplets tending to cluster to a greater extent and reduce the vaporization Damkohler number more than larger ones) can have a major impact on the flame dynamics through local droplet enrichment with attendant consequences on the production of fuel vapour. The dynamics of the sort of flame (over- or under-ventilated) and the occurrence of flame pinching leading to multiple flame sheets are altered under these circumstances. However, potential control of the actual initial spray polydispersity may reduce the intensity of such effects.

  5. NO concentration imaging in turbulent nonpremixed flames

    SciTech Connect

    Schefer, R.W.

    1993-12-01

    The importance of NO as a pollutant species is well known. An understanding of the formation characteristics of NO in turbulent hydrocarbon flames is important to both the desired reduction of pollutant emissions and the validation of proposed models for turbulent reacting flows. Of particular interest is the relationship between NO formation and the local flame zone, in which the fuel is oxidized and primary heat release occurs. Planar imaging of NO provides the multipoint statistics needed to relate NO formation to the both the flame zone and the local turbulence characteristics. Planar imaging of NO has been demonstrated in turbulent flames where NO was seeded into the flow at high concentrations (2000 ppm) to determine the gas temperature distribution. The NO concentrations in these experiments were significantly higher than those expected in typical hydrocarbon-air flames, which require a much lower detectability limit for NO measurements. An imaging technique based on laser-induced fluorescence with sufficient sensitivity to study the NO formation mechanism in the stabilization region of turbulent lifted-jet methane flames.

  6. An elementary discussion of propellant flame geometry

    SciTech Connect

    Buckmaster, J.; Jackson, T.L.; Yao, J.

    1999-05-01

    The authors examine the geometry of diffusion flames generated by the burning of a heterogeneous solid propellant, using a simple model designed to provide qualitative insights. In the fast chemistry limit a strategy is used which has its roots in Burke and Schumann`s 1928 study of diffusion flames, albeit with different boundary conditions. This shows that the stoichiometric level surface (SLS) intersects the propellant surface at a point displaced from the fuel/oxidizer interface, and the variations of this displacement with Peclet number are discussed. The authors show that for model sandwich propellants, or their axisymmetric counterpart, the geometry of the SLS when the core is oxidizer is quite different from the geometry of the SLS when the core is fuel. Also, it is much easier to quench the flame on an oxidizer core, by reducing the Peclet number, than it is to quench the flame on a fuel core. When finite chemistry effects are accounted for, the flame only occupies a portion of the SLS, and there is a leading edge structure in which premixing plays a role. Enhancement of the burning rate due to premixing is identified, but a well-defined tribrachial structure is not observed. The authors show how a sharp reduction in pressure can lead to a detachment of the flame from the SLS, with subsequent quenching as it is swept downstream.

  7. Sensing flame structure by process tomography.

    PubMed

    Liu, Jing; Liu, Shi; Zhou, Wanting; Qi, Xin; Lei, Jing; Mu, Huaiping

    2016-06-28

    Non-intrusive visualization of the structure of flames can offer us many advantages in studying the reaction mechanisms of combustion and observing special distributions of the parameters required for the development of equipment such as jet engines and gas turbines. Process tomography is a relatively new technique for such a task, but is useful owing to its fast speed and capability of detecting signals related to ionizations caused by chemical reactions and thermal effects. Electric capacitance tomography (ECT) is one of the process tomographic techniques. ECT usually comprises a sensor array of electrodes that detect permittivity variations in the measuring zone, a data-logging device and a computer that controls data acquisition and carries out image reconstruction. There have been studies on ECT imaging of flames; however, ECT has not been exploited sufficiently to reveal the inner structure of the flames. In this study, a sensor with planar electrodes is created, and the associated three-dimensional sensitivity map is generated by the finite-element method to detect flame structure. A series of experiments are carried out covering a range of feed rates of fuel and air. Data are collected by the ECT sensor and hardware. The results of the ECT reconstruction show good agreement with actual features, and the structure of the flame is found. This opens up a new route for the study of flames. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185962

  8. Quantitative Species Measurements In Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Chen, Shin-Juh; Pilgrim, Jeffrey S.; Silver, Joel A.; Piltch, Nancy D.

    2003-01-01

    The capability of models and theories to accurately predict and describe the behavior of low gravity flames can only be verified by quantitative measurements. Although video imaging, simple temperature measurements, and velocimetry methods have provided useful information in many cases, there is still a need for quantitative species measurements. Over the past decade, we have been developing high sensitivity optical absorption techniques to permit in situ, non-intrusive, absolute concentration measurements for both major and minor flames species using diode lasers. This work has helped to establish wavelength modulation spectroscopy (WMS) as an important method for species detection within the restrictions of microgravity-based measurements. More recently, in collaboration with Prof. Dahm at the University of Michigan, a new methodology combining computed flame libraries with a single experimental measurement has allowed us to determine the concentration profiles for all species in a flame. This method, termed ITAC (Iterative Temperature with Assumed Chemistry) was demonstrated for a simple laminar nonpremixed methane-air flame at both 1-g and at 0-g in a vortex ring flame. In this paper, we report additional normal and microgravity experiments which further confirm the usefulness of this approach. We also present the development of a new type of laser. This is an external cavity diode laser (ECDL) which has the unique capability of high frequency modulation as well as a very wide tuning range. This will permit the detection of multiple species with one laser while using WMS detection.

  9. Quantitative Species Measurements in Microgravity Combustion Flames

    NASA Technical Reports Server (NTRS)

    Silver, Joel A.; Wood, William R.; Chen, Shin-Juh; Dahm, Werner J. A.; Piltch, Nancy D.

    2001-01-01

    Flame-vortex interactions are canonical configurations that can be used to study the underlying processes occurring in complicated turbulent reacting flows. The elegant simplicity of the flame-vortex interaction permits the study of these complex interactions under relatively controllable experimental configurations, in contrast to direct measurements in turbulent flames. The ability to measure and model the fundamental phenomena that occur in a turbulent flame, but with time and spatial scales which are amenable to our diagnostics, permits significant improvements in the understanding of turbulent combustion under both normal and reduced gravity conditions. In this paper, we report absolute mole fraction measurements of methane in a reacting vortex ring. These microgravity experiments are performed in the 2.2-sec drop tower at NASA Glenn Research Center. In collaboration with Drs. Chen and Dahm at the University of Michigan, measured methane absorbances are incorporated into a new model from which the temperature and concentrations of all major gases in the flame can be determined at all positions and times in the development of the vortex ring. This is the first demonstration of the ITAC (Iterative Temperature with Assumed Chemistry) approach, and the results of these computations and analyses are presented in a companion paper by Dahm and Chen at this Workshop. We believe that the ITAC approach will become a powerful tool in understanding a wide variety of combustion flames under both equilibrium and non-equilibrium conditions.

  10. Flame four-dimensional deflection tomography with compressed-sensing-revision reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Zhao, Minmin; Liu, Zhigang; Wu, Zhaohang

    2016-08-01

    Deflection tomography with limited angle projections was investigated to visualize a premixed flame. A projection sampling system for deflection tomography was used to obtain chronological deflectogram arrays at six view angles with only a pair of gratings. A new iterative reconstruction algorithm with deflection angle compressed-sensing revision was developed to improve reconstruction-distribution quality from incomplete projection data. Numerical simulation and error analysis provided a good indication of algorithm precision and convergence. In the experiment, 150 fringes were processed, and temperature distributions in 20 cross-sections were reconstructed from projection data in four instants. Four-dimensional flame structures and temperature distributions in the flame interior were visualized using the visualization toolkit. The experimental reconstruction was then compared with the result obtained from computational fluid dynamic analysis.

