Sample records for advanced gw detectors

  1. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10-23/√{Hz } at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  2. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a strain sensitivity of 10^{-23}/sqrt[Hz] at 100 Hz, the product of observable volume and measurement time exceeded that of all previous runs within the first 16 days of coincident observation. On September 14, 2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to GW150914.

  3. Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Ackley, K.; Adams, C.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Bassiri, R.; Batch, J. C.; Baune, C.; Behnke, B.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Biwer, C.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bork, R.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Buonanno, A.; Byer, R. L.; Cadonati, L.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Caride, S.; Caudill, S.; Cavaglià, M.; Cepeda, C.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chen, H. Y.; Chen, Y.; Cheng, C.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Dal Canton, T.; Danilishin, S. L.; Danzmann, K.; Darman, N. S.; Dave, I.; Daveloza, H. P.; Davies, G. S.; Daw, E. J.; DeBra, D.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Palma, I.; Dojcinoski, G.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferreira, E. C.; Fisher, R. P.; Fletcher, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gaonkar, S. G.; Gaur, G.; Gehrels, N.; George, J.; Gergely, L.; Ghosh, A.; Giaime, J. A.; Giardina, K. D.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Graef, C.; Graff, P. B.; Grant, A.; Gras, S.; Gray, C.; Green, A. C.; Grote, H.; Grunewald, S.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heintze, M. C.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jang, H.; Jani, K.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kozak, D. B.; Kringel, V.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leong, J. R.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lormand, M.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meadors, G. D.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Miao, H.; Middleton, H.; Mikhailov, E. E.; Mukund, K. N.; Miller, J.; Millhouse, M.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Mohapatra, S. R. P.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nayak, R. K.; Necula, V.; Nedkova, K.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nitz, A.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Principe, M.; Privitera, S.; Prokhorov, L.; Puncken, O.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Raymond, V.; Read, J.; Reed, C. M.; Reid, S.; Reitze, D. H.; Rew, H.; Riles, K.; Robertson, N. A.; Robie, R.; Rollins, J. G.; Roma, V. J.; Romanov, G.; Romie, J. H.; Rowan, S.; Rüdiger, A.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sergeev, A.; Serna, G.; Sevigny, A.; Shaddock, D. A.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Szczepańczyk, M. J.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Traylor, G.; Trifirò, D.; Tse, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vander-Hyde, D. C.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vecchio, A.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Vinciguerra, S.; Vine, D. J.; Vitale, S.; Vo, T.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Weaver, B.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Zanolin, M.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration

    2017-03-01

    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 days of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10° in phase across the relevant frequency band, 20 Hz to 1 kHz.

  4. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterji, S.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-07-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  5. Characterization of Transient Noise in Advanced LIGO Relevant to Gravitational Wave Signal GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adamo, M.; Adams, C.; Adams, T.; Camp, Jordan B.

    2016-01-01

    On 14 September 2015, a gravitational wave signal from a coalescing black hole binary system was observed by the Advanced LIGO detectors. This paper describes the transient noise backgrounds used to determine the significance of the event (designated GW150914) and presents the results of investigations into potential correlated or uncorrelated sources of transient noise in the detectors around the time of the event. The detectors were operating nominally at the time of GW150914. We have ruled out environmental influences and non-Gaussian instrument noise at either LIGO detector as the cause of the observed gravitational wave signal.

  6. A Search for Low-energy Neutrinos Correlated with Gravitational Wave Events GW 150914, GW 151226, and GW 170104 with the Borexino Detector

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Altenmüller, K.; Appel, S.; Atroshchenko, V.; Bagdasarian, Z.; Basilico, D.; Bellini, G.; Benziger, J.; Bick, D.; Bonfini, G.; Bravo, D.; Caccianiga, B.; Calaprice, F.; Caminata, A.; Caprioli, S.; Carlini, M.; Cavalcante, P.; Chepurnov, A.; Choi, K.; D'Angelo, D.; Davini, S.; Derbin, A.; Ding, X. F.; Di Ludovico, A.; Di Noto, L.; Drachnev, I.; Fomenko, K.; Formozov, A.; Franco, D.; Froborg, F.; Gabriele, F.; Galbiati, C.; Ghiano, C.; Giammarchi, M.; Goretti, A.; Gromov, M.; Hagner, C.; Houdy, T.; Hungerford, E.; Ianni, Aldo; Ianni, Andrea; Jany, A.; Jeschke, D.; Kobychev, V.; Korablev, D.; Korga, G.; Kryn, D.; Laubenstein, M.; Litvinovich, E.; Lombardi, F.; Lombardi, P.; Ludhova, L.; Lukyanchenko, G.; Lukyanchenko, L.; Machulin, I.; Manuzio, G.; Marcocci, S.; Martyn, J.; Meroni, E.; Meyer, M.; Miramonti, L.; Misiaszek, M.; Muratova, V.; Neumair, B.; Oberauer, L.; Opitz, B.; Ortica, F.; Pallavicini, M.; Papp, L.; Pilipenko, N.; Pocar, A.; Porcelli, A.; Ranucci, G.; Razeto, A.; Re, A.; Romani, A.; Roncin, R.; Rossi, N.; Schönert, S.; Semenov, D.; Skorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stokes, L. F. F.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Thurn, J.; Toropova, M.; Unzhakov, E.; Vishneva, A.; Vogelaar, R. B.; von Feilitzsch, F.; Wang, H.; Weinz, S.; Wojcik, M.; Wurm, M.; Yokley, Z.; Zaimidoroga, O.; Zavatarelli, S.; Zuber, K.; Zuzel, G.; Borexino Collaboration

    2017-11-01

    We present the results of a low-energy neutrino search using the Borexino detector in coincidence with the gravitational wave (GW) events GW 150914, GW 151226, and GW 170104. We searched for correlated neutrino events with visible energies greater than 250 keV within a time window of ±500 s centered around the GW detection time. A total of five candidates were found for all three GW events combined. This is consistent with the expected number of solar neutrino and background events. As a result, we have obtained the best current upper limits on all flavor neutrino ({ν }e,{ν }μ ,{ν }τ ) fluence associated with GW events, in the neutrino energy range 0.5-5.0 MeV.

  7. How would GW150914 look with future gravitational wave detector networks?

    NASA Astrophysics Data System (ADS)

    Gaebel, S. M.; Veitch, J.

    2017-09-01

    The first detected gravitational wave signal, GW150914 (Abbott et al 2016 Phys. Rev. Lett. 116 061102), was produced by the coalescence of a stellar-mass binary black hole. Along with the subsequent detection of GW151226, GW170104 and the candidate event LVT151012, this gives us evidence for a population of black hole binaries with component masses in the tens of solar masses (Abbott et al 2016 Phys. Rev. X 6 041015). As detector sensitivity improves, this type of source is expected to make a large contribution to the overall number of detections, but has received little attention compared to binary neutron star systems in studies of projected network performance. We simulate the observation of a system like GW150914 with different proposed network configurations, and study the precision of parameter estimates, particularly source location, orientation and masses. We find that the improvements to low frequency sensitivity that are expected with continued commissioning (Abbott et al 2016 Living Rev. Relativ. 19 1) will improve the precision of chirp mass estimates by an order of magnitude, whereas the improvements in sky location and orientation are driven by the expanded network configuration. This demonstrates that both sensitivity and number of detectors will be important factors in the scientific potential of second generation detector networks.

  8. Advanced Gravitational Wave Detectors

    NASA Astrophysics Data System (ADS)

    Blair, D. G.; Howell, E. J.; Ju, L.; Zhao, C.

    2012-02-01

    Part I. An Introduction to Gravitational Wave Astronomy and Detectors: 1. Gravitational waves D. G. Blair, L. Ju, C. Zhao and E. J. Howell; 2. Sources of gravitational waves D. G. Blair and E. J. Howell; 3. Gravitational wave detectors D. G. Blair, L. Ju, C. Zhao, H. Miao, E. J. Howell, and P. Barriga; 4. Gravitational wave data analysis B. S. Sathyaprakash and B. F. Schutz; 5. Network analysis L. Wen and B. F. Schutz; Part II. Current Laser Interferometer Detectors: Three Case Studies: 6. The Laser Interferometer Gravitational-Wave Observatory P. Fritschel; 7. The VIRGO detector S. Braccini; 8. GEO 600 H. Lück and H. Grote; Part III. Technology for Advanced Gravitational Wave Detectors: 9. Lasers for high optical power interferometers B. Willke and M. Frede; 10. Thermal noise, suspensions and test masses L. Ju, G. Harry and B. Lee; 11. Vibration isolation: Part 1. Seismic isolation for advanced LIGO B. Lantz; Part 2. Passive isolation J-C. Dumas; 12. Interferometer sensing and control P. Barriga; 13. Stabilizing interferometers against high optical power effects C. Zhao, L. Ju, S. Gras and D. G. Blair; Part IV. Technology for Third Generation Gravitational Wave Detectors: 14. Cryogenic interferometers J. Degallaix; 15. Quantum theory of laser-interferometer GW detectors H. Miao and Y. Chen; 16. ET. A third generation observatory M. Punturo and H. Lück; Index.

  9. Gravitational Wave (GW) Classification, Space GW Detection Sensitivities and AMIGO (Astrodynamical Middle-frequency Interferometric GW Observatory)

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    2018-01-01

    After first reviewing the gravitational wave (GW) spectral classification. we discuss the sensitivities of GW detection in space aimed at low frequency band (100 nHz-100 mHz) and middle frequency band (100 mHz-10 Hz). The science goals are to detect GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries; (v) Stellar-Size Black Hole Binaries; and (vi) Relic GW Background. The detector proposals have arm length ranging from 100 km to 1.35×109 km (9 AU) including (a) Solar orbiting detectors and (b) Earth orbiting detectors. We discuss especially the sensitivities in the frequency band 0.1-10 μHz and the middle frequency band (0.1 Hz-10 Hz). We propose and discuss AMIGO as an Astrodynamical Middlefrequency Interferometric GW Observatory.

  10. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    A transient gravitational-wave signal, GW150914, was identified in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To assess the implications of this discovery, the detectors remained in operation with unchanged configurations over a period of 39 days around the time of the signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate (FAR) of \\lt 4.9× {10}-6 {{yr}}-1, yielding a p-value for GW150914 of \\lt 2× {10}-7. Parameter estimation follow-up on this trigger identifies its source as a binary black hole (BBH) merger with component masses ({m}1,{m}2)=({36}-4+5,{29}-4+4) {M}⊙ at redshift z={0.09}-0.04+0.03 (median and 90% credible range). Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between 2{--}53 {{Gpc}}-3 {{yr}}-1 (comoving frame). Incorporating all search triggers that pass a much lower threshold while accounting for the uncertainty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from 13{--}600 {{Gpc}}-3 {{yr}}-1 depending on assumptions about the BBH mass distribution. All together, our various rate estimates fall in the conservative range 2{--}600 {{Gpc}}-3 {{yr}}-1.

  11. Supplement: The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work wereported various rate estimates whose 90% confidence intervals fell in the range 2600 Gpc(exp -3) yr(exp -1). Here we givedetails on our method and computations, including information about our search pipelines, a derivation of ourlikelihood function for the analysis, a description of the astrophysical search trigger distribution expected frommerging BBHs, details on our computational methods, a description of the effects and our model for calibrationuncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.

  12. Astrophysical Implications of the Binary Black-hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; and; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that inspiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively “heavy” BHs (≳ 25 {M}⊙ ) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 1/2 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (≳ 1 Gpc-3 yr-1) from both types of formation models. The low measured redshift (z≃ 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  13. Astrophysical Implications of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    The discovery of the gravitational-wave (GW) source GW150914 with the Advanced LIGO detectors provides the first observational evidence for the existence of binary black hole (BH) systems that in spiral and merge within the age of the universe. Such BH mergers have been predicted in two main types of formation models, involving isolated binaries in galactic fields or dynamical interactions in young and old dense stellar environments. The measured masses robustly demonstrate that relatively heavy BHs (> or approx. 25 Stellar Mass) can form in nature. This discovery implies relatively weak massive-star winds and thus the formation of GW150914 in an environment with a metallicity lower than about 12 of the solar value. The rate of binary-BH (BBH) mergers inferred from the observation of GW150914 is consistent with the higher end of rate predictions (> or approx. 1/cu Gpc/yr) from both types of formation models. The low measured redshift (z approx. = 0.1) of GW150914 and the low inferred metallicity of the stellar progenitor imply either BBH formation in a low-mass galaxy in the local universe and a prompt merger, or formation at high redshift with a time delay between formation and merger of several Gyr. This discovery motivates further studies of binary-BH formation astrophysics. It also has implications for future detections and studies by Advanced LIGO and Advanced Virgo, and GW detectors in space.

  14. Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Balaceanu, A.; Barreira Luz, R. J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chinellato, J. A.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; Deligny, O.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Fick, B.; Figueira, J. M.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gaior, R.; García, B.; Garcia-Pinto, D.; Gaté, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kemp, J.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Lauscher, M.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Luce, Q.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Mockler, D.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Nellen, L.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pereira, L. A. S.; Perrone, L.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Ramos-Pollan, R.; Rautenberg, J.; Ravignani, D.; Reinert, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rogozin, D.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento, C. A.; Sato, R.; Schauer, M.; Scherini, V.; Schieler, H.; Schimp, M.; Schmidt, D.; Scholten, O.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Silli, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stasielak, J.; Stassi, P.; Strafella, F.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Swain, J.; Szadkowski, Z.; Taboada, A.; Taborda, O. A.; Tapia, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Torralba Elipe, G.; Torres Machado, D.; Torri, M.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Vergara Quispe, I. D.; Verzi, V.; Vicha, J.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yelos, D.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-12-01

    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy Eν above 100 PeV from pointlike sources across the sky with equatorial declination from about -6 5 ° to +6 0 ° , and, in particular, from a fraction of the 90% confidence-level inferred positions in the sky of GW150914 and GW151226. A targeted search for highly inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth's crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. From the nonobservation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.

  15. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bohémier, K.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Cokelaer, T.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Dietz, A.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Goggin, L. M.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McKechan, D. J. A.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messaritaki, E.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Robinson, C.; Rocchi, A.; Rodriguez, A. C.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Santamaría, L.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, at 09∶50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 σ .

  16. GW150914: First Results from the Search for Binary Black Hole Coalescence with Advanced LIGO

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    On September 14, 2015, at 09:50:45 UTC the two detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) simultaneously observed the binary black hole merger GW150914. We report the results of a matched-filter search using relativistic models of compact-object binaries that recovered GW150914 as the most significant event during the coincident observations between the two LIGO detectors from September 12 to October 20, 2015 GW150914 was observed with a matched-filter signal-to-noise ratio of 24 and a false alarm rate estimated to be less than 1 event per 203000 years, equivalent to a significance greater than 5.1 sigma.

  17. Ultrahigh-energy neutrino follow-up of gravitational wave events GW150914 and GW151226 with the Pierre Auger Observatory

    DOE PAGES

    Aab, A.; Abreu, P.; Aglietta, M.; ...

    2016-12-30

    On September 14, 2015 the Advanced LIGO detectors observed their first gravitational wave (GW) transient GW150914. This was followed by a second GW event observed on December 26, 2015. Both events were inferred to have arisen from the merger of black holes in binary systems. Such a system may emit neutrinos if there are magnetic fields and disk debris remaining from the formation of the two black holes. With the surface detector array of the Pierre Auger Observatory we can search for neutrinos with energy Eν above 100 PeV from point like sources across the sky with equatorial declination from aboutmore » -65° to +60°, and, in particular, from a fraction of the 90% confidence-level inferred positions in the sky of GW150914 and GW151226. A targeted search for highly inclined extensive air showers, produced either by interactions of downward-going neutrinos of all flavors in the atmosphere or by the decays of tau leptons originating from tau-neutrino interactions in the Earth’s crust (Earth-skimming neutrinos), yielded no candidates in the Auger data collected within ±500 s around or 1 day after the coordinated universal time (UTC) of GW150914 and GW151226, as well as in the same search periods relative to the UTC time of the GW candidate event LVT151012. As a result, from the non-observation we constrain the amount of energy radiated in ultrahigh-energy neutrinos from such remarkable events.« less

  18. Parametric adaptive filtering and data validation in the bar GW detector AURIGA

    NASA Astrophysics Data System (ADS)

    Ortolan, A.; Baggio, L.; Cerdonio, M.; Prodi, G. A.; Vedovato, G.; Vitale, S.

    2002-04-01

    We report on our experience gained in the signal processing of the resonant GW detector AURIGA. Signal amplitude and arrival time are estimated by means of a matched-adaptive Wiener filter. The detector noise, entering in the filter set-up, is modelled as a parametric ARMA process; to account for slow non-stationarity of the noise, the ARMA parameters are estimated on an hourly basis. A requirement of the set-up of an unbiased Wiener filter is the separation of time spans with 'almost Gaussian' noise from non-Gaussian and/or strongly non-stationary time spans. The separation algorithm consists basically of a variance estimate with the Chauvenet convergence method and a threshold on the Curtosis index. The subsequent validation of data is strictly connected with the separation procedure: in fact, by injecting a large number of artificial GW signals into the 'almost Gaussian' part of the AURIGA data stream, we have demonstrated that the effective probability distributions of the signal-to-noise ratio χ2 and the time of arrival are those that are expected.

  19. Gravitational wave discovery and characterization of the binary neutron star inspiral GW170817

    NASA Astrophysics Data System (ADS)

    Littenberg, Tyson; LIGO Scientific Collaboration and Virgo Collaboration

    2018-01-01

    On August 17, 2017 the Advanced LIGO and Advanced Virgo gravitational-wave detectors observed a binary neutron star inspiral. The source, GW170817, was the closest, loudest, and best localized gravitational-wave observation to date and was part of the spectacular multi-messenger observing campaign including the associated gamma-ray burst, a transient counterpart discovered in the optical, and late-time X-ray and radio emission. This talk will overview the discovery of GW170817 and what has been learned about the source from the gravitational-wave observations.

  20. Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Flynn, E.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Phukon, K. S.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sarin, N.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Rana, J.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Sowell, E.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. D.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is {h}{rss}50 % =2.1× {10}-22 {{Hz}}-1/2 at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is {h}{rss}50 % =8.4× {10}-22 {{Hz}}-1/2 for a millisecond magnetar model, and {h}{rss}50 % =5.9× {10}-22 {{Hz}}-1/2 for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

  1. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. Cerboni; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. Gonzalez; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30 M⊙, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict ΩGW(f =25 Hz )=1. 1-0.9+2.7×10-9 with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  2. A Search for Electron Antineutrinos Associated with Gravitational-wave Events GW150914 and GW151226 Using KamLAND

    NASA Astrophysics Data System (ADS)

    Gando, A.; Gando, Y.; Hachiya, T.; Hayashi, A.; Hayashida, S.; Ikeda, H.; Inoue, K.; Ishidoshiro, K.; Karino, Y.; Koga, M.; Matsuda, S.; Mitsui, T.; Nakamura, K.; Obara, S.; Oura, T.; Ozaki, H.; Shimizu, I.; Shirahata, Y.; Shirai, J.; Suzuki, A.; Takai, T.; Tamae, K.; Teraoka, Y.; Ueshima, K.; Watanabe, H.; Kozlov, A.; Takemoto, Y.; Yoshida, S.; Fushimi, K.; Piepke, A.; Banks, T. I.; Berger, B. E.; Fujikawa, B. K.; O'Donnell, T.; Learned, J. G.; Maricic, J.; Sakai, M.; Winslow, L. A.; Krupczak, E.; Ouellet, J.; Efremenko, Y.; Karwowski, H. J.; Markoff, D. M.; Tornow, W.; Detwiler, J. A.; Enomoto, S.; Decowski, M. P.; KamLAND Collaboration

    2016-10-01

    We present a search, using KamLAND, a kiloton-scale anti-neutrino detector, for low-energy anti-neutrino events that were coincident with the gravitational-wave (GW) events GW150914 and GW151226, and the candidate event LVT151012. We find no inverse beta-decay neutrino events within ±500 s of either GW signal. This non-detection is used to constrain the electron anti-neutrino fluence and the total integrated luminosity of the astrophysical sources.

  3. A search for electron antineutrinos associated with gravitational-wave events GW150914 and GW151226 using KamLAND

    DOE PAGES

    Gando, A.; Gando, Y.; Hachiya, T.; ...

    2016-09-30

    Here, we present a search, using KamLAND, a kiloton-scale anti-neutrino detector, for low-energy anti-neutrino events that were coincident with the gravitational-wave (GW) events GW150914 and GW151226, and the candidate event LVT151012. We find no inverse beta-decay neutrino events within ±500 s of either GW signal. This non-detection is used to constrain the electron anti-neutrino fluence and the total integrated luminosity of the astrophysical sources.

  4. Supplement: “The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914” (2016, ApJL, 833, L1)

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O’Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; O’Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wesels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-12-01

    This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work we reported various rate estimates whose 90% confidence intervals fell in the range 2–600 Gpc‑3 yr‑1. Here we give details on our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty, and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.

  5. GW150914: Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Baiardi, L Cerboni; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R T; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Haris, K; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-04-01

    The LIGO detection of the gravitational wave transient GW150914, from the inspiral and merger of two black holes with masses ≳30M_{⊙}, suggests a population of binary black holes with relatively high mass. This observation implies that the stochastic gravitational-wave background from binary black holes, created from the incoherent superposition of all the merging binaries in the Universe, could be higher than previously expected. Using the properties of GW150914, we estimate the energy density of such a background from binary black holes. In the most sensitive part of the Advanced LIGO and Advanced Virgo band for stochastic backgrounds (near 25 Hz), we predict Ω_{GW}(f=25  Hz)=1.1_{-0.9}^{+2.7}×10^{-9} with 90% confidence. This prediction is robustly demonstrated for a variety of formation scenarios with different parameters. The differences between models are small compared to the statistical uncertainty arising from the currently poorly constrained local coalescence rate. We conclude that this background is potentially measurable by the Advanced LIGO and Advanced Virgo detectors operating at their projected final sensitivity.

  6. SUPPLEMENT: “THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914” (2016, ApJL, 833, L1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.; Abbott, R.; Abernathy, M. R.

    This article provides supplemental information for a Letter reporting the rate of (BBH) coalescences inferred from 16 days of coincident Advanced LIGO observations surrounding the transient (GW) signal GW150914. In that work we reported various rate estimates whose 90% confidence intervals fell in the range 2–600 Gpc{sup −3} yr{sup −1}. Here we give details on our method and computations, including information about our search pipelines, a derivation of our likelihood function for the analysis, a description of the astrophysical search trigger distribution expected from merging BBHs, details on our computational methods, a description of the effects and our model for calibration uncertainty,more » and an analytic method for estimating our detector sensitivity, which is calibrated to our measurements.« less

  7. A Dark Energy Camera Search for an Optical Counterpart to the First Advanced LIGO Gravitational Wave Event GW150914

    NASA Technical Reports Server (NTRS)

    Soares-Santos, M.; Kessler, R.; Burger, E.; Annis, J.; Brout, D.; Buckley-Geer, E.; Chen, H.; Cowperthwaite, P. S.; Diehl, H.T.; Doctor, Z.; hide

    2016-01-01

    We report the results of a deep search for an optical counterpart to the gravitational wave (GW) event GW150914, the first trigger from the Advanced LIGO GW detectors. We used the Dark Energy Camera (DECam) to image a 102 deg(exp 2) area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in the i and z bands at 4-5, 7, and 24 days after the trigger. The median 5(sigma) point-source limiting magnitudes of our search images are i = 22.5 and z = 21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg(exp 2), corresponding to a 12% total probability in the initial map and 3% in the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i = 21.5, 21.1, 20.1 for object colors (i-z)= 1, 0, -1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.

  8. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Aloy, M. A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration; Burns, E.; Veres, P.; Kocevski, D.; Racusin, J.; Goldstein, A.; Connaughton, V.; Briggs, M. S.; Blackburn, L.; Hamburg, R.; Hui, C. M.; von Kienlin, A.; McEnery, J.; Preece, R. D.; Wilson-Hodge, C. A.; Bissaldi, E.; Cleveland, W. H.; Gibby, M. H.; Giles, M. M.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Poolakkil, S.; Roberts, O. J.; Stanbro, M.; Gamma-ray Burst Monitor, (Fermi; Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T. J.-L.; Diehl, R.; Domingo, A.; Hanlon, L.; Jourdain, E.; Laurent, P.; Lebrun, F.; Lutovinov, A.; Mereghetti, S.; Natalucci, L.; Rodi, J.; Roques, J.-P.; Sunyaev, R.; Ubertini, P.; (INTEGRAL

    2017-10-01

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is 5.0× {10}-8. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of (+1.74+/- 0.05) {{s}} between GRB 170817A and GW170817 to: (I) constrain the difference between the speed of gravity and the speed of light to be between -3× {10}-15 and +7× {10}-16 times the speed of light, (II) place new bounds on the violation of Lorentz invariance, (III) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity.

  9. Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. C.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Diaz, J. C.; Casentini, C.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Baiardi, L. C.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Castro, J. M. G.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palliyaguru, N.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Allison, J.; Bannister, K.; Bell, M. E.; Chatterjee, S.; Chippendale, A. P.; Edwards, P. G.; Harvey-Smith, L.; Heywood, Ian; Hotan, A.; Indermuehle, B.; Marvil, J.; McConnell, D.; Murphy, T.; Popping, A.; Reynolds, J.; Sault, R. J.; Voronkov, M. A.; Whiting, M. T.; Australian Square Kilometer Array Pathfinder (ASKAP Collaboration); Castro-Tirado, A. J.; Cunniffe, R.; Jelínek, M.; Tello, J. C.; Oates, S. R.; Hu, Y.-D.; Kubánek, P.; Guziy, S.; Castellón, A.; García-Cerezo, A.; Muñoz, V. F.; Pérez del Pulgar, C.; Castillo-Carrión, S.; Castro Cerón, J. M.; Hudec, R.; Caballero-García, M. D.; Páta, P.; Vitek, S.; Adame, J. A.; Konig, S.; Rendón, F.; Mateo Sanguino, T. de J.; Fernández-Muñoz, R.; Yock, P. C.; Rattenbury, N.; Allen, W. H.; Querel, R.; Jeong, S.; Park, I. H.; Bai, J.; Cui, Ch.; Fan, Y.; Wang, Ch.; Hiriart, D.; Lee, W. H.; Claret, A.; Sánchez-Ramírez, R.; Pandey, S. B.; Mediavilla, T.; Sabau-Graziati, L.; BOOTES Collaboration; Abbott, T. M. C.; Abdalla, F. B.; Allam, S.; Annis, J.; Armstrong, R.; Benoit-Lévy, A.; Berger, E.; Bernstein, R. A.; Bertin, E.; Brout, D.; Buckley-Geer, E.; Burke, D. L.; Capozzi, D.; Carretero, J.; Castander, F. J.; Chornock, R.; Cowperthwaite, P. S.; Crocce, M.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doctor, Z.; Drlica-Wagner, A.; Drout, M. R.; Eifler, T. F.; Estrada, J.; Evrard, A. E.; Fernandez, E.; Finley, D. A.; Flaugher, B.; Foley, R. J.; Fong, W.-F.; Fosalba, P.; Fox, D. B.; Frieman, J.; Fryer, C. L.; Gaztanaga, E.; Gerdes, D. W.; Goldstein, D. A.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; Herner, K.; Honscheid, K.; James, D. J.; Johnson, M. D.; Johnson, M. W. G.; Karliner, I.; Kasen, D.; Kent, S.; Kessler, R.; Kim, A. G.; Kind, M. C.; Kuehn, K.; Kuropatkin, N.; Lahav, O.; Li, T. S.; Lima, M.; Lin, H.; Maia, M. A. G.; Margutti, R.; Marriner, J.; Martini, P.; Matheson, T.; Melchior, P.; Metzger, B. D.; Miller, C. J.; Miquel, R.; Neilsen, E.; Nichol, R. C.; Nord, B.; Nugent, P.; Ogando, R.; Petravick, D.; Plazas, A. A.; Quataert, E.; Roe, N.; Romer, A. K.; Roodman, A.; Rosell, A. C.; Rykoff, E. S.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Schubnell, M.; Scolnic, D.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, N.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Stebbins, A.; Suchyta, E.; Swanson, M. E. C.; Tarle, G.; Thaler, J.; Thomas, D.; Thomas, R. C.; Tucker, D. L.; Vikram, V.; Walker, A. R.; Wechsler, R. H.; Wester, W.; Yanny, B.; Zhang, Y.; Zuntz, J.; Dark Energy Survey Collaboration; Dark Energy Camera GW-EM Collaboration; Connaughton, V.; Burns, E.; Goldstein, A.; Briggs, M. S.; Zhang, B.-B.; Hui, C. M.; Jenke, P.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Fitzpatrick, G.; Giles, M. M.; Gibby, M. H.; Greiner, J.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Mailyan, B.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O.; Sparke, L.; Stanbro, M.; Toelge, K.; Veres, P.; Yu, H.-F.; Blackburn, L.; Fermi GBM Collaboration; Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbiellini, G.; Bastieri, D.; Bellazzini, R.; Bissaldi, E.; Blandford, R. D.; Bloom, E. D.; Bonino, R.; Bottacini, E.; Brandt, T. J.; Bruel, P.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caragiulo, M.; Caraveo, P. A.; Cavazzuti, E.; Charles, E.; Chekhtman, A.; Chiang, J.; Chiaro, G.; Ciprini, S.; Cohen-Tanugi, J.; Cominsky, L. R.; Costanza, F.; Cuoco, A.; D'Ammando, F.; de Palma, F.; Desiante, R.; Digel, S. W.; Di Lalla, N.; Di Mauro, M.; Di Venere, L.; Domínguez, A.; Drell, P. S.; Dubois, R.; Favuzzi, C.; Ferrara, E. C.; Franckowiak, A.; Fukazawa, Y.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Gomez-Vargas, G. A.; Green, D.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Harding, A. K.; Hays, E.; Hewitt, J. W.; Hill, A. B.; Horan, D.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Kensei, S.; Kocevski, D.; Kuss, M.; La Mura, G.; Larsson, S.; Latronico, L.; Li, J.; Li, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Magill, J.; Maldera, S.; Manfreda, A.; Marelli, M.; Mayer, M.; Mazziotta, M. N.; McEnery, J. E.; Meyer, M.; Michelson, P. F.; Mirabal, N.; Mizuno, T.; Moiseev, A. A.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Negro, M.; Nuss, E.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Ormes, J. F.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Porter, T. A.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzaque, S.; Reimer, A.; Reimer, O.; Salvetti, D.; Saz Parkinson, P. M.; Sgrò, C.; Simone, D.; Siskind, E. J.; Spada, F.; Spandre, G.; Spinelli, P.; Suson, D. J.; Tajima, H.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Troja, E.; Uchiyama, Y.; Venters, T. M.; Vianello, G.; Wood, K. S.; Wood, M.; Zhu, S.; Zimmer, S.; Fermi LAT Collaboration; Brocato, E.; Cappellaro, E.; Covino, S.; Grado, A.; Nicastro, L.; Palazzi, E.; Pian, E.; Amati, L.; Antonelli, L. A.; Capaccioli, M.; D'Avanzo, P.; D'Elia, V.; Getman, F.; Giuffrida, G.; Iannicola, G.; Limatola, L.; Lisi, M.; Marinoni, S.; Marrese, P.; Melandri, A.; Piranomonte, S.; Possenti, A.; Pulone, L.; Rossi, A.; Stamerra, A.; Stella, L.; Testa, V.; Tomasella, L.; Yang, S.; GRAvitational Wave Inaf TeAm (GRAWITA); Bazzano, A.; Bozzo, E.; Brandt, S.; Courvoisier, T. J.-L.; Ferrigno, C.; Hanlon, L.; Kuulkers, E.; Laurent, P.; Mereghetti, S.; Roques, J. P.; Savchenko, V.; Ubertini, P.; INTEGRAL Collaboration; Kasliwal, M. M.; Singer, L. P.; Cao, Y.; Duggan, G.; Kulkarni, S. R.; Bhalerao, V.; Miller, A. A.; Barlow, T.; Bellm, E.; Manulis, I.; Rana, J.; Laher, R.; Masci, F.; Surace, J.; Rebbapragada, U.; Cook, D.; Van Sistine, A.; Sesar, B.; Perley, D.; Ferreti, R.; Prince, T.; Kendrick, R.; Horesh, A.; Intermediate Palomar Transient Factory (iPTF Collaboration); Hurley, K.; Golenetskii, S. V.; Aptekar, R. L.; Frederiks, D. D.; Svinkin, D. S.; Rau, A.; von Kienlin, A.; Zhang, X.; Smith, D. M.; Cline, T.; Krimm, H.; InterPlanetary Network; Abe, F.; Doi, M.; Fujisawa, K.; Kawabata, K. S.; Morokuma, T.; Motohara, K.; Tanaka, M.; Ohta, K.; Yanagisawa, K.; Yoshida, M.; J-GEM Collaboration; Baltay, C.; Rabinowitz, D.; Ellman, N.; Rostami, S.; La Silla-QUEST Survey; Bersier, D. F.; Bode, M. F.; Collins, C. A.; Copperwheat, C. M.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Mazzali, P.; Mundell, C. G.; Piascik, A. S.; Pollacco, Don; Steele, I. A.; Ulaczyk, K.; Liverpool Telescope Collaboration; Broderick, J. W.; Fender, R. P.; Jonker, P. G.; Rowlinson, A.; Stappers, B. W.; Wijers, R. A. M. J.; Low Frequency Array (LOFAR Collaboration); Lipunov, V.; Gorbovskoy, E.; Tyurina, N.; Kornilov, V.; Balanutsa, P.; Kuznetsov, A.; Buckley, D.; Rebolo, R.; Serra-Ricart, M.; Israelian, G.; Budnev, N. M.; Gress, O.; Ivanov, K.; Poleshuk, V.; Tlatov, A.; Yurkov, V.; MASTER Collaboration; Kawai, N.; Serino, M.; Negoro, H.; Nakahira, S.; Mihara, T.; Tomida, H.; Ueno, S.; Tsunemi, H.; Matsuoka, M.; MAXI Collaboration; Croft, S.; Feng, L.; Franzen, T. M. O.; Gaensler, B. M.; Johnston-Hollitt, M.; Kaplan, D. L.; Morales, M. F.; Tingay, S. J.; Wayth, R. B.; Williams, A.; Murchison Wide-field Array (MWA Collaboration); Smartt, S. J.; Chambers, K. C.; Smith, K. W.; Huber, M. E.; Young, D. R.; Wright, D. E.; Schultz, A.; Denneau, L.; Flewelling, H.; Magnier, E. A.; Primak, N.; Rest, A.; Sherstyuk, A.; Stalder, B.; Stubbs, C. W.; Tonry, J.; Waters, C.; Willman, M.; Pan-STARRS Collaboration; Olivares E., F.; Campbell, H.; Kotak, R.; Sollerman, J.; Smith, M.; Dennefeld, M.; Anderson, J. P.; Botticella, M. T.; Chen, T.-W.; Della Valle, M.; Elias-Rosa, N.; Fraser, M.; Inserra, C.; Kankare, E.; Kupfer, T.; Harmanen, J.; Galbany, L.; Le Guillou, L.; Lyman, J. D.; Maguire, K.; Mitra, A.; Nicholl, M.; Razza, A.; Terreran, G.; Valenti, S.; Gal-Yam, A.; PESSTO Collaboration; Ćwiek, A.; Ćwiok, M.; Mankiewicz, L.; Opiela, R.; Zaremba, M.; Żarnecki, A. F.; Pi of Sky Collaboration; Onken, C. A.; Scalzo, R. A.; Schmidt, B. P.; Wolf, C.; Yuan, F.; SkyMapper Collaboration; Evans, P. A.; Kennea, J. A.; Burrows, D. N.; Campana, S.; Cenko, S. B.; Giommi, P.; Marshall, F. E.; Nousek, J.; O'Brien, P.; Osborne, J. P.; Palmer, D.; Perri, M.; Siegel, M.; Tagliaferri, G.; Swift Collaboration; Klotz, A.; Turpin, D.; Laugier, R.; TAROT Collaboration; Zadko Collaboration; Algerian National Observatory Collaboration; C2PU Collaboration; Beroiz, M.; Peñuela, T.; Macri, L. M.; Oelkers, R. J.; Lambas, D. G.; Vrech, R.; Cabral, J.; Colazo, C.; Dominguez, M.; Sanchez, B.; Gurovich, S.; Lares, M.; Marshall, J. L.; DePoy, D. L.; Padilla, N.; Pereyra, N. A.; Benacquista, M.; TOROS Collaboration; Tanvir, N. R.; Wiersema, K.; Levan, A. J.; Steeghs, D.; Hjorth, J.; Fynbo, J. P. U.; Malesani, D.; Milvang-Jensen, B.; Watson, D.; Irwin, M.; Fernandez, C. G.; McMahon, R. G.; Banerji, M.; Gonzalez-Solares, E.; Schulze, S.; de Ugarte Postigo, A.; Thoene, C. C.; Cano, Z.; Rosswog, S.; VISTA Collaboration

    2016-07-01

    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.

  10. Target-based optimization of advanced gravitational-wave detector network operations

    NASA Astrophysics Data System (ADS)

    Szölgyén, Á.; Dálya, G.; Gondán, L.; Raffai, P.

    2017-04-01

    We introduce two novel time-dependent figures of merit for both online and offline optimizations of advanced gravitational-wave (GW) detector network operations with respect to (i) detecting continuous signals from known source locations and (ii) detecting GWs of neutron star binary coalescences from known local galaxies, which thereby have the highest potential for electromagnetic counterpart detection. For each of these scientific goals, we characterize an N-detector network, and all its (N  -  1)-detector subnetworks, to identify subnetworks and individual detectors (key contributors) that contribute the most to achieving the scientific goal. Our results show that aLIGO-Hanford is expected to be the key contributor in 2017 to the goal of detecting GWs from the Crab pulsar within the network of LIGO and Virgo detectors. For the same time period and for the same network, both LIGO detectors are key contributors to the goal of detecting GWs from the Vela pulsar, as well as to detecting signals from 10 high interest pulsars. Key contributors to detecting continuous GWs from the Galactic Center can only be identified for finite time intervals within each sidereal day with either the 3-detector network of the LIGO and Virgo detectors in 2017, or the 4-detector network of the LIGO, Virgo, and KAGRA detectors in 2019-2020. Characterization of the LIGO-Virgo detectors with respect to goal (ii) identified the two LIGO detectors as key contributors. Additionally, for all analyses, we identify time periods within a day when lock losses or scheduled service operations could result with the least amount of signal-to-noise or transient detection probability loss for a detector network.

  11. LIGO-India: expanding the international network of gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Iyer, Balasubramanian

    2015-04-01

    The first detection of Gravitational Waves (GW) by ground based detectors will open up a fundamentally new observational window to the Universe with implications for astrophysics and eventually cosmology and fundamental physics. The realization of GW astronomy requires a global network of Advanced GW detectors including upcoming observatories like KAGRA (Japan) and LIGO-India to provide good sky localization of the GW sources. LIGO-India is expected to play a key role in locating and deciphering the sources contributing to the GW symphony. The current status of LIGO-India project and the exciting future research opportunities of this ambitious Indo-US collaboration in science, technology and computation will be finally indicated. Acknowledge CISA and APS for the Award of a APS Beller Lectureship. BRI supported by the AIRBUS Group Corporate Foundation through a visiting professorship, which is part of the ``Mathematics of Complex Systems'' chair at ICTS.

  12. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    DOE PAGES

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; ...

    2017-10-16

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance ismore » $$5.0\\times {10}^{-8}$$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $$(+1.74\\pm 0.05)\\,{\\rm{s}}$$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $$-3\\times {10}^{-15}$$ and $$+7\\times {10}^{-16}$$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.« less

  13. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance ismore » $$5.0\\times {10}^{-8}$$. We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of $$(+1.74\\pm 0.05)\\,{\\rm{s}}$$ between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between $$-3\\times {10}^{-15}$$ and $$+7\\times {10}^{-16}$$ times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1–1.4 per year during the 2018–2019 observing run and 0.3–1.7 per year at design sensitivity.« less

  14. Observing gravitational-wave transient GW150914 with minimal assumptions

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackburn, L.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chatterji, S.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Clark, M.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Haas, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinder, I.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinsey, M.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Laguna, P.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Page, J.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    The gravitational-wave signal GW150914 was first identified on September 14, 2015, by searches for short-duration gravitational-wave transients. These searches identify time-correlated transients in multiple detectors with minimal assumptions about the signal morphology, allowing them to be sensitive to gravitational waves emitted by a wide range of sources including binary black hole mergers. Over the observational period from September 12 to October 20, 2015, these transient searches were sensitive to binary black hole mergers similar to GW150914 to an average distance of ˜600 Mpc . In this paper, we describe the analyses that first detected GW150914 as well as the parameter estimation and waveform reconstruction techniques that initially identified GW150914 as the merger of two black holes. We find that the reconstructed waveform is consistent with the signal from a binary black hole merger with a chirp mass of ˜30 M⊙ and a total mass before merger of ˜70 M⊙ in the detector frame.

  15. Localization and broadband follow-up of the gravitational-wave transient GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.

    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Furthermore, detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less

  16. Localization and broadband follow-up of the gravitational-wave transient GW150914

    DOE PAGES

    Abbott, B. P.

    2016-07-20

    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Furthermore, detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less

  17. LOCALIZATION AND BROADBAND FOLLOW-UP OF THE GRAVITATIONAL-WAVE TRANSIENT GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.; Abbott, R.; Abernathy, M. R.

    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize themore » follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams.« less

  18. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Hall, E. D.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, R. A.; Anderson, S. B.; Arai, K.; Arain, M. A.; Aston, S. M.; Austin, L.; Ballmer, S. W.; Barbet, M.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Barton, M. A.; Bartos, I.; Batch, J. C.; Bell, A. S.; Belopolski, I.; Bergman, J.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Black, E.; Blair, C. D.; Bogan, C.; Bork, R.; Bridges, D. O.; Brooks, A. F.; Celerier, C.; Ciani, G.; Clara, F.; Cook, D.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Damjanic, M.; Dannenberg, R.; Danzmann, K.; Costa, C. F. Da Silva; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Feldbaum, D.; Fisher, R. P.; Foley, S.; Frede, M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galdi, V.; Giaime, J. A.; Giardina, K. D.; Gleason, J. R.; Goetz, R.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Grote, H.; Guido, C. J.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heefner, J.; Heintze, M. C.; Heptonstall, A. W.; Hoak, D.; Hough, J.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kells, W.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kokeyama, K.; Korth, W. Z.; Kuehn, G.; Kwee, P.; Landry, M.; Lantz, B.; Le Roux, A.; Levine, B. M.; Lewis, J. B.; Lhuillier, V.; Lockerbie, N. A.; Lormand, M.; Lubinski, M. J.; Lundgren, A. P.; MacDonald, T.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Merilh, E. L.; Meyer, M. S.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, C. L.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; O'Dell, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Osthelder, C.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Patrick, Z.; Pele, A.; Penn, S.; Phelps, M.; Pickenpack, M.; Pierro, V.; Pinto, I.; Poeld, J.; Principe, M.; Prokhorov, L.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Ramet, C. R.; Reed, C. M.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Sannibale, V.; Savage, R. L.; Schofield, R. M. S.; Schultz, B.; Schwinberg, P.; Sellers, D.; Sevigny, A.; Shaddock, D. A.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, J. R.; Smith, M. R.; Smith-Lefebvre, N. D.; Sorazu, B.; Staley, A.; Stein, A. J.; Stochino, A.; Strain, K. A.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vargas, M.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Waldman, S. J.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Welborn, T.; Weßels, P.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Zhang, L.; Zucker, M. E.; Zweizig, J.

    2016-06-01

    The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely separated 4 km laser interferometers designed to detect gravitational waves from distant astrophysical sources in the frequency range from 10 Hz to 10 kHz. The first observation run of the Advanced LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better than 10-23/√{Hz } was achieved around 100 Hz. Understanding both the fundamental and the technical noise sources was critical for increasing the astrophysical strain sensitivity. The average distance at which coalescing binary black hole systems with individual masses of 30 M⊙ could be detected above a signal-to-noise ratio (SNR) of 8 was 1.3 Gpc, and the range for binary neutron star inspirals was about 75 Mpc. With respect to the initial detectors, the observable volume of the Universe increased by a factor 69 and 43, respectively. These improvements helped Advanced LIGO to detect the gravitational wave signal from the binary black hole coalescence, known as GW150914.

  19. New method for enhanced efficiency in detection of gravitational waves from supernovae using coherent network of detectors

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Salazar, L.; Mittelstaedt, J.; Valdez, O.

    2017-11-01

    Supernovae in our universe are potential sources of gravitational waves (GW) that could be detected in a network of GW detectors like LIGO and Virgo. Core-collapse supernovae are rare, but the associated gravitational radiation is likely to carry profuse information about the underlying processes driving the supernovae. Calculations based on analytic models predict GW energies within the detection range of the Advanced LIGO detectors, out to tens of Mpc for certain types of signals e.g. coalescing binary neutron stars. For supernovae however, the corresponding distances are much less. Thus, methods that can improve the sensitivity of searches for GW signals from supernovae are desirable, especially in the advanced detector era. Several methods have been proposed based on various likelihood-based regulators that work on data from a network of detectors to detect burst-like signals (as is the case for signals from supernovae) from potential GW sources. To address this problem, we have developed an analysis pipeline based on a method of noise reduction known as the harmonic regeneration noise reduction (HRNR) algorithm. To demonstrate the method, sixteen supernova waveforms from the Murphy et al. 2009 catalog have been used in presence of LIGO science data. A comparative analysis is presented to show detection statistics for a standard network analysis as commonly used in GW pipelines and the same by implementing the new method in conjunction with the network. The result shows significant improvement in detection statistics.

  20. Understanding the LIGO GW150914 event

    NASA Astrophysics Data System (ADS)

    Naselsky, Pavel; Jackson, Andrew D.; Liu, Hao

    2016-08-01

    We present a simplified method for the extraction of meaningful signals from Hanford and Livingston 32 second data for the GW150914 event made publicly available by the LIGO collaboration, and demonstrate its ability to reproduce the LIGO collaboration's own results quantitatively given the assumption that all narrow peaks in the power spectrum are a consequence of physically uninteresting signals and can be removed. After the clipping of these peaks and return to the time domain, the GW150914 event is readily distinguished from broadband background noise. This simple technique allows us to identify the GW150914 event without any assumption regarding its physical origin and with minimal assumptions regarding its shape. We also confirm that the LIGO GW150914 event is uniquely correlated in the Hanford and Livingston detectors for the full 4096 second data at the level of 6-7 σ with a temporal displacement of τ = 6.9 ± 0.4 ms. We have also identified a few events that are morphologically close to GW150914 but less strongly cross correlated with it.

  1. High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Fehn, K.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Geißelsöder, S.; Geyer, K.; Giordano, V.; Gleixner, A.; Glotin, H.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Mueller, C.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Racca, C.; Riccobene, G.; Roensch, K.; Saldaña, M.; Samtleben, D. F. E.; Sánchez-Losa, A.; Sanguineti, M.; Sapienza, P.; Schnabel, J.; Schüssler, F.; Seitz, T.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Trovato, A.; Tselengidou, M.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; Van Elewyck, V.; Vivolo, D.; Wagner, S.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Beiser, E.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, M.; Kintscher, T.; Kiryluk, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Schimp, M.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R. T.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Antares Collaboration

    2016-06-01

    We present the high-energy-neutrino follow-up observations of the first gravitational wave transient GW150914 observed by the Advanced LIGO detectors on September 14, 2015. We search for coincident neutrino candidates within the data recorded by the IceCube and Antares neutrino detectors. A possible joint detection could be used in targeted electromagnetic follow-up observations, given the significantly better angular resolution of neutrino events compared to gravitational waves. We find no neutrino candidates in both temporal and spatial coincidence with the gravitational wave event. Within ±500 s of the gravitational wave event, the number of neutrino candidates detected by IceCube and Antares were three and zero, respectively. This is consistent with the expected atmospheric background, and none of the neutrino candidates were directionally coincident with GW150914. We use this nondetection to constrain neutrino emission from the gravitational-wave event.

  2. GRB/GW Association: Long-Short GRB Candidates, Time Lag, Measuring Gravitational Wave Velocity, and Testing Einstein’s Equivalence Principle

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Hu, Yi-Ming; Fan, Yi-Zhong; Wei, Da-Ming

    2016-08-01

    Short-duration gamma-ray bursts (SGRBs) are widely believed to be powered by the mergers of compact binaries, such as binary neutron stars or possibly neutron star-black hole binaries. Though the prospect of detecting SGRBs with gravitational wave (GW) signals by the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO)/VIRGO network is promising, no known SGRB has been found within the expected advanced LIGO/VIRGO sensitivity range for binary neutron star systems. We find, however, that the two long-short GRBs (GRB 060505 and GRB 060614) may be within the horizon of advanced GW detectors. In the upcoming era of GW astronomy, the merger origin of some long-short GRBs, as favored by the macronova signature displayed in GRB 060614, can be unambiguously tested. The model-dependent time lags between the merger and the onset of the prompt emission of the GRB are estimated. The comparison of such time lags between model predictions and the real data expected in the era of the GW astronomy would be helpful in revealing the physical processes taking place at the central engine (including the launch of the relativistic outflow, the emergence of the outflow from the dense material ejected during the merger, and the radiation of gamma rays). We also show that the speed of GWs, with or without a simultaneous test of Einstein’s equivalence principle, can be directly measured to an accuracy of ˜ 3× {10}-8 {cm} {{{s}}}-1 or even better in the advanced LIGO/VIRGO era.

  3. Gravitational Wave Astrophysics in the Mid-band: progenitors and advanced localizations of Advanced LIGO/Virgo binary-merger events

    NASA Astrophysics Data System (ADS)

    Cheung, Chi C. Teddy; Hogan, Jason; Graham, Peter; Kasevich, Mark; Rajendran, Surjeet; Saif, Babak; Kerr, Matthew T.; Lovellette, Michael; Wood, Kent S.; Michelson, Peter; MAGIS Team

    2018-01-01

    We consider the scientific potential of gravitational wave (GW) observations in the ~30 mHz to 3 Hz frequency range with the Mid-band Atomic Gravitational-wave Interferometric Sensor (MAGIS). MAGIS is a probe-class space-mission concept, using an atom-based gravitational wave detector, that will provide all-sky strain sensitivities of ~10^-21 sqrt(Hz) and better (1-year) in the GW-frequency mid-band between the LISA/L3 detector (planned 2034 launch) and ground-based Advanced LIGO/Virgo interferometers. Primary gravitational wave astrophysics science in the mid-band include GW observations of the binary black hole population discovered by Advanced LIGO/Virgo at higher-frequencies, prior to their merger stage. For such systems, MAGIS will observe the binaries in their inspiral phase, where system parameters such as eccentricities are most easily constrained, and will provide advanced, degree-scale localizations that would enable electromagnetic observations of possible precursor emission 1-week to 1-month prior to their mergers as well as prompt post-merger transient emission. Joint GW-observations with MAGIS and Advanced LIGO/Virgo covering all stages of binary coalescence will further reduce uncertainties in the GW- localizations and distances, and will be powerful paired with galaxy catalogs, to enable unique galaxy counterpart identifications in the case black hole binary mergers are completely absent of detectable electromagnetic precursor or transient signals. These possibilities for MAGIS extend to neutron star binary systems (black hole - neutron star, neutron star - neutron star), and mid-band prospects for such systems will also be considered.The MAGIS team is a collaboration between institutes in the U.S. including Stanford, AOSense, Harvard, NASA/GSFC, NASA/JPL, NIST, NRL, and UC Berkeley, and international partners at Birmingham, Bordeaux, CNRS, Dusseldorf, Ecole Normale Superieure, Florence, Hannover, and Ulm University.

  4. Prospects for Multiband Gravitational-Wave Astronomy after GW150914.

    PubMed

    Sesana, Alberto

    2016-06-10

    The black hole binary (BHB) coalescence rates inferred from the Advanced LIGO detection of GW150914 imply an unexpectedly loud gravitational-wave (GW) sky at millihertz frequencies accessible to the Evolved Laser Interferometer Space Antenna (eLISA), with several outstanding consequences. First, up to thousands of BHBs will be individually resolvable by eLISA; second, millions of nonresolvable BHBs will build a confusion noise detectable with a signal-to-noise ratio of a few to hundreds; third-and perhaps most importantly-up to hundreds of BHBs individually resolvable by eLISA will coalesce in the Advanced LIGO band within 10 y. eLISA observations will tell Advanced LIGO and all electromagnetic probes weeks in advance when and where these BHB coalescences will occur, with uncertainties of <10  s and <1  deg^{2}. This will allow the prepointing of telescopes to realize coincident GW and multiwavelength electromagnetic observations of BHB mergers. Time coincidence is critical, because a prompt emission associated to a BHB merger will likely have a duration comparable to the dynamical time scale of the systems and is possible only with low-frequency GW alerts.

