Sample records for advanced gasification-combustion agc

  1. Fuel-Flexible Gasification-Combustion Technology for Production of Hydrogen and Sequestration-Ready Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizeq, George; West, Janice; Frydman, Arnaldo

    Electricity produced from hydrogen in fuel cells can be highly efficient relative to competing technologies and has the potential to be virtually pollution free. Thus, fuel cells may become an ideal solution to this nation's energy needs if one has a satisfactory process for producing hydrogen from available energy resources such as coal, and low-cost alternative feedstocks such as biomass. GE EER is developing an innovative fuel-flexible advanced gasification-combustion (AGC) technology for production of hydrogen for fuel cells or combustion turbines, and a separate stream of sequestration-ready CO2. The AGC module can be integrated into a number of Vision- 21more » power systems. It offers increased energy efficiency relative to conventional gasification and combustion systems and near-zero pollution. The R&D on the AGC technology is being conducted under a Vision-21 award from the U.S. DOE NETL with co-funding from GE EER, Southern Illinois University at Carbondale (SIU-C), and the California Energy Commission (CEC). The AGC technology converts coal and air into three separate streams of pure hydrogen, sequestration-ready CO2, and high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The three-year program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. Process and kinetic modeling studies as well as an economic assessment will also be performed. This paper provides an overview of the program and its objectives, and discusses first-year R&D activities, including design of experimental facilities and results from initial tests and modeling studies. In particular, the paper describes the design of the bench-scale facility and initial process modeling data. In addition, a process flow diagram is shown for a complete plant incorporating the AGC module with other Vision-21 plant components to maximize hydrogen production and process efficiency.« less

  2. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the fifth quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes

  3. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the seventh quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes

  4. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision 21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the second annual technical progress report for the Vision 21 AGC program supported by U.S. DOE NETL (Contract No. DE-FC26-00FT40974). This report summarizes program accomplishments for the period starting

  5. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the thermodynamic efficiency and environmental impact performance of fossil fuel utilization. General Electric Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Advanced Gasification-Combustion (AGC) concept to produce H{sub 2} and sequestration-ready CO{sub 2} from solid fuels. The AGC module offers potential for reduced cost and increased energy efficiency relative to conventional gasification and combustion systems. GE EER was awarded a Vision-21 program from U.S. DOE NETL tomore » develop the AGC technology. Work on this three-year program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the AGC technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on preliminary modeling work in the first quarter of this program, has an estimated process efficiency of approximately 67% based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal. The three-year R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the AGC concept. This is the third quarterly technical progress report for the Vision-21 AGC program supported by U.S. DOE NETL (Contract: DE-FC26-00FT40974). This report summarizes

  6. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; andmore » an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.« less

  7. Combustion and Gasification Properties of Plastics Particles.

    PubMed

    Zevenhoven, Ron; Karlsson, Magnus; Hupa, Mikko; Frankenhaeuser, Martin

    1997-08-01

    The combustion and gasification behavior of the most common plastics is studied and compared with conventional fuels such as coal, peat, and wood. The aim is to give background data for finding the optimum conditions for co-combustion or co-gasification of a conventional fuel with a certain amount of plastic-derived fuel. Atmospheric or pressurized fluidized bed co-combustion of conventional fuels and plastics are considered to be promising future options. The plastics investigated were poly(ethylene) (PE), poly(propylene) (PP), poly(styrene) (PS), and poly(vinyl chloride) (PVC). Some of the samples had a print or color. The reference fuels were Polish bituminous coal, Finnish peat, and Finnish pine wood. PE, PP, and PS were found to burn like oil. The particles shrank to a droplet and burned completely during the pyrolysis stage, leaving no char. Printing and coloring left a small portion of ash. PVC was the only plastic that produced a carbonaceous residue, and its timescales for heating, devolatilization, and char burning were of the same order as those for peat and wood, and much shorter for the other plastics studied. An important result is that char from PVC contains less than 1% chlorine,99% hydrocarbon. The gasification rate of PVC char (at 1 bar and 25 bar) was of the same order as that of char from coal. Peat-char and wood-char were gasified an order of magnitude faster.

  8. PRELIMINARY RESULTS OF THE AGC-4 IRRADIATION IN THE ADVANCED TEST REACTOR AND DESIGN OF AGC-5 (HTR16-18469)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davenport, Michael; Petti, D. A.

    The United States Department of Energy’s Advanced Reactor Technologies (ART) Program will irradiate up to six nuclear graphite creep experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The graphite experiments are being irradiated over an approximate eight year period to support development of a graphite irradiation performance data base on the new nuclear grade graphites now available for use in high temperature gas reactors. The goals of the irradiation experiments are to obtain irradiation performance data, including irradiation creep, at different temperatures and loading conditions to support design of the Very High Temperature Gasmore » Reactor (VHTR), as well as other future gas reactors. The experiments each consist of a single capsule that contain six stacks of graphite specimens, with half of the graphite specimens in each stack under a compressive load, while the other half of the specimens are not be subjected to a compressive load during irradiation. The six stacks have differing compressive loads applied to the top half of diametrically opposite pairs of specimen stacks. A seventh specimen stack in the center of the capsule does not have a compressive load. The specimens are being irradiated in an inert sweep gas atmosphere with on-line temperature and compressive load monitoring and control. There are also samples taken of the sweep gas effluent to measure any oxidation or off-gassing of the specimens that may occur during initial start-up of the experiment. The first experiment, AGC-1, started its irradiation in September 2009, and the irradiation was completed in January 2011. The second experiment, AGC-2, started its irradiation in April 2011 and completed its irradiation in May 2012. The third experiment, AGC-3, started its irradiation in late November 2012 and completed in the April of 2014. AGC-4 is currently being irradiated in the ATR. This paper will briefly discuss the preliminary irradiation

  9. Temporal measurements and kinetics of selenium release during coal combustion and gasification in a fluidized bed.

    PubMed

    Shen, Fenghua; Liu, Jing; Zhang, Zhen; Yang, Yingju

    2016-06-05

    The temporal release of selenium from coal during combustion and gasification in a fluidized bed was measured in situ by an on-line analysis system of trace elements in flue gas. The on-line analysis system is based on an inductively coupled plasma optical emission spectroscopy (ICP-OES), and can measure concentrations of trace elements in flue gas quantitatively and continuously. The results of on-line analysis suggest that the concentration of selenium in flue gas during coal gasification is higher than that during coal combustion. Based on the results of on-line analysis, a second-order kinetic law r(x)=0.94e(-26.58/RT)(-0.56 x(2) -0.51 x+1.05) was determined for selenium release during coal combustion, and r(x)=11.96e(-45.03/RT)(-0.53 x(2) -0.56 x+1.09) for selenium release during coal gasification. These two kinetic laws can predict respectively the temporal release of selenium during coal combustion and gasification with an acceptable accuracy. Thermodynamic calculations were conducted to predict selenium species during coal combustion and gasification. The speciation of selenium in flue gas during coal combustion differs from that during coal gasification, indicating that selenium volatilization is different. The gaseous selenium species can react with CaO during coal combustion, but it is not likely to interact with mineral during coal gasification. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Combustion and gasification characteristics of chars from four commercially significant coals of different rank. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nsakala, N.Y.; Patel, R.L.; Lao, T.C.

    1982-09-01

    The combustion and gasification kinetics of four size graded coal chars were investigated experimentally in Combustion Engineering's Drop Tube Furnace System (DTFS). The chars were prepared in the DTFS from commercially significant coals representing a wide range of rank; these included a Pittsburgh No. 8 Seam hvAb coal, an Illinois No. 6 Seam hvCb coal, a Wyoming Sub C, and a Texas Lignite A. Additionally, a number of standard ASTM and special bench scale tests were performed on the coals and chars to characterize their physicochemical properties. Results showed that the lower rank coal chars were more reactive than themore » higher rank coal chars and that combustion reactions of chars were much faster than the corresponding gasification reactions. Fuel properties, temperature, and reactant gas partial pressure had a significant influence on both combustion and gasification, and particle size had a mild but discernible influence on gasification. Fuel reactivities were closely related to pore structure. Computer simulation of the combustion and gasification performances of the subject samples in the DTFS supported the experimental findings.« less

  11. On the influence of the char gasification reactions on NO formation in flameless coal combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, Hannes; Toporov, Dobrin; Foerster, Malte

    2009-09-15

    Flameless combustion is a well known measure to reduce NO{sub x} emissions in gas combustion but has not yet been fully adapted to pulverised coal combustion. Numerical predictions can provide detailed information on the combustion process thus playing a significant role in understanding the basic mechanisms for pollutant formation. In simulations of conventional pulverised coal combustion the gasification by CO{sub 2} or H{sub 2} O is usually omitted since its overall contribution to char oxidation is negligible compared to the oxidation with O{sub 2}. In flameless combustion, however, due to the strong recirculation of hot combustion products, primarily CO{sub 2}more » and H{sub 2} O, and the thereby reduced concentration of O{sub 2} in the reaction zone the local partial pressures of CO{sub 2} and H{sub 2} O become significantly higher than that for O{sub 2}. Therefore, the char reaction with CO{sub 2} and H{sub 2} O is being reconsidered. This paper presents a numerical study on the importance of these reactions on pollutant formation in flameless combustion. The numerical models used have been validated against experimental data. By varying the wall temperature and the burner excess air ratio, different cases have been investigated and the impact of considering gasification on the prediction of NO formation has been assessed. It was found that within the investigated ranges of these parameters the fraction of char being gasified increases up to 35%. This leads to changes in the local gas composition, primarily CO distribution, which in turn influences NO formation predictions. Considering gasification the prediction of NO emission is up to 40% lower than the predicted emissions without gasification reactions being taken into account. (author)« less

  12. LIEKKI -- Combustion and gasification research in Finland 1988--1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hupa, M.; Matinlinna, J.

    1996-12-31

    The objective of the Combustion and Gasification Research Program LIEKKI is to develop environmentally sound energy production techniques that are based on combustion and/or gasification. The research supports equipment manufacturers in Finland as they develop and improve their top export products, such as the fluidized bed boilers, black liquor recovery boilers, and heavy diesel power plants. The research is also heavily focused on new techniques not yet on the market, ones with higher efficiency of electricity production and, simultaneously, significantly simpler emission control systems. The most important concepts here include combustors or gasifiers based on fluidized bed technology at elevatedmore » pressures. At present the LIEKKI program includes 49 research projects and it connects some 150 scientists and research engineers in the universities and research centers of Finland. The overall annual budget of the program has been around 10 Mill. USD, co-funded by the industry and the government agency TEKES (Technology Development Centre) in Finland. The program is coordinated by Aabo Akademi University in Turku, Finland.« less

  13. AGC-2 Graphite Pre-irradiation Data Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Swank; Joseph Lord; David Rohrbaugh

    2010-08-01

    The NGNP Graphite R&D program is currently establishing the safe operating envelope of graphite core components for a Very High Temperature Reactor (VHTR) design. The program is generating quantitative data necessary for predicting the behavior and operating performance of the new nuclear graphite grades. To determine the in-service behavior of the graphite for pebble bed and prismatic designs, the Advanced Graphite Creep (AGC) experiment is underway. This experiment is examining the properties and behavior of nuclear grade graphite over a large spectrum of temperatures, neutron fluences and compressive loads. Each experiment consists of over 400 graphite specimens that are characterizedmore » prior to irradiation and following irradiation. Six experiments are planned with the first, AGC-1, currently being irradiated in the Advanced Test Reactor (ATR) and pre-irradiation characterization of the second, AGC-2, completed. This data package establishes the readiness of 512 specimens for assembly into the AGC-2 capsule.« less

  14. Sulfur emission from Victorian brown coal under pyrolysis, oxy-fuel combustion and gasification conditions.

    PubMed

    Chen, Luguang; Bhattacharya, Sankar

    2013-02-05

    Sulfur emission from a Victorian brown coal was quantitatively determined through controlled experiments in a continuously fed drop-tube furnace under three different atmospheres: pyrolysis, oxy-fuel combustion, and carbon dioxide gasification conditions. The species measured were H(2)S, SO(2), COS, CS(2), and more importantly SO(3). The temperature (873-1273 K) and gas environment effects on the sulfur species emission were investigated. The effect of residence time on the emission of those species was also assessed under oxy-fuel condition. The emission of the sulfur species depended on the reaction environment. H(2)S, SO(2), and CS(2) are the major species during pyrolysis, oxy-fuel, and gasification. Up to 10% of coal sulfur was found to be converted to SO(3) under oxy-fuel combustion, whereas SO(3) was undetectable during pyrolysis and gasification. The trend of the experimental results was qualitatively matched by thermodynamic predictions. The residence time had little effect on the release of those species. The release of sulfur oxides, in particular both SO(2) and SO(3), is considerably high during oxy-fuel combustion even though the sulfur content in Morwell coal is only 0.80%. Therefore, for Morwell coal utilization during oxy-fuel combustion, additional sulfur removal, or polishing systems will be required in order to avoid corrosion in the boiler and in the CO(2) separation units of the CO(2) capture systems.

  15. Assessment of advanced coal gasification processes

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Ferrall, J.; Charng, T.; Houseman, J.

    1981-01-01

    A technical assessment of the following advanced coal gasification processes is presented: high throughput gasification (HTG) process; single stage high mass flux (HMF) processes; (CS/R) hydrogasification process; and the catalytic coal gasification (CCG) process. Each process is evaluated for its potential to produce synthetic natural gas from a bituminous coal. Key similarities, differences, strengths, weaknesses, and potential improvements to each process are identified. The HTG and the HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging, and syngas as the initial raw product gas. The CS/R hydrogasifier is also SRT, but is nonslagging and produces a raw gas high in methane content. The CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier.

  16. Process aspects in combustion and gasification Waste-to-Energy (WtE) units.

    PubMed

    Leckner, Bo

    2015-03-01

    The utilisation of energy in waste, Waste to Energy (WtE), has become increasingly important. Waste is a wide concept, and to focus, the feedstock dealt with here is mostly municipal solid waste. It is found that combustion in grate-fired furnaces is by far the most common mode of fuel conversion compared to fluidized beds and rotary furnaces. Combinations of pyrolysis in rotary furnace or gasification in fluidized or fixed bed with high-temperature combustion are applied particularly in Japan in systems whose purpose is to melt ashes and destroy dioxins. Recently, also in Japan more emphasis is put on WtE. In countries with high heat demand, WtE in the form of heat and power can be quite efficient even in simple grate-fired systems, whereas in warm regions only electricity is generated, and for this product the efficiency of boilers (the steam data) is limited by corrosion from the flue gas. However, combination of cleaned gas from gasification with combustion provides a means to enhance the efficiency of electricity production considerably. Finally, the impact of sorting on the properties of the waste to be fed to boilers or gasifiers is discussed. The description intends to be general, but examples are mostly taken from Europe. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. AGC-2 Specimen Post Irradiation Data Package Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Windes, William Enoch; Swank, W. David; Rohrbaugh, David T.

    This report documents results of the post-irradiation examination material property testing of the creep, control, and piggyback specimens from the irradiation creep capsule Advanced Graphite Creep (AGC)-2 are reported. This is the second of a series of six irradiation test trains planned as part of the AGC experiment to fully characterize the neutron irradiation effects and radiation creep behavior of current nuclear graphite grades. The AGC-2 capsule was irradiated in the Idaho National Laboratory Advanced Test Reactor at a nominal temperature of 600°C and to a peak dose of 5 dpa (displacements per atom). One-half of the creep specimens weremore » subjected to mechanical stresses (an applied stress of either 13.8, 17.2, or 20.7 MPa) to induce irradiation creep. All post-irradiation testing and measurement results are reported with the exception of the irradiation mechanical strength testing, which is the last destructive testing stage of the irradiation testing program. Material property tests were conducted on specimens from 15 nuclear graphite grades using a similar loading configuration as the first AGC capsule (AGC-1) to provide easy comparison between the two capsules. However, AGC-2 contained an increased number of specimens (i.e., 487 total specimens irradiated) and replaced specimens of the minor grade 2020 with the newer grade 2114. The data reported include specimen dimensions for both stressed and unstressed specimens to establish the irradiation creep rates, mass and volume data necessary to derive density, elastic constants (Young’s modulus, shear modulus, and Poisson’s ratio) from ultrasonic time-of-flight velocity measurements, Young’s modulus from the fundamental frequency of vibration, electrical resistivity, and thermal diffusivity and thermal expansion data from 100–500°C. No data outliers were determined after all measurements were completed. A brief statistical analysis was performed on the irradiated data and a limited comparison

  18. Characterization of ash melting behaviour at high temperatures under conditions simulating combustible solid waste gasification.

    PubMed

    Niu, Miaomiao; Dong, Qing; Huang, Yaji; Jin, Baosheng; Wang, Hongyan; Gu, Haiming

    2018-05-01

    To achieve high-temperature gasification-melting of combustible solid waste, ash melting behaviour under conditions simulating high-temperature gasification were studied. Raw ash (RA) and gasified ash (GA) were prepared respectively by waste ashing and fluidized bed gasification. Results of microstructure and composition of the two-ash indicated that GA showed a more porous structure and higher content of alkali and alkali earth metals among metallic elements. Higher temperature promoted GA melting and could reach a complete flowing state at about 1250°C. The order of melting rate of GA under different atmospheres was reducing condition > inert condition > oxidizing condition, which might be related to different existing forms of iron during melting and different flux content with atmosphere. Compared to RA, GA showed lower melting activity at the same condition due to the existence of an unconverted carbon and hollow structure. The melting temperature for sufficient melting and separation of GA should be at least 1250°C in this work.

  19. Apparatus for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    An apparatus for fixed-bed coal gasification is described in which coal such as caking coal is continuously pyrolyzed with clump formation inhibited, by combining the coal with a combustible gas and an oxidant, and then continually feeding the pyrolyzed coal under pressure and elevated temperature into the gasification region of a pressure vessel. The materials in the pressure vessel are allowed to react with the gasifying agents in order to allow the carbon contents of the pyrolyzed coal to be completely oxidized. The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  20. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis.

    PubMed

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-11-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. The wheat AGC kinase TaAGC1 is a positive contributor to host resistance to the necrotrophic pathogen Rhizoctonia cerealis

    PubMed Central

    Zhu, Xiuliang; Yang, Kun; Wei, Xuening; Zhang, Qiaofeng; Rong, Wei; Du, Lipu; Ye, Xingguo; Qi, Lin; Zhang, Zengyan

    2015-01-01

    Considerable progress has been made in understanding the roles of AGC kinases in mammalian systems. However, very little is known about the roles of AGC kinases in wheat (Triticum aestivum). The necrotrophic fungus Rhizoctonia cerealis is the major pathogen of the destructive disease sharp eyespot of wheat. In this study, the wheat AGC kinase gene TaAGC1, responding to R. cerealis infection, was isolated, and its properties and role in wheat defence were characterized. R. cerealis-resistant wheat lines expressed TaAGC1 at higher levels than susceptible wheat lines. Sequence and phylogenetic analyses showed that the TaAGC1 protein is a serine/threonine kinase belonging to the NDR (nuclear Dbf2-related) subgroup of AGC kinases. Kinase activity assays proved that TaAGC1 is a functional kinase and the Asp-239 residue located in the conserved serine/threonine kinase domain of TaAGC1 is required for the kinase activity. Subcellular localization assays indicated that TaAGC1 localized in the cytoplasm and nucleus. Virus-induced TaAGC1 silencing revealed that the down-regulation of TaAGC1 transcripts significantly impaired wheat resistance to R. cerealis. The molecular characterization and responses of TaAGC1 overexpressing transgenic wheat plants indicated that TaAGC1 overexpression significantly enhanced resistance to sharp eyespot and reduced the accumulation of reactive oxygen species (ROS) in wheat plants challenged with R. cerealis. Furthermore, ROS-scavenging and certain defence-associated genes were up-regulated in resistant plants overexpressing TaAGC1 but down-regulated in susceptible knock-down plants. These results suggested that the kinase TaAGC1 positively contributes to wheat immunity to R. cerealis through regulating expression of ROS-related and defence-associated genes. PMID:26220083

  2. Efficient volatile metal removal from low rank coal in gasification, combustion, and processing systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bland, Alan E.; Sellakumar, Kumar Muthusami; Newcomer, Jesse D.

    Efficient coal pre-processing systems (69) integrated with gasification, oxy-combustion, and power plant systems include a drying chamber (28), a volatile metal removal chamber (30), recirculated gases, including recycled carbon dioxide (21), nitrogen (6), and gaseous exhaust (60) for increasing the efficiencies and lowering emissions in various coal processing systems.

  3. Chemical-Looping Combustion and Gasification of Coals and Oxygen Carrier Development: A Brief Review

    DOE PAGES

    Wang, Ping; Means, Nicholas; Shekhawat, Dushyant; ...

    2015-09-24

    Chemical-looping technology is one of the promising CO 2 capture technologies. It generates a CO 2 enriched flue gas, which will greatly benefit CO 2 capture, utilization or sequestration. Both chemical-looping combustion (CLC) and chemical-looping gasification (CLG) have the potential to be used to generate power, chemicals, and liquid fuels. Chemical-looping is an oxygen transporting process using oxygen carriers. Recently, attention has focused on solid fuels such as coal. Coal chemical-looping reactions are more complicated than gaseous fuels due to coal properties (like mineral matter) and the complex reaction pathways involving solid fuels. The mineral matter/ash and sulfur in coalmore » may affect the activity of oxygen carriers. Oxygen carriers are the key issue in chemical-looping processes. Thermogravimetric analysis (TGA) has been widely used for the development of oxygen carriers (e.g., oxide reactivity). Two proposed processes for the CLC of solid fuels are in-situ Gasification Chemical-Looping Combustion (iG-CLC) and Chemical-Looping with Oxygen Uncoupling (CLOU). The objectives of this review are to discuss various chemical-looping processes with coal, summarize TGA applications in oxygen carrier development, and outline the major challenges associated with coal chemical-looping in iG-CLC and CLOU.« less

  4. Numerical investigation of the staged gasification of wet wood

    NASA Astrophysics Data System (ADS)

    Donskoi, I. G.; Kozlov, A. N.; Svishchev, D. A.; Shamanskii, V. A.

    2017-04-01

    Gasification of wooden biomass makes it possible to utilize forestry wastes and agricultural residues for generation of heat and power in isolated small-scale power systems. In spite of the availability of a huge amount of cheap biomass, the implementation of the gasification process is impeded by formation of tar products and poor thermal stability of the process. These factors reduce the competitiveness of gasification as compared with alternative technologies. The use of staged technologies enables certain disadvantages of conventional processes to be avoided. One of the previously proposed staged processes is investigated in this paper. For this purpose, mathematical models were developed for individual stages of the process, such as pyrolysis, pyrolysis gas combustion, and semicoke gasification. The effect of controlling parameters on the efficiency of fuel conversion into combustible gases is studied numerically using these models. For the controlling parameter are selected heat inputted into a pyrolysis reactor, the excess of oxidizer during gas combustion, and the wood moisture content. The process efficiency criterion is the gasification chemical efficiency accounting for the input of external heat (used for fuel drying and pyrolysis). The generated regime diagrams represent the gasification efficiency as a function of controlling parameters. Modeling results demonstrate that an increase in the fraction of heat supplied from an external source can result in an adequate efficiency of the wood gasification through the use of steam generated during drying. There are regions where it is feasible to perform incomplete combustion of the pyrolysis gas prior to the gasification. The calculated chemical efficiency of the staged gasification is as high as 80-85%, which is 10-20% higher that in conventional single-stage processes.

  5. Gasification of black liquor

    DOEpatents

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  6. Gasification of black liquor

    DOEpatents

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  7. Advanced geophysical underground coal gasification monitoring

    DOE PAGES

    Mellors, Robert; Yang, X.; White, J. A.; ...

    2014-07-01

    Underground Coal Gasification (UCG) produces less surface impact, atmospheric pollutants and greenhouse gas than traditional surface mining and combustion. Therefore, it may be useful in mitigating global change caused by anthropogenic activities. Careful monitoring of the UCG process is essential in minimizing environmental impact. Here we first summarize monitoring methods that have been used in previous UCG field trials. We then discuss in more detail a number of promising advanced geophysical techniques. These methods – seismic, electromagnetic, and remote sensing techniques – may provide improved and cost-effective ways to image both the subsurface cavity growth and surface subsidence effects. Activemore » and passive seismic data have the promise to monitor the burn front, cavity growth, and observe cavity collapse events. Electrical resistance tomography (ERT) produces near real time tomographic images autonomously, monitors the burn front and images the cavity using low-cost sensors, typically running within boreholes. Interferometric synthetic aperture radar (InSAR) is a remote sensing technique that has the capability to monitor surface subsidence over the wide area of a commercial-scale UCG operation at a low cost. It may be possible to infer cavity geometry from InSAR (or other surface topography) data using geomechanical modeling. The expected signals from these monitoring methods are described along with interpretive modeling for typical UCG cavities. They are illustrated using field results from UCG trials and other relevant subsurface operations.« less

  8. Revised users manual, Pulverized Coal Gasification or Combustion: 2-dimensional (87-PCGC-2): Final report, Volume 2. [87-PCGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, P.J.; Smoot, L.D.; Brewster, B.S.

    1987-12-01

    A two-dimensional, steady-state model for describing a variety of reactive and non-reactive flows, including pulverized coal combustion and gasification, is presented. Recent code revisions and additions are described. The model, referred to as 87-PCGC-2, is applicable to cylindrical axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using either a flux method or discrete ordinates method. The particle phase is modeled in a Lagrangian framework, such that mean paths of particle groups are followed. Several multi-step coal devolatilization schemes are included along withmore » a heterogeneous reaction scheme that allows for both diffusion and chemical reaction. Major gas-phase reactions are modeled assuming local instantaneous equilibrium, and thus the reaction rates are limited by the turbulent rate mixing. A NO/sub x/ finite rate chemistry submodel is included which integrates chemical kinetics and the statistics of the turbulence. The gas phase is described by elliptic partial differential equations that are solved by an iterative line-by-line technique. Under-relaxation is used to achieve numerical stability. The generalized nature of the model allows for calculation of isothermal fluid mechanicsgaseous combustion, droplet combustion, particulate combustion and various mixtures of the above, including combustion of coal-water and coal-oil slurries. Both combustion and gasification environments are permissible. User information and theory are presented, along with sample problems. 106 refs.« less

  9. Assessment of Advanced Coal Gasification Processes

    NASA Technical Reports Server (NTRS)

    McCarthy, John; Ferrall, Joseph; Charng, Thomas; Houseman, John

    1981-01-01

    This report represents a technical assessment of the following advanced coal gasification processes: AVCO High Throughput Gasification (HTG) Process; Bell Single-Stage High Mass Flux (HMF) Process; Cities Service/Rockwell (CS/R) Hydrogasification Process; Exxon Catalytic Coal Gasification (CCG) Process. Each process is evaluated for its potential to produce SNG from a bituminous coal. In addition to identifying the new technology these processes represent, key similarities/differences, strengths/weaknesses, and potential improvements to each process are identified. The AVCO HTG and the Bell HMF gasifiers share similarities with respect to: short residence time (SRT), high throughput rate, slagging and syngas as the initial raw product gas. The CS/R Hydrogasifier is also SRT but is non-slagging and produces a raw gas high in methane content. The Exxon CCG gasifier is a long residence time, catalytic, fluidbed reactor producing all of the raw product methane in the gasifier. The report makes the following assessments: 1) while each process has significant potential as coal gasifiers, the CS/R and Exxon processes are better suited for SNG production; 2) the Exxon process is the closest to a commercial level for near-term SNG production; and 3) the SRT processes require significant development including scale-up and turndown demonstration, char processing and/or utilization demonstration, and reactor control and safety features development.

  10. Process for fixed bed coal gasification

    DOEpatents

    Sadowski, Richard S.

    1992-01-01

    The combustion of gas produced from the combination of coal pyrolysis and gasification involves combining a combustible gas coal and an oxidant in a pyrolysis chamber and heating the components to a temperature of at least 1600.degree. F. The products of coal pyrolysis are dispersed from the pyrolyzer directly into the high temperature gasification region of a pressure vessel. Steam and air needed for gasification are introduced in the pressure vessel and the materials exiting the pyrolyzer flow down through the pressure vessel by gravity with sufficient residence time to allow any carbon to form carbon monoxide. Gas produced from these reactions are then released from the pressure vessel and ash is disposed of.

  11. Updraft gasification of salmon processing waste

    USDA-ARS?s Scientific Manuscript database

    The purpose of this research is to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible “syngas” in a high temperature (above 700 °C), oxygen deficient environmen...

  12. Updraft gasification of salmon processing waste.

    PubMed

    Rowland, Sarah; Bower, Cynthia K; Patil, Krushna N; DeWitt, Christina A Mireles

    2009-10-01

    The purpose of this study was to judge the feasibility of gasification for the disposal of waste streams generated through salmon harvesting. Gasification is the process of converting carbonaceous materials into combustible "syngas" in a high temperature (above 700 degrees C), oxygen deficient environment. Syngas can be combusted to generate power, which recycles energy from waste products. At 66% to 79% moisture, raw salmon waste streams are too wet to undergo pyrolysis and combustion. Ground raw or de-oiled salmon whole fish, heads, viscera, or frames were therefore "dried" by mixing with wood pellets to a final moisture content of 20%. Ground whole salmon with moisture reduced to 12% moisture was gasified without a drying agent. Gasification tests were performed in a small-scale, fixed-bed, updraft gasifer. After an initial start-up period, the gasifier was loaded with 1.5 kg of biomass. Temperature was recorded at 6 points in the gasifier. Syngas was collected during the short steady-state period during each gasifier run and analyzed. Percentages of each type of gas in the syngas were used to calculate syngas heating value. High heating value (HHV) ranged from 1.45 to 1.98 MJ/kg. Bomb calorimetry determined maximum heating value for the salmon by-products. Comparing heating values shows the efficiency of gasification. Cold gas efficiencies of 13.6% to 26% were obtained from the various samples gasified. Though research of gasification as a means of salmon waste disposal and energy production is ongoing, it can be concluded that pre-dried salmon or relatively low moisture content mixtures of waste with wood are gasifiable.

  13. Is AGC beneficial in hearing aids?

    PubMed

    King, A B; Martin, M C

    1984-02-01

    Three different functions of Automatic Gain Control (AGC) circuits in hearing aids are distinguished and the evidence for their benefits is considered. The value of AGC's function as a relatively distortion-free means of limiting output has been well established. With regard to compression, the benefit of short-term or 'syllabic' compression has not been demonstrated convincingly. Most evaluations of this type of AGC have looked for increase in speech intelligibility, but theoretical predictions of its effect do not appear to take account of the acoustic cues to consonant contrasts actually used by hearing impaired people, and empirical studies have often used listening conditions which do not give a realistic test of benefit. Relatively little attention has been paid to long-term compression, or to the effect of AGC on comfort rather than intelligibility. Listening tests carried out at the RNID and reported here have shown that AGC can benefit hearing aid users by allowing them to listen to a wider range of sound levels without either strain or discomfort, and, if time constants are well chosen, without adverse effects on speech intelligibility in quiet or in noise.

  14. Analysis of biomass and waste gasification lean syngases combustion for power generation using spark ignition engines.

    PubMed

    Marculescu, Cosmin; Cenuşă, Victor; Alexe, Florin

    2016-01-01

    The paper presents a study for food processing industry waste to energy conversion using gasification and internal combustion engine for power generation. The biomass we used consisted in bones and meat residues sampled directly from the industrial line, characterised by high water content, about 42% in mass, and potential health risks. Using the feedstock properties, experimentally determined, two air-gasification process configurations were assessed and numerically modelled to quantify the effects on produced syngas properties. The study also focused on drying stage integration within the conversion chain: either external or integrated into the gasifier. To comply with environmental regulations on feedstock to syngas conversion both solutions were developed in a closed system using a modified down-draft gasifier that integrates the pyrolysis, gasification and partial oxidation stages. Good quality syngas with up to 19.1% - CO; 17% - H2; and 1.6% - CH4 can be produced. The syngas lower heating value may vary from 4.0 MJ/Nm(3) to 6.7 MJ/Nm(3) depending on process configuration. The influence of syngas fuel properties on spark ignition engines performances was studied in comparison to the natural gas (methane) and digestion biogas. In order to keep H2 molar quota below the detonation value of ⩽4% for the engines using syngas, characterised by higher hydrogen fraction, the air excess ratio in the combustion process must be increased to [2.2-2.8]. The results in this paper represent valuable data required by the design of waste to energy conversion chains with intermediate gas fuel production. The data is suitable for Otto engines characterised by power output below 1 MW, designed for natural gas consumption and fuelled with low calorific value gas fuels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Novel incineration technology integrated with drying, pyrolysis, gasification, and combustion of MSW and ashes vitrification.

    PubMed

    Liu, Yangsheng; Liu, Yushan

    2005-05-15

    The conventional mass burn systems for municipal solid waste (MSW) emit large amount of acidic gases and dioxins as well as heavy metals due to the large excess air ratio. Additionally, the final process residues, bottom ash with potential leachability of heavy metals and fly ash with high level of heavy metals and dioxins, also constitute a major environmental problem. To deal with these issues more effectively, a novel MSW incineration technology was developed in this study. MSW drying, pyrolysis, gasification, incineration, and ash vitrification were achieved as a spectrum of combustion by the same equipment (primary chamber) in one step. In practice, the primary chamber of this technology actually acted as both gasifier for organic matter and vitrifying reactor for ashes, and the combustion process was mainly completed in the secondary chamber. Experiments were carried outto examine its characteristics in an industrial MSW incineration plant, located in Taiyuan, with a capability of 100 tons per day (TPD). Results showed that (1) the pyrolysis, gasification, and vitrification processes in the primary chamber presented good behaviors resulting in effluent gases with high contents of combustibles (e.g., CO and CH4) and bottom ash with a low loss-on-ignition (L.o.l), low leachability of heavy metals, and low toxicity of cyanide and fluoride. The vitrified bottom ash was benign to its environment and required no further processing for its potential applications. (2) Low stack emissions of dioxins (0.076 ng of TEQ m(-3)), heavy metals (ranging from 0.013 to 0.033 mg m(-3)), and other air pollutants were achieved. This new technology could effectively dispose Chinese MSW with a low calorific value and high water content; additionally, it also had a low capital and operating costs compared with the imported systems.

  16. Supercritical droplet combustion and related transport phenomena

    NASA Technical Reports Server (NTRS)

    Yang, Vigor; Hsieh, K. C.; Shuen, J. S.

    1993-01-01

    An overview of recent advances in theoretical analyses of supercritical droplet vaporization and combustion is conducted. Both hydrocarbon and cryogenic liquid droplets over a wide range of thermodynamic states are considered. Various important high-pressure effects on droplet behavior, such as thermodynamic non-ideality, transport anomaly, and property variation, are reviewed. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the criticl pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  17. Wabash River coal gasification repowering project -- first year operation experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troxclair, E.J.; Stultz, J.

    1997-12-31

    The Wabash River Coal Gasification Repowering Project (WRCGRP), a joint venture between Destec Energy, Inc. and PSI Energy, Inc., began commercial operation in November of 1995. The Project, selected by the United States Department of Energy (DOE) under the Clean Coal Program (Round IV) represents the largest operating coal gasification combined cycle plant in the world. This Demonstration Project has allowed PSI Energy to repower a 1950`s vintage steam turbine and install a new syngas fired combustion turbine to provide 262 MW (net) of electricity in a clean, efficient manner in a commercial utility setting while utilizing locally mined highmore » sulfur Indiana bituminous coal. In doing so, the Project is also demonstrating some novel technology while advancing the commercialization of integrated coal gasification combined cycle technology. This paper discusses the first year operation experience of the Wabash Project, focusing on the progress towards achievement of the demonstration objectives.« less

  18. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  19. A comparative study of biomass integrated gasification combined cycle power systems: Performance analysis.

    PubMed

    Zang, Guiyan; Tejasvi, Sharma; Ratner, Albert; Lora, Electo Silva

    2018-05-01

    The Biomass Integrated Gasification Combined Cycle (BIGCC) power system is believed to potentially be a highly efficient way to utilize biomass to generate power. However, there is no comparative study of BIGCC systems that examines all the latest improvements for gasification agents, gas turbine combustion methods, and CO 2 Capture and Storage options. This study examines the impact of recent advancements on BIGCC performance through exergy analysis using Aspen Plus. Results show that the exergy efficiency of these systems is ranged from 22.3% to 37.1%. Furthermore, exergy analysis indicates that the gas turbine with external combustion has relatively high exergy efficiency, and Selexol CO 2 removal method has low exergy destruction. Moreover, the sensitivity analysis shows that the system exergy efficiency is more sensitive to the initial temperature and pressure ratio of the gas turbine, whereas has a relatively weak dependence on the initial temperature and initial pressure of the steam turbine. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. New projects for CCGTs with coal gasification (Review)

    NASA Astrophysics Data System (ADS)

    Olkhovskii, G. G.

    2016-10-01

    Perspectives of using coal in combined-cycle gas turbine units (CCGTs), which are significantly more efficient than steam power plants, have been associated with preliminary coal gasification for a long time. Due to gasification, purification, and burning the resulting synthesis gas at an increased pressure, there is a possibility to intensify the processes occurring in them and reduce the size and mass of equipment. Physical heat evolving from gasification can be used without problems in the steam circuit of a CCGT. The downside of these opportunities is that the unit becomes more complex and expensive, and its competitiveness is affected, which was not achieved for CCGT power plants with coal gasification built in the 1990s. In recent years, based on the experience with these CCGTs, several powerful CCGTs of the next generation, which used higher-output and cost-effective gas-turbine plants (GTPs) and more advanced systems of gasification and purification of synthesis gas, were either built or designed. In a number of cases, the system of gasification includes devices of CO vapor reforming and removal of the emitted CO2 at a high pressure prior to fuel combustion. Gasifiers with air injection instead of oxygen injection, which is common in coal chemistry, also find application. In this case, the specific cost of the power station considerably decreases (by 15% and more). In units with air injection, up to 40% air required for separation is drawn from the intermediate stage of the cycle compressor. The range of gasified coals has broadened. In order to gasify lignites in one of the projects, a transfer reactor was used. The specific cost of a CCGT with coal gasification rose in comparison with the period when such units started being designed, from 3000 up to 5500 dollars/kW.

  1. Technical assessment of discarded tires gasification as alternative technology for electricity generation.

    PubMed

    Machin, Einara Blanco; Pedroso, Daniel Travieso; de Carvalho, João Andrade

    2017-10-01

    Concern about contamination associated with the disposal of tires has led to the search for technologies to reuse discarded tires, which include the use of Tire Derived Fuel (TDF) as fuel in advanced thermal-conversion processes, this allows the energy use of these wastes at affordable costs and reduces the environmental impact on scrap tires disposal. A theoretical assessment of the technical viability of TDF gasification for electric and thermal power generation, from the producer gas combustion in an internal combustion engine and in a gas turbine, was performed. The combustion of producer gas derived from the gasification of TDF in an internal combustion engine driving a generator (ICE-G) appears as the more efficient route for electricity generation when compared with the efficiency obtained with the use of gas turbine (GT-G). A higher global efficiency, considering the electric and thermal generation efficiency can be expected with the use of TDF producer gas in GT-G, where is expected an overall efficiency of 77.49%. The assessment shows that is possible produces up to 7.67MJ and 10.62MJ of electric and thermal energy per kilogram of TDF gasified using an ICE-G and up to 6.06MJ and 13.03MJ of electric and thermal energy respectively per kilogram of gasified TDF using a GT-G. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Allothermal steam gasification of biomass in cyclic multi-compartment bubbling fluidized-bed gasifier/combustor - new reactor concept.

    PubMed

    Iliuta, Ion; Leclerc, Arnaud; Larachi, Faïçal

    2010-05-01

    A new reactor concept of allothermal cyclic multi-compartment fluidized bed steam biomass gasification is proposed and analyzed numerically. The concept combines space and time delocalization to approach an ideal allothermal gasifier. Thermochemical conversion of biomass in periodic time and space sequences of steam biomass gasification and char/biomass combustion is simulated in which the exothermic combustion compartments provide heat into an array of interspersed endothermic steam gasification compartments. This should enhance unit heat integration and thermal efficiency and procure N(2)-free biosyngas with recourse neither to oxygen addition in steam gasification nor contact between flue and syngas. The dynamic, one-dimensional, multi-component, non-isothermal model developed for this concept accounts for detailed solid and gas flow dynamics whereupon gasification/combustion reaction kinetics, thermal effects and freeboard-zone reactions were tied. Simulations suggest that allothermal operation could be achieved with switch periods in the range of a minute supporting practical feasibility for portable small-scale gasification units. Copyright 2009 Elsevier Ltd. All rights reserved.

  3. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  4. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  5. Fluidized bed injection assembly for coal gasification

    DOEpatents

    Cherish, Peter; Salvador, Louis A.

    1981-01-01

    A coaxial feed system for fluidized bed coal gasification processes including an inner tube for injecting particulate combustibles into a transport gas, an inner annulus about the inner tube for injecting an oxidizing gas, and an outer annulus about the inner annulus for transporting a fluidizing and cooling gas. The combustibles and oxidizing gas are discharged vertically upward directly into the combustion jet, and the fluidizing and cooling gas is discharged in a downward radial direction into the bed below the combustion jet.

  6. Plasma gasification of municipal solid waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, G.W.; Tsangaris, A.V.

    1995-12-31

    Resorption Canada Limited (RCL) has conducted extensive operational testing with plasma technology in their plasma facility near Ottawa, Ontario, Canada to develop an environmentally friendly waste disposal process. Plasma technology, when utilized in a reactor vessel with the exclusion of oxygen, provides for the complete gasification of all combustibles in source materials with non-combustibles being converted to a non-hazardous slag. The energy and environmental characteristics of the plasma gasification of carbonaceous waste materials were studied over a period of eight years during which RCL completed extensive experimentation with MSW. A plasma processing system capable of processing 200--400 lbs/hr of MSWmore » was designed and built. The experimentation on MSW concentrated on establishing the optimum operating parameters and determining the energy and environmental characteristics at these operating parameters.« less

  7. Characterization of solid fuels at pressurized fluidized bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven, R.; Hupa, M.

    1998-07-01

    The gasification of co-gasification of solid fuel (coal, peat, wood) in air-blown fluidized bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidized bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe. based on complete or partial gasification of a solid fuel in a pressurized fluidized bed. At the same time, fuel characterization data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidized bed gasification are very scarce.more » In this paper, quantitative data on the characterization of fuels for advanced combustion and gasification technologies based on fluidized beds are given, as a result from the authors participation in the JOULE 2 extension project on clean coal technology of the European community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidized bed gasification conditions: 800--1,000 C, 1--25 bar, fuel heating rate in the order of 100--1,000 C/s. Carbon dioxide was used as gasifying agent. A pressurized thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilization increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurizing from 1 to 25 bar, for the younger fuels such as peat and wood, this effect is negligible. Several empirical engineering equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modeled using a Langmuir

  8. Characterisation of solid fuels at pressurised fluidised bed gasification conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zebenhoven, R.; Hupa, M.

    1998-04-01

    The gasification or co-gasification of solid fuels (coal, peat, wood) in air-blown fluidised bed gasifiers is receiving continued attention as an alternative to entrained flow gasifiers which in general are oxygen-blown. Fluidised bed gasification of wood and wood-waste at elevated pressures, and the so-called air-blown gasification cycle are examples of processes which are under development in Europe, based on complete or partial gasification of a solid fuel in a pressurised fluidised bed. At the same time, fuel characterisation data for the combination of temperature, pressure and fuel particle heating rate that is encountered in fluidised bed gasification are very scarce.more » Quantitative data on the characterisation of fuels for advanced combustion and gasification technologies based on fluidised beds are given, as a result from our participation to the JOULE 2 extension project on clean coal technology of the European Community. Eleven solid fuels, ranging from coal via peat to wood, have been studied under typical fluidised bed gasification conditions: 800-1000{degrees}C, 1-25 bar, fuel heating rate in the order of 100-1000{degrees}C/s. Carbon dioxide was used as gasifying agent. A pressurised thermogravimetric reactor was used for the experiments. The results show that the solid residue yield after pyrolysis/devolatilisation. increases with pressure and decreases with temperature. For coal, the gasification reactivity of the char increases by a factor of 3 to 4 when pressurising from 1 to 25 bar, for the `younger` fuels such as peat and wood, this effect is negligible. Several empirical, `engineering` equations are given which relate the fuel performance to the process parameters and the proximate and chemical analyses of the fuel. A pressure maximum was found at which a maximum gasification reactivity occurs, for practically all fuels, and depending on temperature. It is shown that this can be explained and modelled using a Langmuir-Hinshelwood model.« less

  9. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, Marvin W.

    1988-01-01

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water-splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  10. Method for increasing steam decomposition in a coal gasification process

    DOEpatents

    Wilson, M.W.

    1987-03-23

    The gasification of coal in the presence of steam and oxygen is significantly enhanced by introducing a thermochemical water- splitting agent such as sulfuric acid, into the gasifier for decomposing the steam to provide additional oxygen and hydrogen usable in the gasification process for the combustion of the coal and enrichment of the gaseous gasification products. The addition of the water-splitting agent into the gasifier also allows for the operation of the reactor at a lower temperature.

  11. Method for in situ gasification of a subterranean coal bed

    DOEpatents

    Shuck, Lowell Z.

    1977-05-31

    The method of the present invention relates to providing controlled directional bores in subterranean earth formations, especially coal beds for facilitating in situ gasification operations. Boreholes penetrating the coal beds are interconnected by laser-drilled bores disposed in various arrays at selected angles to the major permeability direction in the coal bed. These laser-drilled bores are enlarged by fracturing prior to the gasification of the coal bed to facilitate the establishing of combustion zones of selected configurations in the coal bed for maximizing the efficiency of the gasification operation.

  12. Myotonin protein-kinase [AGC]n trinucleotide repeat in seven nonhuman primates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novelli, G.; Sineo, L.; Pontieri, E.

    Myotonic dystrophy (DM) is due to a genomic instability of a trinucleotide [AGC]n motif, located at the 3{prime} UTR region of a protein-kinase gene (myotonin protein kinase, MT-PK). The [AGC] repeat is meiotically and mitotically unstable, and it is directly related to the manifestations of the disorder. Although a gene dosage effect of the MT-PK has been demonstrated n DM muscle, the mechanism(s) by which the intragenic repeat expansion leads to disease is largely unknown. This non-standard mutational event could reflect an evolutionary mechanism widespread among animal genomes. We have isolated and sequenced the complete 3{prime}UTR region of the MT-PKmore » gene in seven primates (macaque, orangutan, gorilla, chimpanzee, gibbon, owl monkey, saimiri), and examined by comparative sequence nucleotide analysis the [AGC]n intragenic repeat and the surrounding nucleotides. The genomic organization, including the [AGC]n repeat structure, was conserved in all examined species, excluding the gibbon (Hylobates agilis), in which the [AGC]n upstream sequence (GGAA) is replaced by a GA dinucleotide. The number of [AGC]n in the examined species ranged between 7 (gorilla) and 13 repeats (owl monkeys), with a polymorphism informative content (PIC) similar to that observed in humans. These results indicate that the 3{prime}UTR [AGC] repeat within the MT-PK gene is evolutionarily conserved, supporting that this region has important regulatory functions.« less

  13. FY2016 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  14. FY2014 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2015-03-01

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  15. FY2015 Advanced Combustion Engine Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Gurpreet; Gravel, Roland M.; Howden, Kenneth C.

    The Advanced Combustion Engine research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical barriers to commercializing higher efficiency, very low emissions advanced internal combustion engines for passenger and commercial vehicles.

  16. Cyclic flow underground coal gasification process

    DOEpatents

    Bissett, Larry A.

    1978-01-01

    The present invention is directed to a method of in situ coal gasification for providing the product gas with an enriched concentration of carbon monoxide. The method is practiced by establishing a pair of combustion zones in spaced-apart boreholes within a subterranean coal bed and then cyclically terminating the combustion in the first of the two zones to establish a forward burn in the coal bed so that while an exothermic reaction is occurring in the second combustion zone to provide CO.sub.2 -laden product gas, an endothermic CO-forming reaction is occurring in the first combustion zone between the CO.sub.2 -laden gas percolating thereinto and the hot carbon in the wall defining the first combustion zone to increase the concentration of CO in the product gas. When the endothermic reaction slows to a selected activity the roles of the combustion zones are reversed by re-establishing an exothermic combustion reaction in the first zone and terminating the combustion in the second zone.

  17. National Jet Fuels Combustion Program – Area #3 : Advanced Combustion Tests

    DOT National Transportation Integrated Search

    2017-12-31

    The goal of this study is to develop, conduct, and analyze advanced laser and optical measurements in the experimental combustors developed under ASCENT National Fuel Combustion Program to measure sensitivity to fuel properties. We conducted advanced...

  18. Impact of feedstock properties and operating conditions on sewage sludge gasification in a fixed bed gasifier.

    PubMed

    Werle, Sebastian

    2014-10-01

    This work presents results of experimental studies on the gasification process of granulated sewage sludge in a laboratory fixed bed gasifier. Nowadays, there is a large and pressing need for the development of thermal methods for sewage sludge disposal. Gasification is an example of thermal method that has several advantages over the traditional combustion. Gasification leads to a combustible gas, which can be used for the generation of useful forms of final energy. It can also be used in processes, such as the drying of sewage sludge directly in waste treatment plant. In the present work, the operating parameters were varied over a wide range. Parameters, such as air ratio λ = 0.12 to 0.27 and the temperature of air preheating t = 50 °C to 250 °C, were found to influence temperature distribution and syngas properties. The results indicate that the syngas heating value decreases with rising air ratio for all analysed cases: i.e. for both cold and preheated air. The increase in the concentration of the main combustible components was accompanied by a decrease in the concentration of carbon dioxide. Preheating of the gasification agent supports the endothermic gasification and increases hydrogen and carbon monoxide production. © The Author(s) 2014.

  19. Dwarfism in homozygous Agc1CreERT mice is associated with decreased expression of aggrecan.

    PubMed

    Rashid, Harunur; Chen, Haiyan; Hassan, Quamarul; Javed, Amjad

    2017-10-01

    Aggrecan (Acan), a large proteoglycan is abundantly expressed in cartilage tissue. Disruption of Acan gene causes dwarfism and perinatal lethality of homozygous mice. Because of sustained expression of Acan in the growth plate and articular cartilage, Agc Cre model has been developed for the regulated ablation of target gene in chondrocytes. In this model, the IRES-CreERT-Neo-pgk transgene is knocked-in the 3'UTR of the Acan gene. We consistently noticed variable weight and size among the Agc Cre littermates, prompting us to examine the cause of this phenotype. Wild-type, Cre-heterozygous (Agc +/Cre ), and Cre-homozygous (Agc Cre/Cre ) littermates were indistinguishable at birth. However, by 1-month, Agc Cre/Cre mice showed a significant reduction in body weight (18-27%) and body length (19-22%). Low body weight and dwarfism was sustained through adulthood and occurred in both genders. Compared with wild-type and Agc +/Cre littermates, long bones and vertebrae were shorter in Agc Cre/Cre mice. Histological analysis of Agc Cre/Cre mice revealed a significant reduction in the length of the growth plate and the thickness of articular cartilage. The amount of proteoglycan deposited in the cartilage of Agc Cre/Cre mice was nearly half of the WT littermates. Analysis of gene expression indicates impaired differentiation of chondrocyte in hyaline cartilage of Agc Cre/Cre mice. Notably, both Acan mRNA and protein was reduced by 50% in Agc Cre/Cre mice. A strong correlation was noted between the level of Acan mRNA and the body length. Importantly, Agc +/Cre mice showed no overt skeletal phenotype. Thus to avoid misinterpretation of data, only the Agc +/Cre mice should be used for conditional deletion of a target gene in the cartilage tissue. © 2017 Wiley Periodicals, Inc.

  20. In situ gasification process for producing product gas enriched in carbon monoxide and hydrogen

    DOEpatents

    Capp, John P.; Bissett, Larry A.

    1978-01-01

    The present invention is directed to an in situ coal gasification process wherein the combustion zone within the underground coal bed is fed with air at increasing pressure to increase pressure and temperature in the combustion zone for forcing product gases and water naturally present in the coal bed into the coal bed surrounding the combustion zone. No outflow of combustion products occurs during the build-up of pressure and temperature in the combustion zone. After the coal bed reaches a temperature of about 2000.degree. F and a pressure in the range of about 100-200 psi above pore pressure the airflow is terminated and the outflow of the combustion products from the combustion zone is initiated. The CO.sub.2 containing gaseous products and the water bleed back into the combustion zone to react endothermically with the hot carbon of the combustion zone to produce a burnable gas with a relatively high hydrogen and carbon monoxide content. About 11 to 29 percent of the gas recovered from the combustion zone is carbon monoxide which is considerably better than the 4 to 10 percent carbon monoxide obtained by employing previously known coal gasification techniques.

  1. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  2. Method for control of subsurface coal gasification

    DOEpatents

    Komar, Charles A.

    1976-12-14

    The burn front in an in situ underground coal gasification operation is controlled by utilizing at least two parallel groups of vertical bore holes disposed in the coalbed at spaced-apart locations in planes orthogonal to the plane of maximum permeability in the coalbed. The combustion of the coal is initiated in the coalbed adjacent to one group of the bore holes to establish a combustion zone extending across the group while the pressure of the combustion supporting gas mixture and/or the combustion products is regulated at each well head by valving to control the burn rate and maintain a uniform propagation of the burn front between the spaced-apart hole groups to gasify virtually all the coal lying therebetween.

  3. FY 2007 Progress Report for Advanced Combustion Engine Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2007-12-01

    Advanced combustion engines have great potential for achieving dramatic energy efficiency improvements in light-duty vehicle applications, where it is suited to both conventional and hybrid- electric powertrain configurations. Light-duty vehicles with advanced combustion engines can compete directly with gasoline engine hybrid vehicles in terms of fuel economy and consumer-friendly driving characteristics; also, they are projected to have energy efficiencies that are competitive with hydrogen fuel cell vehicles when used in hybrid applications.Advanced engine technologies being researched and developed by the Advanced Combustion Engine R&D Sub-Program will also allow the use of hydrogen as a fuel in ICEs and will providemore » an energy-efficient interim hydrogen-based powertrain technology during the transition to hydrogen/fuelcell-powered transportation vehicles.« less

  4. Small Scale Gasification Application and Perspectives in Circular Economy

    NASA Astrophysics Data System (ADS)

    Klavins, Maris; Bisters, Valdis; Burlakovs, Juris

    2018-06-01

    Gasification is the process converting solid fuels as coal and organic plant matter, or biomass into combustible gas, called syngas. Gasification is a thermal conversion process using carbonaceous fuel, and it differs substantially from other thermal processes such as incineration or pyrolysis. The process can be used with virtually any carbonaceous fuel. It is an endothermic thermal conversion process, with partial oxidation being the dominant feature. Gasification converts various feedstock including waste to a syngas. Instead of producing only heat and electricity, synthesis gas produced by gasification may be transformed into commercial products with higher value as transport fuels, fertilizers, chemicals and even to substitute natural gas. Thermo-chemical conversion of biomass and solid municipal waste is developing as a tool to promote the idea of energy system without fossil fuels to a reality. In municipal solid waste management, gasification does not compete with recycling, moreover it enhances recycling programs. Pre-processing and after-processing must increase the amount of recyclables in the circular economy. Additionally, end of life plastics can serve as an energy feedstock for gasification as otherwise it cannot be sorted out and recycled. There is great potential for application of gasification technology within the biomass waste and solid waste management sector. Industrial self-consumption in the mode of combined heat and power can contribute to sustainable economic development within a circular economy.