  11. A Method to Measure Flame Index in Turbulent Partially-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Rosenberg, David Ari

    This dissertation describes the development of a diagnostic technique and data processing routine to measure the flame index in partially-premixed flames, called the Flame Index Measurement Method. Many modern combustion applications involve conditions in which the fuel and oxidizer are only partially mixed prior to entering the flame. These partially-premixed flames contain some regions of premixed and some regions of non-premixed flamelets. New computational approaches use the flame index concept: premixed regions are identified and a premixed model is applied; non-premixed regions are also identified and a non-premixed model is applied. The flame index is defined as the normalized dot product of the gradients of the fuel and oxidizer mass fractions; it is +1 in premixed flamelets and is -1 in non-premixed flamelets. Previously there had been no experimentally measured values of flame index available to assess the modeling approaches. A new method has been developed to measure the flame index using planar laser-induced fluorescence tracers to indicate the sign and direction of the fuel and oxygen gradients. Through the modeling of premixed and non-premixed flamelets, acetone was selected as a fuel tracer and nitrogen dioxide was selected as an oxygen tracer. The fluorescence properties of both acetone and nitrogen dioxide were studied. With acetone seeded into the fuel, and nitrogen dioxide seeded into the air, the Flame Index Measurement Method was evaluated in laminar premixed and non-premixed methane/acetone/air flames, as well as in a well-defined turbulent partially-premixed burner, the Gas Turbine Model Combustor (GTMC). The flame index was measured in the GTMC with methane, propane, and syngas flames. Statistics (mean, variance, and probability mass functions) of the flame index are reported for the highly-turbulent partially-premixed GTMC flames. Two new statistical quantities were developed that describe the probability for the occurrence of premixed

  12. Flame Inhibition by Phosphorus-Containing Compounds in Lean and Rich Propane Flames

    SciTech Connect

    Curran, H; Korobeinichev, O P; Shvartsberg, V M; Shmakov, A G; Bolshova, T A; Jayaweera, T M; Melius, C F; Pitz, W J; Westbrook, C K

    2003-12-19

    Chemical inhibition of laminar propane flames by organophosphorus compounds has been studied experimentally, using a laboratory Mache Hebra nozzle burner and a flat flame burner with molecular beam mass spectrometry (MBMS), and with a computational flame model using a detailed chemical kinetic reaction mechanism. Both fuel-lean and fuel-rich propane flames were studied to examine the role of equivalence ratio in flame inhibition. The experiments examined a wide variety of organophosphorus compounds. We report on the experimental species flame profiles for tri-methyl phosphate (TMP) and compare them with the species flame profile results from modeling of TMP and di-methyl methyl phosphonate (DMMP). Both the experiments and kinetic modeling support and illustrate previous experimental studies in both premixed and non-premixed flames that inhibition efficiency is effectively the same for all of the organophosphorus compounds examined, independent of the molecular structure of the initial inhibitor molecule. The chemical inhibition is due to reactions involving the small P-bearing species HOPO{sub 2} and HOPO that are produced by the organophosphorus compounds (OPCs). The ratios of the HOPO{sub 2} and HOPO concentrations differ between the lean and rich flames, with HOPO{sub 2} dominant in lean flames while HOPO dominates in rich flames. The resulting HOPO{sub 2} and HOPO species profiles do not depend significantly on the initial source of the HOPO{sub 2} and HOPO and thus are relatively insensitive to the initial OPC inhibitor. A more generalized form of the original Twarowski mechanism for hydrocarbon radical recombination is developed to account for the results observed, and new theoretical values have been determined for heats of formation of the important P-containing species, using the BAC-G2 method.

  13. Particle Generation And Evolution In Silane (SiH4)/Acetylene (C2H2) Flames In Microgravity

    NASA Technical Reports Server (NTRS)

    Keil, D. G.

    2003-01-01

    The objective of this experimental program is to advance the understanding of the coupling of particle formation with gas phase combustion processes. The work utilizes the unique SiH4/C2H2 combustion system which generates particulate products ranging from high purity, white SiC to carbonaceous soot depending on equivalence ratio (Ref. 1). A goal of this work is to identify gas phase or particle formation processes that provide the enthalpy release needed to drive the combustion wave, and to locate the steps of the particle formation process that determine SiC stoichiometry and crystallinity. In a real sense, these SiH4/C2H2 flames act like highly sooty hydrocarbon flames, but with simpler chemistry. This simplification is expected to allow them to be used as surrogates to advance understanding of soot formation in such rich hydrocarbon flames. It is also expected that this improved understanding of SiC particle generation and evolution in these self-sustaining flames will advance the commercial potential of the flame process for the generation of high purity SiC powders.

  14. Propagation and stability of expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Jomaas, Grunde

    High-fidelity experiments were conducted to determine the laminar flame speeds of various fuels, to define the transition boundaries of both cellular and spiral flame front instabilities that develop over the flame surface, and to determine the cellular flame acceleration constants for outwardly propagating spherical flames in a near-constant pressure environment up to 60 atmospheres. The flame front movement was monitored using schlieren cinematography and recorded with a high-speed digital camera. Experiments were conducted for a wide range of pressures and equivalence ratios to yield flame speed data for acetylene, ethylene, ethane, propylene, propane, dimethyl ether, and hydrogen/carbon monoxide in air. These data were post-processed in order to account for stretch effects, yielding laminar, unstretched flame speeds and Markstein lengths. The results were compared with existing chemical kinetics mechanisms and used to suggest improvements. The instant of transition to cellularity was experimentally determined for various fuels and fuel mixtures and subsequently interpreted on the basis of hydrodynamic and diffusional-thermal instabilities. Experimental results show that the transition Peclet number, Pec = Rc/ℓL, assumes an almost constant value for the near-equidiffusive acetylene and ethylene flames with wide ranges in the mixture stoichiometry, oxygen concentration, and pressure, where Rc is the flame radius at transition and ℓL the laminar flame thickness. However, for the non-equidiffusive hydrogen and propane flames, Pec respectively increases and decreases somewhat linearly with the mixture equivalence ratio. Evaluation of Pec using the theory of Bechtold and Matalon show complete qualitative agreement and satisfactory quantitative agreement, demonstrating the insensitivity of Pec to all system parameters for equidiffusive mixtures, and the dominance of the Markstein number, Ze(Le-1), in destabilization for non-equidiffusive mixtures, where Ze is the

  15. Laminar and Turbulent Gaseous Diffusion Flames. Appendix C

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.; Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)

    2001-01-01

    Recent measurements and predictions of the properties of homogeneous (gaseous) laminar and turbulent non-premixed (diffusion) flames are discussed, emphasizing results from both ground- and space-based studies at microgravity conditions. Initial considerations show that effects of buoyancy not only complicate the interpretation of observations of diffusion flames but at times mislead when such results are applied to the non-buoyant diffusion flame conditions of greatest practical interest. This behavior motivates consideration of experiments where effects of buoyancy are minimized; therefore, methods of controlling the intrusion of buoyancy during observations of non-premixed flames are described, considering approaches suitable for both normal laboratory conditions as well as classical microgravity techniques. Studies of laminar flames at low-gravity and microgravity conditions are emphasized in view of the computational tractability of such flames for developing methods of predicting flame structure as well as the relevance of such flames to more practical turbulent flames by exploiting laminar flamelet concepts.

  16. Characterisation of an oxy-coal flame through digital imaging

    SciTech Connect

    Smart, John; Riley, Gerry; Lu, Gang; Yan, Yong

    2010-06-15

    This paper presents investigations into the impact of oxy-fuel combustion on flame characteristics through the application of digital imaging and image processing techniques. The characteristic parameters of the flame are derived from flame images that are captured using a vision-based flame monitoring system. Experiments were carried out on a 0.5 MW{sub th} coal combustion test facility. Different flue gas recycle ratios and furnace oxygen levels were created for two different coals. The characteristics of the flame and the correlation between the measured flame parameters and corresponding combustion conditions are described and discussed. The results show that the flame temperature decreases with the recycle ratio for both test coals, suggesting that the flame temperature is effectively controlled by the flue gas recycle ratio. The presence of high levels of CO{sub 2} at high flue gas recycle ratios may result in delayed combustion and thus has a detrimental effect on the flame stability. (author)

  17. A Computational Investigation of Sooting Limits of Spherical Diffusion Flames

    NASA Technical Reports Server (NTRS)

    Lecoustre, V. R.; Chao, B. H.; Sunderland, P. B.; Urban, D. L.; Stocker, D. P.; Axelbaum, R. L.