  5. Prospects for Multiband Gravitational-Wave Astronomy after GW150914

    NASA Astrophysics Data System (ADS)

    Sesana, Alberto

    2016-06-01

    The black hole binary (BHB) coalescence rates inferred from the Advanced LIGO detection of GW150914 imply an unexpectedly loud gravitational-wave (GW) sky at millihertz frequencies accessible to the Evolved Laser Interferometer Space Antenna (eLISA), with several outstanding consequences. First, up to thousands of BHBs will be individually resolvable by eLISA; second, millions of nonresolvable BHBs will build a confusion noise detectable with a signal-to-noise ratio of a few to hundreds; third—and perhaps most importantly—up to hundreds of BHBs individually resolvable by eLISA will coalesce in the Advanced LIGO band within 10 y. eLISA observations will tell Advanced LIGO and all electromagnetic probes weeks in advance when and where these BHB coalescences will occur, with uncertainties of <10 s and <1 deg2 . This will allow the prepointing of telescopes to realize coincident GW and multiwavelength electromagnetic observations of BHB mergers. Time coincidence is critical, because a prompt emission associated to a BHB merger will likely have a duration comparable to the dynamical time scale of the systems and is possible only with low-frequency GW alerts.

  6. Christodoulou Memory of GW150914 - Prospects of Detection in LIGO and Future Detectors

    NASA Astrophysics Data System (ADS)

    Johnson, Aaron; Kapadia, Shasvath; Kennefick, Daniel

    2017-01-01

    The event GW150914 produced strains of the order 10-21 in the two instruments comprising the Laser Interferometric Gravitational Wave Observatory (LIGO). The event has been interpreted as originating in a coalescing black hole binary, with individual components of about 30 solar masses each. A striking aspect of the coalescence deduced from the signal is the emission of 3 solar masses of energy in the oscillating gravitational wave. Theory predicts a DC component of the gravitational signal associated with the emission of such large amounts of gravitational wave energy known as the Christodoulou memory. The memory, as a non-linear component of the signal, is expected to be an order of magnitude smaller than the amplitude of the primary AC component of the gravitational waves. We discuss the prospects of detecting the Christodoulou memory in similar future signals, both with LIGO and with other detectors, including future space-based instruments.

  7. GW-1000. GW Pharmaceuticals.

    PubMed

    Smith, Paul F

    2004-07-01

    GW Pharmaceuticals is developing GW-1000 (Sativex), a narrow ratio delta9-tetrahydrocannabinol:cannabidiol product for the potential treatment of multiple sclerosis, spinal cord injury, neurogenic pain and peripheral neuropathy. In March 2003, the company filed for approval for the treatment of MS with the UK Medicines Control Agency, and in May 2004, filed for new drug submission with Health Canada.

  8. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, A.; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, R. J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-10-01

    On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30. 5-3.0+5.7M⊙ and 25 .3-4.2+2.8M⊙ (at the 90% credible level). The luminosity distance of the source is 54 0-210+130 Mpc , corresponding to a redshift of z =0.1 1-0.04+0.03. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

  9. GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, A; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-06

    On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5_{-3.0}^{+5.7}M_{⊙} and 25.3_{-4.2}^{+2.8}M_{⊙} (at the 90% credible level). The luminosity distance of the source is 540_{-210}^{+130}  Mpc, corresponding to a redshift of z=0.11_{-0.04}^{+0.03}. A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160   deg^{2} using only the two LIGO detectors to 60  deg^{2} using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity.

  10. Editorial: Challenges and solutions in GW calculations for complex systems

    NASA Astrophysics Data System (ADS)

    Giustino, F.; Umari, P.; Rubio, A.

    2012-09-01

    We report key advances in the area of GW calculations, review the available software implementations and define standardization criteria to render the comparison between GW calculations from different codes meaningful, and identify future major challenges in the area of quasiparticle calculations. This Topical Issue should be a reference point for further developments in the field.

  11. Advances in TlBr detector development

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo

    2013-09-01

    Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.

  12. Fermi GBM Observations of LIGO Gravitational-Wave Event Gw150914

    NASA Technical Reports Server (NTRS)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Zhang, B.-B.; Camp, J.; Christensen, N.; Hui, C. M.; Jenke, P.; hide

    2016-01-01

    With an instantaneous view of 70% of the sky, the Fermi Gamma-ray Burst Monitor (GBM) is an excellent partner in the search for electromagnetic counterparts to gravitational-wave (GW) events. GBM observations at the time of the Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914 reveal the presence of a weak transient above 50 keV, 0.4 s after the GW event, with a false-alarm probability of 0.0022 (2.9(sigma)). This weak transient lasting 1 s was not detected by any other instrument and does not appear to be connected with other previously known astrophysical, solar, terrestrial, or magnetospheric activity. Its localization is ill-constrained but consistent with the direction of GW150914. The duration and spectrum of the transient event are consistent with a weak short gamma-ray burst (GRB) arriving at a large angle to the direction in which Fermi was pointing where the GBM detector response is not optimal. If the GBM transient is associated with GW150914, then this electromagnetic signal from a stellar mass black hole binary merger is unexpected. We calculate a luminosity in hard X-ray emission between 1 keV and 10 MeV of 1.8(sup +1.5, sub -1.0) x 10(exp 49) erg/s. Future joint observations of GW events by LIGO/Virgo and Fermi GBM could reveal whether the weak transient reported here is a plausible counterpart to GW150914 or a chance coincidence, and will further probe the connection between compact binary mergers and short GRBs.

  13. A DECam Search for an Optical Counterpart to the LIGO Gravitational Wave Event GW151226

    DOE PAGES

    Cowperthwaite, P. S.

    2016-07-29

    We report the results of a Dark Energy Camera optical follow-up of the gravitational-wave (GW) event GW151226, discovered by the Advanced Laser Interferometer Gravitational-wave Observatory detectors. Our observations cover 28.8 deg(2) of the localization region in the i and z bands (containing 3% of the BAYESTAR localization probability), starting 10 hr after the event was announced and spanning four epochs at 2–24 days after the GW detection. We achievemore » $$5\\sigma $$ point-source limiting magnitudes of $$i\\approx 21.7$$ and $$z\\approx 21.5$$, with a scatter of 0.4 mag, in our difference images. Given the two-day delay, we search this area for a rapidly declining optical counterpart with $$\\gtrsim 3\\sigma $$ significance steady decline between the first and final observations. We recover four sources that pass our selection criteria, of which three are cataloged active galactic nuclei. The fourth source is offset by 5.8 arcsec from the center of a galaxy at a distance of 187 Mpc, exhibits a rapid decline by 0.5 mag over 4 days, and has a red color of $$i-z\\approx 0.3$$ mag. These properties could satisfy a set of cuts designed to identify kilonovae. However, this source was detected several times, starting 94 days prior to GW151226, in the Pan-STARRS Survey for Transients (dubbed as PS15cdi) and is therefore unrelated to the GW event. Given its long-term behavior, PS15cdi is likely a Type IIP supernova that transitioned out of its plateau phase during our observations, mimicking a kilonova-like behavior. We comment on the implications of this detection for contamination in future optical follow-up observations.« less

  14. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at the NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  15. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  16. Advanced Space Radiation Detector Technology Development

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave C.

    2013-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of multiple solid-state detectors will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the space radiation field for deep space and aerospace applications.

  17. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, F.; Camp, J. B.; hide

    2016-01-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M solar mass and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 alpha over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87 probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9-240 Gpc-3 yr-1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

  18. Binary Black Hole Mergers in the First Advanced LIGO Observing Run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-10-01

    The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper, we present full results from a search for binary black hole merger signals with total masses up to 100 M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational-wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5 σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance and with an 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and we place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations, we infer stellar-mass binary black hole merger rates lying in the range 9 - 240 Gpc-3 yr-1 . These observations are beginning to inform astrophysical predictions of binary black hole formation rates and indicate that future observing runs of the Advanced detector network will yield many more gravitational-wave detections.

  19. Searching for the stochastic gravitational-wave background in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Meyers, Patrick

    2017-01-01

    One of the most exciting prospects of gravitational-wave astrophysics and cosmology is the measurement of the stochastic gravitational-wave background. In this talk, we discuss the most recent searches for a stochastic background with Advanced LIGO--the first performed with advanced interferometric detectors. We search for an isotropic as well as an anisotropic background, and perform a directed search for persistent gravitational waves in three promising directions. Additionally, with the accumulation of more Advanced LIGO data and the anticipated addition of Advanced Virgo to the network in 2017, we can also start to consider what the recent gravitational-wave detections--GW150914 and GW151226--tell us about when we can expect a detection of the stochastic background from binary black hole coalescences. For the LIGO Scientific Collaboration and the Virgo Collaboration.

  20. First gravitational-wave burst GW150914: MASTER optical follow-up observations

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Kornilov, V.; Gorbovskoy, E.; Buckley, D. A. H.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.; Greiner, J.; Vladimirov, V.; Vlasenko, D.; Chazov, V.; Kuvshinov, D.; Gabovich, A.; Potter, S. B.; Kniazev, A.; Crawford, S.; Rebolo Lopez, R.; Serra-Ricart, M.; Israelian, G.; Lodieu, N.; Gress, O.; Budnev, N.; Ivanov, K.; Poleschuk, V.; Yazev, S.; Tlatov, A.; Senik, V.; Yurkov, V.; Dormidontov, D.; Parkhomenko, A.; Sergienko, Yu.; Podesta, R.; Levato, H.; Lopez, C.; Saffe, C.; Podesta, F.; Mallamaci, C.

    2017-03-01

    The Advanced LIGO observatory recently reported the first direct detection of the gravitational waves (GWs) predicted by Einstein & Sitzungsber. We report on the first optical observations of the GW source GW150914 error region with the Global MASTER Robotic Net. Between the optical telescopes of electromagnetic support, the covered area is dominated by MASTER with an unfiltered magnitude up to 19.9 mag (5σ). We detected several optical transients, which proved to be unconnected with the GW event. The main input to investigate the final error box of GW150914 was made by the MASTER-SAAO robotic telescope, which covered 70 per cent of the final GW error box and 90 per cent of the common localization area of the LIGO and Fermi events. Our result is consistent with the conclusion (Abbott et al. 2016a) that GWs from GW150914 were produced in a binary black hole merger. At the same time, we cannot exclude that MASTER OT J040938.68-541316.9 exploded on 2015 September 14.

  1. Advanced detectors and signal processing

    NASA Technical Reports Server (NTRS)

    Greve, D. W.; Rasky, P. H. L.; Kryder, M. H.

    1986-01-01

    Continued progress is reported toward development of a silicon on garnet technology which would allow fabrication of advanced detection and signal processing circuits on bubble memories. The first integrated detectors and propagation patterns have been designed and incorporated on a new mask set. In addition, annealing studies on spacer layers are performed. Based on those studies, a new double layer spacer is proposed which should reduce contamination of the silicon originating in the substrate. Finally, the magnetic sensitivity of uncontaminated detectors from the last lot of wafers is measured. The measured sensitivity is lower than anticipated but still higher than present magnetoresistive detectors.

  2. Single progenitor model for GW150914 and GW170104

    NASA Astrophysics Data System (ADS)

    D'Orazio, Daniel J.; Loeb, Abraham

    2018-04-01

    The merger of stellar-mass black holes (BHs) is not expected to generate detectable electromagnetic (EM) emission. However, the gravitational wave (GW) events GW150914 and GW170104, detected by the Laser Interferometer Gravitational Wave Observatory to be the result of merging, ˜60 M⊙ binary black holes (BBHs), each have claimed coincident gamma-ray emission. Motivated by the intriguing possibility of an EM counterpart to BBH mergers, we construct a model that can reproduce the observed EM and GW signals for GW150914- and GW170104-like events, from a single-star progenitor. Following Loeb [Astrophys. J. Lett. 819, L21 (2016), 10.3847/2041-8205/819/2/L21], we envision a massive, rapidly rotating star within which a rotating-bar instability fractures the core into two overdensities that fragment into clumps which merge to form BHs in a tight binary with arbitrary spin-orbit alignment. Once formed, the BBH inspirals due to gas and gravitational-wave drag until tidal forces trigger strong feeding of the BHs with the surrounding stellar-density gas about 10 sec before merger. The resulting giga-Eddington accretion peak launches a jet that breaks out of the progenitor star and drives a powerful outflow that clears the gas from the orbit of the binary within 1 sec, preserving the vacuum GW waveform in the Laser Interferometer Gravitational Wave Observatory band. The single-progenitor scenario predicts the existence of variability of the gamma-ray burst, modulated at the ˜0.2 sec chirping period of the BBH due to relativistic Doppler boost. The jet breakout should be accompanied by a low-luminosity supernova. Finally, because the BBHs of the single-progenitor model do not exist at large separations, they will not be detectable in the low-frequency gravitational-wave band of the Laser Interferometer Space Antenna. Hence, the single-progenitor BBHs will be unambiguously discernible from BBHs formed through alternate, double-progenitor evolution scenarios.

  3. GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M}ȯ and {7}-2+2 {M}ȯ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity.

  4. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2000-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  5. Delta-doped hybrid advanced detector for low energy particle detection

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor); Fossum, Eric R. (Inventor); Nikzad, Shouleh (Inventor); Pain, Bedabrata (Inventor); Soli, George A. (Inventor)

    2002-01-01

    A delta-doped hybrid advanced detector (HAD) is provided which combines at least four types of technologies to create a detector for energetic particles ranging in energy from hundreds of electron volts (eV) to beyond several million eV. The detector is sensitive to photons from visible light to X-rays. The detector is highly energy-sensitive from approximately 10 keV down to hundreds of eV. The detector operates with milliwatt power dissipation, and allows non-sequential readout of the array, enabling various advanced readout schemes.

  6. A Dark Energy Camera Search for an Optical Counterpart to the First Advanced LIGO Gravitational Wave Event GW150914

    DOE PAGES

    Soares-Santos, M.; Kessler, R.; Berger, E.; ...

    2016-05-27

    We report initial results of a deep search for an optical counterpart to the gravitational wave event GW150914, the first trigger from the Advanced LIGO gravitational wave detectors. We used the Dark Energy Camera (DECam) to image a 102 degmore » $^2$ area, corresponding to 38% of the initial trigger high-probability sky region and to 11% of the revised high-probability region. We observed in i and z bands at 4-5, 7, and 24 days after the trigger. The median $$5\\sigma$$ point-source limiting magnitudes of our search images are i=22.5 and z=21.8 mag. We processed the images through a difference-imaging pipeline using templates from pre-existing Dark Energy Survey data and publicly available DECam data. Due to missing template observations and other losses, our effective search area subtends 40 deg$$^{2}$$, corresponding to 12% total probability in the initial map and 3% of the final map. In this area, we search for objects that decline significantly between days 4-5 and day 7, and are undetectable by day 24, finding none to typical magnitude limits of i= 21.5,21.1,20.1 for object colors (i-z)=1,0,-1, respectively. Our search demonstrates the feasibility of a dedicated search program with DECam and bodes well for future research in this emerging field.« less

  7. A fixed false alarm probability figure of merit for gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Wąs, M.; Kalmus, P.; Leong, J. R.; Adams, T.; Leroy, N.; Macleod, D. M.; Pankow, C.; Robinet, F.

    2014-04-01

    Performance of gravitational wave (GW) detectors can be characterized by several figures of merit (FOMs) which are used to guide the detector’s commissioning and operations, and to gauge astrophysical sensitivity. One key FOM is the range in Mpc, averaged over orientation and sky location, at which a GW signal from binary neutron star inspiral and coalescence would have a signal-to-noise ratio (SNR) of 8 in a single detector. This fixed-SNR approach does not accurately reflect the effects of transient noise (glitches), which can severely limit the detectability of transient GW signals expected from a variety of astrophysical sources. We propose a FOM based instead on a fixed false-alarm probability (FAP). This is intended to give a more realistic estimate of the detectable GW transient range including the effect of glitches. Our approach applies equally to individual interferometers or a network of interferometers. We discuss the advantages of the fixed-FAP approach, present examples from a prototype implementation, and discuss the impact it has had on the recent commissioning of the GW detector GEO 600.

  8. Scientific Benefit of Enlarging Gravitational Wave Detector Networks

    NASA Astrophysics Data System (ADS)

    Chu, Qi; Wen, Linqing; Blair, David

    2012-06-01

    Localising the sources of gravitational waves (GWs) in the sky is crucial to observing the electromagnetic counterparts of GW sources. The localisation capability is poor by a single GW detector yet can be improved by adding more detectors to the detector network. In this paper we review recent studies on scientific benefits of global detector networks and focus on their localisation capability. We employ Wen-Chen's formula to compare this merit of current and future detector networks for localising gravitational wave bursts. We find that the addition of a new detector located in Japan, or India, or Australia will increase angular resolution 3~5 fold with respect to current LIGO-Virgo network, and that the angular resolution improvement by adding a single detector in Australia is comparable to that achieved by adding detectors in both India and Japan. A six-site network achieves a 11-fold improvement in angular resolution compared with the existing three-site network.

  9. The basic physics of the binary black hole merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Zertuche, L. Magaña; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.

    2017-01-01

    The first direct gravitational-wave detection was made by the Advanced Laser Interferometer Gravitational Wave Observatory on September 14, 2015. The GW150914 signal was strong enough to be apparent, without using any waveform model, in the filtered detector strain data. Here, features of the signal visible in the data are analyzed using concepts from Newtonian physics and general relativity, accessible to anyone with a general physics background. The simple analysis presented here is consistent with the fully general-relativistic analyses published elsewhere,in showing that the signal was produced by the inspiral and subsequent merger of two black holes. The black holes were each of approximately 35 Msun, still orbited each other as close as ~350 km apart, and subsequently merged to form a single black hole. Similar reasoning, directly from the data, is used to roughly estimate how far these black holes were from the Earth, and the energy that they radiated in gravitational waves.

  10. Effects of waveform model systematics on the interpretation of GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; E Barclay, S.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; E Brau, J.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; E Broida, J.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; E Cowan, E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; E Creighton, J. D.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; E Dwyer, S.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; E Gossan, S.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; E Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; E Holz, D.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; E Lord, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; E McClelland, D.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; E Mikhailov, E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; E Pace, A.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; E Smith, R. J.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; E Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; E Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; E Zucker, M.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration; Boyle, M.; Chu, T.; Hemberger, D.; Hinder, I.; E Kidder, L.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; Vano Vinuales, A.

    2017-05-01

    Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein’s equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than  ˜0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations.

  11. Quasi-Particle Self-Consistent GW for Molecules.

    PubMed

    Kaplan, F; Harding, M E; Seiler, C; Weigend, F; Evers, F; van Setten, M J

    2016-06-14

    We present the formalism and implementation of quasi-particle self-consistent GW (qsGW) and eigenvalue only quasi-particle self-consistent GW (evGW) adapted to standard quantum chemistry packages. Our implementation is benchmarked against high-level quantum chemistry computations (coupled-cluster theory) and experimental results using a representative set of molecules. Furthermore, we compare the qsGW approach for five molecules relevant for organic photovoltaics to self-consistent GW results (scGW) and analyze the effects of the self-consistency on the ground state density by comparing calculated dipole moments to their experimental values. We show that qsGW makes a significant improvement over conventional G0W0 and that partially self-consistent flavors (in particular evGW) can be excellent alternatives.

  12. The Allowed Parameter Space of a Long-lived Neutron Star as the Merger Remnant of GW170817

    NASA Astrophysics Data System (ADS)

    Ai, Shunke; Gao, He; Dai, Zi-Gao; Wu, Xue-Feng; Li, Ang; Zhang, Bing; Li, Mu-Zi

    2018-06-01

    Due to the limited sensitivity of the current gravitational wave (GW) detectors, the central remnant of the binary neutron star (NS) merger associated with GW170817 remains an open question. In view of the relatively large total mass, it is generally proposed that the merger of GW170817 would lead to a short-lived hypermassive NS or directly produce a black hole (BH). There is no clear evidence to support or rule out a long-lived NS as the merger remnant. Here, we utilize the GW and electromagnetic (EM) signals to comprehensively investigate the parameter space that allows a long-lived NS to survive as the merger remnant of GW170817. We find that for some stiff equations of state, the merger of GW170817 could, in principle, lead to a massive NS, which has a millisecond spin period. The post-merger GW signal could hardly constrain the ellipticity of the NS. If the ellipticity reaches 10‑3, in order to be compatible with the multi-band EM observations, the dipole magnetic field of the NS (B p ) is constrained to the magnetar level of ∼1014 G. If the ellipticity is smaller than 10‑4, B p is constrained to the level of ∼109–1011 G. These conclusions weakly depend on the adoption of the NS equation of state.

  13. Constraints on frequency-dependent violations of Shapiro delay from GW150914

    NASA Astrophysics Data System (ADS)

    Kahya, Emre O.; Desai, Shantanu

    2016-05-01

    On 14th September 2015, a transient gravitational wave (GW150914) was detected by the two LIGO detectors at Hanford and Livingston from the coalescence of a binary black hole system located at a distance of about 400 Mpc. We point out that GW150914 experienced a Shapiro delay due to the gravitational potential of the mass distribution along the line of sight of about 1800 days. Also, the near-simultaneous arrival of gravitons over a frequency range of about 200 Hz within a 0.2 s window allows us to constrain any violations of Shapiro delay and Einstein's equivalence principle between the gravitons at different frequencies. From the calculated Shapiro delay and the observed duration of the signal, frequency-dependent violations of the equivalence principle for gravitons are constrained to an accuracy of O (10-9).

  14. Insight-HXMT observations of the first binary neutron star merger GW170817

    NASA Astrophysics Data System (ADS)

    Li, TiPei; Xiong, ShaoLin; Zhang, ShuangNan; Lu, FangJun; Song, LiMing; Cao, XueLei; Chang, Zhi; Chen, Gang; Chen, Li; Chen, TianXiang; Chen, Yong; Chen, YiBao; Chen, YuPeng; Cui, Wei; Cui, WeiWei; Deng, JingKang; Dong, YongWei; Du, YuanYuan; Fu, MinXue; Gao, GuanHua; Gao, He; Gao, Min; Ge, MingYu; Gu, YuDong; Guan, Ju; Guo, ChengCheng; Han, DaWei; Hu, Wei; Huang, Yue; Huo, Jia; Jia, ShuMei; Jiang, LuHua; Jiang, WeiChun; Jin, Jing; Jin, YongJie; Li, Bing; Li, ChengKui; Li, Gang; Li, MaoShun; Li, Wei; Li, Xian; Li, XiaoBo; Li, XuFang; Li, YanGuo; Li, ZiJian; Li, ZhengWei; Liang, XiaoHua; Liao, JinYuan; Liu, CongZhan; Liu, GuoQing; Liu, HongWei; Liu, ShaoZhen; Liu, XiaoJing; Liu, Yuan; Liu, YiNong; Lu, Bo; Lu, XueFeng; Luo, Tao; Ma, Xiang; Meng, Bin; Nang, Yi; Nie, JianYin; Ou, Ge; Qu, JinLu; Sai, Na; Sun, Liang; Tan, Yin; Tao, Lian; Tao, WenHui; Tuo, YouLi; Wang, GuoFeng; Wang, HuanYu; Wang, Juan; Wang, WenShuai; Wang, YuSa; Wen, XiangYang; Wu, BoBing; Wu, Mei; Xiao, GuangCheng; Xu, He; Xu, YuPeng; Yan, LinLi; Yang, JiaWei; Yang, Sheng; Yang, YanJi; Zhang, AiMei; Zhang, ChunLei; Zhang, ChengMo; Zhang, Fan; Zhang, HongMei; Zhang, Juan; Zhang, Qiang; Zhang, Shu; Zhang, Tong; Zhang, Wei; Zhang, WanChang; Zhang, WenZhao; Zhang, Yi; Zhang, Yue; Zhang, YiFei; Zhang, YongJie; Zhang, Zhao; Zhang, ZiLiang; Zhao, HaiSheng; Zhao, JianLing; Zhao, XiaoFan; Zheng, ShiJie; Zhu, Yue; Zhu, YuXuan; Zou, ChangLin

    2018-03-01

    Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, cosmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area ( 1000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the unexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints ( 10‒7 to 10‒6 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.

  15. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors.

    PubMed

    Vitale, Salvatore

    2016-07-29

    With the discovery of the binary-black-hole (BBH) coalescence GW150914 the era of gravitational-wave (GW) astronomy has started. It has recently been shown that BBH with masses comparable to or higher than GW150914 would be visible in the Evolved Laser Interferometer Space Antenna (eLISA) band a few years before they finally merge in the band of ground-based detectors. This would allow for premerger electromagnetic alerts, dramatically increasing the chances of a joint detection, if BBHs are indeed luminous in the electromagnetic band. In this Letter we explore a quite different aspect of multiband GW astronomy, and verify if, and to what extent, measurement of masses and sky position with eLISA could improve parameter estimation and tests of general relativity with ground-based detectors. We generate a catalog of 200 BBHs and find that having prior information from eLISA can reduce the uncertainty in the measurement of source distance and primary black hole spin by up to factor of 2 in ground-based GW detectors. The component masses estimate from eLISA will not be refined by the ground based detectors, whereas joint analysis will yield precise characterization of the newly formed black hole and improve consistency tests of general relativity.

  16. A blind search for a common signal in gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Creswell, James; von Hausegger, Sebastian; Jackson, Andrew D.; Naselsky, Pavel

    2018-02-01

    We propose a blind, template-free method for the extraction of a common signal between the Hanford and Livingston detectors and apply it especially to the GW150914 event. We construct a log-likelihood method that maximizes the cross-correlation between each detector and the common signal and minimizes the cross-correlation between the residuals. The reliability of this method is tested using simulations with an injected common signal. Finally, our method is used to assess the quality of theoretical gravitational wave templates for GW150914.

  17. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Bustillo, J Calderón; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Diaz, J Casanueva; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-03-02

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude Ω_{GW}(f=25  Hz)=1.8_{-1.3}^{+2.7}×10^{-9} with 90% confidence, compared with Ω_{GW}(f=25  Hz)=1.1_{-0.7}^{+1.2}×10^{-9} from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  18. GW170817: Implications for the Stochastic Gravitational-Wave Background from Compact Binary Coalescences

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Bustillo, J. Calderón; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Diaz, J. Casanueva; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-03-01

    The LIGO Scientific and Virgo Collaborations have announced the event GW170817, the first detection of gravitational waves from the coalescence of two neutron stars. The merger rate of binary neutron stars estimated from this event suggests that distant, unresolvable binary neutron stars create a significant astrophysical stochastic gravitational-wave background. The binary neutron star component will add to the contribution from binary black holes, increasing the amplitude of the total astrophysical background relative to previous expectations. In the Advanced LIGO-Virgo frequency band most sensitive to stochastic backgrounds (near 25 Hz), we predict a total astrophysical background with amplitude ΩGW(f =25 Hz )=1. 8-1.3+2.7×10-9 with 90% confidence, compared with ΩGW(f =25 Hz )=1. 1-0.7+1.2×10-9 from binary black holes alone. Assuming the most probable rate for compact binary mergers, we find that the total background may be detectable with a signal-to-noise-ratio of 3 after 40 months of total observation time, based on the expected timeline for Advanced LIGO and Virgo to reach their design sensitivity.

  19. Space gravitational wave detector DECIGO/pre-DECIGO

    NASA Astrophysics Data System (ADS)

    Musha, Mitsuru

    2017-09-01

    The gravitational wave (GW) is ripples in gravitational fields caused by the motion of mass such as inspiral and merger of blackhole binaries or explosion of super novae, which was predicted by A.Einstein in his general theory of relativity. In Japan, besides the ground-base GW detector, KAGRA, the space gravitational wave detector, DECIGO, is also promoted for detecting GW at lower frequency range. DECIGO (DECi-heltz Gravitational-wave Observatory) consists of 3 satellites, forming a 1000-km triangle-shaped Fabry-Perot laser interferometer whose designed strain sensitivity is ?l/l < 10-24 /?Hz at the observation band between 0.1 and 1 Hz, and is planed to be launched in 2030s. Before launching DECIGO, we planned a milestone mission for DECIGO named Pre-DECIGO, which has almost the same configuration as DECIGO with shorter arm length of 100 km. Pre-DECIGO is aimed for detecting GW from merger of blackhole binaries with less sensitivity as DECIGO, and also for feasibility test of key technologies for realizing DECIGO. Pre-DECIGO is now under designing and developing for launching in late 2020s, with the financial support of JAXA and JSPS. In our presentation, we will review DECIGO project, and show the design and current status of Pre-DECIGO.

  20. Antipneumococcal activities of two novel macrolides, GW 773546 and GW 708408, compared with those of erythromycin, azithromycin, clarithromycin, clindamycin, and telithromycin.

    PubMed

    Matic, Vlatka; Kosowska, Klaudia; Bozdogan, Bulent; Kelly, Linda M; Smith, Kathy; Ednie, Lois M; Lin, Gengrong; Credito, Kim L; Clark, Catherine L; McGhee, Pamela; Pankuch, Glenn A; Jacobs, Michael R; Appelbaum, Peter C

    2004-11-01

    The MICs of GW 773546, GW 708408, and telithromycin for 164 macrolide-susceptible and 161 macrolide-resistant pneumococci were low. The MICs of GW 773546, GW 708408, and telithromycin for macrolide-resistant strains were similar, irrespective of the resistance genotypes of the strains. Clindamycin was active against all macrolide-resistant strains except those with erm(B) and one strain with a 23S rRNA mutation. GW 773546, GW 708408, and telithromycin at two times their MICs were bactericidal after 24 h for 7 to 8 of 12 strains. Serial passages of 12 strains in the presence of sub-MICs yielded 54 mutants, 29 of which had changes in the L4 or L22 protein or the 23S rRNA sequence. Among the macrolide-susceptible strains, resistant mutants developed most rapidly after passage in the presence of clindamycin, GW 773546, erythromycin, azithromycin, and clarithromycin and slowest after passage in the presence of GW 708408 and telithromycin. Selection of strains for which MICs were >/=0.5 microg/ml from susceptible parents occurred only with erythromycin, azithromycin, clarithromycin, and clindamycin; 36 resistant clones from susceptible parent strains had changes in the sequences of the L4 or L22 protein or 23S rRNA. No mef(E) strains yielded resistant clones after passage in the presence of erythromycin and azithromycin. Selection with GW 773546, GW 708408, telithromycin, and clindamycin in two mef(E) strains did not raise the erythromycin, azithromycin, and clarithromycin MICs more than twofold. There were no change in the ribosomal protein (L4 or L22) or 23S rRNA sequences for 15 of 18 mutants selected for macrolide resistance; 3 mutants had changes in the L22-protein sequence. GW 773546, GW 708408, and telithromycin selected clones for which MICs were 0.03 to >2.0 microg/ml. Single-step studies showed mutation frequencies <5.0 x 10(-10) to 3.5 x 10(-7) for GW 773546, GW 708408, and telithromycin for macrolide-susceptible strains and 1.1 x 10(-7) to >4.3 x 10(-3) for

  1. Antipneumococcal Activities of Two Novel Macrolides, GW 773546 and GW 708408, Compared with Those of Erythromycin, Azithromycin, Clarithromycin, Clindamycin, and Telithromycin

    PubMed Central

    Matic, Vlatka; Kosowska, Klaudia; Bozdogan, Bulent; Kelly, Linda M.; Smith, Kathy; Ednie, Lois M.; Lin, Gengrong; Credito, Kim L.; Clark, Catherine L.; McGhee, Pamela; Pankuch, Glenn A.; Jacobs, Michael R.; Appelbaum, Peter C.

    2004-01-01

    The MICs of GW 773546, GW 708408, and telithromycin for 164 macrolide-susceptible and 161 macrolide-resistant pneumococci were low. The MICs of GW 773546, GW 708408, and telithromycin for macrolide-resistant strains were similar, irrespective of the resistance genotypes of the strains. Clindamycin was active against all macrolide-resistant strains except those with erm(B) and one strain with a 23S rRNA mutation. GW 773546, GW 708408, and telithromycin at two times their MICs were bactericidal after 24 h for 7 to 8 of 12 strains. Serial passages of 12 strains in the presence of sub-MICs yielded 54 mutants, 29 of which had changes in the L4 or L22 protein or the 23S rRNA sequence. Among the macrolide-susceptible strains, resistant mutants developed most rapidly after passage in the presence of clindamycin, GW 773546, erythromycin, azithromycin, and clarithromycin and slowest after passage in the presence of GW 708408 and telithromycin. Selection of strains for which MICs were ≥0.5 μg/ml from susceptible parents occurred only with erythromycin, azithromycin, clarithromycin, and clindamycin; 36 resistant clones from susceptible parent strains had changes in the sequences of the L4 or L22 protein or 23S rRNA. No mef(E) strains yielded resistant clones after passage in the presence of erythromycin and azithromycin. Selection with GW 773546, GW 708408, telithromycin, and clindamycin in two mef(E) strains did not raise the erythromycin, azithromycin, and clarithromycin MICs more than twofold. There were no change in the ribosomal protein (L4 or L22) or 23S rRNA sequences for 15 of 18 mutants selected for macrolide resistance; 3 mutants had changes in the L22-protein sequence. GW 773546, GW 708408, and telithromycin selected clones for which MICs were 0.03 to >2.0 μg/ml. Single-step studies showed mutation frequencies <5.0 × 10−10 to 3.5 × 10−7 for GW 773546, GW 708408, and telithromycin for macrolide-susceptible strains and 1.1 × 10−7 to >4.3 × 10−3 for

  2. Constraining alternative theories of gravity using GW150914 and GW151226

    NASA Astrophysics Data System (ADS)

    De Laurentis, Mariafelicia; Porth, Oliver; Bovard, Luke; Ahmedov, Bobomurat; Abdujabbarov, Ahmadjon

    2016-12-01

    The recently reported gravitational wave events GW150914 and GW151226 caused by the mergers of binary black holes [Abbott et al., Phys. Rev. Lett. 116, 221101 (2016); Phys. Rev. Lett. 116, 241103 (2016); Phys. Rev. X 6, 041015] provide a formidable way to set constraints on alternative metric theories of gravity in the strong field regime. In this paper, we develop an approach where an arbitrary theory of gravity can be parametrized by an effective coupling Geff and an effective gravitational potential Φ (r ). The standard Newtonian limit of general relativity is recovered as soon as Geff→GN and Φ (r )→ΦN. The upper bound on the graviton mass and the gravitational interaction length, reported by the LIGO-VIRGO Collaboration, can be directly recast in terms of the parameters of the theory that allows an analysis where the gravitational wave frequency modulation sets constraints on the range of possible alternative models of gravity. Numerical results based on published parameters for the binary black hole mergers are also reported. The comparison of the observed phases of GW150914 and GW151226 with the modulated phase in alternative theories of gravity does not give reasonable constraints due to the large uncertainties in the estimated parameters for the coalescing black holes. In addition to these general considerations, we obtain limits for the frequency dependence of the α parameter in scalar tensor theories of gravity.

  3. AGILE Observations of the Gravitational-wave Source GW170817: Constraining Gamma-Ray Emission from an NS-NS Coalescence

    NASA Astrophysics Data System (ADS)

    Verrecchia, F.; Tavani, M.; Donnarumma, I.; Bulgarelli, A.; Evangelista, Y.; Pacciani, L.; Ursi, A.; Piano, G.; Pilia, M.; Cardillo, M.; Parmiggiani, N.; Giuliani, A.; Pittori, C.; Longo, F.; Lucarelli, F.; Minervini, G.; Feroci, M.; Argan, A.; Fuschino, F.; Labanti, C.; Marisaldi, M.; Fioretti, V.; Trois, A.; Del Monte, E.; Antonelli, L. A.; Barbiellini, G.; Caraveo, P.; Cattaneo, P. W.; Colafrancesco, S.; Costa, E.; D'Amico, F.; Ferrari, A.; Giommi, P.; Morselli, A.; Paoletti, F.; Pellizzoni, A.; Picozza, P.; Rappoldi, A.; Soffitta, P.; Vercellone, S.; Baroncelli, L.; Zollino, G.

    2017-12-01

    The LIGO-Virgo Collaboration (LVC) detected, on 2017 August 17, an exceptional gravitational-wave (GW) event temporally consistent within ˜ 1.7 {{s}} with the GRB 1708117A observed by Fermi-GBM and INTEGRAL. The event turns out to be compatible with a neutron star-neutron star (NS-NS) coalescence that subsequently produced a radio/optical/X-ray transient detected at later times. We report the main results of the observations by the AGILE satellite of the GW170817 localization region (LR) and its electromagnetic (EM) counterpart. At the LVC detection time T 0, the GW170817 LR was occulted by the Earth. The AGILE instrument collected useful data before and after the GW/GRB event because in its spinning observation mode it can scan a given source many times per hour. The earliest exposure of the GW170817 LR by the gamma-ray imaging detector started about 935 s after T 0. No significant X-ray or gamma-ray emission was detected from the LR that was repeatedly exposed over timescales of minutes, hours, and days before and after GW170817, also considering Mini-calorimeter and Super-AGILE data. Our measurements are among the earliest ones obtained by space satellites on GW170817 and provide useful constraints on the precursor and delayed emission properties of the NS-NS coalescence event. We can exclude with high confidence the existence of an X-ray/gamma-ray emitting magnetar-like object with a large magnetic field of {10}15 {{G}}. Our data are particularly significant during the early stage of evolution of the EM remnant.

  4. Pre-DECIGO can get the smoking gun to decide the astrophysical or cosmological origin of GW150914-like binary black holes

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Ando, Masaki; Kinugawa, Tomoya; Nakano, Hiroyuki; Eda, Kazunari; Sato, Shuichi; Musha, Mitsuru; Akutsu, Tomotada; Tanaka, Takahiro; Seto, Naoki; Kanda, Nobuyuki; Itoh, Yousuke

    2016-09-01

    Pre-DECIGO (DECihertz laser Interferometer Gravitational wave Observatory) consists of three spacecraft arranged in an equilateral triangle with 100 km arm lengths orbiting 2000 km above the surface of the earth. It is hoped that the launch date will be in the late 2020s. Pre-DECIGO has one clear target: binary black holes (BBHs) like GW150914 and GW151226. Pre-DECIGO can detect ~30M-30M BBH mergers like GW150914 up to redshift z~30. The cumulative event rate is ~1.8×10 events yr in the Pop III origin model of BBHs like GW150914, and it saturates at z~10, while in the primordial BBH (PBBH) model, the cumulative event rate is ~3×10 events yr at z=30 even if only 0.1% of the dark matter consists of PBHs, and it is still increasing at z=30. In the Pop I/II model of GW150914-like BBHs, the cumulative event rate is (3-10) × 10 events yr and it saturates at z~6. We present the requirements on orbit accuracy, drag-free techniques, laser power, frequency stability, and interferometer test mass. For BBHs like GW150914 at 1 Gpc (z~0.2), SNR~90 is achieved with the definition of Pre-DECIGO in the 0.01-100 Hz band. Since for z≫1 the characteristic strain amplitude h for a fixed frequency band weakly depends on z as z, ˜ 10% of BBHs near face-on have SNR > 5 (7) even at z~30 (10). Pre-DECIGO can measure the mass spectrum and the z-dependence of the merger rate to distinguish various models of BBHs like GW150914, such as Pop III BBH, Pop II BBH, and PBBH scenarios. Pre-DECIGO can also predict the direction of BBHs at z=0.1 with an accuracy of ~0.3 deg and a merging time accuracy of ~1 s at about a day before the merger so that ground-based GW detectors further developed at that time as well as electromagnetic follow-up observations can prepare for the detection of merger in advance, like a solar eclipse. For intermediate mass BBHs such as ~640M-640M at a large redshift z>10, the quasinormal mode frequency after the merger can be within the Pre-DECIGO band so that the

  5. Enhancing the detector for advanced neutron capture experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A.; Mosby, S.; Baramsai, B.

    2015-05-28

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We, thus, report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. Furthermore, the upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  6. GW170817 falsifies dark matter emulators

    NASA Astrophysics Data System (ADS)

    Boran, S.; Desai, S.; Kahya, E. O.; Woodard, R. P.

    2018-02-01

    On August 17, 2017 the LIGO interferometers detected the gravitational wave (GW) signal (GW170817) from the coalescence of binary neutron stars. This signal was also simultaneously seen throughout the electromagnetic (EM) spectrum from radio waves to gamma rays. We point out that this simultaneous detection of GW and EM signals rules out a class of modified gravity theories, termed "dark matter emulators," which dispense with the need for dark matter by making ordinary matter couple to a different metric from that of GW. We discuss other kinds of modified gravity theories which dispense with the need for dark matter and are still viable. This simultaneous observation also provides the first observational test of Einstein's weak equivalence principle (WEP) between gravitons and photons. We estimate the Shapiro time delay due to the gravitational potential of the total dark matter distribution along the line of sight (complementary to the calculation by Abbott et al. [Astrophys. J. Lett. 848, L13 (2017)], 10.3847/2041-8213/aa920c) to be about 400 days. Using this estimate for the Shapiro delay and from the time difference of 1.7 seconds between the GW signal and gamma rays, we can constrain violations of the WEP using the parametrized post-Newtonian parameter γ , and it is given by |γGW-γEM|<9.8 ×10-8.

  7. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  8. J-GEM follow-up observations of the gravitational wave source GW151226*

    NASA Astrophysics Data System (ADS)

    Yoshida, Michitoshi; Utsumi, Yousuke; Tominaga, Nozomu; Morokuma, Tomoki; Tanaka, Masaomi; Asakura, Yuichiro; Matsubayashi, Kazuya; Ohta, Kouji; Abe, Fumio; Chimasu, Sho; Furusawa, Hisanori; Itoh, Ryosuke; Itoh, Yoichi; Kanda, Yuka; Kawabata, Koji S.; Kawabata, Miho; Koshida, Shintaro; Koshimoto, Naoki; Kuroda, Daisuke; Moritani, Yuki; Motohara, Kentaro; Murata, Katsuhiro L.; Nagayama, Takahiro; Nakaoka, Tatsuya; Nakata, Fumiaki; Nishioka, Tsubasa; Saito, Yoshihiko; Terai, Tsuyoshi; Tristram, Paul J.; Yanagisawa, Kenshi; Yasuda, Naoki; Doi, Mamoru; Fujisawa, Kenta; Kawachi, Akiko; Kawai, Nobuyuki; Tamura, Yoichi; Uemura, Makoto; Yatsu, Yoichi

    2017-02-01

    We report the results of optical-infrared follow-up observations of the gravitational wave (GW) event GW151226 detected by the Advanced LIGO in the framework of J-GEM (Japanese collaboration for Gravitational wave ElectroMagnetic follow-up). We performed wide-field optical imaging surveys with the Kiso Wide Field Camera (KWFC), Hyper Suprime-Cam (HSC), and MOA-cam3. The KWFC survey started at 2.26 d after the GW event and covered 778 deg2 centered at the high Galactic region of the skymap of GW151226. We started the HSC follow-up observations from ˜12 d after the event and covered an area of 63.5 deg2 of the highest probability region of the northern sky with limiting magnitudes of 24.6 and 23.8 for the i and z bands, respectively. MOA-cam3 covered 145 deg2 of the skymap with the MOA-red filter ˜2.5 mon after the GW alert. The total area covered by the wide-field surveys was 986.5 deg2. The integrated detection probability for the observed area was ˜29%. We also performed galaxy-targeted observations with six optical and near-infrared telescopes from 1.61 d after the event. A total of 238 nearby (≤100 Mpc) galaxies were observed with a typical I band limiting magnitude of ˜19.5. We detected 13 supernova candidates with the KWFC survey, and 60 extragalactic transients with the HSC survey. Two thirds of the HSC transients were likely supernovae and the remaining one third were possible active galactic nuclei. With our observational campaign, we found no transients that are likely to be associated with GW151226.

  9. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wald, R. M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zimmerman, A.; Zucker, M. E.; Zweizig, J.; LIGO Scientific; Virgo Collaboration

    2017-06-01

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31. 2-6.0+8.4M⊙ and 19. 4-5.9+5.3 M⊙ (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χeff=-0.1 2-0.30+0.21 . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 88 0-390+450 Mpc corresponding to a redshift of z =0.1 8-0.07+0.08 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to mg≤7.7 ×10-23 eV /c2 . In all cases, we find that GW170104 is consistent with general relativity.

  10. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; AultONeal, K; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bawaj, M; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Deelman, E; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devenson, J; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Duncan, J; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gabel, M; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garufi, F; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mayani, R; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Ng, K K Y; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Ramirez, K E; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Rynge, M; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Taylor, J A; Taylor, R; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahi, K; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wald, R M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, M; Wang, Y-F; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zimmerman, A; Zucker, M E; Zweizig, J

    2017-06-02

    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2_{-6.0}^{+8.4}M_{⊙} and 19.4_{-5.9}^{+5.3}M_{⊙} (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, χ_{eff}=-0.12_{-0.30}^{+0.21}. This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880_{-390}^{+450}  Mpc corresponding to a redshift of z=0.18_{-0.07}^{+0.08}. We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m_{g}≤7.7×10^{-23}  eV/c^{2}. In all cases, we find that GW170104 is consistent with general relativity.

  11. Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bauchrowitz, J.; Bauer, Th. S.; Baune, C.; Bavigadda, V.; Behnke, B.; Bejger, M.; Beker, M. G.; Belczynski, C.; Bell, A. S.; Bell, C.; Bergmann, G.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biscans, S.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, Sukanta; Bosi, L.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Buchman, S.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burman, R.; Buskulic, D.; Buy, C.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castaldi, G.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Celerier, C.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C.; Colombini, M.; Cominsky, L.; Constancio, M.; Conte, A.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Croce, R. P.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, C.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Deléglise, S.; Del Pozzo, W.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Dominguez, E.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S.; Eberle, T.; Edo, T.; Edwards, M.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fazi, D.; Fehrmann, H.; Fejer, M. M.; Feldbaum, D.; Feroz, F.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S.; Garufi, F.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Gräf, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C. J.; Gushwa, K.; Gustafson, E. K.; Gustafson, R.; Ha, J.; Hall, E. D.; Hamilton, W.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Haris, K.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hart, M.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Holt, K.; Hopkins, P.; Horrom, T.; Hoske, D.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Huerta, E.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Idrisy, A.; Ingram, D. R.; Inta, R.; Islas, G.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; Jang, H.; Jaranowski, P.; Ji, Y.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karlen, J.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Keiser, G. M.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, C.; Kim, K.; Kim, N. G.; Kim, N.; Kim, S.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, A.; Kumar, D. Nanda; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lam, P. K.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, P. J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B.; Lewis, J.; Li, T. G. F.; Libbrecht, K.; Libson, A.; Lin, A. C.; Littenberg, T. B.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lopez, E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Ma, Y.; Macdonald, E. P.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R.; Mageswaran, M.; Maglione, C.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mangini, N. M.; Mansell, G.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; McLin, K.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meinders, M.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, A.; Meyer, M. S.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nielsen, A. B.; Nissanke, S.; Nitz, A. H.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Oh, J. J.; Oh, S. H.; Ohme, F.; Omar, S.; Oppermann, P.; Oram, R.; O'Reilly, B.; Ortega, W.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palashov, O.; Palomba, C.; Pan, H.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pedraza, M.; Pele, A.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poteomkin, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qin, J.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Ramirez, K.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Recchia, S.; Reed, C. M.; Regimbau, T.; Reid, S.; Reitze, D. H.; Reula, O.; Rhoades, E.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S. B.; Rogstad, S.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J. R.; Sankar, S.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Scheuer, J.; Schilling, R.; Schilman, M.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Son, E. J.; Sorazu, B.; Souradeep, T.; Staley, A.; Stebbins, J.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Stephens, B. C.; Steplewski, S.; Stevenson, S.; Stone, R.; Stops, D.; Strain, K. A.; Straniero, N.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tao, J.; Tarabrin, S. P.; Taylor, R.; Tellez, G.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Trias, M.; Tse, M.; Tshilumba, D.; Tuennermann, H.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyachanin, S. P.; Wade, A. R.; Wade, L.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, M.; Wang, X.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Williams, K.; Williams, L.; Williams, R.; Williams, T. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wolovick, N.; Worden, J.; Wu, Y.; Yablon, J.; Yakushin, I.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yoshida, S.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, Fan; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zucker, M. E.; Zuraw, S.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-06-01

    In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO 600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties, for example the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the method of the linear grid in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO 600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, under an assumption of a fixed GW emission energy of 10-2M⊙c2, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events once the advanced LIGO and Virgo detectors begin operation.

  12. Methods and Results of a Search for Gravitational Waves Associated with Gamma-Ray Bursts Using the GEO 600, LIGO, and Virgo Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Blackburn, Lindy L.; hide

    2013-01-01

    In this paper we report on a search for short-duration gravitational wave bursts in the frequency range 64 Hz-1792 Hz associated with gamma-ray bursts (GRBs), using data from GEO600 and one of the LIGO or Virgo detectors. We introduce the method of a linear search grid to analyze GRB events with large sky localization uncertainties such as the localizations provided by the Fermi Gamma-ray Burst Monitor (GBM). Coherent searches for gravitational waves (GWs) can be computationally intensive when the GRB sky position is not well-localized, due to the corrections required for the difference in arrival time between detectors. Using a linear search grid we are able to reduce the computational cost of the analysis by a factor of O(10) for GBM events. Furthermore, we demonstrate that our analysis pipeline can improve upon the sky localization of GRBs detected by the GBM, if a high-frequency GW signal is observed in coincidence. We use the linear search grid method in a search for GWs associated with 129 GRBs observed satellite-based gamma-ray experiments between 2006 and 2011. The GRBs in our sample had not been previously analyzed for GW counterparts. A fraction of our GRB events are analyzed using data from GEO600 while the detector was using squeezed-light states to improve its sensitivity; this is the first search for GWs using data from a squeezed-light interferometric observatory. We find no evidence for GW signals, either with any individual GRB in this sample or with the population as a whole. For each GRB we place lower bounds on the distance to the progenitor, assuming a fixed GW emission energy of 10(exp -2)Stellar Mass sq c, with a median exclusion distance of 0.8 Mpc for emission at 500 Hz and 0.3 Mpc at 1 kHz. The reduced computational cost associated with a linear search grid will enable rapid searches for GWs associated with Fermi GBM events in the Advanced detector era.

  13. GW Calculations of Materials on the Intel Xeon-Phi Architecture

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek; Biller, Ariel; Chelikowsky, James R.; Louie, Steven G.

    Intel Xeon-Phi processors are expected to power a large number of High-Performance Computing (HPC) systems around the United States and the world in the near future. We evaluate the ability of GW and pre-requisite Density Functional Theory (DFT) calculations for materials on utilizing the Xeon-Phi architecture. We describe the optimization process and performance improvements achieved. We find that the GW method, like other higher level Many-Body methods beyond standard local/semilocal approximations to Kohn-Sham DFT, is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-waves, band-pairs and frequencies. Support provided by the SCIDAC program, Department of Energy, Office of Science, Advanced Scientic Computing Research and Basic Energy Sciences. Grant Numbers DE-SC0008877 (Austin) and DE-AC02-05CH11231 (LBNL).

  14. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors.

    PubMed

    Veitch, John; Pürrer, Michael; Mandel, Ilya

    2015-10-02

    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger, and ringdown signals of aligned-spin effective-one-body waveforms to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50M(⊙) and 500M(⊙) and mass ratios between 0.1 and 1. We find that (i) at total masses below ∼200M(⊙), where the signal-to-noise ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; and (iv) spin cannot be accurately measured for our injection set with nonspinning components. Most importantly, we find that for binaries with nonspinning components at all values of the mass ratio in the considered range and at a network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100M(⊙) can be confirmed with 95% confidence in any binary that includes a component with a mass of 130M(⊙) or greater.