  5. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  6. Mathematical Modeling of Ultra-Superheated Steam Gasification

    NASA Astrophysics Data System (ADS)

    Xin, Fen

    Pure steam gasification has been of interest in hydrogen production, but with the challenge of supplying heat for endothermic reactions. Traditional solutions included either combusting feedstocks at the price of decreasing carbon conversion ratio, or using costly heating apparatus. Therefore, a distributed gasifier with an Ultra-Superheated-Steam (USS) generator was invented, satisfying the heat requirement and avoiding carbon combustion in steam gasification. This project developed the first version of the Ultra-Superheated-Steam-Fluidization-Model (USSFM V1.0) for the USS gasifier. A stand-alone equilibrium combustion model was firstly developed to calculate the USS mixture, which was the input to the USSFM V1.0. Model development of the USSFM V1.0 included assumptions, governing equations, boundary conditions, supporting equations and iterative schemes of guessed values. There were three nested loops in the dense bed and one loop in the freeboard. The USSFM V1.0 included one main routine and twenty-four subroutines. The USSFM V1.0 was validated with experimental data from the Enercon USS gasifier. The calculated USS mixture had a trace of oxygen, validating the initial expectation of creating an oxygen-free environment in the gasifier. Simulations showed that the USS mixture could satisfy the gasification heat requirement without partial carbon combustion. The USSFM V1.0 had good predictions on the H2% in all tests, and on other variables at a level of the lower oxygen feed. Provided with higher oxygen feed, the USSFM V1.0 simulated hotter temperatures, higher CO% and lower CO2%. Errors were explained by assumptions of equilibrium combustion, adiabatic reactors, reaction kinetics, etc. By investigating specific modeling data, gas-particle convective heat transfers were found to be critical in energy balance equations of both emulsion gas and particles, while bubble size controlled both the mass and energy balance equations of bubble gas. Parametric study

  7. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, D. J.; Crnojević, D.; Seth, A. C.

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc)more » away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.« less

  8. The Numerical Studies Program for the Atmospheric General Circulation Experiment (AGCE) for Spacelab Flights

    NASA Technical Reports Server (NTRS)

    Fowlis, W. W. (Editor); Davis, M. H. (Editor)

    1981-01-01

    The atmospheric general circulation experiment (AGCE) numerical design for Spacelab flights was studied. A spherical baroclinic flow experiment which models the large scale circulations of the Earth's atmosphere was proposed. Gravity is simulated by a radial dielectric body force. The major objective of the AGCE is to study nonlinear baroclinic wave flows in spherical geometry. Numerical models must be developed which accurately predict the basic axisymmetric states and the stability of nonlinear baroclinic wave flows. A three dimensional, fully nonlinear, numerical model and the AGCE based on the complete set of equations is required. Progress in the AGCE numerical design studies program is reported.

  9. Optical spectra of coal gasification products in the RF plasmatron

    NASA Astrophysics Data System (ADS)

    Fedorovich, S. D.; Burakov, I. A.; Dudolin, A. A.; Markov, A. A.; Khtoo Naing, Aung; Ulziy, Batsamboo; Kavyrshin, D. I.

    2017-11-01

    The use of solid fuel gasification process is relevant to the regions where there is no opportunity to use natural gas as the main fuel. On the territory of the Russian Federation such regions are largely the Urals, Siberia and the Far East. In order to reduce the harmful effects on the environment solid fuel with high sulfur content, ash content and moisture are subjected to gasification process. One of the major problems of this process is to produce syngas with a low calorific value. For conventional types of gasification (gasification), the value of this quantity ranges 8 - 10 MJ / m3. The use of plasma gasification increases the calorific value of 12 - 16 MJ / m3 which allows the most efficient use of the syngas. The reason for the increase of the value lies in the change of temperature in the reaction zone. A significant rise in temperature in the reaction zone leads to an increase in methane formation reactions constant value, which allows to obtain a final product with a large calorific value. The HFI-plasma torch coal temperature reaches 3000 ° C, and the temperature of coal gasification products can reach 8000 ° C. The aim is to develop methods for determining the composition of the plasma gasification products obtained optical spectra. The Kuznetsky coal used as the starting material. Received and decrypted gasification products optical spectra in a wavelength range from 220 to 1000 nm. Recommendations for the use of the developed method for determining the composition of the plasma gasification products. An analysis of the advantages of using plasma gasification as compared with conventional gasification and coal combustion.

  10. Gasification of hybrid feedstock using animal manures and hays

    USDA-ARS?s Scientific Manuscript database

    The objective of this study is to evaluate the efficiency of a proprietary integrated gasification-internal combustion system in producing electricity from mixtures of animal manures such as swine solids, chicken litter, and hays. Five to 10 gallons of mixtures of swine manure, chicken litter, and h...

  11. Thermodynamic analysis of in situ gasification-chemical looping combustion (iG-CLC) of Indian coal.

    PubMed

    Suresh, P V; Menon, Kavitha G; Prakash, K S; Prudhvi, S; Anudeep, A

    2016-10-01

    Chemical looping combustion (CLC) is an inherent CO 2 capture technology. It is gaining much interest in recent years mainly because of its potential in addressing climate change problems associated with CO 2 emissions from power plants. A typical chemical looping combustion unit consists of two reactors-fuel reactor, where oxidation of fuel occurs with the help of oxygen available in the form of metal oxides and, air reactor, where the reduced metal oxides are regenerated by the inflow of air. These oxides are then sent back to the fuel reactor and the cycle continues. The product gas from the fuel reactor contains a concentrated stream of CO 2 which can be readily stored in various forms or used for any other applications. This unique feature of inherent CO 2 capture makes the technology more promising to combat the global climate changes. Various types of CLC units have been discussed in literature depending on the type of fuel burnt. For solid fuel combustion three main varieties of CLC units exist namely: syngas CLC, in situ gasification-CLC (iG-CLC) and chemical looping with oxygen uncoupling (CLOU). In this paper, theoretical studies on the iG-CLC unit burning Indian coal are presented. Gibbs free energy minimization technique is employed to determine the composition of flue gas and oxygen carrier of an iG-CLC unit using Fe 2 O 3 , CuO, and mixed carrier-Fe 2 O 3 and CuO as oxygen carriers. The effect of temperature, suitability of oxygen carriers, and oxygen carrier circulation rate on the performance of a CLC unit for Indian coal are studied and presented. These results are analyzed in order to foresee the operating conditions at which economic and smooth operation of the unit is expected.

  12. COSTS FOR ADVANCED COAL COMBUSTION TECHNOLOGIES

    EPA Science Inventory

    The report gives results of an evaluation of the development status of advanced coal combustion technologies and discusses the preparation of performance and economic models for their application to electric utility plants. he technologies addressed were atmospheric fluidized bed...

  13. A life cycle assessment of environmental performances of two combustion- and gasification-based waste-to-energy technologies.

    PubMed

    Arena, Umberto; Ardolino, Filomena; Di Gregorio, Fabrizio

    2015-07-01

    An attributional life cycle analysis (LCA) was developed to compare the environmental performances of two waste-to-energy (WtE) units, which utilize the predominant technologies among those available for combustion and gasification processes: a moving grate combustor and a vertical shaft gasifier coupled with direct melting. The two units were assumed to be fed with the same unsorted residual municipal waste, having a composition estimated as a European average. Data from several plants in operation were processed by means of mass and energy balances, and on the basis of the flows and stocks of materials and elements inside and throughout the two units, as provided by a specific substance flow analysis. The potential life cycle environmental impacts related to the operations of the two WtE units were estimated by means of the Impact 2002+ methodology. They indicate that both the technologies have sustainable environmental performances, but those of the moving grate combustion unit are better for most of the selected impact categories. The analysis of the contributions from all the stages of each specific technology suggests where improvements in technological solutions and management criteria should be focused to obtain further and remarkable environmental improvements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Combining plasma gasification and solid oxide cell technologies in advanced power plants for waste to energy and electric energy storage applications.

    PubMed

    Perna, Alessandra; Minutillo, Mariagiovanna; Lubrano Lavadera, Antonio; Jannelli, Elio

    2018-03-01

    The waste to energy (WtE) facilities and the renewable energy storage systems have a strategic role in the promotion of the "eco-innovation", an emerging priority in the European Union. This paper aims to propose advanced plant configurations in which waste to energy plants and electric energy storage systems from intermittent renewable sources are combined for obtaining more efficient and clean energy solutions in accordance with the "eco-innovation" approach. The advanced plant configurations consist of an electric energy storage (EES) section based on a solid oxide electrolyzer (SOEC), a waste gasification section based on the plasma technology and a power generation section based on a solid oxide fuel cell (SOFC). The plant configurations differ for the utilization of electrolytic hydrogen and oxygen in the plasma gasification section and in the power generation section. In the first plant configuration IAPGFC (Integrated Air Plasma Gasification Fuel Cell), the renewable oxygen enriches the air stream, that is used as plasma gas in the gasification section, and the renewable hydrogen is used to enrich the anodic stream of the SOFC in the power generation section. In the second plant configuration IHPGFC (Integrated Hydrogen Plasma Gasification Fuel Cell) the renewable hydrogen is used as plasma gas in the plasma gasification section, and the renewable oxygen is used to enrich the cathodic stream of the SOFC in the power generation section. The analysis has been carried out by using numerical models for predicting and comparing the systems performances in terms of electric efficiency and capability in realizing the waste to energy and the electric energy storage of renewable sources. Results have highlighted that the electric efficiency is very high for all configurations (35-45%) and, thanks to the combination with the waste to energy technology, the storage efficiencies are very attractive (in the range 72-92%). Copyright © 2017 Elsevier Ltd. All rights

  15. Benefits of Integration of Aerojet Rocketdyne and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Vijay; Denton, David; SHarma, Pradeep

    The key objective for this project was to evaluate the potential to achieve substantial reductions in the production cost of H 2-rich syngas via coal gasification with near-zero emissions due to the cumulative and synergistic benefits realized when multiple advanced technologies are integrated into the overall conversion process. In this project, Aerojet Rocketdyne’s (AR’s) advanced gasification technology (currently being offered as R-GAS™) and RTI International’s (RTI’s) advanced warm syngas cleanup technologies were evaluated via a number of comparative techno-economic case studies. AR’s advanced gasification technology consists of a dry solids pump and a compact gasifier system. Based on the uniquemore » design of this gasifier, it has been shown to reduce the capital cost of the gasification block by between 40 and 50%. At the start of this project, actual experimental work had been demonstrated through pilot plant systems for both the gasifier and dry solids pump. RTI’s advanced warm syngas cleanup technologies consist primarily of RTI’s Warm Gas Desulfurization Process (WDP) technology, which effectively allows decoupling of the sulfur and CO 2 removal allowing for more flexibility in the selection of the CO 2 removal technology, plus associated advanced technologies for direct sulfur recovery and water gas shift (WGS). WDP has been demonstrated at pre-commercial scale using an activated amine carbon dioxide recovery process which would not have been possible if a majority of the sulfur had not been removed from the syngas by WDP. This pre-commercial demonstration of RTI’s advanced warm syngas cleanup system was conducted in parallel to the activities on this project. The technical data and cost information from this pre-commercial demonstration were extensively used in this project during the techno-economic analysis. With this project, both of RTI’s advanced WGS technologies were investigated. Because RT’s advanced fixed-bed WGS

  16. August gamma Cepheids (523-AGC)

    NASA Astrophysics Data System (ADS)

    Roggemans, Paul

    2018-02-01

    Favorable weather conditions between 19 August and 5 September 2017 enabled the CAMS BeNeLux network to collect 3189 orbits. A radiant concentration was spotted which was identified as the August gamma Cepheids (523-AGC). An independent search on a selection from all available meteor orbit lists coming from the suspect radiant area and velocity range was made. This resulted in 283 similar orbits, radiating from R.A. 358.4° and Decl. +76.2° with a geocentric velocity of 43.7 km/s in a time lapse between 146° and 165° in solar longitude with best activity at 155.7°. The orbital elements match perfectly with previously published results. There is no indication for any periodicity in the shower displays from year to year. The AGC-meteors are remarkably rich in bright meteors and rather deficient in faint meteors. Being detected independently from orbital data collected by different video networks, confirmed by 283 orbits with a medium threshold D criterion DD < 0.08 and 125 orbits with a high threshold of DD < 0.04, this minor shower could be considered to be listed as an established meteor shower.

  17. AGC-4 Experiment Irradiation Monitoring Data Qualification Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hull, Laurence Charles

    2016-08-01

    The Graphite Technology Development Program is running a series of six experiments to quantify the effects of irradiation on nuclear grade graphite. The fourth experiment, Advanced Graphite Creep 4 (AGC 4), began with Advanced Test Reactor (ATR) cycle 157D on May 30, 2015, and has been irradiated for two cycles. The capsule was removed from the reactor after ATR cycle 158A, which ended on January 2, 2016, due to interference with another experiment. Irradiation will resume when the interfering experiment is removed from the reactor. This report documents qualification of AGC 4 experiment irradiation monitoring data for use by themore » Advanced Reactor Technologies (ART) Technology Development Office (TDO) Program for research and development activities required to design and license the first HTR nuclear plant. Qualified data meet the requirements for use as described in the experiment planning and quality assurance documents. Failed data do not meet the requirements and provide no useable information. Trend data may not meet all requirements, but still provide some useable information. Use of Trend data requires assessment of how any deficiencies affect a particular use of the data. All thermocouples (TCs) have functioned throughout the AGC-4 experiment. All temperature data are Qualified for use by the ART TDO Program. Argon, helium, and total gas flow data were within expected ranges and are Qualified for use by the ART TDO Program. Discharge gas line moisture values were consistently low during cycle 157D. At the start of cycle 158A, gas moisture briefly spiked to over 600 ppmv and then declined throughout the cycle. Moisture values are within the measurement range of the instrument and are Qualified for use by the ART TDO Program. Graphite creep specimens were subjected to one of three loads, 393, 491, or 589 lbf. For a brief period during cycle 157D between 12:19 on June 2, 2015 and 08:23 on June 11, 2015 the load cells were wired incorrectly resulting in

  18. A sensitive glucose biosensor based on Ag@C core-shell matrix.

    PubMed

    Zhou, Xuan; Dai, Xingxin; Li, Jianguo; Long, Yumei; Li, Weifeng; Tu, Yifeng

    2015-04-01

    Nano-Ag particles were coated with colloidal carbon (Ag@C) to improve its biocompatibility and chemical stability for the preparation of biosensor. The core-shell structure was evidenced by transmission electron microscope (TEM) and the Fourier transfer infrared (FTIR) spectra revealed that the carbon shell is rich of function groups such as -OH and -COOH. The as-prepared Ag@C core-shell structure can offer favorable microenvironment for immobilizing glucose oxidase and the direct electrochemistry process of glucose oxidase (GOD) at Ag@C modified glassy carbon electrode (GCE) was realized. The modified electrode exhibited good response to glucose. Under optimum experimental conditions the biosensor linearly responded to glucose concentration in the range of 0.05-2.5mM, with a detection limit of 0.02mM (S/N=3). The apparent Michaelis-Menten constant (KM(app)) of the biosensor is calculated to be 1.7mM, suggesting high enzymatic activity and affinity toward glucose. In addition, the GOD-Ag@C/Nafion/GCE shows good reproducibility and long-term stability. These results suggested that core-shell structured Ag@C is an ideal matrix for the immobilization of the redox enzymes and further the construction of the sensitive enzyme biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    PubMed

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  20. Advances in Systemic Therapy for Metastatic or Advanced Gastric Cancer.

    PubMed

    Shitara, Kohei; Ohtsu, Atsushi

    2016-10-01

    In recent years, various new agents have been investigated for the treatment of advanced gastric cancer (AGC). The anti-HER2 antibody trastuzumab has been shown to prolong the overall survival of patients with HER2-positive AGC and has become a standard treatment. However, lapatinib, or ado-trastuzumab emtansine (T-DM1), did not show survival benefit in AGC, although it has shown remarkable efficacy for HER2-positive breast cancer. The efficacy of the anti-vascular endothelial growth factor receptor monoclonal antibody ramucirumab for pretreated gastric cancer is a milestone for antiangiogenic therapy for AGC. Early clinical trials of TAS-118, TAS-102, and STAT3 inhibitors; IMAB362 (anti-Claudin 18.2); and immune checkpoint inhibitors are all encouraging. These findings warrant further evaluation in larger clinical trials. Copyright © 2016 by the National Comprehensive Cancer Network.

  1. Combustion of Coal Char Particles under Fluidized Bed Oxyfiring Conditions

    NASA Astrophysics Data System (ADS)

    Scala, Fabrizio; Chirone, Riccardo

    In this work combustion of single coal char particles was studied at 850°C in a lab-scale fluidized bed under simulated oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O2 concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO2 in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to the bed one up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO2 gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be more important than under combustion conditions.

  2. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. © The Author(s) 2014.

  3. Combustion of two-component miscible droplets in reduced gravity

    NASA Technical Reports Server (NTRS)

    Shaw, Benjamin D.; Aharon, Israel; Gage, James W.; Jenkins, Andrew J.; Kahoe, Thomas J.

    1995-01-01

    This research focuses on the combustion of binary miscible droplets initially in the mm size range. Experiments are performed using the NASA Lewis 2.2 sec drop tower in Cleveland, Ohio, where mixtures of alkanes and/or alcohols are studied. The fuel components are selected to have significantly different volatilities. Initial oxygen mole fractions from about 0.15-0.5 and initial pressures from 0.2-2 atm are employed. Different inerts are used (He, CO2, Ar, N2) to change burning rates and sooting behaviors. Objectives are to observe the following: (1) Transient droplet diameters (including three-staged combustion behaviors and microexplosion; (2) Transient flow behaviors (sudden flame contraction, luminosity, extinction); and (3) Behaviors of observable soot particles. theoretical and computational research in support of this program has also been undertaken. This research includes analytical studies to determine the effects of small but nonzero gravitational levels on droplet gasification, analytical studies of hydrodynamic stability of spherically-symmetrical droplet gasification (to address the question as to whether spherically-symmetrical droplet gasification may be destabilized from capillary, i.e., Marangoni effects), and computational modeling of effects of capillary stresses on droplet gasification.

  4. Sewage sludge as a fuel and raw material for phosphorus recovery: Combined process of gasification and P extraction.

    PubMed

    Gorazda, K; Tarko, B; Werle, S; Wzorek, Z

    2018-03-01

    Increasing problems associated with sewage sludge disposal are observed nowadays. As the thermal conversion of sewage sludge (combustion, co-combustion, gasification and pyrolysis) appears to be the most promising alternative for its management, the solid residues left after gasification were examined. The present study evaluates the potential of this waste as an alternative phosphorus source in the context of phosphorus recovery. The obtained solid gasification residues were characterised (chemical and phase composition, thermal properties, surface properties and technological parameters used for phosphorus raw materials) and compared to commercial phosphate raw materials. It was revealed that gasification residue is a valuable source of phosphorus and microelements, comparable to sewage sludge ash (SSA) considered nowadays as secondary phosphorus raw materials. Chemical properties as well as technological parameters characteristic for natural phosphate ores are different. Solid gasification residue was leached with mineral acids (phosphoric and nitric) according to the patented method of phosphorus recovery - PolFerAsh, developed by Cracow University of Technology. It was revealed that phosphorus can be selectively leached from solid gasification residue with high efficiency (73-82%); moreover, most of the iron and heavy metals stay in the solid phase due to the low concentration of acids and proper solid to liquid phase ratio. The obtained leachates are valuable products that can be considered for the production of fertilisers. Combining the gasification process with nutrient recovery provides the opportunity for more environmentally efficient technologies driven by sustainable development rules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2007-01-15

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunitiesmore » and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.« less

  6. Life cycle assessment of pyrolysis, gasification and incineration waste-to-energy technologies: Theoretical analysis and case study of commercial plants.

    PubMed

    Dong, Jun; Tang, Yuanjun; Nzihou, Ange; Chi, Yong; Weiss-Hortala, Elsa; Ni, Mingjiang

    2018-06-01

    Municipal solid waste (MSW) pyrolysis and gasification are in development, stimulated by a more sustainable waste-to-energy (WtE) option. Since comprehensive comparisons of the existing WtE technologies are fairly rare, this study aims to conduct a life cycle assessment (LCA) using two sets of data: theoretical analysis, and case studies of large-scale commercial plants. Seven systems involving thermal conversion (pyrolysis, gasification, incineration) and energy utilization (steam cycle, gas turbine/combined cycle, internal combustion engine) are modeled. Theoretical analysis results show that pyrolysis and gasification, in particular coupled with a gas turbine/combined cycle, have the potential to lessen the environmental loadings. The benefits derive from an improved energy efficiency leading to less fossil-based energy consumption, and the reduced process emissions by syngas combustion. Comparison among the four operating plants (incineration, pyrolysis, gasification, gasification-melting) confirms a preferable performance of the gasification plant attributed to syngas cleaning. The modern incineration is superior over pyrolysis and gasification-melting at present, due to the effectiveness of modern flue gas cleaning, use of combined heat and power (CHP) cycle, and ash recycling. The sensitivity analysis highlights a crucial role of the plant efficiency and pyrolysis char land utilization. The study indicates that the heterogeneity of MSW and syngas purification technologies are the most relevant impediments for the current pyrolysis/gasification-based WtE. Potential development should incorporate into all process aspects to boost the energy efficiency, improve incoming waste quality, and achieve efficient residues management. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system.

    PubMed

    Tanigaki, Nobuhiro; Manako, Kazutaka; Osada, Morihiro

    2012-04-01

    This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Performance and Characteristics of a Cyclone Gasifier for Gasification of Sawdust

    NASA Astrophysics Data System (ADS)

    Azman Miskam, Muhamad; Zainal, Z. A.; Idroas, M. Y.

    The performance and characteristics of a cyclone gasifier for gasification of sawdust has been studied and evaluated. The system applied a technique to gasify sawdust through the concept of cyclonic motion driven by air injected at atmospheric pressure. This study covers the results obtained for gasification of ground sawdust from local furniture industries with size distribution ranging from 0.25 to 1 mm. It was found that the typical wall temperature for initiating stable gasification process was about 400°C. The heating value of producer gas was about 3.9 MJ m-3 that is sufficient for stable combustion in a dual-fuel engine generator. The highest thermal output from the cyclone gasifier was 57.35 kWT. The highest value of mass conversion efficiency and enthalpy balance were 60 and 98.7%, respectively. The highest efficiency of the cyclone gasifier obtained was 73.4% and this compares well with other researchers. The study has identified the optimum operational condition for gasifying sawdust in a cyclone gasifier and made conclusions as to how the steady gasification process can be achieved.

  9. Coal Gasification - section in Kirk-Othmer Concise Encyclopedia of Chemical Technology, 5th Edition, 2-vol. set, July 2007, ISBN 978-0-470-04748-4, pp. 580-587

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Berry, D.A.; Syamlal, Madhava

    2007-07-01

    Coal gasification is the process of reacting coal with oxygen, steam, and carbon dioxide to form a product gas containing hydrogen and carbon monoxide. Gasification is essentially incomplete combustion. The chemical and physical processes are quite similar, the main difference being the nature of the final products. From a processing point of view the main operating difference is that gasification consumes heat evolved during combustion. Under the reducing environment of gasification the sulfur in the coal is released as hydrogen sulfide rather than sulfur dioxide and the coal's nitrogen is converted mostly to ammonia rather than nitrogen oxides. These reducedmore » forms of sulfur and nitrogen are easily isolated, captured, and utilized, and thus gasification is a clean coal technology with better environmental performance than coal combustion. Depending on the type of gasifier and the operating conditions, gasification can be used to produce a fuel gas suitable for any number of applications. A low heating value fuel gas is produced from an air blown gasifier for use as an industrial fuel and for power production. A medium heating value fuel gas is produced from enriched oxygen blown gasification for use as a synthesis gas in the production of chemicals such as ammonia, methanol, and transportation fuels. A high heating value gas can be produced from shifting the medium heating value product gas over catalysts to produce a substitute or synthetic natural gas (SNG).« less

  10. FY2017 Advanced Combustion Systems and Fuels Annual Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Advanced Combustion Systems and Fuels Program supports VTO’s goal and focuses early-stage research and development (R&D) to improve understanding of the combustion processes, fuel properties, and emission control technologies while generating knowledge and insight necessary for industry to develop the next generation of engines.

  11. Gasification Product Improvement Facility (GPIF). Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-09-01

    The gasifier selected for development under this contract is an innovative and patented hybrid technology which combines the best features of both fixed-bed and fluidized-bed types. PyGas{trademark}, meaning Pyrolysis Gasification, is well suited for integration into advanced power cycles such as IGCC. It is also well matched to hot gas clean-up technologies currently in development. Unlike other gasification technologies, PyGas can be designed into both large and small scale systems. It is expected that partial repowering with PyGas could be done at a cost of electricity of only 2.78 cents/kWh, more economical than natural gas repowering. It is extremely unfortunatemore » that Government funding for such a noble cause is becoming reduced to the point where current contracts must be canceled. The Gasification Product Improvement Facility (GPIF) project was initiated to provide a test facility to support early commercialization of advanced fixed-bed coal gasification technology at a cost approaching $1,000 per kilowatt for electric power generation applications. The project was to include an innovative, advanced, air-blown, pressurized, fixed-bed, dry-bottom gasifier and a follow-on hot metal oxide gas desulfurization sub-system. To help defray the cost of testing materials, the facility was to be located at a nearby utility coal fired generating site. The patented PyGas{trademark} technology was selected via a competitive bidding process as the candidate which best fit overall DOE objectives. The paper describes the accomplishments to date.« less

  12. Modeling and comparative assessment of municipal solid waste gasification for energy production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan

    Highlights: • Study developed a methodology for the evaluation of gasification for MSW treatment. • Study was conducted comparatively for USA, UAE, and Thailand. • Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. • The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producingmore » energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify®) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.« less

  13. Agglomerating combustor-gasifier method and apparatus for coal gasification

    DOEpatents

    Chen, Joseph L. P.; Archer, David H.

    1976-09-21

    A method and apparatus for gasifying coal wherein the gasification takes place in a spout fluid bed at a pressure of about 10 to 30 atmospheres and a temperature of about 1800.degree. to 2200.degree.F and wherein the configuration of the apparatus and the manner of introduction of gases for combustion and fluidization is such that agglomerated ash can be withdrawn from the bottom of the apparatus and gas containing very low dust loading is produced. The gasification reaction is self-sustaining through the burning of a stoichiometric amount of coal with air in the lower part of the apparatus to form the spout within the fluid bed. The method and apparatus are particularly suitable for gasifying coarse coal particles.

  14. High temperature gasification of high heating-rate chars using a flat-flame reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tian; Niu, Yanqing; Wang, Liang

    The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less

  15. High temperature gasification of high heating-rate chars using a flat-flame reactor

    DOE PAGES

    Li, Tian; Niu, Yanqing; Wang, Liang; ...

    2017-08-25

    The increasing interest in gasification and oxy-fuel combustion of biomass has heightened the need for a detailed understanding of char gasification in industrially relevant environments (i.e., high temperature and high-heating rate). Despite innumerable studies previously conducted on gasification of biomass, very few have focused on such conditions. Consequently, in this study the high-temperature gasification behaviors of biomass-derived chars were investigated using non-intrusive techniques. Two biomass chars produced at a heating rate of approximately 10 4 K/s were subjected to two gasification environments and one oxidation environment in an entrained flow reactor equipped with an optical particle-sizing pyrometer. A coal charmore » produced from a common U.S. low sulfur subbituminous coal was also studied for comparison. Both char and surrounding gas temperatures were precisely measured along the centerline of the furnace. Despite differences in the physical and chemical properties of the biomass chars, they exhibited rather similar reaction temperatures under all investigated conditions. On the other hand, a slightly lower particle temperature was observed in the case of coal char gasification, suggesting a higher gasification reactivity for the coal char. A comprehensive numerical model was applied to aid the understanding of the conversion of the investigated chars under gasification atmospheres. In addition, a sensitivity analysis was performed on the influence of four parameters (gas temperature, char diameter, char density, and steam concentration) on the carbon conversion rate. Here, the results demonstrate that the gas temperature is the most important single variable influencing the gasification rate.« less

  16. Material and energy recovery from Automotive Shredded Residues (ASR) via sequential gasification and combustion.

    PubMed

    Viganò, F; Consonni, S; Grosso, M; Rigamonti, L

    2010-01-01

    Shredding is the common end-of-life treatment in Europe for dismantled car wrecks. It produces the so-called Automotive Shredded Residue (ASR), usually disposed of in landfill. This paper summarizes the outcome of a study carried out by Politecnico di Milano and LEAP with the support of Actelios SpA on the prospects of a technology based on sequential gasification and combustion of this specific waste stream. Its application to the treatment of ASR allows the recovery of large fractions of metals as non-oxidized, easily marketable secondary raw materials, the vitrification of most of the ash content and the production of power via a steam cycle. Results show that despite the unfavourable characteristics of ASR, the proposed technology can reach appealing energy performances. Three of four environmental impact indicators and the cumulative energy demand index are favourable, the main positive contributes being electricity production and metal recovery (mainly aluminium and copper). The only unfavourable indicator is the global warming index because, since most of the carbon in ASR comes from fossil sources, the carbon dioxide emissions at the stack of the thermal treatment plant are mainly non-renewable and, at the same time, the avoided biogas production from the alternative disposal route of landfilling is minor.

  17. Underground gasification of coal

    DOEpatents

    Pasini, III, Joseph; Overbey, Jr., William K.; Komar, Charles A.

    1976-01-20

    There is disclosed a method for the gasification of coal in situ which comprises drilling at least one well or borehole from the earth's surface so that the well or borehole enters the coalbed or seam horizontally and intersects the coalbed in a direction normal to its major natural fracture system, initiating burning of the coal with the introduction of a combustion-supporting gas such as air to convert the coal in situ to a heating gas of relatively high calorific value and recovering the gas. In a further embodiment the recovered gas may be used to drive one or more generators for the production of electricity.

  18. The carbon dioxide gasification characteristics of biomass char samples and their effect on coal gasification reactivity during co-gasification.

    PubMed

    Mafu, Lihle D; Neomagus, Hein W J P; Everson, Raymond C; Okolo, Gregory N; Strydom, Christien A; Bunt, John R

    2018-06-01

    The carbon dioxide gasification characteristics of three biomass char samples and bituminous coal char were investigated in a thermogravimetric analyser in the temperature range of 850-950 °C. Char SB exhibited higher reactivities (R i , R s , R f ) than chars SW and HW. Coal char gasification reactivities were observed to be lower than those of the three biomass chars. Correlations between the char reactivities and char characteristics were highlighted. The addition of 10% biomass had no significant impact on the coal char gasification reactivity. However, 20 and 30% biomass additions resulted in increased coal char gasification rate. During co-gasification, chars HW and SW caused increased coal char gasification reactivity at lower conversions, while char SB resulted in increased gasification rates throughout the entire conversion range. Experimental data from biomass char gasification and biomass-coal char co-gasification were well described by the MRPM, while coal char gasification was better described by the RPM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Comparison between the Strength Levels of Baseline Nuclear-Grade Graphite and Graphite Irradiated in AGC-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Mark Christopher

    2015-07-01

    This report details the initial comparison of mechanical strength properties between the cylindrical nuclear-grade graphite specimens irradiated in the second Advanced Graphite Creep (AGC-2) experiment with the established baseline, or unirradiated, mechanical properties compiled in the Baseline Graphite Characterization program. The overall comparative analysis will describe the development of an appropriate test protocol for irradiated specimens, the execution of the mechanical tests on the AGC-2 sample population, and will further discuss the data in terms of developing an accurate irradiated property distribution in the limited amount of irradiated data by leveraging the considerably larger property datasets being captured in themore » Baseline Graphite Characterization program. Integrating information on the inherent variability in nuclear-grade graphite with more complete datasets is one of the goals of the VHTR Graphite Materials program. Between “sister” specimens, or specimens with the same geometry machined from the same sub-block of graphite from which the irradiated AGC specimens were extracted, and the Baseline datasets, a comprehensive body of data will exist that can provide both a direct and indirect indication of the full irradiated property distributions that can be expected of irradiated nuclear-grade graphite while in service in a VHTR system. While the most critical data will remain the actual irradiated property measurements, expansion of this data into accurate distributions based on the inherent variability in graphite properties will be a crucial step in qualifying graphite for nuclear use as a structural material in a VHTR environment.« less

  20. ALFALFA DISCOVERY OF THE MOST METAL-POOR GAS-RICH GALAXY KNOWN: AGC 198691

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirschauer, Alec S.; Salzer, John J.; Rhode, Katherine L., E-mail: ash@astro.indiana.edu, E-mail: slaz@astro.indiana.edu, E-mail: krhode@indiana.edu

    We present spectroscopic observations of the nearby dwarf galaxy AGC 198691. This object is part of the Survey of H i in Extremely Low-Mass Dwarfs project, which is a multi-wavelength study of galaxies with H i masses in the range of 10{sup 6}–10{sup 7.2} M {sub ⊙}, discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We have obtained spectra of the lone H ii region in AGC 198691 with the new high-throughput KPNO Ohio State Multi-Object Spectrograph on the Mayall 4 m, as well as with the Blue Channel spectrograph on the MMT 6.5 m telescope. These observations enablemore » the measurement of the temperature-sensitive [O iii] λ 4363 line and hence the determination of a “direct” oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) system with an oxygen abundance of 12+log(O/H) = 7.02 ± 0.03, making AGC 198691 the lowest-abundance star-forming galaxy known in the local universe. Two of the five lowest-abundance galaxies known have been discovered by the ALFALFA blind H i survey; this high yield of XMD galaxies represents a paradigm shift in the search for extremely metal-poor galaxies.« less

  1. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE PAGES

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.; ...

    2017-08-22

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  2. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  3. HST Imaging of the (Almost) Dark ALFALFA Source AGC 229385

    NASA Astrophysics Data System (ADS)

    Brunker, Samantha; Salzer, John Joseph; McQuinn, Kristen B.; Janowiecki, Steven; Leisman, Luke; Rhode, Katherine L.; Adams, Elizabeth A.; Cannon, John M.; Giovanelli, Riccardo; Haynes, Martha P.

    2017-06-01

    We present deep HST imaging photometry of the extreme galaxy AGC 229385. This system was first discovered as an HI source in the ALFALFA all-sky HI survey. It was cataloged as an (almost) dark galaxy because it did not exhibit any obvious optical counterpart in the available wide-field survey data (e.g., SDSS). Deep optical imaging with the WIYN 3.5-m telescope revealed an ultra-low surface brightness stellar component located at the center of the HI detection. With a peak central surface brightness of 26.4 mag/sq. arcsec in g and very blue colors (g-r = -0.1), the stellar component to this gas-rich system is quite enigmatic. We have used our HST images to produce a deep CMD of the resolved stellar population present in AGC 229385. We clearly detect a red-giant branch and use it to infer a distance of 5.50 ± 0.23 Mpc. The CMD is dominated by older stars, contrary to expectations given the blue optical colors obtained from our ground-based photometry. Our new distance is substantially lower than earlier estimates, and shows that AGC 229385 is an extreme dwarf galaxy with one of the highest MHI/L ratios known.

  4. Advanced Main Combustion Chamber structural jacket strength analysis

    NASA Astrophysics Data System (ADS)

    Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.

    1993-04-01

    The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.

  5. Experimental study on air-stream gasification of biomass micron fuel (BMF) in a cyclone gasifier.

    PubMed

    Guo, X J; Xiao, B; Zhang, X L; Luo, S Y; He, M Y

    2009-01-01

    Based on biomass micron fuel (BMF) with particle size of less than 250 microm, a cyclone gasifier concept has been considered in our laboratory for biomass gasification. The concept combines and integrates partial oxidation, fast pyrolysis, gasification, and tar cracking, as well as a shift reaction, with the purpose of producing a high quality of gas. In this paper, experiments of BMF air-stream gasification were carried out by the gasifier, with energy for BMF gasification produced by partial combustion of BMF within the gasifier using a hypostoichiometric amount of air. The effects of ER (0.22-0.37) and S/B (0.15-0.59) and biomass particle size on the performances of BMF gasification and the gasification temperature were studied. Under the experimental conditions, the temperature, gas yields, LHV of the gas fuel, carbon conversion efficiency, stream decomposition and gasification efficiency varied in the range of 586-845 degrees C, 1.42-2.21 N m(3)/kg biomass, 3806-4921 kJ/m(3), 54.44%-85.45%, 37.98%-70.72%, and 36.35%-56.55%, respectively. The experimental results showed that the gasification performance was best with ER being 3.7 and S/B being 0.31 and smaller particle, as well as H(2)-content. And the BMF gasification by air and low temperature stream in the cyclone gasifier with the energy self-sufficiency is reliable.

  6. Gasification in pulverized coal flames. Second annual progress report, July 1976--August 1977. [Pulverized coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, P. E.; Lenzer, R. C.; Thomas, J. F.

    1977-08-01

    This project concerns the production of power and synthesis gases from pulverized coal via suspension gasification. Swirling flow in both concentric jet and cyclone gasifiers will separate oxidation and reduction zones. Gasifier performance will be correlated with internally measured temperature and concentration profiles. The test cell flow system and electrical system, which includes a safety interlock design, has been installed. Calibration of the UTI-30C mass spectrometer and construction of the gas sampling system are complete. Both the coal feeder, which has been calibrated, and the boiler are ready for integration into the test cell flow system. Construction and testing ofmore » the cyclone reactor, including methane combustion experiments, is complete. The confined jet reactor has been designed and construction is underway. Investigation of combustion and gasification modeling techniques has begun.« less

  7. Molecular targeted therapy for advanced gastric cancer.

    PubMed

    Kim, Jong Gwang

    2013-03-01

    Although medical treatment has been shown to improve quality of life and prolong survival, no significant progress has been made in the treatment of advanced gastric cancer (AGC) within the last two decades. Thus, the optimum standard first-line chemotherapy regimen for AGC remains debatable, and most responses to chemotherapy are partial and of short duration; the median survival is approximately 7 to 11 months, and survival at 2 years is exceptionally > 10%. Recently, remarkable progress in tumor biology has led to the development of new agents that target critical aspects of oncogenic pathways. For AGC, many molecular targeting agents have been evaluated in international randomized studies, and trastuzumab, an anti-HER-2 monoclonal antibody, has shown antitumor activity against HER-2-positive AGC. However, this benefit is limited to only ~20% of patients with AGC (patients with HER-2-positive AGC). Therefore, there remains a critical need for both the development of more effective agents and the identification of molecular predictive and prognostic markers to select those patients who will benefit most from specific chemotherapeutic regimens and targeted therapies.

  8. Tar Management and Recycling in Biomass Gasification and Syngas Purification

    NASA Astrophysics Data System (ADS)

    McCaffrey, Zach

    Removal of tars is critical to the design and operation of biomass gasification systems as most syngas utilization processing equipment (e.g. internal combustion engines, gas turbines, fuel cells, and liquid fuel synthesis reactors) have a low tolerance for tar. Capturing and disposal of tar is expensive due to equipment costs, high hazardous waste disposal costs where direct uses cannot be found, and system energy losses incurred. Water scrubbing is an existing technique commonly used in gasification plants to remove contaminants and tar; however using water as the absorbent is non-ideal as tar compounds have low or no water solubility. Hydrophobic solvents can improve scrubber performance and this study evaluated tar solubility in selected solvents using slip-streams of untreated syngas from a laboratory fluidized bed reactor operated on almond composite feedstock using both air and steam gasification. Tar solubility was compared with Hansen's solubility theory to examine the extent to which the tar removal can be predicted. As collection of tar without utilization leads to a hazardous waste problem, the study investigated the effects of recycling tars back into the gasifier for destruction. Prior to experiments conducted on tar capture and recycle, characterizations of the air and steam gasification of the almond composite mix were made. This work aims to provide a better understanding of tar collection and solvent selection for wet scrubbers, and to provide information for designing improved tar management systems for biomass gasification.

  9. Two-stage coal gasification and desulfurization apparatus

    DOEpatents

    Bissett, Larry A.; Strickland, Larry D.

    1991-01-01

    The present invention is directed to a system which effectively integrates a two-stage, fixed-bed coal gasification arrangement with hot fuel gas desulfurization of a first stream of fuel gas from a lower stage of the two-stage gasifier and the removal of sulfur from the sulfur sorbent regeneration gas utilized in the fuel-gas desulfurization process by burning a second stream of fuel gas from the upper stage of the gasifier in a combustion device in the presence of calcium-containing material. The second stream of fuel gas is taken from above the fixed bed in the coal gasifier and is laden with ammonia, tar and sulfur values. This second stream of fuel gas is burned in the presence of excess air to provide heat energy sufficient to effect a calcium-sulfur compound forming reaction between the calcium-containing material and sulfur values carried by the regeneration gas and the second stream of fuel gas. Any ammonia values present in the fuel gas are decomposed during the combustion of the fuel gas in the combustion chamber. The substantially sulfur-free products of combustion may then be combined with the desulfurized fuel gas for providing a combustible fluid utilized for driving a prime mover.

  10. Thermal effects from the release of selenium from a coal combustion during high-temperature processing: a review.

    PubMed

    Hu, Jianjun; Sun, Qiang; He, Huan

    2018-05-01

    The release of selenium (Se) during coal combustion can have serious impacts on the ecological environment and human health. Therefore, it is very important to study the factors that concern the release of Se from coal combustion. In this paper, the characteristics of the release of Se from coal combustion, pyrolysis, and gasification of different coal species under different conditions are studied. The results show that the amount of released Se increases at higher combustion temperatures. There are obvious increases in the amount of released Se especially in the temperature range of 300 to 800 °C. In addition, more Se is released from the coal gasification than coal combustion process, but more Se is released from coal combustion than pyrolysis. The type of coal, rate of heating, type of mineral ions, and combustion atmosphere have different effects on the released percentage of Se. Therefore, having a good understanding of the factors that surround the release of Se during coal combustion, and then establishing the combustion conditions can reduce the impacts of this toxic element to humans and the environment.

  11. Combustion of liquid fuels in a flowing combustion gas environment at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1975-01-01

    The combustion of fuel droplets in gases which simulate combustion chamber conditions was considered both experimentally and theoretically. The fuel droplets were simulated by porous spheres and allowed to gasify in combustion gases produced by a burner. Tests were conducted for pressures of 1-40 atm, temperatures of 600-1500 K, oxygen concentrations of 0-13% (molar) and approach Reynolds numbers of 40-680. The fuels considered in the tests included methanol, ethanol, propanol-1, n-pentane, n-heptane and n-decane. Measurements were made of both the rate of gasification of the droplet and the liquid surface temperature. Measurements were compared with theory, involving various models of gas phase transport properties with a multiplicative correction for the effect of forced convection.

  12. Flexible Ag-C60 nano-biosensors based on surface plasmon coupled emission for clinical and forensic applications.

    PubMed

    Mulpur, Pradyumna; Yadavilli, Sairam; Mulpur, Praharsha; Kondiparthi, Neeharika; Sengupta, Bishwambhar; Rao, Apparao M; Podila, Ramakrishna; Kamisetti, Venkataramaniah

    2015-10-14

    The relatively low sensitivity of fluorescence detection schemes, which are mainly limited by the isotropic nature of fluorophore emission, can be overcome by utilizing surface plasmon coupled emission (SPCE). In this study, we demonstrate directional emission from fluorophores on flexible Ag-C60 SPCE sensor platforms for point-of-care sensing, in healthcare and forensic sensing scenarios, with at least 10 times higher sensitivity than traditional fluorescence sensing schemes. Adopting the highly sensitive Ag-C60 SPCE platform based on glass and novel low-cost flexible substrates, we report the unambiguous detection of acid-fast Mycobacterium tuberculosis (Mtb) bacteria at densities as low as 20 Mtb mm(-2); from non-acid-fast bacteria (e.g., E. coli and S. aureus), and the specific on-site detection of acid-fast sperm cells in human semen samples. In combination with the directional emission and high-sensitivity of SPCE platforms, we also demonstrate the utility of smartphones that can replace expensive and cumbersome detectors to enable rapid hand-held detection of analytes in resource-limited settings; a much needed critical advance to biosensors, for developing countries.

  13. Development of an Advanced Flameless Combustion Heat Source Utilizing Methanol

    DTIC Science & Technology

    2010-07-01

    effect until the fuel can receive energy from the flameless combustion elements, either by radiant or exhaust heat. Figure 22 and Figure 23 show one...fragments of dirt and debris reducing its effectiveness . This first prototype allowed useful engineering data to be generated but lacked some of the...DEVELOPMENT OF AN ADVANCED FLAMELESS COMBUSTION HEAT SOURCE UTILIZING METHANOL by Clifford G. Welles Catalytic Devices International, LLC

  14. Data Report on Post-Irradiation Dimensional Change of AGC-1 Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William Windes

    This report summarizes the initial dimensional changes for loaded and unloaded AGC-1 samples. The dimensional change for all samples is presented as a function of dose. The data is further presented by graphite type and applied load levels to illustrate the differences between graphite forming processes and stress levels within the graphite components. While the three different loads placed on the samples have been verified [ ref: Larry Hull’s report] verification of the AGC-1 sample temperatures and dose levels are expected in the summer of 2012. Only estimated dose and temperature values for the samples are presented in this reportmore » to allow a partial analysis of the results.« less

  15. Advanced Combustion Numerics and Modeling - FY18 First Quarter Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitesides, R. A.; Killingsworth, N. J.; McNenly, M. J.

    This project is focused on early stage research and development of numerical methods and models to improve advanced engine combustion concepts and systems. The current focus is on development of new mathematics and algorithms to reduce the time to solution for advanced combustion engine design using detailed fuel chemistry. The research is prioritized towards the most time-consuming workflow bottlenecks (computer and human) and accuracy gaps that slow ACS program members. Zero-RK, the fast and accurate chemical kinetics solver software developed in this project, is central to the research efforts and continues to be developed to address the current and emergingmore » needs of the engine designers, engine modelers and fuel mechanism developers.« less

  16. Characterization of cellulosic wastes and gasification products from chicken farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joseph, Paul, E-mail: p.joseph@ulster.ac.uk; Tretsiakova-McNally, Svetlana; McKenna, Siobhan

    Highlights: Black-Right-Pointing-Pointer The gas chromatography indicated the variable quality of the producer gas. Black-Right-Pointing-Pointer The char had appreciable NPK values, and can be used as a fertiliser. Black-Right-Pointing-Pointer The bio-oil produced was of poor quality, having high moisture content and low pH. Black-Right-Pointing-Pointer Mass and energy balances showed inadequate level energy recovery from the process. Black-Right-Pointing-Pointer Future work includes changing the operating parameters of the gasification unit. - Abstract: The current article focuses on gasification as a primary disposal solution for cellulosic wastes derived from chicken farms, and the possibility to recover energy from this process. Wood shavings and chickenmore » litter were characterized with a view to establishing their thermal parameters, compositional natures and calorific values. The main products obtained from the gasification of chicken litter, namely, producer gas, bio-oil and char, were also analysed in order to establish their potential as energy sources. The experimental protocol included bomb calorimetry, pyrolysis combustion flow calorimetry (PCFC), thermo-gravimetric analyses (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, elemental analyses, X-ray diffraction (XRD), mineral content analyses and gas chromatography. The mass and energy balances of the gasification unit were also estimated. The results obtained confirmed that gasification is a viable method of chicken litter disposal. In addition to this, it is also possible to recover some energy from the process. However, energy content in the gas-phase was relatively low. This might be due to the low energy efficiency (19.6%) of the gasification unit, which could be improved by changing the operation parameters.« less

  17. Combustion and flow modelling applied to the OMV VTE

    NASA Technical Reports Server (NTRS)

    Larosiliere, Louis M.; Jeng, San-Mou

    1990-01-01

    A predictive tool for hypergolic bipropellant spray combustion and flow evolution in the OMV VTE (orbital maneuvering vehicle variable thrust engine) is described. It encompasses a computational technique for the gas phase governing equations, a discrete particle method for liquid bipropellant sprays, and constitutive models for combustion chemistry, interphase exchanges, and unlike impinging liquid hypergolic stream interactions. Emphasis is placed on the phenomenological modelling of the hypergolic liquid bipropellant gasification processes. An application to the OMV VTE combustion chamber is given in order to show some of the capabilities and inadequacies of this tool.

  18. The Intriguing Case of the (Almost) Dark Galaxy AGC 229385

    NASA Astrophysics Data System (ADS)

    Salzer, John

    2015-10-01

    The ALFALFA blind HI survey has catalogued tens of thousands of HI sources over 7000 square degrees of high Galactic latitude sky. While the vast majority of the sources in ALFALFA have optical counterparts in existing wide-field surveys like SDSS, a class of objects has been identified that have no obvious optical counterparts in existing catalogs. Dubbed almost dark galaxies, these objects represent an extreme in the continuum of galaxy properties, with the highest HI mass-to-optical light ratios ever measured. We propose to use HST to observe AGC 229385, an almost dark object found in deep WIYN imaging to have an ultra-low surface brightness stellar component with extremely blue colors. AGC 229385 falls well off of all galaxy scaling relationships, including the Baryonic Tully-Fisher relation. Ground-based optical and HI data have been able to identify this object as extreme, but are insufficient to constrain the properties of its stellar component or its distance - for this, we need HST. Our science goals are twofold: to better constrain the distance to AGC 229385, and to investigate the stellar population(s) in this mysterious object. The requested observations will not only provide crucial insight into the properties and evolution of this specific system but will also help us understand this important class of ultra low surface brightness, gas-rich galaxies. The proposed observations are designed to be exploratory, yet they promise to pay rich dividends for a modest investment in observing time.

  19. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  20. Process for control of pollutants generated during coal gasification

    DOEpatents

    Frumerman, Robert; Hooper, Harold M.

    1979-01-01

    The present invention is directed to an improvement in the coal gasification process that effectively eliminates substantially all of the environmental pollutants contained in the producer gas. The raw producer gas is passed through a two-stage water scrubbing arrangement with the tars being condensed essentially water-free in the first stage and lower boiling condensables, including pollutant laden water, being removed in the second stage. The pollutant-laden water is introduced into an evaporator in which about 95 percent of the water is vaporized and introduced as steam into the gas producer. The condensed tars are combusted and the resulting products of combustion are admixed with the pollutant-containing water residue from the evaporator and introduced into the gas producer.

  1. Power Systems Development Facility Gasification Test Campaing TC18

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southern Company Services

    2005-08-31

    In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifiermore » train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.« less

  2. Catalytic combustor for integrated gasification combined cycle power plant

    DOEpatents

    Bachovchin, Dennis M [Mauldin, SC; Lippert, Thomas E [Murrysville, PA

    2008-12-16

    A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.

  3. Wood Combustion Behaviour in a Fixed Bed Combustor

    NASA Astrophysics Data System (ADS)

    Tokit, Ernie Mat; Aziz, Azhar Abdul; Ghazali, Normah Mohd

    2010-06-01

    Waste wood is used as feedstock for Universiti Teknologi Malaysia's newly-developed two-stage incinerator system. The research goals are to optimize the operation of the thermal system to the primary chamber, to improve its combustion efficiency and to minimize its pollutants formation. The combustion process is evaluated with the variation of fuel's moisture content. For optimum operating condition, where the gasification efficiency is 95.53%, the moisture content of the fuel is best set at 17%; giving outlet operating temperature of 550°C and exhaust gas concentrations with 1213 ppm of CO, 6% of CO2 and 14% of O2 respectively. In line to the experimental work, a computational fluid dynamics software, Fluent is used to simulate the performance of the primary chamber. Here the predicted optimum gasification efficiency stands at 95.49% with CO, CO2 and O2 concentrations as 1301 ppm, 6.5% and 13.5% respectively.

  4. Investigation of the efficiency of regenerative cooling of the ramjet combustor by gasification products of energy-intensive material

    NASA Astrophysics Data System (ADS)

    Averkov, I. S.; Arefyev, K. Yu.; Baykov, A. V.; Yanovskiy, L. S.

    2017-01-01

    The results of mathematical modeling of the thermal state of combustion chambers with regenerative cooling for ramjet engines of promising flying vehicles are presented. The cooling of combustion chambers by the gasification products of a combined charge of the energy-intensive material is considered, where the polyethylene is used as a stuff, and the HMX-based compounds are used as the active substance. The flow rates of the cooling eneregy-intensive material are determined, which provide acceptable levels of temperatures of combustion chambers at various modes of engines operation are determined.

  5. A digitally controlled AGC loop circuitry for GNSS receiver chip with a binary weighted accurate dB-linear PGA

    NASA Astrophysics Data System (ADS)

    Gang, Jin; Yiqi, Zhuang; Yue, Yin; Miao, Cui

    2015-03-01

    A novel digitally controlled automatic gain control (AGC) loop circuitry for the global navigation satellite system (GNSS) receiver chip is presented. The entire AGC loop contains a programmable gain amplifier (PGA), an AGC circuit and an analog-to-digital converter (ADC), which is implemented in a 0.18 μm complementary metal-oxide-semiconductor (CMOS) process and measured. A binary-weighted approach is proposed in the PGA to achieve wide dB-linear gain control with small gain error. With binary-weighted cascaded amplifiers for coarse gain control, and parallel binary-weighted trans-conductance amplifier array for fine gain control, the PGA can provide a 64 dB dynamic range from -4 to 60 dB in 1.14 dB gain steps with a less than 0.15 dB gain error. Based on the Gaussian noise statistic characteristic of the GNSS signal, a digital AGC circuit is also proposed with low area and fast settling. The feed-backward AGC loop occupies an area of 0.27 mm2 and settles within less than 165 μs while consuming an average current of 1.92 mA at 1.8 V.

  6. Gasification Characteristics and Kinetics of Coke with Chlorine Addition

    NASA Astrophysics Data System (ADS)

    Wang, Cui; Zhang, Jianliang; Jiao, Kexin; Liu, Zhengjian; Chou, Kuochih

    2017-10-01

    The gasification process of metallurgical coke with 0, 1.122, 3.190, and 7.132 wt pct chlorine was investigated through thermogravimetric method from ambient temperature to 1593 K (1320 °C) in purified CO2 atmosphere. The variations in the temperature parameters that T i decreases gradually with increasing chlorine, T f and T max first decrease and then increase, but both in a downward trend indicated that the coke gasification process was catalyzed by the chlorine addition. Then the kinetic model of the chlorine-containing coke gasification was obtained through the advanced determination of the average apparent activation energy, the optimal reaction model, and the pre-exponential factor. The average apparent activation energies were 182.962, 118.525, 139.632, and 111.953 kJ/mol, respectively, which were in the same decreasing trend with the temperature parameters analyzed by the thermogravimetric method. It was also demonstrated that the coke gasification process was catalyzed by chlorine. The optimal kinetic model to describe the gasification process of chlorine-containing coke was the Šesták Berggren model using Málek's method, and the pre-exponential factors were 6.688 × 105, 2.786 × 103, 1.782 × 104, and 1.324 × 103 min-1, respectively. The predictions of chlorine-containing coke gasification from the Šesták Berggren model were well fitted with the experimental data.

  7. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parag Kulkarni; Jie Guan; Raul Subia

    In the near future, the nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It is necessary to improve both the process efficiency and environmental impact of fossil fuel utilization including greenhouse gas management. GE Global Research (GEGR) investigated an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology with potential to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP technology offers the long-term potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions. GE was awarded a contract from U.S. DOEmore » NETL to investigate and develop the UFP technology. Work started on the Phase I program in October 2000 and on the Phase II effort in April 2005. In the UFP technology, coal, water and air are simultaneously converted into (1) hydrogen rich stream that can be utilized in fuel cells or turbines, (2) CO{sub 2} rich stream for sequestration, and (3) high temperature/pressure vitiated air stream to produce electricity in a gas turbine expander. The process produces near-zero emissions with an estimated efficiency higher than Integrated Gasification Combined Cycle (IGCC) process with conventional CO{sub 2} separation. The Phase I R&D program established the chemical feasibility of the major reactions of the integrated UFP technology through lab-, bench- and pilot-scale testing. A risk analysis session was carried out at the end of Phase I effort to identify the major risks in the UFP technology and a plan was developed to mitigate these risks in the Phase II of the program. The Phase II effort focused on three high-risk areas: economics, lifetime of solids used in the UFP process, and product gas quality for turbines (or the impact of impurities in the coal on the overall system). The economic analysis included estimating the capital cost as well as the costs of

  8. Waste gasification vs. conventional Waste-to-Energy: a comparative evaluation of two commercial technologies.

    PubMed

    Consonni, Stefano; Viganò, Federico

    2012-04-01

    A number of waste gasification technologies are currently proposed as an alternative to conventional Waste-to-Energy (WtE) plants. Assessing their potential is made difficult by the scarce operating experience and the fragmentary data available. After defining a conceptual framework to classify and assess waste gasification technologies, this paper compares two of the proposed technologies with conventional WtE plants. Performances are evaluated by proprietary software developed at Politecnico di Milano and compared on the basis of a coherent set of assumptions. Since the two gasification technologies are configured as "two-step oxidation" processes, their energy performances are very similar to those of conventional plants. The potential benefits that may justify their adoption relate to material recovery and operation/emission control: recovery of metals in non-oxidized form; collection of ashes in inert, vitrified form; combustion control; lower generation of some pollutants. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Ignition and combustion phenomena in Diesel engines

    NASA Technical Reports Server (NTRS)

    Sass, F

    1928-01-01

    Evidences were found that neither gasification nor vaporization of the injected fuel occurs before ignition; also that the hydrogen coefficient has no significance. However the knowledge of the ignition point and of the "time lag" is important. After ignition, the combustion proceeds in a series of reactions, the last of which at least are now known.