    2007-01-01

    Limiting conditions for soot particle inception in spherical diffusion flames were investigated numerically. The flames were modeled using a one-dimensional, time accurate diffusion flame code with detailed chemistry and transport and an optically thick radiation model. Seventeen normal and inverse flames were considered, covering a wide range of stoichiometric mixture fraction, adiabatic flame temperature, and residence time. These flames were previously observed to reach their sooting limits after 2 s of microgravity. Sooting-limit diffusion flames with residence times longer than 200 ms were found to have temperatures near 1190 K where C/O = 0.6, whereas flames with shorter residence times required increased temperatures. Acetylene was found to be a reasonable surrogate for soot precursor species in these flames, having peak mole fractions of about 0.01.

  18. Blowoff dynamics of bluff body stabilized turbulent premixed flames

    SciTech Connect

    Chaudhuri, Swetaprovo; Kostka, Stanislav; Renfro, Michael W.; Cetegen, Baki M.

    2010-04-15

    This article concerns the flame dynamics of a bluff body stabilized turbulent premixed flame as it approaches lean blowoff. Time resolved chemiluminescence imaging along with simultaneous particle image velocimetry and OH planar laser-induced fluorescence were utilized in an axisymmetric bluff body stabilized, propane-air flame to determine the sequence of events leading to blowoff and provide a quantitative analysis of the experimental results. It was found that as lean blowoff is approached by reduction of equivalence ratio, flame speed decreases and the flame shape progressively changes from a conical to a columnar shape. For a stably burning conical flame away from blowoff, the flame front envelopes the shear layer vortices. Near blowoff, the columnar flame front and shear layer vortices overlap to induce high local stretch rates that exceed the extinction stretch rates instantaneously and in the mean, resulting in local flame extinction along the shear layers. Following shear layer extinction, fresh reactants can pass through the shear layers to react within the recirculation zone with all other parts of the flame extinguished. This flame kernel within the recirculation zone may survive for a few milliseconds and can reignite the shear layers such that the entire flame is reestablished for a short period. This extinction and reignition event can happen several times before final blowoff which occurs when the flame kernel fails to reignite the shear layers and ultimately leads to total flame extinguishment. (author)

  19. Gravitational effects on the structure and propagation of premixed flames

    NASA Astrophysics Data System (ADS)

    Hamins, A.; Heitor, M.; Libby, P. A.

    The influence of gravity on the propagation velocity and shape of premixed laminar flames is studied experimentally over the entire flammability range of methane-air mixtures. In the experiments reported here a vertical tube 10 cm dia, closed on both ends and open in the middle is filled with reactants and ignited in its central plane so that flames propagate in both the upward and downward directions. Additional experiments are made in a vertical tube 5 cm dia with flames propagating from an open towards a closed end. Steady flame propagation is achieved over the entire range of equivalence ratios by locating a series of holes along the length of the tubes covered with a thin film which is vaporized by the passage of the flame. Measurements in the larger tube indicate that gravity affects both rich and lean laminar flames in that upward propagating flames are faster than downward. The shape of the flames is complex with the former roughly hemispherical, the latter flat but with a cellular structure. In near stoichiometric mixtures the flames are oscillatory, are unaffected by gravity and correspond to weakly turbulent flames. The results in the smaller tube indicate that upward moving flames propagate faster than downward moving flames over the entire range of equivalence ratios studied and that the flame shape is always hemispherical. The preliminary results for turbulent premixed flames propagating upward and downward are discussed.

  20. Flame attenuation effects on surface temperature measurements using IR thermography

    NASA Astrophysics Data System (ADS)

    de Vries, Jaap; Tabinowski, Robert

    2016-05-01

    Long-wave infrared (LWIR) cameras provide the unique ability to see through smoke and condensed water vapor. However, soot generated inside the flame does attenuate the LWIR signal. This work focuses on gas flame attenuation effects of LWIR signals originating from a blackbody. The experimental setup consists of time averaged, laboratory-scale turbulent diffusion flames with heat release rates set at 5 kW, 10 kW, and 15 kW. Propylene and ethylene were used as fuel, providing two different soot yields. A 30 cm by 30 cm blackbody was used with maximum surface temperatures set to 600°C. Both instantaneous and time-averaged blackbody temperature profiles through the flame were measured using a LWIR microbolometer camera (7.5-14 μm). Flame intermittency was quantified by color segmenting visible images. The experiments showed that low blackbody temperatures were significantly affected by the presence of the flame. At 600°C, the effect of flame absorption matches the emitted radiation from the flame itself. Using data obtained at various blackbody temperatures, the flame transmittance was obtained using a Generalized Reduced Gradient optimization method. The transmittance was lower for propylene flames compared to ethylene flames. Ethylene flames were shown to have higher temperatures. Using the values for flame radiance and transmissivity, the total averaged radiance of the flame plus the blackbody could be reproduced with 1% accuracy.

  1. The Effects of Gravity on Wrinkled Laminar Flames

    NASA Technical Reports Server (NTRS)

    Kostiuk, Larry W.; Zhou, Liming; Cheng, Robert K.

    1993-01-01

    The effects of gravity are significant to the dynamics of idealized unconfined open premixed flames. Moderate to low turbulence Reynolds number flames, i.e., wrinkled laminar flames, of various unconfined geometries have been used extensively for investigating fundamental processes of turbulent flame propagation and to validate theoretical models. Without the wall constraints, the flames are free to expand and interact with surrounding ambient air. The flow field in which the flame exists is determined by a coupling of burner geometry, flame orientation and the gravity field. These complex interactions raise serious questions regarding the validity of comparing the experimental data of open flames with current theoretical and numerical models that do not include the effects of gravity nor effects of the larger aerodynamic flowfield. Therefore, studies of wrinkled laminar flame in microgravity are needed for a better understanding of the role of gravity on flame characteristics such as the orientation, mean aerodynamics stretch, flame wrinkle size and burning rate. Our approach to characterize and quantify turbulent flame structures under microgravity is to exploit qualitative and quantitative flow visualization techniques coupled with video recording and computer controlled image analysis technologies. The experiments will be carried out in the 2.2 second drop tower at the NASA Lewis Research Center. The longest time scales of typical wrinkled laminar flames in the geometries considered here are in the order of 10 msec. Hence, the duration of the drop is sufficient to obtain the amount of statistical data necessary for characterize turbulent flame structures.

  2. The advanced launch system: Application of total quality management principles to low-cost space transportation system development

    NASA Astrophysics Data System (ADS)

    Wolfe, M. G.; Rothwell, T. G.; Rosenberg, D. A.; Oliver, M. B.

    Recognizing that a major inhibitor of man's rapid expansion of the use of space is the high cost (direct and induced) of space transportation, the U.S. has embarked on a major national program to radically reduce the cost of placing payloads into orbit while, at the same time, making equally radical improvements inlaunch system operability. The program is entitled "The Advanced Launch System" (ALS) and is a joint Department of Defense/National Aeronautics and Space Administration (DoD/NASA) program which will provide launch capability in the post 2000 timeframe. It is currently in Phase II (System Definition), which began in January 1989, and will serve as a major source of U.S. launch system technology over the next several years. The ALS is characterized by a new approach to space system design, development, and operation. The practices that are being implemented by the ALS are expected to affect the management and technical operation of all future launch systems. In this regard, the two most significant initiatives being implemented on the ALS program are the practices of Total Quality Management (TQM) and the Unified Information System (Unis). TQM is a DoD initiative to improve the quality of the DoD acquisition system, contractor management systems, and the technical disciplines associated with the design, development, and operation of major systems. TQM has been mandated for all new programs and affects the way every group within the system currently does business. In order to implement the practices of TQM, new methods are needed. A program on the scale of the ALS generates vast amounts of information which must be used effectively to make sound decisions. Unis is an information network that will connect all ALS participants throughout all phases of the ALS development. Unis is providing support for project management and system design, and in following phases will provide decision support for launch operations, computer integrated manufacturing, automated

  3. Effects of advanced treatment of municipal wastewater on the White River near Indianapolis, Indiana; trends in water quality, 1978-86

    USGS Publications Warehouse

    Crawford, Charles G.; Wangsness, David J.