  15. Modeling the source of GW150914 with targeted numerical-relativity simulations

    NASA Astrophysics Data System (ADS)

    Lovelace, Geoffrey; Lousto, Carlos O.; Healy, James; Scheel, Mark A.; Garcia, Alyssa; O'Shaughnessy, Richard; Boyle, Michael; Campanelli, Manuela; Hemberger, Daniel A.; Kidder, Lawrence E.; Pfeiffer, Harald P.; Szilágyi, Béla; Teukolsky, Saul A.; Zlochower, Yosef

    2016-12-01

    In fall of 2015, the two LIGO detectors measured the gravitational wave signal GW150914, which originated from a pair of merging black holes (Abbott et al Virgo, LIGO Scientific 2016 Phys. Rev. Lett. 116 061102). In the final 0.2 s (about 8 gravitational-wave cycles) before the amplitude reached its maximum, the observed signal swept up in amplitude and frequency, from 35 Hz to 150 Hz. The theoretical gravitational-wave signal for merging black holes, as predicted by general relativity, can be computed only by full numerical relativity, because analytic approximations fail near the time of merger. Moreover, the nearly-equal masses, moderate spins, and small number of orbits of GW150914 are especially straightforward and efficient to simulate with modern numerical-relativity codes. In this paper, we report the modeling of GW150914 with numerical-relativity simulations, using black-hole masses and spins consistent with those inferred from LIGO’s measurement (Abbott et al LIGO Scientific Collaboration, Virgo Collaboration 2016 Phys. Rev. Lett. 116 241102). In particular, we employ two independent numerical-relativity codes that use completely different analytical and numerical methods to model the same merging black holes and to compute the emitted gravitational waveform; we find excellent agreement between the waveforms produced by the two independent codes. These results demonstrate the validity, impact, and potential of current and future studies using rapid-response, targeted numerical-relativity simulations for better understanding gravitational-wave observations.

  16. Status of the Advanced Virgo gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Acernese, F.; Adams, T.; Agatsuma, K.; Aiello, L.; Allocca, A.; Amato, A.; Antier, S.; Arnaud, N.; Ascenzi, S.; Astone, P.; Bacon, P.; Bader, M. K. M.; Baldaccini, F.; Ballardin, G.; Barone, F.; Barsuglia, M.; Barta, D.; Basti, A.; Bawaj, M.; Bazzan, M.; Bejger, M.; Belahcene, I.; Bersanetti, D.; Bertolini, A.; Bitossi, M.; Bizouard, M. A.; Bloemen, S.; Boer, M.; Bogaert, G.; Bondu, F.; Bonnand, R.; Boom, B. A.; Boschi, V.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Branchesi, M.; Briant, T.; Brillet, A.; Brisson, V.; Bulik, T.; Bulten, H. J.; Buskulic, D.; Buy, C.; Cagnoli, G.; Calloni, E.; Canepa, M.; Canizares, P.; Capocasa, E.; Carbognani, F.; Casanueva Diaz, J.; Casentini, C.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chassande-Mottin, E.; Chincarini, A.; Chiummo, A.; Christensen, N.; Chua, S.; Ciolfi, R.; Cirone, A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Conti, L.; Cortese, S.; Coulon, J.-P.; Cuoco, E.; D'Antonio, S.; Dattilo, V.; Davier, M.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; De Rosa, R.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Renzo, F.; Dolique, V.; Ducrot, M.; Fafone, V.; Farinon, S.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Flaminio, R.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frey, V.; Gammaitoni, L.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Germain, V.; Ghosh, A.; Ghosh, S.; Giazotto, A.; Gonzalez Castro, J. M.; Gosselin, M.; Gouaty, R.; Grado, A.; Granata, M.; Greco, G.; Groot, P.; Gruning, P.; Guidi, G. M.; Harms, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hemming, G.; Hoak, D.; Hofman, D.; Huet, D.; Intini, G.; Isac, J.-M.; Jacqmin, T.; Jaranowski, P.; Jonker, R. J. G.; Kéfélian, F.; Khan, I.; Koley, S.; Kowalska, I.; Królak, A.; Kutynia, A.; Lartaux-Vollard, A.; Lazzaro, C.; Leaci, P.; Leonardi, M.; Leroy, N.; Letendre, N.; Lorenzini, M.; Loriette, V.; Losurdo, G.; Lumaca, D.; Majorana, E.; Maksimovic, I.; Man, N.; Mantovani, M.; Marchesoni, F.; Marion, F.; Martelli, F.; Martellini, L.; Masserot, A.; Mastrogiovanni, S.; Meidam, J.; Merzougui, M.; Metzdorff, R.; Mezzani, F.; Michel, C.; Milano, L.; Miller, A.; Minazzoli, O.; Minenkov, Y.; Moggi, A.; Mohan, M.; Montani, M.; Mours, B.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Neri, M.; Nichols, D.; Nissanke, S.; Nocera, F.; Palomba, C.; Paoletti, F.; Paoli, A.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pedurand, R.; Perreca, A.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pillant, G.; Pinard, L.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Prodi, G. A.; Punturo, M.; Puppo, P.; Rapagnani, P.; Razzano, M.; Regimbau, T.; Rei, L.; Ricci, F.; Robinet, F.; Rocchi, A.; Rolland, L.; Romano, R.; Rosińska, D.; Ruggi, P.; Salconi, L.; Sassolas, B.; Schmidt, P.; Sentenac, D.; Sequino, V.; Sieniawska, M.; Singhal, A.; Sorrentino, F.; Stratta, G.; Swinkels, B. L.; Tacca, M.; Tiwari, S.; Tonelli, M.; Travasso, F.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Schaaf, L.; van Heijningen, J. V.; Vardaro, M.; Vasúth, M.; Vedovato, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinet, J.-Y.; Vocca, H.; Walet, R.; Wang, G.; Was, M.; Yvert, M.; Zadrożny, A.; Zelenova, T.; Zendri, J.-P.

    2017-10-01

    Advanced Virgo is the French-Italian second generation laser gravitational wave detector, successor of the Initial Virgo. This new interferometer keeps only the infrastructure of its predecessor and aims to be ten times more sensitive, with its first science run planned for 2017. This article gives an overview of the Advanced Virgo design and the technical choices behind it. Finally, the up-to-date progresses and the planned upgrade for the following years are detailed.

  17. How gravitational-wave observations can shape the gamma-ray burst paradigm

    NASA Astrophysics Data System (ADS)

    Bartos, I.; Brady, P.; Márka, S.

    2013-06-01

    By reaching through shrouding blastwaves, efficiently discovering off-axis events and probing the central engine at work, gravitational wave (GW) observations will soon revolutionize the study of gamma-ray bursts. Already, analyses of GW data targeting gamma-ray bursts have helped constrain the central engines of selected events. Advanced GW detectors with significantly improved sensitivities are under construction. After outlining the GW emission mechanisms from gamma-ray burst progenitors (binary coalescences, stellar core collapses, magnetars and others) that may be detectable with advanced detectors, we review how GWs will improve our understanding of gamma-ray burst central engines, their astrophysical formation channels and the prospects and methods for different search strategies. We place special emphasis on multimessenger searches. To achieve the most scientific benefit, GW, electromagnetic and neutrino observations should be combined to provide greater discriminating power and science reach.

  18. First Hours of the GW170817 Kilonova: Why So Blue?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-04-01

    rise is best matched by models in which the emission is produced by radioactive decay of ejecta with lots of heavier elements (likely from tidal tails). The subsequent decline of the emission, however, is fit as well or better by models that include lighter, faster outflows, or additional emission due to shock-heating from a wind or a cocoon surrounding a jet.Optical and ultraviolet light curves for the first 3 days after merger, as compared to four different emission models. Observations at earlier times, where the models differ more substantially, could provide stronger constraints for future mergers. [Arcavi 2018]Missing UltravioletThe takeaway from Arcavis work is that we cant yet eliminate any models for the GW170817 kilonovas early blue emission we simply dont have enough data.Why not? It turns out we had some bad luck with GW170817: a glitch in one of the detectors slowed down localization of the source, preventing earlier discovery of the kilonova. The net result was that the electromagnetic signal of this merger was only found 11 hours after the gravitational waves were detected and the ultraviolet signal was detected 4 hours after that, when the kilonova light curves are already decaying.If we had ultraviolet observations that tracked the earlier, rising emission, Arcavi argues, we would be able to differentiate between the different emission models for the kilonova. So while this may be the best we can do with GW170817, we can hope that with the next merger well have a full set of early observations allowing us to better understand where its emission comes from.CitationIair Arcavi 2018 ApJL 855 L23. doi:10.3847/2041-8213/aab267

  19. f (T ) gravity after GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Cai, Yi-Fu; Li, Chunlong; Saridakis, Emmanuel N.; Xue, Ling-Qin

    2018-05-01

    The combined observation of GW170817 and its electromagnetic counterpart GRB170817A reveals that gravitational waves propagate at the speed of light in high precision. We apply the standard analysis of cosmological perturbations, as well as the effective field theory approach, to investigate the experimental consequences for the theory of f (T ) gravity. Our analysis verifies for the first time that the speed of gravitational waves within f (T ) gravity is equal to the light speed, and hence, the constraints from GW170817 and GRB170817A are trivially satisfied. Nevertheless, by examining the dispersion relation and the frequency of cosmological gravitational waves, we observe a deviation from the results of general relativity, quantified by a new parameter. Although its value is relatively small in viable f (T ) models, its possible future measurement in advancing gravitational-wave astronomy would be the smoking gun of testing this type of modified gravity.

  20. GW182 controls Drosophila circadian behavior and PDF-receptor signaling.

    PubMed

    Zhang, Yong; Emery, Patrick

    2013-04-10

    The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level--which is limiting in circadian neurons--influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling and thus profoundly impacts the circadian neural network and its response to environmental inputs. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. GW182 controls Drosophila circadian behavior and PDF-Receptor signaling

    PubMed Central

    Zhang, Yong; Emery, Patrick

    2013-01-01

    The neuropeptide PDF is crucial for Drosophila circadian behavior: it keeps circadian neurons synchronized. Here, we identify GW182 as a key regulator of PDF signaling. Indeed, GW182 downregulation results in phenotypes similar to those of Pdf and Pdf-receptor (Pdfr) mutants. gw182 genetically interacts with Pdfr and cAMP signaling, which is essential for PDFR function. GW182 mediates miRNA-dependent gene silencing through its interaction with AGO1. Consistently, GW182's AGO1 interaction domain is required for GW182's circadian function. Moreover, our results indicate that GW182 modulates PDFR signaling by silencing the expression of the cAMP phosphodiesterase DUNCE. Importantly, this repression is under photic control, and GW182 activity level - which is limiting in circadian neurons - influences the responses of the circadian neural network to light. We propose that GW182's gene silencing activity functions as a rheostat for PDFR signaling, and thus profoundly impacts the circadian neural network and its response to environmental inputs. PMID:23583112

  2. THE PROGENITOR OF GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woosley, S. E., E-mail: woosley@ucolick.org

    2016-06-10

    The spectacular detection of gravitational waves (GWs) from GW150914 and its reported association with a gamma-ray burst (GRB) offer new insights into the evolution of massive stars. Here, it is shown that no single star of any mass and credible metallicity is likely to produce the observed GW signal. Stars with helium cores in the mass range 35–133 M {sub ⊙} encounter the pair instability and either explode or pulse until the core mass is less than 45 M {sub ⊙}, smaller than the combined mass of the observed black holes. The rotation of more massive helium cores is eithermore » braked by interaction with a slowly rotating hydrogen envelope, if one is present, or by mass loss, if one is not. The very short interval between the GW signal and the observed onset of the putative GRB in GW150914 is also too short to have come from a single star. A more probable model for making the gravitational radiation is the delayed merger of two black holes made by 70 and 90 M {sub ⊙} stars in a binary system. The more massive component was a pulsational-pair instability supernova before making the first black hole.« less

  3. Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; de Bonis, G.; Distefano, C.; di Palma, I.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L. A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mathieu, A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Nezri, E.; Pǎvǎlaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Vallée, C.; van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.; Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auffenberg, J.; Axani, S.; Bagherpour, H.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Benzvi, S.; Berley, D.; Bernardini, E.; Besson, D. Z.; Binder, G.; Bindig, D.; Blaufuss, E.; Blot, S.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bradascio, F.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, M.; de André, J. P. A. M.; de Clercq, C.; Del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; Deyoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hultqvist, K.; in, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, B. J. P.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kittler, T.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Kyriacou, A.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Lennarz, D.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Maruyama, R.; Mase, K.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meier, M.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Micallef, J.; Momenté, G.; Montaruli, T.; Moulai, M.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de Los Heros, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stachurska, J.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Tung, C. F.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Waza, A.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; de, S.; Debra, D.; Debreczeni, G.; Degallaix, J.; de Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; Derosa, R. T.; Desalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; di Fiore, L.; di Giovanni, M.; di Girolamo, T.; di Lieto, A.; di Pace, S.; di Palma, I.; di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; Macinnis, M.; MacLeod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; ANTARES Collaboration

    2017-07-01

    The Advanced LIGO observatories detected gravitational waves from two binary black hole mergers during their first observation run (O1). We present a high-energy neutrino follow-up search for the second gravitational wave event, GW151226, as well as for gravitational wave candidate LVT151012. We find two and four neutrino candidates detected by IceCube, and one and zero detected by Antares, within ±500 s around the respective gravitational wave signals, consistent with the expected background rate. None of these neutrino candidates are found to be directionally coincident with GW151226 or LVT151012. We use nondetection to constrain isotropic-equivalent high-energy neutrino emission from GW151226, adopting the GW event's 3D localization, to less than 2 ×1 051- 2 ×1 054 erg .

  4. All-sky search for short gravitational-wave bursts in the first Advanced LIGO run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, Whansun; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-02-01

    We present the results from an all-sky search for short-duration gravitational waves in the data of the first run of the Advanced LIGO detectors between September 2015 and January 2016. The search algorithms use minimal assumptions on the signal morphology, so they are sensitive to a wide range of sources emitting gravitational waves. The analyses target transient signals with duration ranging from milliseconds to seconds over the frequency band of 32 to 4096 Hz. The first observed gravitational-wave event, GW150914, has been detected with high confidence in this search; the other known gravitational-wave event, GW151226, falls below the search's sensitivity. Besides GW150914, all of the search results are consistent with the expected rate of accidental noise coincidences. Finally, we estimate rate-density limits for a broad range of non-binary-black-hole transient gravitational-wave sources as a function of their gravitational radiation emission energy and their characteristic frequency. These rate-density upper limits are stricter than those previously published by an order of magnitude.

  5. Search for Neutrinos in Super-Kamiokande Associated with Gravitational-wave Events GW150914 and GW151226

    NASA Astrophysics Data System (ADS)

    Abe, K.; Haga, K.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Orii, A.; Sekiya, H.; Shiozawa, M.; Takeda, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Richard, E.; Okumura, K.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Nantais, C. M.; Tobayama, S.; Goldhaber, M.; Kropp, W. R.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hartfiel, B. L.; Hill, J.; Hong, N.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O’Sullivan, E.; Scholberg, K.; Walter, C. W.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Cao, S. V.; Hiraki, T.; Hirota, S.; Huang, K.; Jiang, M.; Minamino, A.; Nakaya, T.; Patel, N. D.; Wendell, R. A.; Suzuki, K.; Fukuda, Y.; Itow, Y.; Suzuki, T.; Mijakowski, P.; Frankiewicz, K.; Hignight, J.; Imber, J.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Kayano, T.; Kibayashi, A.; Koshio, Y.; Mori, T.; Sakuda, M.; Xu, C.; Kuno, Y.; Tacik, R.; Kim, S. B.; Okazawa, H.; Choi, Y.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Bronner, C.; Calland, R. G.; Hartz, M.; Martens, K.; Marti, Ll.; Suzuki, Y.; Vagins, M. R.; Martin, J. F.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; The Super-Kamiokande Collaboration

    2016-10-01

    We report the results from a search in Super-Kamiokande for neutrino signals coincident with the first detected gravitational-wave events, GW150914 and GW151226, as well as LVT151012, using a neutrino energy range from 3.5 MeV to 100 PeV. We searched for coincident neutrino events within a time window of ±500 s around the gravitational-wave detection time. Four neutrino candidates are found for GW150914, and no candidates are found for GW151226. The remaining neutrino candidates are consistent with the expected background events. We calculated the 90% confidence level upper limits on the combined neutrino fluence for both gravitational-wave events, which depends on event energy and topologies. Considering the upward-going muon data set (1.6 GeV–100 PeV), the neutrino fluence limit for each gravitational-wave event is 14–37 (19–50) cm‑2 for muon neutrinos (muon antineutrinos), depending on the zenith angle of the event. In the other data sets, the combined fluence limits for both gravitational-wave events range from 2.4 × 104 to 7.0 × 109 cm‑2.

  6. All-sky search for high-energy neutrinos from gravitational wave event GW170104 with the Antares neutrino telescope

    NASA Astrophysics Data System (ADS)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Belhorma, B.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M. C.; Brânzaş, H.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Cherkaoui El Moursli, R.; Chiarusi, T.; Circella, M.; Coelho, J. A. B.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Díaz, A. F.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; El Khayati, N.; Elsässer, D.; Enzenhöfer, A.; Ettahiri, A.; Fassi, F.; Felis, I.; Fusco, L. A.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C. W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefèvre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martínez-Mora, J. A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Păvălaş, G. E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D. F. E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J. D.; Zúñiga, J.

    2017-12-01

    Advanced LIGO detected a significant gravitational wave signal (GW170104) originating from the coalescence of two black holes during the second observation run on January 4th, 2017. An all-sky high-energy neutrino follow-up search has been made using data from the Antares neutrino telescope, including both upgoing and downgoing events in two separate analyses. No neutrino candidates were found within ± 500 s around the GW event time nor any time clustering of events over an extended time window of ± 3 months. The non-detection is used to constrain isotropic-equivalent high-energy neutrino emission from GW170104 to less than ˜ {1.2}× 10^{{55}} erg for a E^{-2} spectrum. This constraint is valid in the energy range corresponding to the 5-95% quantiles of the neutrino flux [3.2 TeV; 3.6 PeV], if the GW emitter was below the Antares horizon at the alert time.

  7. Millimeter observations of the disk around GW Orionis

    NASA Astrophysics Data System (ADS)

    Fang, M.; Sicilia-Aguilar, A.; Wilner, D.; Wang, Y.; Roccatagliata, V.; Fedele, D.; Wang, J. Z.

    2017-07-01

    The GW Ori system is a pre-main sequence triple system (GW Ori A/B/C) with companions (GW Ori B/C) at 1 AU and 8 AU, respectively, from the primary (GW Ori A). The primary of the system has a mass of 3.9 M⊙, but shows a spectral type of G8. Thus, GW Ori A could be a precursor of a B star, but it is still at an earlier evolutionary stage than Herbig Be stars. GW Ori provides an ideal target for experiments and observations (being a "blown-up" solar system with a very massive sun and at least two upscaled planets). We present the first spatially resolved millimeter interferometric observations of the disk around the triple pre-main sequence system GW Ori, obtained with the Submillimeter Array, both in continuum and in the 12CO J = 2-1, 13CO J = 2-1, and C18O J = 2-1 lines. These new data reveal a huge, massive, and bright disk in the GW Ori system. The dust continuum emission suggests a disk radius of around 400 AU, but the 12CO J = 2-1 emission shows a much more extended disk with a size around 1300 AU. Owing to the spatial resolution ( 1''), we cannot detect the gap in the disk that is inferred from spectral energy distribution (SED) modeling. We characterize the dust and gas properties in the disk by comparing the observations with the predictions from the disk models with various parameters calculated with a Monte Carlo radiative transfer code RADMC-3D. The disk mass is around0.12 M⊙, and the disk inclination with respect to the line of sight is around 35°. The kinematics in the disk traced by the CO line emission strongly suggest that the circumstellar material in the disk is in Keplerian rotation around GW Ori.Tentatively substantial C18O depletion in gas phase is required to explain the characteristics of the line emission from the disk.

  8. Large scale GW calculations

    DOE PAGES

    Govoni, Marco; Galli, Giulia

    2015-01-12

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green’s function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfacesmore » with thousands of electrons.« less

  9. Large scale GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govoni, Marco; Galli, Giulia

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green’s function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfacesmore » with thousands of electrons.« less

  10. Large Scale GW Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govoni, Marco; Galli, Giulia

    We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. We applied the newly developed technique to GW calculations of systems of unprecedented size, including water/semiconductor interfacesmore » with thousands of electrons.« less

  11. Fermi-LAT Observations of the LIGO Event GW150914

    DOE PAGES

    Ackermann, M.; Ajello, M.; Albert, A.; ...

    2016-05-12

    The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering ~1/5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this study, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-massmore » black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within ~70 minutes of the trigger and thus enabled a comprehensive search for a γ-ray counterpart to GW150914. Finally, the study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.« less

  12. Fermi-LAT Observations of the LIGO Event GW150914

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Albert, A.; Anderson, B.; Arimoto, M.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; hide

    2016-01-01

    The Fermi Large Area Telescope (LAT) has an instantaneous field of view (FoV) covering 1 5 of the sky and it completes a survey of the entire sky in high-energy gamma-rays every 3 hr. It enables searches for transient phenomena over timescales from milliseconds to years. Among these phenomena could be electromagnetic counterparts to gravitational wave (GW) sources. In this paper, we present a detailed study of the LAT observations relevant to Laser Interferometer Gravitational-wave Observatory (LIGO) event GW150914, which is the first direct detection of gravitational waves and has been interpreted as being due to the coalescence of two stellar-mass black holes. The localization region for GW150914 was outside the LAT FoV at the time of the GW signal. However, as part of routine survey observations, the LAT observed the entire LIGO localization region within approx. 70 minutes of the trigger and thus enabled a comprehensive search for a gamma-ray counterpart to GW150914.The study of the LAT data presented here did not find any potential counterparts to GW150914, but it did provide limits on the presence of a transient counterpart above 100 MeV on timescales of hours to days over the entire GW150914 localization region.

  13. Cannabis-based medicines--GW pharmaceuticals: high CBD, high THC, medicinal cannabis--GW pharmaceuticals, THC:CBD.

    PubMed

    2003-01-01

    GW Pharmaceuticals is undertaking a major research programme in the UK to develop and market distinct cannabis-based prescription medicines [THC:CBD, High THC, High CBD] in a range of medical conditions. The cannabis for this programme is grown in a secret location in the UK. It is expected that the product will be marketed in the US in late 2003. GW's cannabis-based products include selected phytocannabinoids from cannabis plants, including D9 tetrahydrocannabinol (THC) and cannabidiol (CBD). The company is investigating their use in three delivery systems, including sublingual spray, sublingual tablet and inhaled (but not smoked) dosage forms. The technology is protected by patent applications. Four different formulations are currently being investigated, including High THC, THC:CBD (narrow ratio), THC:CBD (broad ratio) and High CBD. GW is also developing a specialist security technology that will be incorporated in all its drug delivery systems. This technology allows for the recording and remote monitoring of patient usage to prevent any potential abuse of its cannabis-based medicines. GW plans to enter into agreements with other companies following phase III development, to secure the best commercialisation terms for its cannabis-based medicines. In June 2003, GW announced that exclusive commercialisation rights for the drug in the UK had been licensed to Bayer AG. The drug will be marketed under the Sativex brand name. This agreement also provides Bayer with an option to expand their license to include the European Union and certain world markets. GW was granted a clinical trial exemption certificate by the Medicines Control Agency to conduct clinical studies with cannabis-based medicines in the UK. The exemption includes investigations in the relief of pain of neurological origin and defects of neurological function in the following indications: multiple sclerosis (MS), spinal cord injury, peripheral nerve injury, central nervous system damage, neuroinvasive

  14. GW100: Benchmarking G0W0 for Molecular Systems.

    PubMed

    van Setten, Michiel J; Caruso, Fabio; Sharifzadeh, Sahar; Ren, Xinguo; Scheffler, Matthias; Liu, Fang; Lischner, Johannes; Lin, Lin; Deslippe, Jack R; Louie, Steven G; Yang, Chao; Weigend, Florian; Neaton, Jeffrey B; Evers, Ferdinand; Rinke, Patrick

    2015-12-08

    We present the GW100 set. GW100 is a benchmark set of the ionization potentials and electron affinities of 100 molecules computed with the GW method using three independent GW codes and different GW methodologies. The quasi-particle energies of the highest-occupied molecular orbitals (HOMO) and lowest-unoccupied molecular orbitals (LUMO) are calculated for the GW100 set at the G0W0@PBE level using the software packages TURBOMOLE, FHI-aims, and BerkeleyGW. The use of these three codes allows for a quantitative comparison of the type of basis set (plane wave or local orbital) and handling of unoccupied states, the treatment of core and valence electrons (all electron or pseudopotentials), the treatment of the frequency dependence of the self-energy (full frequency or more approximate plasmon-pole models), and the algorithm for solving the quasi-particle equation. Primary results include reference values for future benchmarks, best practices for convergence within a particular approach, and average error bars for the most common approximations.

  15. GW Orionis: Inner disk readjustments in a triple system

    NASA Astrophysics Data System (ADS)

    Fang, M.; Sicilia-Aguilar, A.; Roccatagliata, V.; Fedele, D.; Henning, Th.; Eiroa, C.; Müller, A.

    2014-10-01

    Context. Disks are expected to dissipate quickly in binary or multiple systems. Investigating such systems can improve our knowledge of the disk dispersal. The triple system GW Ori, still harboring a massive disk, is an excellent target. Aims: We study the young stellar system GW Ori, concentrating on its accretion, wind activity and disk properties. Methods: We use high-resolution optical spectra of GW Ori to do spectral classification and derive the radial velocities (RV). We analyze the wind and accretion activity using the emission lines in the spectra. We also use U-band photometry, which has been collected from the literature, to study the accretion variability of GW Ori. We characterize the disk properties of GW Ori by modeling its spectral energy distribution (SED). Results.By comparing our data to the synthetical spectra, we classify GW Ori as a G8 star. Based on the RVs derived from the optical spectra, we confirm the previous result as a close companion in GW Ori with a period of ~242 days and an orbital semi-major axis of ~1 AU. The RV residuals after the subtraction of the orbital solution with the equivalent widths (EW) of accretion-related emission lines vary with periods of 5-6.7 days during short-time intervals, which are caused by the rotational modulation. The Hα and Hβ line profiles of GW Ori can be decomposed in two central-peaked emission components and one blue-shifted absorption component. The blue-shifted absorption components are due to a disk wind modulated by the orbital motion of the close companion. Therefore, the systems like GW Ori can be used to study the extent of disk winds. We find that the accretion rates of GW Ori are rather constant but can occasionally be enhanced by a factor of 2-3. We reproduce the SED of GW Ori by using disk models with gaps ~25-55 AU in size. A small population of tiny dust particles within the gap produces the excess emission at near-infrared bands and the strong and sharp silicate feature at 10

  16. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Astrophysics Data System (ADS)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  17. Advanced ACTPol Cryogenic Detector Arrays and Readout

    NASA Technical Reports Server (NTRS)

    Henderson, S.W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Wollack, E. J.

    2016-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.

  18. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Bailes, M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Barthelmy, S. D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Carullo, G.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dudi, R.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Ho, W. C. G.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leon, E.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Marsh, P.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Molina, I.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morisaki, S.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Nagar, A.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, P.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-10-01

    On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 ×104 years . We infer the component masses of the binary to be between 0.86 and 2.26 M⊙ , in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17 - 1.60 M⊙ , with the total mass of the system 2.7 4-0.01+0.04M⊙ . The source was localized within a sky region of 28 deg2 (90% probability) and had a luminosity distance of 4 0-14+8 Mpc , the closest and most precisely localized gravitational-wave signal yet. The association with the γ -ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ -ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

  19. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Afrough, M; Agarwal, B; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allen, G; Allocca, A; Altin, P A; Amato, A; Ananyeva, A; Anderson, S B; Anderson, W G; Angelova, S V; Antier, S; Appert, S; Arai, K; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Atallah, D V; Aufmuth, P; Aulbert, C; AultONeal, K; Austin, C; Avila-Alvarez, A; Babak, S; Bacon, P; Bader, M K M; Bae, S; Bailes, M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Banagiri, S; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barkett, K; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Barthelmy, S D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Bawaj, M; Bayley, J C; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Bell, A S; Berger, B K; Bergmann, G; Bernuzzi, S; Bero, J J; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Biscoveanu, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bode, N; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonilla, E; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bossie, K; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Canepa, M; Canizares, P; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Carney, M F; Carullo, G; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerdá-Durán, P; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chase, E; Chassande-Mottin, E; Chatterjee, D; Chatziioannou, K; Cheeseboro, B D; Chen, H Y; Chen, X; Chen, Y; Cheng, H-P; Chia, H; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, A K W; Chung, S; Ciani, G; Ciolfi, R; Cirelli, C E; Cirone, A; Clara, F; Clark, J A; Clearwater, P; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Cohen, D; Colla, A; Collette, C G; Cominsky, L R; Constancio, M; Conti, L; Cooper, S J; Corban, P; Corbitt, T R; Cordero-Carrión, I; Corley, K R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Dálya, G; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davis, D; Daw, E J; Day, B; De, S; DeBra, D; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Demos, N; Denker, T; Dent, T; De Pietri, R; Dergachev, V; De Rosa, R; DeRosa, R T; De Rossi, C; DeSalvo, R; de Varona, O; Devenson, J; Dhurandhar, S; Díaz, M C; Dietrich, T; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Renzo, F; Doctor, Z; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Dreissigacker, C; Driggers, J C; Du, Z; Ducrot, M; Dudi, R; Dupej, P; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Estevez, D; Etienne, Z B; Etzel, T; Evans, M; Evans, T M; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fee, C; Fehrmann, H; Feicht, J; Fejer, M M; Fernandez-Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Finstad, D; Fiori, I; Fiorucci, D; Fishbach, M; Fisher, R P; Fitz-Axen, M; Flaminio, R; Fletcher, M; Fong, H; Font, J A; Forsyth, P W F; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Ganija, M R; Gaonkar, S G; Garcia-Quiros, C; Garufi, F; Gateley, B; Gaudio, S; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, D; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glover, L; Goetz, E; Goetz, R; Gomes, S; Goncharov, B; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Gretarsson, E M; Groot, P; Grote, H; Grunewald, S; Gruning, P; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Halim, O; Hall, B R; Hall, E D; Hamilton, E Z; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hannuksela, O A; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hinderer, T; Ho, W C G; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Horst, C; Hough, J; Houston, E A; Howell, E J; Hreibi, A; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Inta, R; Intini, G; Isa, H N; Isac, J-M; Isi, M; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kalaghatgi, C V; Kalogera, V; Kamai, B; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Kastaun, W; Katolik, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kawabe, K; Kéfélian, F; Keitel, D; Kemball, A J; Kennedy, R; Kent, C; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chunglee; Kim, J C; Kim, K; Kim, W; Kim, W S; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kinley-Hanlon, M; Kirchhoff, R; Kissel, J S; Kleybolte, L; Klimenko, S; Knowles, T D; Koch, P; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, R; Kumar, S; Kuo, L; Kutynia, A; Kwang, S; Lackey, B D; Lai, K H; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Larson, S L; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leon, E; Leonardi, M; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Linker, S D; Littenberg, T B; Liu, J; Liu, X; Lo, R K L; Lockerbie, N A; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lumaca, D; Lundgren, A P; Lynch, R; Ma, Y; Macas, R; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña Hernandez, I; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Man, N; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markakis, C; Markosyan, A S; Markowitz, A; Maros, E; Marquina, A; Marsh, P; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Massera, E; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matas, A; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McCuller, L; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McNeill, L; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Mejuto-Villa, E; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, B B; Miller, J; Millhouse, M; Milovich-Goff, M C; Minazzoli, O; Minenkov, Y; Ming, J; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moffa, D; Moggi, A; Mogushi, K; Mohan, M; Mohapatra, S R P; Molina, I; Montani, M; Moore, C J; Moraru, D; Moreno, G; Morisaki, S; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muñiz, E A; Muratore, M; Murray, P G; Nagar, A; Napier, K; Nardecchia, I; Naticchioni, L; Nayak, R K; Neilson, J; Nelemans, G; Nelson, T J N; Nery, M; Neunzert, A; Nevin, L; Newport, J M; Newton, G; Ng, K K Y; Nguyen, P; Nguyen, T T; Nichols, D; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; North, C; Nuttall, L K; Oberling, J; O'Dea, G D; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Okada, M A; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; Ormiston, R; Ortega, L F; O'Shaughnessy, R; Ossokine, S; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Page, M A; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, Howard; Pan, Huang-Wei; Pang, B; Pang, P T H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Parida, A; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patil, M; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pirello, M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Porter, E K; Post, A; Powell, J; Prasad, J; Pratt, J W W; Pratten, G; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rajbhandari, B; Rakhmanov, M; Ramirez, K E; Ramos-Buades, A; Rapagnani, P; Raymond, V; Razzano, M; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Ren, W; Reyes, S D; Ricci, F; Ricker, P M; Rieger, S; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romel, C L; Romie, J H; Rosińska, D; Ross, M P; Rowan, S; Rüdiger, A; Ruggi, P; Rutins, G; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sanchez, L E; Sanchis-Gual, N; Sandberg, V; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheel, M; Scheuer, J; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schulte, B W; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Seidel, E; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Shaddock, D A; Shaffer, T J; Shah, A A; Shahriar, M S; Shaner, M B; Shao, L; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, L P; Singh, A; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somala, S; Son, E J; Sonnenberg, J A; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staats, K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stevenson, S P; Stone, R; Stops, D J; Strain, K A; Stratta, G; Strigin, S E; Strunk, A; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Suresh, J; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tait, S C; Talbot, C; Talukder, D; Tanner, D B; Tápai, M; Taracchini, A; Tasson, J D; Taylor, J A; Taylor, R; Tewari, S V; Theeg, T; Thies, F; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tonelli, M; Tornasi, Z; Torres-Forné, A; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trinastic, J; Tringali, M C; Trozzo, L; Tsang, K W; Tse, M; Tso, R; Tsukada, L; Tsuna, D; Tuyenbayev, D; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walet, R; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, J Z; Wang, W H; Wang, Y F; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Wessel, E K; Weßels, P; Westerweck, J; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; Whiting, B F; Whittle, C; Wilken, D; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Wofford, J; Wong, K W K; Worden, J; Wright, J L; Wu, D S; Wysocki, D M; Xiao, S; Yamamoto, H; Yancey, C C; Yang, L; Yap, M J; Yazback, M; Yu, Hang; Yu, Haocun; Yvert, M; Zadrożny, A; Zanolin, M; Zelenova, T; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y-H; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zimmerman, A B; Zucker, M E; Zweizig, J

    2017-10-20

    On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4}  years. We infer the component masses of the binary to be between 0.86 and 2.26  M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60  M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28  deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8}  Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

  20. GLADE: A Galaxy Catalogue for Multi-Messenger Searches in the Advanced Gravitational-Wave Detector Era

    NASA Astrophysics Data System (ADS)

    Dálya, G.; Galgóczi, G.; Dobos, L.; Frei, Z.; Heng, I. S.; Macas, R.; Messenger, C.; Raffai, P.; de Souza, R. S.

    2018-06-01

    We introduce a value-added full-sky catalogue of galaxies, named as Galaxy List for the Advanced Detector Era, or GLADE. The purpose of this catalogue is to (i) help identifications of host candidates for gravitational-wave events, (ii) support target selections for electromagnetic follow-up observations of gravitational-wave candidates, (iii) provide input data on the matter distribution of the local universe for astrophysical or cosmological simulations, and (iv) help identifications of host candidates for poorly localised electromagnetic transients, such as gamma-ray bursts observed with the InterPlanetary Network. Both being potential hosts of astrophysical sources of gravitational waves, GLADE includes inactive and active galaxies as well. GLADE was constructed by cross-matching and combining data from five separate (but not independent) astronomical catalogues: GWGC, 2MPZ, 2MASS XSC, HyperLEDA and SDSS-DR12Q. GLADE is complete up to d_L=37^{+3}_{-4} Mpc in terms of the cumulative B-band luminosity of galaxies within luminosity distance dL, and contains all of the brightest galaxies giving half of the total B-band luminosity up to dL = 91 Mpc. As B-band luminosity is expected to be a tracer of binary neutron star mergers (currently the prime targets of joint GW+EM detections), our completeness measures can be used as estimations of completeness for containing all binary neutron star merger hosts in the local universe.

  1. Status of the Monolithic Suspensions for Advanced Virgo

    NASA Astrophysics Data System (ADS)

    Travasso, F.; Virgo Collaboration

    2018-02-01

    Successfully implemented in GEO and Virgo+, the monolithic suspensions are one of the most important upgrades in the second generation of gravitational wave interferometric detectors, including Advanced LIGO (aLIGO) and Advanced Virgo (AdV). Characterized by a very low thermal noise, monolithic suspensions are essential for improving the interferometers sensitivity at low frequencies (10-100Hz). In Advanced Virgo their installation was delayed because of a contamination problem in the vacuum system: dust produced by scroll pumps was injected in the main vacuum chambers during the venting processes, damaging the fibers and ultimately causing their repeated failure. The effort to explain and resolve this issue was useful to further confirm the suspensions’ reliability and our control on the production process. Moreover, we developed and implemented new tools and procedures to certify each part of the monolithic suspensions. In the meanwhile, in order to join aLIGO during its second Observation Run (O2), a temporary steel suspension was implemented, based on the initial Virgo design. That solution allowed us to contribute to the first three-detector observation of a gravitational wave (GW) ([1]), and to the first observation of a coalescing neutron star binary ([2]) In the near future the monolithic suspensions will be reinstalled along with additional upgrades of Virgo.

  2. XMM-NEWTON SLEW SURVEY OBSERVATIONS OF THE GRAVITATIONAL WAVE EVENT GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troja, E.; Read, A. M.; Tiengo, A.

    The detection of the first gravitational wave (GW) transient GW150914 prompted an extensive campaign of follow-up observations at all wavelengths. Although no dedicated XMM-Newton observations have been performed, the satellite passed through the GW150914 error region during normal operations. Here we report the analysis of the data taken during these satellite slews performed two hours and two weeks after the GW event. Our data cover 1.1 and 4.8 deg{sup 2} of the final GW localization region. No X-ray counterpart to GW150914 is found down to a sensitivity of 6 × 10{sup −13} erg cm{sup −2} s{sup −1} in the 0.2–2more » keV band. Nevertheless, these observations show the great potential of XMM-Newton slew observations for searching for the electromagnetic counterparts of GW events. A series of adjacent slews performed in response to a GW trigger would take ≲1.5 days to cover most of the typical GW credible region. We discuss this scenario and its prospects for detecting the X-ray counterpart of future GW detections.« less

  3. Market for advanced humanitarian mine detectors

    NASA Astrophysics Data System (ADS)

    Newnham, Peter; Daniels, David J.

    2001-10-01

    Uncleared landmines and unexploded ordnance remain a major humanitarian and economic threat in over 60 countries. It is estimated that world wide over US 60 million was spent on mien clearance in 1999. Most of this funding is provided by government aid, often channeled via the UN or European Community. The minefield threat is very varied, with many different types of mien, UXO, terrain and climate type. To cope with this variety a range of demining techniques are used: mechanical techniques such as flails are used for vegetation clearance, however the majority of demining work is still carried out by manual deminers using metal detectors and prodders. Over the last 5 years there has been considerable interest within the scientific and engineering communities in the application of advanced technologies to improve the safety and efficiency of this work. Nevertheless few new products have been introduced into, and accepted by, the demining community. Despite the high political profile of the landmine problem very little e hard dat is available on the real characteristics of the demining equipment market. As part of a European Union supported program to evacuate a multi-sensor handheld mien detector concept, Thales and ERA Technology Ltd have carried out an in-depth assessment of this market. This paper describes the cost- benefits that could accrue to the demining community associated with use of advanced equipment under appropriate conditions and the equipment requirements that result. The dynamics of the demining equipment market and the barriers to entry are discussed.

  4. The Interplanetary Network Response to LIGO GW150914

    NASA Technical Reports Server (NTRS)

    Hurley, K.; Svinkin, D. S.; Aptekar, R.L.; Golenetskii, S. V.; Frederiks, D. D.; Boynton, W.; Mitrofanov, I. G.; Golovin, D. V.; Kozyrev, A. S.; Litvak, M. L.; hide

    2016-01-01

    We have performed a blind search for a gamma-ray transient of arbitrary duration and energy spectrum around the time of the LIGO gravitational-wave event GW150914 with the six-spacecraft interplanetary network (IPN). Four gamma-ray bursts were detected between 30 hr prior to the event and 6.1 hr after it, but none could convincingly be associated with GW150914. No other transients were detected down to limiting 15-150 keV fluences of roughly 5 x 10(exp -8) -5 x 10(exp -7) erg cm(exp -2). We discuss the search strategies and temporal coverage of the IPN on the day of the event and compare the spatial coverage to the region where GW150914 originated. We also report the negative result of a targeted search for the Fermi-GBM event reported in conjunction with GW150914.

  5. Quasi-monolithic mirror suspensions in ground-based gravitational-wave detectors: an overview and look to the future

    NASA Astrophysics Data System (ADS)

    van Veggel, Anna-Maria A.

    2018-05-01

    At the commencement of a new era in astrophysics, with added information from direct detections of gravitational-wave (GW) signals, this paper is a testament to the quasi-monolithic suspensions of the test masses of the GW detectors that have enabled the opening of a new window on the universe. The quasi-monolithic suspensions are the final stages in the seismic isolation of the test masses in GW detectors, and are specifically designed to introduce as little thermal noise as possible. The history of the development of the fused-silica quasi-monolithic suspensions, which have been so essential for the first detections of GWs, is outlined and a glimpse into the status of research towards quasi-monolithic suspensions made of sapphire and silicon is given. This article is part of a discussion meeting issue `The promises of gravitational-wave astronomy'.

  6. Quasi-monolithic mirror suspensions in ground-based gravitational-wave detectors: an overview and look to the future

    PubMed Central

    2018-01-01

    At the commencement of a new era in astrophysics, with added information from direct detections of gravitational-wave (GW) signals, this paper is a testament to the quasi-monolithic suspensions of the test masses of the GW detectors that have enabled the opening of a new window on the universe. The quasi-monolithic suspensions are the final stages in the seismic isolation of the test masses in GW detectors, and are specifically designed to introduce as little thermal noise as possible. The history of the development of the fused-silica quasi-monolithic suspensions, which have been so essential for the first detections of GWs, is outlined and a glimpse into the status of research towards quasi-monolithic suspensions made of sapphire and silicon is given. This article is part of a discussion meeting issue ‘The promises of gravitational-wave astronomy’. PMID:29661973

  7. Effects of data quality vetoes on a search for compact binary coalescences in Advanced LIGO’s first observing run

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O’Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; O’Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2018-03-01

    The first observing run of Advanced LIGO spanned 4 months, from 12 September 2015 to 19 January 2016, during which gravitational waves were directly detected from two binary black hole systems, namely GW150914 and GW151226. Confident detection of gravitational waves requires an understanding of instrumental transients and artifacts that can reduce the sensitivity of a search. Studies of the quality of the detector data yield insights into the cause of instrumental artifacts and data quality vetoes specific to a search are produced to mitigate the effects of problematic data. In this paper, the systematic removal of noisy data from analysis time is shown to improve the sensitivity of searches for compact binary coalescences. The output of the PyCBC pipeline, which is a python-based code package used to search for gravitational wave signals from compact binary coalescences, is used as a metric for improvement. GW150914 was a loud enough signal that removing noisy data did not improve its significance. However, the removal of data with excess noise decreased the false alarm rate of GW151226 by more than two orders of magnitude, from 1 in 770 yr to less than 1 in 186 000 yr.

  8. Quasi-monolithic mirror suspensions in ground-based gravitational-wave detectors: an overview and look to the future.

    PubMed

    van Veggel, Anna-Maria A

    2018-05-28

    At the commencement of a new era in astrophysics, with added information from direct detections of gravitational-wave (GW) signals, this paper is a testament to the quasi-monolithic suspensions of the test masses of the GW detectors that have enabled the opening of a new window on the universe. The quasi-monolithic suspensions are the final stages in the seismic isolation of the test masses in GW detectors, and are specifically designed to introduce as little thermal noise as possible. The history of the development of the fused-silica quasi-monolithic suspensions, which have been so essential for the first detections of GWs, is outlined and a glimpse into the status of research towards quasi-monolithic suspensions made of sapphire and silicon is given.This article is part of a discussion meeting issue 'The promises of gravitational-wave astronomy'. © 2018 The Authors.

  9. Localization accuracy of compact binary coalescences detected by the third-generation gravitational-wave detectors and implication for cosmology

    NASA Astrophysics Data System (ADS)

    Zhao, Wen; Wen, Linqing

    2018-03-01

    We use the Fisher information matrix to investigate the angular resolution and luminosity distance uncertainty for coalescing binary neutron stars (BNSs) and neutron star-black hole binaries (NSBHs) detected by the third-generation (3G) gravitational-wave (GW) detectors. Our study focuses on an individual 3G detector and a network of up to four 3G detectors at different locations including the United States, Europe, China, and Australia for the proposed Einstein Telescope (ET) and Cosmic Explorer (CE) detectors. In particular, we examine the effect of the Earth's rotation, as GW signals from BNS and low-mass NSBH systems could be hours long for 3G detectors. In this case, an individual detector can be effectively treated as a detector network with long baselines formed by the trajectory of the detector as it rotates with the Earth. Therefore, a single detector or two-detector networks could also be used to localize the GW sources effectively. We find that a time-dependent antenna beam-pattern function can help better localize BNS and NSBH sources, especially edge-on ones. The medium angular resolution for one ET-D detector is around 150 deg2 for BNSs at a redshift of z =0.1 , which improves rapidly with a decreasing low-frequency cutoff flow in sensitivity. The medium angular resolution for a network of two CE detectors in the United States and Europe, respectively, is around 20 deg2 at z =0.2 for the simulated BNS and NSBH samples. While for a network of two ET-D detectors, the similar angular resolution can be achieved at a much higher redshift of z =0.5 . The angular resolution of a network of three detectors is mainly determined by the baselines between detectors regardless of the CE or ET detector type. The medium angular resolution of BNS for a network of three detectors of the ET-D or CE type in the United States, Europe, and Australia is around 10 deg2 at z =2 . We discuss the implications of our results for multimessenger astronomy and, in particular, for

  10. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova.

    PubMed

    Evans, P A; Cenko, S B; Kennea, J A; Emery, S W K; Kuin, N P M; Korobkin, O; Wollaeger, R T; Fryer, C L; Madsen, K K; Harrison, F A; Xu, Y; Nakar, E; Hotokezaka, K; Lien, A; Campana, S; Oates, S R; Troja, E; Breeveld, A A; Marshall, F E; Barthelmy, S D; Beardmore, A P; Burrows, D N; Cusumano, G; D'Aì, A; D'Avanzo, P; D'Elia, V; de Pasquale, M; Even, W P; Fontes, C J; Forster, K; Garcia, J; Giommi, P; Grefenstette, B; Gronwall, C; Hartmann, D H; Heida, M; Hungerford, A L; Kasliwal, M M; Krimm, H A; Levan, A J; Malesani, D; Melandri, A; Miyasaka, H; Nousek, J A; O'Brien, P T; Osborne, J P; Pagani, C; Page, K L; Palmer, D M; Perri, M; Pike, S; Racusin, J L; Rosswog, S; Siegel, M H; Sakamoto, T; Sbarufatti, B; Tagliaferri, G; Tanvir, N R; Tohuvavohu, A

    2017-12-22

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. A complete picture of compact object mergers, however, requires the detection of an electromagnetic (EM) counterpart. We report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope Array of the EM counterpart of the binary neutron star merger GW170817. The bright, rapidly fading UV emission indicates a high mass (≈0.03 solar masses) wind-driven outflow with moderate electron fraction ( Y e ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30° away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultrarelativistic, highly collimated ejecta (a γ-ray burst afterglow). Copyright © 2017, American Association for the Advancement of Science.

  11. LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik

    2015-02-20

    The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transientmore » signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear improvement in localization of the average detected signal when progressing from two-detector to three-detector networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected signals would be imaged after observing 100-200 deg{sup 2} in 2015 and 60-110 deg{sup 2} in 2016, although knowledge of the waveform can reduce this to as little as 22 deg{sup 2}. This is the first comprehensive study on sky localization capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early LIGO-only two-detector configuration.« less

  12. Application of pixel-cell detector technology for Advanced Neutron Beam Monitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopp, Daniel M.

    2011-01-11

    Application of Pixel-Cell Detector Technology for Advanced Neutron Beam Monitors Specifications of currently available neutron beam detectors limit their usefulness at intense neutron beams of large-scale national user facilities used for the advanced study of materials. A large number of neutron-scattering experiments require beam monitors to operate in an intense neutron beam flux of >10E+7 neutrons per second per square centimeter. For instance, a 4 cm x 4 cm intense beam flux of 6.25 x 10E+7 n/s/cm2 at the Spallation Neutron Source will put a flux of 1.00 x 10E+9 n/s at the beam monitor. Currently available beam monitors withmore » a typical efficiency of 1 x 10E-4 will need to be replaced in less than two years of operation due to wire and gas degradation issues. There is also a need at some instruments for beam position information that are beyond the capabilities of currently available He-3 and BF3 neutron beam monitors. ORDELA, Inc.’s research under USDOE SBIR Grant (DE-FG02-07ER84844) studied the feasibility of using pixel-cell technology for developing a new generation of stable, long-life neutron beam monitors. The research effort has led to the development and commercialization of advanced neutron beam detectors that will directly benefit the Spallation Neutron Source and other intense neutron sources such as the High Flux Isotope Reactor. A prototypical Pixel-Cell Neutron Beam Monitor was designed and constructed during this research effort. This prototype beam monitor was exposed to an intense neutron beam at the HFIR SNS HB-2 test beam site. Initial measurements on efficiency, uniformity across the detector, and position resolution yielded excellent results. The development and test results have provided the required data to initiate the fabrication and commercialization of this next generation of neutron-detector systems. ORDELA, Inc. has (1) identified low-cost design and fabrication strategies, (2) developed and built pixel-cell detectors and

  13. R-process experiments with the Advanced Implantation Detector Array

    NASA Astrophysics Data System (ADS)

    Estrade, Alfredo; Griffin, Chris; Davinson, Tom; Bruno, Carlo; Hall, Oscar; Liu, Zhong; Woods, Phil; Coleman-Smith, Patrick; Labiche, Marc; Lazarus, Ian; Pucknell, Victor; Simpson, John; Harkness-Brennan, Laura; Page, Robert; Kiss, Gabor; Liu, Jiajiang; Matsui, Keishi; Nishimura, Shunji; Phong, Vi; Lorusso, Giuseppe; Montes, Fernando; Nepal, Neerajan; Briken Collaboration; Ribf106 Experiment Team

    2017-09-01

    Decay properties of neutron rich isotopes, such as half-lives and β-delayed neutron emission probabilities, are an important input for astrophysical models of the r-process. A new generation of fragmentation beam facilities has made it possible to access large regions of the nuclear chart that are close to the path of the r-process for some astrophysical models. The Advanced Implantation Detector Array (AIDA) is a segmented active-stopper detector designed for decay experiments with fast ion beams, which was recently commissioned at the Radioactive Ion Beam Factory in RIKEN, Japan. In this presentation we describe the main characteristics of AIDA, and present preliminary results of the first experiments in the region of neutron-rich selenium isotopes and along the N=82 shell closure.

  14. Developments of high frequency and intensity stabilized lasers for space gravitational wave detector DECIGO/B-DECIGO

    NASA Astrophysics Data System (ADS)

    Suemasa, Aru; Shimo-oku, Ayumi; Nakagawa, Ken'ichi; Musha, Mitsuru

    2017-12-01

    In Japan, not only the ground-based gravitational wave (GW) detector mission KAGRA but also the space GW detector mission DECIGO (DECi-hertz Interferometer Gravitational wave Observatory) and its milestone mission B-DECIGO have been promoted. The designed strain sensitivity of DECIGO and B-DECIGO are δL/ L < 10-23. Since the GW detector requires high power and highly-stable light source, we have developed the light source with high frequency and intensity stability for DECIGO and B-DECIGO. The frequency of the Yb-doped fiber DFB lasers are stabilized to the iodine saturated absorption at 515 nm, and the intensity of the laser at 1 Hz (observation band) is stabilized by controlling the pump source of an Yb-doped fiber amplifier. The intensity of the laser at 200 kHz (modulation band) is also stabilized using an acousto-optic modulator to improve the frequency stability of the laser. In the consequences, we obtain the frequency stability of δf = 0.4 Hz/√Hz (in-loop) at 1 Hz, and the intensity stability of δI/ I = 1.2 × 10-7/√Hz (out-of-loop) and δI/I = 1.5 × 10-7/√Hz (in-loop) at 1 Hz and 200 kHz, respectively.