  10. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  11. Hydrogen-Rich Syngas Production from Gasification and Pyrolysis of Solar Dried Sewage Sludge: Experimental and Modeling Investigations

    PubMed Central

    Ghrib, Amina; Friaa, Athar; Ouerghi, Aymen; Naoui, Slim; Belayouni, Habib

    2017-01-01

    Solar dried sewage sludge (SS) conversion by pyrolysis and gasification processes has been performed, separately, using two laboratory-scale reactors, a fixed-bed pyrolyzer and a downdraft gasifier, to produce mainly hydrogen-rich syngas. Prior to SS conversion, solar drying has been conducted in order to reduce moisture content (up to 10%). SS characterization reveals that these biosolids could be appropriate materials for gaseous products production. The released gases from SS pyrolysis and gasification present relatively high heating values (up to 9.96 MJ/kg for pyrolysis and 8.02  9.96 MJ/kg for gasification) due to their high contents of H2 (up to 11 and 7 wt%, resp.) and CH4 (up to 17 and 5 wt%, resp.). The yields of combustible gases (H2 and CH4) show further increase with pyrolysis. Stoichiometric models of both pyrolysis and gasification reactions were determined based on the global biomass formula, CαHβOγNδSε, in order to assist in the products yields optimization. PMID:28856162

  12. Autoregulation of kinase dephosphorylation by ATP binding in AGC protein kinases.

    PubMed

    Chan, Tung O; Pascal, John M; Armen, Roger S; Rodeck, Ulrich

    2012-02-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.

  13. Experimental Studies of Coal and Biomass Fuel Synthesis and Flame Characterization for Aircraft Engines (Year Two)

    DTIC Science & Technology

    2011-03-31

    2.1 Experimental Investigation of Coal and Biomass Gasification using In-situ Diagnostics ................ 31  2.2 References...need for fundamental scientific and synergistic research in catalytic biomass fast-hydropyrolysis, advanced coal gasification and liquid fuel...experimental findings will improve the scientific knowledge of catalytic biomass fast-hydropyrolysis, coal/ biomass gasification and liquid fuel combustion

  14. High Pressure Biomass Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO 2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDOmore » hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H 2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach

  15. Considerations on coal gasification

    NASA Technical Reports Server (NTRS)

    Franzen, J. E.

    1978-01-01

    Commercial processes for the gasification of coal with oxygen are discussed. The Koppers-Totzek process for the gasification of coal dust entrained in a stream of gasifying agents is described in particular detail. The outlook for future applications of coal gasification is presented.

  16. Advances in Turbulent Combustion Dynamics Simulations in Bluff-Body Stabilized Flames-Body Stabilized Flames

    DTIC Science & Technology

    2015-11-30

    Master’s Thesis 3. DATES COVERED (From - To) 01 Nov 2015 – 30 Nov 2015 4. TITLE AND SUBTITLE Advances in Turbulent Combustion Dynamics Simulations...the three main aspects of bluff-body stabilized flames: stationary combustion , lean blow-out, and thermo-acoustic instabilities. For the cases of...stationary combustion and lean blow-out, an improved version of the Linear Eddy Model approach is used, while in the case of thermo-acoustic

  17. Mechanistic Studies of Combustion and Structure Formation During Synthesis of Advanced Materials

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A. S.

    2001-01-01

    Combustion in a variety of heterogeneous systems, leading to the synthesis of advanced materials, is characterized by high temperatures (2000-3500 K) and heating rates (up to 10(exp 6) K/s) at and ahead of the reaction front. These high temperatures generate liquids and gases which are subject to gravity-driven flow. The removal of such gravitational effects is likely to provide increased control of the reaction front, with a consequent improvement in control of the microstructure of the synthesized products. Thus, microgravity (mu-g) experiments lead to major advances in the understanding of fundamental aspects of combustion and structure formation under the extreme conditions of the combustion synthesis (CS) wave. In addition, the specific features of microgravity environment allow one to produce unique materials, which cannot be obtained under terrestrial conditions. The current research is a logic continuation of our previous work on investigations of the fundamental phenomena of combustion and structure formation that occur at the high temperatures achieved in a CS wave. Our research is being conducted in three main directions: 1) Microstructural Transformations during Combustion Synthesis of Metal-Ceramic Composites. The studies are devoted to the investigation of particle growth during CS of intermetallic-ceramic composites, synthesized from nickel, aluminum, titanium, and boron metal reactants. To determine the mechanisms of particle growth, the investigation varies the relative amount of components in the initial mixture to yield combustion wave products with different ratios of solid and liquid phases, under 1g and mu-g conditions; 2) Mechanisms of Heat Transfer during Reactions in Heterogeneous Media. Specifically, new phenomena of gasless combustion wave propagation in heterogeneous media with porosity higher than that achievable in normal gravity conditions, are being studied. Two types of mixtures are investigated: clad powders, where contact between

  18. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the

  19. Recent advances in large-eddy simulation of spray and coal combustion

    NASA Astrophysics Data System (ADS)

    Zhou, L. X.

    2013-07-01

    Large-eddy simulation (LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering. Spray and coal combustion is widely used in power, transportation, chemical and metallurgical, iron and steel making, aeronautical and astronautical engineering, hence LES of spray and coal two-phase combustion is particularly important for engineering application. LES of two-phase combustion attracts more and more attention; since it can give the detailed instantaneous flow and flame structures and more exact statistical results than those given by the Reynolds averaged modeling (RANS modeling). One of the key problems in LES is to develop sub-grid scale (SGS) models, including SGS stress models and combustion models. Different investigators proposed or adopted various SGS models. In this paper the present author attempts to review the advances in studies on LES of spray and coal combustion, including the studies done by the present author and his colleagues. Different SGS models adopted by different investigators are described, some of their main results are summarized, and finally some research needs are discussed.

  20. Modeling of indirect carbon fuel cell systems with steam and dry gasification

    NASA Astrophysics Data System (ADS)

    Ong, Katherine M.; Ghoniem, Ahmed F.

    2016-05-01

    An indirect carbon fuel cell (ICFC) system that couples coal gasification to a solid oxide fuel cell (SOFC) is a promising candidate for high efficiency stationary power. This study couples an equilibrium gasifier model to a detailed 1D MEA model to study the theoretical performance of an ICFC system run on steam or carbon dioxide. Results show that the fuel cell in the ICFC system is capable of power densities greater than 1.0 W cm-2 with H2O recycle, and power densities ranging from 0.2 to 0.4 W cm-2 with CO2 recycle. This result indicates that the ICFC system performs better with steam than with CO2 gasification as a result of the faster electro-oxidation kinetics of H2 relative to CO. The ICFC system is then shown to reach higher current densities and efficiencies than a thermally decoupled gasifier + fuel cell (G + FC) system because it does not include combustion losses associated with autothermal gasification. 55-60% efficiency is predicted for the ICFC system coupled to a bottoming cycle, making this technology competitive with other state-of-the-art stationary power candidates.

  1. Combustion properties of Kraft Black Liquors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frederick, W.J. Jr.; Hupa, M.

    1993-04-01

    In a previous study of the phenomena involved in the combustion of black liquor droplets a numerical model was developed. The model required certain black liquor specific combustion information which was then not currently available, and additional data were needed for evaluating the model. The overall objectives of the project reported here was to provide experimental data on key aspects of black liquor combustion, to interpret the data, and to put it into a form which would be useful for computational models for recovery boilers. The specific topics to be investigated were the volatiles and char carbon yields from pyrolysismore » of single black liquor droplets; a criterion for the onset of devolatilization and the accompanying rapid swelling; and the surface temperature of black liquor droplets during pyrolysis, combustion, and gasification. Additional information on the swelling characteristics of black liquor droplets was also obtained as part of the experiments conducted.« less

  2. Design and performance test of a MEMS vibratory gyroscope with a novel AGC force rebalance control

    NASA Astrophysics Data System (ADS)

    Sung, Woon-Tahk; Sung, Sangkyung; Lee, Jang Gyu; Kang, Taesam

    2007-10-01

    In this paper, the development and performance test results of a laterally oscillating MEMS gyroscope using a novel force rebalance control strategy are presented. The micromachined structure and electrodes are fabricated using the deep reactive ion etching (DRIE) and anodic wafer bonding process. The high quality factor required for the resonance-based sensor is achieved using a vacuum-sealed device package. A systematic design approach of the force rebalance control is applied via a modified automatic gain control (AGC) method. The rebalance control design takes advantages of a novel AGC loop modification, which allows the approximation of the system's dynamics into a simple linear form. Using the proposed modification of AGC and the rebalance strategy that maintains a biased oscillation, a number of performance improvements including bandwidth extension and widened operating range were observed to be achieved. Finally, the experimental results of the gyroscope's practical application verify the feasibility and performance of the developed sensor.

  3. Autoregulation of kinase dephosphorylation by ATP binding to AGC protein kinases

    PubMed Central

    Pascal, John M; Armen, Roger S

    2012-01-01

    AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families. PMID:22262182

  4. AGC-2 Irradiation Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohrbaugh, David Thomas; Windes, William; Swank, W. David

    components longer useful lifetimes within the core. Determining the irradiation creep rates of nuclear grade graphites is critical for determining the useful lifetime of graphite components and is a major component of the Advanced Graphite Creep (AGC) experiment.« less

  5. Feasibility of Biomass Biodrying for Gasification Process

    NASA Astrophysics Data System (ADS)

    Hamidian, Arash

    and the pilot-scale continuous system was designed in 2010 to demonstrate the feasibility of mixed sludge biodrying for efficient combustion in biomass boilers. Mixed sludge was biodried in the reactor to 45% moisture level, which was the suitable level for boiler application. Techno-economic analysis also revealed the potential economic benefits for pulp and paper mills. However, considerable uncertainties existed in terms of feasibility of the biodrying technology for other types of biomass that are usually used in the gasification process, mainly because of low nutrient level of typical lignocellulosic biomass used as feedstock. Furthermore, the technology had not been shown to be economically viable in conjunction with gasification process at pulp and paper mills. In this work the feasibility of low-nutrient biomass biodrying was tested by experiments and techno-economic model was developed to identify the performance of biodrying process for commercial-scale application. In the economic analysis, a comprehensive approach for biodrying cost assessment was introduced that is based on the well-known approach widely used in the process industry and few sources of benefits were identified.

  6. Analysis of energy recovery potential using innovative technologies of waste gasification.

    PubMed

    Lombardi, Lidia; Carnevale, Ennio; Corti, Andrea

    2012-04-01

    In this paper, two alternative thermo-chemical processes for waste treatment were analysed: high temperature gasification and gasification associated to plasma process. The two processes were analysed from the thermodynamic point of view, trying to reconstruct two simplified models, using appropriate simulation tools and some support data from existing/planned plants, able to predict the energy recovery performances by process application. In order to carry out a comparative analysis, the same waste stream input was considered as input to the two models and the generated results were compared. The performances were compared with those that can be obtained from conventional combustion with energy recovery process by means of steam turbine cycle. Results are reported in terms of energy recovery performance indicators as overall energy efficiency, specific energy production per unit of mass of entering waste, primary energy source savings, specific carbon dioxide production. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Waste to Energy Conversion by Stepwise Liquefaction, Gasification and "Clean" Combustion of Pelletized Waste Polyethylene for Electric Power Generation---in a Miniature Steam Engine

    NASA Astrophysics Data System (ADS)

    Talebi Anaraki, Saber

    The amounts of waste plastics discarded in developed countries are increasing drastically, and most are not recycled. The small fractions of the post-consumer plastics which are recycled find few new uses as their quality is degraded; they cannot be reused in their original applications. However, the high energy density of plastics, similar to that of premium fuels, combined with the dwindling reserves of fossil fuels make a compelling argument for releasing their internal energy through combustion, converting it to thermal energy and, eventually, to electricity through a heat engine. To minimize the emission of pollutants this energy conversion is done in two steps, first the solid waste plastics undergo pyrolytic gasification and, subsequently, the pyrolyzates (a mixture of hydrocarbons and hydrogen) are blended with air and are burned "cleanly" in a miniature power plant. This plant consists of a steam boiler, a steam engine and an electricity generator.

  8. Underground Coal Gasification Research Program near Hanna, Carbon County, Wyoming: Environmental impact assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    In the fall of 1972, the Laramie Energy Research Center initiated an in situ coal gasification experiment in Hanna, Wyoming. The objective was to test the feasibility of underground gasification in a deep, thick seam of western subbituminous coal and, if feasible, to maximize gas heating value while sustaining stable gas production rates and achieving a high coal utilization efficiency. The coal seam was ignited on March 28, 1973, in a 30-foot seam 400 feet deep. The ''burn'' was maintained for a year, until March 22, 1974, when air injection was stopped. The combustion zone was extinguished by the naturalmore » influx of seam water in approximately three months. This report discusses the environmental inpacts of this program on the area and provides details of the program. 13 refs., 7 figs., 11 tabs.« less

  9. Steam gasification of tyre waste, poplar, and refuse-derived fuel: a comparative analysis.

    PubMed

    Galvagno, S; Casciaro, G; Casu, S; Martino, M; Mingazzini, C; Russo, A; Portofino, S

    2009-02-01

    In the field of waste management, thermal disposal is a treatment option able to recover resources from "end of life" products. Pyrolysis and gasification are emerging thermal treatments that work under less drastic conditions in comparison with classic direct combustion, providing for reduced gaseous emissions of heavy metals. Moreover, they allow better recovery efficiency since the process by-products can be used as fuels (gas, oils), for both conventional (classic engines and heaters) and high efficiency apparatus (gas turbines and fuel cells), or alternatively as chemical sources or as raw materials for other processes. This paper presents a comparative study of a steam gasification process applied to three different waste types (refuse-derived fuel, poplar wood and scrap tyres), with the aim of comparing the corresponding yields and product compositions and exploring the most valuable uses of the by-products.

  10. An Overview of Combustion Mechanisms and Flame Structures for Advanced Solid Propellants

    NASA Technical Reports Server (NTRS)

    Beckstead, M. W.

    2000-01-01

    Ammonium perchlorate (AP) and cyclotretamethylenetetranitramine (HMX) are two solid ingredients often used in modern solid propellants. Although these two ingredients have very similar burning rates as monopropellants, they lead to significantly different characteristics when combined with binders to form propellants. Part of the purpose of this paper is to relate the observed combustion characteristics to the postulated flame structures and mechanisms for AP and HMX propellants that apparently lead to these similarities and differences. For AP composite, the primary diffusion flame is more energetic than the monopropellant flame, leading to an increase in burning rate over the monopropellant rate. In contrast the HMX primary diffusion flame is less energetic than the HMX monopropellant flame and ultimately leads to a propellant rate significantly less than the monopropellant rate in composite propellants. During the past decade the search for more energetic propellants and more environmentally acceptable propellants is leading to the development of propellants based on ingredients other than AP and HMX. The objective of this paper is to utilize the more familiar combustion characteristics of AP and HMX containing propellants to project the combustion characteristics of propellants made up of more advanced ingredients. The principal conclusion reached is that most advanced ingredients appear to burn by combustion mechanisms similar to HMX containing propellants rather than AP propellants.

  11. Modeling and Numerical Investigation of the Process of Vapor-Oxygen Gasification of Solid Fuels in a Vertical Flow Reactor Under Pressure

    NASA Astrophysics Data System (ADS)

    Rokhman, B. B.

    2014-09-01

    With the use of the developed model, detailed information has been obtained on the working process in a flow reactor with single- and two-stage schemes of vapor-oxygen gasification of coals under a pressure of 3 MPa. The dependence of the ratios of mass flow rates O2/coal and H2O/coal on the type of fuel has been established and their optimal values for the "Shell" process have been found. At a given consumption ratio of gas coal and brown coal of brand B1, the optimum diameters of particles providing minimum combustible loss of the carbon mixture have been determined. It has been found that the content of methane in the syngas in the case of two-stage gasification is much higher than in the case of single-stage gasification.

  12. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    NASA Astrophysics Data System (ADS)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  13. Gasification: An alternative solution for energy recovery and utilization of vegetable market waste.

    PubMed

    Narnaware, Sunil L; Srivastava, Nsl; Vahora, Samir

    2017-03-01

    Vegetables waste is generally utilized through a bioconversion process or disposed of at municipal landfills, dumping sites or dumped on open land, emitting a foul odor and causing health hazards. The presents study deals with an alternative way to utilize solid vegetable waste through a thermochemical route such as briquetting and gasification for its energy recovery and subsequent power generation. Briquettes of 50 mm diameter were produced from four different types of vegetable waste. The bulk density of briquettes produced was increased 10 to 15 times higher than the density of the dried vegetable waste in loose form. The lower heating value (LHV) of the briquettes ranged from 10.26 MJ kg -1 to 16.60 MJ kg -1 depending on the type of vegetable waste. The gasification of the briquettes was carried out in an open core downdraft gasifier, which resulted in syngas with a calorific value of 4.71 MJ Nm -3 at the gasification temperature between 889°C and 1011°C. A spark ignition, internal combustion engine was run on syngas and could generate a maximum load up to 10 kW e . The cold gas efficiency and the hot gas efficiency of the gasifier were measured at 74.11% and 79.87%, respectively. Energy recovery from the organic vegetable waste was possible through a thermochemical conversion route such as briquetting and subsequent gasification and recovery of the fuel for small-scale power generation.

  14. Investigation of air gasification of micronized coal, mechanically activated using the plasma control of the process

    NASA Astrophysics Data System (ADS)

    Butakov, Evgenii; Burdukov, Anatoly; Chernetskiy, Mikhail; Kuznetsov, Victor

    2017-10-01

    Combination of the processes of coal combustion and gasification into a single technology of mechano-chemical and plasma-chemical activation is of a considerable scientific and technological interest. Enhancement of coal reactivity at their grinding with mechanical activation is associated with an increase in the reaction rate of carbon material, and at plasma-chemical effect, the main is an increase in reactivity of the oxidizing agent caused by the high plasma temperatures of atomic oxygen. The process of gasification was studied on the 1-MW setup with tangential scroll supply of pulverized coal-air mixture and cylindrical reaction chamber. Coal ground by the standard boiler mill is fed to the disintegrator, then, it is sent to the scroll inlet of the burner-reactor with the transport air. Pulverized coal is ignited by the plasmatron of 10-kW power. In experiments on air gasification of micronized coal, carried out at the temperature in the reaction chamber of 1000-1200°C and air excess α = 0.3-1, the data on CO concentration of 11% and H2 concentration of up to 6% were obtained. Air and air-steam gasification of mechanically-activated micronized coals with plasma control was calculated using SigmaFlow software package.

  15. On-line infrared process signature measurements through combustion atmospheres

    NASA Astrophysics Data System (ADS)

    Zweibaum, F. M.; Kozlowski, A. T.; Surette, W. E., Jr.

    1980-01-01

    A number of on-line infrared process signature measurements have been made through combustion atmospheres, including those in jet engines, piston engines, and coal gasification reactors. The difficulties involved include operation in the presence of pressure as high as 1800 psi, temperatures as high as 3200 F, and explosive, corrosive and dust-laden atmospheres. Calibration problems have resulted from the use of purge gases to clear the viewing tubes, and the obscuration of the view ports by combustion products. A review of the solutions employed to counteract the problems is presented, and areas in which better solutions are required are suggested.

  16. Biomass waste gasification - can be the two stage process suitable for tar reduction and power generation?

    PubMed

    Sulc, Jindřich; Stojdl, Jiří; Richter, Miroslav; Popelka, Jan; Svoboda, Karel; Smetana, Jiří; Vacek, Jiří; Skoblja, Siarhei; Buryan, Petr

    2012-04-01

    A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stage gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW(th). The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950°C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition and tar compound contents confirmed superiority of the two stage gasification system, drastic decrease of aromatic compounds with two and higher number of benzene rings by 1-2 orders. On the other hand the two stage gasification (with overall ER=0.71) led to substantial reduction of gas heating value (LHV=3.15 MJ/Nm(3)), elevation of gas volume and increase of nitrogen content in fuel gas. The increased temperature (>950°C) at the entrance to the char bed caused also substantial decrease of ammonia content in fuel gas. The char with higher content of ash leaving the

  17. Technologies for Energy from Biomass by Direct Combustion, Gasification, and Liquefaction.

    DTIC Science & Technology

    1981-05-01

    1980 1982 1984 Development Alberta Industrial Dev. X American Fyr. Feeder X Andco, Inc. X Applied Engineering Co., Inc. X Biomass Corp. X Bio-Solar x...Feeder ANDCO, Inc. Applied Engineering Company Biomass Corporation Bio-Solar Research and Development Corporation Combustion Power Company, Inc. Davy...Andco. Inc. X Applied Engineering Co., Inc. X Biomass Corp. X , Big-Solar .X I Combustion Power .. XI Davy Powergas X j Dekalb Acresearch, Inc.- x Duvant

  18. Design and realization of an AEC&AGC system for the CCD aerial camera

    NASA Astrophysics Data System (ADS)

    Liu, Hai ying; Feng, Bing; Wang, Peng; Li, Yan; Wei, Hao yun

    2015-08-01

    An AEC and AGC(Automatic Exposure Control and Automatic Gain Control) system was designed for a CCD aerial camera with fixed aperture and electronic shutter. The normal AEC and AGE algorithm is not suitable to the aerial camera since the camera always takes high-resolution photographs in high-speed moving. The AEC and AGE system adjusts electronic shutter and camera gain automatically according to the target brightness and the moving speed of the aircraft. An automatic Gamma correction is used before the image is output so that the image is better for watching and analyzing by human eyes. The AEC and AGC system could avoid underexposure, overexposure, or image blurring caused by fast moving or environment vibration. A series of tests proved that the system meet the requirements of the camera system with its fast adjusting speed, high adaptability, high reliability in severe complex environment.

  19. Chemical process modelling of Underground Coal Gasification (UCG) and evaluation of produced gas quality for end use

    NASA Astrophysics Data System (ADS)

    Korre, Anna; Andrianopoulos, Nondas; Durucan, Sevket

    2015-04-01

    Underground Coal Gasification (UCG) is an unconventional method for recovering energy from coal resources through in-situ thermo-chemical conversion to gas. In the core of the UCG lays the coal gasification process which involves the engineered injection of a blend of gasification agents into the coal resource and propagating its gasification. Athough UCG technology has been known for some time and considered a promising method for unconventional fossil fuel resources exploitation, there are limited modelling studies which achieve the necessary accuracy and realistic simulation of the processes involved. This paper uses the existing knowledge for surface gasifiers and investigates process designs which could be adapted to model UCG. Steady state simulations of syngas production were developed using the Advanced System for Process ENgineering (Aspen) Plus software. The Gibbs free energy minimisation method was used to simulate the different chemical reactor blocks which were combined using a FORTRAN code written. This approach facilitated the realistic simulation of the gasification process. A number of model configurations were developed to simulate different subsurface gasifier layouts considered for the exploitation of underground coal seams. The two gasifier layouts considered here are the linked vertical boreholes and the controlled retractable injection point (CRIP) methods. Different stages of the UCG process (i.e. initialisation, intermediate, end-phase) as well as the temperature level of the syngas collection point in each layout were found to be the two most decisive and distinctive parameters during the design of the optimal model configuration for each layout. Sensitivity analyses were conducted to investigate the significance of the operational parameters and the performance indicators used to evaluate the results. The operational parameters considered were the type of reagents injected (i.e. O2, N2, CO2, H2O), the ratio between the injected reagents

  20. Advanced Booster Liquid Engine Combustion Stability

    NASA Technical Reports Server (NTRS)

    Tucker, Kevin; Gentz, Steve; Nettles, Mindy

    2015-01-01

    Combustion instability is a phenomenon in liquid rocket engines caused by complex coupling between the time-varying combustion processes and the fluid dynamics in the combustor. Consequences of the large pressure oscillations associated with combustion instability often cause significant hardware damage and can be catastrophic. The current combustion stability assessment tools are limited by the level of empiricism in many inputs and embedded models. This limited predictive capability creates significant uncertainty in stability assessments. This large uncertainty then increases hardware development costs due to heavy reliance on expensive and time-consuming testing.

  1. Energy from gasification of solid wastes.

    PubMed

    Belgiorno, V; De Feo, G; Della Rocca, C; Napoli, R M A

    2003-01-01

    Gasification technology is by no means new: in the 1850s, most of the city of London was illuminated by "town gas" produced from the gasification of coal. Nowadays, gasification is the main technology for biomass conversion to energy and an attractive alternative for the thermal treatment of solid waste. The number of different uses of gas shows the flexibility of gasification and therefore allows it to be integrated with several industrial processes, as well as power generation systems. The use of a waste-biomass energy production system in a rural community is very interesting too. This paper describes the current state of gasification technology, energy recovery systems, pre-treatments and prospective in syngas use with particular attention to the different process cycles and environmental impacts of solid wastes gasification.

  2. Biomass waste gasification - Can be the two stage process suitable for tar reduction and power generation?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulc, Jindrich; Stojdl, Jiri; Richter, Miroslav

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Comparison of one stage (co-current) and two stage gasification of wood pellets. Black-Right-Pointing-Pointer Original arrangement with grate-less reactor and upward moving bed of the pellets. Black-Right-Pointing-Pointer Two stage gasification leads to drastic reduction of tar content in gas. Black-Right-Pointing-Pointer One stage gasification produces gas with higher LHV at lower overall ER. Black-Right-Pointing-Pointer Content of ammonia in gas is lower in two stage moving bed gasification. - Abstract: A pilot scale gasification unit with novel co-current, updraft arrangement in the first stage and counter-current downdraft in the second stage was developed and exploited for studying effects of two stagemore » gasification in comparison with one stage gasification of biomass (wood pellets) on fuel gas composition and attainable gas purity. Significant producer gas parameters (gas composition, heating value, content of tar compounds, content of inorganic gas impurities) were compared for the two stage and the one stage method of the gasification arrangement with only the upward moving bed (co-current updraft). The main novel features of the gasifier conception include grate-less reactor, upward moving bed of biomass particles (e.g. pellets) by means of a screw elevator with changeable rotational speed and gradual expanding diameter of the cylindrical reactor in the part above the upper end of the screw. The gasifier concept and arrangement are considered convenient for thermal power range 100-350 kW{sub th}. The second stage of the gasifier served mainly for tar compounds destruction/reforming by increased temperature (around 950 Degree-Sign C) and for gasification reaction of the fuel gas with char. The second stage used additional combustion of the fuel gas by preheated secondary air for attaining higher temperature and faster gasification of the remaining char from the first stage. The measurements of gas composition

  3. Thermal analysis and kinetics of coal during oxy-fuel combustion

    NASA Astrophysics Data System (ADS)

    Kosowska-Golachowska, Monika

    2017-08-01

    The pyrolysis and oxy-fuel combustion characteristics of Polish bituminous coal were studied using non-isothermal thermogravimetric analysis. Pyrolysis tests showed that the mass loss profiles were almost similar up to 870°C in both N2 and CO2 atmospheres, while further mass loss occurred in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Replacement of N2 in the combustion environment by CO2 delayed the combustion of bituminous coal. At elevated oxygen levels, TG/DTG profiles shifted through lower temperature zone, ignition and burnout temperatures decreased and mass loss rate significantly increased and complete combustion was achieved at lower temperatures and shorter times. Kinetic analysis for the tested coal was performed using Kissinger-Akahira-Sunose (KAS) method. The activation energies of bituminous coal combustion at the similar oxygen content in oxy-fuel with that of air were higher than that in air atmosphere. The results indicated that, with O2 concentration increasing, the activation energies decreased.

  4. Steam jacket dynamics in underground coal gasification

    NASA Astrophysics Data System (ADS)

    Otto, Christopher; Kempka, Thomas

    2017-04-01

    Underground coal gasification (UCG) has the potential to increase the world-wide hydrocarbon reserves by utilization of deposits not economically mineable by conventional methods. In this context, UCG involves combusting coal in-situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from high economic potentials, in-situ combustion may cause environmental impacts such as groundwater pollution by by-product leakage. In order to prevent or significantly mitigate these potential environmental concerns, UCG reactors are generally operated below hydrostatic pressure to limit the outflow of UCG process fluids into overburden aquifers. This pressure difference effects groundwater inflow into the reactor and prevents the escape of product gas. In the close reactor vicinity, fluid flow determined by the evolving high reactor temperatures, resulting in the build-up of a steam jacket. Numerical modeling is one of the key components to study coupled processes in in-situ combustion. We employed the thermo-hydraulic numerical simulator MUFITS (BINMIXT module) to address the influence of reactor pressure dynamics as well as hydro-geological coal and caprock parameters on water inflow and steam jacket dynamics. The US field trials Hanna and Hoe Creek (Wyoming) were applied for 3D model validation in terms of water inflow matching, whereby the good agreement between our modeling results and the field data indicates that our model reflects the hydrothermal physics of the process. In summary, our validated model allows a fast prediction of the steam jacket dynamics as well as water in- and outflows, required to avoid aquifer contamination during the entire life cycle of in-situ combustion operations.

  5. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of catalytic ultrasound oxidation and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Hou, Baolin

    2015-01-01

    Laboratorial scale experiments were conducted to investigate a novel system integrating catalytic ultrasound oxidation (CUO) with membrane bioreactor (CUO-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. Results indicated that CUO with catalyst of FeOx/SBAC (sewage sludge based activated carbon (SBAC) which loaded Fe oxides) represented high efficiencies in eliminating TOC as well as improving the biodegradability. The integrated CUO-MBR system with low energy intensity and high frequency was more effective in eliminating COD, BOD5, TOC and reducing transmembrane pressure than either conventional MBR or ultrasound oxidation integrated MBR. The enhanced hydroxyl radical oxidation, facilitation of substrate diffusion and improvement of cell enzyme secretion were the mechanisms for CUO-MBR performance. Therefore, the integrated CUO-MBR was the promising technology for advanced treatment in engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous catalytic ozonation and biological process.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Jia, Shengyong; Hou, Baolin; Zhao, Qian

    2014-08-01

    Advanced treatment of biologically pretreated coal gasification wastewater (CGW) was investigated employing heterogeneous catalytic ozonation integrated with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process. The results indicated that catalytic ozonation with the prepared catalyst (i.e. MnOx/SBAC, sewage sludge was converted into sludge based activated carbon (SBAC) which loaded manganese oxides) significantly enhanced performance of pollutants removal by generated hydroxyl radicals. The effluent of catalytic ozonation process was more biodegradable and less toxic than that in ozonation alone. Meanwhile, ANMBBR-BAF showed efficient capacity of pollutants removal in treatment of the effluent of catalytic ozonation at a shorter reaction time, allowing the discharge limits to be met. Therefore, the integrated process with efficient, economical and sustainable advantages was suitable for advanced treatment of real biologically pretreated CGW. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Francis Lau

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-productmore » of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a

  8. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    Further development of a combustion Large Eddy Simulation (LES) code for the design of advanced gaseous combustion systems is described in this sixth quarterly report. CFD Research Corporation (CFDRC) is developing the LES module within the parallel, unstructured solver included in the commercial CFD-ACE+ software. In this quarter, in-situ adaptive tabulation (ISAT) for efficient chemical rate storage and retrieval was implemented and tested within the Linear Eddy Model (LEM). ISAT type 3 is being tested so that extrapolation can be performed and further improve the retrieval rate. Further testing of the LEM for subgrid chemistry was performed for parallel applicationsmore » and for multi-step chemistry. Validation of the software on backstep and bluff-body reacting cases were performed. Initial calculations of the SimVal experiment at Georgia Tech using their LES code were performed. Georgia Tech continues the effort to parameterize the LEM over composition space so that a neural net can be used efficiently in the combustion LES code. A new and improved Artificial Neural Network (ANN), with log-transformed output, for the 1-step chemistry was implemented in CFDRC's LES code and gave reasonable results. This quarter, the 2nd consortium meeting was held at CFDRC. Next quarter, LES software development and testing will continue. Alpha testing of the code will continue to be performed on cases of interest to the industrial consortium. Optimization of subgrid models will be pursued, particularly with the ISAT approach. Also next quarter, the demonstration of the neural net approach, for multi-step chemical kinetics speed-up in CFD-ACE+, will be accomplished.« less

  10. Gasification of the char derived from distillation of granulated scrap tyres.

    PubMed

    López, Félix A; Centeno, Teresa A; Alguacil, Francisco José; Lobato, Belén; López-Delgado, Aurora; Fermoso, Javier

    2012-04-01

    This work reports the effect of pressure on the steam/oxygen gasification at 1000°C of the char derived from low temperature-pressure distillation of granulated scrap tyres (GST). The study was based on the analysis of gas production, carbon conversion, cold gas efficiency and the high heating value (HHV) of the product. For comparison, similar analyses were carried out for the gasification of coals with different rank. In spite of the relatively high ash (≈12 wt.%) and sulphur (≈3 wt.%) contents, the char produced in GST distillation can be regarded as a reasonable solid fuel with a calorific value of 34MJkg(-1). The combustion properties of the char (E(A)≈50 kJ mol(-1)), its temperature of self-heating (≈264°C), ignition temperature (≈459°C) and burn-out temperature (≈676°C) were found to be similar to those of a semi-anthracite. It is observed that the yield, H(2) and CO contents and HHV of the syngas produced from char gasification increase with pressure. At 0.1 MPa, 4.6 Nm(3)kg(char)(-1) of syngas was produced, containing 28%v/v of H(2) and CO and with a HHV around 3.7 MJ Nm(-3). At 1.5 MPa, the syngas yield achieved 4.9N m(3)kg(char)(-1) with 30%v/v of H(2)-CO and HHV of 4.1 MJ Nm(-3). Carbon conversion significantly increased from 87% at 0.1 MPa to 98% at 1.5 MPa. It is shown that the char derived from distillation of granulated scrap tyres can be further gasified to render a gas of considerable heating value, especially when gasification proceeds at high pressure. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Pressurized chemical-looping combustion of coal with an iron ore-based oxygen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Rui; Song, Min; Zhang, Shuai

    2010-06-15

    Chemical-looping combustion (CLC) is a new combustion technology with inherent separation of CO{sub 2}. Most of the previous investigations on CLC of solid fuels were conducted under atmospheric pressure. A pressurized CLC combined cycle (PCLC-CC) system is proposed as a promising coal combustion technology with potential higher system efficiency, higher fuel conversion, and lower cost for CO{sub 2} sequestration. In this study pressurized CLC of coal with Companhia Valedo Rio Doce (CVRD) iron ore was investigated in a laboratory fixed bed reactor. CVRD iron ore particles were exposed alternately to reduction by 0.4 g of Chinese Xuzhou bituminous coal gasifiedmore » with 87.2% steam/N{sub 2} mixture and oxidation with 5% O{sub 2} in N{sub 2} at 970 C. The operating pressure was varied between 0.1 MPa and 0.6 MPa. First, control experiments of steam coal gasification over quartz sand were performed. H{sub 2} and CO{sub 2} are the major components of the gasification products, and the operating pressure influences the gas composition. Higher concentrations of CO{sub 2} and lower fractions of CO, CH{sub 4}, and H{sub 2} during the reduction process with CVRD iron ore was achieved under higher pressures. The effects of pressure on the coal gasification rate in the presence of the oxygen carrier were different for pyrolysis and char gasification. The pressurized condition suppresses the initial coal pyrolysis process while it also enhances coal char gasification and reduction with iron ore in steam, and thus improves the overall reaction rate of CLC. The oxidation rates and variation of oxygen carrier conversion are higher at elevated pressures reflecting higher reduction level in the previous reduction period. Scanning electron microscope and energy-dispersive X-ray spectroscopy (SEM-EDX) analyses show that particles become porous after experiments but maintain structure and size after several cycles. Agglomeration was not observed in this study. An EDX analysis

  12. The Extremely Metal-Poor Dwarf Galaxy AGC 198691

    NASA Astrophysics Data System (ADS)

    Hirschauer, Alec S.; Salzer, John Joseph; Cannon, John M.; Skillman, Evan D.; SHIELD II Team

    2016-01-01

    We present spectroscopic observations of the nearby dwarf irregular galaxy AGC 198691. This object is part of the Survey of HI in Extremely Low-Mass Dwarfs (SHIELD) sample, which consists of ultra-low HI mass galaxies discovered by the Arecibo Legacy Fast-Acting ALFA (ALFALFA) survey. SHIELD is a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas content and dynamics of galaxies with HI masses in the range of 106-107 M⊙. Our spectral data were obtained using the new high-throughput KPNO Ohio State Multi-Object Spectrograph (KOSMOS) on the Mayall 4-m telescope as part of a systematic study of the nebular abundances in the SHIELD galaxy sample. These observations enable measurement of the temperature sensitive [OIII]λ4363 line and hence the determination of a "direct" oxygen abundance for AGC 198691. We find this system to be an extremely metal-deficient (XMD) galaxy with an oxygen abundance comparable to such objects as I Zw 18, SBS 0335-052W, Leo P, and DDO 68 - the lowest metallicity star-forming systems known. It is worth noting that two of the five lowest-abundance galaxies currently recognized were discovered via the ALFALFA blind HI survey. These XMD galaxies are potential analogues to the first star-forming systems, which through hierarchical accretion processes built up the large galaxies we observe today in the local Universe. Detailed analysis of such XMD systems offers observational constraint to models of galactic evolution and star formation histories to allow a better understanding of the processes that govern the chemical evolution of low-mass galaxies.

  13. Detection of an Optical Counterpart to the ALFALFA Ultra-compact High-velocity Cloud AGC 249525

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth A. K.; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2017-03-01

    We report on the detection at >98% confidence of an optical counterpart to AGC 249525, an ultra-compact high-velocity cloud (UCHVC) discovered by the Arecibo Legacy Fast ALFA survey blind neutral hydrogen survey. UCHVCs are compact, isolated H I clouds with properties consistent with their being nearby low-mass galaxies, but without identified counterparts in extant optical surveys. Analysis of the resolved stellar sources in deep g- and I-band imaging from the WIYN pODI camera reveals a clustering of possible red giant branch stars associated with AGC 249525 at a distance of 1.64 ± 0.45 Mpc. Matching our optical detection with the H I synthesis map of AGC 249525 from Adams et al. shows that the stellar overdensity is exactly coincident with the highest-density H I contour from that study. Combining our optical photometry and the H I properties of this object yields an absolute magnitude of -7.1≤slant {M}V≤slant -4.5, a stellar mass between 2.2+/- 0.6× {10}4 {M}⊙ and 3.6+/- 1.0× {10}5 {M}⊙ , and an H I to stellar mass ratio between 9 and 144. This object has stellar properties within the observed range of gas-poor ultra-faint dwarfs in the Local Group, but is gas-dominated.

  14. Microstructure of wave propagation during combustion synthesis of advanced materials: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Hwang, Stephen

    Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between

  15. AT13148, a first-in-class multi-AGC kinase inhibitor, potently inhibits gastric cancer cells both in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xi, Yu; Department of General Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008; Niu, Jianhua

    The AGC kinase family is important cell proliferation and survival. Dysregulation of this family contributes to gastric cancer progression. Here, we evaluated the potential activity of AT13148, a first-in-class multi-AGC kinase inhibitor, against gastric cancer cells. Our results showed that AT13148 exerted potent cytotoxic and anti-proliferative activities against a panel human gastric cancer cell lines (HGC-27, AGS, SNU-601, N87 and MKN-28), possibly via inducing cancer cell apoptotic death. Apoptosis inhibition by the Caspase blockers dramatically attenuated AT13148-caused cytotoxicity against gastric cancer cells. Intriguingly, same AT13148 treatment was not cytotoxic/pro-apoptotic to the non-cancerous human gastric epithelial GEC-1 cells. At the signaling level,more » AT13148 treatment in gastric cancer cells dramatically suppressed activation of multiple AGC kinases, including Akt (at p-Thr-308), p70S6 kinase (p70S6K), glycogen synthase kinase 3β (GSK-3β) and p90 ribosomal S6 kinase (RSK). Our in vivo studies demonstrated that daily oral gavage of AT13148 at well-tolerated doses significantly inhibited HGC27 xenograft tumor growth in nude mice. AGC activity was also dramatically decreased in AT13148-administrated HGC27 tumors. Therefore, targeting AGC kinases by AT13148 demonstrates superior anti-gastric cancer activity both in vitro and in vivo. The preclinical results of this study support the progression of this molecule into future evaluation as a valuable anti-gastric cancer candidate. - Highlights: • AT13148 is cytotoxic and anti-proliferative to human gastric cancer cells. • AT13148 induces gastric cancer cell apoptotic death, inhibited by Caspase inhibitors. • AT13148 inactivates multiple AGC kinases in human gastric cancer cells. • AT13148 oral administration suppresses HGC27 xenograft growth in nude mice. • AT13148 oral administration inhibits multiple AGC kinases in HGC27 xenograft tumors.« less

  16. SUVmax/THKmax as a Biomarker for Distinguishing Advanced Gastric Carcinoma from Primary Gastric Lymphoma

    PubMed Central

    Fu, Liping; Li, Hongming; Wang, Hui; Xu, Baixuan; Fan, Yong; Tian, Jiahe

    2012-01-01

    Background Gastric carcinoma and primary gastric lymphoma (PGL) are the two most common malignancies in stomach. The purpose of this study was to screen and validate a biomarker of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for distinguishing advanced gastric carcinoma (AGC) from PGL for clinical applications. Methodology/Principal Findings We reviewed PET/CT scans collected from January 2008 to April 2012 of 69 AGC and 38 PGL (14 low-grade mucosa-associated lymphoid tissue [MALT], 24 non-MALT aggressive non-Hodgkin lymphoma [ANHL]) with a focus on FDG intensity (maximum standardized uptake value [SUVmax]) of primary lesions and its CT-detected abnormalities, including maximal gastrointestinal wall thickness (THKmax) and mucosal ulcerations. Gastric FDG uptake was found in 69 (100%) patients with AGC and 36 (95%, 12 MALT vs. 24 ANHL)with PGL. The presence of CT-detected abnormalities of AGC and PGL were 97% (67/69) and 89% (12 MALT vs. 22 ANHL), respectively. After controlling for THKmax, SUVmax was higher with ANHL than AGC (17.10±8.08 vs. 9.65±5.24, p<0.05) and MALT (6.20±3.60, p<0.05). THKmax did not differ among MALT, ANHL and AGC. Mucosal ulceration was more common with AGC (n = 9) than PGL (n = 2),but the difference was not statistically significant (p>0.05). Cross-validation analysis showed that for distinguishing ANHL from AGC, the classifier with SUVmax as a feature achieved a correct classification rate of 81% with thresholds 13.40±1.12 and the classifier with SUVmax/THKmax as a feature achieved a correct classification rate of 83% with thresholds 7.51±0.63. Conclusions/Significance SUVmax/THKmax may be as a promising biomarker of FDG-PET/CT for distinguishing ANHL from AGC. Structural CT abnormalities alone may not be reliable but can help with PET assessment of gastric malignancies. 18F-FDG PET/CT have potential for distinguishing AGC from PGL at the individual level. PMID:23226547

  17. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    PubMed

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Some Factors Affecting Combustion in an Internal-Combustion Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  19. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  20. Effect of pulsation on black liquor gasification. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinn, B.T.; Jagoda, J.; Jeong, H.

    1998-12-01

    Pyrolysis is an endothermic process. The heat of reaction is provided either by partial combustion of the waste or by heat transfer from an external combustion process. In one proposed system black liquor is pyrolized in a fluidized bed to which heat is added through a series of pulse combustor tail pipes submerged in the bed material. This system appears promising because of the relatively high heat transfer in pulse combustors and in fluidized beds. Other advantages of pulse combustors are discussed elsewhere. The process is, however, only economically viable if a part of the pyrolysis products can be usedmore » to fire the pulse combustors. The overall goals of this study were to determine: (1) which is the limiting heat transfer rate in the process of transferring heat from the hot combustion products to the pipe, through the pipe, from the tail pipe to the bed and through the bed; i.e., whether increased heat transfer within the pulse combustor will significantly increase the overall heat transfer rate; (2) whether the heat transfer benefits of the pulse combustor can be utilized while maintaining the temperature in the bed within the narrow temperature range required by the process without generating hot spots in the bed; and (3) whether the fuel gas produced during the gasification process can be used to efficiently fire the pulse combustor.« less

  1. Catalytic Combustion for Ultra-Low NOx Hydrogen Turbines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etemad, Shahrokh; Baird, Benjamin; Alavandi, Sandeep

    2011-06-30

    Precision Combustion, Inc., (PCI) in close collaboration with Solar Turbines, Incorporated, has developed and demonstrated a combustion system for hydrogen fueled turbines that reduces NOx to low single digit level while maintaining or improving current levels of efficiency and eliminating emissions of carbon dioxide. Full scale Rich Catalytic Hydrogen (RCH1) injector was developed and successfully tested at Solar Turbines, Incorporated high pressure test facility demonstrating low single digit NOx emissions for hydrogen fuel in the range of 2200F-2750F. This development work was based on initial subscale development for faster turnaround and reduced cost. Subscale testing provided promising results for 42%more » and 52% H2 with NOx emissions of less than 2 ppm with improved flame stability. In addition, catalytic reactor element testing for substrate oxidation, thermal cyclic injector testing to simulate start-stop operation in a gas turbine environment, and steady state 15 atm. operation testing were performed successfully. The testing demonstrated stable and robust catalytic element component life for gas turbine conditions. The benefit of the catalytic hydrogen combustor technology includes capability of delivering near-zero NOx without costly post-combustion controls and without requirement for added sulfur control. In addition, reduced acoustics increase gas turbine component life. These advantages advances Department of Energy (DOE’s) objectives for achievement of low single digit NOx emissions, improvement in efficiency vs. postcombustion controls, fuel flexibility, a significant net reduction in Integrated Gasification Combined Cycle (IGCC) system net capital and operating costs, and a route to commercialization across the power generation field from micro turbines to industrial and utility turbines.« less

  2. AFOSR/ONR Contractors Meeting - Combustion, Rocket Propulsion, Diagnostics of Reacting Flow

    DTIC Science & Technology

    1990-06-15

    GASIFICATION KINETICS OF SOLID BORON AND PYROLITIC GRAPHrrE Because of the energetic potential of boron as a solid fuel (or fuel additive) and the likely...87 Kinetic Studies of Metal Combustion in Propulsion, A. Fontijn, P. M. Futerko and A. G. Slavejkov .............................. 90...Measurements and Chemical Kinetic Simulation of the Structure of Model Propellant Flames, M. C. Branch and H. Dindi .......... 94 High-Rate Thermal

  3. Evaluation of a Combined Cyclone and Gas Filtration System for Particulate Removal in the Gasification Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rizzo, Jeffrey J.

    2010-04-30

    The Wabash gasification facility, owned and operated by sgSolutions LLC, is one of the largest single train solid fuel gasification facilities in the world capable of transforming 2,000 tons per day of petroleum coke or 2,600 tons per day of bituminous coal into synthetic gas for electrical power generation. The Wabash plant utilizes Phillips66 proprietary E-Gas (TM) Gasification Process to convert solid fuels such as petroleum coke or coal into synthetic gas that is fed to a combined cycle combustion turbine power generation facility. During plant startup in 1995, reliability issues were realized in the gas filtration portion of themore » gasification process. To address these issues, a slipstream test unit was constructed at the Wabash facility to test various filter designs, materials and process conditions for potential reliability improvement. The char filtration slipstream unit provided a way of testing new materials, maintenance procedures, and process changes without the risk of stopping commercial production in the facility. It also greatly reduced maintenance expenditures associated with full scale testing in the commercial plant. This char filtration slipstream unit was installed with assistance from the United States Department of Energy (built under DOE Contract No. DE-FC26-97FT34158) and began initial testing in November of 1997. It has proven to be extremely beneficial in the advancement of the E-Gas (TM) char removal technology by accurately predicting filter behavior and potential failure mechanisms that would occur in the commercial process. After completing four (4) years of testing various filter types and configurations on numerous gasification feed stocks, a decision was made to investigate the economic and reliability effects of using a particulate removal gas cyclone upstream of the current gas filtration unit. A paper study had indicated that there was a real potential to lower both installed capital and operating costs by implementing a

  4. Study of advanced rotary combustion engines for commuter aircraft

    NASA Technical Reports Server (NTRS)

    Berkowitz, M.; Jones, C.; Myers, D.

    1983-01-01

    Performance, weight, size, and maintenance data for advanced rotary aircraft engines suitable for comparative commuter aircraft system evaluation studies of alternate engine candidates are provided. These are turbocharged, turbocompounded, direct injected, stratified charge rotary engines. Hypothetical engines were defined (an RC4-74 at 895 kW and an RC6-87 at 1490 kW) based on the technologies and design approaches used in the highly advanced engine of a study of advanced general aviation rotary engines. The data covers the size range of shaft power from 597 kW (800 hp) to 1865 kW (2500 hp) and is in the form of drawings, tables, curves and written text. These include data on internal geometry and configuration, installation information, turbocharging and turbocompounding arrangements, design features and technologies, engine cooling, fuels, scaling for weight size BSFC and heat rejection for varying horsepower, engine operating and performance data, and TBO and maintenance requirements. The basic combustion system was developed and demonstrated; however the projected power densities and performance efficiencies require increases in engine internal pressures, thermal loading, and rotative speed.

  5. Laboratory Demonstrations for PDE and Metals Combustion at NASA MSFC's Advanced Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides status reporting on activities under order no. H-30549 for the period December 1 through December 31, 1999. Details the activities of the contract in the coordination of planned conduct of experiments at the MSFC Advanced Propulsion Laboratory in pulse detonation MHD power production and metals combustion.

  6. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  7. Gasification: A Cornerstone Technology

    ScienceCinema

    Gary Stiegel

    2017-12-09

    NETL is a leader in the science and technology of gasification - a process for the conversion of carbon-based materials such as coal into synthesis gas (syngas) that can be used to produce clean electrical energy, transportation fuels, and chemicals efficiently and cost-effectively using domestic fuel resources. Gasification is a cornerstone technology of 21st century zero emissions powerplants

  8. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of three-dimensional catalytic electro-Fenton and membrane bioreactor.

    PubMed

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng

    2015-12-01

    Laboratorial scale experiments were conducted to investigate a novel system three-dimensional catalytic electro-Fenton (3DCEF, catalyst of sewage sludge based activated carbon which loaded Fe3O4) integrating with membrane bioreactor (3DCEF-MBR) on advanced treatment of biologically pretreated coal gasification wastewater. The results indicated that 3DCEF-MBR represented high efficiencies in eliminating COD and total organic carbon, giving the maximum removal efficiencies of 80% and 75%, respectively. The integrated 3DCEF-MBR system significantly reduced the transmembrane pressure, giving 35% lower than conventional MBR after 30 days operation. The enhanced hydroxyl radical oxidation and bacteria self repair function were the mechanisms for 3DCEF-MBR performance. Therefore, the integrated 3DCEF-MBR was expected to be the promising technology for advanced treatment in engineering applications. Copyright © 2015. Published by Elsevier Ltd.

  9. Hydrostatic calculations of axisymmetric flow and its stability for the AGCE model

    NASA Technical Reports Server (NTRS)

    Miller, T. L.; Gall, R. L.

    1981-01-01

    Baroclinic waves in the atmospherics general circulation experiment (AGCE) apparatus by the use of numerical hydrostatic primitive equation models were determined. The calculation is accomplished by using an axisymmetric primitive equation model to compute, for a given set of experimental parameters, a steady state axisymmetric flow and then testing this axisymmetric flow for stability using a linear primitive equation model. Some axisymmetric flows are presented together with preliminary stability calculations.

  10. Microgravity Combustion Diagnostics Workshop

    NASA Technical Reports Server (NTRS)

    Santoro, Gilbert J. (Editor); Greenberg, Paul S. (Editor); Piltch, Nancy D. (Editor)

    1988-01-01

    Through the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications (OSSA) at NASA Headquarters, a program entitled, Advanced Technology Development (ATD) was promulgated with the objective of providing advanced technologies that will enable the development of future microgravity science and applications experimental flight hardware. Among the ATD projects one, Microgravity Combustion Diagnostics (MCD), has the objective of developing advanced diagnostic techniques and technologies to provide nonperturbing measurements of combustion characteristics and parameters that will enhance the scientific integrity and quality of microgravity combustion experiments. As part of the approach to this project, a workshop was held on July 28 and 29, 1987, at the NASA Lewis Research Center. A small group of laser combustion diagnosticians met with a group of microgravity combustion experimenters to discuss the science requirements, the state-of-the-art of laser diagnostic technology, and plan the direction for near-, intermediate-, and long-term programs. This publication describes the proceedings of that workshop.

  11. Combustion Fundamentals Research

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Increased emphasis is placed on fundamental and generic research at Lewis Research Center with less systems development efforts. This is especially true in combustion research, where the study of combustion fundamentals has grown significantly in order to better address the perceived long term technical needs of the aerospace industry. The main thrusts for this combustion fundamentals program area are as follows: analytical models of combustion processes, model verification experiments, fundamental combustion experiments, and advanced numeric techniques.

  12. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers.

    PubMed

    Arakawa, Noriyuki; Sugai, Tamotsu; Habano, Wataru; Eizuka, Makoto; Sugimoto, Ryo; Akasaka, Risaburo; Toya, Yosuke; Yamamoto, Eiichiro; Koeda, Keisuke; Sasaki, Akira; Matsumoto, Takayuki; Suzuki, Hiromu

    2017-02-01

    To better understand progressive changes in gastric cancer (GC), early and advanced GCs (EGC and AGC, respectively) were examined for copy number alterations (CNAs). A crypt isolation method was used to isolate DNA from tumors and normal glands in 20 AGCs, and fresh tumor samples were obtained from 45 EGCs. We assessed CNAs for differentiated-type GCs using an Infinium HumanCytoSNP-12v2.1 BeadChip in EGCs and AGCs. The most frequent aberrations in EGC were gains at 8q23.3 (42.2%) and 8q23.2 (40%), and loss of heterozygosity (LOH) at 3p14.2 (24.2%), suggesting that these CNAs were involved in the development of EGC. On the other hand, the highest frequencies of gains in AGC were found at 8q24.21 (65%) and 8q24.3 (60%). The most frequent LOHs in AGC were at 11q24.3-25, 11q23.2-24.1, 11q14.1, and 12p11.21-13.33, whereas that in EGC was at 3p14.2. In addition, regions of copy-neutral LOHs in AGC were detected at 11q21, 11q13.3-14.3, 11q11, 11p13-15.3, 12q21.1, 12q12-13.3 and 5q33.3-35.1. Comparisons of gains in EGC and AGC showed significant differences at 12q22-q23.2, 12q21.33, 11p12, 11p14.1, 12q21.31-32.32, 3p12.3, 3p14.1, 10p15.1, 1q24.2 and 2q12.1. Copy neutral LOHs were significantly higher in AGC than in EGC at 14q32.11-32.33, 14q21.3, 14q11.2, 5q11.2, 5q 13.3, 14q21.1-23.2, 14q13.2-13.3, 5q12.1-12.3, 5q11.1, and 17p13.3. The total lengths of the CNAs were significantly greater in AGC than in EGC. We found that the pattern of CNAs in AGC was quite different from that in EGC. We suggest that increasing numbers of CNAs are associated with disease progression from EGC to AGC. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Enhancement of anti-stokes sensitized luminescence in AgCl(I) crystals in the presence of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Chung, Nguyen Thi Kim; Egorushina, E. A.; Latyshev, A. N.; Ovchinnikov, O. V.; Smirnov, M. S.; Suvorova, T. I.