    1993-01-01

    The City of Indianapolis has constructed state-of-the-art advanced municipal wastewater-treatment systems to enlarge and upgrade the existing secondary-treatment processes at its Belmont and Southport treatment plants. These new advanced-wastewater-treatment plants became operational in 1983. A nonparametric statistical procedure--a modified form of the Wilcoxon-Mann-Whitney rank-sum test--was used to test for trends in time-series water-quality data from four sites on the White River and from the Belmont and Southport wastewater-treatment plants. Time-series data representative of pre-advanced- (1978-1980) and post-advanced- (1983--86) wastewater-treatment conditions were tested for trends, and the results indicate substantial changes in water quality of treated effluent and of the White River downstream from Indianapolis after implementation of advanced wastewater treatment. Water quality from 1981 through 1982 was highly variable due to plant construction. Therefore, this time period was excluded from the analysis. Water quality at sample sites located upstream from the wastewater-treatment plants was relatively constant during the period of study (1978-86). Analysis of data from the two plants and downstream from the plants indicates statistically significant decreasing trends in effluent concentrations of total ammonia, 5-day biochemical-oxygen demand, fecal-coliform bacteria, total phosphate, and total solids at all sites where sufficient data were available for testing. Because of in-plant nitrification, increases in nitrate concentration were statistically significant in the two plants and in the White River. The decrease in ammonia concentrations and 5-day biochemical-oxygen demand in the White River resulted in a statistically significant increasing trend in dissolved-oxygen concentration in the river because of reduced oxygen demand for nitrification and biochemical oxidation processes. Following implementation of advanced wastewater treatment, the

  4. Characteristics of Non-Premixed Turbulent Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Hegde, U.; Yuan, Z. G.; Stocker, D. P.; Bahadori, M. Y.

    2001-01-01

    This project is concerned with the characteristics of turbulent hydrocarbon (primarily propane) gas-jet diffusion flames in microgravity. A microgravity environment provides the opportunity to study the structure of turbulent diffusion flames under momentum-dominated conditions (large Froude number) at moderate Reynolds number which is a combination not achievable in normal gravity. This paper summarizes progress made since the last workshop. Primarily, the features of flame radiation from microgravity turbulent jet diffusion flames in a reduced gravity environment are described. Tests were conducted for non-premixed, nitrogen diluted propane flames burning in quiescent air in the NASA Glenn 5.18 Second Zero Gravity Facility. Measured flame radiation from wedge-shaped, axial slices of the flame are compared for microgravity and normal gravity flames. Results from numerical computations of the flame using a k-e model for the turbulence are also presented to show the effects of flame radiation on the thermal field. Flame radiation is an important quantity that is impacted by buoyancy as has been shown in previous studies by the authors and also by Urban et al. It was found that jet diffusion flames burning under microgravity conditions have significantly higher radiative loss (about five to seven times higher) compared to their normal gravity counterparts because of larger flame size in microgravity and larger convective heat loss fraction from the flame in normal gravity. These studies, however, were confined to laminar flames. For the case of turbulent flames, the flame radiation is a function of time and both the time-averaged and time-dependent components are of interest. In this paper, attention is focused primarily on the time-averaged level of the radiation but the turbulent structure of the flame is also assessed from considerations of the radiation power spectra.

  5. Modeling Candle Flame Behavior In Variable Gravity

    NASA Technical Reports Server (NTRS)

    Alsairafi, A.; Tien, J. S.; Lee, S. T.; Dietrich, D. L.; Ross, H. D.

    2003-01-01

    The burning of a candle, as typical non-propagating diffusion flame, has been used by a number of researchers to study the effects of electric fields on flame, spontaneous flame oscillation and flickering phenomena, and flame extinction. In normal gravity, the heat released from combustion creates buoyant convection that draws oxygen into the flame. The strength of the buoyant flow depends on the gravitational level and it is expected that the flame shape, size and candle burning rate will vary with gravity. Experimentally, there exist studies of candle burning in enhanced gravity (i.e. higher than normal earth gravity, g(sub e)), and in microgravity in drop towers and space-based facilities. There are, however, no reported experimental data on candle burning in partial gravity (g < g(sub e)). In a previous numerical model of the candle flame, buoyant forces were neglected. The treatment of momentum equation was simplified using a potential flow approximation. Although the predicted flame characteristics agreed well with the experimental results, the model cannot be extended to cases with buoyant flows. In addition, because of the use of potential flow, no-slip boundary condition is not satisfied on the wick surface. So there is some uncertainty on the accuracy of the predicted flow field. In the present modeling effort, the full Navier-Stokes momentum equations with body force term is included. This enables us to study the effect of gravity on candle flames (with zero gravity as the limiting case). In addition, we consider radiation effects in more detail by solving the radiation transfer equation. In the previous study, flame radiation is treated as a simple loss term in the energy equation. Emphasis of the present model is on the gas-phase processes. Therefore, the detailed heat and mass transfer phenomena inside the porous wick are not treated. Instead, it is assumed that a thin layer of liquid fuel coated the entire wick surface during the burning process

  6. Evaluation of Flying Qualities and Guidance Displays for an Advanced Tilt-Wing STOL Transport Aircraft in Final Approach and Landing

    NASA Technical Reports Server (NTRS)

    Frost, Chad R.; Franklin, James A.; Hardy, Gordon H.

    2002-01-01

    A piloted simulation was performed on the Vertical Motion Simulator at NASA Ames Research Center to evaluate flying qualities of a tilt-wing Short Take-Off and Landing (STOL) transport aircraft during final approach and landing. The experiment was conducted to assess the design s handling qualities, and to evaluate the use of flightpath-centered guidance for the precision approach and landing tasks required to perform STOL operations in instrument meteorological conditions, turbulence, and wind. Pilots rated the handling qualities to be satisfactory for all operations evaluated except those encountering extreme crosswinds and severe windshear; even in these difficult meteorological conditions, adequate handling qualities were maintained. The advanced flight control laws and guidance displays provided consistent performance and precision landings.

  7. Structure of Flame Balls at Low Lewis-Number

    NASA Technical Reports Server (NTRS)

    Weiland, Karen J.; Ronney, Paul

    1998-01-01

    The Structure of Flame Balls at Low Lewis-Number (SOFBALL) experiment explored the behavior of a newly discovered flame phenomena called "flame balls." These spherical, stable, stationary flame structures, observed only in microgravity, provide a unique opportunity to study the interactions of the two most important processes necessary for combustion (chemical reaction and heat and mass transport) in the simplest possible configuration. The previously unobtainable experimental data provided a comparison with models of flame stability and flame propagation limits that are crucial both in assessing fire safety and in designing efficient, clean-burning combustion engines.

  8. DISTRIBUTED FLAMES IN TYPE Ia SUPERNOVAE

    SciTech Connect

    Aspden, A. J.; Bell, J. B.; Woosley, S. E.

    2010-02-20

    At a density near a few x10{sup 7} g cm{sup -3}, the subsonic burning in a Type Ia supernova (SN) enters the distributed regime (high Karlovitz number). In this regime, turbulence disrupts the internal structure of the flame, and so the idea of laminar burning propagated by conduction is no longer valid. The nature of the burning in this distributed regime depends on the turbulent Damkoehler number (Da{sub T}), which steadily declines from much greater than one to less than one as the density decreases to a few x10{sup 6} g cm{sup -3}. Classical scaling arguments predict that the turbulent flame speed s{sub T} , normalized by the turbulent intensity u-check, follows s{sub T}/u-check = Da{sub T}{sup 1/2} for Da{sub T} {approx}< 1. The flame in this regime is a single turbulently broadened structure that moves at a steady speed, and has a width larger than the {integral} scale of the turbulence. The scaling is predicted to break down at Da{sub T} {approx} 1, and the flame burns as a turbulently broadened effective unity Lewis number flame. This flame burns locally with speed s{sub l}ambda and width l{sub l}ambda, and we refer to this kind of flame as a lambda-flame. The burning becomes a collection of lambda-flames spread over a region approximately the size of the {integral} scale. While the total burning rate continues to have a well-defined average, s{sub T}{approx}u-check, the burning is unsteady. We present a theoretical framework, supported by both one-dimensional and three-dimensional numerical simulations, for the burning in these two regimes. Our results indicate that the average value of s{sub T} can actually be roughly twice u-check for Da{sub T} {approx}> 1, and that localized excursions to as much as 5 times u-check can occur. We also explore the properties of the individual flames, which could be sites for a transition to detonation when Da{sub T} {approx} 1. The lambda-flame speed and width can be predicted based on the turbulence in the star