  15. Searching for gravitational-waves from compact binary coalescences while dealing with challenges of real data and simulated waveforms

    NASA Astrophysics Data System (ADS)

    Dayanga, Waduthanthree Thilina

    Albert Einstein's general theory of relativity predicts the existence of gravitational waves (GWs). Direct detection of GWs will provide enormous amount of new information about physics, astronomy and cosmology. Scientists around the world are currently working towards the first direct detection of GWs. The global network of ground-based GW detectors are currently preparing for their first advanced detector Science runs. In this thesis we focus on detection of GWs from compact binary coalescence (CBC) systems. Ability to accurately model CBC GW waveforms makes them the most promising source for the first direct detection of GWs. In this thesis we try to address several challenges associated with detecting CBC signals buried in ground-based GW detector data for past and future searches. Data analysis techniques we employ to detect GW signals assume detector noise is Gaussian and stationary. However, in reality, detector data is neither Gaussian nor stationary. To estimate the performance loss due to these features, we compare the efficiencies of detecting CBC signals in simulated Gaussian and real data. Additionally, we also demonstrate the effectiveness of multi-detector signal based consistency tests such ad null-stream. Despite, non-Gaussian and non-stationary features of real detector data, with effective data quality studies and signal-based vetoes we can approach the performance of Gaussian and stationary data. As we are moving towards advanced detector era, it is important to be prepared for future CBC searches. In this thesis we investigate the performances of non-spinning binary black hole (BBH) searches in simulated Gaussian using advanced detector noise curves predicted for 2015--2016. In the same study, we analyze the GW detection probabilities of latest pN-NR hybrid waveforms submitted to second version of Numerical Injection Analysis (NINJA-2) project. The main motivation for this study is to understand the ability to detect realistic BBH signals of

  16. Classifier for gravitational-wave inspiral signals in nonideal single-detector data

    NASA Astrophysics Data System (ADS)

    Kapadia, S. J.; Dent, T.; Dal Canton, T.

    2017-11-01

    We describe a multivariate classifier for candidate events in a templated search for gravitational-wave (GW) inspiral signals from neutron-star-black-hole (NS-BH) binaries, in data from ground-based detectors where sensitivity is limited by non-Gaussian noise transients. The standard signal-to-noise ratio (SNR) and chi-squared test for inspiral searches use only properties of a single matched filter at the time of an event; instead, we propose a classifier using features derived from a bank of inspiral templates around the time of each event, and also from a search using approximate sine-Gaussian templates. The classifier thus extracts additional information from strain data to discriminate inspiral signals from noise transients. We evaluate a random forest classifier on a set of single-detector events obtained from realistic simulated advanced LIGO data, using simulated NS-BH signals added to the data. The new classifier detects a factor of 1.5-2 more signals at low false positive rates as compared to the standard "reweighted SNR" statistic, and does not require the chi-squared test to be computed. Conversely, if only the SNR and chi-squared values of single-detector events are available, random forest classification performs nearly identically to the reweighted SNR.

  17. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.

    PubMed

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-15

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.

  18. GRAVITATIONAL-WAVE OBSERVATIONS MAY CONSTRAIN GAMMA-RAY BURST MODELS: THE CASE OF GW150914–GBM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Preece, R. D.; Goldstein, A.

    The possible short gamma-ray burst (GRB) observed by Fermi /GBM in coincidence with the first gravitational-wave (GW) detection offers new ways to test GRB prompt emission models. GW observations provide previously inaccessible physical parameters for the black hole central engine such as its horizon radius and rotation parameter. Using a minimum jet launching radius from the Advanced LIGO measurement of GW 150914, we calculate photospheric and internal shock models and find that they are marginally inconsistent with the GBM data, but cannot be definitely ruled out. Dissipative photosphere models, however, have no problem explaining the observations. Based on the peakmore » energy and the observed flux, we find that the external shock model gives a natural explanation, suggesting a low interstellar density (∼10{sup −3} cm{sup −3}) and a high Lorentz factor (∼2000). We only speculate on the exact nature of the system producing the gamma-rays, and study the parameter space of a generic Blandford–Znajek model. If future joint observations confirm the GW–short-GRB association we can provide similar but more detailed tests for prompt emission models.« less

  19. Brane-world extra dimensions in light of GW170817

    NASA Astrophysics Data System (ADS)

    Visinelli, Luca; Bolis, Nadia; Vagnozzi, Sunny

    2018-03-01

    The search for extra dimensions is a challenging endeavor to probe physics beyond the Standard Model. The joint detection of gravitational waves (GW) and electromagnetic (EM) signals from the merging of a binary system of compact objects like neutron stars can help constrain the geometry of extra dimensions beyond our 3 +1 spacetime ones. A theoretically well-motivated possibility is that our observable Universe is a 3 +1 -dimensional hypersurface, or brane, embedded in a higher 4 +1 -dimensional anti-de Sitter (AdS5 ) spacetime, in which gravity is the only force which propagates through the infinite bulk space, while other forces are confined to the brane. In these types of brane-world models, GW and EM signals between two points on the brane would, in general, travel different paths. This would result in a time lag between the detection of GW and EM signals emitted simultaneously from the same source. We consider the recent near-simultaneous detection of the GW event GW170817 from the LIGO/Virgo collaboration, and its EM counterpart, the short gamma-ray burst GRB170817A detected by the Fermi Gamma-ray Burst Monitor and the International Gamma-Ray Astrophysics Laboratory Anti-Coincidence Shield spectrometer. Assuming the standard Λ -cold dark matter scenario and performing a likelihood analysis which takes into account astrophysical uncertainties associated to the measured time lag, we set an upper limit of ℓ≲0.535 Mpc at 68% confidence level on the AdS5 radius of curvature ℓ. Although the bound is not competitive with current Solar System constraints, it is the first time that data from a multimessenger GW-EM measurement is used to constrain extra-dimensional models. Thus, our work provides a proof of principle for the possibility of using multimessenger astronomy for probing the geometry of our space-time.

  20. The Sternheimer-GW method and the spectral signatures of plasmonic polarons

    NASA Astrophysics Data System (ADS)

    Giustino, Feliciano

    During the past three decades the GW method has emerged among the most promising electronic structure techniques for predictive calculations of quasiparticle band structures. In order to simplify the GW work-flow while at the same time improving the calculation accuracy, we developed the Sternheimer-GW method. In Sternheimer-GW both the screened Coulomb interaction and the electron Green's function are evaluated by using exclusively occupied Kohn-Sham states, as in density-functional perturbation theory. In this talk I will review the basics of Sternheimer-GW, and I will discuss two recent applications to semiconductors and superconductors. In the case of semiconductors we calculated complete energy- and momentum-resolved spectral functions by combining Sternheimer-GW with the cumulant expansion approach. This study revealed the existence of band structure replicas which arise from electron-plasmon interactions. In the case of superconductors we calculated the Coulomb pseudo-potential from first principles, and combined this approach with the Eliashberg theory of the superconducting critical temperature. This work was supported by the Leverhulme Trust (RL-2012-001), the European Research Council (EU FP7/ERC 239578), the UK Engineering and Physical Sciences Research Council (EP/J009857/1), and the Graphene Flagship (EU FP7/604391).

  1. Climatology of GW-TIDs in the magnetic equatorial upper thermosphere over India

    NASA Astrophysics Data System (ADS)

    Manju, G.; Aswathy, R. P.

    2017-11-01

    An analysis of Gravity wave induced travelling ionospheric disturbances (GW-TIDs) in the thermosphere during high and low solar epochs is undertaken using ionosonde data at Trivandrum (8.50N, 770E). Wavelet analysis is performed on the temporal variations of foF2 and the amplitudes of waves present in two period bands of (0.5-1.5) h and (2-4) h are extracted. The real height profiles are generated at 15 min internal for the whole day (for sample days) during high and low solar activity years. The study reveals that the GW-TID activity is significantly greater for solar minimum compared to solar maximum for the period 8.5-17.5 h. Diurnally the GW-TID activity in the (2-4) h period band peaks in the post sunset hours for both high and low solar epochs. For the 0.5-1.5 h period band, the diurnal maximum in GW-TID is occurring in the post sunset hours for high solar epoch while it occurs in the morning hours around 10 h LT for low solar epoch. Seasonally the day time GW-TID activity maximizes (minimizes) for winter (vernal equinox). The post sunset time GW-TID maximizes (minimizes) either for summer/winter (vernal equinox). The other interesting observation is the anti correlation of GW-TID in upper thermosphere with solar activity for day time and the correlation of the same with solar activity in the post sunset hours. The present results for daytime are in agreement with the equatorial daytime GW-TID behaviour reported from CHAMP satellite observations. The GW-TID activity during post sunset time for equatorial region upper thermosphere has not been reported so far.

  2. The Aftermath of GW170817: Neutron Star or Black Hole?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    When two neutron stars merged in August of last year, leading to the first simultaneous detection of gravitational waves and electromagnetic signals, we knew this event was going to shed new light on compact-object mergers.A team of scientists says we now have an answer to one of the biggest mysteries of GW170817: after the neutron stars collided, what object was formed?Artists illustration of the black hole that resulted from GW170817. Some of the material accreting onto the black hole is flung out in a tightly collimated jet. [NASA/CXC/M.Weiss]A Fuzzy DivisionBased on gravitational-wave observations, we know that two neutron stars of about 1.48 and 1.26 solar masses merged in GW170817. But the result an object of 2.7 solar masses doesnt have a definitive identity; the remnant formed in the merger is either the most massive neutron star known or the least massive black hole known.The theoretical mass division between neutron stars and black holes is fuzzy, depending strongly on what model you use to describe the physics of these objects. Observations fall short as well: the most massive neutron star known is perhaps 2.3 solar masses, and the least massive black hole is perhaps 4 or 5, leaving the location of the dividing line unclear. For this reason, determining the nature of GW170817s remnant is an important target as we analyze past observations of the remnant and continue to make new ones.Chandra images of the field of GW170817 during three separate epochs. Each image is 30 x 30. [Adapted from Pooley et al. 2018]Luckily, we may not have long to wait! Led by David Pooley (Trinity University and Eureka Scientific, Inc.), a team of scientists has obtained new Chandra X-ray observations of the remnant of GW170817. By combining this new data with previous observations, the authors have drawn conclusions about what object was left behind after this fateful merger.X-Rays Provide AnswersX-ray radiation is generated in a merger of two neutron stars when the mergers

  3. Constraints on Born-Infeld gravity from the speed of gravitational waves after GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Jana, Soumya; Chakravarty, Girish Kumar; Mohanty, Subhendra

    2018-04-01

    The observations of gravitational waves from the binary neutron star merger event GW170817 and the subsequent observation of its electromagnetic counterparts from the gamma-ray burst GRB 170817A provide us a significant opportunity to study theories of gravity beyond general relativity. An important outcome of these observations is that they constrain the difference between the speed of gravity and the speed of light to less than 10-15c . Also, the time delay between the arrivals of gravitational waves at different detectors constrains the speed of gravity at the Earth to be in the range 0.55 c detectors, we obtain the bound on the theory parameter κ as |κ |≲1021 m2 . Similarly, from the time delay between the signals of GW170817 and GRB 170817A, in a background Friedmann-Robertson-Walker universe, we obtain |κ |≲1037 m2 . Although the bounds on κ are weak compared to other earlier bounds from the study of neutron stars, stellar evolution, primordial nucleosynthesis, etc., our bounds are from direct observations and thus worth noting.

  4. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.

    2008-12-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.

  5. Advances in detector technologies for visible and infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier

    2012-07-01

    The purpose of this paper is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. The success of the next generation of instruments for 8 to 40-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling, wavelength range and correction quality of the wave front error in both spatial and time domains. The modern generation of AO wavefront sensor detectors development started in the late nineties with the CCD50 detector fabricated by e2v technologies under ESO contract for the ESO NACO AO system. With a 128x128 pixels format, this 8 outputs CCD offered a 500 Hz frame rate with a readout noise of 7e-. A major breakthrough has been achieved with the recent development by e2v technologies of the CCD220. This 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication) has been jointly funded by ESO and Europe under the FP6 programme. The CCD220 and the OCAM2 camera that operates the detector are now the most sensitive system in the world for advanced adaptive optics systems, offering less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. Extremely easy to operate, OCAM2 only needs a 24 V power supply and a modest water cooling circuit. This system, commercialized by First Light Imaging, is extensively described in this paper. An upgrade of OCAM2 is foreseen to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. Since this major success, new developments started in Europe. One is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. Two detectors are currently developed by e2v. The NGSD will be a 880x840 pixels CMOS

  6. Magnetic-distortion-induced Ellipticity and Gravitational Wave Radiation of Neutron Stars: Millisecond Magnetars in Short GRBs, Galactic Pulsars, and Magnetars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, He; Cao, Zhoujian; Zhang, Bing, E-mail: gaohe@bnu.edu.cn

    Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ∼1 ms magnetars inferred from the SGRB data, the detection horizon is ∼30 Mpc andmore » ∼600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.« less

  7. Magnetic-distortion-induced Ellipticity and Gravitational Wave Radiation of Neutron Stars: Millisecond Magnetars in Short GRBs, Galactic Pulsars, and Magnetars

    NASA Astrophysics Data System (ADS)

    Gao, He; Cao, Zhoujian; Zhang, Bing

    2017-08-01

    Neutron stars may sustain a non-axisymmetric deformation due to magnetic distortion and are potential sources of continuous gravitational waves (GWs) for ground-based interferometric detectors. With decades of searches using available GW detectors, no evidence of a GW signal from any pulsar has been observed. Progressively stringent upper limits of ellipticity have been placed on Galactic pulsars. In this work, we use the ellipticity inferred from the putative millisecond magnetars in short gamma-ray bursts (SGRBs) to estimate their detectability by current and future GW detectors. For ˜1 ms magnetars inferred from the SGRB data, the detection horizon is ˜30 Mpc and ˜600 Mpc for the advanced LIGO (aLIGO) and Einstein Telescope (ET), respectively. Using the ellipticity of SGRB millisecond magnetars as calibration, we estimate the ellipticity and GW strain of Galactic pulsars and magnetars assuming that the ellipticity is magnetic-distortion-induced. We find that the results are consistent with the null detection results of Galactic pulsars and magnetars with the aLIGO O1. We further predict that the GW signals from these pulsars/magnetars may not be detectable by the currently designed aLIGO detector. The ET detector may be able to detect some relatively low-frequency signals (<50 Hz) from some of these pulsars. Limited by its design sensitivity, the eLISA detector seems to not be suitable for detecting the signals from Galactic pulsars and magnetars.

  8. On constraining the speed of gravitational waves following GW150914

    NASA Astrophysics Data System (ADS)

    Blas, D.; Ivanov, M. M.; Sawicki, I.; Sibiryakov, S.

    2016-05-01

    We point out that the observed time delay between the detection of the signal at the Hanford and Livingston LIGO sites from the gravitational wave event GW150914 places an upper bound on the speed of propagation of gravitational waves, c gw ≲ 1.7 in the units of speed of light. Combined with the lower bound from the absence of gravitational Cherenkov losses by cosmic rays that rules out most of subluminal velocities, this gives a model-independent double-sided constraint 1 ≲ c gw ≲ 1.7. We compare this result to model-specific constraints from pulsar timing and cosmology.

  9. TaGW2, a Good Reflection of Wheat Polyploidization and Evolution

    PubMed Central

    Qin, Lin; Zhao, Junjie; Li, Tian; Hou, Jian; Zhang, Xueyong; Hao, Chenyang

    2017-01-01

    Hexaploid wheat consists of three subgenomes, namely, A, B, and D. These well-characterized ancestral genomes also exist at the diploid and tetraploid levels, thereby rendering wheat as a good model species for studying polyploidization. Here, we performed intra- and inter-species comparative analyses of wheat and its relatives to dissect polymorphism and differentiation of the TaGW2 genes. Our results showed that genetic diversity of TaGW2 decreased with progression from the diploids to tetraploids and hexaploids. The strongest selection occurred in the promoter regions of TaGW2-6A and TaGW2-6B. Phylogenetic trees clearly indicated that Triticum urartu and Ae. speltoides were the donors of the A and B genomes in tetraploid and hexaploid wheats. Haplotypes detected among hexaploid genotypes traced back to the tetraploid level. Fst and π values revealed that the strongest selection on TaGW2 occurred at the tetraploid level rather than in hexaploid wheat. This infers that grain size enlargement, especially increased kernel width, mainly occurred in tetraploid genotypes. In addition, relative expression levels of TaGW2s significantly declined from the diploid level to tetraploids and hexaploids, further indicating that these genes negatively regulate kernel size. Our results also revealed that the polyploidization events possibly caused much stronger differentiation than domestication and breeding. PMID:28326096

  10. TaGW2, a Good Reflection of Wheat Polyploidization and Evolution.

    PubMed

    Qin, Lin; Zhao, Junjie; Li, Tian; Hou, Jian; Zhang, Xueyong; Hao, Chenyang

    2017-01-01

    Hexaploid wheat consists of three subgenomes, namely, A, B, and D. These well-characterized ancestral genomes also exist at the diploid and tetraploid levels, thereby rendering wheat as a good model species for studying polyploidization. Here, we performed intra- and inter-species comparative analyses of wheat and its relatives to dissect polymorphism and differentiation of the TaGW2 genes. Our results showed that genetic diversity of TaGW2 decreased with progression from the diploids to tetraploids and hexaploids. The strongest selection occurred in the promoter regions of TaGW2-6A and TaGW2-6B . Phylogenetic trees clearly indicated that Triticum urartu and Ae. speltoides were the donors of the A and B genomes in tetraploid and hexaploid wheats. Haplotypes detected among hexaploid genotypes traced back to the tetraploid level. Fst and π values revealed that the strongest selection on TaGW2 occurred at the tetraploid level rather than in hexaploid wheat. This infers that grain size enlargement, especially increased kernel width, mainly occurred in tetraploid genotypes. In addition, relative expression levels of TaGW2s significantly declined from the diploid level to tetraploids and hexaploids, further indicating that these genes negatively regulate kernel size. Our results also revealed that the polyploidization events possibly caused much stronger differentiation than domestication and breeding.

  11. GW-501516 GlaxoSmithKline/Ligand.

    PubMed

    Pelton, Patricia

    2006-04-01

    GlaxoSmithKline and Ligand are developing GW-501516, a peroxisome proliferator-activator receptor-delta agonist for the potential treatment of dyslipidemia. Phase II clinical trials of this compound are ongoing.

  12. Advanced combined iodine dispenser and detector. [for microorganism annihilation in potable water

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Schubert, F. H.; Jensen, F. C.; Powell, J. D.

    1977-01-01

    A total weight of 1.23 kg (2.7 lb), a total volume of 1213 cu m (74 cu in), and an average power consumption of 5.5W was achieved in the advanced combined iodine dispenser/detector by integrating the detector with the iodine source, arranging all iodinator components within a compact package and lowering the parasitic power to the detector and electronics circuits. These achievements surpassed the design goals of 1.36 kg (3.0 lb), 1671 cu m (102 cu in) and 8W. The reliability and maintainability were improved by reducing the detector lamp power, using an interchangeable lamp concept, making the electronic circuit boards easily accessible, providing redundant water seals and improving the accessibility to the iodine accumulator for refilling. The system was designed to iodinate (to 5 ppm iodine) the fuel cell water generated during 27 seven-day orbiter missions (equivalent to 18,500 kg (40,700 lb) of water) before the unit must be recharged with iodine crystals.

  13. Gravitational waves: search results, data analysis and parameter estimation: Amaldi 10 Parallel session C2.

    PubMed

    Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michał; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi; Robinet, Florent; Schmidt, Patricia; Smith, Rory; Veitch, John; Wade, Madeline; Aoudia, Sofiane; Bose, Sukanta; Calderon Bustillo, Juan; Canizares, Priscilla; Capano, Colin; Clark, James; Colla, Alberto; Cuoco, Elena; Da Silva Costa, Carlos; Dal Canton, Tito; Evangelista, Edgar; Goetz, Evan; Gupta, Anuradha; Hannam, Mark; Keitel, David; Lackey, Benjamin; Logue, Joshua; Mohapatra, Satyanarayan; Piergiovanni, Francesco; Privitera, Stephen; Prix, Reinhard; Pürrer, Michael; Re, Virginia; Serafinelli, Roberto; Wade, Leslie; Wen, Linqing; Wette, Karl; Whelan, John; Palomba, C; Prodi, G

    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

  14. Gravitational Waves: Search Results, Data Analysis and Parameter Estimation. Amaldi 10 Parallel Session C2

    NASA Technical Reports Server (NTRS)

    Astone, Pia; Weinstein, Alan; Agathos, Michalis; Bejger, Michal; Christensen, Nelson; Dent, Thomas; Graff, Philip; Klimenko, Sergey; Mazzolo, Giulio; Nishizawa, Atsushi

    2015-01-01

    The Amaldi 10 Parallel Session C2 on gravitational wave(GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity.

  15. Search for intermediate mass black hole binaries in the first observing run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Allen, B.; Allen, G.; Allocca, A.; Almoubayyed, H.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bawaj, M.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Deelman, E.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devenson, J.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Duncan, J.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gabel, M.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garufi, F.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mayani, R.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Ramirez, K. E.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Rynge, M.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Taylor, J. A.; Taylor, R.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahi, K.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, M.; Wang, Y.-F.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, Hang; Yu, Haocun; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2017-07-01

    During their first observational run, the two Advanced LIGO detectors attained an unprecedented sensitivity, resulting in the first direct detections of gravitational-wave signals produced by stellar-mass binary black hole systems. This paper reports on an all-sky search for gravitational waves (GWs) from merging intermediate mass black hole binaries (IMBHBs). The combined results from two independent search techniques were used in this study: the first employs a matched-filter algorithm that uses a bank of filters covering the GW signal parameter space, while the second is a generic search for GW transients (bursts). No GWs from IMBHBs were detected; therefore, we constrain the rate of several classes of IMBHB mergers. The most stringent limit is obtained for black holes of individual mass 100 M⊙ , with spins aligned with the binary orbital angular momentum. For such systems, the merger rate is constrained to be less than 0.93 Gpc-3 yr-1 in comoving units at the 90% confidence level, an improvement of nearly 2 orders of magnitude over previous upper limits.

  16. SOGRO (Superconducting Omni-directional Gravitational Radiation Observatory)

    NASA Astrophysics Data System (ADS)

    Paik, Ho Jung

    2018-01-01

    Detection of gravitational waves (GWs) from merging binary black holes (BHs) by Advanced LIGO has ushered in the new era of GW astronomy. Many conceivable sources such as intermediate-mass BH binaries and white dwarf binaries, as well as stellar-mass BH inspirals, would emit GWs below 10 Hz. It is highly desirable to open a new window for GW astronomy in the infrasound frequency band. A low-frequency tensor detector could be constructed by combining six magnetically levitated superconducting test masses. Such a detector would be equally sensitive to GWs coming from anywhere in the sky, and would be capable of resolving the source direction and wave polarization. I will present the design concept of a new terrestrial GW detector, named SOGRO, which could reach a strain sensitivity of 10-19-10-21 Hz-1/2 at 0.1-10 Hz. Seismic and Newtonian gravity noises are serious obstacles in constructing terrestrial GW detectors at frequencies below 10 Hz. I will explain how these noises are rejected in SOGRO. I will also report the progress made in designing the platform and modelling its thermal noise.

  17. A review of advances in pixel detectors for experiments with high rate and radiation

    NASA Astrophysics Data System (ADS)

    Garcia-Sciveres, Maurice; Wermes, Norbert

    2018-06-01

    The large Hadron collider (LHC) experiments ATLAS and CMS have established hybrid pixel detectors as the instrument of choice for particle tracking and vertexing in high rate and radiation environments, as they operate close to the LHC interaction points. With the high luminosity-LHC upgrade now in sight, for which the tracking detectors will be completely replaced, new generations of pixel detectors are being devised. They have to address enormous challenges in terms of data throughput and radiation levels, ionizing and non-ionizing, that harm the sensing and readout parts of pixel detectors alike. Advances in microelectronics and microprocessing technologies now enable large scale detector designs with unprecedented performance in measurement precision (space and time), radiation hard sensors and readout chips, hybridization techniques, lightweight supports, and fully monolithic approaches to meet these challenges. This paper reviews the world-wide effort on these developments.

  18. GW/Bethe-Salpeter calculations for charged and model systems from real-space DFT

    NASA Astrophysics Data System (ADS)

    Strubbe, David A.

    GW and Bethe-Salpeter (GW/BSE) calculations use mean-field input from density-functional theory (DFT) calculations to compute excited states of a condensed-matter system. Many parts of a GW/BSE calculation are efficiently performed in a plane-wave basis, and extensive effort has gone into optimizing and parallelizing plane-wave GW/BSE codes for large-scale computations. Most straightforwardly, plane-wave DFT can be used as a starting point, but real-space DFT is also an attractive starting point: it is systematically convergeable like plane waves, can take advantage of efficient domain parallelization for large systems, and is well suited physically for finite and especially charged systems. The flexibility of a real-space grid also allows convenient calculations on non-atomic model systems. I will discuss the interfacing of a real-space (TD)DFT code (Octopus, www.tddft.org/programs/octopus) with a plane-wave GW/BSE code (BerkeleyGW, www.berkeleygw.org), consider performance issues and accuracy, and present some applications to simple and paradigmatic systems that illuminate fundamental properties of these approximations in many-body perturbation theory.

  19. Assessment of the Accuracy of the Bethe-Salpeter (BSE/GW) Oscillator Strengths.

    PubMed

    Jacquemin, Denis; Duchemin, Ivan; Blondel, Aymeric; Blase, Xavier

    2016-08-09

    Aiming to assess the accuracy of the oscillator strengths determined at the BSE/GW level, we performed benchmark calculations using three complementary sets of molecules. In the first, we considered ∼80 states in Thiel's set of compounds and compared the BSE/GW oscillator strengths to recently determined ADC(3/2) and CC3 reference values. The second set includes the oscillator strengths of the low-lying states of 80 medium to large dyes for which we have determined CC2/aug-cc-pVTZ values. The third set contains 30 anthraquinones for which experimental oscillator strengths are available. We find that BSE/GW accurately reproduces the trends for all series with excellent correlation coefficients to the benchmark data and generally very small errors. Indeed, for Thiel's sets, the BSE/GW values are more accurate (using CC3 references) than both CC2 and ADC(3/2) values on both absolute and relative scales. For all three sets, BSE/GW errors also tend to be nicely spread with almost equal numbers of positive and negative deviations as compared to reference values.

  20. Dark Energy After GW170817: Dead Ends and the Road Ahead.

    PubMed

    Ezquiaga, Jose María; Zumalacárregui, Miguel

    2017-12-22

    Multimessenger gravitational-wave (GW) astronomy has commenced with the detection of the binary neutron star merger GW170817 and its associated electromagnetic counterparts. The almost coincident observation of both signals places an exquisite bound on the GW speed |c_{g}/c-1|≤5×10^{-16}. We use this result to probe the nature of dark energy (DE), showing that a large class of scalar-tensor theories and DE models are highly disfavored. As an example we consider the covariant Galileon, a cosmologically viable, well motivated gravity theory which predicts a variable GW speed at low redshift. Our results eliminate any late-universe application of these models, as well as their Horndeski and most of their beyond Horndeski generalizations. Three alternatives (and their combinations) emerge as the only possible scalar-tensor DE models: (1) restricting Horndeski's action to its simplest terms, (2) applying a conformal transformation which preserves the causal structure, and (3) compensating the different terms that modify the GW speed (to be robust, the compensation has to be independent on the background on which GWs propagate). Our conclusions extend to any other gravity theory predicting varying c_{g} such as Einstein-Aether, Hořava gravity, Generalized Proca, tensor-vector-scalar gravity (TEVES), and other MOND-like gravities.

  1. Dark Energy After GW170817: Dead Ends and the Road Ahead

    NASA Astrophysics Data System (ADS)

    Ezquiaga, Jose María; Zumalacárregui, Miguel

    2017-12-01

    Multimessenger gravitational-wave (GW) astronomy has commenced with the detection of the binary neutron star merger GW170817 and its associated electromagnetic counterparts. The almost coincident observation of both signals places an exquisite bound on the GW speed |cg/c -1 |≤5 ×10-16 . We use this result to probe the nature of dark energy (DE), showing that a large class of scalar-tensor theories and DE models are highly disfavored. As an example we consider the covariant Galileon, a cosmologically viable, well motivated gravity theory which predicts a variable GW speed at low redshift. Our results eliminate any late-universe application of these models, as well as their Horndeski and most of their beyond Horndeski generalizations. Three alternatives (and their combinations) emerge as the only possible scalar-tensor DE models: (1) restricting Horndeski's action to its simplest terms, (2) applying a conformal transformation which preserves the causal structure, and (3) compensating the different terms that modify the GW speed (to be robust, the compensation has to be independent on the background on which GWs propagate). Our conclusions extend to any other gravity theory predicting varying cg such as Einstein-Aether, Hořava gravity, Generalized Proca, tensor-vector-scalar gravity (TEVES), and other MOND-like gravities.

  2. Searches for all types of binary mergers in the first Advanced LIGO observing run

    NASA Astrophysics Data System (ADS)

    Read, Jocelyn

    2017-01-01

    The first observational run of the Advanced LIGO detectors covered September 12, 2015 to January 19, 2016. In that time, two definitive observations of merging binary black hole systems were made. In particular, the second observation, GW151226, relied on matched-filter searches targeting merging binaries. These searches were also capable of detecting binary mergers from binary neutron stars and from black-hole/neutron-star binaries. In this talk, I will give an overview of LIGO compact binary coalescence searches, in particular focusing on systems that contain neutron stars. I will discuss the sensitive volumes of the first observing run, the astrophysical implications of detections and non-detections, and prospects for future observations

  3. Samurai project: Verifying the consistency of black-hole-binary waveforms for gravitational-wave detection

    NASA Astrophysics Data System (ADS)

    Hannam, Mark; Husa, Sascha; Baker, John G.; Boyle, Michael; Brügmann, Bernd; Chu, Tony; Dorband, Nils; Herrmann, Frank; Hinder, Ian; Kelly, Bernard J.; Kidder, Lawrence E.; Laguna, Pablo; Matthews, Keith D.; van Meter, James R.; Pfeiffer, Harald P.; Pollney, Denis; Reisswig, Christian; Scheel, Mark A.; Shoemaker, Deirdre

    2009-04-01

    We quantify the consistency of numerical-relativity black-hole-binary waveforms for use in gravitational-wave (GW) searches with current and planned ground-based detectors. We compare previously published results for the (ℓ=2,|m|=2) mode of the gravitational waves from an equal-mass nonspinning binary, calculated by five numerical codes. We focus on the 1000M (about six orbits, or 12 GW cycles) before the peak of the GW amplitude and the subsequent ringdown. We find that the phase and amplitude agree within each code’s uncertainty estimates. The mismatch between the (ℓ=2,|m|=2) modes is better than 10-3 for binary masses above 60M⊙ with respect to the Enhanced LIGO detector noise curve, and for masses above 180M⊙ with respect to Advanced LIGO, Virgo, and Advanced Virgo. Between the waveforms with the best agreement, the mismatch is below 2×10-4. We find that the waveforms would be indistinguishable in all ground-based detectors (and for the masses we consider) if detected with a signal-to-noise ratio of less than ≈14, or less than ≈25 in the best cases.

  4. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae.

    PubMed

    Kosowska, Klaudia; Credito, Kim; Pankuch, Glenn A; Hoellman, Dianne; Lin, Gengrong; Clark, Catherine; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C

    2004-11-01

    The MIC at which 50% of strains are inhibited (MIC(50)) and the MIC(90) of GW 773546, a novel macrolide, were 1.0 and 2.0 microg/ml, respectively, for 223 beta-lactamase-positive, beta-lactamase-negative, and beta-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC(50)s and MIC(90)s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 microg/ml, respectively, while the MIC(50) and MIC(90) of azithromycin were 1.0 and 2.0 microg/ml, respectively. The MIC(50) and MIC(90) of erythromycin were 4.0 and 8.0 microg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 microg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 x 10(-9) to 2.2 x 10(-6) with

  5. Activities of Two Novel Macrolides, GW 773546 and GW 708408, Compared with Those of Telithromycin, Erythromycin, Azithromycin, and Clarithromycin against Haemophilus influenzae

    PubMed Central

    Kosowska, Klaudia; Credito, Kim; Pankuch, Glenn A.; Hoellman, Dianne; Lin, Gengrong; Clark, Catherine; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R.; Appelbaum, Peter C.

    2004-01-01

    The MIC at which 50% of strains are inhibited (MIC50) and the MIC90 of GW 773546, a novel macrolide, were 1.0 and 2.0 μg/ml, respectively, for 223 β-lactamase-positive, β-lactamase-negative, and β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC50s and MIC90s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 μg/ml, respectively, while the MIC50 and MIC90 of azithromycin were 1.0 and 2.0 μg/ml, respectively. The MIC50 and MIC90 of erythromycin were 4.0 and 8.0 μg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 μg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 × 10−9 to 2.2 × 10−6 with GW 773546, 1.5 × 10−9 to 6.0

  6. Fermi Observations of the LIGO Event GW170104

    DOE PAGES

    Goldstein, A.; Veres, P.; Burns, E.; ...

    2017-08-28

    We present the Fermi Gamma-ray Burst Monitor (GBM) and Large Area Telescope (LAT) observations of the LIGO binary black hole merger (BBH) event GW170104. No candidate electromagnetic counterparts was detected by either GBM or LAT. A detailed analysis of the GBM and LAT data over timescales from seconds to days covering the LIGO localization region is presented. The resulting ux upper bound from the GBM is (5.2{9.4) 10 -7 erg cm -2 s -1 in the 10-1000 keV range and from the LAT is (0.2{13) 10 -9 erg cm -2 s -1 in the 0.1{1 GeV range. We also describemore » the improvements to our automated pipelines and analysis techniques for searching for and characterizing the potential electromagnetic counterparts for future gravitational wave events from Advanced LIGO/VIRGO.« less

  7. PPARdelta activator GW-501516 has no acute effect on glucose transport in skeletal muscle.

    PubMed

    Terada, Shin; Wicke, Scott; Holloszy, John O; Han, Dong-Ho

    2006-04-01

    It has been reported that treatment of cultured human skeletal muscle myotubes with the peroxisome proliferator-activated receptor-delta (PPARdelta) activator GW-501516 directly stimulates glucose transport and enhances insulin action. Cultured myotubes are minimally responsive to insulin stimulation of glucose transport and are not a good model for studying skeletal muscle glucose transport. The purpose of this study was to evaluate the effect of GW-501516 on glucose transport to determine whether the findings on cultured myotubes have relevance to skeletal muscle. Rat epitrochlearis and soleus muscles were treated for 6 h with 10, 100, or 500 nM GW-501516, followed by measurement of 2-deoxyglucose uptake. GW-501516 had no effect on glucose uptake. There was no effect on insulin sensitivity or responsiveness. Also, in contrast to findings on myotubes, treatment of muscles with GW-501516 did not result in increased phosphorylation or increased expression of AMP-activated protein kinase (AMPK) or p38 mitogen-activated protein kinase (MAPK). Treatment of epitrochlearis muscles with GW-501516 for 24 h induced a threefold increase in uncoupling protein-3 mRNA, providing evidence that the GW-501516 compound that we used gets into and is active in skeletal muscle. In conclusion, our results show that, in contrast to myotubes in culture, skeletal muscle does not respond to GW-501516 with 1) an increase in AMPK or p38 MAPK phosphorylation or expression or 2) direct stimulation of glucose transport or enhanced insulin action.

  8. A dark energy camera search for missing supergiants in the LMC after the advanced LIGO gravitational-wave event GW150914

    DOE PAGES

    Annis, J.

    2016-05-27

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg 2 of the localization area, including 38 deg 2 on the LMC for a missing supergiant search.more » We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates: less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf–Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. Lastly, we discuss how to generalize this search for future very nearby core-collapse candidates.« less

  9. A Dark Energy Camera Search for Missing Supergiants in the LMC After the Advanced LIGO Gravitational-Wave Event GW150914

    NASA Technical Reports Server (NTRS)

    Annis, J.; Soares-Santos, M.; Berger, E.; Brout, D.; Chen, H.; Chornock, R.; Cowperthwaite, P. S.; Diehl, H. T.; Doctor, Z.; Cenko, S. B.

    2016-01-01

    The collapse of a stellar core is expected to produce gravitational waves (GWs), neutrinos, and in most cases a luminous supernova. Sometimes, however, the optical event could be significantly less luminous than a supernova and a direct collapse to a black hole, where the star just disappears, is possible. The GW event GW150914 was detected by the LIGO Virgo Collaboration via a burst analysis that gave localization contours enclosing the Large Magellanic Cloud (LMC). Shortly thereafter, we used DECam to observe 102 deg(exp.2) of the localization area,including 38 deg(exp. 2) on the LMC for a missing supergiant search. We construct a complete catalog of LMC luminous red supergiants, the best candidates to undergo invisible core collapse, and collected catalogs of other candidates:less luminous red supergiants, yellow supergiants, blue supergiants, luminous blue variable stars, and Wolf-Rayet stars. Of the objects in the imaging region, all are recovered in the images. The timescale for stellar disappearance is set by the free-fall time, which is a function of the stellar radius. Our observations at 4 and 13 days after the event result in a search sensitive to objects of up to about 200 solar radii. We conclude that it is unlikely that GW150914 was caused by the core collapse of a relatively compact supergiant in the LMC, consistent with the LIGO Collaboration analyses of the gravitational waveform as best interpreted as a high mass binary black hole merger. We discuss how to generalize this search for future very nearby core-collapse candidates.

  10. PROSPECTS FOR JOINT GRAVITATIONAL WAVE AND SHORT GAMMA-RAY BURST OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, J.; Evans, H.; Fairhurst, S.

    2015-08-10

    We present a detailed evaluation of the expected rate of joint gravitational-wave (GW) and short gamma-ray burst (GRB) observations over the coming years. We begin by evaluating the improvement in distance sensitivity of the GW search that arises from using the GRB observation to restrict the time and sky location of the source. We argue that this gives a 25% increase in sensitivity when compared to an all-sky, all-time search, corresponding to more than double the number of detectable GW signals associated with GRBs. Using this, we present the expected rate of joint observations with the advanced LIGO and Virgomore » instruments, taking into account the expected evolution of the GW detector network. We show that in the early advanced GW detector observing runs, from 2015 to 2017, there is only a small chance of a joint observation. However, as the detectors approach their design sensitivities, there is a good chance of joint observations, provided wide field GRB satellites, such as Fermi and the Inter planetary Network, continue operation. The rate will also depend critically upon the nature of the progenitor, with neutron star-black hole systems observable to greater distances than double neutron star systems. The relative rate of binary mergers and GRBs will depend upon the jet opening angle of GRBs. Consequently, joint observations, as well as accurate measurement of both the GRB rate and binary merger rates, will allow for an improved estimation of the opening angle of GRBs.« less

  11. INTEGRAL Observations of GW170104

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, V.; Ferrigno, C.; Bozzo, E.

    2017-09-10

    We used data from the International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) to set upper limits on the γ -ray and hard X-ray prompt emission associated with the gravitational-wave event GW170104, discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo collaboration. The unique omnidirectional viewing capability of the instruments on board INTEGRAL allowed us to examine the full 90% confidence level localization region of the LIGO trigger. Depending on the particular spectral model assumed and the specific position within this region, the upper limits inferred from the INTEGRAL observations range from F {sub γ} = 1.9 × 10{sup −7} erg cm{supmore » −2} to F {sub γ} = 10{sup −6} erg cm{sup −2} (75 keV–2 MeV energy range). This translates into a ratio between the prompt energy released in γ -rays along the direction to the observer and the gravitational-wave energy of E {sub γ} / E {sub GW} < 2.6 × 10{sup −5}. Using the INTEGRAL results, we cannot confirm the γ -ray proposed counterpart to GW170104 by the Astro—Rivelatore Gamma a Immagini Leggero (AGILE) team with the mini-Calorimeter (MCAL) instrument. The reported flux of the AGILE/MCAL event, E2, is not compatible with the INTEGRAL upper limits within most of the 90% LIGO localization region. There is only a relatively limited portion of the sky where the sensitivity of the INTEGRAL instruments was not optimal and the lowest-allowed fluence estimated for E2 would still be compatible with the INTEGRAL results. This region was also observed independently by Fermi /Gamma-ray Burst Monitor and AstroSAT, from which, as far as we are aware, there are no reports of any significant detection of a prompt high-energy event.« less

  12. Liverpool Telescope follow-up of candidate electromagnetic counterparts during the first run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Copperwheat, C. M.; Steele, I. A.; Piascik, A. S.; Bersier, D.; Bode, M. F.; Collins, C. A.; Darnley, M. J.; Galloway, D. K.; Gomboc, A.; Kobayashi, S.; Lamb, G. P.; Levan, A. J.; Mazzali, P. A.; Mundell, C. G.; Pian, E.; Pollacco, D.; Steeghs, D.; Tanvir, N. R.; Ulaczyk, K.; Wiersema, K.

    2016-11-01

    The first direct detection of gravitational waves was made in 2015 September with the Advanced LIGO detectors. By prior arrangement, a worldwide collaboration of electromagnetic follow-up observers were notified of candidate gravitational wave events during the first science run, and many facilities were engaged in the search for counterparts. Three alerts were issued to the electromagnetic collaboration over the course of the first science run, which lasted from 2015 September to 2016 January. Two of these alerts were associated with the gravitational wave events since named GW150914 and GW151226. In this paper we provide an overview of the Liverpool Telescope contribution to the follow-up campaign over this period. Given the hundreds of square degree uncertainty in the sky position of any gravitational wave event, efficient searching for candidate counterparts required survey telescopes with large (˜degrees) fields of view. The role of the Liverpool Telescope was to provide follow-up classification spectroscopy of any candidates. We followed candidates associated with all three alerts, observing 1, 9 and 17 candidates respectively. We classify the majority of the transients we observed as supernovae. No counterparts were identified, which is in line with expectations given that the events were classified as black hole-black hole mergers. However these searches laid the foundation for similar follow-up campaigns in future gravitational wave detector science runs, in which the detection of neutron star merger events with observable electromagnetic counterparts is much more likely.

  13. Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Shao, Lijing; Sennett, Noah; Buonanno, Alessandra; Kramer, Michael; Wex, Norbert

    2017-10-01

    Pulsar timing and laser-interferometer gravitational-wave (GW) detectors are superb laboratories to study gravity theories in the strong-field regime. Here, we combine these tools to test the mono-scalar-tensor theory of Damour and Esposito-Farèse (DEF), which predicts nonperturbative scalarization phenomena for neutron stars (NSs). First, applying Markov-chain Monte Carlo techniques, we use the absence of dipolar radiation in the pulsar-timing observations of five binary systems composed of a NS and a white dwarf, and eleven equations of state (EOSs) for NSs, to derive the most stringent constraints on the two free parameters of the DEF scalar-tensor theory. Since the binary-pulsar bounds depend on the NS mass and the EOS, we find that current pulsar-timing observations leave scalarization windows, i.e., regions of parameter space where scalarization can still be prominent. Then, we investigate if these scalarization windows could be closed and if pulsar-timing constraints could be improved by laser-interferometer GW detectors, when spontaneous (or dynamical) scalarization sets in during the early (or late) stages of a binary NS (BNS) evolution. For the early inspiral of a BNS carrying constant scalar charge, we employ a Fisher-matrix analysis to show that Advanced LIGO can improve pulsar-timing constraints for some EOSs, and next-generation detectors, such as the Cosmic Explorer and Einstein Telescope, will be able to improve those bounds for all eleven EOSs. Using the late inspiral of a BNS, we estimate that for some of the EOSs under consideration, the onset of dynamical scalarization can happen early enough to improve the constraints on the DEF parameters obtained by combining the five binary pulsars. Thus, in the near future, the complementarity of pulsar timing and direct observations of GWs on the ground will be extremely valuable in probing gravity theories in the strong-field regime.

  14. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    NASA Technical Reports Server (NTRS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; hide

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  15. Mechanical designs and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    NASA Astrophysics Data System (ADS)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio A.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D.; Page, Lyman A.; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L.; Simon, Sara M.; Staggs, Suzanne T.; Thornton, Robert; Ullom, Joel N.; Vavagiakis, Eve M.; Wollack, Edward J.

    2016-07-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modified to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  16. First-principles modeling of localized d states with the GW@LDA+U approach

    NASA Astrophysics Data System (ADS)

    Jiang, Hong; Gomez-Abal, Ricardo I.; Rinke, Patrick; Scheffler, Matthias

    2010-07-01

    First-principles modeling of systems with localized d states is currently a great challenge in condensed-matter physics. Density-functional theory in the standard local-density approximation (LDA) proves to be problematic. This can be partly overcome by including local Hubbard U corrections (LDA+U) but itinerant states are still treated on the LDA level. Many-body perturbation theory in the GW approach offers both a quasiparticle perspective (appropriate for itinerant states) and an exact treatment of exchange (appropriate for localized states), and is therefore promising for these systems. LDA+U has previously been viewed as an approximate GW scheme. We present here a derivation that is simpler and more general, starting from the static Coulomb-hole and screened exchange approximation to the GW self-energy. Following our previous work for f -electron systems [H. Jiang, R. I. Gomez-Abal, P. Rinke, and M. Scheffler, Phys. Rev. Lett. 102, 126403 (2009)10.1103/PhysRevLett.102.126403] we conduct a systematic investigation of the GW method based on LDA+U(GW@LDA+U) , as implemented in our recently developed all-electron GW code FHI-gap (Green’s function with augmented plane waves) for a series of prototypical d -electron systems: (1) ScN with empty d states, (2) ZnS with semicore d states, and (3) late transition-metal oxides (MnO, FeO, CoO, and NiO) with partially occupied d states. We show that for ZnS and ScN, the GW band gaps only weakly depend on U but for the other transition-metal oxides the dependence on U is as strong as in LDA+U . These different trends can be understood in terms of changes in the hybridization and screening. Our work demonstrates that GW@LDA+U with “physical” values of U provides a balanced and accurate description of both localized and itinerant states.

  17. Modeling GW170817 based on numerical relativity and its implications

    NASA Astrophysics Data System (ADS)

    Shibata, Masaru; Fujibayashi, Sho; Hotokezaka, Kenta; Kiuchi, Kenta; Kyutoku, Koutarou; Sekiguchi, Yuichiro; Tanaka, Masaomi

    2017-12-01

    Gravitational-wave observation together with a large number of electromagnetic observations shows that the source of the latest gravitational-wave event, GW170817, detected primarily by advanced LIGO, is the merger of a binary neutron star. We attempt to interpret this observational event based on our results of numerical-relativity simulations performed so far, paying particular attention to the optical and infrared observations. We finally reach a conclusion that this event is described consistently by the presence of a long-lived hypermassive or supramassive neutron star as the merger remnant because (i) significant contamination by lanthanide elements along our line of sight to this source can be avoided by the strong neutrino irradiation from it and (ii) it could play a crucial role in producing an ejecta component of appreciable mass with fast motion in the postmerger phase. We also point out that (I) the neutron-star equation of state has to be sufficiently stiff (i.e., the maximum mass of cold spherical neutron stars, Mmax, has to be appreciably higher than 2 M⊙) in order for a long-lived massive neutron star to be formed as the merger remnant for the binary systems of GW170817, for which the initial total mass is ≳2.73 M⊙ , and (II) the absence of optical counterparts associated with relativistic ejecta suggests a not-extremely-high value of Mmax approximately as 2.15 - 2.25 M⊙ .

  18. Electronic band structures and excitonic properties of delafossites: A GW-BSE study

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; Meng, Weiwei; Yan, Yanfa

    2017-08-01

    We report the band structures and excitonic properties of delafossites CuMO2 (M=Al, Ga, In, Sc, Y, Cr) calculated using the state-of-the-art GW-BSE approach. We evaluate different levels of self-consistency of the GW approximations, namely G0W0, GW0, GW, and QSGW, on the band structures and find that GW0, in general, predicts the band gaps in better agreement with experiments considering the electron-hole effect. For CuCrO2, the HSE wave function is used as the starting point for the perturbative GW0 calculations, since it corrects the band orders wrongly predicted by PBE. The discrepancy about the valence band characters of CuCrO2 is classified based on both HSE and QSGW calculations. The PBE wave functions, already good, are used for other delafossites. All the delafossites are shown to be indirect band gap semiconductors with large exciton binding energies, varying from 0.24 to 0.44 eV, in consistent with experimental findings. The excitation mechanisms are explained by examining the exciton amplitude projections on the band structures. Discrepancies compared with experiments are also addressed. The lowest and strongest exciton, mainly contributed from either Cu 3d → Cu 3p (Al, Ga, In) or Cu 3d → M 3d (M = Sc, Y, Cr) transitions, is always located at the L point of the rhombohedral Brillouin zone.

  19. Quasiparticle self-consistent GW method for the spectral properties of complex materials.

    PubMed

    Bruneval, Fabien; Gatti, Matteo

    2014-01-01

    The GW approximation to the formally exact many-body perturbation theory has been applied successfully to materials for several decades. Since the practical calculations are extremely cumbersome, the GW self-energy is most commonly evaluated using a first-order perturbative approach: This is the so-called G 0 W 0 scheme. However, the G 0 W 0 approximation depends heavily on the mean-field theory that is employed as a basis for the perturbation theory. Recently, a procedure to reach a kind of self-consistency within the GW framework has been proposed. The quasiparticle self-consistent GW (QSGW) approximation retains some positive aspects of a self-consistent approach, but circumvents the intricacies of the complete GW theory, which is inconveniently based on a non-Hermitian and dynamical self-energy. This new scheme allows one to surmount most of the flaws of the usual G 0 W 0 at a moderate calculation cost and at a reasonable implementation burden. In particular, the issues of small band gap semiconductors, of large band gap insulators, and of some transition metal oxides are then cured. The QSGW method broadens the range of materials for which the spectral properties can be predicted with confidence.

  20. GW501516 acts as an efficient PPARα activator in the mouse liver.

    PubMed

    Terada, M; Araki, M; Ashibe, B; Motojima, K

    2011-08-01

    The peroxisome proliferator-activated receptor (PPAR) subtype specificity of GW501516, a well-known PPARδ-specific agonist, was studied by examining its effects on the expression of endogenous genes in primary hepatocytes and the liver of wild-type and PPARα-null mice. GW501516, like the PPARα-specific agonist Wy14,643, induced the expression of several PPAR target genes in a dose-dependent manner but this action was mostly absent in the cells and liver of PPARα-null mice. Results indicated that GW501516 acts as an efficient PPARα activator in the mouse liver.

  1. Targeted numerical simulations of binary black holes for GW170104

    NASA Astrophysics Data System (ADS)

    Healy, J.; Lange, J.; O'Shaughnessy, R.; Lousto, C. O.; Campanelli, M.; Williamson, A. R.; Zlochower, Y.; Calderón Bustillo, J.; Clark, J. A.; Evans, C.; Ferguson, D.; Ghonge, S.; Jani, K.; Khamesra, B.; Laguna, P.; Shoemaker, D. M.; Boyle, M.; García, A.; Hemberger, D. A.; Kidder, L. E.; Kumar, P.; Lovelace, G.; Pfeiffer, H. P.; Scheel, M. A.; Teukolsky, S. A.

    2018-03-01

    In response to LIGO's observation of GW170104, we performed a series of full numerical simulations of binary black holes, each designed to replicate likely realizations of its dynamics and radiation. These simulations have been performed at multiple resolutions and with two independent techniques to solve Einstein's equations. For the nonprecessing and precessing simulations, we demonstrate the two techniques agree mode by mode, at a precision substantially in excess of statistical uncertainties in current LIGO's observations. Conversely, we demonstrate our full numerical solutions contain information which is not accurately captured with the approximate phenomenological models commonly used to infer compact binary parameters. To quantify the impact of these differences on parameter inference for GW170104 specifically, we compare the predictions of our simulations and these approximate models to LIGO's observations of GW170104.

  2. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  3. Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory

    NASA Astrophysics Data System (ADS)

    Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin; Howell, D. Andrew; Vasylyev, Sergiy; Poznanski, Dovi; Zaltzman, Michael; Maoz, Dan; Singer, Leo; Valenti, Stefano; Kasen, Daniel; Barnes, Jennifer; Piran, Tsvi; Fong, Wen-fai

    2017-10-01

    We present an implementation of the Gehrels et al. galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ˜300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely to detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among the 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).

  4. Convergence of quasiparticle self-consistent GW calculations of transition metal monoxides

    NASA Astrophysics Data System (ADS)

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2015-03-01

    We have investigated the electronic structure of the transition metal monoxides MnO, CoO, and NiO in their undistorted rock-salt structure within a fully iterated quasiparticle self-consistent GW (QPscGW) scheme. We have studied the convergence of the QPscGW method, i.e., how the quasiparticle energy eigenvalues and wavefunctions converge as a function of the QPscGW iterations, and compared the converged outputs obtained from different starting wavefunctions. We found that the convergence is slow and that a one-shot G0W0 calculation does not significantly improve the initial eigenvalues and states. In some cases the ``path'' to convergence may go through energy band reordering which cannot be captured by the simple initial unperturbed Hamiltonian. When a fully iterated solution is reached, the converged density of states, band-gaps and magnetic moments of these oxides are found to be only weakly dependent on the choice of the starting wavefunctions and in reasonable agreement with the experiment. National High Magnetic Field Laboratory.