    2012-01-01

    We have observed a significant increase in the intensity with anti-Stokes excitation of recombination luminescence in AgCl(I) microcrystals sensitized by methylene blue molecules in the presence of silver nanoparticles.

  14. Producer gas production of Indonesian biomass in fixed-bed downdraft gasifier as an alternative fuels for internal combustion engines

    NASA Astrophysics Data System (ADS)

    Simanjuntak, J. P.; Lisyanto; Daryanto, E.; Tambunan, B. H.

    2018-03-01

    downdraft biomass gasification reactors, coupled with reciprocating internal combustion engines (ICE) are a viable technology for small scale heat and power generation. The direct use of producer gas as fuel subtitution in an ICE could be of great interest since Indonesia has significant land area in different forest types that could be used to produce bioenergy and convert forest materials to bioenergy for use in energy production and the versatility of this engine. This paper will look into the aspect of biomass energie as a contributor to energy mix in Indonesia. This work also contains information gathered from numerous previews study on the downdraft gasifier based on experimental or simulation study on the ability of producer gas as fuels for internal combustion engines aplication. All data will be used to complement the preliminary work on biomass gasification using downdraft to produce producer gas and its application to engines.

  15. Experimental study of wood downdraft gasification for an improved producer gas quality through an innovative two-stage air and premixed air/gas supply approach.

    PubMed

    Jaojaruek, Kitipong; Jarungthammachote, Sompop; Gratuito, Maria Kathrina B; Wongsuwan, Hataitep; Homhual, Suwan

    2011-04-01

    This study conducted experiments on three different downdraft gasification approaches: single stage, conventional two-stage, and an innovative two-stage air and premixed air/gas supply approach. The innovative two-stage approach has two nozzle locations, one for air supply at combustion zone and the other located at the pyrolysis zone for supplying the premixed gas (air and producer gas). The producer gas is partially bypassed to mix with air and supplied to burn at the pyrolysis zone. The result shows that producer gas quality generated by the innovative two-stage approach improved as compared to conventional two-stage. The higher heating value (HHV) increased from 5.4 to 6.5 MJ/Nm(3). Tar content in producer gas reduced to less than 45 mg/Nm(3). With this approach, gas can be fed directly to an internal combustion engine. Furthermore, the gasification thermal efficiency also improved by approximately 14%. The approach gave double benefits on gas qualities and energy savings. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Testbed-based Performance Evaluation of Attack Resilient Control for AGC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.

    The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less

  17. Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard; Zhou, S James; Ding, Yong

    2012-03-31

    This report summarizes progress made during Phase I and Phase II of the project: "Pre-Combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process," under contract DE-FE-0000646. The objective of this project is to develop a practical and cost effective technology for CO{sub 2} separation and capture for pre-combustion coal-based gasification plants using a membrane contactor/solvent absorption process. The goals of this technology development project are to separate and capture at least 90% of the CO{sub 2} from Integrated Gasification Combined Cycle (IGCC) power plants with less than 10% increase in the cost of energy services. Unlike conventional gas separationmore » membranes, the membrane contactor is a novel gas separation process based on the gas/liquid membrane concept. The membrane contactor is an advanced mass transfer device that operates with liquid on one side of the membrane and gas on the other. The membrane contactor can operate with pressures that are almost the same on both sides of the membrane, whereas the gas separation membranes use the differential pressure across the membrane as driving force for separation. The driving force for separation for the membrane contactor process is the chemical potential difference of CO{sub 2} in the gas phase and in the absorption liquid. This process is thus easily tailored to suit the needs for pre-combustion separation and capture of CO{sub 2}. Gas Technology Institute (GTI) and PoroGen Corporation (PGC) have developed a novel hollow fiber membrane technology that is based on chemically and thermally resistant commercial engineered polymer poly(ether ether ketone) or PEEK. The PEEK membrane material used in the membrane contactor during this technology development program is a high temperature engineered plastic that is virtually non-destructible under the operating conditions encountered in typical gas absorption applications. It can withstand contact with most of the common

  18. Hydrothermal Gasification for Waste to Energy

    NASA Astrophysics Data System (ADS)

    Epps, Brenden; Laser, Mark; Choo, Yeunun

    2014-11-01

    Hydrothermal gasification is a promising technology for harvesting energy from waste streams. Applications range from straightforward waste-to-energy conversion (e.g. municipal waste processing, industrial waste processing), to water purification (e.g. oil spill cleanup, wastewater treatment), to biofuel energy systems (e.g. using algae as feedstock). Products of the gasification process are electricity, bottled syngas (H2 + CO), sequestered CO2, clean water, and inorganic solids; further chemical reactions can be used to create biofuels such as ethanol and biodiesel. We present a comparison of gasification system architectures, focusing on efficiency and economic performance metrics. Various system architectures are modeled computationally, using a model developed by the coauthors. The physical model tracks the mass of each chemical species, as well as energy conversions and transfers throughout the gasification process. The generic system model includes the feedstock, gasification reactor, heat recovery system, pressure reducing mechanical expanders, and electricity generation system. Sensitivity analysis of system performance to various process parameters is presented. A discussion of the key technological barriers and necessary innovations is also presented.

  19. Characterization and partitioning of the char ash collected after the processing of pine wood chips in a pilot-scale gasification unit

    Treesearch

    Thomas L. Eberhardt; Hui Pan; Leslie H. Groom; Chi-Leung So

    2011-01-01

    Southern yellow pine wood chips were used as the feedstock for a pilot-scale gasification unit coupled with a 25 kW generator. The pulp-grade wood chips were relatively free of bark and low in ash content. Processing this feedstock yielded a black/sooty by-product that upon combustion in a muffle furnace resulted in an ash content of about 48%. The term "char ash...

  20. Robust Low Cost Liquid Rocket Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Elam, Sandra; Ellis, David L.; McKechnie, Timothy; Hickman, Robert; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. Fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of shrinking budgets. Three technologies have been combined to produce an advanced liquid rocket engine combustion chamber at NASA-Marshall Space Flight Center (MSFC) using relatively low-cost, vacuum-plasma-spray (VPS) techniques. Copper alloy NARloy-Z was replaced with a new high performance Cu-8Cr-4Nb alloy developed by NASA-Glenn Research Center (GRC), which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. Functional gradient technology, developed building composite cartridges for space furnaces was incorporated to add oxidation resistant and thermal barrier coatings as an integral part of the hot wall of the liner during the VPS process. NiCrAlY, utilized to produce durable protective coating for the space shuttle high pressure fuel turbopump (BPFTP) turbine blades, was used as the functional gradient material coating (FGM). The FGM not only serves as a protection from oxidation or blanching, the main cause of engine failure, but also serves as a thermal barrier because of its lower thermal conductivity, reducing the temperature of the combustion liner 200 F, from 1000 F to 800 F producing longer life. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost VPS process. VPS formed combustion chamber test articles have been formed with the FGM hot wall built in and hot fire tested, demonstrating for the first time a coating that will remain intact through the hot firing test, and with

  1. CO2 Capture and Storage in Coal Gasification Projects

    NASA Astrophysics Data System (ADS)

    Rao, Anand B.; Phadke, Pranav C.

    2017-07-01

    concerns about climate change problem. Carbon Capture and Storage (CCS) is being considered as a promising carbon mitigation technology, especially for large point sources such as coal power plants. Gasification of coal helps in better utilization of this resource offering multiple advantages such as pollution prevention, product flexibility (syngas and hydrogen) and higher efficiency (combined cycle). It also enables the capture of CO2 prior to the combustion, from the fuel gas mixture, at relatively lesser cost as compared to the post-combustion CO2 capture. CCS in gasification projects is considered as a promising technology for cost-effective carbon mitigation. Although many projects (power and non-power) have been announced internationally, very few large-scale projects have actually come up. This paper looks at the various aspects of CCS applications in gasification projects, including the technical feasibility and economic viability and discusses an Indian perspective. Impacts of including CCS in gasification projects (e.g. IGCC plants) have been assessed using a simulation tool. Integrated Environmental Control Model (IECM) - a modelling framework to simulate power plants - has been used to estimate the implications of adding CCS units in IGCC plants, on their performance and costs.

  2. Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions

    DOE PAGES

    Holland, Troy; Fletcher, Thomas H.

    2017-02-22

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less

  3. Comprehensive Model of Single Particle Pulverized Coal Combustion Extended to Oxy-Coal Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Troy; Fletcher, Thomas H.

    Oxy-fired coal combustion is a promising potential carbon capture technology. Predictive CFD simulations are valuable tools in evaluating and deploying oxy-fuel and other carbon capture technologies either as retrofit technologies or for new construction. But, accurate predictive simulations require physically realistic submodels with low computational requirements. In particular, comprehensive char oxidation and gasification models have been developed that describe multiple reaction and diffusion processes. Our work extends a comprehensive char conversion code (CCK), which treats surface oxidation and gasification reactions as well as processes such as film diffusion, pore diffusion, ash encapsulation, and annealing. In this work several submodels inmore » the CCK code were updated with more realistic physics or otherwise extended to function in oxy-coal conditions. Improved submodels include the annealing model, the swelling model, the mode of burning parameter, and the kinetic model, as well as the addition of the chemical percolation devolatilization (CPD) model. We compare our results of the char combustion model to oxy-coal data, and further compared to parallel data sets near conventional conditions. A potential method to apply the detailed code in CFD work is given.« less

  4. Modeling of the reburning process using sewage sludge-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Werle, Sebastian, E-mail: sebastian.werle@polsl.pl

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Gasification provides an attractive method for sewage sludges treatment. Black-Right-Pointing-Pointer Gasification generates a fuel gas (syngas) which can be used as a reburning fuel. Black-Right-Pointing-Pointer Reburning potential of sewage sludge gasification gases was defined. Black-Right-Pointing-Pointer Numerical simulation of co-combustion of syngases in coal fired boiler has been done. Black-Right-Pointing-Pointer Calculation shows that analysed syngases can provide higher than 80% reduction of NO{sub x}. - Abstract: Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). Amore » numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200 K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process.« less

  5. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    NARloy-Z alloy (Cu-3 percent, Ag-0.5 percent, Zr) is a state of the art alloy currently used for fabricating rocket engine combustion chamber liners. Research conducted at NASA-MSFC and Penn State – Applied Research Laboratory has shown that thermal conductivity of NARloy-Z can be increased significantly by adding diamonds to form a composite (NARloy-Z-D). NARloy-Z-D is also lighter than NARloy-Z. These attributes make this advanced composite material an ideal candidate for fabricating combustion chamber liner for an advanced rocket engine. Increased thermal conductivity will directly translate into increased turbopump power and increased chamber pressure for improved thrust and specific impulse. This paper describes the process development for fabricating a subscale high thermal conductivity NARloy-Z-D combustion chamber liner using Field Assisted Sintering Technology (FAST). The FAST process uses a mixture of NARloy-Z and diamond powders which is sintered under pressure at elevated temperatures. Several challenges were encountered, i.e., segregation of diamonds, machining the super hard NARloy-Z-D composite, net shape fabrication and nondestructive examination. The paper describes how these challenges were addressed. Diamonds coated with copper (CuD) appear to give the best results. A near net shape subscale combustion chamber liner is being fabricated by diffusion bonding cylindrical rings of NARloy-Z-CuD using the FAST process.

  6. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longermore » term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.« less

  7. Solar gasification of biomass: design and characterization of a molten salt gasification reactor

    NASA Astrophysics Data System (ADS)

    Hathaway, Brandon Jay

    The design and implementation of a prototype molten salt solar reactor for gasification of biomass is a significant milestone in the development of a solar gasification process. The reactor developed in this work allows for 3 kWth operation with an average aperture flux of 1530 suns at salt temperatures of 1200 K with pneumatic injection of ground or powdered dry biomass feedstocks directly into the salt melt. Laboratory scale experiments in an electrically heated reactor demonstrate the benefits of molten salt and the data was evaluated to determine the kinetics of pyrolysis and gasification of biomass or carbon in molten salt. In the presence of molten salt overall gas yields are increased by up to 22%; pyrolysis rates double due to improved heat transfer, while carbon gasification rates increase by an order of magnitude. Existing kinetic models for cellulose pyrolysis fit the data well, while carbon gasification in molten salt follows kinetics modeled with a 2/3 order shrinking-grain model with a pre-exponential factor of 1.5*106 min-1 and activation energy of 158 kJ/mol. A reactor concept is developed based around a concentric cylinder geometry with a cavity-style solar receiver immersed within a volume of molten carbonate salt. Concentrated radiation delivered to the cavity is absorbed in the cavity walls and transferred via convection to the salt volume. Feedstock is delivered into the molten salt volume where biomass gasification reactions will be carried out producing the desired product gas. The features of the cavity receiver/reactor concept are optimized based on modeling of the key physical processes. The cavity absorber geometry is optimized according to a parametric survey of radiative exchange using a Monte Carlo ray tracing model, resulting in a cavity design that achieves absorption efficiencies of 80%-90%. A parametric survey coupling the radiative exchange simulations to a CFD model of molten salt natural convection is used to size the annulus

  8. Two-step gasification of cattle manure for hydrogen-rich gas production: Effect of biochar preparation temperature and gasification temperature.

    PubMed

    Xin, Ya; Cao, Hongliang; Yuan, Qiaoxia; Wang, Dianlong

    2017-10-01

    Two-step gasification process was proposed to dispose cattle manure for hydrogen rich gas production. The effect of temperature on product distribution and biochar properties were first studied in the pyrolysis-carbonization process. The steam gasification of biochar derived from different pyrolysis-carbonization temperatures was then performed at 750°C and 850°C. The biochar from the pyrolysis-carbonization temperatures of 500°C had high carbon content and low volatiles content. According to the results of gasification stage, the pyrolysis-carbonization temperature of 500°C and the gasification temperature of 850°C were identified as the suitable conditions for hydrogen production. We obtained 1.61m 3 /kg of syngas production, 0.93m 3 /kg of hydrogen yield and 57.58% of hydrogen concentration. This study shows that two-step gasification is an efficient waste-to-hydrogen energy process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Fluidized bed gasification of industrial solid recovered fuels.

    PubMed

    Arena, Umberto; Di Gregorio, Fabrizio

    2016-04-01

    The study evaluates the technical feasibility of the fluidized bed gasification of three solid recovered fuels (SRFs), obtained as co-products of a recycling process. The SRFs were pelletized and fed to a pilot scale bubbling fluidized bed reactor, operated in gasification and co-gasification mode. The tests were carried out under conditions of thermal and chemical steady state, with a bed of olivine particles and at different values of equivalence ratio. The results provide a complete syngas characterization, in terms of its heating value and composition (including tars, particulates, and acid/basic pollutants) and of the chemical and physical characterization of bed material and entrained fines collected at the cyclone outlet. The feasibility of the fluidized bed gasification process of the different SRFs was evaluated with the support of a material and substance flow analysis, and a feedstock energy analysis. The results confirm the flexibility of fluidized bed reactor, which makes it one of the preferable technologies for the gasification of different kind of wastes, even in co-gasification mode. The fluidized bed gasification process of the tested SRFs appears technically feasible, yielding a syngas of valuable quality for energy applications in an appropriate plant configuration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  11. Studies on biomass char gasification and dynamics

    NASA Astrophysics Data System (ADS)

    You, Zhanping; You, Shijun; Ma, Xiaoyan

    2018-01-01

    The gasification performances of two kinds of biomass char by experiment methods are studied, including conversion rate and gasification gas component with temperature and time. Experimental results show that gasification temperature has important effects on the conversion rate and gas component. In the range of experimental temperature, char conversion rates are no more than 30.0%. The apparent activation energies and apparent reaction frequency factors of two biomass chars are obtained through kinetic studies.

  12. Dynamic Modeling and Plantwide Control of a Hybrid Power and Chemical Plant: An Integrated Gasification Combined Cycle Coupled with a Methanol Plant

    NASA Astrophysics Data System (ADS)

    Robinson, Patrick J.

    Gasification has been used in industry on a relatively limited scale for many years, but it is emerging as the premier unit operation in the energy and chemical industries. The switch from expensive and insecure petroleum to solid hydrocarbon sources (coal and biomass) is occurring due to the vast amount of domestic solid resources, national security and global warming issues. Gasification (or partial oxidation) is a vital component of "clean coal" technology. Sulfur and nitrogen emissions can be reduced, overall energy efficiency is increased and carbon dioxide recovery and sequestration are facilitated. Gasification units in an electric power generation plant produce a fuel gas for driving combustion turbines. Gasification units in a chemical plant generate synthesis gas, which can be used to produce a wide spectrum of chemical products. Future plants are predicted to be hybrid power/chemical plants with gasification as the key unit operation. The coupling of an Integrated Gasification Combined Cycle (IGCC) with a methanol plant can handle swings in power demand by diverting hydrogen gas from a combustion turbine and synthesis gas from the gasifier to a methanol plant for the production of an easily-stored, hydrogen-consuming liquid product. An additional control degree of freedom is provided with this hybrid plant, fundamentally improving the controllability of the process. The idea is to base-load the gasifier and use the more responsive gas-phase units to handle disturbances. During the summer days, power demand can fluctuate up to 50% over a 12-hour period. The winter provides a different problem where spikes of power demand can go up 15% within the hour. The following dissertation develops a hybrid IGCC / methanol plant model, validates the steady-state results with a National Energy Technical Laboratory study, and tests a proposed control structure to handle these significant disturbances. All modeling was performed in the widely used chemical process

  13. Power generation based on biomass by combined fermentation and gasification--a new concept derived from experiments and modelling.

    PubMed

    Methling, Torsten; Armbrust, Nina; Haitz, Thilo; Speidel, Michael; Poboss, Norman; Braun-Unkhoff, Marina; Dieter, Heiko; Kempter-Regel, Brigitte; Kraaij, Gerard; Schliessmann, Ursula; Sterr, Yasemin; Wörner, Antje; Hirth, Thomas; Riedel, Uwe; Scheffknecht, Günter

    2014-10-01

    A new concept is proposed for combined fermentation (two-stage high-load fermenter) and gasification (two-stage fluidised bed gasifier with CO2 separation) of sewage sludge and wood, and the subsequent utilisation of the biogenic gases in a hybrid power plant, consisting of a solid oxide fuel cell and a gas turbine. The development and optimisation of the important processes of the new concept (fermentation, gasification, utilisation) are reported in detail. For the gas production, process parameters were experimentally and numerically investigated to achieve high conversion rates of biomass. For the product gas utilisation, important combustion properties (laminar flame speed, ignition delay time) were analysed numerically to evaluate machinery operation (reliability, emissions). Furthermore, the coupling of the processes was numerically analysed and optimised by means of integration of heat and mass flows. The high, simulated electrical efficiency of 42% including the conversion of raw biomass is promising for future power generation by biomass. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Numerical simulation of waste tyres gasification.

    PubMed

    Janajreh, Isam; Raza, Syed Shabbar

    2015-05-01

    Gasification is a thermochemical pathway used to convert carbonaceous feedstock into syngas (CO and H2) in a deprived oxygen environment. The process can accommodate conventional feedstock such as coal, discarded waste including plastics, rubber, and mixed waste owing to the high reactor temperature (1000 °C-1600 °C). Pyrolysis is another conversion pathway, yet it is more selective to the feedstock owing to the low process temperature (350 °C-550 °C). Discarded tyres can be subjected to pyrolysis, however, the yield involves the formation of intermediate radicals additional to unconverted char. Gasification, however, owing to the higher temperature and shorter residence time, is more opted to follow quasi-equilibrium and being predictive. In this work, tyre crumbs are subjected to two levels of gasification modelling, i.e. equilibrium zero dimension and reactive multi-dimensional flow. The objective is to investigate the effect of the amount of oxidising agent on the conversion of tyre granules and syngas composition in a small 20 kW cylindrical gasifier. Initially the chemical compositions of several tyre samples are measured following the ASTM procedures for proximate and ultimate analysis as well as the heating value. The measured data are used to carry out equilibrium-based and reactive flow gasification. The result shows that both models are reasonably predictive averaging 50% gasification efficiency, the devolatilisation is less sensitive than the char conversion to the equivalence ratio as devolatilisation is always complete. In view of the high attained efficiency, it is suggested that the investigated tyre gasification system is economically viable. © The Author(s) 2015.

  15. Advanced Systems for Preprocessing and Characterizing Coal-Biomass Mixtures as Next-Generation Fuels and Feedstocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karmis, Michael; Luttrell, Gerald; Ripepi, Nino

    The research activities presented in this report are intended to address the most critical technical challenges pertaining to coal-biomass briquette feedstocks. Several detailed investigations were conducted using a variety of coal and biomass feedstocks on the topics of (1) coal-biomass briquette production and characterization, (2) gasification of coal-biomass mixtures and briquettes, (3) combustion of coal-biomass mixtures and briquettes, and (4) conceptual engineering design and economic feasibility of briquette production. The briquette production studies indicate that strong and durable co-firing feedstocks can be produced by co-briquetting coal and biomass resources commonly available in the United States. It is demonstrated that binderlessmore » coal-biomass briquettes produced at optimized conditions exhibit very high strength and durability, which indicates that such briquettes would remain competent in the presence of forces encountered in handling, storage and transportation. The gasification studies conducted demonstrate that coal-biomass mixtures and briquettes are exceptional gasification feedstocks, particularly with regard to the synergistic effects realized during devolatilization of the blended materials. The mixture combustion studies indicate that coal-biomass mixtures are exceptional combustion feedstocks, while the briquette combustion study indicates that the use of blended briquettes reduces NO x, CO 2, and CO emissions, and requires the least amount of changes in the operating conditions of an existing coal-fired power plant. Similar results were obtained for the physical durability of the pilot-scale briquettes compared to the bench-scale tests. Finally, the conceptual engineering and feasibility analysis study for a commercial-scale briquetting production facility provides preliminary flowsheet and cost simulations to evaluate the various feedstocks, equipment selection and operating parameters.« less

  16. Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC Capabilities Under New Performance Based Compensation Policy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aho, Jacob; Pao, Lucy Y.; Fleming, Paul

    2014-11-13

    As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC trackingmore » performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there are insufficient wind resources available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.« less

  17. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  18. The economic burden of advanced gastric cancer in Taiwan.

    PubMed

    Hong, Jihyung; Tsai, Yiling; Novick, Diego; Hsiao, Frank Chi-Huang; Cheng, Rebecca; Chen, Jen-Shi

    2017-09-16

    Gastric cancer is one of the leading causes of cancer-related deaths in both sexes worldwide, especially in Eastern Asia. This study aimed to estimate the economic burden of advanced gastric cancer (AGC) in Taiwan. The costs of AGC in 2013 were estimated using resource use data from a chart review study (n = 122 with AGC) and national statistics. Annual per-patient costs, where patients' follow-up periods were adjusted for, were estimated with 82 patients who had complete resource use data. The costs were composed of direct medical costs, direct non-medical costs (healthcare travel and caregiver costs), morbidity costs, and mortality costs. Relevant unit costs were retrieved mainly from literature and national statistics, and applied to the resource use data. A broad definition of morbidity and mortality costs was employed to value the productivity loss in patients with unpaid employment, economically inactive and unemployed as well as the life years after the age of retirement. Their narrow definitions were also used in sensitivity analyses, using age- and/or sex-specific employment rates. Forgone future earnings/productivity loss were discounted at 3%. Annual per-patient costs were projected to estimate the total costs of AGC at the national level with an estimated number of patients with AGC (N = 2611) in Taiwan in 2013. The mean age of the 82 patients was 59.3 (SD: 11.9) years, and 67.1% were male. Per-patient costs were US$26,431 for direct medical costs, US$4669 for direct non-medical costs, US$5758 for morbidity costs, and US$145,990 for mortality costs (per death). These per-patient costs were projected to incur total AGC costs of US$423 million at the national-level. Mortality costs accounted for 77.3% of the total costs, followed by direct medical costs (16.3%), morbidity costs (3.6%), and direct non-medical costs (2.9%). AGC was found to exert a significant economic burden in Taiwan, incurring US$423 million in 2013. This represents about 0.08% of

  19. Some Effects of Injection Advance Angle, Engine-Jacket Temperature, and Speed on Combustion in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1936-01-01

    An optical indicator and a high-speed motion-picture camera capable of operating at the rate of 2,000 frames per second were used to record simultaneously the pressure development and the flame formation in the combustion chamber of the NACA combustion apparatus. Tests were made at engine speeds of 570 and 1,500 r.p.m. The engine-jacket temperature was varied from 100 degrees to 300 degrees F. And the injection advance angle from 13 degrees after top center to 120 degrees before top center. The results show that the course of the combustion is largely controlled by the temperature and pressure of the air in the chamber from the time the fuel is injected until the time at which combustion starts and by the ignition lag. The conclusion is presented that in a compression-ignition engine with a quiescent combustion chamber the ignition lag should be the longest that can be used without excessive rates of pressure rise; any further shortening of the ignition lag decreased the effective combustion of the engine.

  20. Modeling integrated biomass gasification business concepts

    Treesearch

    Peter J. Ince; Ted Bilek; Mark A. Dietenberger

    2011-01-01

    Biomass gasification is an approach to producing energy and/or biofuels that could be integrated into existing forest product production facilities, particularly at pulp mills. Existing process heat and power loads tend to favor integration at existing pulp mills. This paper describes a generic modeling system for evaluating integrated biomass gasification business...

  1. Technology Assessment Report: Aqueous Sludge Gasification Technologies

    EPA Science Inventory

    The study reveals that sludge gasification is a potentially suitable alternative to conventional sludge handling and disposal methods. However, very few commercial operations are in existence. The limited pilot, demonstration or commercial application of gasification technology t...

  2. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  3. Gaseous emissions from waste combustion.

    PubMed

    Werther, Joachim

    2007-06-18

    An overview is given on methods and technologies for limiting the gaseous emissions from waste combustion. With the guideline 2000/76/EC recent European legislation has set stringent limits not only for the mono-combustion of waste in specialized incineration plants but also for co-combustion in coal-fired power plants. With increased awareness of environmental issues and stepwise decrease of emission limits and inclusion of more and more substances into the network of regulations a multitude of emission abatement methods and technologies have been developed over the last decades. The result is the state-of-the-art waste incinerator with a number of specialized process steps for the individual components in the flue gas. The present work highlights some new developments which can be summarized under the common goal of reducing the costs of flue gas treatment by applying systems which combine the treatment of several noxious substances in one reactor or by taking new, simpler routes instead of the previously used complicated ones or - in the case of flue gas desulphurisation - by reducing the amount of limestone consumption. Cost reduction is also the driving force for new processes of conditioning of nonhomogenous waste before combustion. Pyrolysis or gasification is used for chemical conditioning whereas physical conditioning means comminution, classification and sorting processes. Conditioning yields a fuel which can be used in power plants either as a co-fuel or a mono-fuel and which will burn there under much better controlled conditions and therefore with less emissions than the nonhomogeneous waste in a conventional waste incinerator. Also for cost reasons, co-combustion of wastes in coal-fired power stations is strongly pressing into the market. Recent investigations reveal that the co-firing of waste can also have beneficial effects on the operating behavior of the boiler and on the gaseous emissions.

  4. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 2: Evaluation of ash materials as phosphorus fertilizer.

    PubMed

    Thomsen, Tobias Pape; Hauggaard-Nielsen, Henrik; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Henriksen, Ulrik B; Müller-Stöver, Dorette Sophie

    2017-08-01

    The study is part 2 of 2 in an investigation of gasification and co-gasification of municipal sewage sludge in low temperature gasifiers. In this work, solid residuals from thermal gasification and co-gasification of municipal sewage sludge were investigated for their potential use as fertilizer. Ashes from five different low temperature circulating fluidized bed (LT-CFB) gasification campaigns including two mono-sludge campaigns, two sludge/straw mixed fuels campaigns and a straw reference campaign were compared. Experiments were conducted on two different LT-CFBs with thermal capacities of 100kW and 6MW, respectively. The assessment included: (i) Elemental composition and recovery of key elements and heavy metals; (ii) content of total carbon (C) and total nitrogen (N); (iii) pH; (iv) water extractability of phosphorus after incubation in soil; and (v) plant phosphorus response measured in a pot experiment with the most promising ash material. Co-gasification of straw and sludge in LT-CFB gasifiers produced ashes with a high content of recalcitrant C, phosphorus (P) and potassium (K), a low content of heavy metals (especially cadmium) and an improved plant P availability compared to the mono-sludge ashes, thereby showing the best fertilizer qualities among all assessed materials. It was also found that bottom ashes from the char reactor contained even less heavy metals than cyclone ashes. It is concluded that LT-CFB gasification and co-gasification is a highly effective way to purify and sanitize sewage sludge for subsequent use in agricultural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Integrated bioenergy conversion concepts for small scale gasification power systems

    NASA Astrophysics Data System (ADS)

    Aldas, Rizaldo Elauria

    Thermal and biological gasification are promising technologies for addressing the emerging concerns in biomass-based renewable energy, environmental protection and waste management. However, technical barriers such as feedstock quality limitations, tars, and high NOx emissions from biogas fueled engines impact their full utilization and make them suffer at the small scale from the need to purify the raw gas for most downstream processes, including power generation other than direct boiler use. The two separate gasification technologies may be integrated to better address the issues of power generation and waste management and to complement some of each technologies' limitations. This research project investigated the technical feasibility of an integrated thermal and biological gasification concept for parameters critical to appropriately matching an anaerobic digester with a biomass gasifier. Specific studies investigated the thermal gasification characteristics of selected feedstocks in four fixed-bed gasification experiments: (1) updraft gasification of rice hull, (2) indirect-heated gasification of rice hull, (3) updraft gasification of Athel wood, and (4) downdraft gasification of Athel and Eucalyptus woods. The effects of tars and other components of producer gas on anaerobic digestion at mesophilic temperature of 36°C and the biodegradation potentials and soil carbon mineralization of gasification tars during short-term aerobic incubation at 27.5°C were also examined. Experiments brought out the ranges in performance and quality and quantity of gasification products under different operating conditions and showed that within the conditions considered in the study, these gasification products did not adversely impact the overall digester performance. Short-term aerobic incubation demonstrated variable impacts on carbon mineralization depending on tar and soil conditions. Although tars exhibited low biodegradation indices, degradation may be improved if the

  6. Advanced Monitoring to Improve Combustion Turbine/Combined Cycle Reliability, Availability & Maintainability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard Angello

    2005-09-30

    Power generators are concerned with the maintenance costs associated with the advanced turbines that they are purchasing. Since these machines do not have fully established Operation and Maintenance (O&M) track records, power generators face financial risk due to uncertain future maintenance costs. This risk is of particular concern, as the electricity industry transitions to a competitive business environment in which unexpected O&M costs cannot be passed through to consumers. These concerns have accelerated the need for intelligent software-based diagnostic systems that can monitor the health of a combustion turbine in real time and provide valuable information on the machine's performancemore » to its owner/operators. EPRI, Impact Technologies, Boyce Engineering, and Progress Energy have teamed to develop a suite of intelligent software tools integrated with a diagnostic monitoring platform that, in real time, interpret data to assess the 'total health' of combustion turbines. The 'Combustion Turbine Health Management System' (CTHMS) will consist of a series of 'Dynamic Link Library' (DLL) programs residing on a diagnostic monitoring platform that accepts turbine health data from existing monitoring instrumentation. CTHMS interprets sensor and instrument outputs, correlates them to a machine's condition, provide interpretative analyses, project servicing intervals, and estimate remaining component life. In addition, the CTHMS enables real-time anomaly detection and diagnostics of performance and mechanical faults, enabling power producers to more accurately predict critical component remaining useful life and turbine degradation.« less

  7. TEXACO GASIFICATION PROCESS - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    This report summarizes the evaluation of the Texaco Gasification Process (TGP) conducted under the U.S. Environmental Protection Agency (EPA) Superfund Innovative Technology Evaluation (SITE) Program. The Texaco Gasification Process was developed by Texaco Inc. The TGP is a comm...

  8. Direct Causticizing for Black Liquor Gasification in a Circulating Fluidized Bed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Sinquefield; Xiaoyan Zeng, Alan Ball

    2010-03-02

    Gasification of black liquor (BLG) has distinct advantages over direct combustion in Tomlinson recovery boilers. In this project we seek to resolve causticizing issues in order to make pressurized BLG even more efficient and cost-effective. One advantage of BLG is that the inherent partial separation of sulfur and sodium during gasification lends itself to the use of proven high yield variants to conventional kraft pulping which require just such a separation. Processes such as polysulfide, split sulfidity, ASAQ, and MSSAQ can increase pulp yield from 1% to 10% over conventional kraft but require varying degrees of sulfur/sodium separation, which requiresmore » additional [and costly] processing in a conventional Tomlinson recovery process. However during gasification, the sulfur is partitioned between the gas and smelt phases, while the sodium all leaves in the smelt; thus creating the opportunity to produce sulfur-rich and sulfur-lean white liquors for specialty pulping processes. A second major incentive of BLG is the production of a combustible product gas, rich in H2 and CO. This product gas (a.k.a. “syngas”) can be used in gas turbines for combined cycle power generation (which is twice as efficient as the steam cycle alone), or it can be used as a precursor to form liquid fuels, such as dimethyl ether or Fischer Tropsh diesel. There is drawback to BLG, which has the potential to become a third major incentive if this work is successful. The causticizing load is greater for gasification of black liquor than for combustion in a Tomlinson boiler. So implementing BLG in an existing mill would require costly increases to the causticizing capacity. In situ causticizing [within the gasifier] would handle the entire causticizing load and therefore eliminate the lime cycle entirely. Previous work by the author and others has shown that titanate direct causticizing (i.e. in situ) works quite well for high-temperature BLG (950°C), but was limited to pressures

  9. Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, J.; Li, H.; Neill, S.

    The objective of this report is to develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research--correlate IQT{trademark} measured parameters with engine data. In HCCL engines, ignition timing depends on the reaction rates throughout compression stroke: need to understand sensitivity to T, P, and [O{sub 2}]; need to rank fuels based on more than one set of conditions; and need to understand how fuel composition (molecular species) affect ignition properties.

  10. Computational Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westbrook, C K; Mizobuchi, Y; Poinsot, T J

    2004-08-26

    Progress in the field of computational combustion over the past 50 years is reviewed. Particular attention is given to those classes of models that are common to most system modeling efforts, including fluid dynamics, chemical kinetics, liquid sprays, and turbulent flame models. The developments in combustion modeling are placed into the time-dependent context of the accompanying exponential growth in computer capabilities and Moore's Law. Superimposed on this steady growth, the occasional sudden advances in modeling capabilities are identified and their impacts are discussed. Integration of submodels into system models for spark ignition, diesel and homogeneous charge, compression ignition engines, surfacemore » and catalytic combustion, pulse combustion, and detonations are described. Finally, the current state of combustion modeling is illustrated by descriptions of a very large jet lifted 3D turbulent hydrogen flame with direct numerical simulation and 3D large eddy simulations of practical gas burner combustion devices.« less

  11. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 3: Combustors, furnaces and low-BTU gasifiers. [used in coal gasification and coal liquefaction (equipment specifications)

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.

    1976-01-01

    Information is presented on the design, performance, operating characteristics, cost, and development status of coal preparation equipment, combustion equipment, furnaces, low-Btu gasification processes, low-temperature carbonization processes, desulfurization processes, and pollution particulate removal equipment. The information was compiled for use by the various cycle concept leaders in determining the performance, capital costs, energy costs, and natural resource requirements of each of their system configurations.

  12. Solar coal gasification reactor with pyrolysis gas recycle

    DOEpatents

    Aiman, William R.; Gregg, David W.

    1983-01-01

    Coal (or other carbonaceous matter, such as biomass) is converted into a duct gas that is substantially free from hydrocarbons. The coal is fed into a solar reactor (10), and solar energy (20) is directed into the reactor onto coal char, creating a gasification front (16) and a pyrolysis front (12). A gasification zone (32) is produced well above the coal level within the reactor. A pyrolysis zone (34) is produced immediately above the coal level. Steam (18), injected into the reactor adjacent to the gasification zone (32), reacts with char to generate product gases. Solar energy supplies the energy for the endothermic steam-char reaction. The hot product gases (38) flow from the gasification zone (32) to the pyrolysis zone (34) to generate hot char. Gases (38) are withdrawn from the pyrolysis zone (34) and reinjected into the region of the reactor adjacent the gasification zone (32). This eliminates hydrocarbons in the gas by steam reformation on the hot char. The product gas (14) is withdrawn from a region of the reactor between the gasification zone (32) and the pyrolysis zone (34). The product gas will be free of tar and other hydrocarbons, and thus be suitable for use in many processes.

  13. Sensing underground coal gasification by ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Kotyrba, Andrzej; Stańczyk, Krzysztof

    2017-12-01

    The paper describes the results of research on the applicability of the ground penetrating radar (GPR) method for remote sensing and monitoring of the underground coal gasification (UCG) processes. The gasification of coal in a bed entails various technological problems and poses risks to the environment. Therefore, in parallel with research on coal gasification technologies, it is necessary to develop techniques for remote sensing of the process environment. One such technique may be the radar method, which allows imaging of regions of mass loss (voids, fissures) in coal during and after carrying out a gasification process in the bed. The paper describes two research experiments. The first one was carried out on a large-scale model constructed on the surface. It simulated a coal seam in natural geological conditions. A second experiment was performed in a shallow coal deposit maintained in a disused mine and kept accessible for research purposes. Tests performed in the laboratory and in situ conditions showed that the method provides valuable data for assessing and monitoring gasification surfaces in the UCG processes. The advantage of the GPR method is its high resolution and the possibility of determining the spatial shape of various zones and forms created in the coal by the gasification process.

  14. Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO2 gasification process.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin; Mohamed, Abdul Rahman; Mohammadi, Maedeh

    2013-06-01

    In this investigation, palm empty fruit bunch (EFB) and almond shell (AS) were implemented as two natural catalysts rich in alkali metals, especially potassium, to enhance the reactivity of tire-char through co-gasification process. Co-gasification experiments were conducted at several blending ratios using isothermal Thermogravimetric analysis (TGA) under CO2. The pronounced effect of inherent alkali content of biomass-chars on promoting the reactivity of tire-char was proven when acid-treated biomass-chars did not exert any catalytic effect on improving the reactivity of tire-char in co-gasification experiments. In kinetic studies of the co-gasified samples in chemically-controlled regime, modified random pore model (M-RPM) was adopted to describe the reactive behavior of the tire-char/biomass-char blends. By virtue of the catalytic effect of biomass, the activation energy for tire-char gasification was lowered from 250 kJ/mol in pure form 203 to 187 kJ/mol for AS-char and EFB-char co-gasified samples, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Advanced technology applications for second and third general coal gasification systems

    NASA Technical Reports Server (NTRS)

    Bradford, R.; Hyde, J. D.; Mead, C. W.

    1980-01-01

    The historical background of coal conversion is reviewed and the programmatic status (operational, construction, design, proposed) of coal gasification processes is tabulated for both commercial and demonstration projects as well as for large and small pilot plants. Both second and third generation processes typically operate at higher temperatures and pressures than first generation methods. Much of the equipment that has been tested has failed. The most difficult problems are in process control. The mechanics of three-phase flow are not fully understood. Companies participating in coal conversion projects are ordering duplicates of failure prone units. No real solutions to any of the significant problems in technology development have been developed in recent years.

  16. The National Carbon Capture Center at the Power Systems Development Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    2014-12-30

    The National Carbon Capture Center (NCCC) at the Power Systems Development Facility supports the Department of Energy (DOE) goal of promoting the United States’ energy security through reliable, clean, and affordable energy produced from coal. Work at the NCCC supports the development of new power technologies and the continued operation of conventional power plants under CO 2 emission constraints. The NCCC includes adaptable slipstreams that allow technology development of CO 2 capture concepts using coal-derived syngas and flue gas in industrial settings. Because of the ability to operate under a wide range of flow rates and process conditions, research atmore » the NCCC can effectively evaluate technologies at various levels of maturity and accelerate their development path to commercialization. During its first contract period, from October 1, 2008, through December 30, 2014, the NCCC designed, constructed, and began operation of the Post-Combustion Carbon Capture Center (PC4). Testing of CO 2 capture technologies commenced in 2011, and through the end of the contract period, more than 25,000 hours of testing had been achieved, supporting a variety of technology developers. Technologies tested included advanced solvents, enzymes, membranes, sorbents, and associated systems. The NCCC continued operation of the existing gasification facilities, which have been in operation since 1996, to support the advancement of technologies for next-generation gasification processes and pre-combustion CO 2 capture. The gasification process operated for 13 test runs, supporting over 30,000 hours combined of both gasification and pre-combustion technology developer testing. Throughout the contract period, the NCCC incorporated numerous modifications to the facilities to accommodate technology developers and increase test capabilities. Preparations for further testing were ongoing to continue advancement of the most promising technologies for future power generation processes.« less

  17. Advanced treatment of biologically pretreated coal gasification wastewater by a novel integration of heterogeneous Fenton oxidation and biological process.

    PubMed

    Xu, Peng; Han, Hongjun; Zhuang, Haifeng; Hou, Baolin; Jia, Shengyong; Xu, Chunyan; Wang, Dexin

    2015-04-01

    Laboratorial scale experiments were conducted in order to investigate a novel system integrating heterogeneous Fenton oxidation (HFO) with anoxic moving bed biofilm reactor (ANMBBR) and biological aerated filter (BAF) process on advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that HFO with the prepared catalyst (FeOx/SBAC, sewage sludge based activated carbon (SBAC) which loaded Fe oxides) played a key role in eliminating COD and COLOR as well as in improving the biodegradability of raw wastewater. The surface reaction and hydroxyl radicals (OH) oxidation were the mechanisms for FeOx/SBAC catalytic reaction. Compared with ANMBBR-BAF process, the integrated system was more effective in abating COD, BOD5, total phenols (TPs), total nitrogen (TN) and COLOR and could shorten the retention time. Therefore, the integrated system was a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Supercritical gasification for the treatment of o-cresol wastewater.

    PubMed

    Wei, Chao-hai; Hu, Cheng-sheng; Wu, Chao-fei; Yan, Bo

    2006-01-01

    The supercritical water gasification of phenolic wastewater without oxidant was performed to degrade pollutants and produce hydrogen-enriched gases. The simulated o-cresol wastewater was gasified at 440-650 degrees C and 27.6 MPa in a continuous Inconel 625 reactor with the residence time of 0.42-1.25 min. The influence of the reaction temperature, residence time, pressure, catalyst, oxidant and the pollutant concentration on the gasification efficiency was investigated. Higher temperature and longer residence time enhanced the o-cresol gasification. The TOC removal rate and hydrogen gasification rate were 90.6% and 194.6%, respectively, at the temperature of 650 degrees C and the residence time of 0.83 min. The product gas was mainly composed of H2, CO2, CH4 and CO, among which the total molar percentage of H2 and CH4 was higher than 50%. The gasification efficiency decreased with the pollutant concentration increasing. Both the catalyst and oxidant could accelerate the hydrocarbon gasification at a lower reaction temperature, in which the catalyst promoted H2 production and the oxidant enhanced CO2 generation. The intermediates of liquid effluents were analyzed and phenol was found to be the main composition. The results indicate that the supercritical gasification is a promising way for the treatment of hazardous organic wastewater.

  19. Vacuum Plasma Spray of CuCrNb Alloy for Advanced Liquid - Fuel Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2000-01-01

    The copper-8 atomic percent chromium-4 atomic percent niobium (CuCrNb) alloy was developed by Glenn Research Center (formally Lewis Research Center) as an improved alloy for combustion chamber liners. In comparison to NARloy-Z, the baseline (as in Space Shuttle Main Engine) alloy for such liners, CuCrNb demonstrates mechanical and thermophysical properties equivalent to NARloy-Z, but at temperatures 100 C to 150 C (180 F to 270 F) higher. Anticipated materials related benefits include decreasing the thrust cell liner weight 5% to 20%, increasing the service life at least two fold over current combustion chamber design, and increasing the safety margins available to designers. By adding an oxidation and thermal barrier coating to the liner, the combustion chamber can operate at even higher temperatures. For all these benefits, however, this alloy cannot be formed using conventional casting and forging methods because of the levels of chromium and niobium, which exceed their solubility limit in copper. Until recently, the only forming process that maintains the required microstructure of CrNb intermetallics is powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. Vacuum plasma spray (VPS) has been demonstrated as a method to form structural articles including small combustion chambers from the CuCrNb alloy. In addition, an oxidation and thermal barrier layer can be formed integrally on the hot wall of the liner that improve performance and extend service life. This paper discusses the metallurgy and thermomechanical properties of VPS formed CuCrNb versus the baseline powder metallurgy process, and the manufacturing of small combustion chamber liners at Marshall Space Flight Center using the VPS process. The benefits to advanced propulsion initiatives of using VPS to fabricate combustion chamber liners

  20. Improved catalysts for carbon and coal gasification

    DOEpatents

    McKee, D.W.; Spiro, C.L.; Kosky, P.G.

    1984-05-25

    This invention relates to improved catalysts for carbon and coal gasification and improved processes for catalytic coal gasification for the production of methane. The catalyst is composed of at least two alkali metal salts and a particulate carbonaceous substrate or carrier is used. 10 figures, 2 tables.

  1. Overexpression of Plasminogen Activator Inhibitor-1 in Advanced Gastric Cancer with Aggressive Lymph Node Metastasis

    PubMed Central

    Suh, Yun-Suhk; Yu, Jieun; Kim, Byung Chul; Choi, Boram; Han, Tae-Su; Ahn, Hye Seong; Kong, Seong-Ho; Lee, Hyuk-Joon; Kim, Woo Ho; Yang, Han-Kwang

    2015-01-01

    Purpose The purpose of this study is to investigate differentially expressed genes using DNA microarray between advanced gastric cancer (AGC) with aggressive lymph node (LN) metastasis and that with a more advanced tumor stage but without LN metastasis. Materials and Methods Five sample pairs of gastric cancer tissue and normal gastric mucosa were taken from three patients with T3N3 stage (highN) and two with T4N0 stage (lowN). Data from triplicate DNA microarray experiments were analyzed, and candidate genes were identified using a volcano plot that showed ≥ 2-fold differential expression and were significant by Welch's t test (p < 0.05) between highN and lowN. Those selected genes were validated independently by reverse-transcriptase–polymerase chain reaction (RT-PCR) using five AGC patients, and tissue-microarray (TMA) comprising 47 AGC patients. Results CFTR, LAMC2, SERPINE2, F2R, MMP7, FN1, TIMP1, plasminogen activator inhibitor-1 (PAI-1), ITGB8, SDS, and TMPRSS4 were commonly up-regulated over 2-fold in highN. REG3A, CD24, ITLN1, and WBP5 were commonly down-regulated over 2-fold in lowN. Among these genes, overexpression of PAI-1 was validated by RT-PCR, and TMA showed 16.7% (7/42) PAI-1 expression in T3N3, but none (0/5) in T4N0 (p=0.393). Conclusion DNA microarray analysis and validation by RT-PCR and TMA showed that overexpression of PAI-1 is related to aggressive LN metastasis in AGC. PMID:25687870

  2. Development of Computational Capabilities to Predict the Corrosion Wastage of Boiler Tubes in Advanced Combustion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Steven; Rapp, Robert

    A comprehensive corrosion research project consisting of pilot-scale combustion testing and long-term laboratory corrosion study has been successfully performed. A pilot-scale combustion facility available at Brigham Young University was selected and modified to enable burning of pulverized coals under the operating conditions typical for advanced coal-fired utility boilers. Eight United States (U.S.) coals were selected for this investigation, with the test conditions for all coals set to have the same heat input to the combustor. In addition, the air/fuel stoichiometric ratio was controlled so that staged combustion was established, with the stoichiometric ratio maintained at 0.85 in the burner zonemore » and 1.15 in the burnout zone. The burner zone represented the lower furnace of utility boilers, while the burnout zone mimicked the upper furnace areas adjacent to the superheaters and reheaters. From this staged combustion, approximately 3% excess oxygen was attained in the combustion gas at the furnace outlet. During each of the pilot-scale combustion tests, extensive online measurements of the flue gas compositions were performed. In addition, deposit samples were collected at the same location for chemical analyses. Such extensive gas and deposit analyses enabled detailed characterization of the actual combustion environments existing at the lower furnace walls under reducing conditions and those adjacent to the superheaters and reheaters under oxidizing conditions in advanced U.S. coal-fired utility boilers. The gas and deposit compositions were then carefully simulated in a series of 1000-hour laboratory corrosion tests, in which the corrosion performances of different commercial candidate alloys and weld overlays were evaluated at various temperatures for advanced boiler systems. Results of this laboratory study led to significant improvement in understanding of the corrosion mechanisms operating on the furnace walls as well as superheaters and

  3. Development of an Integrated Multi-Contaminant Removal Process Applied to Warm Syngas Cleanup for Coal-Based Advanced Gasification Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Howard

    2010-11-30

    This project met the objective to further the development of an integrated multi-contaminant removal process in which H2S, NH3, HCl and heavy metals including Hg, As, Se and Cd present in the coal-derived syngas can be removed to specified levels in a single/integrated process step. The process supports the mission and goals of the Department of Energy's Gasification Technologies Program, namely to enhance the performance of gasification systems, thus enabling U.S. industry to improve the competitiveness of gasification-based processes. The gasification program will reduce equipment costs, improve process environmental performance, and increase process reliability and flexibility. Two sulfur conversion conceptsmore » were tested in the laboratory under this project, i.e., the solventbased, high-pressure University of California Sulfur Recovery Process High Pressure (UCSRP-HP) and the catalytic-based, direct oxidation (DO) section of the CrystaSulf-DO process. Each process required a polishing unit to meet the ultra-clean sulfur content goals of <50 ppbv (parts per billion by volume) as may be necessary for fuel cells or chemical production applications. UCSRP-HP was also tested for the removal of trace, non-sulfur contaminants, including ammonia, hydrogen chloride, and heavy metals. A bench-scale unit was commissioned and limited testing was performed with simulated syngas. Aspen-Plus®-based computer simulation models were prepared and the economics of the UCSRP-HP and CrystaSulf-DO processes were evaluated for a nominal 500 MWe, coal-based, IGCC power plant with carbon capture. This report covers the progress on the UCSRP-HP technology development and the CrystaSulf-DO technology.« less

  4. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 3: Energy conversion subsystems and components. Part 3: Gasification, process fuels, and balance of plant

    NASA Technical Reports Server (NTRS)

    Boothe, W. A.; Corman, J. C.; Johnson, G. G.; Cassel, T. A. V.

    1976-01-01

    Results are presented of an investigation of gasification and clean fuels from coal. Factors discussed include: coal and coal transportation costs; clean liquid and gas fuel process efficiencies and costs; and cost, performance, and environmental intrusion elements of the integrated low-Btu coal gasification system. Cost estimates for the balance-of-plant requirements associated with advanced energy conversion systems utilizing coal or coal-derived fuels are included.

  5. Refuse Derived Fuel (RDF) production and gasification in a pilot plant integrated with an Otto cycle ICE through Aspen plus™ modelling: Thermodynamic and economic viability.

    PubMed

    Násner, Albany Milena Lozano; Lora, Electo Eduardo Silva; Palacio, José Carlos Escobar; Rocha, Mateus Henrique; Restrepo, Julian Camilo; Venturini, Osvaldo José; Ratner, Albert

    2017-11-01

    This work deals with the development of a Refuse Derived Fuel (RDF) gasification pilot plant using air as a gasification agent. A downdraft fixed bed reactor is integrated with an Otto cycle Internal Combustion Engine (ICE). Modelling was carried out using the Aspen Plus™ software to predict the ideal operational conditions for maximum efficiency. Thermodynamics package used in the simulation comprised the Non-Random Two-Liquid (NRTL) model and the Hayden-O'Connell (HOC) equation of state. As expected, the results indicated that the Equivalence Ratio (ER) has a direct influence over the gasification temperature and the composition of the Raw Produced Gas (RPG), and effects of ER over the Lower Heating Value (LHV) and Cold Gasification Efficiency (CGE) of the RPG are also discussed. A maximum CGE efficiency of 57-60% was reached for ER values between 0.25 and 0.3, also an average reactor temperature values in the range of 680-700°C, with a peak LHV of 5.8MJ/Nm 3 . RPG was burned in an ICE, reaching an electrical power of 50kW el . The economic assessment of the pilot plant implementation was also performed, showing the project is feasible, with power above 120kW el with an initial investment of approximately US$ 300,000. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fourteenth quarterly technical progress report for the UFP

  7. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on Aspen Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the third annual technical progress report for the UFP program supported by U.S. DOE NETL (Contract No

  8. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6% higher than IGCC with conventional CO{sub 2} separation. The current R&D program will determine the feasibility of the integrated UFP technology through pilot-scale testing, and will investigate operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the thirteenth quarterly technical progress report for the UFP program, which is

  9. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER (prime contractor) was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the tenth quarterly technical progress report for the Vision 21 UFP

  10. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE Global Research (prime contractor) wasmore » awarded a contract from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE Global Research, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on ASPEN Plus process modeling, has an estimated process efficiency of 6 percentage points higher than IGCC with conventional CO{sub 2} separation. The current R&D program has determined the feasibility of the integrated UFP technology through pilot-scale testing, and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrated experimental testing, modeling and economic studies to demonstrate the UFP technology. This is the fifteenth quarterly technical progress report for the UFP program

  11. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Energy and Environmental Research Corporation (GE EER) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEmore » EER was awarded a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GE EER, California Energy Commission, Southern Illinois University at Carbondale, and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling work, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the ninth quarterly technical progress report for the Vision 21 UFP program supported by U.S. DOE NETL

  12. FUEL-FLEXIBLE GASIFICATION-COMBUSTION TECHNOLOGY FOR PRODUCTION OF H2 AND SEQUESTRATION-READY CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Arnaldo Frydman

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research (GEGR) has developed an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GEGR (prime contractor) was awardedmore » a Vision 21 program from U.S. DOE NETL to develop the UFP technology. Work on this Phase I program started on October 1, 2000. The project team includes GEGR, Southern Illinois University at Carbondale (SIU-C), California Energy Commission (CEC), and T. R. Miles, Technical Consultants, Inc. In the UFP technology, coal/opportunity fuels and air are simultaneously converted into separate streams of (1) pure hydrogen that can be utilized in fuel cells, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure oxygen-depleted air to produce electricity in a gas turbine. The process produces near-zero emissions and, based on process modeling with best-case scenario assumptions, has an estimated process efficiency of 68%, based on electrical and H{sub 2} energy outputs relative to the higher heating value of coal, and an estimated equivalent electrical efficiency of 60%. The Phase I R&D program will determine the operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The program integrates lab-, bench- and pilot-scale studies to demonstrate the UFP technology. This is the eleventh quarterly technical progress report for the Vision 21 UFP program

  13. Robust Low Cost Aerospike/RLV Combustion Chamber by Advanced Vacuum Plasma Process

    NASA Technical Reports Server (NTRS)

    Holmes, Richard; Ellis, David; McKechnie

    1999-01-01

    Next-generation, regeneratively cooled rocket engines will require materials that can withstand high temperatures while retaining high thermal conductivity. At the same time, fabrication techniques must be cost efficient so that engine components can be manufactured within the constraints of a shrinking NASA budget. In recent years, combustion chambers of equivalent size to the Aerospike chamber have been fabricated at NASA-Marshall Space Flight Center (MSFC) using innovative, relatively low-cost, vacuum-plasma-spray (VPS) techniques. Typically, such combustion chambers are made of the copper alloy NARloy-Z. However, current research and development conducted by NASA-Lewis Research Center (LeRC) has identified a Cu-8Cr-4Nb alloy which possesses excellent high-temperature strength, creep resistance, and low cycle fatigue behavior combined with exceptional thermal stability. In fact, researchers at NASA-LeRC have demonstrated that powder metallurgy (P/M) Cu-8Cr-4Nb exhibits better mechanical properties at 1,200 F than NARloy-Z does at 1,000 F. The objective of this program was to develop and demonstrate the technology to fabricate high-performance, robust, inexpensive combustion chambers for advanced propulsion systems (such as Lockheed-Martin's VentureStar and NASA's Reusable Launch Vehicle, RLV) using the low-cost, VPS process to deposit Cu-8Cr-4Nb with mechanical properties that match or exceed those of P/M Cu-8Cr-4Nb. In addition, oxidation resistant and thermal barrier coatings can be incorporated as an integral part of the hot wall of the liner during the VPS process. Tensile properties of Cu-8Cr-4Nb material produced by VPS are reviewed and compared to material produced previously by extrusion. VPS formed combustion chamber liners have also been prepared and will be reported on following scheduled hot firing tests at NASA-Lewis.