  9. Turbulent Premixed Flames in Microgravity

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1996-01-01

    The experimental cold-flow facility is now full operational and is currently being used to obtain baseline turbulence data in a Couette flow. The baseline turbulence data is necessary to confirm the capability of the chosen device to generate and maintain the required turbulence intensity. Subsequent reacting flow studies will assume that a similar turbulent flow field exists ahead of the premixed flame. Some modifications and refinements had to be made to enable accurate measurements. It consists of two rollers, one (driven by a motor) which drives a continuous belt and four smaller rollers used to set the belt spacing and tension to minimize belt flutter. The entire assemble is enclosed in a structure that has the dimensions to enable future drop tower experiments of the hot facility. All critical dimensions are the same as the original plans except for the pulley ratio which has been changed to enable a wider operating regime in terms of the Reynolds number. With the current setup, Reynolds numbers as low as 100 and as high as 14,000 can be achieved. This is because the in-between belt spacing can be varied from 1 cm to 7.6 cm, and the belt speed can be accurately varied from .15 m/sec to 3.1 m/sec.

  10. Engineering Flame Retardant Biodegradable Nanocomposites

    NASA Astrophysics Data System (ADS)

    He, Shan; Yang, Kai; Guo, Yichen; Zhang, Linxi; Pack, Seongchan; Davis, Rachel; Lewin, Menahem; Ade, Harald; Korach, Chad; Kashiwagi, Takashi; Rafailovich, Miriam

    2013-03-01

    Cellulose-based PLA/PBAT polymer blends can potentially be a promising class of biodegradable nanocomposites. Adding cellulose fiber reinforcement can improve mechanical properties of biodegradable plastics, but homogeneously dispersing hydrophilic cellulose in the hydrophobic polymer matrix poses a significant challenge. We here show that resorcinol diphenyl phosphates (RDP) can be used to modify the surface energy, not only reducing phase separation between two polymer kinds but also allowing the cellulose particles and the Halloysite clay to be easily dispersed within polymer matrices to achieve synergy effect using melt blending. Here in this study we describe the use of cellulose fiber and Halloysite clay, coated with RDP surfactant, in producing the flame retardant polymer blends of PBAT(Ecoflex) and PLA which can pass the stringent UL-94 V0 test. We also utilized FTIR, SEM and AFM nanoindentation to elucidate the role RDP plays in improving the compatibility of biodegradable polymers, and to determine structure property of chars that resulted in composites that could have optimized mechanical and thermal properties. Supported by Garcia Polymer Center and NSF Foundation.

  11. Can we characterize turbulence in premixed flames?

    SciTech Connect

    Lipatnikov, A.N.

    2009-06-15

    Modeling of premixed turbulent combustion involves averaging reaction rates in turbulent flows. The focus of most approaches to resolving this problem has been placed on determining the dependence of the mean rate w of product creation on the laminar flame speed S{sub L}, the rms turbulence velocity u', etc. The goal of the present work is to draw attention to another issue: May the input quantity u{sup '} for a model of w= w(u'/S{sub L},..) be considered to be known? The point is that heat release substantially affects turbulence and, hence, turbulence characteristics in premixed flames should be modeled. However, standard moment methods for numerically simulating turbulent flows do not allow us to evaluate the true turbulence characteristics in a flame. For instance, the Reynolds stresses in premixed flames are affected not only by turbulence itself, but also by velocity jump across flamelets. A common way to resolving this problem consists of considering the Reynolds stresses conditioned on unburned (or burned) mixture to be the true turbulence characteristics. In the present paper, this widely accepted but never proved hypothesis is put into question, first, by considering simple model constant-density problems (flame motion in an oscillating one-dimensional laminar flow; flame stabilized in a periodic shear, one-dimensional, laminar flow; turbulent mixing). In all the cases, the magnitude of velocity fluctuations, calculated using the conditioned Reynolds stresses, is affected by the intermittency of reactants and products and, hence, is not the true rms velocity. Second, the above claim is further supported by comparing balance equations for the mean and conditioned Reynolds stresses. The conditioned Reynolds stresses do not characterize the true turbulence in flames, because conditional averaging cuts off flow regions characterized by either high or low velocities. (author)

  12. Gravity Effects Observed In Partially Premixed Flames

    NASA Technical Reports Server (NTRS)

    Puri, Ishwar K.; Aggarwal, Suresh K.; Lock, Andrew J.; Gauguly, Ranjan; Hegde, Uday

    2003-01-01

    Partially premixed flames (PPFs) contain a rich premixed fuel air mixture in a pocket or stream, and, for complete combustion to occur, they require the transport of oxidizer from an appropriately oxidizer-rich (or fuel-lean) mixture that is present in another pocket or stream. Partial oxidation reactions occur in fuel-rich portions of the mixture and any remaining unburned fuel and/or intermediate species are consumed in the oxidizer-rich portions. Partial premixing, therefore, represents that condition when the equivalence ratio (phi) in one portion of the flowfield is greater than unity, and in another section its value is less than unity. In general, for combustion to occur efficiently, the global equivalence ratio is in the range fuel-lean to stoichiometric. These flames can be established by design by placing a fuel-rich mixture in contact with a fuel-lean mixture, but they also occur otherwise in many practical systems, which include nonpremixed lifted flames, turbulent nonpremixed combustion, spray flames, and unwanted fires. Other practical applications of PPFs are reported elsewhere. Although extensive experimental studies have been conducted on premixed and nonpremixed flames under microgravity, there is a absence of previous experimental work on burner stabilized PPFs in this regard. Previous numerical studies by our group employing a detailed numerical model showed gravity effects to be significant on the PPF structure. We report on the results of microgravity experiments conducted on two-dimensional (established on a Wolfhard-Parker slot burner) and axisymmetric flames (on a coannular burner) that were investigated in a self-contained multipurpose rig. Thermocouple and radiometer data were also used to characterize the thermal transport in the flame.

  13. A high-pressure premixed flat-flame burner for chemical process studies. [of pollutant formation in hydrocarbon flames

    NASA Technical Reports Server (NTRS)

    Miller, I. M.

    1978-01-01

    A premixed flat-flame burner was designed and tested with methane-air mixtures at pressures from 1.1 to 20 atm and equivalence ratios from 0.7 to 1.1. Reactant velocity in the burner mixing chamber was used to characterize the range of stable flames at each pressure-equivalence-ratio condition. Color photographs of the flames were used to determine flame zone thickness and flame height. The results show that this burner can be used for chemical process studies in premixed high pressure methane-air flames up to 20 atm.

  14. Experimental study of premixed flames in intense isotropic turbulence

    SciTech Connect

    Bedat, B.; Cheng, R.K.

    1994-04-01

    A methodology for investigating premixed turbulent flames propagating in intense isotropic turbulence has been developed. The burner uses a turbulence generator developed by Videto and Santavicca and the flame is stabilized by weak-swirl generated by air injectors. This set-up produces stable premixed turbulent flames under a wide range of mixture conditions and turbulence intensities. The experiments are designed to investigate systematically the changes in flame structures for conditions which can be classified as wrinkled laminar flames, corrugated flames and flames with distributed reaction zones. Laser Doppler anemometry and Rayleigh scattering techniques are used to determine the turbulence and scalar statistics. In the intense turbulence, the flames are found to produce very little changes in the mean and rams velocities. Their flame speed increase linearly with turbulence intensity as for wrinkled laminar flames. The Rayleigh scattering pdfs for flames within the distributed reaction zone regime are distinctly bimodal. The probabilities of the reacting states (i.e. contributions from within the reaction zone) is not higher than those of wrinkled laminar flame. These results show that there is no drastic changes in flame structures at Karlovitz number close to unity. This suggest that the Klimov-Williams criterion under-predicts the resilience of wrinkled flamelets to intense turbulence.