  5. ON THE FERMI -GBM EVENT 0.4 s AFTER GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greiner, J.; Yu, H.-F.; Burgess, J. M.

    In view of the recent report by Connaughton et al., we analyze continuous time-tagged event (TTE) data of Fermi -gamma-ray burst monitor (GBM) around the time of the gravitational-wave event GW 150914. We find that after proper accounting for low-count statistics, the GBM transient event at 0.4 s after GW 150914 is likely not due to an astrophysical source, but consistent with a background fluctuation, removing the tension between the INTEGRAL /ACS non-detection and GBM. Additionally, reanalysis of other short GRBs shows that without proper statistical modeling the fluence of faint events is over-predicted, as verified for some joint GBM–ACSmore » detections of short GRBs. We detail the statistical procedure to correct these biases. As a result, faint short GRBs, verified by ACS detections, with significances in the broadband light curve even smaller than that of the GBM–GW150914 event are recovered as proper non-zero source, while the GBM–GW150914 event is consistent with zero fluence.« less

  6. Tests of General Relativity with GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, M. K.; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Campanelli, M.; Hemberger, D. A.; Kidder, L. E.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific; Virgo Collaborations

    2016-06-01

    The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 1013 km . In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

  7. Possible associated signal with GW150914 in the LIGO data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hao; Jackson, Andrew D., E-mail: liuhao@nbi.dk, E-mail: jackson@nbi.ku.dk

    2016-10-01

    We present a simple method for the identification of weak signals associated with gravitational wave events. Its application reveals a signal with the same time lag as the GW150914 event in the released LIGO strain data with a significance of approximately 3.2σ. This signal starts about 10 minutes before GW150914 and lasts for about 45 minutes. Subsequent tests suggest that this signal is likely to be due to external sources.

  8. CCD detector development projects by the Beamline Technical Support Group at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Lee, John H.; Fernandez, Patricia; Madden, Tim; Molitsky, Michael; Weizeorick, John

    2007-11-01

    This paper will describe two ongoing detector projects being developed by the Beamline Technical Support Group at the Advanced Photon Source (APS) at Argonne National Laboratory (ANL). The first project is the design and construction of two detectors: a single-CCD system and a two-by-two Mosaic CCD camera for Small-Angle X-ray Scattering (SAXS). Both of these systems utilize the Kodak KAF-4320E CCD coupled to fiber optic tapers, custom mechanical hardware, electronics, and software developed at ANL. The second project is a Fast-CCD (FCCD) detector being developed in a collaboration between ANL and Lawrence Berkeley National Laboratory (LBNL). This detector will use ANL-designed readout electronics and a custom LBNL-designed CCD, with 480×480 pixels and 96 outputs, giving very fast readout.

  9. Brownian Thermal Noise in Interferometric Gravitational Wave Detectors and Single Photon Optomechanics

    NASA Astrophysics Data System (ADS)

    Hong, Ting

    The Laser Interferometric Gravitational-Wave Observatory (LIGO) is designed to detect the Gravitational Waves (GW) predicted by Albert Einstein's general theory of relativity. The advanced LIGO project is ongoing an upgrade to increase the detection sensitivity by more than a factor of 10, which will make the events detection a routine occurrence. In addition to using higher power lasers, heavier test mass, and better isolation systems, several new designs and techniques are proposed in the long-term upgrade, such as modifying the optics configuration to reduce the quantum noise, active noise cancellation of the Newtonian noise, optimizing the coating structure, and employing non-Guassian laser beams etc. In the first part of my thesis (Chapters 2 and 3), I apply statistical mechanics and elastostatics to the LIGO coated mirrors, and study the thermal fluctuations that dominate advanced LIGO's most sensitive frequency band from 40 Hz to 200 Hz. In particular, in Chapter 2, I study the so-called coating Brownian noise, fluctuations of mirrors coated with multiple layers of dielectrics due to internal friction. Assuming coating materials to be isotropic and homogeneous, I calculate the cross spectra of Brownian fluctuations in the bulk and shear strains of the coating layers, as well as fluctuations in the height of the coating-substrate interface. The additional phase shifting and back-scattering caused by photo elastic effects are also considered for the first time. In Chapter 3, I study whether it is realistic to adopt higher-order Laguerre-Gauss modes in LIGO, in order to mitigate the effect of mirror thermal noise. We investigate the effect on the detector's contrast defect caused by the mode degeneracy. With both analytical calculation and numerical simulation, we show that with this approach, the detector's susceptibility to mirror figure errors is reduced greatly compared to using the nondegenerate modes, therefore making it unacceptable for LIGO requirements

  10. Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions

    PubMed Central

    Gao, Weiwei; Xia, Weiyi; Gao, Xiang; Zhang, Peihong

    2016-01-01

    Although the GW approximation is recognized as one of the most accurate theories for predicting materials excited states properties, scaling up conventional GW calculations for large systems remains a major challenge. We present a powerful and simple-to-implement method that can drastically accelerate fully converged GW calculations for large systems, enabling fast and accurate quasiparticle calculations for complex materials systems. We demonstrate the performance of this new method by presenting the results for ZnO and MgO supercells. A speed-up factor of nearly two orders of magnitude is achieved for a system containing 256 atoms (1024 valence electrons) with a negligibly small numerical error of ±0.03 eV. Finally, we discuss the application of our method to the GW calculations for 2D materials. PMID:27833140

  11. Speeding up GW Calculations to Meet the Challenge of Large Scale Quasiparticle Predictions.

    PubMed

    Gao, Weiwei; Xia, Weiyi; Gao, Xiang; Zhang, Peihong

    2016-11-11

    Although the GW approximation is recognized as one of the most accurate theories for predicting materials excited states properties, scaling up conventional GW calculations for large systems remains a major challenge. We present a powerful and simple-to-implement method that can drastically accelerate fully converged GW calculations for large systems, enabling fast and accurate quasiparticle calculations for complex materials systems. We demonstrate the performance of this new method by presenting the results for ZnO and MgO supercells. A speed-up factor of nearly two orders of magnitude is achieved for a system containing 256 atoms (1024 valence electrons) with a negligibly small numerical error of ±0.03 eV. Finally, we discuss the application of our method to the GW calculations for 2D materials.

  12. Ground state properties of 3d metals from self-consistent GW approach

    DOE PAGES

    Kutepov, Andrey L.

    2017-10-06

    The self consistent GW approach (scGW) has been applied to calculate the ground state properties (equilibrium Wigner–Seitz radius S WZ and bulk modulus B) of 3d transition metals Sc, Ti, V, Fe, Co, Ni, and Cu. The approach systematically underestimates S WZ with average relative deviation from the experimental data of about 1% and it overestimates the calculated bulk modulus with relative error of about 25%. We show that scGW is superior in accuracy as compared to the local density approximation but it is less accurate than the generalized gradient approach for the materials studied. If compared to the randommore » phase approximation, scGW is slightly less accurate, but its error for 3d metals looks more systematic. Lastly, the systematic nature of the deviation from the experimental data suggests that the next order of the perturbation theory should allow one to reduce the error.« less

  13. Ground state properties of 3d metals from self-consistent GW approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutepov, Andrey L.

    The self consistent GW approach (scGW) has been applied to calculate the ground state properties (equilibrium Wigner–Seitz radius S WZ and bulk modulus B) of 3d transition metals Sc, Ti, V, Fe, Co, Ni, and Cu. The approach systematically underestimates S WZ with average relative deviation from the experimental data of about 1% and it overestimates the calculated bulk modulus with relative error of about 25%. We show that scGW is superior in accuracy as compared to the local density approximation but it is less accurate than the generalized gradient approach for the materials studied. If compared to the randommore » phase approximation, scGW is slightly less accurate, but its error for 3d metals looks more systematic. Lastly, the systematic nature of the deviation from the experimental data suggests that the next order of the perturbation theory should allow one to reduce the error.« less

  14. Characterization of the LIGO detectors during their sixth science run

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavagliá, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; Debreczeni, G.; Degallaix, J.; Deleeuw, E.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Dhurandhar, S.; az, M. Dí; Dietz, A.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endröczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Krishnan, B.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Nanda Kumar, D.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Le Roux, A.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Neri, I.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2015-06-01

    In 2009-2010, the Laser Interferometer Gravitational-Wave Observatory (LIGO) operated together with international partners Virgo and GEO600 as a network to search for gravitational waves (GWs) of astrophysical origin. The sensitivity of these detectors was limited by a combination of noise sources inherent to the instrumental design and its environment, often localized in time or frequency, that couple into the GW readout. Here we review the performance of the LIGO instruments during this epoch, the work done to characterize the detectors and their data, and the effect that transient and continuous noise artefacts have on the sensitivity of LIGO to a variety of astrophysical sources.

  15. Linearized self-consistent GW approach satisfying the Ward identity

    NASA Astrophysics Data System (ADS)

    Kuwahara, Riichi; Ohno, Kaoru

    2014-09-01

    We propose a linearized self-consistent GW approach satisfying the Ward identity. The vertex function derived from the Ward-Takahashi identity in the limit of q =0 and ω -ω'=0 is included in the self-energy and the polarization function as a consequence of the linearization of the quasiparticle equation. Due to the energy dependence of the self-energy, the Hamiltonian is a non-Hermitian operator and quasiparticle states are nonorthonormal and linearly dependent. However, the linearized quasiparticle states recover orthonormality and fulfill the completeness condition. This approach is very efficient, and the resulting quasiparticle energies are greatly improved compared to the nonlinearized self-consistent GW approach, although its computational cost is not much increased. We show the results for atoms and dimers of Li and Na compared with other approaches. We also propose convenient ways to calculate the Luttinger-Ward functional Φ based on a plasmon-pole model and calculate the total energy for the ground state. As a result, we conclude that the linearization improves overall behaviors in the self-consistent GW approach.

  16. A 6-GW NEODYMIUM GLASS LASER,

    DTIC Science & Technology

    A 6-GW neodymium glass laser with a simple phototropic Q-switch is described. The laser consists of three cylindrical rods in series, each 250 mm...operation (50-80 microsec. repetition frequency), the total output was 200 j. The use of a phototropic liquid switch and large-diameter neodymium glass

  17. Tests of General Relativity with GW150914.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, M K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Campanelli, M; Hemberger, D A; Kidder, L E; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-03

    The LIGO detection of GW150914 provides an unprecedented opportunity to study the two-body motion of a compact-object binary in the large-velocity, highly nonlinear regime, and to witness the final merger of the binary and the excitation of uniquely relativistic modes of the gravitational field. We carry out several investigations to determine whether GW150914 is consistent with a binary black-hole merger in general relativity. We find that the final remnant's mass and spin, as determined from the low-frequency (inspiral) and high-frequency (postinspiral) phases of the signal, are mutually consistent with the binary black-hole solution in general relativity. Furthermore, the data following the peak of GW150914 are consistent with the least-damped quasinormal mode inferred from the mass and spin of the remnant black hole. By using waveform models that allow for parametrized general-relativity violations during the inspiral and merger phases, we perform quantitative tests on the gravitational-wave phase in the dynamical regime and we determine the first empirical bounds on several high-order post-Newtonian coefficients. We constrain the graviton Compton wavelength, assuming that gravitons are dispersed in vacuum in the same way as particles with mass, obtaining a 90%-confidence lower bound of 10^{13}  km. In conclusion, within our statistical uncertainties, we find no evidence for violations of general relativity in the genuinely strong-field regime of gravity.

  18. Detection principle of gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Congedo, Giuseppe

    With the first two detections in late 2015, astrophysics has officially entered into the new era of gravitational wave (GW) observations. Since then, much has been going on in the field with a lot of work focusing on the observations and implications for astrophysics and tests of general relativity in the strong regime. However, much less is understood about how gravitational detectors really work at their fundamental level. For decades, the response to incoming signals has been customarily calculated using the very same physical principle, which has proved so successful in the first detections. In this paper, we review the physical principle that is behind such a detection at the very fundamental level, and we try to highlight the peculiar subtleties that make it so hard in practice. We will then mention how detectors are built starting from this fundamental measurement element.

  19. Common-envelope ejection in massive binary stars. Implications for the progenitors of GW150914 and GW151226

    NASA Astrophysics Data System (ADS)

    Kruckow, M. U.; Tauris, T. M.; Langer, N.; Szécsi, D.; Marchant, P.; Podsiadlowski, Ph.

    2016-11-01

    Context. The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. Aims: We analyse the common-envelope (CE) stage of the traditional formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in this process. Methods: We calculated envelope binding energies of donor stars with initial masses between 4 and 115M⊙ for metallicities of Z = ZMilky Way ≃ Z⊙/ 2 and Z = Z⊙/ 50, and derived minimum masses of in-spiralling objects needed to eject these envelopes. Results: In addition to producing double white dwarf and double neutron star binaries, CE evolution may also produce massive BH-BH systems with individual BH component masses of up to 50 - 60M⊙, in particular for donor stars evolved to giants beyond the Hertzsprung gap. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy, and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Conclusions: Massive stars in a wide range of metallicities and with initial masses of up to at least 115M⊙ may shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate- and low-mass stars with degenerate cores. In addition to being dependent on stellar radius, the envelope binding energies and λ-values also depend on the applied convective core-overshooting parameter, whereas these structure parameters are basically independent of metallicity for stars with initial masses below 60M⊙. Metal-rich stars ≳60M⊙ become luminous blue variables and do

  20. Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts

    NASA Astrophysics Data System (ADS)

    Wei, Jun-Jie; Zhang, Bin-Bin; Wu, Xue-Feng; Gao, He; Mészáros, Peter; Zhang, Bing; Dai, Zi-Gao; Zhang, Shuang-Nan; Zhu, Zong-Hong

    2017-11-01

    The coincident detection of a gravitational-wave (GW) event GW170817 with electromagnetic (EM) signals (e.g., a short gamma-ray burst SGRB 170817A or a macronova) from a binary neutron star merger within the nearby galaxy NGC 4933 provides a new, multimessenger test of the weak equivalence principle (WEP), extending the WEP test with GWs and photons. Assuming that the arrival time delay between the GW signals from GW170817 and the photons from SGRB 170817A or the macronova is mainly attributed to the gravitational potential of the Milky Way, we demonstrate that the strict upper limits on the deviation from the WEP are Δγ < 1.4 × 10-3 for GW170817/macronova and Δγ < 5.9 × 10-8 for GW170817/SGRB 170817A. A much more severe constraint on the WEP accuracy can be achieved (~ 0.9 × 10-10) for GW170817/SGRB 170817A when we consider the gravitational potential of the Virgo Cluster, rather than the Milky Way's gravity. This provides the tightest limit to date on the WEP through the relative differential variations of the γ parameter for two different species of particles. Compared with other multimessenger (photons and neutrinos) results, our limit is 7 orders of magnitude tighter than that placed by the neutrinos and photons from supernova 1987A, and is almost as good as or is an improvement of 6 orders of magnitude over the limits obtained by the low-significance neutrinos correlated with GRBs and a blazar flare.

  1. Paradoxical effects of the cannabinoid CB2 receptor agonist GW405833 on rat osteoarthritic knee joint pain.

    PubMed

    Schuelert, N; Zhang, C; Mogg, A J; Broad, L M; Hepburn, D L; Nisenbaum, E S; Johnson, M P; McDougall, J J

    2010-11-01

    The present study examined whether local administration of the cannabinoid-2 (CB(2)) receptor agonist GW405833 could modulate joint nociception in control rat knee joints and in an animal model of osteoarthritis (OA). OA was induced in male Wistar rats by intra-articular injection of sodium monoiodo-acetate with a recovery period of 14 days. Immunohistochemistry was used to evaluate the expression of CB(2) and transient receptor potential vanilloid channel-1 (TRPV1) receptors in the dorsal root ganglion (DRG) and synovial membrane of sham- and sodium mono-iodoacetate (MIA)-treated animals. Electrophysiological recordings were made from knee joint primary afferents in response to rotation of the joint both before and following close intra-arterial injection of different doses of GW405833. The effect of intra-articular GW405833 on joint pain perception was determined by hindlimb incapacitance. An in vitro neuronal release assay was used to see if GW405833 caused release of an inflammatory neuropeptide (calcitonin gene-related peptide - CGRP). CB(2) and TRPV1 receptors were co-localized in DRG neurons and synoviocytes in both sham- and MIA-treated animals. Local application of the GW405833 significantly reduced joint afferent firing rate by up to 31% in control knees. In OA knee joints, however, GW405833 had a pronounced sensitising effect on joint mechanoreceptors. Co-administration of GW405833 with the CB(2) receptor antagonist AM630 or pre-administration of the TRPV1 ion channel antagonist SB366791 attenuated the sensitising effect of GW405833. In the pain studies, intra-articular injection of GW405833 into OA knees augmented hindlimb incapacitance, but had no effect on pain behaviour in saline-injected control joints. GW405833 evoked increased CGRP release via a TRPV1 channel-dependent mechanism. These data indicate that GW405833 reduces the mechanosensitivity of afferent nerve fibres in control joints but causes nociceptive responses in OA joints. The observed

  2. Prospects for joint observations of gravitational waves and gamma rays from merging neutron star binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patricelli, B.; Razzano, M.; Fidecaro, F.

    The detection of the events GW150914 and GW151226, both consistent with the merger of a binary black hole system (BBH), opened the era of gravitational wave (GW) astronomy. Besides BBHs, the most promising GW sources are the coalescences of binary systems formed by two neutron stars or a neutron star and a black hole. These mergers are thought to be connected with short Gamma Ray Bursts (GRBs), therefore combined observations of GW and electromagnetic (EM) signals could definitively probe this association. We present a detailed study on the expectations for joint GW and high-energy EM observations of coalescences of binarymore » systems of neutron stars with Advanced Virgo and LIGO and with the Fermi gamma-ray telescope. To this scope, we designed a dedicated Montecarlo simulation pipeline for the multimessenger emission and detection by GW and gamma-ray instruments, considering the evolution of the GW detector sensitivities. We show that the expected rate of joint detection is low during the Advanced Virgo and Advanced LIGO 2016–2017 run; however, as the interferometers approach their final design sensitivities, the rate will increase by ∼ a factor of ten. Future joint observations will help to constrain the association between short GRBs and binary systems and to solve the puzzle of the progenitors of GWs. Comparison of the joint detection rate with the ones predicted in this paper will help to constrain the geometry of the GRB jet.« less

  3. Study Shows India Can Integrate 175 GW of Renewable Energy into Its

    Science.gov Websites

    Electricity Grid | News | News | NREL Study Shows India Can Integrate 175 GW of Renewable Energy into Its Electricity Grid News Release: Study Shows India Can Integrate 175 GW of Renewable Energy Corporation, Ltd. (POSOCO); and Lawrence Berkeley National Laboratory (LBNL) produced the study Greening the

  4. The cationic small molecule GW4869 is cytotoxic to high phosphatidylserine-expressing myeloma cells.

    PubMed

    Vuckovic, Slavica; Vandyke, Kate; Rickards, David A; McCauley Winter, Padraig; Brown, Simon H J; Mitchell, Todd W; Liu, Jun; Lu, Jun; Askenase, Philip W; Yuriev, Elizabeth; Capuano, Ben; Ramsland, Paul A; Hill, Geoffrey R; Zannettino, Andrew C W; Hutchinson, Andrew T

    2017-05-01

    We have discovered that a small cationic molecule, GW4869, is cytotoxic to a subset of myeloma cell lines and primary myeloma plasma cells. Biochemical analysis revealed that GW4869 binds to anionic phospholipids such as phosphatidylserine - a lipid normally confined to the intracellular side of the cell membrane. However, interestingly, phosphatidylserine was expressed on the surface of all myeloma cell lines tested (n = 12) and 9/15 primary myeloma samples. Notably, the level of phosphatidylserine expression correlated well with sensitivity to GW4869. Inhibition of cell surface phosphatidylserine exposure with brefeldin A resulted in resistance to GW4869. Finally, GW4869 was shown to delay the growth of phosphatidylserine-high myeloma cells in vivo. To the best of our knowledge, this is the first example of using a small molecule to target phosphatidylserine on malignant cells. This study may provide the rationale for the development of phosphatidylserine-targeting small molecules for the treatment of surface phosphatidylserine-expressing cancers. © 2017 John Wiley & Sons Ltd.

  5. Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817

    DOE PAGES

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; ...

    2017-12-01

    The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range betweenmore » $${M}_{\\mathrm{ej}}={10}^{-3}-{10}^{-2}\\,{M}_{\\odot }$$ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.« less

  6. Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Bergmann, G.; Bernuzzi, S.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Dietrich, T.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kastaun, W.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kawaguchi, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Liu, X.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range between {M}{ej}={10}-3-{10}-2 {M}⊙ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.

  7. Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.

    The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution (without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The distributions of dynamical ejecta mass range betweenmore » $${M}_{\\mathrm{ej}}={10}^{-3}-{10}^{-2}\\,{M}_{\\odot }$$ for various equations of state, assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if ≳10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the Milky Way.« less

  8. Recent Progress in GW-based Methods for Excited-State Calculations of Reduced Dimensional Systems

    NASA Astrophysics Data System (ADS)

    da Jornada, Felipe H.

    2015-03-01

    Ab initio calculations of excited-state phenomena within the GW and GW-Bethe-Salpeter equation (GW-BSE) approaches allow one to accurately study the electronic and optical properties of various materials, including systems with reduced dimensionality. However, several challenges arise when dealing with complicated nanostructures where the electronic screening is strongly spatially and directionally dependent. In this talk, we discuss some recent developments to address these issues. First, we turn to the slow convergence of quasiparticle energies and exciton binding energies with respect to k-point sampling. This is very effectively dealt with using a new hybrid sampling scheme, which results in savings of several orders of magnitude in computation time. A new ab initio method is also developed to incorporate substrate screening into GW and GW-BSE calculations. These two methods have been applied to mono- and few-layer MoSe2, and yielded strong environmental dependent behaviors in good agreement with experiment. Other issues that arise in confined systems and materials with reduced dimensionality, such as the effect of the Tamm-Dancoff approximation to GW-BSE, and the calculation of non-radiative exciton lifetime, are also addressed. These developments have been efficiently implemented and successfully applied to real systems in an ab initio framework using the BerkeleyGW package. I would like to acknowledge collaborations with Diana Y. Qiu, Steven G. Louie, Meiyue Shao, Chao Yang, and the experimental groups of M. Crommie and F. Wang. This work was supported by Department of Energy under Contract No. DE-AC02-05CH11231 and by National Science Foundation under Grant No. DMR10-1006184.

  9. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bejger, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fenyvesi, E.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gehrels, N.; Gemme, G.; Geng, P.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hamilton, H.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jian, L.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chi-Woong; Kim, Chunglee; Kim, J.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kumar, R.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Lewis, J. B.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Nedkova, K.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O. E. S.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; Vallisneri, M.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Hemberger, D.; Kidder, L. E.; Lovelace, G.; Ossokine, S.; Scheel, M.; Szilagyi, B.; Teukolsky, S.; LIGO Scientific Collaboration; VIRGO Collaboration

    2016-06-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5 σ . The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3. 4-0.9+0.7×10-22 . The inferred source-frame initial black hole masses are 14.2-3.7+8.3 M⊙ and 7. 5-2.3+2.3 M⊙, and the final black hole mass is 20.8-1.7+6.1 M⊙. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 44 0-190+180 Mpc corresponding to a redshift of 0.0 9-0.04+0.03. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  10. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, Jordan B.; hide

    2016-01-01

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5(sigma). The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4(+0.7/-0.9) x 10(exp -22). The inferred source-frame initial black hole masses are 14.2(+8.3/-3.7 Stellar Mass and 7.5(+2.3/-2.3) Stellar Mass, and the final black hole mass is 20.8(+6.1/-1.7) Stellar Mass. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440(+180/-190) Mpc corresponding to a redshift of 0.090(+.030/-0.04). All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  11. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bejger, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Daw, E J; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Girolamo, T; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fenyvesi, E; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gehrels, N; Gemme, G; Geng, P; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hamilton, H; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jian, L; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kapadia, S J; Karki, S; Karvinen, K S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, Chi-Woong; Kim, Chunglee; Kim, J; Kim, K; Kim, N; Kim, W; Kim, Y-M; Kimbrell, S J; King, E J; King, P J; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kumar, R; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Lewis, J B; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magaña Zertuche, L; Magee, R M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Nedkova, K; Nelemans, G; Nelson, T J N; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O E S; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomlinson, C; Tonelli, M; Tornasi, Z; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; Vallisneri, M; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Hemberger, D; Kidder, L E; Lovelace, G; Ossokine, S; Scheel, M; Szilagyi, B; Teukolsky, S

    2016-06-17

    We report the observation of a gravitational-wave signal produced by the coalescence of two stellar-mass black holes. The signal, GW151226, was observed by the twin detectors of the Laser Interferometer Gravitational-Wave Observatory (LIGO) on December 26, 2015 at 03:38:53 UTC. The signal was initially identified within 70 s by an online matched-filter search targeting binary coalescences. Subsequent off-line analyses recovered GW151226 with a network signal-to-noise ratio of 13 and a significance greater than 5σ. The signal persisted in the LIGO frequency band for approximately 1 s, increasing in frequency and amplitude over about 55 cycles from 35 to 450 Hz, and reached a peak gravitational strain of 3.4_{-0.9}^{+0.7}×10^{-22}. The inferred source-frame initial black hole masses are 14.2_{-3.7}^{+8.3}M_{⊙} and 7.5_{-2.3}^{+2.3}M_{⊙}, and the final black hole mass is 20.8_{-1.7}^{+6.1}M_{⊙}. We find that at least one of the component black holes has spin greater than 0.2. This source is located at a luminosity distance of 440_{-190}^{+180}  Mpc corresponding to a redshift of 0.09_{-0.04}^{+0.03}. All uncertainties define a 90% credible interval. This second gravitational-wave observation provides improved constraints on stellar populations and on deviations from general relativity.

  12. Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arcavi, Iair; McCully, Curtis; Hosseinzadeh, Griffin

    We present an implementation of the Gehrels et al. galaxy-targeted strategy for gravitational-wave (GW) follow-up using the Las Cumbres Observatory global network of telescopes. We use the Galaxy List for the Advanced Detector Era (GLADE) galaxy catalog, which we show is complete (with respect to a Schechter function) out to ∼300 Mpc for galaxies brighter than the median Schechter function galaxy luminosity. We use a prioritization algorithm to select the galaxies with the highest chance of containing the counterpart given their luminosity, their position, and their distance relative to a GW localization, and in which we are most likely tomore » detect a counterpart given its expected brightness compared to the limiting magnitude of our telescopes. This algorithm can be easily adapted to any expected transient parameters and telescopes. We implemented this strategy during the second Advanced Detector Observing Run (O2) and followed the black hole merger GW170814 and the neutron star merger GW170817. For the latter, we identified an optical kilonova/macronova counterpart thanks to our algorithm selecting the correct host galaxy fifth in its ranked list among the 182 galaxies we identified in the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo localization. This also allowed us to obtain some of the earliest observations of the first optical transient ever triggered by a GW detection (as presented in a companion paper).« less

  13. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    NASA Astrophysics Data System (ADS)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  14. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, J. C.; Barbosa, A. F.; Lima, H. P. Jr.

    2010-03-30

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in amore » first step, to use the measured neutrino event rate to monitor the on--off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.« less

  15. The Angra Project: Monitoring Nuclear Reactors with Antineutrino Detectors

    NASA Astrophysics Data System (ADS)

    Anjos, J. C.; Barbosa, A. F.; Bezerra, T. J. C.; Chimenti, P.; Gonzalez, L. F. G.; Kemp, E.; de Oliveira, M. A. Leigui; Lima, H. P.; Lima, R. M.; Nunokawa, H.

    2010-03-01

    We present the status of the Angra Neutrino project, describing the development of an antineutrino detector aimed at monitoring nuclear reactor activity. The experiment will take place at the Brazilian nuclear power plant located in Angra dos Reis. The Angra II reactor, with 4 GW of thermal power, will be used as a source of antineutrinos. A water Cherenkov detector will be placed above ground in a commercial container outside the reactor containment, about 30 m from the reactor core. With a detector of one ton scale a few thousand antineutrino interactions per day are expected. We intend, in a first step, to use the measured neutrino event rate to monitor the on—off status and the thermal power delivered by the reactor. In addition to the safeguards issues the project will provide an alternative tool to have an independent measurement of the reactor power.

  16. Deployment and Simulation of the Astrod-Gw Formation

    NASA Astrophysics Data System (ADS)

    Wu, An-Ming; Ni, Wei-Tou

    2013-01-01

    Constellation or formation flying is a common concept in space Gravitational Wave (GW) mission proposals for the required interferometry implementation. The spacecraft of most of these mission proposals go to deep space and many have Earthlike orbits around the Sun. Astrodynamical Space Test of Relativity using Optical Devices optimized for Gravitation Wave detection (ASTROD-GW), Big Bang Observer (BBO) and DECIGO have spacecraft distributed in Earthlike orbits in formation. The deployment of orbit formation is an important issue for these missions. ASTROD-GW is to focus on the goal of detection of GWs. The mission orbits of the three spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The three spacecraft range interferometrically with one another with arm length about 260 million kilometers with the scientific goals including detection of GWs from Massive Black Holes (MBH) and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of MBH with galaxies. In this paper, we review the formation flying for fundamental physics missions, design the preliminary transfer orbits of the ASTROD-GW spacecraft from the separations of the launch vehicles to the mission orbits, and simulate the arm lengths of the triangular formation. From our study, the optimal delta-Vs and propellant ratios of the transfer orbits could be within about 2.5 km/s and 0.55, respectively. From the simulation of the formation for 10 years, the arm lengths of the formation vary in the range 1.73210 ± 0.00015 AU with the arm length differences varying in the range ±0.00025 AU for formation with 1° inclination to the ecliptic plane. This meets the measurement requirements. Further studies on the optimizations of deployment and orbit configurations for a period of 20 years and with inclinations between 1° to 3

  17. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  18. Radio Follow-Up of Gravitational-Wave Triggers during Advanced LIGO 01

    DOE PAGES

    Palliyaguru, N. T.; Corsi, Alessandra; Kasliwal, M. M.; ...

    2016-09-28

    We present radio follow-up observations carried out with the Karl G. Jansky Very Large Array during the first observing run (O1) of the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO). A total of three gravitational-wave triggers were followed-up during the ≈4 months of O1, from 2015 September to 2016 January. Two of these triggers, GW150914 and GW151226, are binary black hole (BH) merger events of high significance. A third trigger, G194575, was subsequently declared as an event of no interest (i.e., a false alarm). Our observations targeted selected optical transients identified by the intermediate Palomar Transient Factory in the Advanced LIGOmore » error regions of the three triggers, and a limited region of the gravitational-wave localization area of G194575 not accessible to optical telescopes due to Sun constraints, where a possible high-energy transient was identified. No plausible radio counterparts to GW150914 and GW151226 were found, in agreement with expectations for binary BH mergers. We show that combining optical and radio observations is key to identifying contaminating radio sources that may be found in the follow-up of gravitational-wave triggers, such as emission associated with star formation and active galactic nuclei. We discuss our results in the context of the theoretical predictions for radio counterparts to gravitational-wave transients, and describe our future plans for the radio follow-up of Advanced LIGO (and Virgo) triggers.« less

  19. GRB 111005A at z = 0.0133 and the Prospect of Establishing Long-Short GRB/GW Association

    NASA Astrophysics Data System (ADS)

    Wang, Yuan-Zhu; Huang, Yong-Jia; Liang, Yun-Feng; Li, Xiang; Jin, Zhi-Ping; Zhang, Fu-Wen; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2017-12-01

    GRB 111005A, a long-duration gamma-ray burst (GRB) that occurred within a metal-rich environment that lacks massive stars with {M}{ZAMS}≥slant 15 {M}⊙ , is not coincident with supernova emission down to a stringent limit and thus should be classified as a “long-short” GRB (lsGRB; also known as an SN-less long GRB or hybrid GRB), like GRB 060505 and GRB 060614. In this work, we show that in the neutron star merger model the non-detection of the optical/infrared emission of GRB 111005A requires sub-relativistic neutron-rich ejecta with a mass of ≤slant 0.01 {M}⊙ , which is (significantly) less massive than that of GRB 130603B, GRB 060614, GRB 050709, and GRB 170817A. The lsGRBs are found to have a high rate density and the neutron star merger origin model can be unambiguously tested by the joint observations of the second-generation gravitational-wave (GW) detectors and the full-sky gamma-ray monitors such as Fermi-GBM and the proposed GECAM. If no lsGRB/GW association is observed in the 2020s, alternative scenarios have to be systematically investigated. With the detailed environmental information achievable for the nearby events, a novel kind of merger or explosion origin may be identified.

  20. Large Scale GW Calculations on the Cori System

    NASA Astrophysics Data System (ADS)

    Deslippe, Jack; Del Ben, Mauro; da Jornada, Felipe; Canning, Andrew; Louie, Steven

    The NERSC Cori system, powered by 9000+ Intel Xeon-Phi processors, represents one of the largest HPC systems for open-science in the United States and the world. We discuss the optimization of the GW methodology for this system, including both node level and system-scale optimizations. We highlight multiple large scale (thousands of atoms) case studies and discuss both absolute application performance and comparison to calculations on more traditional HPC architectures. We find that the GW method is particularly well suited for many-core architectures due to the ability to exploit a large amount of parallelism across many layers of the system. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program.

  1. Visualization of a Numerical Simulation of GW 150914

    NASA Astrophysics Data System (ADS)

    Rosato, Nicole; Healy, James; Lousto, Carlos

    2017-01-01

    We present an analysis of a simulation displaying apparent horizon curvature and radiation emitted from a binary black hole system modeling GW-150914 during merger. The simulation follows the system from seven orbits prior to merger to the resultant Kerr black hole. Horizon curvature was calculated using a mean curvature flow algorithm. Radiation data was visualized via the Ψ4 component of the Weyl scalars, which were determined using a numerical quasi-Kinnersley method. We also present a comparative study of the differences in quasi-Kinnersley and PsiKadelia tetrads to construct Ψ4. The analysis is displayed on a movie generated from these numerical results, and was done using VisIt software from Lawrence Livermore National Laboratory. This simulation and analysis gives more insight into the merger of the system GW 150914.

  2. Effects of the peroxisome proliferator-activated receptor (PPAR)-δ agonist GW501516 on bone and muscle in ovariectomized rats.

    PubMed

    Mosti, M P; Stunes, A K; Ericsson, M; Pullisaar, H; Reseland, J E; Shabestari, M; Eriksen, E F; Syversen, U

    2014-06-01

    Estrogen deficiency promotes bone loss and skeletal muscle dysfunction. Peroxisome proliferator-activated receptors (PPARs) have 3 subtypes (α, δ, and γ). PPARγ agonists induce bone loss, whereas PPARα agonists increase bone mass. Although PPARδ agonists are known to influence skeletal muscle metabolism, the skeletal effects are unsettled. This study investigated the musculoskeletal effects of the PPARδ agonist GW501516 in ovariectomized (OVX) rats. Female Sprague Dawley rats, 12 weeks of age, were allocated to a sham-operated group and 3 OVX groups; high-dose GW501516 (OVX-GW5), low-dose GW501516 (OVX-GW1), and a control group (OVX-CTR), respectively (n = 12 per group). Animals received GW501516 or vehicle (methylcellulose) daily for 4 months by gavage. Bone mineral density (BMD) was assessed by dual x-ray absorptiometry at the femur, spine, and whole body. Bone microarchitecture at the proximal tibia was assessed by microcomputed tomography, and dynamic histomorphometry was performed. Quadriceps muscle morphology and the relative expression of mitochondrial proteins were analyzed. Bone metabolism markers and metabolic markers were measured in plasma. After 4 months, the OVX-GW5 group displayed lower femoral BMD than OVX-CTR. Trabecular separation was higher in the GW-treated groups, compared with OVX-CTR. The OVX-GW5 group also exhibited lower cortical area fraction and a higher structure model index than OVX-CTR. These effects coincided with impaired bone formation in both GW groups. The OVX-GW5 group displayed elevated triglyceride levels and reduced adiponectin levels, whereas no effects on muscle morphology or mitochondrial gene expression appeared. In summary, the PPARδ agonist GW501516 negatively affected bone properties in OVX rats, whereas no effects were detected in skeletal muscle.

  3. Techniques for Targeted Fermi-GBM Follow-Up of Gravitational-Wave Events

    NASA Technical Reports Server (NTRS)

    Blackburn, L.; Camp, J.; Briggs, M. S.; Connaughton, V.; Jenke, P.; Christensen, N.; Veitch, J.

    2012-01-01

    The Advanced LIGO and Advanced Virgo ground-based gravitational-wave (GW) detectors are projected to come online 2015 2016, reaching a final sensitivity sufficient to observe dozens of binary neutron star mergers per year by 2018. We present a fully-automated, targeted search strategy for prompt gamma-ray counterparts in offline Fermi-GBM data. The multi-detector method makes use of a detailed model response of the instrument, and benefits from time and sky location information derived from the gravitational-wave signal.

  4. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality.

    PubMed

    Wang, Shaokui; Li, Shan; Liu, Qian; Wu, Kun; Zhang, Jianqing; Wang, Shuansuo; Wang, Yi; Chen, Xiangbin; Zhang, Yi; Gao, Caixia; Wang, Feng; Huang, Haixiang; Fu, Xiangdong

    2015-08-01

    The deployment of heterosis in the form of hybrid rice varieties has boosted grain yield, but grain quality improvement still remains a challenge. Here we show that a quantitative trait locus for rice grain quality, qGW7, reflects allelic variation of GW7, a gene encoding a TONNEAU1-recruiting motif protein with similarity to C-terminal motifs of the human centrosomal protein CAP350. Upregulation of GW7 expression was correlated with the production of more slender grains, as a result of increased cell division in the longitudinal direction and decreased cell division in the transverse direction. OsSPL16 (GW8), an SBP-domain transcription factor that regulates grain width, bound directly to the GW7 promoter and repressed its expression. The presence of a semidominant GW7(TFA) allele from tropical japonica rice was associated with higher grain quality without the yield penalty imposed by the Basmati gw8 allele. Manipulation of the OsSPL16-GW7 module thus represents a new strategy to simultaneously improve rice yield and grain quality.

  5. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, Sourav; Rodriguez, Carl L.; Kalogera, Vicky

    2017-02-20

    Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically,more » we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.« less

  6. Subaru Hyper Suprime-Cam Survey for an optical counterpart of GW170817

    NASA Astrophysics Data System (ADS)

    Tominaga, Nozomu; Tanaka, Masaomi; Morokuma, Tomoki; Utsumi, Yousuke; Yamaguchi, Masaki S.; Yasuda, Naoki; Tanaka, Masayuki; Yoshida, Michitoshi; Fujiyoshi, Takuya; Furusawa, Hisanori; Kawabata, Koji S.; Lee, Chien-Hsiu; Motohara, Kentaro; Ohsawa, Ryou; Ohta, Kouji; Terai, Tsuyoshi; Abe, Fumio; Aoki, Wako; Asakura, Yuichiro; Barway, Sudhanshu; Bond, Ian A.; Fujisawa, Kenta; Honda, Satoshi; Ioka, Kunihito; Itoh, Youichi; Kawai, Nobuyuki; Kim, Ji Hoon; Koshimoto, Naoki; Matsubayashi, Kazuya; Miyazaki, Shota; Saito, Tomoki; Sekiguchi, Yuichiro; Sumi, Takahiro; Tristram, Paul J.

    2018-03-01

    We perform a z-band survey for an optical counterpart of the binary neutron star coalescence GW170817 with Subaru/Hyper Suprime-Cam. Our untargeted transient search covers 23.6 deg2 corresponding to the 56.6% credible region of GW170817 and reaches the 50% completeness magnitude of 20.6 mag on average. As a result, we find 60 candidate extragalactic transients, including J-GEM17btc (also known as SSS17a/DLT17ck). While J-GEM17btc is associated with NGC 4993, which is firmly located inside the 3D skymap of GW170817, the other 59 candidates do not have distance information in the GLADE v2 catalog or NASA/IPAC Extragalactic Database. Among 59 of the candidates, 58 are located at the center of extended objects in the Pan-STARRS1 catalog, while one candidate has an offset. We present location, z-band apparent magnitude, and time variability of the candidates and evaluate the probabilities that they are located within the 3D skymap of GW170817. The probability for J-GEM17btc is 64%, which is much higher than for the other 59 candidates (9.3 × 10-3-2.1 × 10-1%). Furthermore, the possibility that at least one of the other 59 candidates is located within the 3D skymap is only 3.2%. Therefore, we conclude that J-GEM17btc is the most likely and distinguished candidate to be the optical counterpart of GW170817.

  7. A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice.

    PubMed

    Chen, Wei; Gao, Rong; Xie, Xinni; Zheng, Zhibing; Li, Haijing; Li, Song; Dong, Fangting; Wang, Lili

    2015-05-06

    Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization.

  8. A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice

    PubMed Central

    Chen, Wei; Gao, Rong; Xie, Xinni; Zheng, Zhibing; Li, Haijing; Li, Song; Dong, Fangting; Wang, Lili

    2015-01-01

    Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization. PMID:25943561

  9. Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Hu, Lei; Wu, Xuefeng; Andreoni, Igor; Ashley, Michael C. B.; Cooke, Jeff; Cui, Xiangqun; Du, Fujia; Dai, Zigao; Gu, Bozhong; Hu, Yi; Lu, Haiping; Li, Xiaoyan; Li, Zhengyang; Liang, Ensi; Liu, Liangduan; Ma, Bin; Shang, Zhaohui; Sun, Tianrui; Suntzeff, N. B.; Tao, Charling; Udden, Syed A.; Wang, Lifan; Wang, Xiaofeng; Wen, Haikun; Xiao, Di; Su, Jin; Yang, Ji; Yang, Shihai; Yuan, Xiangyan; Zhou, Hongyan; Zhang, Hui; Zhou, Jilin; Zhu, Zonghong

    2017-10-01

    The LIGO detection of gravitational waves (GW) from merging black holes in 2015 marked the beginning of a new era in observational astronomy. The detection of an electromagnetic signal from a GW source is the critical next step to explore in detail the physics involved. The Antarctic Survey Telescopes (AST3), located at Dome A, Antarctica, is uniquely situated for rapid response time-domain astronomy with its continuous night-time coverage during the austral winter. We report optical observations of the GW source (GW 170817) in the nearby galaxy NGC 4993 using AST3. The data show a rapidly fading transient at around 1 day after the GW trigger, with the i-band magnitude declining from 17.23±0.13 magnitude to 17.72±0.09 magnitude in ˜ 0.8 hour. The brightness and time evolution of the optical transient associated with GW 170817 are broadly consistent with the predictions of models involving merging binary neutron stars. We infer from our data that the merging process ejected about ˜ 10^{-2} solar mass of radioactive material at a speed of up to 30% the speed of light.

  10. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Berger, E.; Fong, W.; Guidorzi, C.; Alexander, K. D.; Metzger, B. D.; Blanchard, P. K.; Cowperthwaite, P. S.; Chornock, R.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Annis, J.; Brown, D. A.; Chen, H.; Doctor, Z.; Frieman, J. A.; Holz, D. E.; Sako, M.; Soares-Santos, M.

    2017-10-01

    We report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory (CXO) at t≈ 2.3 days post-merger reveal no significant emission, with {L}x≲ 3.2× {10}38 {erg} {{{s}}}-1 (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching {L}x≈ 9× {10}38 {erg} {{{s}}}-1 at ≈ 15.1 days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy {E}k˜ {10}49-50 {erg}, viewed off-axis with {θ }{obs}˜ 20^\\circ {--}40^\\circ . Our models favor a circumbinary density n˜ {10}-4{--}{10}-2 {{cm}}-3, depending on the value of the microphysical parameter {ɛ }B={10}-4{--}{10}-2. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at t≳ 100 days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on {θ }{obs} are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.

  11. Advanced energy-resolving imaging detectors for applications at pulsed neutron sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feller, Bruce; White, Brian

    NOVA Scientific herein reports results from the DOE SBIR Phase IIB project. We continue to move forward to enhance the effectiveness of very high spatial and timing resolution MCP position-sensitive detectors into the epithermal or “above-thermal” neutron energy range – where NOVA’s neutron-sensitive NeuViewTM MCPs are already widely acknowledged as highly effective for cold and thermal neutron energies. As a result of these developments, these increasingly accepted neutron detection devices will be better able to perform energy-resolved neutron detection and imaging at the growing number of highly advanced pulsed neutron sources internationally, detecting individual neutrons with a spatial resolution ofmore » down to ~25 µm, and able to uniquely provide simultaneous ultrafast timing resolution of ~100 ns, for cold, thermal, and now into the epithermal range. The pulsed structure of the new and more powerful neutron beams, enables measurement of neutron energies through the time-of-flight (TOF) method. Moreover, these recent new pulsed sources have increasingly made available intense fluxes of epithermal neutrons - something previously unavailable with reactor-based neutron sources. The unique capability of MCP detectors to measure the energy of each detected neutron provides a capability to conduct experiments across a very broad neutron energy range simultaneously – encompassing cold up into the epithermal range of energies. Simultaneous detection of multiple Bragg edges, for example, can enable highly useful measurements in crystallographic structure, strain, phase, texture, and compositional distribution. Enhancement of the MCP epithermal neutron response resulting from this program, combined with an earlier and separate DOE-funded SBIR/STTR program to commercialize larger area (>100 cm 2) format cold and thermal neutron-sensitive MCP imaging detectors, has potential utility in being employed as large array detectors, replacing what is currently

  12. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, W.; Berger, E.; Blanchard, P. K.

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  13. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-Ray Bursts

    DOE PAGES

    Fong, W.; Berger, E.; Blanchard, P. K.; ...

    2017-10-16

    Here, we present a comprehensive comparison of the properties of the radio through X-ray counterpart of GW170817 and the properties of short-duration gamma-ray bursts (GRBs). For this effort, we utilize a sample of 36 short GRBs spanning a redshift range ofmore » $$z \\approx 0.12-2.6$$ discovered over 2004-2017. We find that the counterpart to GW170817 has an isotropic-equivalent luminosity that is $$\\approx 3000$$ times less than the median value of on-axis short GRB X-ray afterglows, and $$\\gtrsim10^{4}$$ times less than that for detected short GRB radio afterglows. Moreover, the allowed jet energies and particle densities inferred from the radio and X-ray counterparts to GW170817 and on-axis short GRB afterglows are remarkably similar, suggesting that viewing angle effects are the dominant, and perhaps only, difference in their observed radio and X-ray behavior. From comparison to previous claimed kilonovae following short GRBs, we find that the optical and near-IR counterpart to GW170817 is comparatively under-luminous by a factor of $$\\approx 3-5$$, indicating a range of kilonova luminosities and timescales. A comparison of the optical limits following short GRBs on $$\\lesssim 1$$ day timescales also rules out a "blue" kilonova of comparable optical isotropic-equivalent luminosity in one previous short GRB. Finally, we investigate the host galaxy of GW170817, NGC4993, in the context of short GRB host galaxy stellar population properties. We find that NGC4993 is superlative in terms of its large luminosity, old stellar population age, and low star formation rate compared to previous short GRB hosts. Additional events within the Advanced LIGO/VIRGO volume will be crucial in delineating the properties of the host galaxies of NS-NS mergers, and connecting them to their cosmological counterparts.« less

  14. Highly selective peroxisome proliferator-activated receptor δ (PPARδ) modulator demonstrates improved safety profile compared to GW501516.

    PubMed

    Lagu, Bharat; Kluge, Arthur F; Goddeeris, Matthew M; Tozzo, Effie; Fredenburg, Ross A; Chellur, Shekar; Senaiar, Ramesh S; Jaleel, Mahaboobi; Babu, D Ravi Krishna; Tiwari, Nirbhay K; Takahashi, Taisuke; Patane, Michael A

    2017-11-04

    Compound 1 regulates significantly fewer genes than the PPARδ modulator, GW501516. Both compounds are efficacious in a thermal injury model of muscle regeneration. The restricted gene profile of 1 relative to GW501516 suggests that 1 may be pharmacoequivalent to GW501516 with fewer PPAR-related safety concerns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. IMPLICATIONS OF THE TENTATIVE ASSOCIATION BETWEEN GW150914 AND A FERMI -GBM TRANSIENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xiang; Yuan, Qiang; Jin, Zhi-Ping

    2016-08-10

    The merger-driven gamma-ray bursts (GRBs) and their associated gravitational-wave (GW) radiation, if both are successfully detected, have some far-reaching implications, including, for instance: (i) the statistical comparison of the physical properties of the short/long-short GRBs with and without GW detection can test the general origin model; (ii) revealing the physical processes taking place at the central engine; (iii) measuring the velocity of the gravitational wave directly/accurately. In this work, we discuss these implications in the case of a possible association of GW150914/Gamma-ray Burst Monitor (GBM) transient 150914. We compared GBM transient 150914 with other SGRBs and found that such anmore » event may be a distinct outlier in some statistical diagrams, possibly due to its specific binary black hole merger origin. However, the presence of a “new” group of SGRBs with “unusual” physical parameters is also possible. If the outflow of GBM transient 150914 was launched by the accretion onto the nascent black hole, the magnetic activity rather than the neutrino process is likely responsible for the energy extraction, and the accretion disk mass is estimated to be ∼10{sup −5} M {sub ⊙}. The GW150914/GBM transient 150914 association, if confirmed, would provide the first opportunity to directly measure the GW velocity, and its departure from the speed of the light should be within a factor of ∼10{sup −17}.« less

  16. Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

    NASA Astrophysics Data System (ADS)

    Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste

    2014-07-01

    We report in this paper decisive advance on the detector development for the astronomical applications that require very fast operation. Since the CCD220 and OCAM2 major success, new detector developments started in Europe either for visible and IR wavelengths. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is ongoing. Another major AO wavefront sensing detector development concerns IR detectors based on Avalanche Photodiode (e- APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 320x255 8 outputs 30 microns IR array, sensitive from 0.4 to 3 microns, with less than 2 e readout noise at 1600 fps. A rectangular window can also be programmed to speed up even more the frame rate when the full frame readout is not required. The high QE response, in the range of 70%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed in the frame of this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 1600 fps has been measured with a 3 microns wavelength cut-off chip and a multiplication gain of 14 obtained with a limited photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations investigations using centroiding and FFT measurements were performed proving that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this

  17. β-Decay Studies of r-Process Nuclei Using the Advanced Implantation Detector Array (AIDA)

    NASA Astrophysics Data System (ADS)

    Griffin, C. J.; Davinson, T.; Estrade, A.; Braga, D.; Burrows, I.; Coleman-Smith, P. J.; Grahn, T.; Grant, A.; Harkness-Brennan, L. J.; Kiss, G.; Kogimtzis, M.; Lazarus, I. H.; Letts, S. C.; Liu, Z.; Lorusso, G.; Matsui, K.; Nishimura, S.; Page, R. D.; Prydderch, M.; Phong, V. H.; Pucknell, V. F. E.; Rinta-Antila, S.; Roberts, O. J.; Seddon, D. A.; Simpson, J.; Thomas, S. L.; Woods, P. J.

    Thought to produce around half of all isotopes heavier than iron, the r-process is a key mechanism for nucleosynthesis. However, a complete description of the r-process is still lacking and many unknowns remain. Experimental determination of β-decay half-lives and β-delayed neutron emission probabilities along the r-process path would help to facilitate a greater understanding of this process. The Advanced Implantation Detector Array (AIDA) represents the latest generation of silicon implantation detectors for β-decay studies with fast radioactive ion beams. Preliminary results from commissioning experiments demonstrate successful operation of AIDA and analysis of the data obtained during the first official AIDA experiments is now under-way.

  18. Benchmarking the GW Approximation and Bethe–Salpeter Equation for Groups IB and IIB Atoms and Monoxides

    DOE PAGES

    Hung, Linda; Bruneval, Fabien; Baishya, Kopinjol; ...