  14. The role of high-Btu coal gasification technology

    NASA Astrophysics Data System (ADS)

    German, M. I.

    An analysis is given of the role and economic potential of Lurgi-technology gasification of coal to the year 2000, in relation to other gas-supply options, the further development of gasifier designs, and probable environmental impact. It is predicted that coal gasification may reach 10% of total gas supplies by the year 2000, with Eastern U.S. coal use reaching commercially significant use in the 1990's. It is concluded that coal gasification is the cleanest way of using coal, with minimal physical, chemical, biological and socioeconomic impacts.

  15. Measurement and modeling of advanced coal conversion processes, Volume II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G.

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  16. Cost-effectiveness analysis of apatinib treatment for chemotherapy-refractory advanced gastric cancer.

    PubMed

    Chen, Hong-Dou; Zhou, Jing; Wen, Feng; Zhang, Peng-Fei; Zhou, Ke-Xun; Zheng, Han-Rui; Yang, Yu; Li, Qiu

    2017-02-01

    Apatinib, a third-line or later treatment for advanced gastric cancer (aGC), was shown to improve overall survival and progression-free survival (PFS) compared with placebo in the phase III trial. Given the modest benefit with high costs, we further evaluated the cost-effectiveness of apatinib for patients with chemotherapy-refractory aGC. A Markov model was developed to simulate the disease process of aGC (PFS, progressive disease, and death) and estimate the incremental cost-effectiveness ratio (ICER) of apatinib to placebo. The health outcomes and utility scores were derived from the phase III trial and previously published sources, respectively. Total costs were calculated from the perspective of the Chinese health-care payer. Sensitivity analysis was used to explore model uncertainties. Treatment with apatinib was estimated to provide an incremental 0.09 quality-adjusted life years (QALYs) at an incremental cost of $8113.86 compared with placebo, which resulted in an ICER of $90,154.00 per QALY. Sensitivity analysis showed that across the wide variation of parameters, the ICER exceeded the willingness-to-pay threshold of $23,700.00 per QALY which was three times the Gross Domestic Product per Capita in China. Apatinib is not a cost-effective option for patients with aGC who experienced failure of at least two lines chemotherapy in China. However, for its positive clinical value and subliminal demand, apatinib can provide a new therapeutic option.

  17. Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char.

    PubMed

    Wei, Juntao; Guo, Qinghua; Gong, Yan; Ding, Lu; Yu, Guangsuo

    2017-06-01

    In this work, effects of gasification temperature (900°C-1100°C) and blended ratio (3:1, 1:1, 1:3) on reactivity of petroleum coke and biomass co-gasification were studied in TGA. Quantification analysis of active AAEM transformation and in situ investigation of morphological structure variations in gasification were conducted respectively using inductively coupled plasma optical emission spectrometer and heating stage microscope to explore synergistic effect on co-gasification reactivity. The results indicated that char gasification reactivity was enhanced with increasing biomass proportion and gasification temperature. Synergistic effect on co-gasification reactivity was presented after complete generation of biomass ash, and gradually weakened with increasing temperature from 1000°C to 1100°C after reaching the most significant value at 1000°C. This phenomenon was well related with the appearance of molten biomass ash rich in glassy state potassium and the weakest inhibition effect on active potassium transformation during co-gasification at the temperature higher than 1000°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Proceedings of the second US Department of Energy environmental control symposium. Volume 1. Fossil energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-06-01

    These proceedings document the presentations given at the Second Environmental Control Symposium. Symposium presentations highlighted environmental control activities which span the entire DOE. Volume I contains papers relating to coal preparation, oil shales, coal combustion, advanced coal utilization (fluidized bed combustion, MHD generators, OCGT, fuel cells), coal gasification, coal liquefaction, and fossil resource extraction (enhanced recovery). Separate abstracts for individual papers are prepared for inclusion in the Energy Data Base. (DMC)

  19. National Environmental Policy: Coordination or Confusion?

    ERIC Educational Resources Information Center

    Adams, Sexton; And Others

    1976-01-01

    The Fossil Energy Program is attempting to develop and demonstrate, in conjunction with industry, the technology necessary for establishing a synthetic fuels-from coal industry. Technologies discussed include coal liquefaction, high and low BTU gasification, advanced power systems, direct combustion, Magnetohydrodynamics (MHD) and petroleum,…

  20. Ultra high temperature gasification of municipal wastewater primary biosolids in a rotary kiln reactor for the production of synthesis gas.

    PubMed

    Gikas, Petros

    2017-12-01

    Primary Fine-Sieved Solids (PFSS) are produced from wastewater by the use of micro-sieves, in place of primary clarification. Biosolids is considered as a nuisance product, however, it contains significant amounts of energy, which can be utilized by biological (anaerobic digestion) or thermal (combustion or gasification) processes. In the present study, an semi-industrial scale UHT rotary kiln gasifier, operating with electric energy, was employed for the gasification of PFSS (at 17% moisture content), collected from a municipal wastewater treatment plant. Two gasification temperatures (950 and 1050 °C) had been tested, with minimal differences, with respect to syngas yield. The system appears to reach steady state after about 30-40 min from start up. The composition of the syngas at near steady state was measured approximately as 62.4% H 2 , 30.0% CO, 2.4% CH 4 and 3.4% CO 2 , plus 1.8% unidentified gases. The potential for electric energy production from the syngas produced is theoretically greater than the electric energy required for gasification. Theoretically, approximately 3.8 MJ/kg PFSS of net electric energy may be produced. However, based on the measured electric energy consumption, and assuming that all the syngas produced is used for electric energy production, addition of excess electric energy (about 0.43 MJ/kg PFSS) is required to break even. The latter is probably due to heat losses to the environment, during the heating process. With the improvement of energy efficiency, the process can be self sustained, form the energy point of view. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Countercurrent fixed-bed gasification of biomass at laboratory scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Blasi, C.; Signorelli, G.; Portoricco, G.

    1999-07-01

    A laboratory-scale countercurrent fixed-bed gasification plant has been designed and constructed to produce data for process modeling and to compare the gasification characteristics of several biomasses (beechwood, nutshells, olive husks, and grape residues). The composition of producer gas and spatial temperature profiles have been measured for biomass gasification at different air flow rates. The gas-heating value always attains a maximum as a function of this operating variable, associated with a decrease of the air-to-fuel ratio. Optical gasification conditions of wood and agricultural residues give rise to comparable gas-heating values, comprised in the range 5--5.5 MJ/Nm{sup 3} with 28--30% CO, 5--7%more » CO{sub 2}, 6--8% H{sub 2}, 1--2% CH{sub 4}, and small amounts of C{sub 2}- hydrocarbons (apart from nitrogen). However, gasification of agricultural residues is more difficult because of bed transport, partial ash sintering, nonuniform flow distribution, and the presence of a muddy phase in the effluents, so that proper pretreatments are needed for largescale applications.« less

  2. BIOMASS REACTIVITY IN GASIFICATION BY THE HYNOL PROCESS

    EPA Science Inventory

    A thermobalance reactor was used to evaluate the reactivity of poplar wood in gasification under the operating conditions specific for the Hynol process where biomass is gasified at 30 atm and 800E C with a hydrogen-rich gas recycled from methane synthesis. The gasification invol...

  3. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    PubMed

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Hydrogen production from algal biomass via steam gasification.

    PubMed

    Duman, Gozde; Uddin, Md Azhar; Yanik, Jale

    2014-08-01

    Algal biomasses were tested as feedstock for steam gasification in a dual-bed microreactor in a two-stage process. Gasification experiments were carried out in absence and presence of catalyst. The catalysts used were 10% Fe₂O₃-90% CeO₂ and red mud (activated and natural forms). Effects of catalysts on tar formation and gasification efficiencies were comparatively investigated. It was observed that the characteristic of algae gasification was dependent on its components and the catalysts used. The main role of the catalyst was reforming of the tar derived from algae pyrolysis, besides enhancing water gas shift reaction. The tar reduction levels were in the range of 80-100% for seaweeds and of 53-70% for microalgae. Fe₂O₃-CeO₂ was found to be the most effective catalyst. The maximum hydrogen yields obtained were 1036 cc/g algae for Fucus serratus, 937 cc/g algae for Laminaria digitata and 413 cc/g algae for Nannochloropsis oculata. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Co-gasification of solid waste and lignite - a case study for Western Macedonia.

    PubMed

    Koukouzas, N; Katsiadakis, A; Karlopoulos, E; Kakaras, E

    2008-01-01

    Co-gasification of solid waste and coal is a very attractive and efficient way of generating power, but also an alternative way, apart from conventional technologies such as incineration and landfill, of treating waste materials. The technology of co-gasification can result in very clean power plants using a wide range of solid fuels but there are considerable economic and environmental challenges. The aim of this study is to present the available existing co-gasification techniques and projects for coal and solid wastes and to investigate the techno-economic feasibility, concerning the installation and operation of a 30MW(e) co-gasification power plant based on integrated gasification combined cycle (IGCC) technology, using lignite and refuse derived fuel (RDF), in the region of Western Macedonia prefecture (WMP), Greece. The gasification block was based on the British Gas-Lurgi (BGL) gasifier, while the gas clean-up block was based on cold gas purification. The competitive advantages of co-gasification systems can be defined both by the fuel feedstock and production flexibility but also by their environmentally sound operation. It also offers the benefit of commercial application of the process by-products, gasification slag and elemental sulphur. Co-gasification of coal and waste can be performed through parallel or direct gasification. Direct gasification constitutes a viable choice for installations with capacities of more than 350MW(e). Parallel gasification, without extensive treatment of produced gas, is recommended for gasifiers of small to medium size installed in regions where coal-fired power plants operate. The preliminary cost estimation indicated that the establishment of an IGCC RDF/lignite plant in the region of WMP is not profitable, due to high specific capital investment and in spite of the lower fuel supply cost. The technology of co-gasification is not mature enough and therefore high capital requirements are needed in order to set up a direct

  6. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  7. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE PAGES

    Lawler, Benjamin; Splitter, Derek; Szybist, James; ...

    2017-03-01

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  8. Diesel engine emissions and combustion predictions using advanced mixing models applicable to fuel sprays

    NASA Astrophysics Data System (ADS)

    Abani, Neerav; Reitz, Rolf D.

    2010-09-01

    An advanced mixing model was applied to study engine emissions and combustion with different injection strategies ranging from multiple injections, early injection and grouped-hole nozzle injection in light and heavy duty diesel engines. The model was implemented in the KIVA-CHEMKIN engine combustion code and simulations were conducted at different mesh resolutions. The model was compared with the standard KIVA spray model that uses the Lagrangian-Drop and Eulerian-Fluid (LDEF) approach, and a Gas Jet spray model that improves predictions of liquid sprays. A Vapor Particle Method (VPM) is introduced that accounts for sub-grid scale mixing of fuel vapor and more accurately and predicts the mixing of fuel-vapor over a range of mesh resolutions. The fuel vapor is transported as particles until a certain distance from nozzle is reached where the local jet half-width is adequately resolved by the local mesh scale. Within this distance the vapor particle is transported while releasing fuel vapor locally, as determined by a weighting factor. The VPM model more accurately predicts fuel-vapor penetrations for early cycle injections and flame lift-off lengths for late cycle injections. Engine combustion computations show that as compared to the standard KIVA and Gas Jet spray models, the VPM spray model improves predictions of in-cylinder pressure, heat released rate and engine emissions of NOx, CO and soot with coarse mesh resolutions. The VPM spray model is thus a good tool for efficiently investigating diesel engine combustion with practical mesh resolutions, thereby saving computer time.

  9. Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawler, Benjamin; Splitter, Derek; Szybist, James

    We introduce a new advanced combustion mode, called Thermally Stratified Compression Ignition (TSCI), which uses direct water injection to control both the average temperature and the temperature distribution prior to ignition, thereby providing cycle-to-cycle control over the start and rate of heat release in Low Temperature Combustion (LTC). Experiments were conducted to fundamentally understand the effects of water injection on heat release in LTC. Our results show that water injection retards the start of combustion due to the latent heat of vaporization of the injected water. Furthermore, for start of water injection timings between 20 and 70 degrees before topmore » dead center, combustion is significantly elongated compared to without water injection. The 10–90% burn duration with 6.6 and 9.0 mg of water per cycle was 77% and 146% longer than without water injection, respectively. Forced thermal stratification result from a direct water injection which reduces the heat release rate by local evaporative cooling. Finally, the load limits with and without water injection were determined experimentally. Without water injection, the load range was 2.3–3.6 bar gross IMEP. By using water injection to control heat release, the load range in TSCI was 2.3–8.4 bar gross IMEP, which is a range expansion of over 350%. These results demonstrate that direct water injection can provide significant improvements to both controllability and the range of operability of LTC, thereby resolving the major challenges associated with HCCI.« less

  10. Synergistic combination of biomass torrefaction and co-gasification: Reactivity studies.

    PubMed

    Zhang, Yan; Geng, Ping; Liu, Rui

    2017-12-01

    Two typical biomass feedstocks obtained from woody wastes and agricultural residues were torrefied or mildly pyrolized in a fixed-bed reactor. Effects of the torrefaction conditions on product distributions, compositional and energetic properties of the solid products, char gasification reactivity, and co-gasification behavior between coal and torrefied solids were systematically investigated. Torrefaction pretreatment produced high quality bio-solids with not only increased energy density, but also concentrated alkali and alkaline earth metals (AAEM). As a consequence of greater retention of catalytic elements in the solid products, the chars derived from torrefied biomass exhibited a faster conversion than those derived from raw biomass during CO 2 gasification. Furthermore, co-gasification of coal/torrefied biomass blends exhibited stronger synergy compared to the coal/raw biomass blends. The results and insights provided by this study filled a gap in understanding synergy during co-gasification of coal and torrefied biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Combustion Chemistry of Fuels: Quantitative Speciation Data Obtained from an Atmospheric High-temperature Flow Reactor with Coupled Molecular-beam Mass Spectrometer.

    PubMed

    Köhler, Markus; Oßwald, Patrick; Krueger, Dominik; Whitside, Ryan

    2018-02-19

    This manuscript describes a high-temperature flow reactor experiment coupled to the powerful molecular beam mass spectrometry (MBMS) technique. This flexible tool offers a detailed observation of chemical gas-phase kinetics in reacting flows under well-controlled conditions. The vast range of operating conditions available in a laminar flow reactor enables access to extraordinary combustion applications that are typically not achievable by flame experiments. These include rich conditions at high temperatures relevant for gasification processes, the peroxy chemistry governing the low temperature oxidation regime or investigations of complex technical fuels. The presented setup allows measurements of quantitative speciation data for reaction model validation of combustion, gasification and pyrolysis processes, while enabling a systematic general understanding of the reaction chemistry. Validation of kinetic reaction models is generally performed by investigating combustion processes of pure compounds. The flow reactor has been enhanced to be suitable for technical fuels (e.g. multi-component mixtures like Jet A-1) to allow for phenomenological analysis of occurring combustion intermediates like soot precursors or pollutants. The controlled and comparable boundary conditions provided by the experimental design allow for predictions of pollutant formation tendencies. Cold reactants are fed premixed into the reactor that are highly diluted (in around 99 vol% in Ar) in order to suppress self-sustaining combustion reactions. The laminar flowing reactant mixture passes through a known temperature field, while the gas composition is determined at the reactors exhaust as a function of the oven temperature. The flow reactor is operated at atmospheric pressures with temperatures up to 1,800 K. The measurements themselves are performed by decreasing the temperature monotonically at a rate of -200 K/h. With the sensitive MBMS technique, detailed speciation data is acquired and

  12. Annual Report: DOE Advanced Combustion Systems & Fuels R&D; Light-Duty Diesel Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busch, Stephen

    Despite compliance issues in previous years, automakers have demonstrated that the newest generation of diesel power trains are capable of meeting all federal and state regulations (EPA, 2016). Diesels continue to be a cost-effective, efficient, powerful propulsion source for many light- and medium-duty vehicle applications (Martec, 2016). Even modest reductions in the fuel consumption of light- and medium duty diesel vehicles in the U.S. will eliminate millions of tons of CO2 emissions per year. Continued improvement of diesel combustion systems will play an important role in reducing fleet fuel consumption, but these improvements will require an unprecedented scientific understanding ofmore » how changes in engine design and calibration affect the mixture preparation, combustion, and pollutant formation processes that take place inside the cylinder. The focus of this year’s research is to provide insight into the physical mechanisms responsible for improved thermal efficiency observed with a stepped-lip piston. Understanding how piston design can influence efficiency will help engineers develop and optimize new diesel combustion systems.« less

  13. A critical review on sustainable biochar system through gasification: Energy and environmental applications.

    PubMed

    You, Siming; Ok, Yong Sik; Chen, Season S; Tsang, Daniel C W; Kwon, Eilhann E; Lee, Jechan; Wang, Chi-Hwa

    2017-12-01

    This review lays great emphasis on production and characteristics of biochar through gasification. Specifically, the physicochemical properties and yield of biochar through the diverse gasification conditions associated with various types of biomass were extensively evaluated. In addition, potential application scenarios of biochar through gasification were explored and their environmental implications were discussed. To qualitatively evaluate biochar sustainability through the gasification process, all gasification products (i.e., syngas and biochar) were evaluated via life cycle assessment (LCA). A concept of balancing syngas and biochar production for an economically and environmentally feasible gasification system was proposed and relevant challenges and solutions were suggested in this review. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Continuous Removal of Coal-Gasification Residue

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr.; Suitor, J.; Dubis, D.

    1986-01-01

    Continuous-flow hopper processes solid residue from coal gasification, converting it from ashes, cinders, and clinkers to particles size of sand granules. Unit does not require repeated depressurization of lockhopper to admit and release materials. Therefore consumes less energy. Because unit has no airlock valves opened and closed repeatedly on hot, abrasive particles, subjected to lesser wear. Coal-gasification residue flows slowly through pressure-letdown device. Material enters and leaves continuously. Cleanout door on each pressure-letdown chamber allows access for maintenance and emergencies.

  15. Cost-effectiveness Analysis of Fluorouracil, Leucovorin, and Irinotecan versus Epirubicin, Cisplatin, and Capecitabine in Patients with Advanced Gastric Adenocarcinoma

    PubMed Central

    Wen, Feng; Zheng, Hanrui; Wu, Yifan; Wheeler, John; Zeng, Xiaoxi; Fu, Ping; Li, Qiu

    2016-01-01

    No standard treatment has been accepted widely for the first-/second-line therapy for advanced gastric cancer (AGC). The current study aimed to determine a preferred strategy between FOLFIRI (fluorouracil, leucovorin, and irinotecan) and ECX (epirubicin, cisplatin,and capecitabine) for AGC from the cost-effectiveness perspective. According to a French intergroup study, two groups (ECX arm and FOLFIRI arm) and three health states (progression-free survival (PFS), progressive disease (PD) and death) were analyzed in the current Markov model. All the medical costs were calculated from a Chinese societal perspective. Although FOLFIRI was an acceptable first-line therapy in the treatment of AGC with a better time-to treatment failure (TTF) compared to ECX, ECX arm (ECX followed by FOLFIRI) gained 0.08 quality-adjusted life months (QALMs) more effectiveness benefit compared with FOLFIRI arm (FOLFIRI followed by ECX). Additionally, a lower cost was found in ECX arm ($23,813.13 versus $24,983.70). Hence, the strategy of FOLFIRI arm is dominated by ECX arm ($4,125.8 per QALM in FOLIRI arm; $3,879.724 per QALM in ECX arm). ECX followed by FOLFIRI was a preferred strategy with more effectiveness and lower cost compared with FOLFIRI followed by ECX for the treatment of AGC. PMID:27824060

  16. Multiuser Droplet Combustion Apparatus Developed to Conduct Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Myhre, Craig A.

    2001-01-01

    A major portion of the energy produced in the world today comes from the combustion or burning of liquid hydrocarbon fuels in the form of droplets. However, despite vigorous scientific examinations for over a century, researchers still lack a full understanding of many fundamental combustion processes of liquid fuels. Understanding how these fuel droplets ignite, spread, and extinguish themselves will help us develop more efficient ways of energy production and propulsion, as well as help us deal better with the problems of combustion-generated pollution and fire hazards associated with liquid combustibles. The ability to conduct more controlled experiments in space, without the complication of gravity, provides scientists with an opportunity to examine these complicated processes closely. The Multiuser Droplet Combustion Apparatus (MDCA) supports this continued research under microgravity conditions. The objectives are to improve understanding of fundamental droplet phenomena affected by gravity, to use research results to advance droplet combustion science and technology on Earth, and to address issues of fire hazards associated with liquid combustibles on Earth and in space. MDCA is a multiuser facility designed to accommodate different combustion science experiments. The modular approach permits the on-orbit replacement of droplet combustion principal investigator experiments such as different fuels, droplet-dispensing needles, and droplet-tethering mechanisms. Large components such as the avionics, diagnostics, and base-plate remain on the International Space Station to reduce the launch mass of new experiments. MDCA is also designed to operate in concert with ground systems on Earth to minimize the involvement of the crew during orbit.

  17. Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes.

    PubMed

    You, Siming; Wang, Wei; Dai, Yanjun; Tong, Yen Wah; Wang, Chi-Hwa

    2016-10-01

    The compositions of food wastes and their co-gasification producer gas were compared with the existing data of sewage sludge. Results showed that food wastes are more favorable than sewage sludge for co-gasification based on residue generation and energy output. Two decentralized gasification-based schemes were proposed to dispose of the sewage sludge and food wastes in Singapore. Monte Carlo simulation-based cost-benefit analysis was conducted to compare the proposed schemes with the existing incineration-based scheme. It was found that the gasification-based schemes are financially superior to the incineration-based scheme based on the data of net present value (NPV), benefit-cost ratio (BCR), and internal rate of return (IRR). Sensitivity analysis was conducted to suggest effective measures to improve the economics of the schemes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Performance of a flameless combustion furnace using biogas and natural gas.

    PubMed

    Colorado, A F; Herrera, B A; Amell, A A

    2010-04-01

    Flameless combustion technology has proved to be flexible regarding the utilization of conventional fuels. This flexibility is associated with the main characteristic of the combustion regime, which is the mixing of the reactants above the autoignition temperature of the fuel. Flameless combustion advantages when using conventional fuels are a proven fact. However, it is necessary to assess thermal equipments performance when utilizing bio-fuels, which usually are obtained from biomass gasification and the excreta of animals in bio-digesters. The effect of using biogas on the performance of an experimental furnace equipped with a self-regenerative Flameless burner is reported in this paper. All the results were compared to the performance of the system fueled with natural gas. Results showed that temperature field and uniformity are similar for both fuels; although biogas temperatures were slightly lower due to the larger amount of inert gases (CO(2)) in its composition that cool down the reactions. Species patterns and pollutant emissions showed similar trends and values for both fuels, and the energy balance for biogas showed a minor reduction of the efficiency of the furnace; this confirms that Flameless combustion is highly flexible to burn conventional and diluted fuels. Important modifications on the burner were not necessary to run the system using biogas. Additionally, in order to highlight the advantages of the Flameless combustion regime, some comparisons of the burner performance working in Flameless mode and working in conventional mode are presented. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Fabrication of High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner for Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Greene, Sandra E.; Singh, Jogender

    2016-01-01

    This paper describes the process development for fabricating a high thermal conductivity NARloy-Z-Diamond composite (NARloy-Z-D) combustion chamber liner for application in advanced rocket engines. The fabrication process is challenging and this paper presents some details of these challenges and approaches used to address them. Prior research conducted at NASA-MSFC and Penn State had shown that NARloy-Z-40%D composite material has significantly higher thermal conductivity than the state of the art NARloy-Z alloy. Furthermore, NARloy-Z-40 %D is much lighter than NARloy-Z. These attributes help to improve the performance of the advanced rocket engines. Increased thermal conductivity will directly translate into increased turbopump power, increased chamber pressure for improved thrust and specific impulse. Early work on NARloy-Z-D composites used the Field Assisted Sintering Technology (FAST, Ref. 1, 2) for fabricating discs. NARloy-Z-D composites containing 10, 20 and 40vol% of high thermal conductivity diamond powder were investigated. Thermal conductivity (TC) data. TC increased with increasing diamond content and showed 50% improvement over pure copper at 40vol% diamond. This composition was selected for fabricating the combustion chamber liner using the FAST technique.

  20. Product Chemistry and Process Efficiency of Biomass Torrefaction, Pyrolysis and Gasification Studied by High-Throughput Techniques and Multivariate Analysis

    NASA Astrophysics Data System (ADS)

    Xiao, Li

    Despite the great passion and endless efforts on development of renewable energy from biomass, the commercialization and scale up of biofuel production is still under pressure and facing challenges. New ideas and facilities are being tested around the world targeting at reducing cost and improving product value. Cutting edge technologies involving analytical chemistry, statistics analysis, industrial engineering, computer simulation, and mathematics modeling, etc. keep integrating modern elements into this classic research. One of those challenges of commercializing biofuel production is the complexity from chemical composition of biomass feedstock and the products. Because of this, feedstock selection and process optimization cannot be conducted efficiently. This dissertation attempts to further evaluate biomass thermal decomposition process using both traditional methods and advanced technique (Pyrolysis Molecular Beam Mass Spectrometry). Focus has been made on data base generation of thermal decomposition products from biomass at different temperatures, finding out the relationship between traditional methods and advanced techniques, evaluating process efficiency and optimizing reaction conditions, comparison of typically utilized biomass feedstock and new search on innovative species for economical viable feedstock preparation concepts, etc. Lab scale quartz tube reactors and 80il stainless steel sample cups coupled with auto-sampling system were utilized to simulate the complicated reactions happened in real fluidized or entrained flow reactors. Two main high throughput analytical techniques used are Near Infrared Spectroscopy (NIR) and Pyrolysis Molecular Beam Mass Spectrometry (Py-MBMS). Mass balance, carbon balance, and product distribution are presented in detail. Variations of thermal decomposition temperature range from 200°C to 950°C. Feedstocks used in the study involve typical hardwood and softwood (red oak, white oak, yellow poplar, loblolly pine

  1. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications.

    PubMed

    Rollinson, Andrew N; Williams, Orla

    2016-05-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water.

  2. Experiments on torrefied wood pellet: study by gasification and characterization for waste biomass to energy applications

    PubMed Central

    Rollinson, Andrew N.; Williams, Orla

    2016-01-01

    Samples of torrefied wood pellet produced by low-temperature microwave pyrolysis were tested through a series of experiments relevant to present and near future waste to energy conversion technologies. Operational performance was assessed using a modern small-scale downdraft gasifier. Owing to the pellet's shape and surface hardness, excellent flow characteristics were observed. The torrefied pellet had a high energy density, and although a beneficial property, this highlighted the present inflexibility of downdraft gasifiers in respect of feedstock tolerance due to the inability to contain very high temperatures inside the reactor during operation. Analyses indicated that the torrefaction process had not significantly altered inherent kinetic properties to a great extent; however, both activation energy and pre-exponential factor were slightly higher than virgin biomass from which the pellet was derived. Thermogravimetric analysis-derived reaction kinetics (CO2 gasification), bomb calorimetry, proximate and ultimate analyses, and the Bond Work Index grindability test provided a more comprehensive characterization of the torrefied pellet's suitability as a fuel for gasification and also other combustion applications. It exhibited significant improvements in grindability energy demand and particle size control compared to other non-treated and thermally treated biomass pellets, along with a high calorific value, and excellent resistance to water. PMID:27293776

  3. Role of AGC1/aralar in the metabolic synergies between neuron and glia.

    PubMed

    Contreras, Laura

    2015-09-01

    Brain energetic requirements are elevated due to the high cost of impulse transmission and information storage, and are met mainly by glucose oxidation. The energy needs are closely matched by metabolic regulation, which requires the close cooperation of neurons and astrocytes and involves highly regulated fluxes of metabolites between cells. The metabolism in each type of cell is determined in part by its proteomic profile, which has been regarded as complementary. This review will consider the cellular distribution of the mitochondrial aspartate-glutamate carrier, aralar/AGC1/SLC25A12, and its role in the synergic metabolism between neurons and astrocytes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Integrated Biomass Gasification with Catalytic Partial Oxidation for Selective Tar Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lingzhi; Wei, Wei; Manke, Jeff

    Biomass gasification is a flexible and efficient way of utilizing widely available domestic renewable resources. Syngas from biomass has the potential for biofuels production, which will enhance energy security and environmental benefits. Additionally, with the successful development of low Btu fuel engines (e.g. GE Jenbacher engines), syngas from biomass can be efficiently used for power/heat co-generation. However, biomass gasification has not been widely commercialized because of a number of technical/economic issues related to gasifier design and syngas cleanup. Biomass gasification, due to its scale limitation, cannot afford to use pure oxygen as the gasification agent that used in coal gasification.more » Because, it uses air instead of oxygen, the biomass gasification temperature is much lower than well-understood coal gasification. The low temperature leads to a lot of tar formation and the tar can gum up the downstream equipment. Thus, the biomass gasification tar removal is a critical technology challenge for all types of biomass gasifiers. This USDA/DOE funded program (award number: DE-FG36-O8GO18085) aims to develop an advanced catalytic tar conversion system that can economically and efficiently convert tar into useful light gases (such as syngas) for downstream fuel synthesis or power generation. This program has been executed by GE Global Research in Irvine, CA, in collaboration with Professor Lanny Schmidt's group at the University of Minnesota (UoMn). Biomass gasification produces a raw syngas stream containing H2, CO, CO2, H2O, CH4 and other hydrocarbons, tars, char, and ash. Tars are defined as organic compounds that are condensable at room temperature and are assumed to be largely aromatic. Downstream units in biomass gasification such as gas engine, turbine or fuel synthesis reactors require stringent control in syngas quality, especially tar content to avoid plugging (gum) of downstream equipment. Tar- and ash-free syngas streams are a

  5. Modeling of the reburning process using sewage sludge-derived syngas.

    PubMed

    Werle, Sebastian

    2012-04-01

    Gasification of sewage sludge can provide clean and effective reburning fuel for combustion applications. The motivation of this work was to define the reburning potential of the sewage sludge gasification gas (syngas). A numerical simulation of the co-combustion process of syngas in a hard coal-fired boiler was done. All calculations were performed using the Chemkin programme and a plug-flow reactor model was used. The calculations were modelled using the GRI-Mech 2.11 mechanism. The highest conversions for nitric oxide (NO) were obtained at temperatures of approximately 1000-1200K. The combustion of hard coal with sewage sludge-derived syngas reduces NO emissions. The highest reduction efficiency (>90%) was achieved when the molar flow ratio of the syngas was 15%. Calculations show that the analysed syngas can provide better results than advanced reburning (connected with ammonia injection), which is more complicated process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Xingcai; Ji, Libin; Ma, Junjun

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively accordingmore » to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)« less

  7. Beryllium particle combustion

    NASA Technical Reports Server (NTRS)

    Prentice, J. L.

    1972-01-01

    A two-year study of the combustion efficiency of single beryllium droplets burning in a variety of oxidizers (primarily mixtures of oxygen/argon and oxygen/nitrogen) is summarized. An advanced laser heating technique was used to acquire systematic quantitative data on the burning of single beryllium droplets at atmospheric pressure. The research confirmed the sensitivity of beryllium droplet combustion to the chemistry of environmental species and provides experimental documentation for the nitrogen-induced droplet fragmentation of burning beryllium droplets.

  8. Energy Efficient Engine (E3) combustion system component technology performance report

    NASA Technical Reports Server (NTRS)

    Burrus, D. L.; Chahrour, C. A.; Foltz, H. L.; Sabla, P. E.; Seto, S. P.; Taylor, J. R.

    1984-01-01

    The Energy Efficient Engine (E3) combustor effort was conducted as part of the overall NASA/GE E3 Program. This effort included the selection of an advanced double-annular combustion system design. The primary intent of this effort was to evolve a design that meets the stringent emissions and life goals of the E3, as well as all of the usual performance requirements of combustion systems for modern turbofan engines. Numerous detailed design studies were conducted to define the features of the combustion system design. Development test hardware was fabricated, and an extensive testing effort was undertaken to evaluate the combustion system subcomponents in order to verify and refine the design. Technology derived from this effort was incorporated into the engine combustion hardware design. The advanced engine combustion system was then evaluated in component testing to verify the design intent. What evolved from this effort was an advanced combustion system capable of satisfying all of the combustion system design objectives and requirements of the E3.

  9. Predicting gaseous emissions from small-scale combustion of agricultural biomass fuels.

    PubMed

    Fournel, S; Marcos, B; Godbout, S; Heitz, M

    2015-03-01

    A prediction model of gaseous emissions (CO, CO2, NOx, SO2 and HCl) from small-scale combustion of agricultural biomass fuels was developed in order to rapidly assess their potential to be burned in accordance to current environmental threshold values. The model was established based on calculation of thermodynamic equilibrium of reactive multicomponent systems using Gibbs free energy minimization. Since this method has been widely used to estimate the composition of the syngas from wood gasification, the model was first validated by comparing its prediction results with those of similar models from the literature. The model was then used to evaluate the main gas emissions from the combustion of four dedicated energy crops (short-rotation willow, reed canary grass, switchgrass and miscanthus) previously burned in a 29-kW boiler. The prediction values revealed good agreement with the experimental results. The model was particularly effective in estimating the influence of harvest season on SO2 emissions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Combustion and Heat Transfer Studies Utilizing Advanced Diagnostics: Combustion Studies

    DTIC Science & Technology

    1992-11-01

    Research Zone With Combustion," Turbulent Shear Flows. VoL 5. pp. 337- and Development Center, Aero Propulsion and Power 346, Springer Verlg, New ...200 words) A long-term goal of the Air Force is to develop near-stoichiometric gas turbine combustors that will burn broad-specification fuels, and...laboratory combustors. Two novel methods for CARS slit function were developed ; these made possible precise and unambiguous measurements of flame

  11. Second stage gasifier in staged gasification and integrated process

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, Wan Wang

    2015-10-06

    A second stage gasification unit in a staged gasification integrated process flow scheme and operating methods are disclosed to gasify a wide range of low reactivity fuels. The inclusion of second stage gasification unit operating at high temperatures closer to ash fusion temperatures in the bed provides sufficient flexibility in unit configurations, operating conditions and methods to achieve an overall carbon conversion of over 95% for low reactivity materials such as bituminous and anthracite coals, petroleum residues and coke. The second stage gasification unit includes a stationary fluidized bed gasifier operating with a sufficiently turbulent bed of predefined inert bed material with lean char carbon content. The second stage gasifier fluidized bed is operated at relatively high temperatures up to 1400.degree. C. Steam and oxidant mixture can be injected to further increase the freeboard region operating temperature in the range of approximately from 50 to 100.degree. C. above the bed temperature.

  12. Updraft Fixed Bed Gasification Aspen Plus Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2007-09-27

    The updraft fixed bed gasification model provides predictive modeling capabilities for updraft fixed bed gasifiers, when devolatilization data is available. The fixed bed model is constructed using Aspen Plus, process modeling software, coupled with a FORTRAN user kinetic subroutine. Current updraft gasification models created in Aspen Plus have limited predictive capabilities and must be "tuned" to reflect a generalized gas composition as specified in literature or by the gasifier manufacturer. This limits the applicability of the process model.

  13. 77 FR 59166 - South Mississippi Electric Cooperative: Plant Ratcliffe, Kemper County Integrated Gasification...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-26

    ... Ratcliffe, Kemper County Integrated Gasification Combined-Cycle (IGCC) Project AGENCY: Rural Utilities... Plant Ratcliffe, an Integrated Gasification Combined-Cycle Facility located in Kemper County... Company (MPCo), and will demonstrate the feasibility of the Integrated Gasification Combined-Cycle (IGCC...

  14. Recent Advances In Science Support For Isolated Droplet Combustion Experiments

    NASA Technical Reports Server (NTRS)

    Dryer, F. L.; Kazakov, A.; Urban, B. D.; Kroenlein, K.

    2003-01-01

    In a joint program involving Prof. F.A. Williams of the University of California, San Diego and Dr. V. Nayagam of the National Center for Microgravity Research, the combustion characteristics of isolated liquid fuel droplets of n-heptane, n-decane, methanol, methanol-water, ethanol and ethanol-water having initial diameters between about 1 mm and 6 mm continues to be investigated. The objectives of the work are to improve fundamental knowledge of droplet combustion dynamics for pure fuels and fuel-water mixtures through microgravity experiments and theoretical analyses. The Princeton contributions support the engineering design, data analysis, and data interpretation requirements for the study of initially single component, spherically symmetric, isolated droplet combustion studies through experiments and numerical modeling. UCSD contributions are described in a companion communication in this conference. The Princeton effort also addresses the analyses of Fiber Supported Droplet Combustion (FSDC) experiments conducted with the above fuels and collaborative work with others who are investigating droplet combustion in the presence of steady convection. A thorough interpretation of droplet burning behavior for n-heptane and n-decane over a relatively wide range of conditions also involves the influences of sooting on the combustion behavior, and this particular aspect on isolated burning of droplets is under consideration in a collaborative program underway with Drexel University. This collaboration is addressed in another communication at this conference. The one-dimensional, time-dependent, numerical modeling approach that we have continued to evolve for analyzing isolated, quiescent droplet combustion data has been further applied to investigate several facets of isolated droplet burning of simple alcohols, n-heptane, and n-decane. Some of the new results are described below.

  15. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  16. An integrated approach to energy recovery from biomass and waste: Anaerobic digestion-gasification-water treatment.

    PubMed

    Milani, M; Montorsi, L; Stefani, M

    2014-07-01

    The article investigates the performance of an integrated system for the energy recovery from biomass and waste based on anaerobic digestion, gasification and water treatment. In the proposed system, the organic fraction of waste of the digestible biomass is fed into an anaerobic digester, while a part of the combustible fraction of the municipal solid waste is gasified. Thus, the obtained biogas and syngas are used as a fuel for running a cogeneration system based on an internal combustion engine to produce electric and thermal power. The waste water produced by the integrated plant is recovered by means of both forward and inverse osmosis. The different processes, as well as the main components of the system, are modelled by means of a lumped and distributed parameter approach and the main outputs of the integrated plant such as the electric and thermal power and the amount of purified water are calculated. Finally, the implementation of the proposed system is evaluated for urban areas with a different number of inhabitants and the relating performance is estimated in terms of the main outputs of the system. © The Author(s) 2014.

  17. Comparison of efficacy and tolerance between combination therapy and monotherapy as first-line chemotherapy in elderly patients with advanced gastric cancer: Study protocol for a randomized controlled trial.

    PubMed

    Lee, Keun-Wook; Zang, Dae Young; Ryu, Min-Hee; Kim, Ki Hyang; Kim, Mi-Jung; Han, Hye Sook; Koh, Sung Ae; Park, Jin Hyun; Kim, Jin Won; Nam, Byung-Ho; Choi, In Sil

    2017-12-01

    The combination of a fluoropyrimidine [5-fluorouracil (5-FU), capecitabine, or S-1] with a platinum analog (cisplatin or oxaliplatin) is the most widely accepted first-line chemotherapy regimen for metastatic or recurrent advanced gastric cancer (AGC), based on the results of clinical trials. However, there is little evidence to guide chemotherapy for elderly patients with AGC because of under-representation of this age group in clinical trials. Thus, the aim of this study is to determine the optimal chemotherapy regimen for elderly patients with AGC by comparing the efficacies and safeties of combination therapy versus monotherapy as first-line chemotherapy. This study is a randomized, controlled, multicenter, phase III trial. A total of 246 elderly patients (≥70 years old) with metastatic or recurrent AGC who have not received previous palliative chemotherapy will be randomly allocated to a combination therapy group or a monotherapy group. Patients randomized to the combination therapy group will receive fluoropyrimidine plus platinum combination chemotherapy (capecitabine/cisplatin, S-1/cisplatin, capecitabine/oxaliplatin, or 5-FU/oxaliplatin), and those randomized to the monotherapy group will receive fluoropyrimidine monotherapy (capecitabine, S-1, or 5-FU). The primary outcome is the overall survival of patients in each treatment group. The secondary outcomes include progression-free survival, response rate, quality of life, and safety. We are conducting this pragmatic trial to determine whether elderly patients with AGC will obtain the same benefit from chemotherapy as younger patients. We expect that this study will help guide decision-making for the optimal treatment of elderly patients with AGC.

  18. Model-based estimation of adiabatic flame temperature during coal gasification

    NASA Astrophysics Data System (ADS)

    Sarigul, Ihsan Mert

    Coal gasification temperature distribution in the gasifier is one of the important issues. High temperature may increase the risk of corrosion of the gasifier wall or it may cause an increase in the amount of volatile compounds. At the same time, gasification temperature is a dominant factor for high conversion of products and completing the reactions during coal gasification in a short time. In the light of this information it can be said that temperature is one of key parameters of coal gasification to enhance the production of high heating value syngas and maximize refractory longevity. This study aims to predict the adiabatic flame temperatures of Australian bituminous coal and Indonesian roto coal in an entrained flow gasifier using different operating conditions with the ChemCAD simulation and design program. To achieve these objectives, two types of gasification parameters were carried out using simulation of a vertical entrained flow reactor: oxygen-to-coal feed ratio by kg/kg and pressure and steam-to-coal feed ratio by kg/kg and pressure. In the first part of study the adiabatic flame temperatures, coal gasification products and other coal characteristics of two types of coals were determined using ChemCAD software. During all simulations, coal feed rate, coal particle size, initial temperature of coal, water and oxygen were kept constant. The relationships between flame temperature, coal gasification products and operating parameters were fundamentally investigated. The second part of this study addresses the modeling of the flame temperature relation to methane production and other input parameters used previous chapter. The scope of this work was to establish a reasonable model in order to estimate flame temperature without any theoretical calculation. Finally, sensitivity analysis was performed after getting some basic correlations between temperature and input variables. According to the results, oxygen-to-coal feed ratio has the most influential

  19. Double-differential recording and AGC using microcontrolled variable gain ASIC.

    PubMed

    Rieger, Robert; Deng, Shin-Liang

    2013-01-01

    Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 μW including amplifiers and microcontroller.

  20. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwong, Kyei-Sing; Bennett, James P.

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  1. A Slag Management Toolset for Determining Optimal Coal Gasification Temperatures

    DOE PAGES

    Kwong, Kyei-Sing; Bennett, James P.

    2016-11-25

    Abstract Gasifier operation is an intricate process because of the complex relationship between slag chemistry and temperature, limitations of feedstock materials, and operational preference. High gasification temperatures increase refractory degradation, while low gasification temperatures can lead to slag buildup on the gasifier sidewall or exit, either of which are problematic during operation. Maximizing refractory service life and gasifier performance require finding an optimized operating temperature range which is a function of the coal slag chemistry and viscosity. Gasifier operators typically use a slag’s viscosity-temperature relationship and/or ash-fusion fluid temperature to determine the gasification temperature range. NETL has built a slagmore » management toolset to determine the optimal temperature range for gasification of a carbon feedstock. This toolset is based on a viscosity database containing experimental data, and a number of models used to predict slag viscosity as a function of composition and temperature. Gasifier users typically have no scientific basis for selecting an operational temperature range for gasification, instead using experience to select operational conditions. The use of the toolset presented in this paper provides a basis for estimating or modifying carbon feedstock slags generated from ash impurities in carbon feedstock.« less

  2. Co-gasification of bituminous coal and hydrochar derived from municipal solid waste: Reactivity and synergy.

    PubMed

    Wei, Juntao; Guo, Qinghua; He, Qing; Ding, Lu; Yoshikawa, Kunio; Yu, Guangsuo

    2017-09-01

    In this work, the influences of gasification temperature and blended ratio on co-gasification reactivity and synergy of Shenfu bituminous coal (SF) and municipal solid waste-derived hydrochar (HTC) were investigated using TGA. Additionally, active alkaline and alkaline earth metal (AAEM) transformation during co-gasification was quantitatively analyzed by inductively coupled plasma optical emission spectrometer for correlating synergy on co-gasification reactivity. The results showed that higher char gasification reactivity existed at higher HTC char proportion and gasification temperature, and the main synergy behaviour on co-gasification reactivity was performed as synergistic effect. Enhanced synergistic effect at lower temperature was mainly resulted from more obviously inhibiting the primary AAEM (i.e. active Ca) transformation, and weak synergistic effect still existed at higher temperature since more active K with prominent catalysis was retained. Furthermore, more active HTC-derived AAEM remaining in SF sample during co-gasification would lead to enhanced synergistic effect as HTC char proportion increased. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1985-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  4. Gasification system

    DOEpatents

    Haldipur, Gaurang B.; Anderson, Richard G.; Cherish, Peter

    1983-01-01

    A method and system for injecting coal and process fluids into a fluidized bed gasification reactor. Three concentric tubes extend vertically upward into the fluidized bed. Coal particulates in a transport gas are injected through an inner tube, and an oxygen rich mixture of oxygen and steam are injected through an inner annulus about the inner tube. A gaseous medium relatively lean in oxygen content, such as steam, is injected through an annulus surrounding the inner annulus.

  5. Active Combustion Control for Aircraft Gas-Turbine Engines-Experimental Results for an Advanced, Low-Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Kopasakis, George; Saus, Joseph R.; Chang, Clarence T.; Wey, Changlie

    2012-01-01

    Lean combustion concepts for aircraft engine combustors are prone to combustion instabilities. Mitigation of instabilities is an enabling technology for these low-emissions combustors. NASA Glenn Research Center s prior activity has demonstrated active control to suppress a high-frequency combustion instability in a combustor rig designed to emulate an actual aircraft engine instability experience with a conventional, rich-front-end combustor. The current effort is developing further understanding of the problem specifically as applied to future lean-burning, very low-emissions combustors. A prototype advanced, low-emissions aircraft engine combustor with a combustion instability has been identified and previous work has characterized the dynamic behavior of that combustor prototype. The combustor exhibits thermoacoustic instabilities that are related to increasing fuel flow and that potentially prevent full-power operation. A simplified, non-linear oscillator model and a more physics-based sectored 1-D dynamic model have been developed to capture the combustor prototype s instability behavior. Utilizing these models, the NASA Adaptive Sliding Phasor Average Control (ASPAC) instability control method has been updated for the low-emissions combustor prototype. Active combustion instability suppression using the ASPAC control method has been demonstrated experimentally with this combustor prototype in a NASA combustion test cell operating at engine pressures, temperatures, and flows. A high-frequency fuel valve was utilized to perturb the combustor fuel flow. Successful instability suppression was shown using a dynamic pressure sensor in the combustor for controller feedback. Instability control was also shown with a pressure feedback sensor in the lower temperature region upstream of the combustor. It was also demonstrated that the controller can prevent the instability from occurring while combustor operation was transitioning from a stable, low-power condition to

  6. Gasification and combustion technologies of agro-residues and their application to rural electric power systems in India

    NASA Astrophysics Data System (ADS)

    Bharadwaj, Anshu

    Biomass based power generation has the potential to add up to 20,000 MW of distributed capacity in India close to the rural load centers. However, the present production of biomass-based electricity is modest, contributing a mere 300 MW of installed capacity. In this thesis, we shall examine some of the scientific, technological and policy issues concerned with the generation and commercial viability of biomass-based electric power. We first consider the present status of biomass-based power in India and make an attempt to understand the reasons for low utilization. Our analysis suggests that the small-scale biomass power plants (<100 kW) when used for village electrification have a low Plant Load Factor (PLF) that adversely affects their economic viability. Medium Scale units (0.5 MW--5 MW) do not appear attractive because of the costs involved in the biomass transportation. There is thus a merit in considering power plants that use biomass available in large quantities in agro-processing centers such as rice or sugar mills where power plants of capacities in excess of 5 MW are possible without biomass transportation. We then simulate a biomass gasification combustion cycle using a naturally aspirated spark ignition engine since it can run totally on biomass gas. The gasifier and engine are modeled using the chemical equilibrium approach. The simulation is used to study the impact of fuel moisture and the performance of different biomass feedstock. Biomass power plants when used for decentralized power generation; close to the rural load centers can solve some of the problems of rural power supply: provide voltage support, reactive power and peak shaving. We consider an innovative option of setting up a rural electricity micro-grid using a decentralized biomass power plant and selected a rural feeder in Tumkur district, Karnataka for three-phase AC load flow studies. Our results suggest that this option significantly reduces the distribution losses and improves

  7. Taguchi approach for co-gasification optimization of torrefied biomass and coal.

    PubMed

    Chen, Wei-Hsin; Chen, Chih-Jung; Hung, Chen-I

    2013-09-01

    This study employs the Taguchi method to approach the optimum co-gasification operation of torrefied biomass (eucalyptus) and coal in an entrained flow gasifier. The cold gas efficiency is adopted as the performance index of co-gasification. The influences of six parameters, namely, the biomass blending ratio, oxygen-to-fuel mass ratio (O/F ratio), biomass torrefaction temperature, gasification pressure, steam-to-fuel mass ratio (S/F ratio), and inlet temperature of the carrier gas, on the performance of co-gasification are considered. The analysis of the signal-to-noise ratio suggests that the O/F ratio is the most important factor in determining the performance and the appropriate O/F ratio is 0.7. The performance is also significantly affected by biomass along with torrefaction, where a torrefaction temperature of 300°C is sufficient to upgrade eucalyptus. According to the recommended operating conditions, the values of cold gas efficiency and carbon conversion at the optimum co-gasification are 80.99% and 94.51%, respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of phosphorus recovery from incineration and gasification sewage sludge ash.

    PubMed

    Parés Viader, Raimon; Jensen, Pernille Erland; Ottosen, Lisbeth M; Thomsen, Tobias P; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

    2017-03-01

    Incineration of sewage sludge is a common practice in many western countries. Gasification is an attractive option because of its high energy efficiency and flexibility in the usage of the produced gas. However, they both unavoidably produce sewage sludge ashes, a material that is rich in phosphorus, but which is commonly landfilled or used in construction materials. With current uncertainty in phosphate rock supply, phosphorus recovery from sewage sludge ashes has become interesting. In the present work, ashes from incineration and gasification of the same sewage sludge were compared in terms of phosphorus extractability using electrodialytic (ED) methods. The results show that comparable recovery rates of phosphorus were achieved with a single ED step for incineration ashes and a sequential combination of two ED steps for gasification ashes, which was due to a higher influence of iron and/or aluminium in phosphorus solubility for the latter. A product with lower level of metallic impurities and comparable to wet process phosphoric acid was eventually obtained from gasification ashes. Thus, gasification becomes an interesting alternative to incineration also in terms of phosphorus separation.

  9. Hydrogen production from biomass gasification using biochar as a catalyst/support.

    PubMed

    Yao, Dingding; Hu, Qiang; Wang, Daqian; Yang, Haiping; Wu, Chunfei; Wang, Xianhua; Chen, Hanping

    2016-09-01

    Biochar is a promising catalyst/support for biomass gasification. Hydrogen production from biomass steam gasification with biochar or Ni-based biochar has been investigated using a two stage fixed bed reactor. Commercial activated carbon was also studied as a comparison. Catalyst was prepared with an impregnation method and characterized by X-ray diffraction, specific surface and porosity analysis, X-ray fluorescence and scanning electron micrograph. The effects of gasification temperature, steam to biomass ratio, Ni loading and bio-char properties on catalyst activity in terms of hydrogen production were explored. The Ni/AC catalyst showed the best performance at gasification temperature of 800°C, S/B=4, Ni loading of 15wt.%. Texture and composition characterization of the catalysts suggested the interaction between volatiles and biochar promoted the reforming of pyrolysis volatiles. Cotton-char supported Ni exhibited the highest activity of H2 production (64.02vol.%, 92.08mgg(-1) biomass) from biomass gasification, while rice-char showed the lowest H2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Methods for sequestering carbon dioxide into alcohols via gasification fermentation

    DOEpatents

    Gaddy, James L; Ko, Ching-Whan; Phillips, J. Randy; Slape, M. Sean

    2013-11-26

    The present invention is directed to improvements in gasification for use with synthesis gas fermentation. Further, the present invention is directed to improvements in gasification for the production of alcohols from a gaseous substrate containing at least one reducing gas containing at least one microorganism.

  11. Promoted Combustion Test Data Re-Examined

    NASA Technical Reports Server (NTRS)

    Lewis, Michelle; Jeffers, Nathan; Stoltzfus, Joel

    2010-01-01

    Promoted combustion testing of metallic materials has been performed by NASA since the mid-1980s to determine the burn resistance of materials in oxygen-enriched environments. As the technolo gy has advanced, the method of interpreting, presenting, and applying the promoted combustion data has advanced as well. Recently NASA changed the bum criterion from 15 cm (6 in.) to 3 cm (1.2 in.). This new burn criterion was adopted for ASTM G 124, Standard Test Method for Determining the Combustion Behavior- of Metallic Materials in Oxygen-Enriched Atmospheres. Its effect on the test data and the latest method to display the test data will be discussed. Two specific examples that illustrate how this new criterion affects the burn/no-bum thresholds of metal alloys will also be presented.

  12. Performance, cost and environmental assessment of gasification-based electricity in India: A preliminary analysis

    NASA Astrophysics Data System (ADS)

    Rani, Abha; Singh, Udayan; Jayant; Singh, Ajay K.; Sankar Mahapatra, Siba

    2017-07-01

    Coal gasification processes are crucial to decarbonisation in the power sector. While underground coal gasification (UCG) and integrated gasification combined cycle (IGCC) are different in terms of the site of gasification, they have considerable similarities in terms of the types of gasifiers used. Of course, UCG offers some additional advantages such as reduction of the fugitive methane emissions accompanying the coal mining process. Nevertheless, simulation of IGCC plants involving surface coal gasification is likely to give reasonable indication of the 3E (efficiency, economics and emissions) prospects of the gasification pathway towards electricity. This paper will aim at Estimating 3E impacts (efficiency, environment, economics) of gasification processes using simulation carried out in the Integrated Environmental Control Model (IECM) software framework. Key plant level controls which will be studied in this paper will be based on Indian financial regulations and operating costs which are specific to the country. Also, impacts of CO2 capture and storage (CCS) in these plants will be studied. The various parameters that can be studied are plant load factor, impact of coal quality and price, type of CO2 capture process, capital costs etc. It is hoped that relevant insights into electricity generation from gasification may be obtained with this paper.

  13. Non-slag co-gasification of biomass and coal in entrained-bed furnace

    NASA Astrophysics Data System (ADS)

    Itaya, Yoshinori; Suami, Akira; Kobayashi, Nobusuke

    2018-02-01

    Gasification is a promising candidate of processes to upgrade biomass and to yield clean gaseous fuel for utilization of renewable energy resources. However, a sufficient amount of biomass is not always available to operate a large scale of the plant. Co-gasification of biomass with coal is proposed as a solution of the problem. Tar emission is another subject during operation in shaft or kiln type of gasifiers employed conventionally for biomass. The present authors proposed co-gasification of biomass and coal in entrained-bed furnace, which is a representative process without tar emission under high temperature, but operated so to collect dust as flyash without molten slag formation. This paper presents the works performed on co-gasification performance of biomass and pulverized coal to apply to entrained-bed type of furnaces. At first, co-gasification of woody powder and pulverized coal examined using the lab-scale test furnace of the down-flow entrained bed showed that the maximum temperatures in the furnace was over 1500 K and the carbon conversion to gas achieved at higher efficiency than 80-90 percent although the residence time in the furnace was as short as a few seconds. Non-slag co-gasification was carried out successfully without slag formation in the furnace if coal containing ash with high fusion temperature was employed. The trend suggesting the effect of reaction rate enhancement of co-gasification was also observed. Secondary, an innovative sewage sludge upgrading system consisting of self-energy recovery processes was proposed to yield bio-dried sludge and to sequentially produce char without adding auxiliary fuel. Carbonization behavior of bio-dried sludge was evaluated through pyrolysis examination in a lab-scale quartz tube reactor. The thermal treatment of pyrolysis of sludge contributed to decomposition and removal of contaminant components such as nitrogen and sulfur. The gasification kinetics of sludge and coal was also determined by a

  14. Low temperature circulating fluidized bed gasification and co-gasification of municipal sewage sludge. Part 1: Process performance and gas product characterization.