  15. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman

    2003-01-17

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  16. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2001-06-16

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  17. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    Raj Kumar; Keith Brown; T. Scott Hickman; James J. Justice

    2000-04-27

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  18. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2001-12-11

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  19. APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SAN ANDRES RESERVOIR

    SciTech Connect

    T. Scott Hickman; James J. Justice

    2001-08-10

    The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; and (7) Mobility control agents.

  20. Launch Pad Flame Trench Refractory Materials

    NASA Technical Reports Server (NTRS)

    Calle, Luz M.; Hintze, Paul E.; Parlier, Christopher R.; Bucherl, Cori; Sampson, Jeffrey W.; Curran, Jerome P.; Kolody, Mark; Perusich, Steve; Whitten, Mary

    2010-01-01

    The launch complexes at NASA's John F. Kennedy Space Center (KSC) are critical support facilities for the successful launch of space-based vehicles. These facilities include a flame trench that bisects the pad at ground level. This trench includes a flame deflector system that consists of an inverted, V-shaped steel structure covered with a high temperature concrete material five inches thick that extends across the center of the flame trench. One side of the "V11 receives and deflects the flames from the orbiter main engines; the opposite side deflects the flames from the solid rocket boosters. There are also two movable deflectors at the top of the trench to provide additional protection to shuttle hardware from the solid rocket booster flames. These facilities are over 40 years old and are experiencing constant deterioration from launch heat/blast effects and environmental exposure. The refractory material currently used in launch pad flame deflectors has become susceptible to failure, resulting in large sections of the material breaking away from the steel base structure and creating high-speed projectiles during launch. These projectiles jeopardize the safety of the launch complex, crew, and vehicle. Post launch inspections have revealed that the number and frequency of repairs, as well as the area and size of the damage, is increasing with the number of launches. The Space Shuttle Program has accepted the extensive ground processing costs for post launch repair of damaged areas and investigations of future launch related failures for the remainder of the program. There currently are no long term solutions available for Constellation Program ground operations to address the poor performance and subsequent failures of the refractory materials. Over the last three years, significant liberation of refractory material in the flame trench and fire bricks along the adjacent trench walls following Space Shuttle launches have resulted in extensive investigations of

  1. On Soot Inception in Nonpremixed Flames and the Effects of Flame Structure

    NASA Technical Reports Server (NTRS)

    Chao, B. H.; Liu, S.; Axelbaum, R. L.; Gokoglu, Suleyman (Technical Monitor)

    1998-01-01

    A simplified three-step model of soot inception has been employed with high activation energy asymptotics to study soot inception in nonpremixed counterflow systems with emphasis on understanding the effects of hydrodynamics and transport. The resulting scheme yields three zones: (1) a fuel oxidation zone wherein the fuel and oxidizer react to form product as well as a radical R, (e.g., H), (2) a soot/precursor formation zone where the radical R reacts with fuel to form "soot/precursor" S, and (3) a soot/precursor consumption zone where S reacts with the oxidizer to form product. The kinetic scheme, although greatly simplified, allows the coupling between soot inception and flame structure to be assessed. The results yield flame temperature, flame location, and a soot/precursor index S(sub I) as functions of Damkohler number for S formation. The soot/precursor index indicates the amount of S at the boundary of the formation region. The flame temperature indirectly indicates the total amount of S integrated over the formation region because as S is formed less heat release is available. The results show that unlike oxidation reactions, an extinction turning-point behavior does not exist for soot. Instead, the total amount of S slowly decreases with decreasing Damkohler number (increasing strain rate), which is consistent with counterflow flame experiments. When the Lewis number of the radical is decreased from unity, the total S reduces due to reduced residence time for the radical in the soot formation region. Similarly, when the Lewis number of the soot/precursor is increased from unity the amount of S increases for all Damkohler numbers. In addition to studying fuel-air (low stoichiometric mixture fraction) flames, the air-side nitrogen was substituted into the fuel, yielding diluted fuel-oxygen (high stoichiometric mixture fraction) flames with the same flame temperature as the fuel - air flames. The relative flame locations were different however, and

  2. Premixed silane-oxygen-nitrogen flames

    SciTech Connect

    Tokuhashi, K.; Horiguchi, S.; Uranco, Y.; Iwasaka, M.; Ohtani, H.; Kondo, S. )

    1990-10-01

    The burning velocities of lean premised silane-oxygen-nitrogen flames were measured in the silane and oxygen concentration ranges from 1.6% to 2.9% and from 4% to 24%, respectively. Combustion product analyses and flame temperature measurements were also carried out. The burning velocity of a silane-air flame is around 55 cm/ at a silane concentration of 2%. For lean mixtures, when the oxygen concentration is reduced, dependence of burning velocity upon silane concentration decreases but does not significantly affect the flame temperature. For extremely lean flames, the degree of hydrogen production increase with decreasing silane, although silane is consumed almost completely. On the other hand, if the silane concentration exceeds stoichiometric, the burning velocity increases gradually with increasing silane concentration. In that case, silane as well as oxygen are consumed completely and, at the same time, hydrogen rather than water production becomes dominant. The mechanism of silane combustion is discussed, based on numerical calculations, where the mechanism used in the calculation is assembled by analogy of silane to methane combustion.

  3. Advanced reactors and novel reactions for the conversion of triglyceride based oils into high quality renewable transportation fuels

    NASA Astrophysics Data System (ADS)

    Linnen, Michael James

    Sustainable energy continues to grow more important to all societies, leading to the research and development of a variety of alternative and renewable energy technologies. Of these, renewable liquid transportation fuels may be the most visible to consumers, and this visibility is further magnified by the long-term trend of increasingly expensive petroleum fuels that the public consumes. While first-generation biofuels such as biodiesel and fuel ethanol have been integrated into the existing fuel infrastructures of several countries, the chemical differences between them and their petroleum counterparts reduce their effectiveness. This gives rise to the development and commercialization of second generation biofuels, many of which are intended to have equivalent properties to those of their petroleum counterparts. In this dissertation, the primary reactions for a second-generation biofuel process, known herein as the University of North Dakota noncatalytic cracking process (NCP), have been studied at the fundamental level and improved. The NCP is capable of producing renewable fuels and chemicals that are virtually the same as their petroleum counterparts in performance and quality (i.e., petroleum-equivalent). In addition, a novel analytical method, FIMSDIST was developed which, within certain limitations, can increase the elution capabilities of GC analysis and decrease sample processing times compared to other high resolution methods. These advances are particularly useful for studies of highly heterogeneous fuel and/or organic chemical intermediates, such as those studied for the NCP. However the data from FIMSDIST must be supplemented with data from other methods such as for certain carboxylic acid, to provide accurate, comprehensive results, From a series of TAG cracking experiments that were performed, it was found that coke formation during cracking is most likely the result of excessive temperature and/or residence time in a cracking reactor. Based on this

  4. Flame-vortex interaction and mixing behaviors of turbulent non-premixed jet flames under acoustic forcing

    SciTech Connect

    Kim, Munki; Choi, Youngil; Oh, Jeongseog; Yoon, Youngbin

    2009-12-15

    This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen non-premixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NO{sub x} emissions. Acoustic excitation causes the flame length to decrease by 15% and consequently, a 25% reduction in EINO{sub x} is achieved, compared to coaxial air flames without acoustic excitation at the same coaxial air to fuel velocity ratio. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NO{sub x} emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface. (author)

  5. Flame acceleration in the early stages of burning in tubes

    SciTech Connect

    Bychkov, Vitaly; Fru, Gordon; Petchenko, Arkady; Akkerman, V'yacheslav; Eriksson, Lars-Erik

    2007-09-15

    Acceleration of premixed laminar flames in the early stages of burning in long tubes is considered. The acceleration mechanism was suggested earlier by Clanet and Searby [Combust. Flame 105 (1996) 225]. Acceleration happens due to the initial ignition geometry at the tube axis when a flame develops to a finger-shaped front, with surface area growing exponentially in time. Flame surface area grows quite fast but only for a short time. The analytical theory of flame acceleration is developed, which determines the growth rate, the total acceleration time, and the maximal increase of the flame surface area. Direct numerical simulations of the process are performed for the complete set of combustion equations. The simulations results and the theory are in good agreement with the previous experiments. The numerical simulations also demonstrate flame deceleration, which follows acceleration, and the so-called ''tulip flames''. (author)

  6. EFFECT OF ORGANOPHOSPHORUS FLAME RETARDANTS ON NEURONAL DEVELOPMENT IN VITRO

    EPA Science Inventory

    The increased use of organophosphorus compounds as alternatives to brominated flame retardants (BFRs) has led to widespread human exposure, There is, however, limited information on their potential health effects. This study compared the effects of nii ne organophosphorus flame...