    2017-04-07

    Energies from the GW approximation and the Bethe–Salpeter equation (BSE) are benchmarked against the excitation energies of transition-metal (Cu, Zn, Ag, and Cd) single atoms and monoxide anions. We demonstrate that best estimates of GW quasiparticle energies at the complete basis set limit should be obtained via extrapolation or closure relations, while numerically converged GW-BSE eigenvalues can be obtained on a finite basis set. Calculations using real-space wave functions and pseudopotentials are shown to give best-estimate GW energies that agree (up to the extrapolation error) with calculations using all-electron Gaussian basis sets. We benchmark the effects of a vertex approximationmore » (ΓLDA) and the mean-field starting point in GW and the BSE, performing computations using a real-space, transition-space basis and scalar-relativistic pseudopotentials. Here, while no variant of GW improves on perturbative G0W0 at predicting ionization energies, G0W0Γ LDA-BSE computations give excellent agreement with experimental absorption spectra as long as off-diagonal self-energy terms are included. We also present G0W0 quasiparticle energies for the CuO –, ZnO –, AgO –, and CdO – anions, in comparison to available anion photoelectron spectra.« less

  19. Benchmarking the GW Approximation and Bethe–Salpeter Equation for Groups IB and IIB Atoms and Monoxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, Linda; Bruneval, Fabien; Baishya, Kopinjol

    Energies from the GW approximation and the Bethe–Salpeter equation (BSE) are benchmarked against the excitation energies of transition-metal (Cu, Zn, Ag, and Cd) single atoms and monoxide anions. We demonstrate that best estimates of GW quasiparticle energies at the complete basis set limit should be obtained via extrapolation or closure relations, while numerically converged GW-BSE eigenvalues can be obtained on a finite basis set. Calculations using real-space wave functions and pseudopotentials are shown to give best-estimate GW energies that agree (up to the extrapolation error) with calculations using all-electron Gaussian basis sets. We benchmark the effects of a vertex approximationmore » (ΓLDA) and the mean-field starting point in GW and the BSE, performing computations using a real-space, transition-space basis and scalar-relativistic pseudopotentials. Here, while no variant of GW improves on perturbative G0W0 at predicting ionization energies, G0W0Γ LDA-BSE computations give excellent agreement with experimental absorption spectra as long as off-diagonal self-energy terms are included. We also present G0W0 quasiparticle energies for the CuO –, ZnO –, AgO –, and CdO – anions, in comparison to available anion photoelectron spectra.« less

  20. Advanced testing of the DEPFET minimatrix particle detector

    NASA Astrophysics Data System (ADS)

    Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.

    2012-01-01

    The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.

  1. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  2. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    NASA Astrophysics Data System (ADS)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-10-01

    We present a code implementing the linearized quasiparticle self-consistent GW method (LQSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N3 scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method. Program Files doi:http://dx.doi.org/10.17632/cpchkfty4w.1 Licensing provisions: GNU General Public License Programming language: Fortran 90 External routines/libraries: BLAS, LAPACK, MPI (optional) Nature of problem: Direct implementation of the GW method scales as N4 with the system size, which quickly becomes prohibitively time consuming even in the modern computers. Solution method: We implemented the GW approach using a method that switches between real space and momentum space representations. Some operations are faster in real space, whereas others are more computationally efficient in the reciprocal space. This makes our approach scale as N3. Restrictions: The limiting factor is usually the memory available in a computer. Using 10 GB/core of memory allows us to study the systems up to 15 atoms per unit cell.

  3. Particle swarm optimization of the sensitivity of a cryogenic gravitational wave detector

    NASA Astrophysics Data System (ADS)

    Michimura, Yuta; Komori, Kentaro; Nishizawa, Atsushi; Takeda, Hiroki; Nagano, Koji; Enomoto, Yutaro; Hayama, Kazuhiro; Somiya, Kentaro; Ando, Masaki

    2018-06-01

    Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.

  4. Advanced readout methods for superheated emulsion detectors

    NASA Astrophysics Data System (ADS)

    d'Errico, F.; Di Fulvio, A.

    2018-05-01

    Superheated emulsions develop visible vapor bubbles when exposed to ionizing radiation. They consist in droplets of a metastable liquid, emulsified in an inert matrix. The formation of a bubble cavity is accompanied by sound waves. Evaporated bubbles also exhibit a lower refractive index, compared to the inert gel matrix. These two physical phenomena have been exploited to count the number of evaporated bubbles and thus measure the interacting radiation flux. Systems based on piezoelectric transducers have been traditionally used to acquire the acoustic (pressure) signals generated by bubble evaporation. Such systems can operate at ambient noise levels exceeding 100 dB; however, they are affected by a significant dead time (>10 ms). An optical readout technique relying on the scattering of light by neutron-induced bubbles has been recently improved in order to minimize measurement dead time and ambient noise sensitivity. Beams of infra-red light from light-emitting diode (LED) sources cross the active area of the detector and are deflected by evaporated bubbles. The scattered light correlates with bubble density. Planar photodiodes are affixed along the detector length in optimized positions, allowing the detection of scattered light from the bubbles and minimizing the detection of direct light from the LEDs. A low-noise signal-conditioning stage has been designed and realized to amplify the current induced in the photodiodes by scattered light and to subtract the background signal due to intrinsic scattering within the detector matrix. The proposed amplification architecture maximizes the measurement signal-to-noise ratio, yielding a readout uncertainty of 6% (±1 SD), with 1000 evaporated bubbles in a detector active volume of 150 ml (6 cm detector diameter). In this work, we prove that the intensity of scattered light also relates to the bubble size, which can be controlled by applying an external pressure to the detector emulsion. This effect can be exploited

  5. Inhibition of colony-stimulating-factor-1 signaling in vivo with the orally bioavailable cFMS kinase inhibitor GW2580.

    PubMed

    Conway, James G; McDonald, Brad; Parham, Janet; Keith, Barry; Rusnak, David W; Shaw, Eva; Jansen, Marilyn; Lin, Peiyuan; Payne, Alan; Crosby, Renae M; Johnson, Jennifer H; Frick, Lloyd; Lin, Min-Hwa Jasmine; Depee, Scott; Tadepalli, Sarva; Votta, Bart; James, Ian; Fuller, Karen; Chambers, Timothy J; Kull, Frederick C; Chamberlain, Stanley D; Hutchins, Jeff T

    2005-11-01

    Colony-stimulating-factor-1 (CSF-1) signaling through cFMS receptor kinase is increased in several diseases. To help investigate the role of cFMS kinase in disease, we identified GW2580, an orally bioavailable inhibitor of cFMS kinase. GW2580 completely inhibited human cFMS kinase in vitro at 0.06 microM and was inactive against 26 other kinases. GW2580 at 1 microM completely inhibited CSF-1-induced growth of mouse M-NFS-60 myeloid cells and human monocytes and completely inhibited bone degradation in cultures of human osteoclasts, rat calvaria, and rat fetal long bone. In contrast, GW2580 did not affect the growth of mouse NS0 lymphoblastoid cells, human endothelial cells, human fibroblasts, or five human tumor cell lines. GW2580 also did not affect lipopolysaccharide (LPS)-induced TNF, IL-6, and prostaglandin E2 production in freshly isolated human monocytes and mouse macrophages. After oral administration, GW2580 blocked the ability of exogenous CSF-1 to increase LPS-induced IL-6 production in mice, inhibited the growth of CSF-1-dependent M-NFS-60 tumor cells in the peritoneal cavity, and diminished the accumulation of macrophages in the peritoneal cavity after thioglycolate injection. Unexpectedly, GW2580 inhibited LPS-induced TNF production in mice, in contrast to effects on monocytes and macrophages in vitro. In conclusion, GW2580's selective inhibition of monocyte growth and bone degradation is consistent with cFMS kinase inhibition. The ability of GW2580 to chronically inhibit CSF-1 signaling through cFMS kinase in normal and tumor cells in vivo makes GW2580 a useful tool in assessing the role of cFMS kinase in normal and disease processes.

  6. Absolute and geometric parameters of contact binary GW Cnc

    NASA Astrophysics Data System (ADS)

    Gürol, B.; Gökay, G.; Saral, G.; Gürsoytrak, S. H.; Cerit, S.; Terzioğlu, Z.

    2016-07-01

    We present the results of our investigation on the geometrical and physical parameters of the W UMa type binary system GW Cnc. We analyzed the photometric data obtained in 2010 and 2011 at Ankara University Observatory (AUO) and the spectroscopic data obtained in 2010 at TUBITAK National Observatory (TUG) by using the Wilson-Devinney (2013 revision) code to obtain the absolute and geometrical parameters. We derived masses and radii of the eclipsing system to be M1 = 0.257M⊙ , M2 = 0.971M⊙ , R1 = 0.526R⊙ and R2 = 0.961R⊙ with an orbital inclination i(∘) = 83.38 ± 0.25 and we determined the GW Cnc system to be a W-type W UMa over-contact binary with a mass ratio of q = 3.773 ± 0.007 .

  7. Measuring the Viewing Angle of GW170817 with Electromagnetic and Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Finstad, Daniel; De, Soumi; Brown, Duncan A.; Berger, Edo; Biwer, Christopher M.

    2018-06-01

    The joint detection of gravitational waves (GWs) and electromagnetic (EM) radiation from the binary neutron star merger GW170817 ushered in a new era of multi-messenger astronomy. Joint GW–EM observations can be used to measure the parameters of the binary with better precision than either observation alone. Here, we use joint GW–EM observations to measure the viewing angle of GW170817, the angle between the binary’s angular momentum and the line of sight. We combine a direct measurement of the distance to the host galaxy of GW170817 (NGC 4993) of 40.7 ± 2.36 Mpc with the Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo GW data and find that the viewing angle is {32}-13+10 +/- 1.7 degrees (90% confidence, statistical, and systematic errors). We place a conservative lower limit on the viewing angle of ≥13°, which is robust to the choice of prior. This measurement provides a constraint on models of the prompt γ-ray and radio/X-ray afterglow emission associated with the merger; for example, it is consistent with the off-axis viewing angle inferred for a structured jet model. We provide for the first time the full posterior samples from Bayesian parameter estimation of LIGO/Virgo data to enable further analysis by the community.

  8. Probing Extreme-density Matter with Gravitational-wave Observations of Binary Neutron Star Merger Remnants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radice, David; Bernuzzi, Sebastiano; Pozzo, Walter Del

    We present a proof-of-concept study, based on numerical-relativity simulations, of how gravitational waves (GWs) from neutron star merger remnants can probe the nature of matter at extreme densities. Phase transitions and extra degrees of freedom can emerge at densities beyond those reached during the inspiral, and typically result in a softening of the equation of state (EOS). We show that such physical effects change the qualitative dynamics of the remnant evolution, but they are not identifiable as a signature in the GW frequency, with the exception of possible black hole formation effects. The EOS softening is, instead, encoded in themore » GW luminosity and phase and is in principle detectable up to distances of the order of several megaparsecs with advanced detectors and up to hundreds of megaparsecs with third-generation detectors. Probing extreme-density matter will require going beyond the current paradigm and developing a more holistic strategy for modeling and analyzing postmerger GW signals.« less

  9. Anomalous optical surface absorption in nominally pure silicon samples at 1550 nm

    NASA Astrophysics Data System (ADS)

    Bell, Angus S.; Steinlechner, Jessica; Martin, Iain W.; Craig, Kieran; Cunningham, William; Rowan, Sheila; Hough, Jim; Schnabel, Roman; Khalaidovski, Alexander

    2017-10-01

    The announcement of the direct detection of gravitational waves (GW) by the LIGO and Virgo collaboration in February 2016 has removed any uncertainty around the possibility of GW astronomy. It has demonstrated that future detectors with sensitivities ten times greater than the Advanced LIGO detectors would see thousands of events per year. Many proposals for such future interferometric GW detectors assume the use of silicon test masses. Silicon has low mechanical loss at low temperatures, which leads to low displacement noise for a suspended interferometer mirror. In addition to the low mechanical loss, it is a requirement that the test masses have a low optical loss. Measurements at 1550 nm have indicated that material with a low enough bulk absorption is available; however there have been suggestions that this low absorption material has a surface absorption of  >100 ppm which could preclude its use in future cryogenic detectors. We show in this paper that this surface loss is not intrinsic but is likely to be a result of particular polishing techniques and can be removed or avoided by the correct polishing procedure. This is an important step towards high gravitational wave detection rates in silicon based instruments.

  10. The Firework of Electromagnetic Counterparts from GW170817

    NASA Astrophysics Data System (ADS)

    Siegel, Daniel

    2018-01-01

    The gravitational-wave signal of the binary neutron star merger GW170817 was followed by a firework of electromagnetic transients across the entire electromagnetic spectrum. The gamma-ray emission has provided strong evidence for the association of short gamma-ray bursts (SGRBs) with binary neutron star mergers and the ultraviolet, optical, and near-infrared emission is consistent with a kilonova indicative of the formation of heavy elements in the merger ejecta by the rapid neutron capture process (r-process). In this talk, I will discuss and review theoretical scenarios to interpret the gamma-ray, X-ray, and radio observations. I will present recent results from general-relativistic magnetohydrodynamic simulations and discuss possible scenarios and mass ejection mechanisms that can give rise to the observed kilonova features. In particular, I will argue that massive winds from neutrino-cooled post-merger accretion disks most likely synthesized the heavy r-process elements in GW170817.

  11. G.W. Ritchey's Optical Work for the Army during WWI.

    NASA Astrophysics Data System (ADS)

    Abrahams, Peter

    2015-01-01

    During the first World War, the Mount Wilson optical shop was remodeled into a production facility, making lenses and prisms for military optics. G.W. Ritchey, H.S. Kinney, and J.S. Dalton managed the project, joined by Ritchey's son Willis and a large team of workers. Tens of thousands of lenses and prisms were produced, notably the exacting roof prisms needed for altimeters.This sizeable project is documented in correspondence and a 'Report on Technical Details of Optical Work', authored by G.W. Ritchey and reproduced in typewriter carbon copy with tipped-in photographs. The retrofitting of the MWO optical shop, and the complicated production methods, are detailed in the report.

  12. A Phosphorylated Cytoplasmic Autoantigen, GW182, Associates with a Unique Population of Human mRNAs within Novel Cytoplasmic Speckles

    PubMed Central

    Eystathioy, Theophany; Chan, Edward K. L.; Tenenbaum, Scott A.; Keene, Jack D.; Griffith, Kevin; Fritzler, Marvin J.

    2002-01-01

    A novel human cellular structure has been identified that contains a unique autoimmune antigen and multiple messenger RNAs. This complex was discovered using an autoimmune serum from a patient with motor and sensory neuropathy and contains a protein of 182 kDa. The gene and cDNA encoding the protein indicated an open reading frame with glycine-tryptophan (GW) repeats and a single RNA recognition motif. Both the patient's serum and a rabbit serum raised against the recombinant GW protein costained discrete cytoplasmic speckles designated as GW bodies (GWBs) that do not overlap with the Golgi complex, endosomes, lysosomes, or peroxisomes. The mRNAs associated with GW182 represent a clustered set of transcripts that are presumed to reside within the GW complexes. We propose that the GW ribonucleoprotein complex is involved in the posttranscriptional regulation of gene expression by sequestering a specific subset of gene transcripts involved in cell growth and homeostasis. PMID:11950943

  13. Terrestrial Gravity Fluctuations

    NASA Astrophysics Data System (ADS)

    Harms, Jan

    2015-12-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10-23 Hz-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  14. Terrestrial Gravity Fluctuations.

    PubMed

    Harms, Jan

    2015-01-01

    Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10 -23 Hz -1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of

  15. GW170817 Most Likely Made a Black Hole

    NASA Astrophysics Data System (ADS)

    Pooley, David; Kumar, Pawan; Wheeler, J. Craig; Grossan, Bruce

    2018-06-01

    There are two outstanding issues regarding the neutron-star merger event GW170817: the nature of the compact remnant and the interstellar shock. The mass of the remnant of GW170817, ∼2.7 {M}ȯ , implies that the remnant could be either a massive rotating neutron star, or a black hole. We report Chandra Director’s Discretionary Time observations made in 2017 December and 2018 January, and we reanalyze earlier observations from 2017 August and 2017 September, in order to address these unresolved issues. We estimate the X-ray flux from a neutron star remnant and compare that to the measured X-ray flux. If we assume that the spin-down luminosity of any putative neutron star is converted to pulsar wind nebula X-ray emission in the 0.5–8 keV band with an efficiency of 10‑3, for a dipole magnetic field with 3 × 1011 G < B < 1014 G, a rising X-ray signal would result and would be brighter than that observed by day 107; we therefore conclude that the remnant of GW170817 is most likely a black hole. Independent of any assumptions of X-ray efficiency, however, if the remnant is a rapidly rotating magnetized neutron star, the total energy in the external shock should rise by a factor ∼102 (to ∼1052 erg) after a few years; therefore, Chandra observations over the next year or two that do not show substantial brightening will rule out such a remnant. The same observations can distinguish between two different models for the relativistic outflow, either an angular or radially varying structure.

  16. Implications from GW170817 and I-Love-Q relations for relativistic hybrid stars

    NASA Astrophysics Data System (ADS)

    Paschalidis, Vasileios; Yagi, Kent; Alvarez-Castillo, David; Blaschke, David B.; Sedrakian, Armen

    2018-04-01

    Gravitational wave observations of GW170817 placed bounds on the tidal deformabilities of compact stars, allowing one to probe equations of state for matter at supranuclear densities. Here we design new parametrizations for hybrid hadron-quark equations of state, which give rise to low-mass twin stars, and test them against GW170817. We find that GW170817 is consistent with the coalescence of a binary hybrid star-neutron star. We also test and find that the I-Love-Q relations for hybrid stars in the third family agree with those for purely hadronic and quark stars within ˜3 % for both slowly and rapidly rotating configurations, implying that these relations can be used to perform equation-of-state independent tests of general relativity and to break degeneracies in gravitational waveforms for hybrid stars in the third family as well.

  17. Apoptotic effect of the selective PPARβ/δ agonist GW501516 in invasive bladder cancer cells.

    PubMed

    Péchery, Adeline; Fauconnet, Sylvie; Bittard, Hugues; Lascombe, Isabelle

    2016-11-01

    GW501516 is a selective and high-affinity synthetic agonist of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). This molecule promoted the inhibition of proliferation and apoptosis in few cancer cell lines, but its anticancer action has never been investigated in bladder tumor cells. Thus, this study was undertaken to determine whether GW501516 had antiproliferative and/or apoptotic effects on RT4 and T24 urothelial cancer cells and to explore the molecular mechanisms involved. Our results indicated that, in RT4 cells (derived from a low-grade papillary tumor), GW501516 did not induce cell death. On the other hand, in T24 cells (derived from an undifferentiated high-grade carcinoma), this PPARβ/δ agonist induced cytotoxic effects including cell morphological changes, a decrease of cell viability, a G2/M cell cycle arrest, and the cell death as evidenced by the increase of the sub-G1 cell population. Furthermore, GW501516 triggered T24 cell apoptosis in a caspase-dependent manner including both extrinsic and intrinsic apoptotic pathways through Bid cleavage. In addition, the drug led to an increase of the Bax/Bcl-2 ratio, a mitochondrial dysfunction associated with the dissipation of ΔΨm, and the release of cytochrome c from the mitochondria to the cytosol. GW501516 induced also ROS generation which was not responsible for T24 cell death since NAC did not rescue cells upon PPARβ/δ agonist exposure. For the first time, our data highlight the capacity of GW501516 to induce apoptosis in invasive bladder cancer cells. This molecule could be relevant as a therapeutic drug for high-grade urothelial cancers.

  18. Hubbard physics in the PAW GW approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, J. M., E-mail: jamie.booth@rmit.edu.au; Smith, J. S.; Russo, S. P.

    It is demonstrated that the signatures of the Hubbard Model in the strongly interacting regime can be simulated by modifying the screening in the limit of zero wavevector in Projector-Augmented Wave GW calculations for systems without significant nesting. This modification, when applied to the Mott insulator CuO, results in the opening of the Mott gap by the splitting of states at the Fermi level into upper and lower Hubbard bands, and exhibits a giant transfer of spectral weight upon electron doping. The method is also employed to clearly illustrate that the M{sub 1} and M{sub 2} forms of vanadium dioxidemore » are fundamentally different types of insulator. Standard GW calculations are sufficient to open a gap in M{sub 1} VO{sub 2}, which arise from the Peierls pairing filling the valence band, creating homopolar bonds. The valence band wavefunctions are stabilized with respect to the conduction band, reducing polarizability and pushing the conduction band eigenvalues to higher energy. The M{sub 2} structure, however, opens a gap from strong on-site interactions; it is a Mott insulator.« less

  19. The first gravitational-wave burst GW150914, as predicted by the scenario machine

    NASA Astrophysics Data System (ADS)

    Lipunov, V. M.; Kornilov, V.; Gorbovskoy, E.; Tiurina, N.; Balanutsa, P.; Kuznetsov, A.

    2017-02-01

    The Advanced LIGO observatory recently reported (Abbott et al., 2016a) the first direct detection of gravitational waves predicted by Einstein (1916). The detection of this event was predicted in 1997 on the basis of the Scenario Machine population synthesis calculations (Lipunov et al., 1997b) Now we discuss the parameters of binary black holes and event rates predicted by different scenarios of binary evolution. We give a simple explanation of the big difference between detected black hole masses and the mean black hole masses observed in of X-ray Nova systems. The proximity of the masses of the components of GW150914 is in good agreement with the observed initial mass ratio distribution in massive binary systems, as is used in Scenario Machine calculations for massive binaries.

  20. Metabolic modulators of the exercise response: doping control analysis of an agonist of the peroxisome proliferator-activated receptor δ (GW501516) and 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR).

    PubMed

    Pokrywka, A; Cholbinski, P; Kaliszewski, P; Kowalczyk, K; Konczak, D; Zembron-Lacny, A

    2014-08-01

    In 2008, the team of Ronald Evans, a professor at the Salk Institute Gene Expression Laboratory, published an article about the effects of two metabolic modulators branded as GW501516 and AICAR on physical endurance of laboratory animals. Both substances, also called 'exercise pills' or 'exercise mimetics', showed the ability to cause multidirectional changes in muscle metabolism. In particular, they stimulated fatty acid oxidation and promoted muscle remodelling. These compounds were regarded as very promising drug candidates for the treatment of diseases such as obesity and type 2 diabetes. GW501516 and AICAR have received considerable attention in doping control due to assumed performance-enhancing properties and recent confiscations of illicitly distributed drugs containing AICAR. Therefore, the World Anti-Doping Agency added GW501516 and AICAR to the Prohibited List in 2009. This review covers the cellular and systemic effects of the metabolic modulators' administration with special emphasis on their role in exercise metabolism. It also presents the advancements in development of methodologies for the detection of their abuse by athletes.

  1. Searching for gamma-ray counterparts to gravitational waves from merging binary neutron stars with the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Patricelli, B.; Stamerra, A.; Razzano, M.; Pian, E.; Cella, G.

    2018-05-01

    The merger of binary neutron star (BNS) systems are predicted to be progenitors of short gamma-ray bursts (GRBs); the definitive probe of this association came with the recent detection of gravitational waves (GWs) from a BNS merger by Advanced LIGO and Advanced Virgo (GW170817), in coincidence with the short GRB 170817A observed by Fermi-GBM and INTEGRAL. Short GRBs are also expected to emit very-high energy (VHE, > 10S0 GeV) photons and VHE electromagnetic (EM) upper limits have been set with observations performed by ground-based gamma-ray detectors and during the intense EM follow-up campaign associated with GW170817/GRB 170817A. In the next years, the searches for VHE EM counterparts will become more effective thanks to the Cherenkov Telescope Array (CTA): this instrument will be fundamental for the EM follow-up of transient GW events at VHE, owing to its unprecedented sensitivity, rapid response (few tens of seconds) and capability to monitor large sky areas via survey-mode operation. We present a comprehensive study on the prospects for joint GW and VHE EM observations of merging BNSs with Advanced LIGO, Advanced Virgo and CTA, based on detailed simulations of the multi-messenger emission and detection. We propose a new observational strategy optimized on the prior assumptions about the EM emission. The method can be further generalized to include other electromagnetic emission models. According to this study CTA will cover most of the region of the GW skymap for the intermediate and most energetic on-axis GRBs associated to the GW event. We estimate the expected joint GW and VHE EM detection rates and we found this rate goes from 0.08 up to 0.5 events per year for the most energetic EM sources.

  2. All-electron GW quasiparticle band structures of group 14 nitride compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Iek-Heng; Cheng, Hai-Ping, E-mail: cheng@qtp.ufl.edu; Kozhevnikov, Anton

    We have investigated the group 14 nitrides (M{sub 3}N{sub 4}) in the spinel phase (γ-M{sub 3}N{sub 4} with M = C, Si, Ge, and Sn) and β phase (β-M{sub 3}N{sub 4} with M = Si, Ge, and Sn) using density functional theory with the local density approximation and the GW approximation. The Kohn-Sham energies of these systems have been first calculated within the framework of full-potential linearized augmented plane waves (LAPW) and then corrected using single-shot G{sub 0}W{sub 0} calculations, which we have implemented in the modified version of the Elk full-potential LAPW code. Direct band gaps at the Γmore » point have been found for spinel-type nitrides γ-M{sub 3}N{sub 4} with M = Si, Ge, and Sn. The corresponding GW-corrected band gaps agree with experiment. We have also found that the GW calculations with and without the plasmon-pole approximation give very similar results, even when the system contains semi-core d electrons. These spinel-type nitrides are novel materials for potential optoelectronic applications because of their direct and tunable band gaps.« less

  3. Optimization of the Swift X-Ray Follow-Up of Advanced LIGO and Virgo Gravitational Wave Triggers in 2015-16

    NASA Technical Reports Server (NTRS)

    Evans, P. A.; Osborne, J. P.; Kennea, J. A.; Campana, S.; O'Brien, P. T.; Tanvir, N. R.; Racusin, J. L.; Burrows, D. N.; Cenko, S. B.; Gehrels, N.

    2015-01-01

    One of the most exciting near-term prospects in physics is the potential discovery of gravitational waves by the Advanced LIGO and Virgo detectors. To maximize both the confidence of the detection and the science return, it is essential to identify an electromagnetic counterpart.This is not trivial, as the events are expected to be poorly localized, particularly in the near-term, with error regions covering hundreds or even thousands of square degrees. In this paper, we discuss the prospects for finding an X-ray counterpart to a gravitational wave trigger with the Swift X-ray Telescope, using the assumption that the trigger is caused by a binary neutron star merger which also produces a short gamma-ray burst. We show that it is beneficial to target galaxies within the GW error region, highlighting the need for substantially complete galaxy catalogues out to distances of 300 Mpc. We also show that nearby, on-axis short GRBs are either extremely rare, or are systematically less luminous than those detected to date. We consider the prospects for detecting afterglow emission from an off-axis GRB which triggered the GW facilities, finding that the detectability, and the best time to look,are strongly dependent on the characteristics of the burst such as circumburst density and our viewing angle.

  4. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    DOE PAGES

    Margutti, Raffaella; Berger, E.; Fong, W.; ...

    2017-10-16

    Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less

  5. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margutti, Raffaella; Berger, E.; Fong, W.

    Here, we report the discovery of rising X-ray emission from the binary neutron star merger event GW170817. This is the first detection of X-ray emission from a gravitational-wave (GW) source. Observations acquired with the Chandra X-ray Observatory ( CXO) atmore » $$t\\approx 2.3$$ days post-merger reveal no significant emission, with $${L}_{x}\\lesssim 3.2\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ (isotropic-equivalent). Continued monitoring revealed the presence of an X-ray source that brightened with time, reaching $${L}_{x}\\approx 9\\times {10}^{38}\\,\\mathrm{erg}\\,{{\\rm{s}}}^{-1}$$ at $$\\approx 15.1$$ days post-merger. We interpret these findings in the context of isotropic and collimated relativistic outflows (both on- and off-axis). We find that the broadband X-ray to radio observations are consistent with emission from a relativistic jet with kinetic energy $${E}_{k}\\sim {10}^{49-50}\\,\\mathrm{erg}$$, viewed off-axis with $${\\theta }_{\\mathrm{obs}}\\sim 20^\\circ \\mbox{--}40^\\circ $$. Our models favor a circumbinary density $$n\\sim {10}^{-4}\\mbox{--}{10}^{-2}\\,{\\mathrm{cm}}^{-3}$$, depending on the value of the microphysical parameter $${\\epsilon }_{B}={10}^{-4}\\mbox{--}{10}^{-2}$$. A central-engine origin of the X-ray emission is unlikely. Future X-ray observations at $$t\\gtrsim 100$$ days, when the target will be observable again with the CXO, will provide additional constraints to solve the model degeneracies and test our predictions. Our inferences on $${\\theta }_{\\mathrm{obs}}$$ are testable with GW information on GW170817 from advanced LIGO/Virgo on the binary inclination.« less

  6. Early controlled release of peroxisome proliferator-activated receptor β/δ agonist GW501516 improves diabetic wound healing through redox modulation of wound microenvironment.

    PubMed

    Wang, Xiaoling; Sng, Ming Keat; Foo, Selin; Chong, Han Chung; Lee, Wei Li; Tang, Mark Boon Yang; Ng, Kee Woei; Luo, Baiwen; Choong, Cleo; Wong, Marcus Thien Chong; Tong, Benny Meng Kiat; Chiba, Shunsuke; Loo, Say Chye Joachim; Zhu, Pengcheng; Tan, Nguan Soon

    2015-01-10

    Diabetic wounds are imbued with an early excessive and protracted reactive oxygen species production. Despite the studies supporting PPARβ/δ as a valuable pharmacologic wound-healing target, the therapeutic potential of PPARβ/δ agonist GW501516 (GW) as a wound healing drug was never investigated. Using topical application of polymer-encapsulated GW, we revealed that different drug release profiles can significantly influence the therapeutic efficacy of GW and consequently diabetic wound closure. We showed that double-layer encapsulated GW microparticles (PLLA:PLGA:GW) provided an earlier and sustained dose of GW to the wound and reduced the oxidative wound microenvironment to accelerate healing, in contrast to single-layered PLLA:GW microparticles. The underlying mechanism involved an early GW-mediated activation of PPARβ/δ that stimulated GPx1 and catalase expression in fibroblasts. GPx1 and catalase scavenged excessive H2O2 accumulation in diabetic wound beds, prevented H2O2-induced ECM modification and facilitated keratinocyte migration. The microparticles with early and sustained rate of GW release had better therapeutic wound healing activity. The present study underscores the importance of drug release kinetics on the therapeutic efficacy of the drug and warrants investigations to better appreciate the full potential of controlled drug release. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. First astronomical unit scale image of the GW Orionis triple system. Direct detection of a new stellar companion

    NASA Astrophysics Data System (ADS)

    Berger, J.-P.; Monnier, J. D.; Millan-Gabet, R.; Renard, S.; Pedretti, E.; Traub, W.; Bechet, C.; Benisty, M.; Carleton, N.; Haguenauer, P.; Kern, P.; Labeye, P.; Longa, F.; Lacasse, M.; Malbet, F.; Perraut, K.; Ragland, S.; Schloerb, P.; Schuller, P. A.; Thiébaut, E.

    2011-05-01

    Context. Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Aims: Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. Methods: We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. Results.We obtained the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ ~ 1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of ~ 8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Conclusions: Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.

  8. Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules.

    PubMed

    Umari, P; Fabris, S

    2012-05-07

    The quasi-particle energy levels of the Zn-Phthalocyanine (ZnPc) molecule calculated with the GW approximation are shown to depend sensitively on the explicit description of the metal-center semicore states. We find that the calculated GW energy levels are in good agreement with the measured experimental photoemission spectra only when explicitly including the Zn 3s and 3p semicore states in the valence. The main origin of this effect is traced back to the exchange term in the self-energy GW approximation. Based on this finding, we propose a simplified approach for correcting GW calculations of metal phthalocyanine molecules that avoids the time-consuming explicit treatment of the metal semicore states. Our method allows for speeding up the calculations without compromising the accuracy of the computed spectra.

  9. GW0742, a high affinity PPAR-β/δ agonist reduces lung inflammation induced by bleomycin instillation in mice.

    PubMed

    Galuppo, M; Di Paola, R; Mazzon, E; Esposito, E; Paterniti, I; Kapoor, A; Thiemermann, C; Cuzzocrea, S

    2010-01-01

    Peroxisome Proliferator-Activated Receptor β/δ belongs to a family of ligand-activated transcription factors. Recent data have clarified its metabolic roles and enhanced the potential role of this receptor as a pharmacological target. Moreover, although its role in acute inflammation remains unclear, being the nuclear receptor PPAR β/δ widely expressed in many tissues, including the vascular endothelium, we assume that the infiltration of PMNs into tissues, a prominent feature in inflammation, may also be related to PPAR β/δ. Mice subjected to intratracheal instillation of bleomycin (BLEO, 1 mg/kg), a glycopeptide produced by the bacterium Streptomyces verticillus, develop lung inflammation and injury characterized by a significant neutrophil infiltration and tissue oedema. Therefore, the aim of this study is to investigate the effects of GW0742, a synthetic high affinity PPAR β/δ agonist, and its possible role in preventing the advance of inflammatory and apoptotic processes induced by bleomycin, that long-term leads to the appearance of pulmonary fibrosis. Our data showed that GW0742-treatment (0.3 mg/Kg, 10 percent DMSO, i.p.) has therapeutic effects on pulmonary damage, decreasing many inflammatory and apoptotic parameters detected by measurement of: 1) cytokine production; 2) leukocyte accumulation, indirectly measured as decrease of myeloperoxidase (MPO) activity; 3) IkBα degradation and NF-kB nuclear translocation; 4) ERK phosphorylation; 5) stress oxidative by NO formation due to iNOS expression; 6) nitrotyrosine and PAR localization; 7) the degree of apoptosis, evaluated by Bax and Bcl-2 balance, FAS ligand expression and TUNEL staining. Taken together, our results clearly show that GW0742 reduces the lung injury and inflammation due to the intratracheal BLEO--instillation in mice.

  10. Chandra observations of GW170817 reveal a fading afterglow

    NASA Astrophysics Data System (ADS)

    Troja, E.; Piro, L.; Ryan, G.

    2018-05-01

    The Chandra X-ray Observatory re-observed the field of GW170817 starting on May 3rd, 2018 as part of its on-going monitoring program (PI: Wilkes). Observations were split into two exposures of 50.7 ks and 46 ks, respectively.

  11. Testing the anisotropy of the universe using the simulated gravitational wave events from advanced LIGO and Virgo

    NASA Astrophysics Data System (ADS)

    Lin, Hai-Nan; Li, Jin; Li, Xin

    2018-05-01

    The detection of gravitational waves (GWs) provides a powerful tool to constrain the cosmological parameters. In this paper, we investigate the possibility of using GWs as standard sirens in testing the anisotropy of the universe. We consider the GW signals produced by the coalescence of binary black hole systems and simulate hundreds of GW events from the advanced laser interferometer gravitational-wave observatory and Virgo. It is found that the anisotropy of the universe can be tightly constrained if the redshift of the GW source is precisely known. The anisotropic amplitude can be constrained with an accuracy comparable to the Union2.1 complication of type-Ia supernovae if ≳ 400 GW events are observed. As for the preferred direction, ≳ 800 GW events are needed in order to achieve the accuracy of Union2.1. With 800 GW events, the probability of pseudo anisotropic signals with an amplitude comparable to Union2.1 is negligible. These results show that GWs can provide a complementary tool to supernovae in testing the anisotropy of the universe.

  12. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3more » scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.« less

  13. Linearized self-consistent quasiparticle GW method: Application to semiconductors and simple metals

    DOE PAGES

    Kutepov, A. L.; Oudovenko, V. S.; Kotliar, G.

    2017-06-23

    We present a code implementing the linearized self-consistent quasiparticle GW method (QSGW) in the LAPW basis. Our approach is based on the linearization of the self-energy around zero frequency which differs it from the existing implementations of the QSGW method. The linearization allows us to use Matsubara frequencies instead of working on the real axis. This results in efficiency gains by switching to the imaginary time representation in the same way as in the space time method. The all electron LAPW basis set eliminates the need for pseudopotentials. We discuss the advantages of our approach, such as its N 3more » scaling with the system size N, as well as its shortcomings. We apply our approach to study the electronic properties of selected semiconductors, insulators, and simple metals and show that our code produces the results very close to the previously published QSGW data. Our implementation is a good platform for further many body diagrammatic resummations such as the vertex-corrected GW approach and the GW+DMFT method.« less

  14. The characterization of Virgo data and its impact on gravitational-wave searches

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Y Chua, S. S.; Y Chung, C. T.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Hardt, A.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Y Khalili, F.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow–Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Tucker, E.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-08-01

    Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of GW searches.

  15. Measurements of the Reactor Antineutrino with Solid State Scintillation Detector

    NASA Astrophysics Data System (ADS)

    Alekseev, I.; Belov, V.; Brudanin, V.; Danilov, M.; Egorov, V.; Filosofov, D.; Fomina, M.; Hons, Z.; Kazartsev, S.; Kobyakin, A.; Kuznetsov, A.; Machikhiliyan, I.; Medvedev, D.; Nesterov, V.; Olshevsky, A.; Pogorelov, N.; Ponomarev, D.; Rozova, I.; Rumyantseva, N.; Rusinov, V.; Salamatin, A.; Samigullin, E.; Shevchik, Ye.; Shirchenko, M.; Shitov, Yu.; Skrobova, N.; Starostin, A.; Svirida, D.; Tarkovsky, E.; Tikhomirov, I.; Vlášek, J.; Zhitnikov, I.; Zinatulina, D.

    Measurements of reactor antineutrino play an important role in the efforts at the frontier of the modern physics. The DANSS collaboration presents preliminary results of a one year run with a cubic meter solid state detector placed below 3.1 GW industrial light water reactor. The experiment is sensitive to sterile neutrino in the most interesting region of mixing parameter space. 2500 scintillation strips of the sensitive volume of the detector have multilayer passive shielding of copper, lead and borated polyethylene and active muon veto. Detector position below the reactor gives an advantage of overburden about 50 m of water equivalent providing factor of six in cosmic muon suppression and eliminating fast neutrons.The detector is placed on a vertically movable platform which allows to change the distance to the reactor core center in the range 10.7-12.7 m within a few minutes. The strips are read out individually by SiPMs and in groups of 50 by PMTs. 5000 inverse beta-decay events per day are collected in the fiducial volume, which is 78% of the whole detector, at the position closest to the reactor. Overburden, active veto and good segmentation of the detector result in an excellent signal to background ratio. The talk is dedicated to the data analysis and preliminary results. The experiment status is also presented.

  16. Superradiant Ka-band Cherenkov oscillator with 2-GW peak power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rostov, V. V.; Romanchenko, I. V.; Pedos, M. S.

    The generation of a 2-GW microwave superradiance (SR) pulses has been demonstrated at 29-GHz using a single-mode relativistic backward-wave oscillator possessing the beam-to-wave power conversion factor no worse than 100%. A record-breaking radiation power density in the slow-wave structure (SWS) of ∼1.5 GW/cm{sup 2} required the use of high guiding magnetic field (7 T) decreasing the beam losses to the SWS in strong rf fields. Despite the field strength at the SWS wall of 2 MV/cm, a single-pass transmission mode of a short SR pulse in the SWS allows one to obtain extremely high power density in subnanosecond time scale due tomore » time delay in the development of the breakdown phenomena.« less

  17. Effects of a Reservoir Water on the GW Quality in a Coastal Aquifer of Semi-arid Region, North-east of Tunisia

    NASA Astrophysics Data System (ADS)

    Uchida, C.; Kawachi, A.; Tsujimura, M.; Tarhouni, J.

    2015-12-01

    This study investigated effects of a reservoir water in a salinized shallow aquifer based on spatial distribution of geochemical properties in groundwater (GW). In many coastal shallow aquifers of arid and semi-arid regions, groundwater table (GWT) depression and salinization have occurred due to GW overexploitation. In Korba aquifer, north-east of Tunisia, after a dam reservoir has been constructed in order to assure a water resource for irrigation, improvement of GW level and quality have been observed in the downstream area of the dam (area-A), while the GW in the other area (area-B) still has high salinity. This study, therefore, aimed to investigate the effects of the reservoir water on the GW quality. In June 2013, water quality survey and sampling were carried out at 60 wells (GW), a dam reservoir, river and the sea. Major ions, boron, bromide, and oxygen-18 and deuterium in collected samples were analyzed. From the results, in the area-B, the GWT was lower than the sea level and the high salinity were observed. The Br- concentration of the GW was correlated with the Cl- concentration, and the values of B/Cl- and Br-/Cl- of the GW were similar to the seawater. Since the GWT depression allowed the seawater to intrude into the aquifer, the GW salinization occurred in this area. On the other hand, in the area-A, GWT was higher than the seawater level, and the Na+ and Cl- concentrations were lower than the area-B. Especially, in the irrigated areas by using the reservoir water, the isotopic values, B/Cl- and Br-/Cl- of the GW were relatively higher than the others. The reservoir water has high isotopic values due to evaporation effect, and the B/Cl- and Br-/Cl- values become higher due to organic matters in sediment of the reservoir or soil in the filtration process. Thus, in addition to the direct infiltration from the reservoir into the aquifer, irrigation using a reservoir water probably has a positive impact on the GW quality in this area.

  18. Detection regimes of the cosmological gravitational wave background from astrophysical sources

    NASA Astrophysics Data System (ADS)

    Coward, David; Regimbau, Tania

    2006-09-01

    Key targets for gravitational wave (GW) observatories, such as LIGO and the next generation interferometric detector, Advanced LIGO, include core-collapse of massive stars and the final stage of coalescence of compact stellar remnants. The combined GW signal from such events occurring throughout the Universe will produce an astrophysical GW background (AGB), one that is fundamentally different from the GW background by very early Universe processes. One can classify contributions to the AGB for different classes of sources based on the strength of the GW emissions from the individual sources, their peak emission frequency, emission duration and their event rate density distribution. This article provides an overview of the detectability regimes of the AGB in the context of current and planned gravitational wave observatories. We show that there are two important AGB signal detection regimes, which we define as 'continuous' and 'popcorn noise'. We describe how the 'popcorn noise' AGB regime evolves with observation time and we discuss how this feature distinguishes it from the GW background produced from very early Universe processes.

  19. Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M., Jr.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Dal Canton, T.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2013-12-01

    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (˜10-1000s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3.5ergscm-2 to F<1200ergscm-2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈33Mpc. Advanced detectors are expected to achieve strain sensitivities 10× better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.

  20. Gravitational waves from Scorpius X-1: A comparison of search methods and prospects for detection with advanced detectors

    NASA Astrophysics Data System (ADS)

    Messenger, C.; Bulten, H. J.; Crowder, S. G.; Dergachev, V.; Galloway, D. K.; Goetz, E.; Jonker, R. J. G.; Lasky, P. D.; Meadors, G. D.; Melatos, A.; Premachandra, S.; Riles, K.; Sammut, L.; Thrane, E. H.; Whelan, J. T.; Zhang, Y.

    2015-07-01

    The low-mass X-ray binary Scorpius X-1 (Sco X-1) is potentially the most luminous source of continuous gravitational-wave radiation for interferometers such as LIGO and Virgo. For low-mass X-ray binaries this radiation would be sustained by active accretion of matter from its binary companion. With the Advanced Detector Era fast approaching, work is underway to develop an array of robust tools for maximizing the science and detection potential of Sco X-1. We describe the plans and progress of a project designed to compare the numerous independent search algorithms currently available. We employ a mock-data challenge in which the search pipelines are tested for their relative proficiencies in parameter estimation, computational efficiency, robustness, and most importantly, search sensitivity. The mock-data challenge data contains an ensemble of 50 Scorpius X-1 (Sco X-1) type signals, simulated within a frequency band of 50-1500 Hz. Simulated detector noise was generated assuming the expected best strain sensitivity of Advanced LIGO [1] and Advanced VIRGO [2] (4 ×10-24 Hz-1 /2 ). A distribution of signal amplitudes was then chosen so as to allow a useful comparison of search methodologies. A factor of 2 in strain separates the quietest detected signal, at 6.8 ×10-26 strain, from the torque-balance limit at a spin frequency of 300 Hz, although this limit could range from 1.2 ×10-25 (25 Hz) to 2.2 ×10-26 (750 Hz) depending on the unknown frequency of Sco X-1. With future improvements to the search algorithms and using advanced detector data, our expectations for probing below the theoretical torque-balance strain limit are optimistic.

  1. Fire Detector

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An early warning fire detection sensor developed for NASA's Space Shuttle Orbiter is being evaluated as a possible hazard prevention system for mining operations. The incipient Fire Detector represents an advancement over commercially available smoke detectors in that it senses and signals the presence of a fire condition before the appearance of flame and smoke, offering an extra margin of safety.

  2. Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model

    NASA Astrophysics Data System (ADS)

    Himemoto, Yoshiaki; Taruya, Atsushi

    2017-07-01

    After the first direct detection of gravitational waves (GW), detection of the stochastic background of GWs is an important next step, and the first GW event suggests that it is within the reach of the second-generation ground-based GW detectors. Such a GW signal is typically tiny and can be detected by cross-correlating the data from two spatially separated detectors if the detector noise is uncorrelated. It has been advocated, however, that the global magnetic fields in the Earth-ionosphere cavity produce the environmental disturbances at low-frequency bands, known as Schumann resonances, which potentially couple with GW detectors. In this paper, we present a simple analytical model to estimate its impact on the detection of stochastic GWs. The model crucially depends on the geometry of the detector pair through the directional coupling, and we investigate the basic properties of the correlated magnetic noise based on the analytic expressions. The model reproduces the major trend of the recently measured global correlation between the GW detectors via magnetometer. The estimated values of the impact of correlated noise also match those obtained from the measurement. Finally, we give an implication to the detection of stochastic GWs including upcoming detectors, KAGRA and LIGO India. The model suggests that LIGO Hanford-Virgo and Virgo-KAGRA pairs are possibly less sensitive to the correlated noise and can achieve a better sensitivity to the stochastic GW signal in the most pessimistic case.

  3. Measuring neutron star tidal deformability with Advanced LIGO: black hole - neutron star binaries

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Pürrer, Michael; Pfeiffer, Harald

    2017-01-01

    The pioneering observations of gravitational waves (GW) by Advanced LIGO have ushered us into an era of observational GW astrophysics. Compact binaries remain the primary target sources for GW observations, of which black hole - neutron star (BHNS) binaries form an important subset. GWs from coalescing BHNS systems carry signatures of the tidal distortion of the neutron star by its companion black hole during inspiral, as well as of its disruption close to merger. In this talk, I will discuss how well we can measure tidal effects from individual and populations of LIGO observations of disruptive BHNS mergers. I will also talk about how our measurements of non-tidal parameters can get affected by ignoring tidal effects in BHNS parameter estimation.

  4. Colloquium: Multimessenger astronomy with gravitational waves and high-energy neutrinos

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Baret, Bruny; Bartos, Imre; Bouhou, Boutayeb; Chassande-Mottin, Eric; Corsi, Alessandra; Di Palma, Irene; Dietz, Alexander; Donzaud, Corinne; Eichler, David; Finley, Chad; Guetta, Dafne; Halzen, Francis; Jones, Gareth; Kandhasamy, Shivaraj; Kotake, Kei; Kouchner, Antoine; Mandic, Vuk; Márka, Szabolcs; Márka, Zsuzsa; Moscoso, Luciano; Papa, Maria Alessandra; Piran, Tsvi; Pradier, Thierry; Romero, Gustavo E.; Sutton, Patrick; Thrane, Eric; Van Elewyck, Véronique; Waxman, Eli

    2013-10-01

    Many of the astrophysical sources and violent phenomena observed in our Universe are potential emitters of gravitational waves and high-energy cosmic radiation, including photons, hadrons, and presumably also neutrinos. Both gravitational waves (GW) and high-energy neutrinos (HEN) are cosmic messengers that may escape much denser media than photons. They travel unaffected over cosmological distances, carrying information from the inner regions of the astrophysical engines from which they are emitted (and from which photons and charged cosmic rays cannot reach us). For the same reasons, such messengers could also reveal new, hidden sources that have not been observed by conventional photon-based astronomy. Coincident observation of GWs and HENs may thus play a critical role in multimessenger astronomy. This is particularly true at the present time owing to the advent of a new generation of dedicated detectors: the neutrino telescopes IceCube at the South Pole and ANTARES in the Mediterranean Sea, as well as the GW interferometers Virgo in Italy and LIGO in the United States. Starting from 2007, several periods of concomitant data taking involving these detectors have been conducted. More joint data sets are expected with the next generation of advanced detectors that are to be operational by 2015, with other detectors, such as KAGRA in Japan, joining in the future. Combining information from these independent detectors can provide original ways of constraining the physical processes driving the sources and also help confirm the astrophysical origin of a GW or HEN signal in case of coincident observation. Given the complexity of the instruments, a successful joint analysis of this combined GW and HEN observational data set will be possible only if the expertise and knowledge of the data is shared between the two communities. This Colloquium aims at providing an overview of both theoretical and experimental state of the art and perspectives for GW and HEN

  5. GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation.

    PubMed

    Kostadinova, Radina; Montagner, Alexandra; Gouranton, Erwan; Fleury, Sébastien; Guillou, Hervé; Dombrowicz, David; Desreumaux, Pierre; Wahli, Walter

    2012-10-10

    After liver injury, the repair process comprises activation and proliferation of hepatic stellate cells (HSCs), which produce extracellular matrix (ECM) proteins. Peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in these cells, but its function in liver repair remains incompletely understood. This study investigated whether activation of PPARβ/δ with the ligand GW501516 influenced the fibrotic response to injury from chronic carbon tetrachloride (CCl4) treatment in mice. Wild type and PPARβ/δ-null mice were treated with CCl4 alone or CCl4 co-administered with GW501516. To unveil mechanisms underlying the PPARβ/δ-dependent effects, we analyzed the proliferative response of human LX-2 HSCs to GW501516 in the presence or absence of PPARβ/δ. We found that GW501516 treatment enhanced the fibrotic response. Compared to the other experimental groups, CCl4/GW501516-treated wild type mice exhibited increased expression of various profibrotic and pro-inflammatory genes, such as those involved in extracellular matrix deposition and macrophage recruitment. Importantly, compared to healthy liver, hepatic fibrotic tissues from alcoholic patients showed increased expression of several PPAR target genes, including phosphoinositide-dependent kinase-1, transforming growth factor beta-1, and monocyte chemoattractant protein-1. GW501516 stimulated HSC proliferation that caused enhanced fibrotic and inflammatory responses, by increasing the phosphorylation of p38 and c-Jun N-terminal kinases through the phosphoinositide-3 kinase/protein kinase-C alpha/beta mixed lineage kinase-3 pathway. This study clarified the mechanism underlying GW501516-dependent promotion of hepatic repair by stimulating proliferation of HSCs via the p38 and JNK MAPK pathways.

  6. Significance of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on phytoextraction of Pband Zn by Zea mays L.

    PubMed

    Praburaman, Loganathan; Park, Sung-Hee; Cho, Min; Lee, Kui-Jae; Ko, Jeong-Ae; Han, Sang-Sub; Lee, Sang-Hyun; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2017-01-01

    Microbe-assisted phytoremediation has been considered a promising measure for the remediation of heavy metal-polluted soil. The aim of this study was to assess the effect of diazotrophic plant growth-promoting Herbaspirillum sp. GW103 on growth and lead (Pb) and zinc (Zn) accumulation in Zea mays L. The strain GW103 exhibited plant growth-promoting traits such as indole-3-acetic acid, siderophores, and 1-aminocyclopropane-1-carboxylic deaminase. Treatment of Z. mays L. plants with GW103 significantly increased 19, 31, and 52% of plant biomass and 10, 50, and 126% of chlorophyll a contents in Pb, Zn, and Pb + Zn-amended soils, respectively. Similarly, the strain GW103 significantly increased Pb and Zn accumulation in shoots and roots of Z. mays L., which were 77 and 25% in Pb-amended soil, 42 and 73% in Zn-amended soil, and 27 and 84% in Pb + Zn-amended soil. Furthermore, addition of GW103 increased 8, 12, and 7% of total protein content, catalase, and superoxide dismutase levels, respectively, in Z. mays L. plants. The results pointed out that isolate GW103 could potentially reduce the phytotoxicity of metals and increase Pb and Zn accumulation in Z. mays L. plant.

  7. The GOES-R Advanced Baseline Imager: detector spectral response effects on thermal emissive band calibration

    NASA Astrophysics Data System (ADS)

    Pearlman, Aaron J.; Padula, Francis; Cao, Changyong; Wu, Xiangqian

    2015-10-01

    The Advanced Baseline Imager (ABI) will be aboard the National Oceanic and Atmospheric Administration's Geostationary Operational Environmental Satellite R-Series (GOES-R) to supply data needed for operational weather forecasts and long-term climate variability studies, which depend on high quality data. Unlike the heritage operational GOES systems that have two or four detectors per band, ABI has hundreds of detectors per channel requiring calibration coefficients for each one. This increase in number of detectors poses new challenges for next generation sensors as each detector has a unique spectral response function (SRF) even though only one averaged SRF per band is used operationally to calibrate each detector. This simplified processing increases computational efficiency. Using measured system-level SRF data from pre-launch testing, we have the opportunity to characterize the calibration impact using measured SRFs, both per detector and as an average of detector-level SRFs similar to the operational version. We calculated the spectral response impacts for the thermal emissive bands (TEB) theoretically, by simulating the ABI response viewing an ideal blackbody and practically, with the measured ABI response to an external reference blackbody from the pre-launch TEB calibration test. The impacts from the practical case match the theoretical results using an ideal blackbody. The observed brightness temperature trends show structure across the array with magnitudes as large as 0.1 K for and 12 (9.61 µm), and 0.25 K for band 14 (11.2 µm) for a 300 K blackbody. The trends in the raw ABI signal viewing the blackbody support the spectral response measurements results, since they show similar trends in bands 12 (9.61µm), and 14 (11.2 µm), meaning that the spectral effects dominate the response differences between detectors for these bands. We further validated these effects using the radiometric bias calculated between calibrations using the external blackbody and

  8. Constraining the Maximum Mass of Neutron Stars from Multi-messenger Observations of GW170817

    NASA Astrophysics Data System (ADS)

    Margalit, Ben; Metzger, Brian D.