    PubMed

    Thomsen, Tobias Pape; Sárossy, Zsuzsa; Gøbel, Benny; Stoholm, Peder; Ahrenfeldt, Jesper; Frandsen, Flemming Jappe; Henriksen, Ulrik Birk

    2017-08-01

    Results from five experimental campaigns with Low Temperature Circulating Fluidized Bed (LT-CFB) gasification of straw and/or municipal sewage sludge (MSS) from three different Danish municipal waste water treatment plants in pilot and demonstration scale are analyzed and compared. The gasification process is characterized with respect to process stability, process performance and gas product characteristics. All experimental campaigns were conducted at maximum temperatures below 750°C, with air equivalence ratios around 0.12 and with pure silica sand as start-up bed material. A total of 8600kg of MSS dry matter was gasified during 133h of operation. The average thermal loads during the five experiments were 62-100% of nominal capacity. The short term stability of all campaigns was excellent, but gasification of dry MSS lead to substantial accumulation of coarse and rigid, but un-sintered, ash particles in the system. Co-gasification of MSS with sufficient amounts of cereal straw was found to be an effective way to mitigate these issues as well as eliminate thermal MSS drying requirements. Characterization of gas products and process performance showed that even though gas composition varied substantially, hot gas efficiencies of around 90% could be achieved for all MSS fuel types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Applications study of advanced power generation systems utilizing coal-derived fuels, volume 2

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1981-01-01

    Technology readiness and development trends are discussed for three advanced power generation systems: combined cycle gas turbine, fuel cells, and magnetohydrodynamics. Power plants using these technologies are described and their performance either utilizing a medium-Btu coal derived fuel supplied by pipeline from a large central coal gasification facility or integrated with a gasification facility for supplying medium-Btu fuel gas is assessed.

  16. The power grid AGC frequency bias coefficient online identification method based on wide area information

    NASA Astrophysics Data System (ADS)

    Wang, Zian; Li, Shiguang; Yu, Ting

    2015-12-01

    This paper propose online identification method of regional frequency deviation coefficient based on the analysis of interconnected grid AGC adjustment response mechanism of regional frequency deviation coefficient and the generator online real-time operation state by measured data through PMU, analyze the optimization method of regional frequency deviation coefficient in case of the actual operation state of the power system and achieve a more accurate and efficient automatic generation control in power system. Verify the validity of the online identification method of regional frequency deviation coefficient by establishing the long-term frequency control simulation model of two-regional interconnected power system.

  17. Effect of powdered activated carbon technology on short-cut nitrogen removal for coal gasification wastewater.

    PubMed

    Zhao, Qian; Han, Hongjun; Xu, Chunyan; Zhuang, Haifeng; Fang, Fang; Zhang, Linghan

    2013-08-01

    A combined process consisting of a powdered activated carbon technology (PACT) and short-cut biological nitrogen removal reactor (SBNR) was developed to enhance the removal efficiency of the total nitrogen (TN) from the effluent of an upflow anaerobic sludge bed (UASB) reactor, which was used to treat coal gasification wastewater (CGW). The SBNR performance was improved with the increasing of COD and TP removal efficiency via PACT. The average removal efficiencies of COD and TP in PACT were respectively 85.80% and 90.30%. Meanwhile, the NH3-N to NO2-N conversion rate was achieved 86.89% in SBNR and the total nitrogen (TN) removal efficiency was 75.54%. In contrast, the AOB in SBNR was significantly inhibited without PACT or with poor performance of PACT in advance, which rendered the removal of TN. Furthermore, PAC was demonstrated to remove some refractory compounds, which therefore improved the biodegradability of the coal gasification wastewater. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Production of hydrogen driven from biomass waste to power Remote areas away from the electric grid utilizing fuel cells and internal combustion engines vehicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawfik, Hazem

    Recent concerns over the security and reliability of the world’s energy supply has caused a flux towards the research and development of renewable sources. A leading renewable source has been found in the biomass gasification of biological materials derived from organic matters such as wood chips, forest debris, and farm waste that are found in abundance in the USA. Accordingly, there is a very strong interest worldwide in the development of new technologies that provide an in-depth understanding of this economically viable energy source. This work aims to allow the coupling of biomass gasification and fuel cell systems as wellmore » as Internal Combustion Engines (ICE) to produce high-energy efficiency, clean environmental performance and near-zero greenhouse gas emissions. Biomass gasification is a process, which produces synthesis gas (syngas) that contains 19% hydrogen and 20% carbon monoxide from inexpensive organic matter waste. This project main goal is to provide cost effective energy to the public utilizing remote farms’ waste and landfill recycling area.« less

  19. National Combustion Code: Parallel Performance

    NASA Technical Reports Server (NTRS)

    Babrauckas, Theresa

    2001-01-01

    This report discusses the National Combustion Code (NCC). The NCC is an integrated system of codes for the design and analysis of combustion systems. The advanced features of the NCC meet designers' requirements for model accuracy and turn-around time. The fundamental features at the inception of the NCC were parallel processing and unstructured mesh. The design and performance of the NCC are discussed.

  20. Priorities for Microgravity Combustion Research and Goals for Workshop Discussions

    NASA Technical Reports Server (NTRS)

    Faeth, Gerard M.

    1993-01-01

    Several concerns motivate fundamental research: combustion-generated pollutants are re-emerging as a major problem, new combustion technologies are needed for effective energy utilization, municipal and hazardous waste incineration are needed to replace landfills and storage, new combustion technologies are needed for advanced aircraft and spacecraft propulsion systems, and current understanding of fires and explosion hazards is limited - particularly for space-craft environments. Thus, it is of interest to determine how experimentation using microgravity facilities can advance research relevant to these problems.

  1. Advanced CFD modelling of air and recycled flue gas staging in a waste wood-fired grate boiler for higher combustion efficiency and greater environmental benefits.

    PubMed

    Rajh, Boštjan; Yin, Chungen; Samec, Niko; Hriberšek, Matjaž; Kokalj, Filip; Zadravec, Matej

    2018-07-15

    Grate-fired boilers are commonly used to burn biomass/wastes for heat and power production. In spite of the recent breakthrough in integration of advanced secondary air systems in grate boilers, grate-firing technology needs to be advanced for higher efficiency and lower emissions. In this paper, innovative staging of combustion air and recycled flue gas in a 13 MW th waste wood-fired grate boiler is comprehensively studied based on a numerical model that has been previously validated. In particular, the effects of the jet momentum, position and orientation of the combustion air and recycled flue gas streams on in-furnace mixing, combustion and pollutant emissions from the boiler are examined. It is found that the optimized air and recycled flue gas jets remarkably enhance mixing and heat transfer, result in a more uniform temperature and velocity distribution, extend the residence time of the combustibles in the hot zone and improve burnout in the boiler. Optimizing the air and recycled flue gas jet configuration can reduce carbon monoxide emission from the boiler by up to 86%, from the current 41.0 ppm to 5.7 ppm. The findings of this study can serve as useful guidelines for novel design and optimization of the combustion air supply and flue gas recycling for grate boilers of this type. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Coal gasification systems engineering and analysis. Appendix A: Coal gasification catalog

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The scope of work in preparing the Coal Gasification Data Catalog included the following subtasks: (1) candidate system subsystem definition, (2) raw materials analysis, (3) market analysis for by-products, (4) alternate products analysis, (5) preliminary integrated facility requirements. Definition of candidate systems/subsystems includes the identity of and alternates for each process unit, raw material requirements, and the cost and design drivers for each process design.

  3. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  4. Modeling aerosol emissions from the combustion of composite materials

    NASA Technical Reports Server (NTRS)

    Roop, J. A.; Caldwell, D. J.; Kuhlmann, K. J.

    1994-01-01

    The use of advanced composite materials (ACM) in the B-2 bomber, composite armored vehicle, and F-22 advanced tactical fighter has rekindled interest concerning the health risk of burned or burning ACM. The objective of this work was to determine smoke production from burning ACM and its toxicity. A commercial version of the UPITT II combustion toxicity method developed at the University of Pittsburgh, and subsequently refined through a US Army-funded basic research project, was used to established controlled combustion conditions which were selected to evaluate real-world exposure scenarios. Production and yield of toxic species varied with the combustion conditions. Previous work with this method showed that the combustion conditions directly influenced the toxicity of the decomposition products from a variety of materials.

  5. Method and system for controlling a gasification or partial oxidation process

    DOEpatents

    Rozelle, Peter L; Der, Victor K

    2015-02-10

    A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.

  6. Hydrogen recovery from the thermal plasma gasification of solid waste.

    PubMed

    Byun, Youngchul; Cho, Moohyun; Chung, Jae Woo; Namkung, Won; Lee, Hyeon Don; Jang, Sung Duk; Kim, Young-Suk; Lee, Jin-Ho; Lee, Carg-Ro; Hwang, Soon-Mo

    2011-06-15

    Thermal plasma gasification has been demonstrated as one of the most effective and environmentally friendly methods for solid waste treatment and energy utilization in many of studies. Therefore, the thermal plasma process of solid waste gasification (paper mill waste, 1.2 ton/day) was applied for the recovery of high purity H(2) (>99.99%). Gases emitted from a gasification furnace equipped with a nontransferred thermal plasma torch were purified using a bag-filter and wet scrubber. Thereafter, the gases, which contained syngas (CO+H(2)), were introduced into a H(2) recovery system, consisting largely of a water gas shift (WGS) unit for the conversion of CO to H(2) and a pressure swing adsorption (PSA) unit for the separation and purification of H(2). It was successfully demonstrated that the thermal plasma process of solid waste gasification, combined with the WGS and PSA, produced high purity H(2) (20 N m(3)/h (400 H(2)-Nm(3)/PMW-ton), up to 99.99%) using a plasma torch with 1.6 MWh/PMW-ton of electricity. The results presented here suggest that the thermal plasma process of solid waste gasification for the production of high purity H(2) may provide a new approach as a future energy infrastructure based on H(2). Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A techno-economic approach to plasma gasification

    NASA Astrophysics Data System (ADS)

    Ramos, Ana; Rouboa, Abel

    2018-05-01

    Within the most used Waste-to-Energy technologies plasma gasification is recent and therefore not yet widely commercialized. Thus, it is necessary to conduct a viability study to support the thorough understanding and implementation of this thermal treatment. This paper aims to assess some technical, environmental and economic aspects of plasma gasification paving the way for a more sustained waste management system, as well as taking advantage of the commodity assets granted by the technique. Therefore, results from previously published studies were updated and highlighted as a preliminary starting point in order to potentially evolve to a complete and systematic work.

  8. Control of the Development of Swirling Airflow Dynamics and Its Impact on Biomass Combustion Characteristics

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Valdmanis, R.; Zaķe, M.

    2017-06-01

    The development of the swirling flame flow field and gasification/ combustion dynamics at thermo-chemical conversion of biomass pellets has experimentally been studied using a pilot device, which combines a biomass gasifier and combustor by varying the inlet conditions of the fuel-air mixture into the combustor. Experimental modelling of the formation of the cold nonreacting swirling airflow field above the inlet nozzle of the combustor and the upstream flow formation below the inlet nozzle has been carried out to assess the influence of the inlet nozzle diameter, as well primary and secondary air supply rates on the upstream flow formation and air swirl intensity, which is highly responsible for the formation of fuel-air mixture entering the combustor and the development of combustion dynamics downstream of the combustor. The research results demonstrate that at equal primary axial and secondary swirling air supply into the device a decrease in the inlet nozzle diameter enhances the upstream air swirl formation by increasing swirl intensity below the inlet nozzle of the combustor. This leads to the enhanced mixing of the combustible volatiles with the air swirl below the inlet nozzle of the combustor providing a more complete combustion of volatiles and an increase in the heat output of the device.

  9. Advancements in Dual-Pump Broadband CARS for Supersonic Combustion Measurements

    NASA Technical Reports Server (NTRS)

    Tedder, Sarah Augusta Umberger

    2010-01-01

    Space- and time-resolved measurements of temperature and species mole fractions of nitrogen, oxygen, and hydrogen were obtained with a dual-pump coherent anti-Stokes Raman spectroscopy (CARS) system in hydrogen-fueled supersonic combustion free jet flows. These measurements were taken to provide time-resolved fluid properties of turbulent supersonic combustion for use in the creation and verification of computational fluid dynamic (CFD) models. CFD models of turbulent supersonic combustion flow currently facilitate the design of air-breathing supersonic combustion ramjet (scramjet) engines. Measurements were made in supersonic axi-symmetric free jets of two scales. First, the measurement system was tested in a laboratory environment using a laboratory-scale burner (approx.10 mm at nozzle exit). The flow structures of the laboratory-burner were too small to be resolved with the CARS measurements volume, but the composition and temperature of the jet allowed the performance of the system to be evaluated. Subsequently, the system was tested in a burner that was approximately 6 times larger, whose length scales are better resolved by the CARS measurement volume. During both these measurements, weaknesses of the CARS system, such as sensitivity to vibrations and beam steering and inability to measure temperature or species concentrations in hydrogen fuel injection regions were indentified. Solutions were then implemented in improved CARS systems. One of these improved systems is a dual-pump broadband CARS technique called, Width Increased Dual-pump Enhanced CARS (WIDECARS). The two lowest rotational energy levels of hydrogen detectable by WIDECARS are H2 S(3) and H2 S(4). The detection of these lines gives the system the capability to measure temperature and species concentrations in regions of the flow containing pure hydrogen fuel at room temperature. WIDECARS is also designed for measurements of all the major species (except water) in supersonic combustion flows

  10. Assessment of the National Combustion Code

    NASA Technical Reports Server (NTRS)

    Liu, nan-Suey; Iannetti, Anthony; Shih, Tsan-Hsing

    2007-01-01

    The advancements made during the last decade in the areas of combustion modeling, numerical simulation, and computing platform have greatly facilitated the use of CFD based tools in the development of combustion technology. Further development of verification, validation and uncertainty quantification will have profound impact on the reliability and utility of these CFD based tools. The objectives of the present effort are to establish baseline for the National Combustion Code (NCC) and experimental data, as well as to document current capabilities and identify gaps for further improvements.

  11. Development of Kinetics and Mathematical Models for High Pressure Gasification of Lignite-Switchgrass Blends

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Pradeep K.

    The overall objective of the current project was to investigate the high pressure gasification characteristics of a feed containing both coal and biomass. The two feed types differ in their ash contents and ash composition, particularly the alkali content. Gasification of a combined feed of coal and biomass has the potential for considerable synergies that might lead to a dramatic improvement in process economics and flexibility. The proposed study aimed to develop a detailed understanding of the chemistry, kinetics, and transport effects during high pressure gasification of coal-biomass blend feed. Specifically, we studied to develop: (a) an understanding of themore » catalytic effect of alkali and other inorganic species present in the biomass and coal, (b) an understanding of processing conditions under which synergistic effects of the blending of coal and biomass might be observed. This included the role of particle size, residence time, and proximity of the two feed types, (c) kinetics of high pressure gasification of individual feeds as well as the blends, and (d) development of mathematical models that incorporate kinetics and transport models to enable prediction of gasification rate at a given set of operating conditions, and (e) protocols to extend the results to other feed resources. The goal was to provide a fundamental understanding of the gasification process and guide in optimizing the configurations and design of the next generation of gasifiers. The approach undertaken was centered on two basic premises: (1) the gasification for small particles without internal mass transfer limitations can be treated as the sum of two processes in series (pyrolysis and char gasification) , and (2) the reactivity of the char generated during pyrolysis not only depends on the pressure and temperature but is also affected by the heating rates. Thus low heating rates (10-50 °C/min) typical of PTGA fail to produce char that would typically be formed at high heating

  12. Influence of Torrefaction on the Conversion Efficiency of the Gasification Process of Sugarcane Bagasse

    PubMed Central

    Anukam, Anthony; Mamphweli, Sampson; Okoh, Omobola; Reddy, Prashant

    2017-01-01

    Sugarcane bagasse was torrefied to improve its quality in terms of properties prior to gasification. Torrefaction was undertaken at 300 °C in an inert atmosphere of N2 at 10 °C·min−1 heating rate. A residence time of 5 min allowed for rapid reaction of the material during torrefaction. Torrefied and untorrefied bagasse were characterized to compare their suitability as feedstocks for gasification. The results showed that torrefied bagasse had lower O–C and H–C atomic ratios of about 0.5 and 0.84 as compared to that of untorrefied bagasse with 0.82 and 1.55, respectively. A calorific value of about 20.29 MJ·kg−1 was also measured for torrefied bagasse, which is around 13% higher than that for untorrefied bagasse with a value of ca. 17.9 MJ·kg−1. This confirms the former as a much more suitable feedstock for gasification than the latter since efficiency of gasification is a function of feedstock calorific value. SEM results also revealed a fibrous structure and pith in the micrographs of both torrefied and untorrefied bagasse, indicating the carbonaceous nature of both materials, with torrefied bagasse exhibiting a more permeable structure with larger surface area, which are among the features that favour gasification. The gasification process of torrefied bagasse relied on computer simulation to establish the impact of torrefaction on gasification efficiency. Optimum efficiency was achieved with torrefied bagasse because of its slightly modified properties. Conversion efficiency of the gasification process of torrefied bagasse increased from 50% to approximately 60% after computer simulation, whereas that of untorrefied bagasse remained constant at 50%, even as the gasification time increased. PMID:28952501

  13. A Review of LOX/Kerosene Combustion Instability in American and Russian Combustion Devices in Application to Next-Generation Launch Technology

    NASA Technical Reports Server (NTRS)

    Rocker, Marvin; Nesman, Tomas E.; Hulka, James R.; Dougherty, N. Sam

    2003-01-01

    The Next-Generation Launch Technology (NGLT) project was introduced with its objectives. To meet the objectives, NASA has directed aerospace industry to perform advances and risk reduction of relevant technologies, including propulsion. Originally, the propulsion industry focused on producing both LOWLH2 and LOWkerosene flight engine technology demonstrators. These flight engine technology demonstrators were briefly reviewed. NASA recently redirected this focus to Lowkerosene only. Discussion of LOWkerosene combustion devices was and is prefaced by grave concerns about combustion instability. These concerns have prompted a review of LOWkerosene combustion instability in American and Russian combustion devices. In the review of the Russian propulsion industry's experience in eliminating LOWkerosene combustion instabilities, the history of principal Russian rocket scientists and their role in the development of LOXkerosene combustion devices is presented. The innovative methods implemented by the Russians of eliminations combustion instabilities in LOXkerosene combustion devices were reviewed. The successful elimination of these combustion instabilities has resulted in two generations of Russian-produced, high-performance LOWkerosene combustion devices.

  14. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Parag Kulkarni; Wei Wei

    It is expected that in the 21st century the Nation will continue to rely on fossil fuels for electricity, transportation, and chemicals. It will be necessary to improve both the process efficiency and environmental impact performance of fossil fuel utilization. GE Global Research is developing an innovative fuel-flexible Unmixed Fuel Processor (UFP) technology to produce H{sub 2}, power, and sequestration-ready CO{sub 2} from coal and other solid fuels. The UFP module offers the potential for reduced cost, increased process efficiency relative to conventional gasification and combustion systems, and near-zero pollutant emissions including NO{sub x}. GE was awarded a contract frommore » U.S. DOE NETL to develop the UFP technology. Work on the Phase I program started in October 2000, and work on the Phase II effort started in April 2005. In the UFP technology, coal and air are simultaneously converted into separate streams of (1) high-purity hydrogen that can be utilized in fuel cells or turbines, (2) sequestration-ready CO{sub 2}, and (3) high temperature/pressure vitiated air to produce electricity in a gas turbine. The process produces near-zero emissions with an estimated efficiency higher than IGCC with conventional CO2 separation. The Phase I R&D program established the feasibility of the integrated UFP technology through lab-, bench- and pilot-scale testing and investigated operating conditions that maximize separation of CO{sub 2} and pollutants from the vent gas, while simultaneously maximizing coal conversion efficiency and hydrogen production. The Phase I effort integrated experimental testing, modeling and preliminary economic studies to demonstrate the UFP technology. The Phase II effort will focus on three high-risk areas: economics, sorbent attrition and lifetime, and product gas quality for turbines. The economic analysis will include estimating the capital cost as well as the costs of hydrogen and electricity for a full-scale UFP plant. These costs

  15. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, Dolores C.; DaPrato, Philip L.; Gouker, Toby R.; Knoer, Peter

    1986-01-01

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone (12) with an aqueous solution having a pH above 12.0 at a temperature between 65.degree. C. and 110.degree. C. for a period of time sufficient to remove bitumens from the coal into said aqueous solution and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m.sup.3. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step.

  16. Fluidized bed gasification of extracted coal

    DOEpatents

    Aquino, D.C.; DaPrato, P.L.; Gouker, T.R.; Knoer, P.

    1984-07-06

    Coal or similar carbonaceous solids are extracted by contacting the solids in an extraction zone with an aqueous solution having a pH above 12.0 at a temperature between 65/sup 0/C and 110/sup 0/C for a period of time sufficient to remove bitumens from the coal into said aqueous solution, and the extracted solids are then gasified at an elevated pressure and temperature in a fluidized bed gasification zone (60) wherein the density of the fluidized bed is maintained at a value above 160 kg/m/sup 3/. In a preferred embodiment of the invention, water is removed from the aqueous solution in order to redeposit the extracted bitumens onto the solids prior to the gasification step. 2 figs., 1 tab.

  17. Laparoscopic subtotal gastrectomy for advanced gastric cancer: technical aspects and surgical, nutritional and oncological outcomes.

    PubMed

    Nakauchi, Masaya; Suda, Koichi; Nakamura, Kenichi; Shibasaki, Susumu; Kikuchi, Kenji; Nakamura, Tetsuya; Kadoya, Shinichi; Ishida, Yoshinori; Inaba, Kazuki; Taniguchi, Keizo; Uyama, Ichiro

    2017-11-01

    Higher morbidity in total gastrectomy than in distal gastrectomy has been reported, but laparoscopic subtotal gastrectomy (LsTG) has been reported to be safe and feasible in early gastric cancer (GC). We determined the surgical, nutritional and oncological outcomes of LsTG for advanced gastric cancer (AGC). Of the 816 consecutive patients with GC who underwent radical gastrectomy at our institution between 2008 and 2012, 253 who underwent curative laparoscopic gastrectomy (LG) for AGC were enrolled. LsTG was indicated for patients with upper stomach third tumors, who hoped to avoid total gastrectomy, <4 cm to the esophagogastric junction and a 2-cm proximal margin with cut end negative in frozen section, whereas laparoscopic conventional distal gastrectomy (LcDG) and laparoscopic total gastrectomy (LTG) were performed otherwise. Surgical outcomes and postoperative nutritional status were primarily assessed. Of 253 patients, the morbidity (Clavien-Dindo classification grade ≥ III) was 17.0% (43 patients). The 3-year overall survival and 3-year recurrence-free survival rates were 80.2 and 73.5%, respectively. LcDG, LsTG and LTG were performed in 121, 27 and 105 patients, individually. Morbidity was strongly associated with LTG (P = 0.001). Postoperative loss of body weight was significantly greater after LTG in comparison with LcDG or LsTG (P < 0.001). No difference in morbidity and postoperative loss of body weight were observed between LcDG and LsTG group. LG for AGC was feasible and safe surgically and oncologically. LsTG for AGC may be safer than LTG from surgical and postoperative nutritional point of view.

  18. Thermodynamics Analysis of Refinery Sludge Gasification in Adiabatic Updraft Gasifier

    PubMed Central

    Ahmed, Reem; Sinnathambi, Chandra M.; Eldmerdash, Usama; Subbarao, Duvvuri

    2014-01-01

    Limited information is available about the thermodynamic evaluation for biomass gasification process using updraft gasifier. Therefore, to minimize errors, the gasification of dry refinery sludge (DRS) is carried out in adiabatic system at atmospheric pressure under ambient air conditions. The objectives of this paper are to investigate the physical and chemical energy and exergy of product gas at different equivalent ratios (ER). It will also be used to determine whether the cold gas, exergy, and energy efficiencies of gases may be maximized by using secondary air injected to gasification zone under various ratios (0, 0.5, 1, and 1.5) at optimum ER of 0.195. From the results obtained, it is indicated that the chemical energy and exergy of producer gas are magnified by 5 and 10 times higher than their corresponding physical values, respectively. The cold gas, energy, and exergy efficiencies of DRS gasification are in the ranges of 22.9–55.5%, 43.7–72.4%, and 42.5–50.4%, respectively. Initially, all 3 efficiencies increase until they reach a maximum at the optimum ER of 0.195; thereafter, they decline with further increase in ER values. The injection of secondary air to gasification zone is also found to increase the cold gas, energy, and exergy efficiencies. A ratio of secondary air to primary air of 0.5 is found to be the optimum ratio for all 3 efficiencies to reach the maximum values. PMID:24672368

  19. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars.

    PubMed

    Huo, Wei; Zhou, Zhijie; Chen, Xueli; Dai, Zhenghua; Yu, Guangsuo

    2014-05-01

    Gasification reactivities of six different carbonaceous material chars with CO2 were determined by a Thermogravimetric Analyzer (TGA). Gasification reactivities of biomass chars are higher than those of coke and coal chars. In addition, physical structures and chemical components of these chars were systematically tested. It is found that the crystalline structure is an important factor to evaluate gasification reactivities of different chars and the crystalline structures of biomass chars are less order than those of coke and coal chars. Moreover, initial gasification rates of these chars were measured at high temperatures and with relatively large particle sizes. The method of calculating the effectiveness factor η was used to quantify the effect of pore diffusion on gasification. The results show that differences in pore diffusion effects among gasification with various chars are prominent and can be attributed to different intrinsic gasification reactivities and physical characteristics of different chars. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Incineration and pyrolysis vs. steam gasification of electronic waste.

    PubMed

    Gurgul, Agnieszka; Szczepaniak, Włodzimierz; Zabłocka-Malicka, Monika

    2018-05-15

    Constructional complexity of items and their integration are the most distinctive features of electronic wastes. These wastes consist of mineral and polymeric materials and have high content of valuable metals that could be recovered. Elimination of polymeric components (especially epoxy resins) while leaving non-volatile mineral and metallic phases is the purpose of thermal treatment of electronic wastes. In the case of gasification, gaseous product of the process may be, after cleaning, used for energy recovery or chemical synthesis. If not melted, metals from solid products of thermal treatment of electronic waste could be recovered by hydrometallurgical processing. Three basic, high temperature ways of electronic waste processing, i.e. smelting/incineration, pyrolysis and steam gasification were shortly discussed in the paper, giving a special attention to gasification under steam, illustrated by laboratory experiments. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Production of Hydrogen from Underground Coal Gasification

    DOEpatents

    Upadhye, Ravindra S.

    2008-10-07

    A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

  2. Behaviors of Char Gasification Based on Two-stage Gasifier of Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Sasauchi, Kenichi; Ahn, Chulju; Ito, Yusuke; Hayashi, Toshiaki; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planed a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the apropriate conditions such as air supply location, air ratio, air temperature and hearth load. The following results was found: 1) the air supply into the char bed is more effective than that into the gas phase, 2) we can have the maximum cold gas efficiency of 80% on the following conditions: air supply location: char layer, air temperature: 20°C, air ratio: 0.2. 3) As air temperature is higher, the cold gas efficiency is larger. As for the hearth load, the cold gas efficiency becomes higher and reaches the constant level. It is expected from the results that high temperature in the char layer is effective on the char gasification.

  3. Steam gasification of acid-hydrolysis biomass CAHR for clean syngas production.

    PubMed

    Chen, Guanyi; Yao, Jingang; Yang, Huijun; Yan, Beibei; Chen, Hong

    2015-03-01

    Main characteristics of gaseous product from steam gasification of acid-hydrolysis biomass CAHR have been investigated experimentally. The comparison in terms of evolution of syngas flow rate, syngas quality and apparent thermal efficiency was made between steam gasification and pyrolysis in the lab-scale apparatus. The aim of this study was to determine the effects of temperature and steam to CAHR ratio on gas quality, syngas yield and energy conversion. The results showed that syngas and energy yield were better with gasification compared to pyrolysis under identical thermal conditions. Both high gasification temperature and introduction of proper steam led to higher gas quality, higher syngas yield and higher energy conversion efficiency. However, excessive steam reduced hydrogen yield and energy conversion efficiency. The optimal value of S/B was found to be 3.3. The maximum value of energy ratio was 0.855 at 800°C with the optimal S/B value. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Combustion synthesis of advanced materials. [using in-situ infiltration technique

    NASA Technical Reports Server (NTRS)

    Moore, J. J.; Feng, H. J.; Perkins, N.; Readey, D. W.

    1992-01-01

    The combustion synthesis of ceramic-metal composites using an in-situ liquid infiltration technique is described. The effect of varying the reactants and their stoichiometry to provide a range of reactant and product species i.e. solids, liquids and gases, with varying physical properties e.g. thermal conductivity, on the microstructure and morphology of synthesized products is also described. Alternatively, conducting the combustion synthesis reaction in a reactive gas environment is also discussed, in which advantages can be gained from the synergistic effects of combustion synthesis and vapor phase transport. In each case, the effect of the presence or absence of gravity (density) driven fluid flow and vapor transport is discussed as is the potential for producing new and perhaps unique materials by conducting these SHS reactions under microgravity conditions.

  5. Catalysts for carbon and coal gasification

    DOEpatents

    McKee, Douglas W.; Spiro, Clifford L.; Kosky, Philip G.

    1985-01-01

    Catalyst for the production of methane from carbon and/or coal by means of catalytic gasification. The catalyst compostion containing at least two alkali metal salts. A particulate carbonaceous substrate or carrier is used.

  6. BIMOMASS GASIFICATION PILOT PLANT STUDY

    EPA Science Inventory

    The report gives results of a gasification pilot program using two biomass feedstocks: bagasse pellets and wood chips. he object of the program was to determine the properties of biomass product gas and its suitability as a fuel for gas-turbine-based power generation cycles. he f...

  7. Assessment of the SRI Gasification Process for Syngas Generation with HTGR Integration -- White Paper

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A.M. Gandrik

    2012-04-01

    This white paper is intended to compare the technical and economic feasibility of syngas generation using the SRI gasification process coupled to several high-temperature gas-cooled reactors (HTGRs) with more traditional HTGR-integrated syngas generation techniques, including: (1) Gasification with high-temperature steam electrolysis (HTSE); (2) Steam methane reforming (SMR); and (3) Gasification with SMR with and without CO2 sequestration.

  8. Fluidized-bed catalytic coal-gasification process. [US patent; pretreatment to minimize agglomeration

    DOEpatents

    Euker, C.A. Jr.; Wesselhoft, R.D.; Dunkleman, J.J.; Aquino, D.C.; Gouker, T.R.

    1981-09-14

    Coal or similar carbonaceous solids impregnated with gasification catalyst constituents are oxidized by contact with a gas containing between 2 vol % and 21 vol % oxygen at a temperature between 50 and 250/sup 0/C in an oxidation zone and the resultant oxidized, catalyst impregnated solids are then gasified in a fluidized bed gasification zone at an elevated pressure. The oxidation of the catalyst impregnated solids under these conditions insures that the bed density in the fluidized bed gasification zone will be relatively high even though the solids are gasified at elevated pressure and temperature.

  9. Apparatus for solar coal gasification

    DOEpatents

    Gregg, D.W.

    1980-08-04

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials is described. Incident solar radiation is focused from an array of heliostats through a window onto the surface of a moving bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called synthesis gas, which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam in one embodiment at the rear surface of a secondary mirror used to redirect the focused sunlight. Another novel feature of the invention is the location and arrangement of the array of mirrors on an inclined surface (e.g., a hillside) to provide for direct optical communication of said mirrors and the carbonaceous feed without a secondary redirecting mirror.

  10. Gasification Reaction Characteristics of Ferro-Coke at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Jian-liang; Gao, Bing

    2017-01-01

    In this paper, the effects of temperature and atmosphere on the gasification reaction of ferro-coke were investigated in consideration of the actual blast furnace conditions. Besides, the microstructure of the cokes was observed by scanning electron microscope (SEM). It is found that the weight loss of ferro-coke during the gasification reaction is significantly enhanced in the case of increasing either the reaction temperature or the CO2 concentration. Furthermore, compared with the normal type of metallurgical coke, ferro-coke exhibits a higher weight loss when they are gasified at the same temperature or under the same atmosphere. As to the microstructure, inside the reacted ferro-coke are a large amount of pores. Contrary to the normal coke, the proportions of the large-size pores and the through holes are greatly increased after gasification, giving rise to thinner pore walls and hence a degradation in coke strength after reaction (CSR).

  11. Hydrodynamic Stability of Multicomponent Droplet Gasification in Reduced Gravity

    NASA Technical Reports Server (NTRS)

    Aharon, I.; Shaw, B. D.

    1995-01-01

    This investigation addresses the problem of hydrodynamic stability of a two-component droplet undergoing spherically-symmetrical gasification. The droplet components are assumed to have characteristic liquid species diffusion times that are large relative to characteristic droplet surface regression times. The problem is formulated as a linear stability analysis, with a goal of predicting when spherically-symmetric droplet gasification can be expected to be hydrodynamically unstable from surface-tension gradients acting along the surface of a droplet which result from perturbations. It is found that for the conditions assumed in this paper (quasisteady gas phase, no initial droplet temperature gradients, diffusion-dominated gasification), surface tension gradients do not play a role in the stability characteristics. In addition, all perturbations are predicted to decay such that droplets were hydrodynamically stable. Conditions are identified, however, that deserve more analysis as they may lead to hydrodynamic instabilities driven by capillary effects.

  12. The feasibility of using combined TiO2 photocatalysis oxidation and MBBR process for advanced treatment of biologically pretreated coal gasification wastewater.

    PubMed

    Xu, Peng; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Jia, Shengyong; Wang, Dexin; Li, Kun; Zhao, Qian

    2015-01-01

    The study examined the feasibility of using combined heterogeneous photocatalysis oxidation (HPO) and moving bed biofilm reactor (MBBR) process for advanced treatment of biologically pretreated coal gasification wastewater (CGW). The results indicated that the TOC removal efficiency was significantly improved in HPO. Gas chromatography-mass spectrometry (GC-MS) analysis indicated that the HPO could be employed to eliminate bio-refractory and toxic compounds. Meanwhile, the BOD5/COD of the raw wastewater was increased from 0.08 to 0.49. Furthermore, in the integration of TiO2 photocatalysis oxidation and MBBR process, the effluent of COD, BOD5, TOC, NH4(+)-N and TN were 22.1 mg/L, 1.1 mg/L, 11.8 mg/L, 4.1mg/L and 13.7 mg/L, respectively, which all met class-I criteria of the Integrated Wastewater Discharge Standard (GB18918-2002, China). The total operating cost was 2.8CNY/t. Therefore, there is great potential for the combined system in engineering applications as a final treatment for biologically pretreated CGW. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Bio-syngas production from agro-industrial biomass residues by steam gasification.

    PubMed

    Pacioni, Tatiana Ramos; Soares, Diniara; Domenico, Michele Di; Rosa, Maria Fernanda; Moreira, Regina de Fátima Peralta Muniz; José, Humberto Jorge

    2016-12-01

    This study evaluated the steam gasification potential of three residues from Brazilian agro-industry by assessing their reaction kinetics and syngas production at temperatures from 650 to 850°C and a steam partial pressure range of 0.05 to 0.3bar. The transition temperature between kinetic control and diffusion control regimes was identified. Prior to the gasification tests, the raw biomasses, namely apple pomace, spent coffee grounds and sawdust, were pyrolyzed in a fixed-bed quartz tubular reactor under controlled conditions. Gasification tests were performed isothermally in a magnetic suspension thermobalance and the reaction products were analyzed by a gas chromatograph with TCD/FID detectors. According to the characterization results, the samples presented higher carbon and lower volatile matter contents than the biomasses. Nevertheless, all of the materials had high calorific value. Syngas production was influenced by both temperature and steam partial pressure. Higher concentrations of H 2 and CO were found in the conversion range of 50-80% and higher concentrations of CO 2 in conversions around 10%, for all the gasified biochars. The H 2 /CO decreased with increasing temperature, mainly in kinetic control regime, in the lower temperature range. The results indicate the gasification potential of Brazilian biomass residues and are an initial and important step in the development of gasification processes in Brazil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characteristics of the microwave pyrolysis and microwave CO2-assisted gasification of dewatered sewage sludge.

    PubMed

    Chun, Young Nam; Jeong, Byeo Ri

    2017-07-28

    Microwave drying-pyrolysis or drying-gasification characteristics were examined to convert sewage sludge into energy and resources. The gasification was carried out with carbon dioxide as a gasifying agent. The examination results were compared with those of the conventional heating-type electric furnace to compare both product characteristics. Through the pyrolysis or gasification, gas, tar, and char were generated as products. The produced gas was the largest component of each process, followed by the sludge char and the tar. During the pyrolysis process, the main components of the produced gas were hydrogen and carbon monoxide, with a small amount of hydrocarbons such as methane and ethylene. In the gasification process, however, the amount of carbon monoxide was greater than the amount of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene in light tar was generated from the pyrolysis or gasification. Ammonia and hydrogen cyanide, which are precursors of NO x , were also generated. In the microwave heating method, the sludge char produced by pyrolysis and gasification had pores in the mesopore range. This could be explained that the gas obtained from the microwave pyrolysis or gasification of the wet sewage sludge can be used as an alternative fuel, but the tar and NO x precursors in the produced gas should be treated. Sludge char can be used as a biomass solid fuel or as a tar removal adsorbent if necessary.

  15. Preoperative administration of polysaccharide Kureha and reduced plasma transforming growth factor-β in patients with advanced gastric cancer: A randomized clinical trial

    PubMed Central

    YAMASHITA, KEISHI; SAKURAMOTO, SHINICHI; MIENO, HIROAKI; NEMOTO, MASAYUKI; SHIBATA, TOMOTAKA; KATADA, NATSUYA; OHTSUKI, SHIGEAKI; SAKAMOTO, YASUTOSHI; HOSHI, KEIKA; WANG, GUOQIN; HEMMI, OSAMU; SATOH, TOSHIHIKO; KIKUCHI, SHIRO; WATANABE, MASAHIKO

    2015-01-01

    Systemic abrogation of TGF-β signaling results in tumor reduction through cytotoxic T lymphocytes activity in a mouse model. The administration of polysaccharide-Kureha (PSK) into tumor-bearing mice also showed tumor regression with reduced TGF-β. However, there have been no studies regarding the PSK administration to cancer patients and the association with plasma TGF-β. PSK (3 g/day) was administered as a neoadjuvant therapy for 2 weeks before surgery. In total, 31 advanced gastric cancer (AGC) patients were randomly assigned to group A (no neoadjuvant PSK; n=14) or B (neoadjuvant PSK therapy; n=17). Plasma TGF-β was measured pre- and postoperatively. The allocation factors were clinical stage (cStage) and gender. Plasma TGF-β ranged from 1.85–43.5 ng/ml (average, 9.50 ng/ml) in AGC, and 12 patients (38.7%) had a high value, >7.0 ng/ml. These patients were largely composed of poorly-differentiated adenocarcinoma with pathological stage III/IV. All the six elevated cases in group B showed a significant reduction of plasma TGF-β (from 21.6 to 4.5 ng/ml, on average), whereas this was not exhibited in group A. The cases within the normal limits of TGF-β remained unchanged irrespective of PSK treatment. Analysis of variance showed a statistically significant reduction in the difference of plasma TGF-β between groups A and B (P=0.019). PSK reduced the plasma TGF-β in AGC patients when the levels were initially high. The clinical advantage of PSK may, however, be restricted to specific histological types of AGC. Perioperative suppression of TGF-β by PSK may antagonize cancer immune evasion and improve patient prognosis in cases of AGC. PMID:26137253

  16. Preliminary tests of an advanced high-temperature combustion system

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.; Jacobs, R. E.

    1983-01-01

    A combustion system has been developed to operate efficiently and with good durability at inlet pressures to 4.05 MPa (40 atm), inlet air temperatures to 900 K, and exhaust gas temperatures to 2480 K. A preliminary investigation of this system was conducted at inlet pressures to 0.94 MPa (9 atm), a nominal inlet air temperature of 560 K, and exhaust gas temperatures to 2135 K. A maximum combustion efficiency of 98.5 percent was attained at a fuel-air ratio of 0.033; the combustion efficiency decreased to about 90 percent as the fuel-air ratio was increased to 0.058. An average liner metal temperature of 915 K, 355 kelvins greater than the nominal inlet air temperature, was reached with an average exhaust gas temperature of 2090 K. The maximum local metal temperature at this condition was about 565 kelvins above the nominal inlet air temperature and decreased to 505 kelvins above with increasing combustor pressure. Tests to determine the isothermal total pressure loss of the combustor showed a liner loss of 1.1 percent and a system loss of 6.5 percent.

  17. JANNAF 37th Combustion Subcommittee Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    2000-01-01

    This volume, the first of two volumes is a compilation of 59 unclassified/unlimited-distribution technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 37th Combustion Subcommittee (CS) meeting held jointly with the 25th Airbreathing Propulsion Subcommittee (APS), 19th Propulsion Systems Hazards Subcommittee (PSHS), and 1st Modeling and Simulation Subcommittee (MSS) meetings. The meeting was held 13-17 November 2000 at the Naval Postgraduate School and Hyatt Regency Hotel, Monterey, California. Topics covered at the CS meeting include: a keynote address on the Future Combat Systems, and review of a new JANNAF Modeling and Simulation Subcommittee, and technical papers on gun propellant burning rate, gun tube erosion, advanced gun propulsion concepts, ETC guns, novel gun propellants; liquid, hybrid and novel propellant combustion; solid propellant combustion kinetics, GAP, ADN and RDX combustion, sandwich combustion, metal combustion, combustion instability, and motor combustion instability.

  18. Refuse derived fuel (RDF) plasma torch gasification as a feasible route to produce low environmental impact syngas for the cement industry.

    PubMed

    López-Sabirón, Ana M; Fleiger, Kristina; Schäfer, Stefan; Antoñanzas, Javier; Irazustabarrena, Ane; Aranda-Usón, Alfonso; Ferreira, Germán A

    2015-08-01

    Plasma torch gasification (PTG) is currently researched as a technology for solid waste recovery. However, scientific studies based on evaluating its environmental implications considering the life cycle assessment (LCA) methodology are lacking. Therefore, this work is focused on comparing the environmental effect of the emissions of syngas combustion produced by refuse derived fuel (RDF) and PTG as alternative fuels, with that related to fossil fuel combustion in the cement industry. To obtain real data, a semi-industrial scale pilot plant was used to perform experimental trials on RDF-PTG.The results highlight that PTG for waste to energy recovery in the cement industry is environmentally feasible considering its current state of development. A reduction in every impact category was found when a total or partial substitution of alternative fuel for conventional fuel in the calciner firing (60 % of total thermal energy input) was performed. Furthermore, the results revealed that electrical energy consumption in PTG is also an important parameter from the LCA approach. © The Author(s) 2015.

  19. Ames Hybrid Combustion Facility

    NASA Technical Reports Server (NTRS)

    Zilliac, Greg; Karabeyoglu, Mustafa A.; Cantwell, Brian; Hunt, Rusty; DeZilwa, Shane; Shoffstall, Mike; Soderman, Paul T.; Bencze, Daniel P. (Technical Monitor)

    2003-01-01

    The report summarizes the design, fabrication, safety features, environmental impact, and operation of the Ames Hybrid-Fuel Combustion Facility (HCF). The facility is used in conducting research into the scalability and combustion processes of advanced paraffin-based hybrid fuels for the purpose of assessing their applicability to practical rocket systems. The facility was designed to deliver gaseous oxygen at rates between 0.5 and 16.0 kg/sec to a combustion chamber operating at pressures ranging from 300 to 900. The required run times were of the order of 10 to 20 sec. The facility proved to be robust and reliable and has been used to generate a database of regression-rate measurements of paraffin at oxygen mass flux levels comparable to those of moderate-sized hybrid rocket motors.

  20. Droplet Combustion Experiment movie

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The Droplet Combustion Experiment (DCE) was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1 mission (STS-83, April 4-8 1997; the shortened mission was reflown as MSL-1R on STS-94). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.1 MB, 12-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300164.html.

  1. CFD Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arastoopour, Hamid; Abbasian, Javad

    2014-07-31

    estimated cost of carbon v capture is in the range of $31-$44/ton, suggesting that a regenerative MgO-Based process can be a viable option for pre-combustion carbon dioxide capture in advanced gasification based power systems.« less

  2. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  3. Coal gasification systems engineering and analysis. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Feasibility analyses and systems engineering studies for a 20,000 tons per day medium Btu (MBG) coal gasification plant to be built by TVA in Northern Alabama were conducted. Major objectives were as follows: (1) provide design and cost data to support the selection of a gasifier technology and other major plant design parameters, (2) provide design and cost data to support alternate product evaluation, (3) prepare a technology development plan to address areas of high technical risk, and (4) develop schedules, PERT charts, and a work breakdown structure to aid in preliminary project planning. Volume one contains a summary of gasification system characterizations. Five gasification technologies were selected for evaluation: Koppers-Totzek, Texaco, Lurgi Dry Ash, Slagging Lurgi, and Babcock and Wilcox. A summary of the trade studies and cost sensitivity analysis is included.

  4. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char.

    PubMed

    Ding, Liang; Zhang, Yongqi; Wang, Zhiqing; Huang, Jiejie; Fang, Yitian

    2014-12-01

    Co-gasification of coal char and biomass char was conducted to investigate the interactions between them. And random pore model (RPM) and modified random pore model (MRPM) were applied to describe the gasification behaviors of the samples. The results show that inhibiting effect was observed during co-gasification of corn stalk char with Hulunbeier lignite coal char, while synergistic effects were observed during co-gasification of corn stalk char with Shenmu bituminous coal char and Jincheng anthracite coal char. The inhibiting effect was attributed to the intimate contact and comparable gasification rate between biomass char and coal char, and the loss of the active form of potassium caused by the formation of KAlSiO4, which was proved to be inactive during gasification. While the synergistic effect was caused by the high potassium content of biomass char and the significant difference of reaction rate between coal char and biomass char during gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Environmental and economic performance of plasma gasification in Enhanced Landfill Mining.

    PubMed

    Danthurebandara, Maheshi; Van Passel, Steven; Vanderreydt, Ive; Van Acker, Karel

    2015-11-01

    This paper describes an environmental and economic assessment of plasma gasification, one of the viable candidates for the valorisation of refuse derived fuel from Enhanced Landfill Mining. The study is based on life cycle assessment and life cycle costing. Plasma gasification is benchmarked against conventional incineration, and the study indicates that the process could have significant impact on climate change, human toxicity, particulate matter formation, metal depletion and fossil depletion. Flue gas emission, oxygen usage and disposal of residues (plasmastone) are the major environmental burdens, while electricity production and metal recovery represent the major benefits. Reductions in burdens and improvements in benefits are found when the plasmastone is valorised in building materials instead of landfilling. The study indicates that the overall environmental performance of plasma gasification is better than incineration. The study confirms a trade-off between the environmental and economic performance of the discussed scenarios. Net electrical efficiency and investment cost of the plasma gasification process and the selling price of the products are the major economic drivers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. High efficiency power generation from coal and wastes utilizing high temperature air combustion technology (Part 1: Performance of pebble bed gasifier for coal and wastes)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosaka, Hitoshi; Iwahashi, Takashi; Yoshida, Nobuhiro

    1998-07-01

    A new concept of a gasifier for coal and wastes is proposed where entrained bed and fixed pebble bed are combined. Main features of this pebble bed gasifier are high efficiency molten slag capture, high efficiency gasification and compactness. Coal and RFD combustion experiments using the pebble bed gasifier demonstrated high efficiency capture and continuous extraction of molten slag as well as complete char combustion with extra ordinarily short residence time of pulverized coal and crushed RDF at the temperature level of about 1,500 C within the pebble bed. Durability tests using high temperature electric furnace has shown that highmore » density alumna is a good candidate for pebble material.« less

  7. Advanced Guidance and Control for Hypersonics and Space Access

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Hall, Charles E.; Mulqueen, John A.; Jones, Robert E.

    2003-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety, reliability, and cost requirements for the next generation of reusable launch vehicle (RLV), whether it is fully rocket-powered or has air- breathing components. This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies could have saved a RLV with the same failure mode, the additional vehicle problems where t h i s technology applies, and the costs and time associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is the point where we can look to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AWC, current technology efforts, and the additional work needed for making this goal a reality. There are a number of approaches to AG&C that have the potential for achieving the desired goals. For some of these methods, we compare the results of tests designed to demonstrate the achievement of the goals. Tests up to now have been focused on rocket-powered vehicles; application to hypersonic air-breathers is planned. We list the test cases used to demonstrate that the desired results are achieved, briefly describe an automated test scoring method, and display results of the tests. Some of the technology components have reached the maturity level where they are ready for application to a new vehicle concept, while others are not far along in development.

  8. Integration of stripping of fines slurry in a coking and gasification process

    DOEpatents

    DeGeorge, Charles W.

    1980-01-01

    In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

  9. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  10. Recent regulatory experience of low-Btu coal gasification. Volume III. Supporting case studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackerman, E.; Hart, D.; Lethi, M.

    The MITRE Corporation conducted a five-month study for the Office of Resource Applications in the Department of Energy on the regulatory requirements of low-Btu coal gasification. During this study, MITRE interviewed representatives of five current low-Btu coal gasification projects and regulatory agencies in five states. From these interviews, MITRE has sought the experience of current low-Btu coal gasification users in order to recommend actions to improve the regulatory process. This report is the third of three volumes. It contains the results of interviews conducted for each of the case studies. Volume 1 of the report contains the analysis of themore » case studies and recommendations to potential industrial users of low-Btu coal gasification. Volume 2 contains recommendations to regulatory agencies.« less

  11. Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN.

    PubMed

    Enugutti, Balaji; Kirchhelle, Charlotte; Oelschner, Maxi; Torres Ruiz, Ramón Angel; Schliebner, Ivo; Leister, Dario; Schneitz, Kay

    2012-09-11

    The spatial coordination of growth is of central importance for the regulation of plant tissue architecture. Individual layers, such as the epidermis, are clonally propagated and structurally maintained by symmetric cell divisions that are oriented along the plane of the layer. The developmental control of this process is poorly understood. The simple cellular basis and sheet-like structure of Arabidopsis integuments make them an attractive model system to address planar growth. Here we report on the characterization of the Arabidopsis UNICORN (UCN) gene. Analysis of ucn integuments reveals localized distortion of planar growth, eventually resulting in an ectopic multicellular protrusion. In addition, ucn mutants exhibit ectopic growth in filaments and petals, as well as aberrant embryogenesis. We further show that UCN encodes an active AGC VIII kinase. Genetic, biochemical, and cell biological data suggest that UCN suppresses ectopic growth in integuments by directly repressing the KANADI transcription factor ABERRANT TESTA SHAPE. Our findings indicate that UCN represents a unique plant growth regulator that maintains planar growth of integuments by repressing a developmental regulator involved in the control of early integument growth and polarity.

  12. Evaluation of Biomass Gasification to Produce Reburning Fuel for Coal-Fired Boilers

    EPA Science Inventory

    Gasification and reburning testing with biomass and other wastes is of interest to both the U.S. EPA and the Italian Ministry of the Environment & Territory. Gasification systems that use biofuels or wastes as feedstock can provide a clean, efficient source of synthesis gas and p...

  13. Characterization of Scots pine stump-root biomass as feed-stock for gasification.

    PubMed

    Eriksson, Daniel; Weiland, Fredrik; Hedman, Henry; Stenberg, Martin; Öhrman, Olov; Lestander, Torbjörn A; Bergsten, Urban; Öhman, Marcus

    2012-01-01

    The main objective was to explore the potential for gasifying Scots pine stump-root biomass (SRB). Washed thin roots, coarse roots, stump heartwood and stump sapwood were characterized (solid wood, milling and powder characteristics) before and during industrial processing. Non-slagging gasification of the SRB fuels and a reference stem wood was successful, and the gasification parameters (synthesis gas and bottom ash characteristics) were similar. However, the heartwood fuel had high levels of extractives (≈19%) compared to the other fuels (2-8%) and thereby ≈16% higher energy contents but caused disturbances during milling, storage, feeding and gasification. SRB fuels could be sorted automatically according to their extractives and moisture contents using near-infrared spectroscopy, and their amounts and quality in forests can be predicted using routinely collected stand data, biomass functions and drill core analyses. Thus, SRB gasification has great potential and the proposed characterizations exploit it. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Gasification of yeast industry treatment plant sludge using downdraft Gasifier.

    PubMed

    Ayol, Azize; Tezer, Ozgun; Gurgen, Alim

    2018-01-01

    Sludges produced in biological wastewater treatment plants have rich organic materials in their characteristics. Recent research studies have focused on the energy recovery from sludge due to its high organic content. The gasification process is a thermal conversion technology transforming the chemical energy contained in a solid fuel into thermal energy and electricity. The produced syngas as a mixture of CO, CH 4 , H 2 and other gases can be used to generate electrical energy. The gasification of yeast industry sludge has been experimentally evaluated in a pilot scale downdraft-type gasifier as a route towards the energy recovery. The gasifier has 20 kg biomass/h fuel capacity. During gasification, the temperature achieved was more than 1,000°C in the gasifier, and then the syngas was transferred to the gas engine to yield the electricity. A load was connected to the grid box and approximately 1 kWh electrical power generation for 1 kg dry sludge was determined. The characteristics of residuals - ash, glassy material - were also analyzed. It was found that most of the heavy metals were fixed in the glassy material. Experimental results showed that the yeast industry sludge was an appropriate material for gasification studies and remarkable energy recovery was obtained in terms of power production by using syngas.

  15. Hybrid Stochastic Search Technique based Suboptimal AGC Regulator Design for Power System using Constrained Feedback Control Strategy

    NASA Astrophysics Data System (ADS)

    Ibraheem, Omveer, Hasan, N.

    2010-10-01

    A new hybrid stochastic search technique is proposed to design of suboptimal AGC regulator for a two area interconnected non reheat thermal power system incorporating DC link in parallel with AC tie-line. In this technique, we are proposing the hybrid form of Genetic Algorithm (GA) and simulated annealing (SA) based regulator. GASA has been successfully applied to constrained feedback control problems where other PI based techniques have often failed. The main idea in this scheme is to seek a feasible PI based suboptimal solution at each sampling time. The feasible solution decreases the cost function rather than minimizing the cost function.

  16. Introductory lecture. Advanced laser spectroscopy in combustion chemistry: from elementary steps to practical devices.

    PubMed

    Wolfrum, J

    2001-01-01

    In recent years a large number of linear and nonlinear laser-based diagnostic techniques for nonintrusive measurements of species concentrations, temperatures, and gas velocities in a wide pressure and temperature range with high temporal and spatial resolution have been developed and have become extremely valuable tools to study many aspects of combustion. Beside the nonintrusive diagnostics of technical combustion devices the kinetics and microscopic dynamics of elementary chemical combustion reactions can be investigated in great detail by laser spectroscopy. These investigations show, that a small number of relatively simple elementary steps like H + O2-->OH + O, H2O2-->2OH, O + N2-->NO + N, NH2 + NO-->H2O + N2, OH + N2H control a large variety of combustion phenomena and pollutant formation processes. Laminar flames are ideal objects to develop the application of laser spectroscopic methods for practical combustion systems and to test and improve the gas-phase reaction mechanism in combustion models. Nonintrusive laser point and field measurements are of basic importance in the validation and further development of turbulent combustion models. Nonlinear laser spectroscopic techniques using infrared-visible sum-frequency generation can now bridge the pressure and materials gap to provide kinetic data for catalytic combustion. Finally, the potential of laser techniques for active combustion control in municipal waste incinerators is illustrated.