  7. 39. View looking down on torch and flame from top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. View looking down on torch and flame from top of scaffolding; ventilator cap has been removed from flame prior to removal of torch on July 4, 1984. July 1984. - Statue of Liberty, Liberty Island, Manhattan, New York County, NY

  8. 41. HISTORIC VIEW LOOKING SOUTH FROM THE FLAME TRENCH AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. HISTORIC VIEW LOOKING SOUTH FROM THE FLAME TRENCH AT THE TEST STAND AND LOOKING INTO THE FLAME DEFLECTOR. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. Flashback flame arrester devices for fuel cargo tank vapor vents

    NASA Technical Reports Server (NTRS)

    Bjorklund, R. A.; Kushida, R. O.

    1981-01-01

    The flame quenching capability of four types of flame arresting devices suitable for installation on fuel cargo tank vents of marine transport vessels is evaluated. A single 30 mesh screen, a dual 20 mesh screen, a spiral wound crimped metal ribbon, and a packed bed of ballast rings were tested. Flame speed and flame penetration of the test arresters were determined. Eight fuels representative of bulk cargoes were tested. The test arresters quenched a minimum of three flashback flames from all eight fuels, with one exception: high speed ethylene flames penetrated the dual 20 mesh screen on three tests. The arresters withstood the sustained flame from a propane/air mixture for 30 minutes. None of the arresters withstood the sustained flame from an ethylene/air mixture for more than 7 minutes.

  10. Development of video processing based on coal flame detector system

    SciTech Connect

    He Wanqing; Yu Yuefeng; Xu Weiyong; Ma Liqun

    1999-07-01

    The principle and development of a set of pulverized coal combustion flame detection system, which is called intelligent image flame detector device based on digital video processing, is addressed in this paper. The system realizes multi-burner flame detection and processing using a distributive structure of engineering workstation and flame detectors via multi-serial-port communication. The software can deal with multi-tasks in a parallel way based on multi-thread mechanism. Streaming video capture and storage is provided to safe and playback the accidental Audio and Visual Interfaces (AVI) clips. The layer flame detectors can give the flame on/off signal through image processing. Pseudo-color visualization of flame temperature calculated from chromatic CCD signal is integrated into the system. The image flame detector system has been successfully used in thermal power generation units in China.

  11. Tabulated Combustion Model Development For Non-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1

  12. Fundamental mechanisms in premixed flame propagation via vortex-flame interactions: Numerical simulations

    NASA Technical Reports Server (NTRS)

    Mantel, Thierry

    1994-01-01

    The goal of the present study is to assess numerically the ability of single-step and two-step chemical models to describe the main features encountered during the interaction between a two-dimensional vortex pair and a premixed laminar flame. In the two-step mechanism, the reaction kinetics are represented by a first chain branching reaction A + X yields 2X and a second chain termination reaction X + X yields P. This paper presents the fundamental mechanisms occurring during vortex-flame interactions and the relative impact of the major parameters encountered in turbulent premixed flames and suspected of playing a role in quenching mechanism: (1) Influence of stretch is investigated by analyzing the contribution of curvature and tangential strain on the local structure of the flame. The effect of Lewis number on the flame response to a strained field is analyzed. (2) Radiative heat losses which are suspected to be partially or totally responsible for quenching are also investigated. (3) The effect of the diffusion of the radicals is studied using a two-step mechanism in which an intermediate species is present. The parameters of the two-step mechanism are entirely determined from physical arguments. (4) Precise quantitative comparisons between the DNS and the experimental results of Samaniego et al are performed. These comparisons concern the evolution of the minimum heat release rate found along the flame front during the interaction and the distribution of the heat release rate along the flame front.

  13. Flame-Vortex Studies to Quantify Markstein Numbers Needed to Model Flame Extinction Limits

    NASA Technical Reports Server (NTRS)

    Driscoll, James F.; Feikema, Douglas A.

    2003-01-01

    This has quantified a database of Markstein numbers for unsteady flames; future work will quantify a database of flame extinction limits for unsteady conditions. Unsteady extinction limits have not been documented previously; both a stretch rate and a residence time must be measured, since extinction requires that the stretch rate be sufficiently large for a sufficiently long residence time. Ma was measured for an inwardly-propagating flame (IPF) that is negatively-stretched under microgravity conditions. Computations also were performed using RUN-1DL to explain the measurements. The Markstein number of an inwardly-propagating flame, for both the microgravity experiment and the computations, is significantly larger than that of an outwardy-propagating flame. The computed profiles of the various species within the flame suggest reasons. Computed hydrogen concentrations build up ahead of the IPF but not the OPF. Understanding was gained by running the computations for both simplified and full-chemistry conditions. Numerical Simulations. To explain the experimental findings, numerical simulations of both inwardly and outwardly propagating spherical flames (with complex chemistry) were generated using the RUN-1DL code, which includes 16 species and 46 reactions.

  14. The transient response of strained laminar-premixed flames

    SciTech Connect

    Petrov, C.A.; Ghoniem, A.F.

    1995-08-01

    Modeling and simulation of turbulent combustion in premixed gases, for relatively large-scale and low-intensity turbulence, have traditionally been based on the assumption that the flame response to strain is instantaneous. In this paper, the authors revisit the validity of this assumption by examining the time-dependent response of a premixed laminar flame when subjected to a sudden change in strain and a periodic strain. They find that at unity Lewis number and for a stepwise increase in strain, the settling time of the flame varies between the chemical time, the flame time and the flow time as the Karlovitz number changes from low to intermediate to high values, respectively, over the entire range of flame temperatures. At nonunity Lewis numbers, the settling time changes from the flame time to the flow time as the strain jump increases from intermediate to high Karlovitz numbers and over the entire range of flame temperatures. For given Lewis and Karlovitz numbers, the settling time decreases as these flame temperature increases. Thus, in a flamelet or thin flame modeling, and over the entire range of Lewis number, the response of a premixed flame can be considered instantaneous only for high flame temperatures. The same is found to be true for intermediate flame temperatures when the Lewis number is unity. Otherwise, for low and intermediate flame tempera tues, and nonunity Lewis number, corrections reflecting the lag between the flow an the flame should be considered. The response of the flame to oscillating strain whose maximum value is below unity Karlovitz number is also investigated for two values of the flame temperatures.

  15. The Transition to Turbulence of Rayleigh-Taylor Unstable Flames

    NASA Astrophysics Data System (ADS)

    Hicks, Elizabeth P.; Rosner, R.

    2011-01-01

    Part of the uncertainty surrounding the explosion mechanism of Type 1A supernovae is the extent to which the turbulence created by the flame front can speed the flame up. A premixed flame moving against a sufficiently strong gravitational field becomes deformed and creates vorticity. If gravity is strong enough, this vorticity is shed and deposited behind the flame front. We have completed some two-dimensional direct numerical simulations of this shedding process for various values of the gravitational force. If gravity is weak enough, the flame front remains flat and no vorticity is created. If gravity is slightly stronger, the flame front becomes cusped and creates vorticity; long vortices attach to the flame front and extend behind it. For even larger values of gravity, the far end of these vortices becomes unstable and sheds more vortices. For simulations with increased gravity, the position of the shedding instability moves closer to the flame front. Next, the vortex shedding disturbs the flame front, causing the flame to pulsate. These pulsations lose their left/right symmetry and the period of oscillation doubles. For even higher values of gravity, an additional frequency is introduced into the system as the Rayleigh-Taylor instability begins to dominate over burning. Eventually, the pulsations of the flame become quite complex and the interaction between the flame front and the vortices can't be simply described. We have measured the subsequent wrinkling of the flame front by computing its fractal dimension and the energy spectra behind the flame front. Measurements of the fractal dimension suggest that it saturates, implying that any additional speed up of the flame must be due to large-scale stretching or disruption of the flame front. Our simulations were performed at NERSC which is supported by the Department of Energy.