    2017-12-01

    We combine electromagnetic (EM) and gravitational-wave (GW) information on the binary neutron star (NS) merger GW170817 in order to constrain the radii {R}{ns} and maximum mass {M}\\max of NSs. GW170817 was followed by a range of EM counterparts, including a weak gamma-ray burst (GRB), kilonova (KN) emission from the radioactive decay of the merger ejecta, and X-ray/radio emission consistent with being the synchrotron afterglow of a more powerful off-axis jet. The type of compact remnant produced in the immediate merger aftermath, and its predicted EM signal, depend sensitively on the high-density NS equation of state (EOS). For a soft EOS that supports a low {M}\\max , the merger undergoes a prompt collapse accompanied by a small quantity of shock-heated or disk-wind ejecta, inconsistent with the large quantity ≳ {10}-2 {M}⊙ of lanthanide-free ejecta inferred from the KN. On the other hand, if {M}\\max is sufficiently large, then the merger product is a rapidly rotating supramassive NS (SMNS), which must spin down before collapsing into a black hole. A fraction of the enormous rotational energy necessarily released by the SMNS during this process is transferred to the ejecta, either into the GRB jet (energy {E}{GRB}) or the KN ejecta (energy {E}{ej}), also inconsistent with observations. By combining the total binary mass of GW170817 inferred from the GW signal with conservative upper limits on {E}{GRB} and {E}{ej} from EM observations, we constrain the likelihood probability of a wide range of previously allowed EOSs. These two constraints delineate an allowed region of the {M}\\max {--}{R}{ns} parameter space, which, once marginalized over NS radius, places an upper limit of {M}\\max ≲ 2.17 {M}⊙ (90%), which is tighter or arguably less model-dependent than other current constraints.

  9. Advanced Code-Division Multiplexers for Superconducting Detector Arrays

    NASA Astrophysics Data System (ADS)

    Irwin, K. D.; Cho, H. M.; Doriese, W. B.; Fowler, J. W.; Hilton, G. C.; Niemack, M. D.; Reintsema, C. D.; Schmidt, D. R.; Ullom, J. N.; Vale, L. R.

    2012-06-01

    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal plane code-division multiplexers can be combined with multi-GHz readout based on superconducting microresonators to scale to even larger arrays.

  10. Quasiparticle properties of DNA bases from GW calculations in a Wannier basis

    NASA Astrophysics Data System (ADS)

    Qian, Xiaofeng; Marzari, Nicola; Umari, Paolo

    2009-03-01

    The quasiparticle GW-Wannier (GWW) approach [1] has been recently developed to overcome the size limitations of conventional planewave GW calculations. By taking advantage of the localization properties of the maximally-localized Wannier functions and choosing a small set of polarization basis we reduce the number of Bloch wavefunctions products required for the evaluation of dynamical polarizabilities, and in turn greatly reduce memory requirements and computational efficiency. We apply GWW to study quasiparticle properties of different DNA bases and base-pairs, and solvation effects on the energy gap, demonstrating in the process the key advantages of this approach. [1] P. Umari,G. Stenuit, and S. Baroni, cond-mat/0811.1453

  11. Mesospheric Temperature Measurements over Scandinavia During the Gravity Wave Life Cycle Campaign (GW-LCYCLE)

    NASA Astrophysics Data System (ADS)

    Pautet, P. D.; Taylor, M.; Kaifler, B.

    2016-12-01

    The Gravity Wave Life Cycle (GW-LCYCLE) project took place in Northern Scandinavia during the winter 2015-16. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially the orographic waves generated over the Scandinavian mountain range. A series of instruments was operated at several ground-based locations and on-board the DLR HALO Gulfstream V and Falcon aircrafts. As part of this project, Utah State University (USU) deployed 3 Advanced Mesospheric Temperature Mappers (AMTM) at the ALOMAR facility, Norway (operational since December 2010), at the IRF institute in Kiruna, Sweden, and at the FMI institute in Sodankylä, Finland. Each of these instruments measures the OH (3,1) rotational temperature over a large region (200x160km) at 87km altitude. During the campaign, their total coverage extended across the Scandinavian Mountain Range, from the wind side in the west to 500 km to the east in the lee of the mountains, allowing the investigation of the occurrence and evolution of gravity waves (GWs) over this part of Scandinavia. Furthermore, the AMTM in Sodankylä operated in the container housing a DLR Rayleigh lidar. Both instruments ran simultaneously and autonomously from November 2015 to April 2016, providing an unprecedented complementary high-quality data set. This presentation will introduce preliminary results obtained during this campaign, in particular the evolution of the mesospheric temperature through the winter, the analysis of mountain waves occurrence and dynamics at mesospheric altitude, as well as the investigation of interesting individual GW cases.

  12. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science.

    PubMed

    Zevin, M; Coughlin, S; Bahaadini, S; Besler, E; Rohani, N; Allen, S; Cabero, M; Crowston, K; Katsaggelos, A K; Larson, S L; Lee, T K; Lintott, C; Littenberg, T B; Lundgren, A; Østerlund, C; Smith, J R; Trouille, L; Kalogera, V

    2017-01-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches , which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  13. Gravity Spy: Integrating Advanced LIGO Detector Characterization, Machine Learning, and Citizen Science

    NASA Technical Reports Server (NTRS)

    Zevin, M.; Coughlin, S.; Bahaadini, S.; Besler, E.; Rohani, N.; Allen, S.; Cabero, M.; Crowston, K.; Katsaggelos, A. K.; Littenberg, T. B.

    2017-01-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  14. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science

    NASA Astrophysics Data System (ADS)

    Zevin, M.; Coughlin, S.; Bahaadini, S.; Besler, E.; Rohani, N.; Allen, S.; Cabero, M.; Crowston, K.; Katsaggelos, A. K.; Larson, S. L.; Lee, T. K.; Lintott, C.; Littenberg, T. B.; Lundgren, A.; Østerlund, C.; Smith, J. R.; Trouille, L.; Kalogera, V.

    2017-03-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  15. Gravity Spy: integrating advanced LIGO detector characterization, machine learning, and citizen science

    PubMed Central

    Zevin, M; Coughlin, S; Bahaadini, S; Besler, E; Rohani, N; Allen, S; Cabero, M; Crowston, K; Katsaggelos, A K; Larson, S L; Lee, T K; Lintott, C; Littenberg, T B; Lundgren, A; Østerlund, C; Smith, J R; Trouille, L; Kalogera, V

    2018-01-01

    With the first direct detection of gravitational waves, the advanced laser interferometer gravitational-wave observatory (LIGO) has initiated a new field of astronomy by providing an alternative means of sensing the universe. The extreme sensitivity required to make such detections is achieved through exquisite isolation of all sensitive components of LIGO from non-gravitational-wave disturbances. Nonetheless, LIGO is still susceptible to a variety of instrumental and environmental sources of noise that contaminate the data. Of particular concern are noise features known as glitches, which are transient and non-Gaussian in their nature, and occur at a high enough rate so that accidental coincidence between the two LIGO detectors is non-negligible. Glitches come in a wide range of time-frequency-amplitude morphologies, with new morphologies appearing as the detector evolves. Since they can obscure or mimic true gravitational-wave signals, a robust characterization of glitches is paramount in the effort to achieve the gravitational-wave detection rates that are predicted by the design sensitivity of LIGO. This proves a daunting task for members of the LIGO Scientific Collaboration alone due to the sheer amount of data. In this paper we describe an innovative project that combines crowdsourcing with machine learning to aid in the challenging task of categorizing all of the glitches recorded by the LIGO detectors. Through the Zooniverse platform, we engage and recruit volunteers from the public to categorize images of time-frequency representations of glitches into pre-identified morphological classes and to discover new classes that appear as the detectors evolve. In addition, machine learning algorithms are used to categorize images after being trained on human-classified examples of the morphological classes. Leveraging the strengths of both classification methods, we create a combined method with the aim of improving the efficiency and accuracy of each individual

  16. FXR agonist activity of conformationally constrained analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Bruce Wisely, G

    2009-08-15

    Two series of conformationally constrained analogs of the FXR agonist GW 4064 1 were prepared. Replacement of the metabolically labile stilbene with either benzothiophene or naphthalene rings led to the identification of potent full agonists 2a and 2g.

  17. GW LIBRAE: STILL HOT EIGHT YEARS POST-OUTBURST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.

    We report continued Hubble Space Telescope ( HST ) ultraviolet spectra and ground-based optical photometry and spectroscopy of GW Librae eight years after its largest known dwarf nova outburst in 2007. This represents the longest cooling timescale measured for any dwarf nova. The spectra reveal that the white dwarf still remains about 3000 K hotter than its quiescent value. Both ultraviolet and optical light curves show a short period of 364–373 s, similar to one of the non-radial pulsation periods present for years prior to the outburst, and with a similar large UV/optical amplitude ratio. A large modulation at amore » period of 2 hr (also similar to that observed prior to outburst) is present in the optical data preceding and during the HST observations, but the satellite observation intervals did not cover the peaks of the optical modulation, and so it is not possible to determine its corresponding UV amplitude. The similarity of the short and long periods to quiescent values implies that the pulsating, fast spinning white dwarf in GW Lib may finally be nearing its quiescent configuration.« less

  18. Applications of Gas Imaging Micro-Well Detectors to an Advanced Compton Telescope

    NASA Technical Reports Server (NTRS)

    Bloser, P. F.; Hunter, S. D.; Ryan, J. M.; McConnell, M. L.; Miller, R. S.; Jackson, T. N.; Bai, B.; Jung, S.

    2003-01-01

    We present a concept for an Advanced Compton Telescope (ACT) based on the use of pixelized gas micro-well detectors to form a three-dimensional electron track imager. A micro-well detector consists of an array of individual micro-patterned proportional counters opposite a planar drift electrode. When combined with thin film transistor array readouts, large gas volumes may be imaged with very good spatial and energy resolution at reasonable cost. The third dimension is determined by timing the drift of the ionization electrons. The primary advantage of this approach is the excellent tracking of the Compton recoil electron that is possible in a gas volume. Such good electron tracking allows us to reduce the point spread function of a single incident photon dramatically, greatly improving the imaging capability and sensitivity. The polarization sensitivity, which relies on events with large Compton scattering angles, is particularly enhanced. We describe a possible ACT implementation of this technique, in which the gas tracking volume is surrounded by a CsI calorimeter, and present our plans to build and test a small prototype over the next three years.

  19. New measurement of antineutrino oscillation with the full detector configuration at Daya Bay

    DOE PAGES

    An, F. P.; Balantekin, A. B.; Band, H. R.; ...

    2015-09-11

    We report a new measurement of electron antineutrino disappearance using the fully constructed Daya Bay Reactor Neutrino Experiment. The final two of eight antineutrino detectors were installed in the summer of 2012. Including the 404 days of data collected from October 2012 to November 2013 resulted in a total exposure of 6.9×10 5 GW th ton days, a 3.6 times increase over our previous results. Improvements in energy calibration limited variations between detectors to 0.2%. Removal of six 241Am- 13C radioactive calibration sources reduced the background by a factor of 2 for the detectors in the experimental hall furthest frommore » the reactors. Direct prediction of the antineutrino signal in the far detectors based on the measurements in the near detectors explicitly minimized the dependence of the measurement on models of reactor antineutrino emission. The uncertainties in our estimates of 2sin2θ 13 and |Δm 2 ee| were halved as a result of these improvements. An analysis of the relative antineutrino rates and energy spectra between detectors gave 2sin2θ 13=0.084±0.005 and |Δm 2 ee|=(2.42±0.11)×10 –3 eV 2 in the three-neutrino framework.« less

  20. Gravitational wave detection in space

    NASA Astrophysics Data System (ADS)

    Ni, Wei-Tou

    Gravitational Wave (GW) detection in space is aimed at low frequency band (100nHz-100mHz) and middle frequency band (100mHz-10Hz). The science goals are the detection of GWs from (i) Supermassive Black Holes; (ii) Extreme-Mass-Ratio Black Hole Inspirals; (iii) Intermediate-Mass Black Holes; (iv) Galactic Compact Binaries and (v) Relic GW Background. In this paper, we present an overview on the sensitivity, orbit design, basic orbit configuration, angular resolution, orbit optimization, deployment, time-delay interferometry (TDI) and payload concept of the current proposed GW detectors in space under study. The detector proposals under study have arm length ranging from 1000km to 1.3 × 109km (8.6AU) including (a) Solar orbiting detectors — (ASTROD Astrodynamical Space Test of Relativity using Optical Devices (ASTROD-GW) optimized for GW detection), Big Bang Observer (BBO), DECi-hertz Interferometer GW Observatory (DECIGO), evolved LISA (e-LISA), Laser Interferometer Space Antenna (LISA), other LISA-type detectors such as ALIA, TAIJI etc. (in Earthlike solar orbits), and Super-ASTROD (in Jupiterlike solar orbits); and (b) Earth orbiting detectors — ASTROD-EM/LAGRANGE, GADFLI/GEOGRAWI/g-LISA, OMEGA and TIANQIN.

  1. The GW170817/GRB 170817A/AT 2017gfo Association: Some Implications for Physics and Astrophysics

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Zhang, Fu-Wen; Wang, Yuan-Zhu; Shen, Zhao-Qiang; Liang, Yun-Feng; Li, Xiang; Liao, Neng-Hui; Jin, Zhi-Ping; Yuan, Qiang; Zou, Yuan-Chuan; Fan, Yi-Zhong; Wei, Da-Ming

    2017-12-01

    On 2017 August 17, a gravitational-wave event (GW170817) and an associated short gamma-ray burst (GRB 170817A) from a binary neutron star merger had been detected. The follow-up optical/infrared observations also identified the macronova/kilonova emission (AT 2017gfo). In this work, we discuss some implications of the remarkable GW170817/GRB 170817A/AT 2017gfo association. We show that the ∼1.7 s time delay between the gravitational-wave (GW) and GRB signals imposes very tight constraints on the superluminal movement of gravitational waves (i.e., the relative departure of GW velocity from the speed of light is ≤slant 4.3× {10}-16) or the possible violation of the weak equivalence principle (i.e., the difference of the gamma-ray and GW trajectories in the gravitational field of the galaxy and the local universe should be within a factor of ∼ 3.4× {10}-9). The so-called Dark Matter Emulators and a class of contender models for cosmic acceleration (“Covariant Galileon”) are ruled out as well. The successful identification of lanthanide elements in the macronova/kilonova spectrum also excludes the possibility that the progenitors of GRB 170817A are a binary strange star system. The high neutron star merger rate (inferred from both the local sGRB data and the gravitational-wave data) together with the significant ejected mass strongly suggest that such mergers are the prime sites of heavy r-process nucleosynthesis.

  2. Advancing the technology of monolithic CMOS detectors for use as x-ray imaging spectrometers

    NASA Astrophysics Data System (ADS)

    Kenter, Almus; Kraft, Ralph; Gauron, Thomas; Amato, Stephen

    2017-08-01

    The Smithsonian Astrophysical Observatory (SAO) in collaboration with SRI/Sarnoff has been engaged in a multi year effort to advance the technology of monolithic back-thinned CMOS detectors for use as X-ray imaging spectrometers. The long term goal of this campaign is to produce X-ray Active Pixel Sensor (APS) detectors with Fano limited performance over the 0.1-10keV band while incorporating the many benefits of CMOS technology. These benefits include: low power consumption, radiation "hardness", high levels of integration, and very high read rates. Such devices would be ideal for candidate post 2020 decadal missions such as LYNX and for smaller more immediate applications such as CubeX. Devices from a recent fabrication have been back-thinned, packaged and tested for soft X-ray response. These devices have 16μm pitch, 6 Transistor Pinned Photo Diode (6TPPD) pixels with ˜135μV/electron sensitivity and a highly parallel signal chain. These new detectors are fabricated on 10μm epitaxial silicon and have a 1k by 1k format. We present details of our camera design and device performance with particular emphasis on those aspects of interest to single photon counting X-ray astronomy. These features include read noise, X-ray spectral response and quantum efficiency.

  3. Degeneracy of gravitational waveforms in the context of GW150914

    NASA Astrophysics Data System (ADS)

    Creswell, James; Liu, Hao; Jackson, Andrew D.; von Hausegger, Sebastian; Naselsky, Pavel

    2018-03-01

    We study the degeneracy of theoretical gravitational waveforms for binary black hole mergers using an aligned-spin effective-one-body model. After appropriate truncation, bandpassing, and matching, we identify regions in the mass–spin parameter space containing waveforms similar to the template proposed for GW150914, with masses m1 = 36+5‑4 Msolar and m2 = 29+4‑4 Msolar, using the cross-correlation coefficient as a measure of the similarity between waveforms. Remarkably high cross-correlations are found across broad regions of parameter space. The associated uncertanties exceed these from LIGO's Bayesian analysis considerably. We have shown that waveforms with greatly increased masses, such as m1 = 70 Msolar and m2 = 35 Msolar, and strong anti-aligned spins (χ1 = 0.95 and χ2 = ‑0.95) yield almost the same signal-to-noise ratio in the strain data for GW150914.

  4. Development of an advanced antineutrino detector for reactor monitoring

    DOE PAGES

    Classen, T.; Bernstein, A.; Bowden, N. S.; ...

    2014-11-05

    We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less

  5. REVIEW ARTICLE: On correlation effects in electron spectroscopies and the GW approximation

    NASA Astrophysics Data System (ADS)

    Hedin, Lars

    1999-10-01

    The GW approximation (GWA) extends the well-known Hartree-Fock approximation (HFA) for the self-energy (exchange potential), by replacing the bare Coulomb potential v by the dynamically screened potential W, e.g. Vex = iGv is replaced by icons/Journals/Common/Sigma" ALT="Sigma" ALIGN="TOP"/>GW = iGW. Here G is the one-electron Green's function. The GWA like the HFA is self-consistent, which allows for solutions beyond perturbation theory, like say spin-density waves. In a first approximation, iGW is a sum of a statically screened exchange potential plus a Coulomb hole (equal to the electrostatic energy associated with the charge pushed away around a given electron). The Coulomb hole part is larger in magnitude, but the two parts give comparable contributions to the dispersion of the quasi-particle energy. The GWA can be said to describe an electronic polaron (an electron surrounded by an electronic polarization cloud), which has great similarities to the ordinary polaron (an electron surrounded by a cloud of phonons). The dynamical screening adds new crucial features beyond the HFA. With the GWA not only bandstructures but also spectral functions can be calculated, as well as charge densities, momentum distributions, and total energies. We will discuss the ideas behind the GWA, and generalizations which are necessary to improve on the rather poor GWA satellite structures in the spectral functions. We will further extend the GWA approach to fully describe spectroscopies like photoemission, x-ray absorption, and electron scattering. Finally we will comment on the relation between the GWA and theories for strongly correlated electronic systems. In collecting the material for this review, a number of new results and perspectives became apparent, which have not been published elsewhere.

  6. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Barriga, P.; Blair, D. G.; Coward, D.; Davidson, J.; Dumas, J.-C.; Howell, E.; Ju, L.; Wen, L.; Zhao, C.; McClelland, D. E.; Scott, S. M.; Slagmolen, B. J. J.; Inta, R.; Munch, J.; Ottaway, D. J.; Veitch, P.; Hosken, D.; Melatos, A.; Chung, C.; Sammut, L.; Galloway, D. K.; Marx, J.; Whitcomb, S.; Shoemaker, D.; Hughes, S. A.; Reitze, D. H.; Iyer, B. R.; Dhurandhar, S. V.; Souradeep, T.; Unnikrishnan, C. S.; Rajalakshmi, G.; Man, C. N.; Heidmann, A.; Cohadon, P.-F.; Briant, T.; Grote, H.; Danzmann, K.; Lück, H.; Willke, B.; Strain, K. A.; Sathyaprakash, B. S.; Cao, J.; Cheung, Y.-K. E.; Zhang, Y.

    2010-04-01

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  7. Earth Observing-1 Advanced Land Imager: Dark Current and Noise Characterization and Anomalous Detectors

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.

    2001-01-01

    The dark current and noise characteristics of the Earth Observing-1 Advanced Land Imager measured during ground calibration at MIT Lincoln Laboratory are presented. Data were collected for the nominal focal plane operating temperature of 220 K as well as supplemental operating temperatures (215 and 225 K). Dark current baseline values are provided, and noise characterization includes the evaluation of white, coherent, low frequency, and high frequency components. Finally, anomalous detectors, characterized by unusual dark current, noise, gain, or cross-talk properties are investigated.

  8. Fine-mapping of qGW4.05, a major QTL for kernel weight and size in maize.

    PubMed

    Chen, Lin; Li, Yong-xiang; Li, Chunhui; Wu, Xun; Qin, Weiwei; Li, Xin; Jiao, Fuchao; Zhang, Xiaojing; Zhang, Dengfeng; Shi, Yunsu; Song, Yanchun; Li, Yu; Wang, Tianyu

    2016-04-12

    Kernel weight and size are important components of grain yield in cereals. Although some information is available concerning the map positions of quantitative trait loci (QTL) for kernel weight and size in maize, little is known about the molecular mechanisms of these QTLs. qGW4.05 is a major QTL that is associated with kernel weight and size in maize. We combined linkage analysis and association mapping to fine-map and identify candidate gene(s) at qGW4.05. QTL qGW4.05 was fine-mapped to a 279.6-kb interval in a segregating population derived from a cross of Huangzaosi with LV28. By combining the results of regional association mapping and linkage analysis, we identified GRMZM2G039934 as a candidate gene responsible for qGW4.05. Candidate gene-based association mapping was conducted using a panel of 184 inbred lines with variable kernel weights and kernel sizes. Six polymorphic sites in the gene GRMZM2G039934 were significantly associated with kernel weight and kernel size. The results of linkage analysis and association mapping revealed that GRMZM2G039934 is the most likely candidate gene for qGW4.05. These results will improve our understanding of the genetic architecture and molecular mechanisms underlying kernel development in maize.

  9. SU-E-T-607: Performance Quantification of the Nine Detectors Used for Dosimetry Measurements in Advanced Radiation Therapy Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markovic, M; Stathakis, S; Jurkovic, I

    2015-06-15

    Purpose: The purpose of this study was to quantify performance of the nine detectors used for dosimetry measurements in advanced radiation therapy treatments. Methods: The 6 MV beam was utilized for measurements of the field sizes with the lack of lateral charge particle equilibrium. For dose fidelity aspect, energy dependence was studied by measuring PDD and profiles at different depths. The volume effect and its influence on the measured dose profiles have been observed by measuring detector’s response function. Output factor measurements with respect to change in energy spectrum have been performed and collected data has been analyzed. The linearitymore » of the measurements with the dose delivered has been evaluated and relevant comparisons were done. Results: The measured values of the output factors with respect to change in energy spectrum indicated presence of the energy dependence. The detectors with active volume size ≤ 0.3 mm3 maximum deviation from the mean is 5.6% for the field size 0.5 x 0.5 cm2 while detectors with active volume size > 0.3 mm3 have maximum deviation from the mean 7.1%. Linearity with dose at highest dose rate examined for diode detectors showed maximum deviation of 4% while ion chambers showed maximum deviation of 2.2%. Dose profiles showed energy dependence at shallow depths (surface to dmax) influenced by low energy particles with 12 % maximum deviation from the mean for 5 mm2 field size. In relation to Monte Carlo calculation, the detector’s response function σ values were between (0.42±0.25) mm and (1.2±0.25) mm. Conclusion: All the detectors are appropriate for the dosimetry measurements in advanced radiation therapy treatments. The choice of the detectors has to be determined by the application and the scope of the measurements in respect to energy dependence and ability to accurately resolve dose profiles as well as to it’s intrinsic characteristics.« less

  10. Direct imaging detectors for electron microscopy

    NASA Astrophysics Data System (ADS)

    Faruqi, A. R.; McMullan, G.

    2018-01-01

    Electronic detectors used for imaging in electron microscopy are reviewed in this paper. Much of the detector technology is based on the developments in microelectronics, which have allowed the design of direct detectors with fine pixels, fast readout and which are sufficiently radiation hard for practical use. Detectors included in this review are hybrid pixel detectors, monolithic active pixel sensors based on CMOS technology and pnCCDs, which share one important feature: they are all direct imaging detectors, relying on directly converting energy in a semiconductor. Traditional methods of recording images in the electron microscope such as film and CCDs, are mentioned briefly along with a more detailed description of direct electronic detectors. Many applications benefit from the use of direct electron detectors and a few examples are mentioned in the text. In recent years one of the most dramatic advances in structural biology has been in the deployment of the new backthinned CMOS direct detectors to attain near-atomic resolution molecular structures with electron cryo-microscopy (cryo-EM). The development of direct detectors, along with a number of other parallel advances, has seen a very significant amount of new information being recorded in the images, which was not previously possible-and this forms the main emphasis of the review.

  11. The "Puck" energetic charged particle detector: Design, heritage, and advancements.

    PubMed

    Clark, G; Cohen, I; Westlake, J H; Andrews, G B; Brandt, P; Gold, R E; Gkioulidou, M A; Hacala, R; Haggerty, D; Hill, M E; Ho, G C; Jaskulek, S E; Kollmann, P; Mauk, B H; McNutt, R L; Mitchell, D G; Nelson, K S; Paranicas, C; Paschalidis, N; Schlemm, C E

    2016-08-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  12. The "Puck" Energetic Charged Particle Detector: Design, Heritage, and Advancements

    NASA Technical Reports Server (NTRS)

    Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; hide

    2016-01-01

    Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of approximately 10 kiloelectronvolts to several megaelectronvolts. This sensor makes simultaneous angular measurements of electron fluxes from the tens of kiloelectronvolts to about 1 megaelectronvolt. The same measurements can be extended down to approximately 1 kiloelectronvolt per nucleon,with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.

  13. The PyCBC search for compact binary mergers in the second run of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Dal Canton, Tito; PyCBC Team

    2017-01-01

    The PyCBC software implements a matched-filter search for gravitational-wave signals associated with mergers of compact binaries. During the first observing run of Advanced LIGO, it played a fundamental role in the discovery of the binary-black-hole merger signals GW150914, GW151226 and LVT151012. In preparation for Advanced LIGO's second run, PyCBC has been modified with the goal of increasing the sensitivity of the search, reducing its computational cost and expanding the explored parameter space. The ability to report signals with a latency of tens of seconds and to perform inference on the parameters of the detected signals has also been introduced. I will give an overview of PyCBC and present the new features and their impact.

  14. LXR activation by GW3965 alters fat tissue distribution and adipose tissue inflammation in ob/ob female mice[S

    PubMed Central

    Archer, Amena; Stolarczyk, Émilie; Doria, Maria Luisa; Helguero, Luisa; Domingues, Rosário; Howard, Jane K.; Mode, Agneta; Korach-André, Marion; Gustafsson, Jan-Åke

    2013-01-01

    To investigate the role of liver X receptor (LXR) in adipose tissue metabolism during obesity, ob/ob mice were treated for 5 weeks with the synthetic LXR agonist GW3965. MRI analysis revealed that pharmacological activation of LXR modified fat distribution by decreasing visceral (VS) fat and inversely increasing subcutaneous (SC) fat storage without affecting whole body fat content. This was concordant with opposite regulation by GW3965 of the lipolytic markers hormone-sensitive lipase (HSL) and adipose triglyceride lipase (ATGL) in the two fat depots; moreover, the expression of genes involved in lipogenesis was significantly induced in SC fat. Lipidomic analysis suggested that changes in lipid composition in response to GW3965 also varied between VS and SC fat. In both depots, the observed alteration in lipid composition indicated an overall change toward less lipotoxic lipids. Flow cytometry analysis showed decreased immune cell infiltration in adipose tissue of ob/ob mice in response to GW3965 treatment, which in VS fat mainly affected the macrophage population and in SC fat the lymphocyte population. In line with this, the expression and secretion of proinflammatory markers was decreased in both fat deposits with GW3965 treatment. PMID:23446231

  15. Constraints from the time lag between gravitational waves and gamma rays: Implications of GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Shoemaker, Ian M.; Murase, Kohta

    2018-04-01

    The Laser Interferometer Gravitational-Wave Observatory (LIGO) has recently discovered gravitational waves (GWs) from its first neutron star-neutron star merger at a distance of ˜40 Mpc from the Earth. The associated electromagnetic (EM) detection of the event, including the short gamma-ray burst within Δ t ˜2 s after the GW arrival, can be used to test various aspects of sources physics and GW propagation. Using GW170817 as the first GW-EM example, we show that this event provides a stringent direct test that GWs travel at the speed of light. The gravitational potential of the Milky Way provides a potential source of Shapiro time delay difference between the arrival of photons and GWs, and we demonstrate that the nearly coincident detection of the GW and EM signals can yield strong limits on anomalous gravitational time delay, through updating the previous limits taking into account details of Milky Way's gravitational potential. Finally, we also obtain an intriguing limit on the size of the prompt emission region of GRB 170817A, and discuss implications for the emission mechanism of short gamma-ray bursts.

  16. A More Stringent Constraint on the Mass Ratio of Binary Neutron Star Merger GW170817

    NASA Astrophysics Data System (ADS)

    Gao, He; Cao, Zhoujian; Ai, Shunke; Zhang, Bing

    2017-12-01

    Recently, the LIGO–Virgo Collaborations reported their first detection of gravitational-wave (GW) signals from the low-mass compact binary merger GW170817, which is most likely due to a double neutron star (NS) merger. With the GW signals only, the chirp mass of the binary is precisely constrained to {1.188}-0.002+0.004 {M}ȯ , but the mass ratio is loosely constrained in the range 0.4–1, so that a very rough estimation of the individual NS masses (1.36 M ⊙ < M 1 < 2.26 M ⊙ and 0.86 M ⊙ < M 2 < 1.36 M ⊙) was obtained. Here, we propose that if one can constrain the dynamical ejecta mass through performing kilonova modeling of the optical/IR data, by utilizing an empirical relation between the dynamical ejecta mass and the mass ratio of NS binaries, one may place a more stringent constraint on the mass ratio of the system. For instance, considering that the red “kilonova” component is powered by the dynamical ejecta, we reach a tight constraint on the mass ratio in the range of 0.46–0.59. Alternatively, if the blue “kilonova” component is powered by the dynamical ejecta, the mass ratio would be constrained in the range of 0.53–0.67. Overall, such a multi-messenger approach could narrow down the mass ratio of GW170817 system to the range of 0.46–0.67, which gives a more precise estimation of the individual NS mass than pure GW signal analysis, i.e., 1.61 M ⊙ < M 1 < 2.11 M ⊙ and 0.90 M ⊙ < M 2 < 1.16 M ⊙.

  17. Energy level alignment at hybridized organic-metal interfaces from a GW projection approach

    NASA Astrophysics Data System (ADS)

    Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying

    Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.

  18. Semiconductor neutron detectors

    NASA Astrophysics Data System (ADS)

    Gueorguiev, Andrey; Hong, Huicong; Tower, Joshua; Kim, Hadong; Cirignano, Leonard; Burger, Arnold; Shah, Kanai

    2016-09-01

    Lithium Indium Selenide (LiInSe2) has been under development in RMD Inc. and Fisk University for room temperature thermal neutron detection due to a number of promising properties. The recent advances of the crystal growth, material processing, and detector fabrication technologies allowed us to fabricate large detectors with 100 mm2 active area. The thermal neutron detection sensitivity and gamma rejection ratio (GRR) were comparable to 3He tube with 10 atm gas pressure at comparable dimensions. The synthesis, crystal growth, detector fabrication, and characterization are reported in this paper.

  19. Wind Competing Against Settling: A Coherent Model of the GW Virginis Instability Domain

    NASA Astrophysics Data System (ADS)

    Quirion, P.-O.; Fontaine, G.; Brassard, P.

    2012-08-01

    We examine in detail the proposition that GW Vir pulsators owe their existence to a residual stellar wind that competes against the settling of the carbon and oxygen atoms which "fuel" pulsational instabilities via their opacity. With cooling, the fading wind progressively loses its capacity to maintain enough of these opaque atoms in the driving region, leading naturally to a red edge where pulsations disappear. We investigate, in particular, the effects of changing the mass-loss law and the initial envelope composition on the position of the red edge in the log g-T eff diagram. With this approach, we derive a coherent picture of the GW Vir instability domain.

  20. Detecting binary neutron star systems with spin in advanced gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.

    2012-10-01

    The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.

  1. Results of the GstLAL Search for Compact Binary Mergers in Advanced LIGO's First Observing Run

    NASA Astrophysics Data System (ADS)

    Lang, Ryan; LIGO Scientific Collaboration; Virgo Collaboration Collaboration

    2017-01-01

    Advanced LIGO's first observing period ended in January 2016. We discuss the GstLAL matched-filter search over this data set for gravitational waves from compact binary objects with total mass up to 100 solar masses. In particular, we discuss the recovery of the unambiguous gravitational wave signals GW150914 and GW151226, as well as the possible third signal LVT151012. Additionally, we discuss the constraints we can place on binary-neutron-star and neutron-star-black-hole system merger rates.

  2. The PyCBC search for binary black hole coalescences in Advanced LIGO's first observing run

    NASA Astrophysics Data System (ADS)

    Willis, Joshua; LIGO Scientific Collaboration

    2017-01-01

    Advanced LIGO's first observing run saw the first detections of binary black hole coalescences. We describe the PyCBC matched filter analysis, and the results of that search for binary systems with total mass up to 100 solar masses. This is a matched filter search for general-relativistic signals from binary black hole systems. Two signals, GW150914 and GW151226, were identified with very high significance, and a third possible signal, LVT151012, was found, though at much lower significance. Supported by NSF award PHY-1506254.

  3. Advances in the growth of alkaline-earth halide single crystals for scintillator detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boatner, Lynn A; Ramey, Joanne Oxendine; Kolopus, James A

    2014-01-01

    Alkaline-earth scintillators such as strontium iodide and other alkaline-earth halides activated with divalent europium represent some of the most efficient and highest energy resolution scintillators for use as gamma-ray detectors in a wide range of applications. These applications include the areas of nuclear nonproliferation, homeland security, the detection of undeclared nuclear material, nuclear physics and materials science, medical diagnostics, space physics, high energy physics, and radiation monitoring systems for first responders, police, and fire/rescue personnel. Recent advances in the growth of large single crystals of these scintillator materials hold the promise of higher crystal yields and significantly lower detector productionmore » costs. In the present work, we describe new processing protocols that, when combined with our molten salt filtration methods, have led to advances in achieving a significant reduction of cracking effects during the growth of single crystals of SrI2:Eu2+. In particular, we have found that extended pumping on the molten crystal-growth charge under vacuum for time periods extending up to 48 hours is generally beneficial in compensating for variations in the alkaline-earth halide purity and stoichiometry of the materials as initially supplied by commercial sources. These melt-pumping and processing techniques are now being applied to the purification of CaI2:Eu2+ and some mixed-anion europium-doped alkaline-earth halides prior to single-crystal growth by means of the vertical Bridgman technique. The results of initial studies of the effects of aliovalent doping of SrI2:Eu2+ on the scintillation characteristics of this material are also described.« less

  4. A double-blind, randomized, placebo-controlled, single-dose study of the cyclooxygenase-2 inhibitor, GW406381, as a treatment for acute migraine.

    PubMed

    Wentz, A L; Jimenez, T B; Dixon, R M; Aurora, S K; Gold, M

    2008-04-01

    The objective of the present study was to explore the clinical efficacy and tolerability of GW406381, a cyclooxygenase-2 (COX-2) inhibitor with relatively high CNS penetration, in acute migraine. This was a double-blind, single-dose study of GW406381 compared with placebo and naproxen sodium compared with placebo (protocol number CXA20008). Three hundred and thirty-seven subjects were randomized 1:1:1 to GW406381 (70 mg), naproxen sodium (825 mg), or placebo for the treatment of one migraine headache of moderate or severe intensity in a potential 8-week period. The primary end-point was the proportion of subjects with headache relief [reduction in headache severity score from pre-dose 2 (moderate) or 3 (severe) to 0 (no pain) or 1 (mild)] at 2 h post-dose for GW406381 compared with placebo. Significantly higher proportions of subjects treated with GW406381 (50%, P = 0.032) or naproxen sodium (56%, P = 0.005) than with placebo (35%) reported headache relief at 2 h post-dose. Additional significant benefits were observed on many secondary outcomes, including proportions of subjects pain-free, for both GW406381 and naproxen sodium treatment compared with placebo. Both active treatments were well tolerated. Single-dose GW406381 (70 mg) and naproxen sodium (825 mg) were effective and well tolerated in the treatment of acute migraine.

  5. The Characterization of Virgo Data and Its Impact on Gravitational-Wave Searches

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; hide

    2012-01-01

    Between 2007 and 2010 Virgo collected data in coincidence with the LIGO and GEO gravitational-wave (GW) detectors. These data have been searched for GWs emitted by cataclysmic phenomena in the universe, by non-axisymmetric rotating neutron stars or from a stochastic background in the frequency band of the detectors. The sensitivity of GW searches is limited by noise produced by the detector or its environment. It is therefore crucial to characterize the various noise sources in a GW detector. This paper reviews the Virgo detector noise sources, noise propagation, and conversion mechanisms which were identified in the three first Virgo observing runs. In many cases, these investigations allowed us to mitigate noise sources in the detector, or to selectively flag noise events and discard them from the data. We present examples from the joint LIGO-GEO-Virgo GW searches to show how well noise transients and narrow spectral lines have been identified and excluded from the Virgo data. We also discuss how detector characterization can improve the astrophysical reach of gravitational wave searches.

  6. Proteomics and genetic analyses reveal the effects of arsenite oxidation on metabolic pathways and the roles of AioR in Agrobacterium tumefaciens GW4.

    PubMed

    Shi, Kaixiang; Wang, Qian; Fan, Xia; Wang, Gejiao

    2018-04-01

    A heterotrophic arsenite [As(III)]-oxidizing bacterium Agrobacterium tumefaciens GW4 isolated from As(III)-rich groundwater sediment showed high As(III) resistance and could oxidize As(III) to As(V). The As(III) oxidation could generate energy and enhance growth, and AioR was the regulator for As(III) oxidase. To determine the related metabolic pathways mediated by As(III) oxidation and whether AioR regulated other cellular responses to As(III), isobaric tags for relative and absolute quantitation (iTRAQ) was performed in four treatments, GW4 (+AsIII)/GW4 (-AsIII), GW4-ΔaioR (+AsIII)/GW4-ΔaioR (-AsIII), GW4-ΔaioR (-AsIII)/GW4 (-AsIII) and GW4-ΔaioR (+AsIII)/GW4 (+AsIII). A total of 41, 71, 82 and 168 differentially expressed proteins were identified, respectively. Using electrophoretic mobility shift assay (EMSA) and qRT-PCR, 12 genes/operons were found to interact with AioR. These results indicate that As(III) oxidation alters several cellular processes related to arsenite, such as As resistance (ars operon), phosphate (Pi) metabolism (pst/pho system), TCA cycle, cell wall/membrane, amino acid metabolism and motility/chemotaxis. In the wild type with As(III), TCA cycle flow is perturbed, and As(III) oxidation and fermentation are the main energy resources. However, when strain GW4-ΔaioR lost the ability of As(III) oxidation, the TCA cycle is the main way to generate energy. A regulatory cellular network controlled by AioR is constructed and shows that AioR is the main regulator for As(III) oxidation, besides, several other functions related to As(III) are regulated by AioR in parallel. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Advanced ROICs design for cooled IR detectors

    NASA Astrophysics Data System (ADS)

    Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent

    2008-04-01

    The CMOS silicon focal plan array technologies hybridized with infrared detectors materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time infrared detectors manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR detectors are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR detectors technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled infrared FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.

  8. Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil.

    PubMed

    Govarthanan, Muthusamy; Lee, Gun-Woong; Park, Jung-Hee; Kim, Jae Su; Lim, Sung-Sik; Seo, Sang-Ki; Cho, Min; Myung, Hyun; Kamala-Kannan, Seralathan; Oh, Byung-Taek

    2014-08-01

    This study was aimed at assess the potential of diazotrophic bacteria, Herbaspirillum sp. GW103, for bioleaching of Cu in mine soil. The strain exhibited resistance to As (550mgL(-1)), Cu (350mgL(-1)), Zn (300mgL(-1)) and Pb (200mgL(-1)). The copper resistance was further confirmed by locating copA and copB genes. The survival of the isolate GW103 during bioleaching was analyzed using green fluorescent protein tagged GW103. Response surface methodology based Box-Behnken design was used to optimize the physical and chemical conditions for Cu bioleaching. Five significant variables (temperature, incubation time, CaCO3, coconut oil cake (COC), agitation rate) were selected for the optimization. Second-order polynomials were established to identify the relationship between Cu bioleaching and variables. The optimal conditions for maximum Cu bioleaching (66%) were 30°C, 60h of incubation with 1.75% of CaCO3 and 3% COC at 140rpm. The results of Cu sequential extraction studies indicated that the isolate GW103 leached Cu from ion-exchangeable, reducible, strong organic and residual fractions. Obtained results point out that the isolate GW103 could be used for bioleaching of Cu from mine soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Efficient GW calculations using eigenvalue-eigenvector decomposition of the dielectric matrix

    NASA Astrophysics Data System (ADS)

    Nguyen, Huy-Viet; Pham, T. Anh; Rocca, Dario; Galli, Giulia

    2011-03-01

    During the past 25 years, the GW method has been successfully used to compute electronic quasi-particle excitation spectra of a variety of materials. It is however a computationally intensive technique, as it involves summations over occupied and empty electronic states, to evaluate both the Green function (G) and the dielectric matrix (DM) entering the expression of the screened Coulomb interaction (W). Recent developments have shown that eigenpotentials of DMs can be efficiently calculated without any explicit evaluation of empty states. In this work, we will present a computationally efficient approach to the calculations of GW spectra by combining a representation of DMs in terms of its eigenpotentials and a recently developed iterative algorithm. As a demonstration of the efficiency of the method, we will present calculations of the vertical ionization potentials of several systems. Work was funnded by SciDAC-e DE-FC02-06ER25777.

  10. Swift Follow-Up Observations of Candidate Gravitational-Wave Transient Events

    NASA Technical Reports Server (NTRS)

    Evans, P. A.; Fridriksson, J. K.; Gehrels, N.; Homan, J.; Osborne, J. P.; Siegel, M.; Beardmore, A.; Handbauer, P.; Gelbord, J.; Kennea, J. A.; hide

    2012-01-01

    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.

  11. Swift Follow-up Observations of Candidate Gravitational-wave Transient Events

    NASA Astrophysics Data System (ADS)

    Evans, P. A.; Fridriksson, J. K.; Gehrels, N.; Homan, J.; Osborne, J. P.; Siegel, M.; Beardmore, A.; Handbauer, P.; Gelbord, J.; Kennea, J. A.; Smith, M.; Zhu, Q.; LIGO Scientific Collaboration; Virgo Collaboration; Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Emilio, M. Di Paolo; Di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Eikenberry, S.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Forte, L. A.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McDaniel, P.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.

    2012-12-01

    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge." With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.

  12. Effect of heavy metals on acdS gene expression in Herbaspirillium sp. GW103 isolated from rhizosphere soil.

    PubMed

    Loganathan, Praburaman; Myung, Hyun; Muthusamy, Govarthanan; Lee, Kui-Jae; Seralathan, Kamala-Kannan; Oh, Byung-Taek

    2015-10-01

    This study aimed to understand the influence of heavy metals on 1-aminocyclopropane-1-carboxylate deaminase activity (ACCD) and acdS gene expression in Herbaspirillium sp. GW103. The GW103 strain ACCD activity decreased in cells grown in a medium supplemented with Pb and As, whereas cells grown in medium supplemented with Cu showed increase in enzyme activity. The GW103 strain produced 262.2 ± 6.17 μmol of α-ketobutyrate per milligram of protein per hour during ACC deamination at 25 °C after 24 h incubation. Using a PCR approach, an acdS coding-gene of 1.06 kbp was amplified in isolate GW103, showing 92% identity with Herbaspirillum seropedicae SmR1 acdS gene. Real time quantitative polymerase chain reaction results indicate that the acdS expression rate was increased (7.1-fold) in the presence of Cu, whereas it decreased (0.2- and 0.1-fold) in the presence of As and Pb. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands

    PubMed Central

    Marino, Michael; Banerjee, Manidipa; Jonquières, Renaud; Cossart, Pascale; Ghosh, Partho

    2002-01-01

    InlB, a surface-localized protein of Listeria monocytogenes, induces phagocytosis in non-phagocytic mammalian cells by activating Met, a receptor tyrosine kinase. InlB also binds glycosaminoglycans and the protein gC1q-R, two additional host ligands implicated in invasion. We present the structure of InlB, revealing a highly elongated molecule with leucine-rich repeats that bind Met at one end, and GW domains that dissociably bind the bacterial surface at the other. Surprisingly, the GW domains are seen to resemble SH3 domains. Despite this, GW domains are unlikely to act as functional mimics of SH3 domains since their potential proline-binding sites are blocked or destroyed. However, we do show that the GW domains, in addition to binding glycosaminoglycans, bind gC1q-R specifically, and that this binding requires release of InlB from the bacterial surface. Dissociable attachment to the bacterial surface via the GW domains may be responsible for restricting Met activation to a small, localized area of the host cell and for coupling InlB-induced host membrane dynamics with bacterial proximity during invasion. PMID:12411480

  14. Effect of ladder diagrams on optical absorption spectra in a quasiparticle self-consistent GW framework

    NASA Astrophysics Data System (ADS)

    Cunningham, Brian; Grüning, Myrta; Azarhoosh, Pooya; Pashov, Dimitar; van Schilfgaarde, Mark

    2018-03-01

    We present an approach to calculate the optical absorption spectra that combines the quasiparticle self-consistent GW method [Phys. Rev. B 76, 165106 (2007), 10.1103/PhysRevB.76.165106] for the electronic structure with the solution of the ladder approximation to the Bethe-Salpeter equation for the macroscopic dielectric function. The solution of the Bethe-Salpeter equation has been implemented within an all-electron framework, using a linear muffin-tin orbital basis set, with the contribution from the nonlocal self-energy to the transition dipole moments (in the optical limit) evaluated explicitly. This approach addresses those systems whose electronic structure is poorly described within the standard perturbative GW approaches with density-functional theory calculations as a starting point. The merits of this approach have been exemplified by calculating optical absorption spectra of a strongly correlated transition metal oxide, NiO, and a narrow gap semiconductor, Ge. In both cases, the calculated spectrum is in good agreement with the experiment. It is also shown that for systems whose electronic structure is well-described within the standard perturbative GW , such as Si, LiF, and h -BN , the performance of the present approach is in general comparable to the standard GW plus Bethe-Salpeter equation. It is argued that both vertex corrections to the electronic screening and the electron-phonon interaction are responsible for the observed systematic overestimation of the fundamental band gap and spectrum onset.

  15. MODELING THE AFTERGLOW OF THE POSSIBLE FERMI -GBM EVENT ASSOCIATED WITH GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morsony, Brian J.; Workman, Jared C.; Ryan, Dominic M., E-mail: morsony@astro.umd.edu

    2016-07-10

    We model the possible afterglow of the Fermi Gamma-ray Burst Monitor (GBM) event associated with LIGO detection GW150914, under the assumption that the gamma-rays are produced by a short GRB-like relativistic outflow. We model GW150914-GBM as both a weak, on-axis short GRB and normal short GRB seen far off-axis. Given the large uncertainty in the position of GW150914, we determine that the best chance of finding the afterglow is with ASKAP or possibly the Murchinson Widefield Array (MWA), with the flux from an off-axis short GRB reaching 0.2–4 mJy (0.12–16 mJy) at 150 MHz (863.5 MHz) by 1–12 months aftermore » the initial event. At low frequencies, the source would evolve from a hard to soft spectrum over several months. The radio afterglow would be detectable for several months to years after it peaks, meaning the afterglow may still be detectable and increasing in brightness NOW (2016 mid-July). With a localization from the MWA or ASKAP, the afterglow would be detectable at higher radio frequencies with the ATCA and in X-rays with Chandra or XMM .« less

  16. Gravitational wave signature of a mini creation event (MCE)

    NASA Astrophysics Data System (ADS)

    Dhurandhar, S. V.; Narlikar, J. V.

    2018-07-01

    In light of the recent discoveries of binary black hole events and one neutron star event by the advanced LIGO (aLIGO) and advanced Virgo (aVirgo) detectors, we propose a new astrophysical source, namely, the mini creation event (MCE) as a possible source of gravitational waves (GW) to be detected by advanced detectors. The MCE is at the heart of the quasi steady state cosmology (QSSC) and is not expected to occur in standard cosmology. Generically, the MCE is anisotropic and we assume a Bianchi Tpye I model for its description. We compute its signature waveform and assume masses, distances analogous to the events detected. The striking feature of the waveform associated with this model of the MCE is that it depends only on one amplitude parameter and thus allows for simpler data analysis. By matched filtering the signal we find that, for a broad range of model parameters, the signal to noise ratio of the randomly oriented MCE is sufficiently high for a confident detection by aLIGO and aVirgo. We therefore propose the MCE as a viable astrophysical source of GW. The detection or non-detection of such a source also hold implications for QSSC, namely, whether it is a viable cosmology or not.

  17. The PPARβ/δ agonist GW501516 attenuates peritonitis in peritoneal fibrosis via inhibition of TAK1-NFκB pathway in rats.

    PubMed

    Su, Xuesong; Zhou, Guangyu; Wang, Yanqiu; Yang, Xu; Li, Li; Yu, Rui; Li, Detian

    2014-06-01

    Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25% PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1-NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1-NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.

  18. PPARδ agonist GW501516 prevents uncoupling of endothelial nitric oxide synthase in cerebral microvessels of hph-1 mice.

    PubMed

    Santhanam, Anantha Vijay R; d'Uscio, Livius V; He, Tongrong; Katusic, Zvonimir S

    2012-11-05

    Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH₄) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH₄-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH₄ and increased the ratio of BH₄ to 7,8-BH₂ (P<0.05, n=6-9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6-9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6-9) and catalase (P<0.05, n=6-8). PPARδ activation increased the total nitrite and nitrate (NO₂+NO₃) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH₄-deficient cerebral circulation. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein

    PubMed Central

    Azevedo, Jacinthe; Garcia, Damien; Pontier, Dominique; Ohnesorge, Stephanie; Yu, Agnes; Garcia, Shahinez; Braun, Laurence; Bergdoll, Marc; Hakimi, Mohamed Ali; Lagrange, Thierry; Voinnet, Olivier

    2010-01-01

    In plants and invertebrates, viral-derived siRNAs processed by the RNaseIII Dicer guide Argonaute (AGO) proteins as part of antiviral RNA-induced silencing complexes (RISC). As a counterdefense, viruses produce suppressor proteins (VSRs) that inhibit the host silencing machinery, but their mechanisms of action and cellular targets remain largely unknown. Here, we show that the Turnip crinckle virus (TCV) capsid, the P38 protein, acts as a homodimer, or multiples thereof, to mimic host-encoded glycine/tryptophane (GW)-containing proteins normally required for RISC assembly/function in diverse organisms. The P38 GW residues bind directly and specifically to Arabidopsis AGO1, which, in addition to its role in endogenous microRNA-mediated silencing, is identified as a major effector of TCV-derived siRNAs. Point mutations in the P38 GW residues are sufficient to abolish TCV virulence, which is restored in Arabidopsis ago1 hypomorphic mutants, uncovering both physical and genetic interactions between the two proteins. We further show how AGO1 quenching by P38 profoundly impacts the cellular availability of the four Arabidopsis Dicers, uncovering an AGO1-dependent, homeostatic network that functionally connects these factors together. The likely widespread occurrence and expected consequences of GW protein mimicry on host silencing pathways are discussed in the context of innate and adaptive immunity in plants and metazoans. PMID:20439431

  20. Production of polyhydroxyalkanoates from methanol by a new methylotrophic bacterium Methylobacterium sp. GW2.

    PubMed

    Yezza, A; Fournier, D; Halasz, A; Hawari, J

    2006-11-01

    A new bacterial strain, isolated from groundwater contaminated with explosives, was characterized as a pink-pigmented facultative methylotroph, affiliated to the genus Methylobacterium. The bacterial isolate designated as strain GW2 was found capable of producing the homopolymer poly-3-hydroxybutyrate (PHB) from various carbon sources such as methanol, ethanol, and succinate. Methanol acted as the best substrate for the production of PHB reaching 40 % w/w dry biomass. PHB accumulation was observed to be a growth-associated process, so that there was no need for two-step fermentation. Optimal growth occurred at 0.5 % (v/v) methanol concentration, and growth was strongly inhibited at alpha concentration above 2 % (v/v). Methylobacterium sp. strain GW2 was also able to accumulate the copolyester poly-3-hydroxybutyrate-poly-3-hydroxyvalerate (PHB/HV) when valeric acid was supplied as an auxiliary carbon source to methanol. After 66 h, a copolymer content of 30 % (w/w) was achieved with a PHB to PHV ratio of 1:2. Biopolymers produced by strain GW2 had an average molecular weight ranging from 229,350 to 233,050 Da for homopolymer PHB and from 362,430 to 411,300 Da for the copolymer PHB/HV.