  17. Porous filtering media comparison through wet and dry sampling of fixed bed gasification products

    NASA Astrophysics Data System (ADS)

    Allesina, G.; Pedrazzi, S.; Montermini, L.; Giorgini, L.; Bortolani, G.; Tartarini, P.

    2014-11-01

    The syngas produced by fixed bed gasifiers contains high quantities of particulate and tars. This issue, together with its high temperature, avoids its direct exploitation without a proper cleaning and cooling process. In fact, when the syngas produced by gasification is used in an Internal Combustion engine (IC), the higher the content of tars and particulate, the higher the risk to damage the engine is. If these compounds are not properly removed, the engine may fail to run. A way to avoid engine fails is to intensify the maintenance schedule, but these stops will reduce the system profitability. From a clean syngas does not only follow higher performance of the generator, but also less pollutants in the atmosphere. When is not possible to work on the gasification reactions, the filter plays the most important role in the engine safeguard process. This work is aimed at developing and comparing different porous filters for biomass gasifiers power plants. A drum filter was developed and tested filling it with different filtering media available on the market. As a starting point, the filter was implemented in a Power Pallet 10 kW gasifier produced by the California-based company "ALL Power Labs". The original filter was replaced with different porous biomasses, such as woodchips and corn cobs. Finally, a synthetic zeolites medium was tested and compared with the biological media previously used. The Tar Sampling Protocol (TSP) and a modified "dry" method using the Silica Gel material were applied to evaluate the tars, particulate and water amount in the syngas after the filtration process. Advantages and disadvantages of every filtering media chosen were reported and discussed.

  18. Combustion Science for Cleaner Fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  19. Combustion Science for Cleaner Fuels

    ScienceCinema

    Ahmed, Musahid

    2018-01-16

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  20. 30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false In-situ and surface gasification and... developed by in-situ or surface gasification or liquefaction technology, the lessee shall propose the value... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Federal Coal § 1206.264 In...

  1. 30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false In-situ and surface gasification and... developed by in-situ or surface gasification or liquefaction technology, the lessee shall propose the value... ENFORCEMENT, DEPARTMENT OF THE INTERIOR Natural Resources Revenue PRODUCT VALUATION Indian Coal § 1206.463 In...

  2. Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier.

    PubMed

    Liu, Lingqin; Huang, Yaji; Cao, Jianhua; Liu, Changqi; Dong, Lu; Xu, Ligang; Zha, Jianrui

    2018-06-01

    Considering the universality, renewability and cleanness of biomass, an experimental research is carried out using rice straw in a two-stage fluidized bed. The experimental analysis identified the relevant parameters in the operation of the two-stage fluidized bed to investigate the properties of biomass enriched air gasification. Results show that higher gasification temperature is conducive to enhance the gasification performance. An increasing ER is shown to go against adding gas heat value. When oxygen concentration increases from 21% to 45%, the gas heating value increases from 4.00MJ/kg to 5.24MJ/kg and the gasification efficiency increases from 29.60% to 33.59%, which shows higher oxygen concentration is conducive to higher quality gas and higher gasification efficiency. A secondary oxygen injection leads to reduction of tar concentration from 15.78g/Nm 3 to 10.24g/Nm 3 . The optimal secondary oxygen ratio is about 33.00%. When the secondary oxygen ratio increased to 46.86%, monocyclic aromatics reduced from 28.17% to 19.65% and PAHs increased from 34.97% to 44.05%, leading to the increase aromatization of tar. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Pyrolysis and gasification-melting of automobile shredder residue.

    PubMed

    Roh, Seon Ah; Kim, Woo Hyun; Yun, Jin Han; Min, Tae Jin; Kwak, Yeon Ho; Seo, Yong Chil

    2013-10-01

    Automobile shredder residue (ASR) from end-of-life vehicles (ELVs) in Korea has commonly been disposed of in landfills. Due to the growing number of scrapped cars and the decreasing availability of landfill space, effective technology for reducing ASR is needed. However ASR is a complex mixture, and finding an appropriate treatment is not easy on account of the harmful compounds in ASR. Therefore, research continues to seek an effective treatment technology. However most studies have thus far been performed in the laboratory, whereas few commercial and pilot studies have been performed. This paper studies the pyrolysis and gasification-melting of ASR. The pyrolyis characteristics have been analyzed in a thermogravimetric analyzer (TGA), a Lindberg furnace, and a fixed-bed pyrolyzer to study the fundamental characteristics of ASR thermal conversion. As a pilot study, shaft-type gasification-melting was performed. High-temperature gasification-melting was performed in a 5000 kg/day pilot system. The gas yield and syngas (H2 and CO) concentration increase when the reaction temperature increases. Gas with a high calorific value of more than 16,800 kJ/m3 was produced in the pyrolyzer. From the gasification-melting process, syngas of CO (30-40%) and H2(10-15%) was produced, with 5% CH4 produced as well. Slag generation was 17% of the initial ASR, with 5.8% metal content and 4% fly ash. The concentration of CO decreases, whereas the H2, CO2, and CH4 concentrations increase with an increase in the equivalence ratio (ER). The emission levels of dioxin and air pollution compounds except nitrogen oxides (NO(x)) were shown to satisfy Korean regulations.

  4. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  5. 30 CFR 206.264 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false In-situ and surface gasification and... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Federal Coal § 206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in-situ or...

  6. 30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...

  7. 30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...

  8. 30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...

  9. 30 CFR 206.463 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false In-situ and surface gasification and... THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT VALUATION Indian Coal § 206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in-situ or...

  10. 30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...

  11. 30 CFR 1206.463 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Coal § 1206.463 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...

  12. 30 CFR 1206.264 - In-situ and surface gasification and liquefaction operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false In-situ and surface gasification and..., DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Federal Coal § 1206.264 In-situ and surface gasification and liquefaction operations. If an ad valorem Federal coal lease is developed by in...

  13. Considerations Based on Reaction Rate on Char Gasification Behavior in Two-stage Gasifier for Biomass

    NASA Astrophysics Data System (ADS)

    Taniguchi, Miki; Nishiyama, Akio; Sasauchi, Kenichi; Ito, Yusuke; Akamatsu, Fumiteru

    In order to develop a small-scale gasifier in which biomass can be converted to energy with high efficiency, we planned a gasification process that consists of two parts: pyrolysis part (rotary kiln) and gasification part (downdraft gasifier). We performed fundamental experiments on gasification part and discussed the appropriate conditions such as air supply location, air ratio, air temperature and hearth load. We considered the results by calculating reaction rates of representative reactions on char gasification part and found that water gas reaction is dominant in the reduction area and its behavior gives important information to decide the adequate length of the char layer.

  14. Wabash Valley Integrated Gasification Combined Cycle, Coal to Fischer Tropsch Jet Fuel Conversion Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Jayesh; Hess, Fernando; Horzen, Wessel van

    This reports examines the feasibility of converting the existing Wabash Integrated Gasification Combined Cycle (IGCC) plant into a liquid fuel facility, with the goal of maximizing jet fuel production. The fuels produced are required to be in compliance with Section 526 of the Energy Independence and Security Act of 2007 (EISA 2007 §526) lifecycle greenhouse gas (GHG) emissions requirements, so lifecycle GHG emissions from the fuel must be equal to or better than conventional fuels. Retrofitting an existing gasification facility reduces the technical risk and capital costs associated with a coal to liquids project, leading to a higher probability ofmore » implementation and more competitive liquid fuel prices. The existing combustion turbine will continue to operate on low cost natural gas and low carbon fuel gas from the gasification facility. The gasification technology utilized at Wabash is the E-Gas™ Technology and has been in commercial operation since 1995. In order to minimize capital costs, the study maximizes reuse of existing equipment with minimal modifications. Plant data and process models were used to develop process data for downstream units. Process modeling was utilized for the syngas conditioning, acid gas removal, CO 2 compression and utility units. Syngas conversion to Fischer Tropsch (FT) liquids and upgrading of the liquids was modeled and designed by Johnson Matthey Davy Technologies (JM Davy). In order to maintain the GHG emission profile below that of conventional fuels, the CO 2 from the process must be captured and exported for sequestration or enhanced oil recovery. In addition the power utilized for the plant’s auxiliary loads had to be supplied by a low carbon fuel source. Since the process produces a fuel gas with sufficient energy content to power the plant’s loads, this fuel gas was converted to hydrogen and exported to the existing gas turbine for low carbon power production. Utilizing low carbon fuel gas and process steam

  15. Effect of Microwave Pre-Processing of Pelletized Biomass on its Gasification and Combustion / Mikroviļnu Priekšapstrādes Ietekme Uz Granulētas Biomasas Gazifikācijas Un Degšanas Procesiem

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Līckrastiņa, A.; Valdmanis, J.; Valdmanis, R.; Zaķe, M.; Arshanitsa, A.; Telysheva, G.; Solodovnik, V.

    2013-08-01

    To effectively produce clean heat energy from biomass, microwave (mw) pre-processing of its different types - pelletized wood (spruce), herbaceous biomass (reed canary grass) and their mixture (50:50) - was carried out at the 2.45 GHz frequency with different durations of biomass exposure to high-frequency oscillations. To estimate the mw pre-processing effect on the structure, composition and fuel characteristics of biomass, its thermogravimetric (TG), infrared spectroscopy (FTIR) measurements and elemental analysis were made. The pre-processing is shown to enhance the release of moisture and low-calorific volatiles and the partial destruction of biomass constituents (hemicelluloses, cellulose), promoting variations in the elemental composition and heating values of biomass. The field-enhanced variations of biomass characteristics and their influence on its gasification and combustion were studied using an integrated system of a biomass gasifier and a combustor with swirl-enhanced stabilization of the flame reaction zone. The results show that the mw pre-processing of biomass pellets provides a faster weight loss at the gasification, and, therefore, faster ignition and combustion of the activated pellets along with increased output of heat energy at their burnout Veikti kompleksi eksperimentālie pētījumi par mikroviļņu (2,45 GHz) priekšapstrādes ietekmi uz dažādas izcelsmes biomasas granulu (egles, miežabrāļa un to maisījumu 50:50) gazifikācijas un degšanas procesiem. Pētījumi apvieno granulētās biomasas elementārā sastāva un termogravimetriskos mērījumus, kā arī granulētās biomasas gazifikācijas un degšanas procesu kompleksu izpēti, apvienojot biomasas svara izmaiņu kinētiskos mērījumus ar degšanas zonas temperatūras, iekārtas jaudas un degšanas produktu sastāva kinētiskiem mērījumiem. Pētījumiem izmantota mazas jaudas eksperimentālā iekārta (līdz 2,5 kW), kuru veido integrēts gazifikātors un degšanas kamera. P

  16. Mechanistic Studies Of Combustion And Structure Formation During Combustion Synthesis Of Advanced Materials: Phase Separation Mechanism For Bio-Alloys

    NASA Technical Reports Server (NTRS)

    Varma, A.; Lau, C.; Mukasyan, A.

    2003-01-01

    Among all implant materials, Co-Cr-Mo alloys demonstrate perhaps the most useful balance of resistance to corrosion, fatigue and wear, along with strength and biocompatibility [1]. Currently, these widely used alloys are produced by conventional furnace technology. Owing to high melting points of the main alloy elements (e.g. Tm.p.(Co) 1768 K), high-temperature furnaces and long process times (several hours) are required. Therefore, attempts to develop more efficient and flexible methods for production of such alloys with superior properties are of great interest. The synthesis of materials using combustion phenomena is an advanced approach in powder metallurgy [2]. The process is characterized by unique conditions involving extremely fast heating rates (up to 10(exp 6 K/s), high temperatures (up to 3500 K), and short reaction times (on the order of seconds). As a result, combustion synthesis (CS) offers several attractive advantages over conventional metallurgical processing and alloy development technologies. The foremost is that solely the heat of chemical reaction (instead of an external source) supplies the energy for the synthesis. Also, simple equipment, rather than energy-intensive high-temperature furnaces, is sufficient. This work was devoted to experiments on CS of Co-based alloys by utilizing thermite (metal oxide-reducing metal) reactions, where phase separation subsequently produces materials with tailored compositions and properties. Owing to high reaction exothermicity, the CS process results in a significant increase of temperature (up to 3000 C), which is higher than melting points of all products. Since the products differ in density, phase separation may be a gravitydriven process: the heavy (metallic phase) settles while the light (slag) phase floats. The goal was to determine if buoyancy is indeed the major mechanism that controls phase segregation.

  17. An advanced anaerobic biofilter with effluent recirculation for phenol removal and methane production in treatment of coal gasification wastewater.

    PubMed

    Li, Yajie; Tabassum, Salma; Zhang, Zhenjia

    2016-09-01

    An advanced anaerobic biofilter (AF) was introduced for the treatment of coal gasification wastewater (CGW), and effluent recirculation was adopted to enhance phenol removal and methane production. The results indicated that AF was reliable in treating diluted CGW, while its efficiency and stability were seriously reduced when directly treating raw CGW. However, its performance could be greatly enhanced by effluent recirculation. Under optimal effluent recirculation of 0.5 to the influent, concentrations of chemical oxygen demand (COD) and total phenol in the effluent could reach as low as 234.0 and 14.2mg/L, respectively. Also, the rate of methane production reached 169.0mLCH4/L/day. Though CGW seemed to restrain the growth of anaerobic microorganisms, especially methanogens, the inhibition was temporary and reversible, and anaerobic bacteria presented strong tolerance. The activities of methanogens cultivated in CGW could quickly recover on feeding with glucose wastewater (GW). However, the adaptability of anaerobic bacteria to the CGW was very poor and the activity of methanogens could not be improved by long-term domestication. By analysis using the Haldane model, it was further confirmed that high effluent recirculation could result in high activity for hydrolytic bacteria and substrate affinity for toxic matters, but only suitable effluent recirculation could result in high methanogenic activity. Copyright © 2016. Published by Elsevier B.V.

  18. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  19. Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char.

    PubMed

    Hu, Junhao; Shao, Jingai; Yang, Haiping; Lin, Guiying; Chen, Yingquan; Wang, Xianhua; Zhang, Wennan; Chen, Hanping

    2017-11-01

    The synergy effect between coal and biomass in their co-gasification was studied in a vertical fixed bed reactor, and the physic-chemical structural characteristics and gasification reactivity of the residual char obtained from co-gasification were also investigated. The results shows that, conversion of the residual char and tar into gas is enhanced due to the synergy effect between coal and biomass. The physical structure of residual char shows more pore on coal char when more biomass is added in the co-gasification. The migration of inorganic elements between coal and biomass was found, the formation and competitive role of K 2 SiO 3 , KAlSiO 4 , and Ca 3 Al 2 (SiO 4 ) 3 is a mechanism behind the synergy. The graphization degree is enhanced but size of graphite crystallite in the residual char decreases with biomass blending ratio increasing. TGA results strongly suggest the big difference in the reactivity of chars derived from coal and biomass in spite of influence from co-gasification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Targeted therapies in gastric cancer and future perspectives.

    PubMed

    Yazici, Ozan; Sendur, M Ali Nahit; Ozdemir, Nuriye; Aksoy, Sercan

    2016-01-14

    Advanced gastric cancer (AGC) is associated with a high mortality rate and, despite multiple new chemotherapy options, the survival rates of patients with AGC remains poor. After the discovery of targeted therapies, research has focused on the new treatment options for AGC. In the last two decades, many targeted molecules were developed against AGC. Currently, two targeted therapy molecules have been approved for patients with AGC. In 2010, trastuzumab was the first molecule shown to improve survival in patients with HER2-positive AGC as part of a first-line combination regimen. In 2014, ramucirumab was the second targeted molecule to improve survival rates and was suggested as treatment for patients with AGC who had progressed after first-line platinum plus fluoropyrimidine with or without anthracycline chemotherapy. Ramucirumab was the first targeted therapy acting as a single agent in patients with advanced gastroesophageal cancers. Although these two molecules were introduced into clinical use, many other promising molecules have been tested in phase I-II trials. It is obvious that in the near future many different targeted therapies will be in use for treatment of AGC. In this review, the current status of targeted therapies in the treatment of AGC and gastroesophageal junction tumors, including HER (2-3) inhibitors, epidermal growth factor receptor inhibitors, tyrosine kinase inhibitors, antiangiogenic agents, c-MET inhibitors, mammalian target of rapamycin inhibitors, agents against other molecular pathways fibroblast growth factor, Claudins, insulin-like growth factor, heat shock proteins, and immunotherapy, will be discussed.

  1. Fuel-Flexible Gasification-Combustion Technology for Production of H2 and Sequestration-Ready CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George Rizeq; Janice West; Raul Subia

    GE Global Research is developing an innovative energy technology for coal gasification with high efficiency and near-zero pollution. This Unmixed Fuel Processor (UFP) technology simultaneously converts coal, steam and air into three separate streams of hydrogen-rich gas, sequestration-ready CO{sub 2}, and high-temperature, high-pressure vitiated air to produce electricity in gas turbines. This is the draft final report for the first stage of the DOE-funded Vision 21 program. The UFP technology development program encompassed lab-, bench- and pilot-scale studies to demonstrate the UFP concept. Modeling and economic assessments were also key parts of this program. The chemical and mechanical feasibility weremore » established via lab and bench-scale testing, and a pilot plant was designed, constructed and operated, demonstrating the major UFP features. Experimental and preliminary modeling results showed that 80% H{sub 2} purity could be achieved, and that a UFP-based energy plant is projected to meet DOE efficiency targets. Future work will include additional pilot plant testing to optimize performance and reduce environmental, operability and combined cycle integration risks. Results obtained to date have confirmed that this technology has the potential to economically meet future efficiency and environmental performance goals.« less

  2. Experimental study on temperature profile of fixed - bed gasification of oil-palm fronds

    NASA Astrophysics Data System (ADS)

    Atnaw, Samson M.; Sulaiman, Shaharin A.; Moni, M. Nazmi Z.

    2012-06-01

    Currently the world's second largest palm oil producer Malaysia produces large amount of oil palm biomass each year. The abundance of the biomass introduces a challenge to utilize them as main feedstock for heat and energy generation. Although some oil palm parts and derivatives like empty fruit bunch and fibre have been commercialized as fuel, less attention has been given to oil palm fronds (OPF). Initial feasibility and characterization studies of OPF showed that it is highly feasible as fuel for gasification to produce high value gaseous fuel or syngas. This paper discusses the experimental gasification attempt carried out on OPF using a 50 kW lab scale downdraft gasifier and its results. The conducted study focused on the temperature distributions within the reactor and the characteristics of the dynamic temperature profile for each temperature zones during operation. OPF feedstock of one cubic inch in individual size with 15% average moisture content was utilized. An average pyrolysis zone temperature of 324°Cand an average oxidation zone temperature of 796°Cwere obtained over a total gasification period of 74 minutes. A maximum oxidation zone temperature of 952°Cwas obtained at 486 lpm inlet air flow rate and 10 kg/hr feedstock consumption rate. Stable bluish flare was produced for more than 70% of the total gasification time. The recorded temperature profiles produced closely similar patterns with the temperature profiles recorded from the gasification of woody materials. Similar temperature profile was obtained comparing the results from OPF gasification with that of woody biomass. Furthermore, the successful ignition of the syngas produced from OPF gasification ascertained that OPF indeed has a higher potential as gasification feedstock. Hence, more detailed studies need to be done for better understanding in exploiting the biomass as a high prospect alternative energy solution. In addition, a study of the effect of initial moisture content of OPF

  3. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battaglia, Francine; Agblevor, Foster; Klein, Michael

    A collaborative effort involving experiments, kinetic modeling, and computational fluid dynamics (CFD) was used to understand co-gasification of coal-biomass mixtures. The overall goal of the work was to determine the key reactive properties for coal-biomass mixed fuels. Sub-bituminous coal was mixed with biomass feedstocks to determine the fluidization and gasification characteristics of hybrid poplar wood, switchgrass and corn stover. It was found that corn stover and poplar wood were the best feedstocks to use with coal. The novel approach of this project was the use of a red mud catalyst to improve gasification and lower gasification temperatures. An important resultsmore » was the reduction of agglomeration of the biomass using the catalyst. An outcome of this work was the characterization of the chemical kinetics and reaction mechanisms of the co-gasification fuels, and the development of a set of models that can be integrated into other modeling environments. The multiphase flow code, MFIX, was used to simulate and predict the hydrodynamics and co-gasification, and results were validated with the experiments. The reaction kinetics modeling was used to develop a smaller set of reactions for tractable CFD calculations that represented the experiments. Finally, an efficient tool was developed, MCHARS, and coupled with MFIX to efficiently simulate the complex reaction kinetics.« less

  4. Evaluation of wood chip gasification to produce reburn fuel for coal-fired boilers

    EPA Science Inventory

    Gasification/reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient sour...

  5. Fuel properties to enable lifted-flame combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Eric

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  6. Apparatus and method for solar coal gasification

    DOEpatents

    Gregg, David W.

    1980-01-01

    Apparatus for using focused solar radiation to gasify coal and other carbonaceous materials. Incident solar radiation is focused from an array of heliostats onto a tower-mounted secondary mirror which redirects the focused solar radiation down through a window onto the surface of a vertically-moving bed of coal, or a fluidized bed of coal, contained within a gasification reactor. The reactor is designed to minimize contact between the window and solids in the reactor. Steam introduced into the gasification reactor reacts with the heated coal to produce gas consisting mainly of carbon monoxide and hydrogen, commonly called "synthesis gas", which can be converted to methane, methanol, gasoline, and other useful products. One of the novel features of the invention is the generation of process steam at the rear surface of the secondary mirror.

  7. Advanced exergoenvironmental analysis of a near-zero emission power plant with chemical looping combustion.

    PubMed

    Petrakopoulou, Fontina; Tsatsaronis, George; Morosuk, Tatiana

    2012-03-06

    Carbon capture and storage (CCS) from power plants can be used to mitigate CO(2) emissions from the combustion of fossil fuels. However, CCS technologies are energy intensive, decreasing the operating efficiency of a plant and increasing its costs. Recently developed advanced exergy-based analyses can uncover the potential for improvement of complex energy conversion systems, as well as qualify and quantify plant component interactions. In this paper, an advanced exergoenvironmental analysis is used for the first time as means to evaluate an oxy-fuel power plant with CO(2) capture. The environmental impacts of each component are split into avoidable/unavoidable and endogenous/exogenous parts. In an effort to minimize the environmental impact of the plant operation, we focus on the avoidable part of the impact (which is also split into endogenous and exogenous parts) and we seek ways to decrease it. The results of the advanced exergoenvironmental analysis show that the majority of the environmental impact related to the exergy destruction of individual components is unavoidable and endogenous. Thus, the improvement potential is rather limited, and the interactions of the components are of lower importance. The environmental impact of construction of the components is found to be significantly lower than that associated with their operation; therefore, our suggestions for improvement focus on measures concerning the reduction of exergy destruction and pollutant formation.

  8. Terascale Cluster for Advanced Turbulent Combustion Simulations

    DTIC Science & Technology

    2008-07-25

    the system We have given the name CATS (for Combustion And Turbulence Simulator) to the terascale system that was obtained through this grant. CATS ...lnfiniBand interconnect. CATS includes an interactive login node and a file server, each holding in excess of 1 terabyte of file storage. The 35 active...compute nodes of CATS enable us to run up to 140-core parallel MPI batch jobs; one node is reserved to run the scheduler. CATS is operated and

  9. Modeling biomass gasification in circulating fluidized beds

    NASA Astrophysics Data System (ADS)

    Miao, Qi

    In this thesis, the modeling of biomass gasification in circulating fluidized beds was studied. The hydrodynamics of a circulating fluidized bed operating on biomass particles were first investigated, both experimentally and numerically. Then a comprehensive mathematical model was presented to predict the overall performance of a 1.2 MWe biomass gasification and power generation plant. A sensitivity analysis was conducted to test its response to several gasifier operating conditions. The model was validated using the experimental results obtained from the plant and two other circulating fluidized bed biomass gasifiers (CFBBGs). Finally, an ASPEN PLUS simulation model of biomass gasification was presented based on minimization of the Gibbs free energy of the reaction system at chemical equilibrium. Hydrodynamics plays a crucial role in defining the performance of gas-solid circulating fluidized beds (CFBs). A 2-dimensional mathematical model was developed considering the hydrodynamic behavior of CFB gasifiers. In the modeling, the CFB riser was divided into two regions: a dense region at the bottom and a dilute region at the top of the riser. Kunii and Levenspiel (1991)'s model was adopted to express the vertical solids distribution with some other assumptions. Radial distributions of bed voidage were taken into account in the upper zone by using Zhang et al. (1991)'s correlation. For model validation purposes, a cold model CFB was employed, in which sawdust was transported with air as the fluidizing agent. A comprehensive mathematical model was developed to predict the overall performance of a 1.2 MWe biomass gasification and power generation demonstration plant in China. Hydrodynamics as well as chemical reaction kinetics were considered. The fluidized bed riser was divided into two distinct sections: (a) a dense region at the bottom of the bed where biomass undergoes mainly heterogeneous reactions and (b) a dilute region at the top where most of homogeneous

  10. 78 FR 52764 - Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-26

    ... DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact Statement... California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment/Draft Environmental...

  11. Method for Hot Real-Time Sampling of Gasification Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beammore » Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.« less

  12. 78 FR 54640 - Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ... DEPARTMENT OF ENERGY Extension of Public Comment Period Hydrogen Energy California's Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact Statement... Integrated Gasification Combined Cycle Project Preliminary Staff Assessment and Draft Environmental Impact...

  13. Properties of gasification-derived char and its utilization for catalytic tar reforming

    NASA Astrophysics Data System (ADS)

    Qian, Kezhen

    Char is a low-value byproduct of biomass gasification and pyrolysis with many potential applications, such as soil amendment and the synthesis of activated carbon. The overall goal of the proposed research was to develop novel methods to use char derived from gasification for high-value applications in syngas conditioning. The first objective was to investigate effects of gasification condition and feedstock on properties of char derived from fluidized bed gasification. Results show that the surface areas of most of the char were 1--10 m 2/g and increased as the equivalence ratio increased. Char moisture and fixed carbon contents decreased while ash content increased as equivalence ratio increased. The next objective was to study the properties of sorghum and red cedar char derived from downdraft gasifier. Red cedar char contained more aliphatic carbon and o-alkyl carbon than sorghum char. Char derived from downdraft gasification had higher heating values and lower ash contents than char derived from fluidized bed gasification. The gasification reactivity of red cedar char was higher than that of sorghum char. Then, red cedar char based catalysts were developed with different preparation method to reform toluene and naphthalene as model tars. The catalyst prepared with nickel nitrate was found to be better than that with nickel acetate. The nickel particle size of catalyst impregnated with nickel nitrate was smaller than that of catalyst impregnated with nickel acetate. The particle size of catalyst impregnated with nickel acetate decreased by hydrazine reduction. The catalyst impregnated with nickel nitrate had the highest toluene removal efficiency, which was 70%--100% at 600--800 °C. The presence of naphthalene in tar reduced the catalyst efficiency. The toluene conversion was 36--99% and the naphthalene conversion was 37%--93% at 700--900 °C. Finally, effects of atmosphere and pressure on catalytic reforming of lignin-derived tars over the developed catalyst

  14. Enhancing the combustible properties of bamboo by torrefaction.

    PubMed

    Rousset, Patrick; Aguiar, Clarissa; Labbé, Nicole; Commandré, Jean-Michel

    2011-09-01

    Bamboo has wide range of moisture content, low bulk energy density and is difficult to transport, handle, store and feed into existing combustion and gasification systems. Because of its important fuel characteristics such as low ash content, alkali index and heating value, bamboo is a promising energy crop for the future. The aim of this study was to evaluate the effects of torrefaction on the main energy properties of Bambusa vulgaris. Three different torrefaction temperatures were employed: 220, 250 and 280°C. The elemental characteristics of lignite and coal were compared to the torrefied bamboo. The characteristics of the biomass fuels tend toward those of low rank coals. Principal component analysis of FTIR data showed a clear separation between the samples by thermal treatment. The loadings plot indicated that the bamboo samples underwent chemical changes related to carbonyl groups, mostly present in hemicelluloses, and to aromatic groups present in lignin. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, S., E-mail: sankha.deepp@gmail.com; Mondal, P., E-mail: mondal.pradip87@gmail.com; Ghosh, S., E-mail: sudipghosh.becollege@gmail.com

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical modelmore » of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.« less

  16. Droplet Combustion Experiment Operates

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 12, 1997, MET:11/07:00 (approximate). DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (119KB JPEG, 658 x 982 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300171.html.

  17. Process simulation of ethanol production from biomass gasification and syngas fermentation.

    PubMed

    Pardo-Planas, Oscar; Atiyeh, Hasan K; Phillips, John R; Aichele, Clint P; Mohammad, Sayeed

    2017-12-01

    The hybrid gasification-syngas fermentation platform can produce more bioethanol utilizing all biomass components compared to the biochemical conversion technology. Syngas fermentation operates at mild temperatures and pressures and avoids using expensive pretreatment processes and enzymes. This study presents a new process simulation model developed with Aspen Plus® of a biorefinery based on a hybrid conversion technology for the production of anhydrous ethanol using 1200tons per day (wb) of switchgrass. The simulation model consists of three modules: gasification, fermentation, and product recovery. The results revealed a potential production of about 36.5million gallons of anhydrous ethanol per year. Sensitivity analyses were also performed to investigate the effects of gasification and fermentation parameters that are keys for the development of an efficient process in terms of energy conservation and ethanol production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. A critical analysis of the cytoreductive surgery with hyperthermic intraperitoneal chemotherapy combo in the clinical management of advanced gastric cancer: an effective multimodality approach with scope for improvement

    PubMed Central

    Beeharry, Maneesh K.; Liu, Wen-Tao; Yao, Xue-Xin

    2016-01-01

    Peritoneal carcinomatosis (PC) is manifested in up to 40% of gastric cancer (GC) patients, after which their 5-year survival drops to less than 5%. The currently most acceptable treatment option for advanced GC (AGC) is systemic chemo and radio therapies with however generally very unsatisfying results and this led to a resurgence of interest in regional therapies like cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Small trials have indicated an association with prolonged survival when applying this technique to AGC manifesting with PC. High procedure-related morbidity and mortality associated with the CRS-HIPEC approach have however brought by a polemic on the merits of the latter: with the advent of regulatory approval of more effective as well as novel, more personalized treatment options in AGC, along with advances in tailoring investigational agents specifically for peritoneal delivery, there clearly is a need to outline the appropriate role of CRS-HIPEC in this disease. In a clear objective to improve the therapeutic efficiency of HIPEC, there have been immense developments in the technical aspects of this technology including the use of nanotechnology in more precise drug delivery systems (DDS) or choice of more efficient drugs such as gene-target technology, laparoscopy and so on. Henceforth, in this review, we will be highlighting the past and current status of the CRS + HIPEC procedure, shedding light on the pros and cons in order to boost up the efficiency of this multimodality approach. PMID:28138643

  19. A critical analysis of the cytoreductive surgery with hyperthermic intraperitoneal chemotherapy combo in the clinical management of advanced gastric cancer: an effective multimodality approach with scope for improvement.

    PubMed

    Beeharry, Maneesh K; Liu, Wen-Tao; Yao, Xue-Xin; Yan, Min; Zhu, Zheng-Gang

    2016-01-01

    Peritoneal carcinomatosis (PC) is manifested in up to 40% of gastric cancer (GC) patients, after which their 5-year survival drops to less than 5%. The currently most acceptable treatment option for advanced GC (AGC) is systemic chemo and radio therapies with however generally very unsatisfying results and this led to a resurgence of interest in regional therapies like cytoreductive surgery (CRS) and hyperthermic intraperitoneal chemotherapy (HIPEC). Small trials have indicated an association with prolonged survival when applying this technique to AGC manifesting with PC. High procedure-related morbidity and mortality associated with the CRS-HIPEC approach have however brought by a polemic on the merits of the latter: with the advent of regulatory approval of more effective as well as novel, more personalized treatment options in AGC, along with advances in tailoring investigational agents specifically for peritoneal delivery, there clearly is a need to outline the appropriate role of CRS-HIPEC in this disease. In a clear objective to improve the therapeutic efficiency of HIPEC, there have been immense developments in the technical aspects of this technology including the use of nanotechnology in more precise drug delivery systems (DDS) or choice of more efficient drugs such as gene-target technology, laparoscopy and so on. Henceforth, in this review, we will be highlighting the past and current status of the CRS + HIPEC procedure, shedding light on the pros and cons in order to boost up the efficiency of this multimodality approach.

  20. An Experimental Investigation of Sewage Sludge Gasification in a Fluidized Bed Reactor

    PubMed Central

    Calvo, L. F.; García, A. I.; Otero, M.

    2013-01-01

    The gasification of sewage sludge was carried out in a simple atmospheric fluidized bed gasifier. Flow and fuel feed rate were adjusted for experimentally obtaining an air mass : fuel mass ratio (A/F) of 0.2 < A/F < 0.4. Fuel characterization, mass and power balances, produced gas composition, gas phase alkali and ammonia, tar concentration, agglomeration tendencies, and gas efficiencies were assessed. Although accumulation of material inside the reactor was a main problem, this was avoided by removing and adding bed media along gasification. This allowed improving the process heat transfer and, therefore, gasification efficiency. The heating value of the produced gas was 8.4 MJ/Nm, attaining a hot gas efficiency of 70% and a cold gas efficiency of 57%. PMID:24453863

  1. Potential Commercial Applications from Combustion and Fire Research in Space

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Lyons, Valerie J.

    1996-01-01

    The near-zero (microgravity) environment of orbiting spacecraft minimizes buoyant flows, greatly simplifying combustion processes and isolating important phenomena ordinarily concealed by the overwhelming gravity-driven forces and flows. Fundamental combustion understanding - the focus to date of the NASA microgravity-combustion program - has greatly benefited from analyses and experiments conducted in the microgravity environment. Because of the economic and commercial importance of combustion in practice, there is strong motivation to seek wider applications for the microgravity-combustion findings. This paper reviews selected technology developments to illustrate some emerging applications. Topics cover improved fire-safety technology in spacecraft and terrestrial systems, innovative combustor designs for aerospace and ground propulsion, applied sensors and controls for combustion processes, and self-sustaining synthesis techniques for advanced materials.

  2. Active Combustion Control for Aircraft Gas Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.; Saus, Joseph R.; Paxson, Daniel E.

    2000-01-01

    Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.

  3. Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Ranjani; Benincosa, William; Riley, Jarrett

    This paper presents data on conversion of two different coals with a chemical looping oxygen carrier, CuO-Fe 2O 3-alumina, and over a range of conditions including steam and various levels of reduction of the oxygen carrier. Reactions of coal/steam/CuO-Fe 2O 3-alumina oxygen carrier and coal/steam/partially reduced CuO-Fe 2O 3-alumina oxygen carrier were investigated with Wyodak coal and Illinois #6 coal in a fluidized bed reactor. Temperature programmed reaction studies indicated that the oxygen carrier enhanced the steam gasification/combustion rates of both coals. Rates of gasification/combustion were higher with Wyodak coal (sub bituminous) than that with Illinois #6 coal (bituminous). Inmore » addition to the increase in reaction rates, the total moles of carbon that were gasified and combusted from coal/steam increased in the presence of the oxygen carrier. The reduced oxygen carrier promoted the water-gas shift reaction when reacted with synthesis gas in the presence of steam, but the reverse water gas shift reaction was observed when steam was not present. The partially reduced oxygen carrier enhanced the production of H 2 from coal/steam, which was different from the observations with un-reduced oxygen carrier. Water splitting reaction to produce H 2 was also observed with the reduced oxygen carrier. CuO-Fe 2O 3-alumina reacted with coal during the temperature ramp to 850 °C even in the absence of steam due to the chemical-looping oxygen uncoupling (CLOU) reaction. Here, the fourier transform infra-red (FTIR) analysis indicated the presence of volatile aromatics during the temperature ramp and these may have also contributed to the reactions with the oxygen carrier in the absence of steam. Increasing steam concentration had a negative effect on the CLOU reaction.« less

  4. Investigation of reactions in a fluidized bed reactor during chemical looping combustion of coal/steam with copper oxide-iron oxide-alumina oxygen carrier

    DOE PAGES

    Siriwardane, Ranjani; Benincosa, William; Riley, Jarrett; ...

    2016-10-06

    This paper presents data on conversion of two different coals with a chemical looping oxygen carrier, CuO-Fe 2O 3-alumina, and over a range of conditions including steam and various levels of reduction of the oxygen carrier. Reactions of coal/steam/CuO-Fe 2O 3-alumina oxygen carrier and coal/steam/partially reduced CuO-Fe 2O 3-alumina oxygen carrier were investigated with Wyodak coal and Illinois #6 coal in a fluidized bed reactor. Temperature programmed reaction studies indicated that the oxygen carrier enhanced the steam gasification/combustion rates of both coals. Rates of gasification/combustion were higher with Wyodak coal (sub bituminous) than that with Illinois #6 coal (bituminous). Inmore » addition to the increase in reaction rates, the total moles of carbon that were gasified and combusted from coal/steam increased in the presence of the oxygen carrier. The reduced oxygen carrier promoted the water-gas shift reaction when reacted with synthesis gas in the presence of steam, but the reverse water gas shift reaction was observed when steam was not present. The partially reduced oxygen carrier enhanced the production of H 2 from coal/steam, which was different from the observations with un-reduced oxygen carrier. Water splitting reaction to produce H 2 was also observed with the reduced oxygen carrier. CuO-Fe 2O 3-alumina reacted with coal during the temperature ramp to 850 °C even in the absence of steam due to the chemical-looping oxygen uncoupling (CLOU) reaction. Here, the fourier transform infra-red (FTIR) analysis indicated the presence of volatile aromatics during the temperature ramp and these may have also contributed to the reactions with the oxygen carrier in the absence of steam. Increasing steam concentration had a negative effect on the CLOU reaction.« less

  5. Groundnut shell gasification performance in a fluidized bed gasifier with bubbling air as gasification medium.

    PubMed

    Singh, Dharminder; Yadav, Sanjeev; Rajesh, V M; Mohanty, Pravakar

    2018-05-24

    This work was focused on finding the groundnut shell (GNS) gasification performance in a fluidized bed gasifier with bubbling air as gasification medium. GNS in powder form (a mixture of different particle size as given in table 8 in the article) was gasified using naturally available river sand as bed material, top of the bed feeding, conventional charcoal as bed heating medium, and two cyclones for proper cleaning and cooling the product gas. Experiments were performed using different operating conditions such as equivalence ratio (ER) between 0.29 and 0.33, bed temperature between 650°C and 800°C, and feedstock feeding rate between 36 and 31.7 kg/h. Different parameters were evaluated to study the gasifier performance such as gas yield, cold gas efficiency, carbon conversion efficiency (CCE), and high heating value. The most suitable ER value was found to be 0.31, giving the most stable bed temperature profile at 714.4°C with 5-10% fluctuation. Cold gas efficiency and CCE at optimal ER of 0.31 was found to be 71.8% and 91%, respectively.

  6. Evaluation of wood chip gasification to produce reburrn fuel for coal-fired boilers: AWMA

    EPA Science Inventory

    Gasification or reburn testing with biomass and other wastes is of interest to both the U.S. Environmental Protection Agency (EPA) and the Italian Ministry of the Environment & Territory (IMET). Gasification systems that use wastes as feedstock should provide a clean, efficient s...

  7. Effect of fuel origin on synergy during co-gasification of biomass and coal in CO2.

    PubMed

    Zhang, Yan; Zheng, Yan; Yang, Mingjun; Song, Yongchen

    2016-01-01

    The effect of fuel origin on synergy in coal/biomass blends during co-gasification has been assessed using a congruent-mass thermogravimetry analysis (TGA) method. Results revealed that synergy occurs when ash residuals are formed, followed by an almost complete gasification of biomass. Potassium species in biomass ash play a catalytic role in promoting gasification reactivity of coal char, which is a direct consequence of synergy during co-gasification. The SEM-EDS spectra provided conclusive evidence that the transfer of potassium from biomass to the surface of coal char occurs during co-pyrolysis/gasification. Biomass ash rich in silica eliminated synergy in coal/biomass blends but not to the extent of inhibiting the reaction rate of the blended chars to make it slower than that of separated ones. The best result in terms of synergy was concluded to be the combination of low-ash coal and K-rich biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Development of Improved Iron-Aluminide Filter Tubes and Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkins, R.R.; Sutton, T.G.; Miller, C.J.

    2008-01-14

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to explore and develop advanced manufacturing techniques to fabricate sintered iron-aluminide intermetallic porous bodies used for gas filtration so as to reduce production costs while maintaining or improving performance in advanced coal gasification and combustion systems. The use of a power turbine fired with coal-derived synthesis gas requires some form of gas cleaning in order to protect turbine and downstream components from degradation by erosion, corrosion, and/or deposition. Hot-gas filtration is one form of cleaning that offers the ability to remove particles from the gases produced by gasification processesmore » without having to substantially cool and, possibly, reheat them before their introduction into the turbine. This technology depends critically on materials durability and reliability, which have been the subject of study for a number of years.« less

  9. Harvesting of Chlorella sorokiniana by co-culture with the filamentous fungus Isaria fumosorosea: A potential sustainable feedstock for hydrothermal gasification.

    PubMed

    Mackay, Stephen; Gomes, Eduardo; Holliger, Christof; Bauer, Rolene; Schwitzguébel, Jean-Paul

    2015-06-01

    Despite recent advances in down-stream processing, production of microalgae remains substantially limited because of economical reasons. Harvesting and dewatering are the most energy-intensive processing steps in their production and contribute 20-30% of total operational cost. Bio-flocculation of microalgae by co-cultivation with filamentous fungi relies on the development of large structures that facilitate cost effective harvesting. A yet unknown filamentous fungus was isolated as a contaminant from a microalgal culture and identified as Isaria fumosorosea. Blastospores production was optimized in minimal medium and the development of pellets, possibly lichens, was followed when co-cultured with Chlorella sorokiniana under strict autotrophic conditions. Stable pellets (1-2mm) formed rapidly at pH 7-8, clearing the medium of free algal cells. Biomass was harvested with large inexpensive filters, generating wet slurry suitable for hydrothermal gasification. Nutrient rich brine from the aqueous phase of hydrothermal gasification supported growth of the fungus and may increase the process sustainability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Thermogravimetric and model-free kinetic studies on CO2 gasification of low-quality, high-sulphur Indian coals

    NASA Astrophysics Data System (ADS)

    Das, Tonkeswar; Saikia, Ananya; Mahanta, Banashree; Choudhury, Rahul; Saikia, Binoy K.

    2016-10-01

    Coal gasification with CO2 has emerged as a cleaner and more efficient way for the production of energy, and it offers the advantages of CO2 mitigation policies through simultaneous CO2 sequestration. In the present investigation, a feasibility study on the gasification of three low-quality, high-sulphur coals from the north-eastern region (NER) of India in a CO2 atmosphere using thermogravimetric analysis (TGA-DTA) has been made in order to have a better understanding of the physical and chemical characteristics in the process of gasification of coal. Model-free kinetics was applied to determine the activation energies (E) and pre-exponential factors (A) of the CO2 gasification process of the coals. Multivariate non-linear regression analyses were performed to find out the formal mechanisms, kinetic model, and the corresponding kinetic triplets. The results revealed that coal gasification with CO2 mainly occurs in the temperature range of 800∘-1400∘C and a maximum of at around 1100∘C. The reaction mechanisms responsible for CO2 gasification of the coals were observed to be of the ` nth order with autocatalysis (CnB)' and ` nth order (Fn) mechanism'. The activation energy of the CO2 gasification was found to be in the range 129.07-146.81 kJ mol-1.

  11. Combustion Dynamics and Control for Ultra Low Emissions in Aircraft Gas-Turbine Engines

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.

    2011-01-01

    Future aircraft engines must provide ultra-low emissions and high efficiency at low cost while maintaining the reliability and operability of present day engines. The demands for increased performance and decreased emissions have resulted in advanced combustor designs that are critically dependent on efficient fuel/air mixing and lean operation. However, all combustors, but most notably lean-burning low-emissions combustors, are susceptible to combustion instabilities. These instabilities are typically caused by the interaction of the fluctuating heat release of the combustion process with naturally occurring acoustic resonances. These interactions can produce large pressure oscillations within the combustor and can reduce component life and potentially lead to premature mechanical failures. Active Combustion Control which consists of feedback-based control of the fuel-air mixing process can provide an approach to achieving acceptable combustor dynamic behavior while minimizing emissions, and thus can provide flexibility during the combustor design process. The NASA Glenn Active Combustion Control Technology activity aims to demonstrate active control in a realistic environment relevant to aircraft engines by providing experiments tied to aircraft gas turbine combustors. The intent is to allow the technology maturity of active combustion control to advance to eventual demonstration in an engine environment. Work at NASA Glenn has shown that active combustion control, utilizing advanced algorithms working through high frequency fuel actuation, can effectively suppress instabilities in a combustor which emulates the instabilities found in an aircraft gas turbine engine. Current efforts are aimed at extending these active control technologies to advanced ultra-low-emissions combustors such as those employing multi-point lean direct injection.

  12. Assessment of Tree Leaves Flakes Mixed with Crude Glycerol as a Bioenergy Source

    PubMed Central

    Hilal-AlNaqbi, Ali; Al-Omari, Salah B.; Selim, Mohamed Y. E.

    2016-01-01

    The gasification and combustion of dry tree leaves and the cogasification of dry tree leaves soaking crude glycerol were studied experimentally. An updraft fixed bed gasification and combustion system was built. The operation was conducted at different air to fuel ratios. Results show more stable combustion and more effective heat transfer to furnace walls for the cases when tree leaves flakes are mixed with 20 percent (on mass basis) of crude glycerol, as compared with the case when only dry tree leaves are used as fuel. TGA analysis was also conducted for the two fuels used under both air and nitrogen environments. For the crude glycerol, four phases of pyrolysis and gasification were noticed under either of the two surrounding gaseous media (air or nitrogen). For the dry tree leaves, the pyrolysis under nitrogen shows only a simple smooth pyrolysis and gasification curve without showing the different distinct phases that were otherwise identified when the pyrolysis is conducted under air environment. Moreover, the air TGA results lead to more gasification due to the char oxidation at high temperatures. DTG results are also presented and discussed. PMID:27413749

  13. Noble-metal-free bimetallic alloy nanoparticle-catalytic gasification of phenol in supercritical water

    DOE PAGES

    Jia, Lijuan; Yu, Jiangdong; Chen, Yuan; ...

    2017-08-01

    The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less

  14. Noble-metal-free bimetallic alloy nanoparticle-catalytic gasification of phenol in supercritical water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Lijuan; Yu, Jiangdong; Chen, Yuan

    The exploration of non-noble-metal catalysts for high efficiency gasification of biomass in supercritical water (SCW) is of great significance for the sustainable development. A series of Ni–M (M = Co or Zn) bimetallic nanoparticles supported on graphitized carbon black were synthesized and examined as catalysts for gasification of phenol in SCW. We found that a nearly complete gasification of phenol can be achieved even at a low temperature of 450 °C with the bimetallic nanoparticles catalysts. Kinetic study indicated the activation energy for phenol gasification were 20.4 ± 2.6 and 43.6 ± 2.6 kJ/mol for Ni20Zn15 and Ni20Co15 catalyst, respectively.more » Furthermore, XRD, XPS and TEM were performed to characterize the catalysts and the results showed the formation of NiCo and NiZn alloy phase. Catalyst recycling experiments were also conducted to evaluate the stability of the catalysts. The characterization of used catalysts suggest that the severe agglomeration of nanoparticles leads to the decrease in catalytic activity.« less

  15. AST Combustion Workshop: Diagnostics Working Group Report

    NASA Technical Reports Server (NTRS)

    Locke, Randy J.; Hicks, Yolanda R.; Hanson, Ronald K.

    1996-01-01

    A workshop was convened under NASA's Advanced Subsonics Technologies (AST) Program. Many of the principal combustion diagnosticians from industry, academia, and government laboratories were assembled in the Diagnostics/Testing Subsection of this workshop to discuss the requirements and obstacles to the successful implementation of advanced diagnostic techniques to the test environment of the proposed AST combustor. The participants, who represented the major relevant areas of advanced diagnostic methods currently applied to combustion and related fields, first established the anticipated AST combustor flowfield conditions. Critical flow parameters were then examined and prioritized as to their importance to combustor/fuel injector design and manufacture, environmental concerns, and computational interests. Diagnostic techniques were then evaluated in terms of current status, merits and obstacles for each flow parameter. All evaluations are presented in tabular form and recommendations are made on the best-suited diagnostic method to implement for each flow parameter in order of applicability and intrinsic value.

  16. Sampling of tar from sewage sludge gasification using solid phase adsorption.

    PubMed

    Ortiz González, Isabel; Pérez Pastor, Rosa Ma; Sánchez Hervás, José Ma

    2012-06-01

    Sewage sludge is a residue from wastewater treatment plants which is considered to be harmful to the environment and all living organisms. Gasification technology is a potential source of renewable energy that converts the sewage sludge into gases that can be used to generate energy or as raw material in chemical synthesis processes. But tar produced during gasification is one of the problems for the implementation of the gasification technology. Tar can condense on pipes and filters and may cause blockage and corrosion in the engines and turbines. Consequently, to minimize tar content in syngas, the ability to quantify tar levels in process streams is essential. The aim of this work was to develop an accurate tar sampling and analysis methodology using solid phase adsorption (SPA) in order to apply it to tar sampling from sewage sludge gasification gases. Four types of commercial SPA cartridges have been tested to determine the most suitable one for the sampling of individual tar compounds in such streams. Afterwards, the capacity, breakthrough volume and sample stability of the Supelclean™ ENVI-Carb/NH(2), which is identified as the most suitable, have been determined. Basically, no significant influences from water, H(2)S or NH(3) were detected. The cartridge was used in sampling real samples, and comparable results were obtained with the present and traditional methods.

  17. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@eng.nssmc.com; Ishida, Yoshihiro; Osada, Morihiro

    Highlights: • A new waste management scheme and the effects of co-gasification of MSW were assessed. • A co-gasification system was compared with other conventional systems. • The co-gasification system can produce slag and metal with high-quality. • The co-gasification system showed an economic advantage when bottom ash is landfilled. • The sensitive analyses indicate an economic advantage when the landfill cost is high. - Abstract: This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for amore » region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater

  18. Combustion of interacting droplet arrays in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Dietrich, Daniel L.

    1995-01-01

    This research program involves the study of one and two dimensional arrays of droplets in a buoyant-free environment. The purpose of the work is to extend the database and theories that exist for single droplets into the regime where droplet interactions are important. The eventual goal being to use the results of this work as inputs to models on spray combustion where droplets seldom burn individually; instead the combustion history of a droplet is strongly influenced by the presence of the neighboring droplets. Throughout the course of the work, a number of related aspects of isolated droplet combustion have also been investigated. This paper will review our progress in microgravity droplet array combustion, advanced diagnostics (specifically L2) applied to isolated droplet combustion, and radiative extinction large droplet flames. A small-scale droplet combustion experiment being developed for the Space Shuttle will also be described.

  19. Coal Combustion Science quarterly progress report, April--June 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  20. Co-gasification of pine and oak biochar with sub-bituminous coal in carbon dioxide.

    PubMed

    Beagle, E; Wang, Y; Bell, D; Belmont, E

    2018-03-01

    Pine and oak biochars derived as byproducts of demonstration-scale pyrolysis, and blends of these two feedstocks with Powder River Basin coal, were gasified in a carbon dioxide environment using a modified drop tube reactor (MDTR) and a thermogravimetric analyzer (TGA). The impact of gasification temperature on conversion kinetics was evaluated from the temporal evolution of major product gases in the MDTR as measured using a mass spectrometer. Random pore modeling was conducted to simulate gasification in the MDTR with favorable results. The MDTR and TGA were used to conduct gasification for assessment of non-linear additive effects in the blends. Additive analysis of the blends showed deviation from the experimental blend results, indicating inhibiting effects of co-gasifying the biochar and coal. Inhibitory effects are more significant for oak than pine and more pronounced in the TGA at lower gasification temperatures. Results are discussed in the context of feedstock and reactor type. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathe, Mandar; Xu, Dikai; Hsieh, Tien-Lin

    2014-12-31

    This document is the final report for the project titled “Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ CO 2 Capture” under award number FE0012136 for the performance period 10/01/2013 to 12/31/2014.This project investigates the novel Ohio State chemical looping gasification technology for high efficiency, cost efficiency coal gasification for IGCC and methanol production application. The project developed an optimized oxygen carrier composition, demonstrated the feasibility of the concept and completed cold-flow model studies. WorleyParsons completed a techno-economic analysis which showed that for a coal only feed with carbon capture, the OSU CLG technology reduced the methanol requiredmore » selling price by 21%, lowered the capital costs by 28%, increased coal consumption efficiency by 14%. Further, using the Ohio State Chemical Looping Gasification technology resulted in a methanol required selling price which was lower than the reference non-capture case.« less

  2. Sandia and General Motors: Advancing Clean Combustion Engines with

    Science.gov Websites

    Quantitative Risk Assessment Technical Reference for Hydrogen Compatibility of Materials Hydrogen Battery Abuse Testing Laboratory Center for Infrastructure Research and Innovation Combustion Research Facility Joint BioEnergy Institute Close Energy Research Programs ARPA-E Basic Energy Sciences Materials

  3. Studies on pyrolysis and gasification of automobile shredder residue in China.

    PubMed

    Ni, Feijian; Chen, Ming

    2014-10-01

    With increasing automobile ownerships in China, the number of end-of-life vehicles has also rapidly increased. However, the automobile shredder residue generated during the dismantling of end-of-life vehicles in China is not treated properly and has caused great resource waste and environmental problems. In this work, automobile shredder residue from a domestic end-of-life vehicles dismantling company was comprehensively studied through element analysis, combustion heat experiment, proximate analysis, and thermogravimetric analysis. The feasibility of using pyrolysis combined with gasification to treat and recycle automobile shredder residue was investigated. The produced gas, oil, and residue yield was measured and the correlation between their yield and the experimental temperature and ratio of air to automobile shredder residue feed was studied. It is found that when ratio of air and experimental temperature are 1.5 mol kg(-1) and 900 °C, respectively, the heat energy of the gas produced per kilogram treated automobile shredder residue reaches a maximum value of 11.28 MJ. The characteristics of pyrolysis oil and solid residue were studied. The solid residue takes up 4.65%~5.57% of the original end-of-life vehicles weight. This greatly helps to reach the target of a 95% recycling rate. © The Author(s) 2014.

  4. Scoping Studies to Evaluate the Benefits of an Advanced Dry Feed System on the Use of Low-Rank Coal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rader, Jeff; Aguilar, Kelly; Aldred, Derek

    2012-03-30

    The purpose of this project was to evaluate the ability of advanced low rank coal gasification technology to cause a significant reduction in the COE for IGCC power plants with 90% carbon capture and sequestration compared with the COE for similarly configured IGCC plants using conventional low rank coal gasification technology. GE’s advanced low rank coal gasification technology uses the Posimetric Feed System, a new dry coal feed system based on GE’s proprietary Posimetric Feeder. In order to demonstrate the performance and economic benefits of the Posimetric Feeder in lowering the cost of low rank coal-fired IGCC power with carbonmore » capture, two case studies were completed. In the Base Case, the gasifier was fed a dilute slurry of Montana Rosebud PRB coal using GE’s conventional slurry feed system. In the Advanced Technology Case, the slurry feed system was replaced with the Posimetric Feed system. The process configurations of both cases were kept the same, to the extent possible, in order to highlight the benefit of substituting the Posimetric Feed System for the slurry feed system.« less

  5. Apparatus and method for solid fuel chemical looping combustion

    DOEpatents

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  6. DEMONSTRATION BULLETIN: TEXACO GASIFICATION PROCESS TEXACO, INC.

    EPA Science Inventory

    The Texaco Gasification Process (TGP) has operated commercially for nearly 45 years on feeds such as natural gas, liquid petroleum fractions, coal, and petroleum coke. More than 45 plants are either operational or under development in the United States and abroad. Texaco has dev...