  16. Studies of Premixed Laminar and Turbulent Flames at Microgravity

    NASA Technical Reports Server (NTRS)

    Ronney, Paul D.

    1993-01-01

    The work of the Principal Investigator (PI) has encompassed four topics related to the experimental and theoretical study of combustion limits in premixed flames at microgravity, as discussed in the following sections. These topics include: (1) radiation effects on premixed gas flames; (2) flame structure and stability at low Lewis number; (3) flame propagation and extinction is cylindrical tubes; and (4) experimental simulation of combustion processes using autocatalytic chemical reactions.

  17. Aerothermodynamic properties of stretched flames in enclosures

    NASA Astrophysics Data System (ADS)

    Rotman, D. A.; Oppenheim, A. K.

    Flames are stretched by being pulled along their frontal surface by the flow field in which they reside. Their trajectories tend to approach particle paths, acquiring eventually the role of contact boundaries, -interfaces between the burnt and unburnt medium that may broaden solely as a consequence of diffusion. Fundamental properties of flow fields governing such flames are determined here on the basis of the zero Mach number model, providng a rational method of approach to the computational analysis of combustion fields in enclosures where, besides the aerodynamic properties flow, the thermodynamic process of compression must be taken into account. To illustrate its application, the method is used to reveal the mechanism of formation of a tulip-shape flame in a rectangular enclosure under nonturbulent flow conditions.

  18. CFD analysis of baffle flame stabilization

    NASA Astrophysics Data System (ADS)

    Chen, Yen-Sen; Farmer, Richard C.

    1991-06-01

    A computational fluid dynamics analysis of ignition and combustion in baffle flame stabilized combustors was developed in order to increase the understanding of combustion efficiency and stability. The objectives of this investigation were to develop and verify a computational model of the ignition and combustion of typical augmenter configurations and to generalize the model for application to the combustion occurring in a generic gas turbine engine with augmenters, upstream vitiation, and a downstream chocked nozzle. Triangular bar and cone stabilized flames were simulated. Quasi-global propane and methane kinetics models were employed in the computation. A more detailed methane-air kinetics model was also used. An ignition procedure was devised by initially providing a 1200 K hot spot near the base to start the flame. The recirculation zone lengths of cold and hot flows were well predicted. Time averaged flow quantities were used for data comparisons since the predicted recirculating zones of the reacting flows were unsteady.

  19. Fatal rhabdomyolysis in a flame burn patient.

    PubMed

    Lazarus, D; Hudson, D A

    1997-08-01

    Rhabdomyolysis due to flame burns is not well described. A case of fatal rhabdomyolysis in an epileptic patient who sustained 65 per cent body surface area, very deep, flame burns is described. It appears as if the sustained muscle compression from the restrictive, circumferential eschar was the major factor in the aetiology of the rhabdomyolysis. Despite aggressive fluid management, the patient died of acute renal failure and adult respiratory distress syndrome. We have subsequently identified three other cases of pigmenturia occurring following burns. It would seem as if rhabdomyolysis following extensive full thickness burns may be more common than previously suggested. Fluid requirements are in excess of those proposed by traditional protocols. Rhabdomyolysis in flame burn patients indicates a poor prognosis. PMID:9426917

  20. Pentan isomers compound flame front structure

    SciTech Connect

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.; Rachmetkaliev, K.N.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to the side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.

  1. White Flame Energy switches to backhoes

    SciTech Connect

    Fiscor, S.

    2005-06-01

    The mountaintop coal operator, White Flame Energy has switched to different truck-shovel arrangement. Along with many surface mining operations throughout central Appalachia, the company is using hoe-configured hydraulic excavators as opposed to the traditional front-shovel arrangements. Located in Varney, WV, White Flame Energy uses two Terex O & K mining shovels, an RH170 and an RH 200, which have the capacity to move 2 million cu yards per month from five seams, primarily the Coalburg, Stockton, and No 5 Block and associated rider seams. The article records conversations on the operations with Mike Vines, the general manager, and Don Nicewonder, the owner of White Flame Energy. 2 photos.

  2. Numerical modelling of ion transport in flames

    NASA Astrophysics Data System (ADS)

    Han, Jie; Belhi, Memdouh; Bisetti, Fabrizio; Mani Sarathy, S.

    2015-11-01

    This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model's predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018.

  3. Flame-in-gas-shield and miniature diffusion flame hydride atomizers for atomic fluorescence spectrometry: optimization and comparison

    NASA Astrophysics Data System (ADS)

    Marschner, Karel; Musil, Stanislav; Dědina, Jiří

    2015-07-01

    A detailed optimization of relevant experimental parameters of two hydride atomizers for atomic fluorescence spectrometry: flame-in-gas-shield atomizer with a two-channel shielding unit and a standard atomizer for atomic fluorescence spectrometry, miniature diffusion flame, was performed. Arsine, generated by the reaction with NaBH4 in a flow injection arrangement, was chosen as the model hydride. Analytical characteristics of both the atomizers (sensitivity, noise, limits of detection) were compared. Under optimum conditions sensitivity obtained with flame-in-gas-shield atomizer was approximately twice higher than with miniature diffusion flame. The additional advantage of flame-in-gas-shield atomizer is significantly lower flame emission resulting in a better signal to noise ratio. The resulting arsenic limits of detection for miniature diffusion flame and flame-in-gas-shield atomizer were 3.8 ng l- 1 and 1.0 ng l- 1, respectively.

  4. 63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF FLAME BUCKET AND LAUNCHER FROM SOUTHEAST. TRICHLOROETHENE RECOVERY TANK LEFT OF FLAME BUCKET; LIQUID OXYGEN CATCH TANK RIGHT OF FLAME BUCKET. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  5. 30 CFR 75.600-1 - Approved cables; flame resistance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Approved cables; flame resistance. 75.600-1... SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.600-1 Approved cables; flame resistance. Cables shall be accepted or approved by MSHA as flame resistant....

  6. The Forced Flow Flame-Spreading Test (FFFT)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Forced Flow Flame-Spreading Test was designed to study flame spreading over solid fuels when air is flowing at a low speed concurrent airflows, some materials are more flammable in microgravity than earth. 1.5 cm flame in microgravity that melts a polyethylene cylinder into a liquid ball.

  7. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  8. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....

  9. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2013-04-01 2013-04-01 false Smoking and open flames..., AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.212 Smoking and open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In...

  10. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  11. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2010-04-01 2010-04-01 false Smoking and open flames..., AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.212 Smoking and open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In...

  12. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  13. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  14. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....

  15. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  16. 30 CFR 57.7805 - Smoking and open flames.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Smoking and open flames. 57.7805 Section 57... Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7805 Smoking and open flames. Persons shall not... warning against smoking and open flames shall be posted in these areas....

  17. 30 CFR 56.6904 - Smoking and open flames.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Smoking and open flames. 56.6904 Section 56.6904 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL... Requirements § 56.6904 Smoking and open flames. Smoking and use of open flames shall not be permitted within...

  18. 27 CFR 555.212 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 3 2011-04-01 2010-04-01 true Smoking and open flames..., AND EXPLOSIVES, DEPARTMENT OF JUSTICE EXPLOSIVES COMMERCE IN EXPLOSIVES Storage § 555.212 Smoking and open flames. Smoking, matches, open flames, and spark producing devices are not permitted: (a) In...

  19. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....

  20. 30 CFR 56.7805 - Smoking and open flames.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Smoking and open flames. 56.7805 Section 56... Jet Piercing Rotary Jet Piercing § 56.7805 Smoking and open flames. Persons shall not smoke and open... smoking and open flames shall be posted in these areas....