  7. Vision of the U.S. biofuel future: a case for hydrogen-enriched biomass gasification

    Treesearch

    Mark A. Dietenberger; Mark Anderson

    2007-01-01

    Researchers at the Forest Product Laboratory (FPL) and the University of Wisconsin-Madison (UW) envision a future for biofuels based on biomass gasification with hydrogen enrichment. Synergisms between hydrogen production and biomass gasification technologies will be necessary to avoid being marginalized in the biofuel marketplace. Five feasible engineering solutions...

  8. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.; Hart, T.R.

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previousmore » interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.« less

  9. ARALAR/AGC1 deficiency, a neurodevelopmental disorder with severe impairment of neuronal mitochondrial respiration, does not produce a primary increase in brain lactate.

    PubMed

    Juaristi, Inés; García-Martín, María L; Rodrigues, Tiago B; Satrústegui, Jorgina; Llorente-Folch, Irene; Pardo, Beatriz

    2017-07-01

    ARALAR/AGC1 (aspartate-glutamate mitochondrial carrier 1) is an important component of the NADH malate-aspartate shuttle (MAS). AGC1-deficiency is a rare disease causing global cerebral hypomyelination, developmental arrest, hypotonia, and epilepsy (OMIM ID #612949); the aralar-KO mouse recapitulates the major findings in humans. This study was aimed at understanding the impact of ARALAR-deficiency in brain lactate levels as a biomarker. We report that lactate was equally abundant in wild-type and aralar-KO mouse brain in vivo at postnatal day 17. We find that lactate production upon mitochondrial blockade depends on up-regulation of lactate formation in astrocytes rather than in neurons. However, ARALAR-deficiency decreased cell respiration in neurons, not astrocytes, which maintained unchanged respiration and lactate production. As the primary site of ARALAR-deficiency is neuronal, this explains the lack of accumulation of brain lactate in ARALAR-deficiency in humans and mice. On the other hand, we find that the cytosolic and mitochondrial components of the glycerol phosphate shuttle are present in astrocytes with similar activities. This suggests that glycerol phosphate shuttle is the main NADH shuttle in astrocytes and explains the absence of effects of ARALAR-deficiency in these cells. © 2017 International Society for Neurochemistry.

  10. Gasification of palm empty fruit bunch in a bubbling fluidized bed: a performance and agglomeration study.

    PubMed

    Lahijani, Pooya; Zainal, Zainal Alimuddin

    2011-01-01

    Gasification of palm empty fruit bunch (EFB) was investigated in a pilot-scale air-blown fluidized bed. The effect of bed temperature (650-1050 °C) on gasification performance was studied. To explore the potential of EFB, the gasification results were compared to that of sawdust. Results showed that maximum heating values (HHV) of 5.37 and 5.88 (MJ/Nm3), dry gas yield of 2.04 and 2.0 (Nm3/kg), carbon conversion of 93% and 85 % and cold gas efficiency of 72% and 71 % were obtained for EFB and sawdust at the temperature of 1050 °C and ER of 0.25. However, it was realized that agglomeration was the major issue in EFB gasification at high temperatures. To prevent the bed agglomeration, EFB gasification was performed at temperature of 770±20 °C while the ER was varied from 0.17 to 0.32. Maximum HHV of 4.53 was obtained at ER of 0.21 where no agglomeration was observed. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Fuzzy Bayesian Network-Bow-Tie Analysis of Gas Leakage during Biomass Gasification

    PubMed Central

    Yan, Fang; Xu, Kaili; Yao, Xiwen; Li, Yang

    2016-01-01

    Biomass gasification technology has been rapidly developed recently. But fire and poisoning accidents caused by gas leakage restrict the development and promotion of biomass gasification. Therefore, probabilistic safety assessment (PSA) is necessary for biomass gasification system. Subsequently, Bayesian network-bow-tie (BN-bow-tie) analysis was proposed by mapping bow-tie analysis into Bayesian network (BN). Causes of gas leakage and the accidents triggered by gas leakage can be obtained by bow-tie analysis, and BN was used to confirm the critical nodes of accidents by introducing corresponding three importance measures. Meanwhile, certain occurrence probability of failure was needed in PSA. In view of the insufficient failure data of biomass gasification, the occurrence probability of failure which cannot be obtained from standard reliability data sources was confirmed by fuzzy methods based on expert judgment. An improved approach considered expert weighting to aggregate fuzzy numbers included triangular and trapezoidal numbers was proposed, and the occurrence probability of failure was obtained. Finally, safety measures were indicated based on the obtained critical nodes. The theoretical occurrence probabilities in one year of gas leakage and the accidents caused by it were reduced to 1/10.3 of the original values by these safety measures. PMID:27463975

  12. Methods and apparatus for catalytic hydrothermal gasification of biomass

    DOEpatents

    Elliott, Douglas C.; Butner, Robert Scott; Neuenschwander, Gary G.; Zacher, Alan H.; Hart, Todd R.

    2012-08-14

    Continuous processing of wet biomass feedstock by catalytic hydrothermal gasification must address catalyst fouling and poisoning. One solution can involve heating the wet biomass with a heating unit to a temperature sufficient for organic constituents in the feedstock to decompose, for precipitates of inorganic wastes to form, for preheating the wet feedstock in preparation for subsequent separation of sulfur contaminants, or combinations thereof. Treatment further includes separating the precipitates out of the wet feedstock, removing sulfur contaminants, or both using a solids separation unit and a sulfur separation unit, respectively. Having removed much of the inorganic wastes and the sulfur that can cause poisoning and fouling, the wet biomass feedstock can be exposed to the heterogeneous catalyst for gasification.

  13. Development of advanced, continuous mild gasification process for the production of co-products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, R.O. Jr.; Aulich, T.R.

    1991-05-01

    The current objective of the University of North Dakota Energy and Environmental Research Center (EERC) mild gasification project is to optimize reaction char and marketable liquids production on a 100-lb/hr scale using Wyodak subbituminous and Indiana No. 3 bituminous coals. Tests performed using the EERC 100-lb/hr process development unit (PDU) include a refractory-cure (Test P001), a test using petroleum coke (Test P002), and tests using Wyodak and Indiana coals. The reactor system used for the 11 PDU tests conducted to date consists of a spouted, fluid-bed carbonizer equipped with an on-line condensation train that yields three boiling point fractions ofmore » coal liquids ranging in volatility from about (77{degrees}--750{degrees}F) (25{degrees}--400{degrees}C). The September--December 1990 quarterly report described reaction conditions and the bulk of the analytical results for Tests P010 and P011. This report describes further P010 and P011 analytical work, including the generation of simulated distillation curves for liquid samples on the basis of sulfur content, using gas chromatography coupled with atomic emission detection (GC/AED) analysis. 13 figs., 3 tabs.« less

  14. A Comparison of the Irradiation Creep Behavior of Several Graphites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burchell, Timothy D; Windes, Will

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpamore » (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.« less

  15. Physicochemical properties and gasification reactivity of the ultrafine semi-char derived from a bench-scale fluidized bed gasifier

    NASA Astrophysics Data System (ADS)

    Zhang, Yukui; Zhang, Haixia; Zhu, Zhiping; Na, Yongjie; Lu, Qinggang

    2017-08-01

    Zhundong coalfield is the largest intact coalfield worldwide and fluidized bed gasification has been considered as a promising way to achieve its clean and efficient utilization. The purpose of this study is to investigate the physicochemical properties and gasification reactivity of the ultrafine semi-char, derived from a bench-scale fluidized bed gasifier, using Zhundong coal as fuel. The results obtained are as follows. In comparison to the raw coal, the carbon and ash content of the semi-char increase after partial gasification, but the ash fusion temperatures of them show no significant difference. Particularly, 76.53% of the sodium in the feed coal has released to the gas phase after fluidized bed gasification. The chemical compositions of the semi-char are closely related to its particle size, attributable to the distinctly different natures of diverse elements. The semi-char exhibits a higher graphitization degree, higher BET surface area, and richer meso- and macropores, which results in superior gasification reactivity than the coal char. The chemical reactivity of the semi-char is significantly improved by an increased gasification temperature, which suggests the necessity of regasification of the semi-char at a higher temperature. Consequently, it will be considered feasible that these carbons in the semi-char from fluidized bed gasifiers are reclaimed and reused for the gasification process.

  16. Numerical simulations of turbulent jet ignition and combustion

    NASA Astrophysics Data System (ADS)

    Validi, Abdoulahad; Irannejad, Abolfazl; Jaberi, Farhad

    2013-11-01

    The ignition and combustion of a homogeneous lean hydrogen-air mixture by a turbulent jet flow of hot combustion products injected into a colder gas mixture are studied by a high fidelity numerical model. Turbulent jet ignition can be considered as an efficient method for starting and controlling the reaction in homogeneously charged combustion systems used in advanced internal combustion and gas turbine engines. In this work, we study in details the physics of turbulent jet ignition in a fundamental flow configuration. The flow and combustion are modeled with the hybrid large eddy simulation/filtered mass density function (LES/FMDF) approach, in which the filtered form the compressible Navier-Stokes equations are solved with a high-order finite difference scheme for the turbulent velocity and the FMDF transport equations are solved with a Lagrangian stochastic method to obtain the scalar (temperature and species mass fractions) field. The hydrogen oxidation is described by a detailed reaction mechanism with 37 elementary reactions and 9 species.

  17. Waste to Energy at SUNY Cobleskill

    DTIC Science & Technology

    2011-05-10

    Overview on Army Net Zero Concepts • Gasification Intro. • SUNY Cobleskill Center for Environmental Science and Technology. • TURNW2E™ Gasification ...5 GASIFICATION A TECHNOLOGY 2-fer • Waste Reduction • Reduced Logistics for Waste Transportation • Reduced environmental and personnel impact... GASIFICATION Ash ENERGYWaste T ~ 800oC Partial Combustion O/C ~1/3 • Energy Production • Reduced Fuel Usage for transportation • Increased Energy

  18. Coal Combustion Science quarterly progress report, April--June 1992. Task 1, Coal devolatilization: Task 2, Coal char combustion; Task 3, Fate of mineral matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardesty, D.R.; Hurt, R.H.; Baxter, L.L.

    1992-09-01

    The objective of this work is to support the Office of Fossil Energy in executing research on coal combustion science. This project consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: The characterization of the physical and chemical processes that constitute the early devolatilization phase of coal combustion: Characterization of the combustion behavior of selected coals under conditions relevant to industria pulverized coal-fired furnaces; and to establish a quantitative understanding of themore » mechanisms and rates of transformation, fragmentation, and deposition of mineral matter in coal combustion environments as a function of coal type, particle size and temperature, the initial forms and distributions of mineral species in the unreacted coal, and the local gas temperature and composition.« less

  19. Microwave-Assisted Ignition for Improved Internal Combustion Engine Efficiency

    NASA Astrophysics Data System (ADS)

    DeFilippo, Anthony Cesar

    The ever-present need for reducing greenhouse gas emissions associated with transportation motivates this investigation of a novel ignition technology for internal combustion engine applications. Advanced engines can achieve higher efficiencies and reduced emissions by operating in regimes with diluted fuel-air mixtures and higher compression ratios, but the range of stable engine operation is constrained by combustion initiation and flame propagation when dilution levels are high. An advanced ignition technology that reliably extends the operating range of internal combustion engines will aid practical implementation of the next generation of high-efficiency engines. This dissertation contributes to next-generation ignition technology advancement by experimentally analyzing a prototype technology as well as developing a numerical model for the chemical processes governing microwave-assisted ignition. The microwave-assisted spark plug under development by Imagineering, Inc. of Japan has previously been shown to expand the stable operating range of gasoline-fueled engines through plasma-assisted combustion, but the factors limiting its operation were not well characterized. The present experimental study has two main goals. The first goal is to investigate the capability of the microwave-assisted spark plug towards expanding the stable operating range of wet-ethanol-fueled engines. The stability range is investigated by examining the coefficient of variation of indicated mean effective pressure as a metric for instability, and indicated specific ethanol consumption as a metric for efficiency. The second goal is to examine the factors affecting the extent to which microwaves enhance ignition processes. The factors impacting microwave enhancement of ignition processes are individually examined, using flame development behavior as a key metric in determining microwave effectiveness. Further development of practical combustion applications implementing microwave

  20. Direct electrochemistry and electrocatalytic behavior of hemoglobin entrapped in Ag@C nanocables/gold nanoparticles nanocomposites film.

    PubMed

    Hu, Xiao-Wei; Mao, Chang-Jie; Song, Ji-Ming; Niu, He-Lin; Zhang, Sheng-Yi; Cui, Rong-Jing

    2012-10-01

    Direct electrochemistry of hemoglobin (Hb) was successfully fabricated by immobilizing Hb on the nanocomposites containing of Ag@C nanocables and Au nanoparticles (AuNPs) modified glassy carbon electrode (GCE). The immobilized Hb retained its biological activity and shown high catalytic activities to the reduction of H2O2 by circular dicroism (CD) spectrum, fourier transform infrared (FT-IR) spectrum and cyclic voltammetry (CV). Experimental conditions such as scan rate and pH Value were studied and optimized. The results indicated that the resulting biosensor are linear to the concentrations of H2O2 in the ranges of 6.67 x 10(-7)-2.40 x 10(5) M, and the detection limit is 2.02 x 10(-7) M. The electrochemical biosensor has also high stability and good reproducibility.

  1. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    PubMed

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Gasification of high ash, high ash fusion temperature bituminous coals

    DOEpatents

    Liu, Guohai; Vimalchand, Pannalal; Peng, WanWang

    2015-11-13

    This invention relates to gasification of high ash bituminous coals that have high ash fusion temperatures. The ash content can be in 15 to 45 weight percent range and ash fusion temperatures can be in 1150.degree. C. to 1500.degree. C. range as well as in excess of 1500.degree. C. In a preferred embodiment, such coals are dealt with a two stage gasification process--a relatively low temperature primary gasification step in a circulating fluidized bed transport gasifier followed by a high temperature partial oxidation step of residual char carbon and small quantities of tar. The system to process such coals further includes an internally circulating fluidized bed to effectively cool the high temperature syngas with the aid of an inert media and without the syngas contacting the heat transfer surfaces. A cyclone downstream of the syngas cooler, operating at relatively low temperatures, effectively reduces loading to a dust filtration unit. Nearly dust- and tar-free syngas for chemicals production or power generation and with over 90%, and preferably over about 98%, overall carbon conversion can be achieved with the preferred process, apparatus and methods outlined in this invention.

  3. Nitric Oxide Reduction over Sewage Sludge and Coal Chars at Conditions Relevant to Staged Fluidized Bed Combustion

    NASA Astrophysics Data System (ADS)

    Salatino, P.; Solimene, R.; Chirone, R.

    The de-NOx potential of coal and of dried and pelletized sewage sludge, a waste-derived fuel candidate for cofiring with coal, is assessed. The experimental procedure is based on operation of a bench scale fluidized bed reactor where NO-doped nitrogen is contacted with batches of the fuel. A second type of experiment has been purposely designed to assess the loss of reactivity of chars toward gasification by NOx as char is heat-treated for pre-set times at temperatures typical of fluidized bed combustion. A simple phenomenological model is developed to shed light on the basic features of the interaction between heterogeneous char-NOx reaction and thermal annealing of the char.

  4. Operating and environmental performances of commercial-scale waste gasification and melting technology.

    PubMed

    Tanigaki, Nobuhiro; Fujinaga, Yasuka; Kajiyama, Hirohisa; Ishida, Yoshihiro

    2013-11-01

    Gasification technologies for waste processing are receiving increased interest. A lot of gasification technologies, including gasification and melting, have been developed in Japan and Europe. However, the flue gas and heavy metal behaviors have not been widely reported, even though those of grate furnaces have been reported. This article reports flue gas components of gasification and melting technology in different flue gas treatment systems. Hydrogen chloride concentrations at the inlet of the bag filter ranged between 171 and 180 mg Nm(-3) owing to de-acidification by limestone injection to the gasifier. More than 97.8% of hydrogen chlorides were removed by a bag filter in both of the flue gas treatment systems investigated. Sulfur dioxide concentrations at the inlet of the baghouse were 4.8 mg Nm(-3) and 12.7 mg Nm(-3), respectively. Nitrogen oxides are highly decomposed by a selective catalytic reduction system. Owing to the low regenerations of polychlorinated dibenzo-p-dioxins and furans, and the selective catalytic reduction system, the concentrations of polychlorinated dibenzo-p-dioxins and furans at the stacks were significantly lower without activated carbon injection. More than 99% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 97.6% and 96.5%, respectively. Most high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that the slag is stable and contains few harmful heavy metals, such as lead. The heavy metal distribution behaviors are almost the same regardless of the compositions of the processed waste. These results indicate that the gasification of municipal solid waste constitutes an ideal approach to environmental conservation and resource recycling.

  5. Microgravity Combustion Science: 1995 Program Update

    NASA Technical Reports Server (NTRS)

    Ross, Howard D. (Editor); Gokoglu, Suleyman A. (Editor); Friedman, Robert (Editor)

    1995-01-01

    Microgravity greatly benefits the study of fundamental combustion processes. In this environment, buoyancy-induced flow is nearly eliminated, weak or normally obscured forces and flows can be isolated, gravitational settling or sedimentation is nearly eliminated, and temporal and spatial scales can be expanded. This document reviews the state of knowledge in microgravity combustion science with the emphasis on NASA-sponsored developments in the current period of 1992 to early 1995. The subjects cover basic research in gaseous premixed and diffusion-flame systems, flame structure and sooting, liquid droplets and pools, and solid-surface ignition and flame spread. They also cover applied research in combustion synthesis of ceramic-metal composites, advanced diagnostic instrumentation, and on-orbit fire safety. The review promotes continuing research by describing the opportunities for Principal Investigator participation through the NASA Research Announcement program and the available NASA Lewis Research Center ground-based facilities and spaceflight accommodations. This review is compiled by the members and associates of the NASA Lewis Microgravity Combustion Branch, and it serves as an update of two previous overview reports.

  6. Advanced Guidance and Control Methods for Reusable Launch Vehicles: Test Results

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Jones, Robert E.; Krupp, Don R.; Fogle, Frank R. (Technical Monitor)

    2002-01-01

    There are a number of approaches to advanced guidance and control (AG&C) that have the potential for achieving the goals of significantly increasing reusable launch vehicle (RLV) safety/reliability and reducing the cost. In this paper, we examine some of these methods and compare the results. We briefly introduce the various methods under test, list the test cases used to demonstrate that the desired results are achieved, show an automated test scoring method that greatly reduces the evaluation effort required, and display results of the tests. Results are shown for the algorithms that have entered testing so far.

  7. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Astrophysics Data System (ADS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-03-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  8. Conceptual design study of a coal gasification combined-cycle powerplant for industrial cogeneration

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Nelson, S. G.; Straight, H. F.; Subramaniam, T. K.; Winklepleck, R. G.

    1981-01-01

    A conceptual design study was conducted to assess technical feasibility, environmental characteristics, and economics of coal gasification. The feasibility of a coal gasification combined cycle cogeneration powerplant was examined in response to energy needs and to national policy aimed at decreasing dependence on oil and natural gas. The powerplant provides the steam heating and baseload electrical requirements while serving as a prototype for industrial cogeneration and a modular building block for utility applications. The following topics are discussed: (1) screening of candidate gasification, sulfur removal and power conversion components; (2) definition of a reference system; (3) quantification of plant emissions and waste streams; (4) estimates of capital and operating costs; and (5) a procurement and construction schedule. It is concluded that the proposed powerplant is technically feasible and environmentally superior.

  9. First-line chemotherapy with S-1 alone or S-1 plus cisplatin for elderly patients with advanced gastric cancer: a multicenter propensity score matched study.

    PubMed

    Makiyama, Akitaka; Kunieda, Kenji; Noguchi, Masaaki; Kajiwara, Takeshi; Tamura, Takao; Takeda, Koji; Sugiyama, Junko; Minashi, Keiko; Moriwaki, Toshikazu; Sugimoto, Naotoshi; Nagase, Michitaka; Negoro, Yuji; Tsuda, Takashi; Shimodaira, Hideki; Okano, Naohiro; Tsuji, Akihito; Sakai, Daisuke; Yanagihara, Kazuhiro; Ueda, Shinya; Tamura, Shingo; Otsu, Satoshi; Honda, Takuya; Matsushita, Yuzo; Okuno, Tatsuya; Kashiwada, Tomomi; Nozaki, Akira; Ebi, Masahide; Okuda, Hiroyuki; Shimokawa, Mototsugu; Hironaka, Shuichi; Hyodo, Ichinosuke; Baba, Eishi; Boku, Narikazu; Muro, Kei; Esaki, Taito

    2018-01-20

    Fluoropyrimidine and platinum combination is the standard treatment for advanced or recurrent gastric cancer (AGC). However, fluoropyrimidine monotherapy is commonly used for elderly patients with AGC because of its good tolerability. In this multicenter retrospective study, we collected clinical data of AGC patients aged 70 years or older, treated with S-1 alone or S-1 plus cisplatin (SP) as the first-line treatment between January 2009 and December 2011. Propensity score matched cohorts (PSMC) were used for reducing the confounding effects to compare efficacy and safety between the two treatment groups. Cox regression analysis was performed to clarify the prognostic factors. PSMC (n = 109 in each group) were selected from among 444 eligible patients (S-1 group, 210; SP group, 234); the S-1 group included more patients deemed unfit for intensive chemotherapy than the SP group (e.g., higher age, poorer PS, poor renal function). In the PSMC, patients' characteristics were comparable between groups, except the male ratio (S-1 group, 64.2%; SP group, 77.1%; p = 0.04). No significant differences were observed in either overall survival [hazard ratio (HR) 0.93, p = 0.63] or progression-free survival (HR 1.09, p = 0.61). Severe adverse events (AEs) and hospitalization due to AEs were more frequent in the SP group than in the S-1 group (p < 0.001 each). Our findings do not support the survival benefit of SP over S-1 in elderly patients with AGC. We are now conducting a prospective comparative study to optimize treatment strategy and explore applicability of the geriatric assessment for these patients.

  10. Efficacy and safety of chemotherapy in older versus non-older patients with advanced gastric cancer: A real-world data, non-inferiority analysis.

    PubMed

    Visa, Laura; Jiménez-Fonseca, Paula; Martínez, Elena Asensio; Hernández, Raquel; Custodio, Ana; Garrido, Manuel; Viudez, Antonio; Buxo, Elvira; Echavarria, Ignacio; Cano, Juana María; Macias, Ismael; Mangas, Montserrat; de Castro, Eva Martínez; García, Teresa; Manceñido, Felipe Álvarez; Montes, Ana Fernández; Azkarate, Aitor; Longo, Federico; Serrano, Asunción Díaz; López, Carlos; Hurtado, Alicia; Cerdá, Paula; Serrano, Raquel; Gil-Negrete, Aitziber; Carnicero, Alfonso Martín; Pimentel, Paola; Ramchandani, Avinash; Carmona-Bayonas, Alberto

    2018-05-01

    Advanced gastric cancer (AGC) is a common neoplasm in older adults. Nevertheless, there are few specific management data in the literature. The aim of this study was to assess non-inferiority of survival and efficacy-related outcomes of chemotherapy used in older vs non-older patients with AGC. We recruited 1485 patients from the AGAMENON registry of AGC treated with polychemotherapy between 2008-2017. A statistical analysis was conducted to prove non-inferiority for overall survival (OS) associated with the use of chemotherapy schedules in individuals ≥70 vs.<70years. The fixed-margin method was used (hazard ratio [HR]<1.176) that corresponds to conserving at least 85% efficacy. 33% (n=489) of the cases analyzed were ≥70 years. Two-agent chemotherapies and combinations with oxaliplatin (48% vs. 29%) were used more often in the older patients, as were modified schedules and/or lower doses. Toxicity grade 3-4 was comparable in both groups, although when looking at any grade, there were more episodes of enteritis, renal toxicity, and fatigue in older patients. In addition, toxicity was a frequent cause for discontinuing treatment in older patients. The response rate was similar in both groups. After adjusting for confounding factors, the non-inferiority of OS associated with schedules administered to the older vs. younger subjects was confirmed: HR 1.02 (90% CI, 0.91-1.14), P (non inferiority)=0.018, as well as progression-free survival: HR 0.97 (90% CI, 0.87-1.08), P(non-inferiority)=0.001. In this AGC registry, the use of chemotherapy with schedules adapted to patients ≥70 years provided efficacy that was not inferior to that seen in younger cases, with comparable adverse effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Gasoline Combustion Fundamentals DOE FY17 Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekoto, Isaac W.

    Advanced automotive gasoline engines that leverage a combination of reduced heat transfer, throttling, and mechanical losses; shorter combustion durations; and higher compression and mixture specific heat ratios are needed to meet aggressive DOE VTP fuel economy and pollutant emission targets. Central challenges include poor combustion stability at low-power conditions when large amounts of charge dilution are introduced and high sensitivity of conventional inductive coil ignition systems to elevated charge motion and density for boosted high-load operation. For conventional spark ignited operation, novel low-temperature plasma (LTP) or pre-chamber based ignition systems can improve dilution tolerances while maintaining good performance characteristics atmore » elevated charge densities. Moreover, these igniters can improve the control of advanced compression ignition (ACI) strategies for gasoline at low to moderate loads. The overarching research objective of the Gasoline Combustion Fundamentals project is to investigate phenomenological aspects related to enhanced ignition. The objective is accomplished through targeted experiments performed in a single-cylinder optically accessible research engine or an in-house developed optically accessible spark calorimeter (OASC). In situ optical diagnostics and ex situ gas sampling measurements are performed to elucidate important details of ignition and combustion processes. Measurements are further used to develop and validate complementary high-fidelity ignition simulations. The primary project audience is automotive manufacturers, Tier 1 suppliers, and technology startups—close cooperation has resulted in the development and execution of project objectives that address crucial mid- to long-range research challenges.« less

  12. A novel integration of three-dimensional electro-Fenton and biological activated carbon and its application in the advanced treatment of biologically pretreated Lurgi coal gasification wastewater.

    PubMed

    Hou, Baolin; Han, Hongjun; Zhuang, Haifeng; Xu, Peng; Jia, Shengyong; Li, Kun

    2015-11-01

    A novel integrated process with three-dimensional electro-Fenton (3D EF) and biological activated carbon (BAC) was employed in advanced treatment of biologically pretreated Lurgi coal gasification wastewater. SAC-Fe (sludge deserved activated carbon from sewage and iron sludge) and SAC (sludge deserved activated carbon) were used in 3D EF as catalytic particle electrodes (CPEs) and in BAC as carriers respectively. Results indicated that 3D EF with SAC-Fe as CPEs represented excellent pollutants and COLOR removals as well as biodegradability improvement. The efficiency enhancement attributed to generating more H2O2 and OH. The integrated process exhibited efficient performance of COD, BOD5, total phenols, TOC, TN and COLOR removals at a much shorter retention time, with the corresponding concentrations in effluent of 31.18, 6.69, 4.29, 17.82, 13.88mg/L and <20 times, allowing discharge criteria to be met. The integrated system was efficient, cost-effective and ecological sustainable and could be a promising technology for engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chemical looping coal gasification with calcium ferrite and barium ferrite via solid--solid reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, Ranjani; Riley, Jarrett; Tian, Hanjing

    Coal gasification to produce synthesis gas by chemical looping was investigated with two oxygen carriers, barium ferrite (BaFe2O4) and calcium ferrite (CaFe2O4). Thermo-gravimetric analysis (TGA) and fixed-bed flow reactor data indicated that a solid–solid interaction occurred between oxygen carriers and coal to produce synthesis gas. Both thermodynamic analysis and experimental data indicated that BaFe2O4 and CaFe2O4 have high reactivity with coal but have a low reactivity with synthesis gas, which makes them very attractive for the coal gasification process. Adding steam increased the production of hydrogen (H2) and carbon monoxide (CO), but carbon dioxide (CO2) remained low because these oxygenmore » carriers have minimal reactivity with H2 and CO. Therefore, the combined steam–oxygen carrier produced the highest quantity of synthesis gas. It appeared that neither the water–gas shift reaction nor the water splitting reaction promoted additional H2 formation with the oxygen carriers when steam was present. Wyodak coal, which is a sub-bituminous coal, had the best gasification yield with oxygen carrier–steam while Illinois #6 coal had the lowest. The rate of gasification and selectivity for synthesis gas production was significantly higher when these oxygen carriers were present during steam gasification of coal. The rates and synthesis gas yields during the temperature ramps of coal–steam with oxygen carriers were better than with gaseous oxygen.« less

  14. A high temperature drop-tube and packed-bed solar reactor for continuous biomass gasification

    NASA Astrophysics Data System (ADS)

    Bellouard, Quentin; Abanades, Stéphane; Rodat, Sylvain; Dupassieux, Nathalie

    2017-06-01

    Biomass gasification is an attractive process to produce high-value syngas. Utilization of concentrated solar energy as the heat source for driving reactions increases the energy conversion efficiency, saves biomass resource, and eliminates the needs for gas cleaning and separation. A high-temperature tubular solar reactor combining drop tube and packed bed concepts was used for continuous solar-driven gasification of biomass. This 1 kW reactor was experimentally tested with biomass feeding under real solar irradiation conditions at the focus of a 2 m-diameter parabolic solar concentrator. Experiments were conducted at temperatures ranging from 1000°C to 1400°C using wood composed of a mix of pine and spruce (bark included) as biomass feedstock. The aim of this study was to demonstrate the feasibility of syngas production in this reactor concept and to prove the reliability of continuous biomass gasification processing using solar energy. The study first consisted of a parametric study of the gasification conditions to obtain an optimal gas yield. The influence of temperature and oxidizing agent (H2O or CO2) on the product gas composition was investigated. The study then focused on solar gasification during continuous biomass particle injection for demonstrating the feasibility of a continuous process. Regarding the energy conversion efficiency of the lab scale reactor, energy upgrade factor of 1.21 and solar-to-fuel thermochemical efficiency up to 28% were achieved using wood heated up to 1400°C.

  15. Ab initio calculations and kinetic modeling of thermal conversion of methyl chloride: implications for gasification of biomass.

    PubMed

    Singla, Mallika; Rasmussen, Morten Lund; Hashemi, Hamid; Wu, Hao; Glarborg, Peter; Pelucchi, Matteo; Faravelli, Tiziano; Marshall, Paul

    2018-04-25

    Limitations in current hot gas cleaning methods for chlorine species from biomass gasification may be a challenge for end use such as gas turbines, engines, and fuel cells, all requiring very low levels of chlorine. During devolatilization of biomass, chlorine is released partly as methyl chloride. In the present work, the thermal conversion of CH3Cl under gasification conditions was investigated. A detailed chemical kinetic model for pyrolysis and oxidation of methyl chloride was developed and validated against selected experimental data from the literature. Key reactions of CH2Cl with O2 and C2H4 for which data are scarce were studied by ab initio methods. The model was used to analyze the fate of methyl chloride in gasification processes. The results indicate that CH3Cl emissions will be negligible for most gasification technologies, but could be a concern for fluidized bed gasifiers, in particular in low-temperature gasification. The present work illustrates how ab initio theory and chemical kinetic modeling can help to resolve emission issues for thermal processes in industrial scale.

  16. Power Sources Focus Group - Evaluation of Plasma Gasification for Waste-to-Energy Conversion

    DTIC Science & Technology

    2012-09-21

    including paper , wood, plastic, food and agricultural waste. The system uses a shredder, dryer , and pelletizing preprocessor to fuel an in-house...limited information available, this paper does not attempt to determine the best way to use plasma in a gasifier. Instead, this paper makes general...Gasification Plasma gasification for the purposes of this paper includes any WTE system using plasma as part of the generation of syngas and/or cleanup

  17. Numerical investigation of cryogen re-gasification in a plate heat exchanger

    NASA Astrophysics Data System (ADS)

    Malecha, Ziemowit; Płuszka, Paweł; Brenk, Arkadiusz

    2017-12-01

    The efficient re-gasification of cryogen is a crucial process in many cryogenic installations. It is especially important in the case of LNG evaporators used in stationary and mobile applications (e.g. marine and land transport). Other gases, like nitrogen or argon can be obtained at highest purity after re-gasification from their liquid states. Plate heat exchangers (PHE) are characterized by a high efficiency. Application of PHE for liquid gas vaporization processes can be beneficial. PHE design and optimization can be significantly supported by numerical modelling. Such calculations are very challenging due to very high computational demands and complexity related to phase change modelling. In the present work, a simplified mathematical model of a two phase flow with phase change was introduced. To ensure fast calculations a simplified two-dimensional (2D) numerical model of a real PHE was developed. It was validated with experimental measurements and finally used for LNG re-gasification modelling. The proposed numerical model showed to be orders of magnitude faster than its full 3D original.

  18. Prospective Evaluation of Changes in Tumor Size and Tumor Metabolism in Patients with Advanced Gastric Cancer Undergoing Chemotherapy: Association and Clinical Implication.

    PubMed

    Park, Seongyeol; Ha, Seunggyun; Kwon, Hyun Woo; Kim, Woo Hyoung; Kim, Tae-Yong; Oh, Do-Youn; Cheon, Gi Jeong; Bang, Yung-Jue

    2017-06-01

    A change in tumor size is a well-validated and commonly used value for evaluating response to chemotherapy in cancer. Metabolic changes induced by chemotherapy are related to prognosis in several tumor types. However, the clinical implication of metabolic changes in patients with advanced gastric cancer (AGC) undergoing chemotherapy remains unclear. We aimed to evaluate response of tumor size and metabolism in AGC during chemotherapy and to reveal the relationship between them in view of their impact on patient survival. Methods: We prospectively enrolled patients with AGC before the initiation of first-line palliative chemotherapy. Using baseline and follow-up contrast-enhanced CT and 18 F-FDG PET, we assessed the tumor diameter, SUV max , and total lesion glycolysis in each lesion and their changes during chemotherapy at the same time. We included all lesions with the maximal longest diameters over 1 cm on CT, and each lesion was evaluated by matched 18 F-FDG PET. We analyzed the association between changes in tumor metabolism and tumor size and performed outcome analysis on overall survival (OS) and progression-free survival (PFS). Results: Seventy-four patients were enrolled, and the number of all lesions included in this study was 620. Compared with adenocarcinomas, poorly cohesive carcinomas demonstrated lower SUV max irrespective of tumor size ( P < 0.001). Human epidermal growth factor receptor 2 (HER2)-positive tumors showed higher SUV max than HER2-negative tumors ( P = 0.002). The changes in SUV max due to chemotherapy had a linear correlation with the changes in tumor size of each lesion, and a 30% tumor size reduction was associated with a 50% SUV max reduction ( P < 0.001). Total lesion glycolysis changes also correlated with tumor size changes ( P < 0.001). Better OS and PFS were obtained in patients with both tumor size and SUV max reduction than in patients with either size or SUV max reduction only (OS, P = 0.003; PFS, P = 0.038). Conclusion

  19. Equilibrium model analysis of waste plastics gasification using CO2 and steam.

    PubMed

    Kannan, P; Lakshmanan, G; Al Shoaibi, A; Srinivasakannan, C

    2017-12-01

    Utilization of carbon dioxide (CO 2 ) in thermochemical treatment of waste plastics may significantly help to improve CO 2 recycling, thus simultaneously curtailing dioxins/furans and CO 2 emissions. Although CO 2 is not such an effective gasifying agent as steam, a few investigations have explored the utilization of CO 2 in conjunction with steam to achieve somewhat higher carbon conversion. This work presents a comparative evaluation study of CO 2 and steam gasification of a typical post-consumer waste plastics mixture using an Aspen Plus equilibrium model. The effect of flow rate of gasifying medium (CO 2 and/or steam) and gasification temperature on product gas composition, carbon conversion, and cold gas efficiency has been analyzed. Simulation results demonstrate that CO 2 can serve as a potential gasifying agent for waste plastics gasification. The resulting product gas was rich in CO whereas CO 2 -steam blends yield a wider H 2 /CO ratio, thus extending the applications of the product gas.

  20. Thermogravimetric characterization and gasification of pecan nut shells.

    PubMed

    Aldana, Hugo; Lozano, Francisco J; Acevedo, Joaquín; Mendoza, Alberto

    2015-12-01

    This study focuses on the evaluation of pecan nut shells as an alternative source of energy through pyrolysis and gasification. The physicochemical characteristics of the selected biomass that can influence the process efficiency, consumption rates, and the product yield, as well as create operational problems, were determined. In addition, the thermal decomposition kinetics necessary for prediction of consumption rates and yields were determined. Finally, the performance of a downdraft gasifier fed with pecan nut shells was analyzed in terms of process efficiency and exit gas characteristics. It was found that the pyrolytic decomposition of the nut shells can be modeled adequately using a single equation considering two independent parallel reactions. The performance of the gasification process can be influenced by the particle size and air flow rate, requiring a proper combination of these parameters for reliable operation and production of a valuable syngas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A review of technologies and performances of thermal treatment systems for energy recovery from waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombardi, Lidia, E-mail: lidia.lombardi@unicusano.it; Carnevale, Ennio; Corti, Andrea

    2015-03-15

    Highlights: • The topic of energy recovery from waste by thermal treatment is reviewed. • Combustion, gasification and pyrolysis were considered. • Data about energy recovery performances were collected and compared. • Main limitations to high values of energy performances were illustrated. • Diffusion of energy recovery from waste in EU, USA and other countries was discussed. - Abstract: The aim of this work is to identify the current level of energy recovery through waste thermal treatment. The state of the art in energy recovery from waste was investigated, highlighting the differences for different types of thermal treatment, considering combustion/incineration,more » gasification and pyrolysis. Also different types of wastes – Municipal Solid Waste (MSW), Refuse Derived Fuel (RDF) or Solid Refuse Fuels (SRF) and some typologies of Industrial Waste (IW) (sludge, plastic scraps, etc.) – were included in the analysis. The investigation was carried out mainly reviewing papers, published in scientific journals and conferences, but also considering technical reports, to gather more information. In particular the goal of this review work was to synthesize studies in order to compare the values of energy conversion efficiencies measured or calculated for different types of thermal processes and different types of waste. It emerged that the dominant type of thermal treatment is incineration associated to energy recovery in a steam cycle. When waste gasification is applied, the produced syngas is generally combusted in a boiler to generate steam for energy recovery in a steam cycle. For both the possibilities – incineration or gasification – cogeneration is the mean to improve energy recovery, especially for small scale plants. In the case of only electricity production, the achievable values are strongly dependent on the plant size: for large plant size, where advanced technical solutions can be applied and sustained from an economic point of

  2. Potassium dichromate method of coal gasification the study of the typical organic compounds in water

    NASA Astrophysics Data System (ADS)

    Quan, Jiankang; Qu, Guangfei; Dong, Zhanneng; Lu, Pei; Cai, Yingying; Wang, Shibo

    2017-05-01

    The national standard method is adopted in this paper the water - digestion spectrophotometry for determination of the chemical oxygen demand (COD), after ultrasonic processing of coal gasification water for CODCr measurement. Using the control variable method, measured in different solution pH, ultrasonic frequency, ultrasonic power, reaction conditions of different initial solution concentration, the change of coal gasification water CODCr value under the action of ultrasonic, the experimental results shows that appear when measurement is allowed to fluctuate, data, in order to explain the phenomenon we adopt the combination of the high performance liquid chromatography and mass spectrometry before and after ultrasonic coal gasification qualitative analysis on composition of organic matter in water. To raw water sample chromatography - mass spectrometry (GC/MS) analysis, combined with the spectra analysis of each peak stands for material, select coal gasification typical organic substances in water, with the method of single digestion, the equivalent CODCr values measured after digestion. Order to produce, coal gasification water contained high concentration organic wastewater, such as the national standard method is adopted to eliminate the organic material, therefore to measure the CODCr value is lower than actual CODCr value of the emergence of the phenomenon, the experiment of the effect of ultrasound [9-13] is promote the complex organic chain rupture, also explains the actual measurement data fluctuation phenomenon in the experiment.

  3. Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seong W. Lee

    The project entitled, ''Innovative Instrumentation and Analysis of the Temperature Measurement for High Temperature Gasification'', was successfully completed by the Principal Investigator, Dr. S. Lee and his research team in the Center for Advanced Energy Systems and Environmental Control Technologies at Morgan State University. The major results and outcomes were presented in semi-annual progress reports and annual project review meetings/presentations. Specifically, the literature survey including the gasifier temperature measurement, the ultrasonic application in cleaning application, and spray coating process and the gasifier simulator (cold model) testing has been successfully conducted during the first year. The results show that four factorsmore » (blower voltage, ultrasonic application, injection time intervals, particle weight) were considered as significant factors that affect the temperature measurement. Then the gasifier simulator (hot model) design and the fabrication as well as the systematic tests on hot model were completed to test the significant factors on temperature measurement in the second year. The advanced Industrial analytic methods such as statistics-based experimental design, analysis of variance (ANOVA) and regression methods were applied in the hot model tests. The results show that operational parameters (i.e. air flow rate, water flow rate, fine dust particle amount, ammonia addition) presented significant impact on the temperature measurement inside the gasifier simulator. The experimental design and ANOVA are very efficient way to design and analyze the experiments. The results show that the air flow rate and fine dust particle amount are statistically significant to the temperature measurement. The regression model provided the functional relation between the temperature and these factors with substantial accuracy. In the last year of the project period, the ultrasonic and subsonic cleaning methods and coating materials were

  4. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral contentmore » can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.« less

  5. Volatile Reaction Products From Silicon-Based Ceramics in Combustion Environments Identified

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.

    1997-01-01

    Silicon-based ceramics and composites are prime candidates for use as components in the hot sections of advanced aircraft engines. These materials must have long-term durability in the combustion environment. Because water vapor is always present as a major product of combustion in the engine environment, its effect on the durability of silicon-based ceramics must be understood. In combustion environments, silicon-based ceramics react with water vapor to form a surface silica (SiO2) scale. This SiO2 scale, in turn, has been found to react with water vapor to form volatile hydroxides. Studies to date have focused on how water vapor reacts with high-purity silicon carbide (SiC) and SiO2 in model combustion environments. Because the combustion environment in advanced aircraft engines is expected to contain about 10-percent water vapor at 10-atm total pressure, the durability of SiC and SiO2 in gas mixtures containing 0.1- to 1-atm water vapor is of interest. The reactions of SiC and SiO2 with water vapor were monitored by measuring weight changes of sample coupons in a 0.5-atm water vapor/0.5-atm oxygen gas mixture with thermogravimetric analysis.

  6. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  7. Coal gasification vessel

    DOEpatents

    Loo, Billy W.

    1982-01-01

    A vessel system (10) comprises an outer shell (14) of carbon fibers held in a binder, a coolant circulation mechanism (16) and control mechanism (42) and an inner shell (46) comprised of a refractory material and is of light weight and capable of withstanding the extreme temperature and pressure environment of, for example, a coal gasification process. The control mechanism (42) can be computer controlled and can be used to monitor and modulate the coolant which is provided through the circulation mechanism (16) for cooling and protecting the carbon fiber and outer shell (14). The control mechanism (42) is also used to locate any isolated hot spots which may occur through the local disintegration of the inner refractory shell (46).

  8. Measure Guideline: Combustion Safety for Natural Draft Appliances Through Appliance Zone Isolation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzgerald, J.; Bohac, D.

    2014-04-01

    This measure guideline covers how to assess and carry out the isolation of natural draft combustion appliances from the conditioned space of low-rise residential buildings. It deals with combustion appliances located either within the living space in enclosed closets or side rooms or outside the living space in an adjacent area like an attic or garage. This subset of houses does not require comprehensive combustion safety tests and simplified prescriptive procedures can be used to address safety concerns. This allows residential energy retrofit contractors inexperienced in advanced combustion safety testing to effectively address combustion safety issues and allow energy retrofitsmore » including tightening and changes to distribution and ventilation systems to proceed.« less

  9. Characterization of products obtained from pyrolysis and steam gasification of wood waste, RDF, and RPF.

    PubMed

    Hwang, In-Hee; Kobayashi, Jun; Kawamoto, Katsuya

    2014-02-01

    Pyrolysis and steam gasification of woody biomass chip (WBC) obtained from construction and demolition wastes, refuse-derived fuel (RDF), and refuse paper and plastic fuel (RPF) were performed at various temperatures using a lab-scale instrument. The gas, liquid, and solid products were examined to determine their generation amounts, properties, and the carbon balance between raw material and products. The amount of product gas and its hydrogen concentration showed a considerable difference depending on pyrolysis and steam gasification at higher temperature. The reaction of steam and solid product, char, contributed to an increase in gas amount and hydrogen concentration. The amount of liquid products generated greatly depended on temperature rather than pyrolysis or steam gasification. The compositions of liquid product varied relying on raw materials used at 500°C but the polycyclic aromatic hydrocarbons became the major compounds at 900°C irrespective of the raw materials used. Almost fixed carbon (FC) of raw materials remained as solid products under pyrolysis condition whereas FC started to decompose at 700°C under steam gasification condition. For WBC, both char utilization by pyrolysis at low temperature (500°C) and syngas recovery by steam gasification at higher temperature (900°C) might be practical options. From the results of carbon balance of RDF and RPF, it was confirmed that the carbon conversion to liquid products conspicuously increased as the amount of plastic increased in the raw material. To recover feedstock from RPF, pyrolysis for oil recovery at low temperature (500°C) might be one of viable options. Steam gasification at 900°C could be an option but the method of tar reforming (e.g. catalyst utilization) should be considered. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Investigation of sewage sludge treatment using air plasma assisted gasification.

    PubMed

    Striūgas, Nerijus; Valinčius, Vitas; Pedišius, Nerijus; Poškas, Robertas; Zakarauskas, Kęstutis

    2017-06-01

    This study presents an experimental investigation of downdraft gasification process coupled with a secondary thermal plasma reactor in order to perform experimental investigations of sewage sludge gasification, and compare process parameters running the system with and without the secondary thermal plasma reactor. The experimental investigation were performed with non-pelletized mixture of dried sewage sludge and wood pellets. To estimate the process performance, the composition of the producer gas, tars, particle matter, producer gas and char yield were measured at the exit of the gasification and plasma reactor. The research revealed the distribution of selected metals and chlorine in the process products and examined a possible formation of hexachlorobenzene. It determined that the plasma assisted processing of gaseous products changes the composition of the tars and the producer gas, mostly by destruction of hydrocarbon species, such as methane, acetylene, ethane or propane. Plasma processing of the producer gas reduces their calorific value but increases the gas yield and the total produced energy amount. The presented technology demonstrated capability both for applying to reduce the accumulation of the sewage sludge and production of substitute gas for drying of sewage sludge and electrical power. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme.

    PubMed

    Tanigaki, Nobuhiro; Ishida, Yoshihiro; Osada, Morihiro

    2015-03-01

    This study evaluates municipal solid waste co-gasification technology and a new solid waste management scheme, which can minimize final landfill amounts and maximize material recycled from waste. This new scheme is considered for a region where bottom ash and incombustibles are landfilled or not allowed to be recycled due to their toxic heavy metal concentration. Waste is processed with incombustible residues and an incineration bottom ash discharged from existent conventional incinerators, using a gasification and melting technology (the Direct Melting System). The inert materials, contained in municipal solid waste, incombustibles and bottom ash, are recycled as slag and metal in this process as well as energy recovery. Based on this new waste management scheme with a co-gasification system, a case study of municipal solid waste co-gasification was evaluated and compared with other technical solutions, such as conventional incineration, incineration with an ash melting facility under certain boundary conditions. From a technical point of view, co-gasification produced high quality slag with few harmful heavy metals, which was recycled completely without requiring any further post-treatment such as aging. As a consequence, the co-gasification system had an economical advantage over other systems because of its material recovery and minimization of the final landfill amount. Sensitivity analyses of landfill cost, power price and inert materials in waste were also conducted. The higher the landfill costs, the greater the advantage of the co-gasification system has. The co-gasification was beneficial for landfill cost in the range of 80 Euro per ton or more. Higher power prices led to lower operation cost in each case. The inert contents in processed waste had a significant influence on the operating cost. These results indicate that co-gasification of bottom ash and incombustibles with municipal solid waste contributes to minimizing the final landfill amount and has

  12. Physicochemical evolution during rice straw and coal co-pyrolysis and its effect on co-gasification reactivity.

    PubMed

    Wei, Juntao; Gong, Yan; Guo, Qinghua; Ding, Lu; Wang, Fuchen; Yu, Guangsuo

    2017-03-01

    Physicochemical evolution (i.e. pore structure variation, carbon structure change and active AAEM transformation) during rice straw (RS) and Shenfu bituminous coal (SF) co-pyrolysis was quantitatively determined in this work. Moreover, the corresponding char gasification was conducted using a thermogravimetric analyzer (TGA) and relative reactivity was proposed to quantify the co-pyrolysis impact on co-gasification reactivity. The results showed that the development of pore structure in co-pyrolyzed chars was first inhibited and then enhanced with the decrease of SF proportion. The promotion effect of co-pyrolysis on order degree of co-pyrolyzed chars gradually weakened with increasing RS proportion. Co-pyrolysis mainly enhanced active K transformation in co-pyrolyzed chars and the promotion effect was alleviated with increasing RS proportion. The inhibition effect of co-pyrolysis on co-gasification reactivity weakened with increasing RS proportion and gasification temperature, which was mainly attributed to the combination of carbon structure evolution and active AAEM transformation in co-pyrolysis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. State of the art of biological processes for coal gasification wastewater treatment.

    PubMed

    Zhao, Qian; Liu, Yu

    2016-01-01

    The treatment of coal gasification wastewater (CGW) poses a serious challenge on the sustainable development of the global coal industry. The CGW contains a broad spectrum of high-strength recalcitrant substances, including phenolic, monocyclic and polycyclic aromatic hydrocarbons, heterocyclic nitrogenous compounds and long chain aliphatic hydrocarbon. So far, biological treatment of CGW has been considered as an environment-friendly and cost-effective method compared to physiochemical approaches. Thus, this reviews aims to provide a comprehensive picture of state of the art of biological processes for treating CGW wastewater, while the possible biodegradation mechanisms of toxic and refractory organic substances were also elaborated together with microbial community involved. Discussion was further extended to advanced bioprocesses to tackle high-concentration ammonia and possible options towards in-plant zero liquid discharge. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Gasification of empty fruit bunch with carbon dioxide in an entrained flow gasifier for syngas production

    NASA Astrophysics Data System (ADS)

    Rahmat, N. F. H.; Rasid, R. A.

    2017-06-01

    The main objectives of this work are to study the gasification of EFB in an atmospheric entrained flow gasifier, using carbon dioxide (CO2) as its gasifying agent and to determine the optimum gasification operating conditions, which includes temperature and the oxidant to fuel (OTF) ratio. These were evaluated in terms of important gasification parameters such as the concentration of hydrogen (H2) and carbon monoxide (CO) produced the syngas ratio H2/CO and carbon conversion. The gasification reactions take place in the presence of CO2 at very high reaction rate because of the high operating temperature (700°C - 900°C). The use of CO2 as the oxidant for gasification process can improve the composition of syngas produced as in the Boudouard reaction. Rise of reaction temperature which is 900°C will increase the concentration of both H2 & CO by up to 81 and 30 respectively, though their production were decreased after the OTF ratio of 0.6 for temperature 700°C & 800°C and OTF ratio 0.8 for temperature 750°C. The operating temperature must be higher than 850°C to ensure the Boudouard reaction become the more prominent reaction for the biomass gasification. The syngas ratio obtained was in the range of ≈ 0.6 - 2.4 which is sufficient for liquid fuel synthesis. For the carbon conversion, the highest fuel conversion recorded at temperature 850°C for all OTF ratios. As the OTF ratio increases, it was found that there was an increase in the formation of CO and H2. This suggests that to achieve higher carbon conversion, high operating temperature and OTF ratio are preferable. This study provides information on the optimum operating conditions for the gasification of biomass, especially the EFB, hence may upsurge the utilization of biomass waste as an energy source.

  15. Co-gasification of biosolids with biomass: Thermogravimetric analysis and pilot scale study in a bubbling fluidized bed reactor.

    PubMed

    Yu, Ming Ming; Masnadi, Mohammad S; Grace, John R; Bi, Xiaotao T; Lim, C Jim; Li, Yonghua

    2015-01-01

    This work studied the feasibility of co-gasification of biosolids with biomass as a means of disposal with energy recovery. The kinetics study at 800°C showed that biomass, such as switchgrass, could catalyze the reactions because switchgrass ash contained a high proportion of potassium, an excellent catalyst for gasification. However, biosolids could also inhibit gasification due to interaction between biomass alkali/alkaline earth metals and biosolids clay minerals. In the pilot scale experiments, increasing the proportion of biosolids in the feedstock affected gasification performance negatively. Syngas yield and char conversion decreased from 1.38 to 0.47m(3)/kg and 82-36% respectively as the biosolids proportion in the fuel increased from 0% to 100%. Over the same range, the tar content increased from 10.3 to 200g/m(3), while the ammonia concentration increased from 1660 to 19,200ppmv. No more than 25% biosolids in the fuel feed is recommended to maintain a reasonable gasification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. CO2 co-gasification of lower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique.

    PubMed

    Edreis, Elbager M A; Luo, Guangqian; Li, Aijun; Chao, Chen; Hu, Hongyun; Zhang, Sen; Gui, Ben; Xiao, Li; Xu, Kai; Zhang, Pingan; Yao, Hong

    2013-05-01

    This study investigates the non-isothermal mechanism and kinetic behaviour of gasification of a lower sulphur petroleum coke, sugar cane bagasse and blends under carbon dioxide atmosphere conditions using the thermogravimetric analyser (TGA). The gas products were measured online with coupled Fourier transform infrared spectroscopy (FTIR). The achieved results explored that the sugar cane bagasse and blend gasification happened in two steps: at (<500 °C) the volatiles are released, and at (>700 °C) char gasification occurred, whereas the lower sulphur petroleum coke presented only one char gasification stage at (>800 °C). Significant interactions were observed in the whole process. Some solid-state mechanisms were studied by the Coats-Redfern method in order to observe the mechanisms responsible for the gasification of samples. The results show that the chemical first order reaction is the best responsible mechanism for whole process. The main released gases are CO2, CO, CH4, HCOOH, C6H5OH and CH3COOH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Droplet Combustion Experiment on STS-94

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 12, 1997, MET:11/07:00 (approximate). DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.3MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available) A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300170.html.

  18. Progress in Advanced Spray Combustion Code Integration

    NASA Technical Reports Server (NTRS)

    Liang, Pak-Yan

    1993-01-01

    A multiyear project to assemble a robust, muitiphase spray combustion code is now underway and gradually building up to full speed. The overall effort involves several university and government research teams as well as Rocketdyne. The first part of this paper will give an overview of the respective roles of the different participants involved, the master strategy, the evolutionary milestones, and an assessment of the state-of-the-art of various key components. The second half of this paper will highlight the progress made to date in extending the baseline Navier-Stokes solver to handle multiphase, multispecies, chemically reactive sub- to supersonic flows. The major hurdles to overcome in order to achieve significant speed ups are delineated and the approaches to overcoming them will be discussed.

  19. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  20. Updraft gasification of poultry litter at farm-scale--A case study.

    PubMed

    Taupe, N C; Lynch, D; Wnetrzak, R; Kwapinska, M; Kwapinski, W; Leahy, J J

    2016-04-01

    Farm and animal wastes are increasingly being investigated for thermochemical conversion, such as gasification, due to the urgent necessity of finding new waste treatment options. We report on an investigation of the use of a farm-scale, auto-thermal gasification system for the production of a heating gas using poultry litter (PL) as a feedstock. The gasification process was robust and reliable. The PL's ash melting temperature was 639°C, therefore the reactor temperature was kept around this value. As a result of the low reactor temperature the process performance parameters were low, with a cold gas efficiency (CGE) of 0.26 and a carbon conversion efficiency (CCE) of 0.44. The calorific value of the clean product gas was 3.39 MJ m(-3)N (LHV). The tar was collected as an emulsion containing 87 wt.% water and the extracted organic compounds were identified. The residual char exceeds thresholds for Zn and Cu to obtain European biochar certification; however, has potential to be classified as a pyrogenic carbonaceous material (PCM), which resembles a high nutrient biochar. Copyright © 2016 Elsevier Ltd. All rights reserved.