  1. Development of an advanced combined iodine dispenser/detector. [for spacecraft water supplies

    NASA Technical Reports Server (NTRS)

    Lantz, J. B.; Jensen, F. C.; Winkler, H. E.; Schubert, F. A.

    1977-01-01

    Injection of iodine into water is widely used to control microbial growth. An entirely automated device for I2 injection has been developed for spacecraft application. Transfer of I2 into the water from a concentrated form is controlled electrochemically via feedback from an integrated photometric I2 level detector. All components are contained within a package weighing only 1.23 kg (2.7 lb) dry, which occupies only 1213 cu cm (74 cu in) of space, and which has the capacity to iodinate 10,900 kg (24,000 lb) of water of 5 ppm. These features exceed design specifications. The device performed satisfactorily during extended testing at variable water flow rates and temperatures. Designed to meet specifications of the Shuttle Orbiter, the device will find application in the regenerative water systems of advanced spacecraft.

  2. Synthesis of isosteric selenium analog of the PPARbeta/delta agonist GW501516 and comparison of biological activity.

    PubMed

    Sharma, Arun K; Sk, Ugir Hossain; He, Pengfei; Peters, Jeffrey M; Amin, Shantu

    2010-07-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and members of the nuclear hormone receptor superfamily. Herein, we describe an efficient synthesis of a novel isosteric selenium analog of the highly specific PPARbeta/delta ligand 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-thiazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (GW501516; 1). The study examined the efficiency of the novel selenium analog 2-methyl-4-((4-methyl-2-(4-trifluoromethylphenyl)-1,3-selenazol-5-yl)-methylsulfanyl)phenoxy-acetic acid (2) to activate PPARbeta/delta and the effect of ligand activation of PPARbeta/delta on cell proliferation and target gene expression in human HaCaT keratinocytes. The results showed that similar to GW501516, the Se-analog 2 increased expression of the known PPARbeta/delta target gene angiopoietin-like protein 4 (ANGPTL4); the compound 2 was comparable in efficacy as compared to GW501516. Consistent with a large body of evidence, the Se-analog inhibited cell proliferation in HaCaT keratinocytes similar to that observed with GW501516. In summary, the novel Se-analog 2 has been developed as a potent PPARbeta/delta ligand that may possess additional anti-cancer properties of selenium. 2010 Elsevier Ltd. All rights reserved.

  3. Electronic energy level alignment at metal-molecule interfaces with a GW approach

    NASA Astrophysics Data System (ADS)

    Tamblyn, Isaac; Darancet, Pierre; Quek, Su Ying; Bonev, Stanimir A.; Neaton, Jeffrey B.

    2011-11-01

    Using density functional theory and many-body perturbation theory within a GW approximation, we calculate the electronic structure of a metal-molecule interface consisting of benzene diamine (BDA) adsorbed on Au(111). Through direct comparison with photoemission data, we show that a conventional G0W0 approach can underestimate the energy of the adsorbed molecular resonance relative to the Au Fermi level by up to 0.8 eV. The source of this discrepancy is twofold: a 0.7 eV underestimate of the gas phase ionization energy (IE), and a 0.2 eV overestimate of the Au work function. Refinements to self-energy calculations within the GW framework that account for deviations in both the Au work function and BDA gas-phase IE can result in an interfacial electronic level alignment in quantitative agreement with experiment.

  4. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  5. MCP detector development for UV space missions

    NASA Astrophysics Data System (ADS)

    Conti, Lauro; Barnstedt, Jürgen; Hanke, Lars; Kalkuhl, Christoph; Kappelmann, Norbert; Rauch, Thomas; Stelzer, Beate; Werner, Klaus; Elsener, Hans-Rudolf; Schaadt, Daniel M.

    2018-04-01

    We are developing imaging and photon counting UV-MCP detectors, which are sensitive in the wavelength range from far ultraviolet to near ultraviolet. A good quantum efficiency, solar blindness and high spatial resolution is the aim of our development. The sealed detector has a Cs-activated photoactive layer of GaN (or similarly advanced photocathode), which is operated in semitransparent mode on (001)-MgF2. The detector comprises a stack of two long-life MCPs and a coplanar cross strip anode with advanced readout electronics. The main challenge is the flawless growth of the GaN photocathode layer as well as the requirements for the sealing of the detector, to prevent a degradation of the photocathode. We present here the detector concept and the experimental setup, examine in detail the status in the production and describe the current status of the readout electronics development.

  6. Properties of the Binary Black Hole Merger GW150914

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Carbon Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, C.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, Nam-Gyu; Kim, Namjun; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pan, Y.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perreca, A.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; Vañó-Viñuales, A.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; ZadroŻny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; Boyle, M.; Brügamin, B.; Campanelli, M.; Clark, M.; Hamberger, D.; Kidder, L. E.; Kinsey, M.; Laguna, P.; Ossokine, S.; Scheel, M. A.; Szilagyi, B.; Teukolsky, S.; Zlochower, Y.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-06-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 3 6-4+5M⊙ and 2 9-4+4M⊙ ; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 41 0-180+160 Mpc , corresponding to a redshift 0.0 9-0.04+0.03 assuming standard cosmology. The source location is constrained to an annulus section of 610 deg2 , primarily in the southern hemisphere. The binary merges into a black hole of mass 6 2-4+4M⊙ and spin 0.6 7-0.07+0.05. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  7. Properties of the Binary Black Hole Merger GW150914

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Camp, J. B.

    2016-01-01

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36(+5/-4) solar mass and 29(+4/-4) solar mass; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be less than 0.7 (at 90% probability). The luminosity distance to the source is 410(+160/-180) Mpc, corresponding to a redshift 0.09(+0.03/-0.04) assuming standard cosmology. The source location is constrained to an annulus section of 610 sq deg, primarily in the southern hemisphere. The binary merges into a black hole of mass 62(+4/-4) solar mass and spin 0.67(+0.05/-0.07). This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  8. Properties of the Binary Black Hole Merger GW150914.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ascenzi, S; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Bacon, P; Bader, M K M; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, C; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Pace, S; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Engels, W; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Johnson-McDaniel, N K; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, Nam-Gyu; Kim, Namjun; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pan, Y; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Perreca, A; Pfeiffer, H P; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Röver, C; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; Vañó-Viñuales, A; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J; Boyle, M; Brügmann, B; Campanelli, M; Clark, M; Hamberger, D; Kidder, L E; Kinsey, M; Laguna, P; Ossokine, S; Scheel, M A; Szilagyi, B; Teukolsky, S; Zlochower, Y

    2016-06-17

    On September 14, 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO) detected a gravitational-wave transient (GW150914); we characterize the properties of the source and its parameters. The data around the time of the event were analyzed coherently across the LIGO network using a suite of accurate waveform models that describe gravitational waves from a compact binary system in general relativity. GW150914 was produced by a nearly equal mass binary black hole of masses 36_{-4}^{+5}M_{⊙} and 29_{-4}^{+4}M_{⊙}; for each parameter we report the median value and the range of the 90% credible interval. The dimensionless spin magnitude of the more massive black hole is bound to be <0.7 (at 90% probability). The luminosity distance to the source is 410_{-180}^{+160}  Mpc, corresponding to a redshift 0.09_{-0.04}^{+0.03} assuming standard cosmology. The source location is constrained to an annulus section of 610  deg^{2}, primarily in the southern hemisphere. The binary merges into a black hole of mass 62_{-4}^{+4}M_{⊙} and spin 0.67_{-0.07}^{+0.05}. This black hole is significantly more massive than any other inferred from electromagnetic observations in the stellar-mass regime.

  9. PPARδ agonist GW501516 prevents uncoupling of endothelial nitric oxide synthase in cerebral microvessels of hph-1 mice

    PubMed Central

    Santhanam, Anantha Vijay R.; d’Uscio, Livius V.; He, Tongrong; Katusic, Zvonimir S.

    2012-01-01

    Peroxisome proliferator-activated receptor delta (PPARδ) is ubiquitously expressed in the vasculature, including cerebral circulation. The role of PPARδ in metabolism of tetrahydrobiopterin (BH4) has not been studied in the cerebral microvasculature. In the present study, the effects of PPARδ agonist GW501516 on uncoupling of endothelial nitric oxide synthase (eNOS) were determined in cerebral microvessels of BH4-deficient hph-1 mice. Wild-type (B6CBA) and hph-1 mice were orally gavaged with a selective PPARδ activator, GW501516 (2 mg/kg/day) for 14 days, and thereafter, cerebral microvessels were isolated and studied. Treatment of hph-1 mice with GW501516 significantly reduced oxidation of BH4 and increased the ratio of BH4 to 7,8-BH2 (P<0.05, n=6–9). Attenuation of L-NAME-inhibitable superoxide anion levels by GW501516 demonstrated that activation of PPARδ might prevent uncoupling of endothelial nitric oxide synthase (eNOS, P<0.05, n=6–9). Western blotting studies demonstrated that GW501516 selectively increased the endothelial expressions of CuZn superoxide dismutase (P<0.05, n=6–9) and catalase (P<0.05, n=6–8). PPARδ activation increased the total nitrite and nitrate (NO2 + NO3) content in cerebral microvessels (P<0.05, n=6). Obtained results suggest that in vivo activation of PPARδ prevents eNOS uncoupling, restores bioavailability of NO and may help preserve endothelial function in the BH4-deficient cerebral circulation. PMID:22982594

  10. On the Interpretation of the Fermi-GBM Transient Observed in Coincidence with LIGO Gravitational-wave Event GW150914

    NASA Astrophysics Data System (ADS)

    Connaughton, V.; Burns, E.; Goldstein, A.; Blackburn, L.; Briggs, M. S.; Christensen, N.; Hui, C. M.; Kocevski, D.; Littenberg, T.; McEnery, J. E.; Racusin, J.; Shawhan, P.; Veitch, J.; Wilson-Hodge, C. A.; Bhat, P. N.; Bissaldi, E.; Cleveland, W.; Giles, M. M.; Gibby, M. H.; von Kienlin, A.; Kippen, R. M.; McBreen, S.; Meegan, C. A.; Paciesas, W. S.; Preece, R. D.; Roberts, O. J.; Stanbro, M.; Veres, P.

    2018-01-01

    The weak transient detected by the Fermi Gamma-ray Burst Monitor (GBM) 0.4 s after GW150914 has generated much speculation regarding its possible association with the black hole binary merger. Investigation of the GBM data by Connaughton et al. revealed a source location consistent with GW150914 and a spectrum consistent with a weak, short gamma-ray burst. Greiner et al. present an alternative technique for fitting background-limited data in the low-count regime, and call into question the spectral analysis and the significance of the detection of GW150914-GBM presented in Connaughton et al. The spectral analysis of Connaughton et al. is not subject to the limitations of the low-count regime noted by Greiner et al. We find Greiner et al. used an inconsistent source position and did not follow the steps taken in Connaughton et al. to mitigate the statistical shortcomings of their software when analyzing this weak event. We use the approach of Greiner et al. to verify that our original spectral analysis is not biased. The detection significance of GW150914-GBM is established empirically, with a false-alarm rate (FAR) of ∼ {10}-4 Hz. A post-trials false-alarm probability (FAP) of 2.2× {10}-3 (2.9σ ) of this transient being associated with GW150914 is based on the proximity in time to the gravitational-wave event of a transient with that FAR. The FAR and the FAP are unaffected by the spectral analysis that is the focus of Greiner et al.

  11. Advanced processing of CdTe pixel radiation detectors

    NASA Astrophysics Data System (ADS)

    Gädda, A.; Winkler, A.; Ott, J.; Härkönen, J.; Karadzhinova-Ferrer, A.; Koponen, P.; Luukka, P.; Tikkanen, J.; Vähänen, S.

    2017-12-01

    We report a fabrication process of pixel detectors made of bulk cadmium telluride (CdTe) crystals. Prior to processing, the quality and defect density in CdTe material was characterized by infrared (IR) spectroscopy. The semiconductor detector and Flip-Chip (FC) interconnection processing was carried out in the clean room premises of Micronova Nanofabrication Centre in Espoo, Finland. The chip scale processes consist of the aluminum oxide (Al2O3) low temperature thermal Atomic Layer Deposition (ALD), titanium tungsten (TiW) metal sputtering depositions and an electroless Nickel growth. CdTe crystals with the size of 10×10×0.5 mm3 were patterned with several photo-lithography techniques. In this study, gold (Au) was chosen as the material for the wettable Under Bump Metalization (UBM) pads. Indium (In) based solder bumps were grown on PSI46dig read out chips (ROC) having 4160 pixels within an area of 1 cm2. CdTe sensor and ROC were hybridized using a low temperature flip-chip (FC) interconnection technique. The In-Au cold weld bonding connections were successfully connecting both elements. After the processing the detector packages were wire bonded into associated read out electronics. The pixel detectors were tested at the premises of Finnish Radiation Safety Authority (STUK). During the measurement campaign, the modules were tested by exposure to a 137Cs source of 1.5 TBq for 8 minutes. We detected at the room temperature a photopeak at 662 keV with about 2 % energy resolution.

  12. Neutron detectors for the ESS diffractometers

    NASA Astrophysics Data System (ADS)

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Müller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, J.; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    The ambitious instrument suite for the future European Spallation Source whose civil construction started recently in Lund, Sweden, demands a set of diverse and challenging requirements for the neutron detectors. For instance, the unprecedented high flux expected on the samples to be investigated in neutron diffraction or reflectometry experiments requires detectors that can handle high counting rates, while the investigation of sub-millimeter protein crystals will only be possible with large-area detectors that can achieve a position resolution as low as 200 μm. This has motivated an extensive research and development campaign to advance the state-of-the-art detector and to find new technologies that can reach maturity by the time the ESS will operate at full potential. This paper presents the key detector requirements for three of the Time-of-Flight (TOF) diffraction instrument concepts selected by the Scientific Advisory Committee to advance into the phase of preliminary engineering design. We discuss the detector technologies commonly employed at the existing similar instruments and their major challenges for ESS. The detector technologies selected by the instrument teams to collect the diffraction patterns are also presented. Analytical calculations, Monte-Carlo simulations, and real experimental data are used to develop a generic method to estimate the event rate in the diffraction detectors. We apply this method to make predictions for the future diffraction instruments, and thus provide additional information that can help the instrument teams with the optimisation of the detector designs.

  13. Parameter Estimation for Compact Binaries with Ground-Based Gravitational-Wave Observations Using the LALInference

    NASA Technical Reports Server (NTRS)

    Veitch, J.; Raymond, V.; Farr, B.; Farr, W.; Graff, P.; Vitale, S.; Aylott, B.; Blackburn, K.; Christensen, N.; Coughlin, M.

    2015-01-01

    The Advanced LIGO and Advanced Virgo gravitational wave (GW) detectors will begin operation in the coming years, with compact binary coalescence events a likely source for the first detections. The gravitational waveforms emitted directly encode information about the sources, including the masses and spins of the compact objects. Recovering the physical parameters of the sources from the GW observations is a key analysis task. This work describes the LALInference software library for Bayesian parameter estimation of compact binary signals, which builds on several previous methods to provide a well-tested toolkit which has already been used for several studies. We show that our implementation is able to correctly recover the parameters of compact binary signals from simulated data from the advanced GW detectors. We demonstrate this with a detailed comparison on three compact binary systems: a binary neutron star (BNS), a neutron star - black hole binary (NSBH) and a binary black hole (BBH), where we show a cross-comparison of results obtained using three independent sampling algorithms. These systems were analysed with non-spinning, aligned spin and generic spin configurations respectively, showing that consistent results can be obtained even with the full 15-dimensional parameter space of the generic spin configurations. We also demonstrate statistically that the Bayesian credible intervals we recover correspond to frequentist confidence intervals under correct prior assumptions by analysing a set of 100 signals drawn from the prior. We discuss the computational cost of these algorithms, and describe the general and problem-specific sampling techniques we have used to improve the efficiency of sampling the compact binary coalescence (CBC) parameter space.

  14. The PPARdelta agonist GW501516 suppresses interleukin-6-mediated hepatocyte acute phase reaction via STAT3 inhibition.

    PubMed

    Kino, T; Rice, K C; Chrousos, G P

    2007-05-01

    Interleukin-6 and downstream liver effectors acute phase reactants are implicated in the systemic inflammatory reaction. Peroxisome proliferator-activated receptor delta (PPARdelta), which binds to and is activated by a variety of fatty acids, was recently shown to have anti-inflammatory actions. We examined the ability of the synthetic PPARdelta agonist GW501516 to suppress interleukin-6-induced expression of acute phase proteins in human hepatoma HepG2 cells and rat primary hepatocytes. Results GW501516 dose-dependently suppressed interleukin-6-induced mRNA expression of the acute phase protein alpha1-antichymotrypsin in HepG2 cells. The compound also suppressed interleukin-6-induced mRNA expression of alpha2-acid glycoprotein, beta-fibrinogen and alpha2-macroglobulin in and the secretion of C-reactive protein by rat primary hepatocytes. Depletion of the PPARdelta receptor, but not of PPARalpha or gamma, attenuated the suppressive effect of GW501516 on interleukin-6-induced alpha1-antichymotrypsin mRNA expression, indicating that PPARdelta specifically mediated this effect. Since interleukin-6 stimulates the transcriptional activity of the alpha1-antichymotrypsin promoter by activating the signal transducer and activator of transcription (STAT) 3, we examined functional interaction of this transcription factor and PPARdelta on this promoter. Overexpression of PPARdelta enhanced the suppressive effect of GW501516 on STAT3-activated transcriptional activity of the alpha1-antichymotrypsin promoter, while GW501516 suppressed interleukin-6-induced binding of this transcription factor to this promoter. These findings indicate that agonist-activated PPARdelta interferes with interleukin-6-induced acute phase reaction in the liver by inhibiting the transcriptional activity of STAT3. PPARdelta agonists might be useful for the suppression of systemic inflammatory reactions in which IL-6 plays a central role.

  15. GW quasiparticle bandgaps of anatase TiO2 starting from DFT + U.

    PubMed

    Patrick, Christopher E; Giustino, Feliciano

    2012-05-23

    We investigate the quasiparticle band structure of anatase TiO(2), a wide gap semiconductor widely employed in photovoltaics and photocatalysis. We obtain GW quasiparticle energies starting from density-functional theory (DFT) calculations including Hubbard U corrections. Using a simple iterative procedure we determine the value of the Hubbard parameter yielding a vanishing quasiparticle correction to the fundamental bandgap of anatase TiO(2). The bandgap (3.3 eV) calculated using this optimal Hubbard parameter is smaller than the value obtained by applying many-body perturbation theory to standard DFT eigenstates and eigenvalues (3.7 eV). We extend our analysis to the rutile polymorph of TiO(2) and reach similar conclusions. Our work highlights the role of the starting non-interacting Hamiltonian in the calculation of GW quasiparticle energies in TiO(2) and suggests an optimal Hubbard parameter for future calculations.

  16. Implementation of highly parallel and large scale GW calculations within the OpenAtom software

    NASA Astrophysics Data System (ADS)

    Ismail-Beigi, Sohrab

    The need to describe electronic excitations with better accuracy than provided by band structures produced by Density Functional Theory (DFT) has been a long-term enterprise for the computational condensed matter and materials theory communities. In some cases, appropriate theoretical frameworks have existed for some time but have been difficult to apply widely due to computational cost. For example, the GW approximation incorporates a great deal of important non-local and dynamical electronic interaction effects but has been too computationally expensive for routine use in large materials simulations. OpenAtom is an open source massively parallel ab initiodensity functional software package based on plane waves and pseudopotentials (http://charm.cs.uiuc.edu/OpenAtom/) that takes advantage of the Charm + + parallel framework. At present, it is developed via a three-way collaboration, funded by an NSF SI2-SSI grant (ACI-1339804), between Yale (Ismail-Beigi), IBM T. J. Watson (Glenn Martyna) and the University of Illinois at Urbana Champaign (Laxmikant Kale). We will describe the project and our current approach towards implementing large scale GW calculations with OpenAtom. Potential applications of large scale parallel GW software for problems involving electronic excitations in semiconductor and/or metal oxide systems will be also be pointed out.

  17. Bile Acid Receptor Agonist GW4064 Regulates PPARγ Coactivator-1α Expression Through Estrogen Receptor-Related Receptor α

    PubMed Central

    Dwivedi, Shailendra Kumar Dhar; Singh, Nidhi; Kumari, Rashmi; Mishra, Jay Sharan; Tripathi, Sarita; Banerjee, Priyam; Shah, Priyanka; Kukshal, Vandana; Tyagi, Abdul Malik; Gaikwad, Anil Nilkanth; Chaturvedi, Rajnish Kumar; Mishra, Durga Prasad; Trivedi, Arun Kumar; Sanyal, Somali; Chattopadhyay, Naibedya; Ramachandran, Ravishankar; Siddiqi, Mohammad Imran; Bandyopadhyay, Arun; Arora, Ashish; Lundåsen, Thomas; Anakk, Sayee Priyadarshini; Moore, David D.

    2011-01-01

    Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is induced in energy-starved conditions and is a key regulator of energy homeostasis. This makes PGC-1α an attractive therapeutic target for metabolic syndrome and diabetes. In our effort to identify new regulators of PGC-1α expression, we found that GW4064, a widely used synthetic agonist for the nuclear bile acid receptor [farnesoid X receptor (FXR)] strongly enhances PGC-1α promoter reporter activity, mRNA, and protein expression. This induction in PGC-1α concomitantly enhances mitochondrial mass and expression of several PGC-1α target genes involved in mitochondrial function. Using FXR-rich or FXR-nonexpressing cell lines and tissues, we found that this effect of GW4064 is not mediated directly by FXR but occurs via activation of estrogen receptor-related receptor α (ERRα). Cell-based, biochemical and biophysical assays indicate GW4064 as an agonist of ERR proteins. Interestingly, FXR disruption alters GW4064 induction of PGC-1α mRNA in a tissue-dependent manner. Using FXR-null [FXR knockout (FXRKO)] mice, we determined that GW4064 induction of PGC-1α expression is not affected in oxidative soleus muscles of FXRKO mice but is compromised in the FXRKO liver. Mechanistic studies to explain these differences revealed that FXR physically interacts with ERR and protects them from repression by the atypical corepressor, small heterodimer partner in liver. Together, this interplay between ERRα-FXR-PGC-1α and small heterodimer partner offers new insights into the biological functions of ERRα and FXR, thus providing a knowledge base for therapeutics in energy balance-related pathophysiology. PMID:21493670

  18. Modelling an advanced ManPAD with dual band detectors and a rosette scanning seeker head

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2012-01-01

    Man Portable Air Defence Systems (ManPADs) have been a favoured anti aircraft weapon since their appearance on the military proliferation scene in the mid 1960s. Since this introduction there has been a 'cat and mouse' game of Missile Countermeasures (CMs) and the aircraft protection counter counter measures (CCMs) as missile designers attempt to defeat the aircraft platform protection equipment. Magnesium Teflon Viton (MTV) flares protected the target aircraft until the missile engineers discovered the art of flare rejection using techniques including track memory and track angle bias. These early CCMs relied upon CCM triggering techniques such as the rise rate method which would just sense a sudden increase in target energy and assume that a flare CM had been released by the target aircraft. This was not as reliable as was first thought as aspect changes (bringing another engine into the field of view) or glint from the sun could inadvertently trigger a CCM when not needed. The introduction of dual band detectors in the 1980s saw a major advance in CCM capability allowing comparisons between two distinct IR bands to be made thus allowing the recognition of an MTV flare to occur with minimal false alarms. The development of the rosette scan seeker in the 1980s complemented this advancement allowing the scene in the missile field of view (FOV) to be scanned by a much smaller (1/25) instantaneous FOV (IFOV) with the spectral comparisons being made at each scan point. This took the ManPAD from a basic IR energy detector to a pseudo imaging system capable of analysing individual elements of its overall FOV allowing more complex and robust CCM to be developed. This paper continues the work published in [1,2] and describes the method used to model an advanced ManPAD with a rosette scanning seeker head and robust CCMs similar to the Raytheon Stinger RMP.

  19. Optimizing Excited-State Electronic-Structure Codes for Intel Knights Landing: A Case Study on the BerkeleyGW Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deslippe, Jack; da Jornada, Felipe H.; Vigil-Fowler, Derek

    2016-10-06

    We profile and optimize calculations performed with the BerkeleyGW code on the Xeon-Phi architecture. BerkeleyGW depends both on hand-tuned critical kernels as well as on BLAS and FFT libraries. We describe the optimization process and performance improvements achieved. We discuss a layered parallelization strategy to take advantage of vector, thread and node-level parallelism. We discuss locality changes (including the consequence of the lack of L3 cache) and effective use of the on-package high-bandwidth memory. We show preliminary results on Knights-Landing including a roofline study of code performance before and after a number of optimizations. We find that the GW methodmore » is particularly well-suited for many-core architectures due to the ability to exploit a large amount of parallelism over plane-wave components, band-pairs, and frequencies.« less

  20. pTcGW plasmid vectors 1.1 version: a versatile tool for Trypanosoma cruzi gene characterisation

    PubMed Central

    Kugeratski, Fernanda G; Batista, Michel; Inoue, Alexandre Haruo; Ramos, Bruno Dias; Krieger, Marco Aurelio; Marchini/, Fabricio K

    2015-01-01

    The functional characterisation of thousands of Trypanosoma cruzi genes remains a challenge. Reverse genetics approaches compatible with high-throughput cloning strategies can provide the tool needed to tackle this challenge. We previously published the pTcGW platform, composed by plasmid vectors carrying different options of N-terminal fusion tags based on Gateway® technology. Here, we present an improved 1.1 version of pTcGW vectors, which is characterised by a fully flexible structure allowing an easy customisation of each element of the vectors in a single cloning step. Additionally, both N and C-terminal fusions are available with new tag options for protein complexes purification. Three of the newly created vectors were successfully used to determine the cellular localisation of four T. cruzi proteins. The 1.1 version of pTcGW platform can be used in a variety of assays, such as protein overexpression, identification of protein-protein interaction and protein localisation. This powerful and versatile tool allows adding valuable functional information to T. cruzi genes and is freely available for scientific community. PMID:26200713

  1. The “Puck” energetic charged particle detector: Design, heritage, and advancements

    PubMed Central

    Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.

    2016-01-01

    Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799

  2. The PPARδ ligand GW501516 reduces growth but not apoptosis in mouse inner medullary collecting duct cells.

    PubMed

    Clark, Jordan; Nasrallah, Rania; Hébert, Richard L

    2009-01-01

    The collecting duct (CD) expresses considerable amounts of PPARδ. While its role is unknown in the CD, in other renal cells it has been shown to regulate both growth and apoptosis. We thus hypothesized that PPARδ reduces apoptotic responses and stimulates cell growth in the mouse CD, and examined the effect of GW501516, a synthetic PPARδ ligand, on these responses in mouse IMCD-K2 cells. High doses of GW501516 decreased both DNA and protein synthesis in these cells by 80%, but had no overall effect on cell viability. Although anisomycin treatment resulted in an increase of caspase-3 levels of about 2.59-fold of control, GW501516 did not affect anisomycin-induced changes in active caspase-3 levels. These results show that a PPARδ ligand inhibits growth but does not affect anisomycin-apoptosis in a mouse IMCD cell line. This could have therapeutic implications for renal diseases associated with increased CD growth responses.

  3. Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger.

    PubMed

    Shappee, B J; Simon, J D; Drout, M R; Piro, A L; Morrell, N; Prieto, J L; Kasen, D; Holoien, T W-S; Kollmeier, J A; Kelson, D D; Coulter, D A; Foley, R J; Kilpatrick, C D; Siebert, M R; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Bernstein, R A; Bitsakis, T; Boutsia, K; Bravo, J R; Di Mille, F; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Placco, V M; Prieto, G; Wan, Z

    2017-12-22

    On 17 August 2017, Swope Supernova Survey 2017a (SSS17a) was discovered as the optical counterpart of the binary neutron star gravitational wave event GW170817. We report time-series spectroscopy of SSS17a from 11.75 hours until 8.5 days after the merger. Over the first hour of observations, the ejecta rapidly expanded and cooled. Applying blackbody fits to the spectra, we measured the photosphere cooling from [Formula: see text] to [Formula: see text] kelvin, and determined a photospheric velocity of roughly 30% of the speed of light. The spectra of SSS17a began displaying broad features after 1.46 days and evolved qualitatively over each subsequent day, with distinct blue (early-time) and red (late-time) components. The late-time component is consistent with theoretical models of r-process-enriched neutron star ejecta, whereas the blue component requires high-velocity, lanthanide-free material. Copyright © 2017, American Association for the Advancement of Science.

  4. Technological advances in cosmogenic neutron detectors for measuring soil water content

    NASA Astrophysics Data System (ADS)

    Zreda, M. G.; Schrön, M.; Köhli, M.

    2017-12-01

    The cosmic-ray neutron probe is used for measuring area-average soil water content at the hectometer scale. Early work showed a simple exponential decrease with distance of the instrument's sensitivity and a footprint 300 m in radius. Recent research suggested a much higher sensitivity to local neutrons and reduced footprint. We show results confirming the high sensitivity to local neutrons, describe two ways to reduce local and increase far-field effects, and propose ways of measuring neutrons at different spatial scales. Measurements with moderated detectors across a 10-m-wide creek and a 2-m-wide water tank show a decrease by 30% and 20%, respectively, of neutron intensity over water compared to that over land nearby. These results mean that the detector is sensitive to meter-scale heterogeneities of water content. This sensitivity can be reduced by rising the detector or by shielding it from local neutrons. The effect of local water distributions on the measured neutron intensity decreases with height. In the water tank experiment it disappeared almost completely at the height of 2 m, leading to the conjecture that the height roughly equal to the horizontal scale of heterogeneity would eliminate the sensitivity. This may or may not be practical. Shielding the detector below by a hydrogenous material removes a substantial fraction of the local neutrons. The shielded detector has a reduced count rate, reduced sensitivity to local neutrons and increased sensitivity to neutrons farther afield, and a larger footprint. Such a detector could be preferable to the current cosmogenic-neutron probe under heterogeneous soil water conditions. The shielding experiments also inspired the development of a local-area neutron detector. It has hydrogenous neutron shields on all sides except the bottom, substantially blocking the neutrons coming from afar, while allowing the neutrons coming directly from below. Its footprint is equal to its physical dimension when the detector is

  5. Peroxisome proliferator-activated receptor delta-agonist, GW501516, ameliorates insulin resistance, improves dyslipidaemia in monosodium L-glutamate metabolic syndrome mice.

    PubMed

    Chen, Wei; Wang, Li-Li; Liu, Hong-Ying; Long, Long; Li, Song

    2008-09-01

    We evaluated the effects of GW501516, a specific peroxisome proliferator-activated receptor beta/delta (PPARdelta) agonist in metabolic syndrome mice, obtained by perinatal injection of monosodium L-glutamate, to investigate the efficacy of GW501516 against metabolic syndrome and the effectiveness of PPARdelta activation as therapeutic target for metabolic syndrome. After 14 days treatment, GW501516 effectively improved the glucose intolerance, normalized the fasted blood glucose, and increased the serum high-density lipoprotein cholesterol (HDL-C) level. Postprandial blood glucose, serum insulin, leptin, free fatty acid (FFA) levels, and total cholesterol/HDL-C ratio were also significantly decreased. Moreover, semiquantitative reverse transcription-polymerase chain reaction results indicated that the above phenotypes might be due to (i) enhancement of fatty acid oxidation in muscle, adipose tissue and the liver; (ii) improvement of insulin-stimulated glucose transportation in skeletal muscle and adipose tissue; and (iii) reduced local glucocorticoid synthesis. Therefore, GW501516 could significantly ameliorate dyslipidaemia and insulin resistance in monosodium L-glutamate mice and activation of PPARdelta could be envisioned as a useful strategy against human metabolic syndrome and related diseases.

  6. Distributed state machine supervision for long-baseline gravitational-wave detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rollins, Jameson Graef, E-mail: jameson.rollins@ligo.org

    The Laser Interferometer Gravitational-wave Observatory (LIGO) consists of two identical yet independent, widely separated, long-baseline gravitational-wave detectors. Each Advanced LIGO detector consists of complex optical-mechanical systems isolated from the ground by multiple layers of active seismic isolation, all controlled by hundreds of fast, digital, feedback control systems. This article describes a novel state machine-based automation platform developed to handle the automation and supervisory control challenges of these detectors. The platform, called Guardian, consists of distributed, independent, state machine automaton nodes organized hierarchically for full detector control. User code is written in standard Python and the platform is designed to facilitatemore » the fast-paced development process associated with commissioning the complicated Advanced LIGO instruments. While developed specifically for the Advanced LIGO detectors, Guardian is a generic state machine automation platform that is useful for experimental control at all levels, from simple table-top setups to large-scale multi-million dollar facilities.« less

  7. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    NASA Astrophysics Data System (ADS)

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.; Emery, S. W. K.; Kuin, N. P. M.; Korobkin, O.; Wollaeger, R. T.; Fryer, C. L.; Madsen, K. K.; Harrison, F. A.; Xu, Y.; Nakar, E.; Hotokezaka, K.; Lien, A.; Campana, S.; Oates, S. R.; Troja, E.; Breeveld, A. A.; Marshall, F. E.; Barthelmy, S. D.; Beardmore, A. P.; Burrows, D. N.; Cusumano, G.; D’Aì, A.; D’Avanzo, P.; D’Elia, V.; de Pasquale, M.; Even, W. P.; Fontes, C. J.; Forster, K.; Garcia, J.; Giommi, P.; Grefenstette, B.; Gronwall, C.; Hartmann, D. H.; Heida, M.; Hungerford, A. L.; Kasliwal, M. M.; Krimm, H. A.; Levan, A. J.; Malesani, D.; Melandri, A.; Miyasaka, H.; Nousek, J. A.; O’Brien, P. T.; Osborne, J. P.; Pagani, C.; Page, K. L.; Palmer, D. M.; Perri, M.; Pike, S.; Racusin, J. L.; Rosswog, S.; Siegel, M. H.; Sakamoto, T.; Sbarufatti, B.; Tagliaferri, G.; Tanvir, N. R.; Tohuvavohu, A.

    2017-12-01

    The gravitational wave event GW170817 was caused by the merger of two neutron stars (see the Introduction by Smith). In three papers, teams associated with the GROWTH (Global Relay of Observatories Watching Transients Happen) project present their observations of the event at wavelengths from x-rays to radio waves. Evans et al. used space telescopes to detect GW170817 in the ultraviolet and place limits on its x-ray flux, showing that the merger generated a hot explosion known as a blue kilonova. Hallinan et al. describe radio emissions generated as the explosion slammed into the surrounding gas within the host galaxy. Kasliwal et al. present additional observations in the optical and infrared and formulate a model for the event involving a cocoon of material expanding at close to the speed of light, matching the data at all observed wavelengths.

  8. Early Soft X-Ray to UV Emission from Double Neutron Star Mergers: Implications from the Long-term Observations of GW170817

    NASA Astrophysics Data System (ADS)

    Wang, Xiang-Yu; Huang, Zhi-Qiu

    2018-01-01

    Recent long-term radio follow-up observations of GW170817 reveal a simple power-law rising light curve, with a slope of {t}0.78, up to 93 days after the merger. The latest X-ray detection at 109 days is also consistent with such a temporal slope. Such a shallow rise behavior requires a mildly relativistic outflow with a steep velocity gradient profile, so that slower material with larger energy catches up with the decelerating ejecta and re-energizes it. It has been suggested that this mildly relativistic outflow may represent a cocoon of material. We suggest that the velocity gradient profile may form during the stage that the cocoon is breaking out of the merger ejecta, resulting from shock propagation down a density gradient. The cooling of the hot relativistic cocoon material immediately after it breaks out should have produced soft X-ray to UV radiation at tens of seconds to hours after the merger. The soft X-ray emission has a luminosity of {L}{{X}}∼ {10}45 {erg} {{{s}}}-1 over a period of tens of seconds for a merger event like GW170817. The UV emission shows a rise initially and peaks at about a few hours with a luminosity of {L}{UV}∼ {10}42 {erg} {{{s}}}-1. The soft X-ray transients could be detected by future wide-angle X-ray detectors, such as the Chinese mission Einstein Probe. This soft X-ray/UV emission would serve as one of the earliest electromagnetic counterparts of gravitation waves from double neutron star mergers and could provide the earliest localization of the sources.

  9. Results of Research on Overcoming Pulse Shortening of GW Class HPM Sources

    DTIC Science & Technology

    1997-05-29

    The RPM sources basic research program of the Air Force has a major emphasis on the pulse shortening problem. This includes collaborative work in...universities and the Phillips Laboratory . We have demonstrated two fundamentally different RPM sources which radiate rf power in excess of 1 GW and are

  10. Low-Power Multi-Aspect Space Radiation Detector System

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Wrbanek, Susan Y.; Fralick, Gustave; Freeman, Jon C.; Burkebile, Stephen P.

    2012-01-01

    The advanced space radiation detector development team at NASA Glenn Research Center (GRC) has the goal of developing unique, more compact radiation detectors that provide improved real-time data on space radiation. The team has performed studies of different detector designs using a variety of combinations of solid-state detectors, which allow higher sensitivity to radiation in a smaller package and operate at lower voltage than traditional detectors. Integration of all of these detector technologies will result in an improved detector system in comparison to existing state-of-the-art (SOA) instruments for the detection and monitoring of the deep space radiation field.

  11. PPARδ agonist GW501516 inhibits PDGF-stimulated pulmonary arterial smooth muscle cell function related to pathological vascular remodeling.

    PubMed

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPAR δ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPAR δ was the most abundant isoform in HPASMCs. PPAR δ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPAR δ by GW501516, a specific PPAR δ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27(kip1). Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPAR δ may be a potential therapeutic target against the progression of vascular remodeling in PAH.

  12. PPARδ Agonist GW501516 Inhibits PDGF-Stimulated Pulmonary Arterial Smooth Muscle Cell Function Related to Pathological Vascular Remodeling

    PubMed Central

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH. PMID:23607100

  13. TaGW2-6A allelic variation contributes to grain size possibly by regulating the expression of cytokinins and starch-related genes in wheat.

    PubMed

    Geng, Juan; Li, Liqun; Lv, Qian; Zhao, Yi; Liu, Yan; Zhang, Li; Li, Xuejun

    2017-12-01

    Functional allelic variants of TaGW2 - 6A produce large grains, possibly via changes in endosperm cells and dry matter by regulating the expression of cytokinins and starch-related genes via the ubiquitin-proteasome system. In wheat, TaGW2-6A coding region allelic variants are closely related to the grain width and weight, but how this region affects grain development has not been fully elucidated; thus, we explored its influence on grain development based mainly on histological and grain filling analyses. We found that the insertion type (NIL31) TaGW2-6A allelic variants exhibited increases in cell numbers and cell size, thereby resulting in a larger (wider) grain size with an accelerated grain milk filling rate, and increases in grain width and weight. We also found that cytokinin (CK) synthesis genes and key starch biosynthesis enzyme AGPase genes were significantly upregulated in the TaGW2-6A allelic variants, while CK degradation genes and starch biosynthesis-negative regulators were downregulated in the TaGW2-6A allelic variants, which was consistent with the changes in cells and grain filling. Thus, we speculate that TaGW2-6A allelic variants are linked with CK signaling, but they also influence the accumulation of starch by regulating the expression of related genes via the ubiquitin-proteasome system to control the grain size and grain weight.

  14. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  15. A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murguia-Berthier, A.; Ramirez-Ruiz, E.; Kilpatrick, C. D.

    2017-10-20

    The merging neutron star gravitational-wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ -rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ -ray, X-ray, and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical, and infrared emission are shown to probe material torn during the merger and subsequently heatedmore » by the decay of freshly synthesized r -process material. The simplest hypothesis, that the non-thermal emission is due to a low-luminosity short γ -ray burst (sGRB), seems to agree with the present data. While low-luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.« less

  16. Optical response of the sodium alanate system: GW0-BSE calculations and thin film measurements

    NASA Astrophysics Data System (ADS)

    van Setten, M. J.; Gremaud, R.; Brocks, G.; Dam, B.; Kresse, G.; de Wijs, G. A.

    2011-01-01

    We calculate from first principles the optical spectra of the hydrides in the sodium alanate hydrogen storage system: NaH, NaAlH4, and Na3AlH6. In particular we study the effects of systematic improvements of the theoretical description. To benchmark the calculations we also measure the optical response of a thin film of NaH. The simplest calculated dielectric functions are based upon independent electrons and holes, whose spectrum is obtained at the G0W0 level. Successive improvements consist of including partial self-consistency (so-called GW0) and account for excitonic effects, using the Bethe-Salpeter equation (BSE). Each improvement gives a sizable blue shift or red shift of the dielectric functions, but conserves the trend in the optical gap among different materials. Whereas these shifts partially cancel at the highest (GW0-BSE) level of approximation, the shape of the dielectric functions is strongly modified by excitonic effects. Calculations at the GW0-BSE level give a good agreement with the dielectric function of NaH extracted from the measurements. It demonstrates that the approach can be used for a quantitative interpretation of spectra in novel hydrogen storage materials obtained via, e.g., hydrogenography.

  17. Disks around merging binary black holes: From GW150914 to supermassive black holes

    NASA Astrophysics Data System (ADS)

    Khan, Abid; Paschalidis, Vasileios; Ruiz, Milton; Shapiro, Stuart L.

    2018-02-01

    We perform magnetohydrodynamic simulations in full general relativity of disk accretion onto nonspinning black hole binaries with mass ratio q =29 /36 . We survey different disk models which differ in their scale height, total size and magnetic field to quantify the robustness of previous simulations on the initial disk model. Scaling our simulations to LIGO GW150914 we find that such systems could explain possible gravitational wave and electromagnetic counterparts such as the Fermi GBM hard x-ray signal reported 0.4 s after GW150915 ended. Scaling our simulations to supermassive binary black holes, we find that observable flow properties such as accretion rate periodicities, the emergence of jets throughout inspiral, merger and postmerger, disk temperatures, thermal frequencies, and the time delay between merger and the boost in jet outflows that we reported in earlier studies display only modest dependence on the initial disk model we consider here.

  18. Galex and Optical Observations of GW Librae during the Long Decline from Superoutburst

    NASA Technical Reports Server (NTRS)

    Bullock, Eric; Szkody, Paula; Mukadam, Anjum S.; Borges, Bernardo W.; Fraga, Luciano; Gansicke, Boris T.; Harrison, Thomas E.; Henden, Arne; Holtzman, Jon; Howell, Steve B.; hide

    2011-01-01

    The prototype of accreting, pulsating white dwarfs (GW Lib) underwent a large amplitude dwarf nova outburst in 2007. We used ultraviolet data from Galaxy Evolution Explorer and ground-based optical photometry and spectroscopy to follow GW Lib for three years following this outburst. Several variations are apparent during this interval. The optical shows a superhump modulation in the months following outburst, while a 19 minute quasi-periodic modulation lasting for several months is apparent in the year after outburst. A long timescale (about 4 hr) modulation first appears in the UV a year after outburst and increases in amplitude in the following years. This variation also appears in the optical two years after outburst but is not in phase with the UV. The pre-outburst pulsations are not yet visible after three years, likely indicating the white dwarf has not returned to its quiescent state.

  19. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE PAGES

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.; ...

    2017-10-16

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  20. Swift and NuSTAR observations of GW170817: Detection of a blue kilonova

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, P. A.; Cenko, S. B.; Kennea, J. A.

    With the first direct detection of merging black holes in 2015, the era of gravitational wave (GW) astrophysics began. However, a complete picture of compact object mergers requires the detection of an electromagnetic (EM) counterpart. Here, we report ultraviolet (UV) and x-ray observations by Swift and the Nuclear Spectroscopic Telescope ARray (NuSTAR) of the EM counterpart of the binary neutron star merger GW 170817. The bright, rapidly fading ultraviolet emission indicates a high mass (≈ 0.03 solar masses) wind-driven outflow with moderate electron fraction (Ye ≈ 0.27). Combined with the x-ray limits, we favor an observer viewing angle of ≈30°more » away from the orbital rotation axis, which avoids both obscuration from the heaviest elements in the orbital plane and a direct view of any ultra-relativistic, highly collimated ejecta (a γ-ray burst afterglow).« less

  1. Evaluation of detector array technology for the verification of advanced intensity-modulated radiotherapy

    NASA Astrophysics Data System (ADS)

    Hussien, Mohammad

    Purpose: Quality assurance (QA) for intensity modulated radiotherapy (IMRT) has evolved substantially. In recent years, various ionization chamber or diode detector arrays have become commercially available, allowing pre-treatment absolute dose verification with near real-time results. This has led to a wide uptake of this technology to replace point dose and film dosimetry and to facilitate QA streamlining. However, arrays are limited by their spatial resolution giving rise to concerns about their response to clinically relevant deviations. The common factor in all commercial array systems is the reliance on the gamma index (γ) method to provide the quantitative evaluation of the measured dose distribution against the Treatment Planning System (TPS) calculated dose distribution. The mathematical definition of the gamma index presents computational challenges that can cause a variation in the calculation in different systems. The purpose of this thesis was to evaluate the suitability of detector array systems, combined with their implementation of the gamma index, in the verification and dosimetry audit of advanced IMRT. Method: The response of various commercial detector array systems (Delta4®, ArcCHECK®, and the PTW 2D-Array seven29™ and OCTAVIUS II™ phantom combination, Gafchromic® EBT2 and composite EPID measurements) to simulated deliberate changes in clinical IMRT and VMAT plans was evaluated. The variability of the gamma index calculation in the different systems was also evaluated by comparing against a bespoke Matlab-based gamma index analysis software. A novel methodology for using a commercial detector array in a dosimetry audit of rotational radiotherapy was then developed. Comparison was made between measurements using the detector array and those performed using ionization chambers, alanine and radiochromic film. The methodology was developed as part of the development of a national audit of rotational radiotherapy. Ten cancer centres were

  2. Development of tight-binding based GW algorithm and its computational implementation for graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majidi, Muhammad Aziz; NUSNNI-NanoCore, Department of Physics, National University of Singapore; Singapore Synchrotron Light Source

    Graphene has been a hot subject of research in the last decade as it holds a promise for various applications. One interesting issue is whether or not graphene should be classified into a strongly or weakly correlated system, as the optical properties may change upon several factors, such as the substrate, voltage bias, adatoms, etc. As the Coulomb repulsive interactions among electrons can generate the correlation effects that may modify the single-particle spectra (density of states) and the two-particle spectra (optical conductivity) of graphene, we aim to explore such interactions in this study. The understanding of such correlation effects ismore » important because eventually they play an important role in inducing the effective attractive interactions between electrons and holes that bind them into excitons. We do this study theoretically by developing a GW method implemented on the basis of the tight-binding (TB) model Hamiltonian. Unlike the well-known GW method developed within density functional theory (DFT) framework, our TB-based GW implementation may serve as an alternative technique suitable for systems which Hamiltonian is to be constructed through a tight-binding based or similar models. This study includes theoretical formulation of the Green’s function G, the renormalized interaction function W from random phase approximation (RPA), and the corresponding self energy derived from Feynman diagrams, as well as the development of the algorithm to compute those quantities. As an evaluation of the method, we perform calculations of the density of states and the optical conductivity of graphene, and analyze the results.« less

  3. Thermal Considerations of Space Solar Power Concepts with 3.5 GW RF Output

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    This paper presents the thermal challenge of the Space Solar Power (SSP) design concepts with a 3.5 GW radio-frequency (RF) output. High efficiency klystrons are thermally more favored than solid state (butterstick) to convert direct current (DC) electricity to radio-frequency (RF) energy at the transmitters in these concepts. Using klystrons, the heat dissipation is 0.72 GW. Using solid state, the heat dissipation is 2.33 GW. The heat dissipation of the klystrons is 85% at 500C, 10% at 300C, and 5% at 125C. All the heat dissipation of the solid state is at 100C. Using klystrons, the radiator area is 74,500 square m Using solid state, the radiator area is 2,362,200 square m Space constructable heat pipe radiators are assumed in the thermal analysis. Also, to make the SSP concepts feasible, the mass of the heat transport system must be minimized. The heat transport distance from the transmitters to the radiators must be minimized. It can be accomplished by dividing the radiator into a cluster of small radiators, so that the heat transport distances between the klystrons and radiators can be minimized. The area of each small radiator is on the order of 1 square m. Two concepts for accommodating a cluster of small radiators are presented. If the distance between the transmitters and radiators is 1.5 m or less, constant conductance heat pipes (CCHPs) are acceptable for heat transport. If the distance exceeds 1.5 m, loop heat pipes (LHPs) are needed.

  4. Resonant dampers for parametric instabilities in gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Gras, S.; Fritschel, P.; Barsotti, L.; Evans, M.

    2015-10-01

    Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly ˜1 MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential to significantly compromise the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass have shown a tenfold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.

  5. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors

    PubMed Central

    Hammond, Giles; Hild, Stefan; Pitkin, Matthew

    2014-01-01

    We present a review of modern optical techniques being used and developed for the field of gravitational wave detection. We describe the current state-of-the-art of gravitational waves detector technologies with regard to optical layouts, suspensions and test masses. We discuss the dominant sources and noise in each of these subsystems and the developments that will help mitigate them for future generations of detectors. We very briefly summarise some of the novel astrophysics that will be possible with these upgraded detectors. PMID:25705087

  6. Statistics of the detection rates for tensor and scalar gravitational waves from the Local Galaxy universe

    NASA Astrophysics Data System (ADS)

    Baryshev, Yu. V.; Paturel, G.

    2001-05-01

    We use data on the local 3-dimensional galaxy distribution for studying the statistics of the detection rates of gravitational waves (GW) coming from supernova explosions. We consider both tensor and scalar gravitational waves which are possible in a wide range of relativistic and quantum gravity theories. We show that statistics of GW events as a function of sidereal time can be used for distinction between scalar and tensor gravitational waves because of the anisotropy of spatial galaxy distribution. For calculation of the expected amplitudes of GW signals we use the values of the released GW energy, frequency and duration of GW pulse which are consistent with existing scenarios of SN core collapse. The amplitudes of the signals produced by Virgo and the Great Attractor clusters of galaxies is expressed as a function of the sidereal time for resonant bar detectors operating now (IGEC) and for forthcoming laser interferometric detectors (VIRGO). Then, we calculate the expected number of GW events as a function of sidereal time produced by all the galaxies within 100 Mpc. In the case of axisymmetric rotational core collapse which radiates a GW energy of 10-9Msunc2, only the closest explosions can be detected. However, in the case of nonaxisymmetric supernova explosion, due to such phenomena as centrifugal hangup, bar and lump formation, the GW radiation could be as strong as that from a coalescing neutron-star binary. For radiated GW energy higher than 10-6Msunc2 and sensitivity of detectors at the level h ~ 10-23 it is possible to detect Virgo cluster and Great Attractor, and hence to use the statistics of GW events for testing gravity theories.

  7. Orbital Solution for the Spectroscopic Binary in the GW Ori Hierarchical Triple

    NASA Astrophysics Data System (ADS)

    Prato, L.; Ruíz-Rodríguez, Dary; Wasserman, L. H.

    2018-01-01

    We present the first double-lined orbital solution for the close binary in the GW Ori triple system. Using 12 epochs of infrared spectroscopy, we detected the lines of both stars in the inner pair, previously known as single-lined only. Our preliminary infrared orbital solution has an eccentricity of e = 0.21 ± 0.10, a period of P = 241.15 ± 0.72 days, and a mass ratio of q = 0.66 ± 0.13. We find a larger semi-amplitude for the primary star, K1 = 6.57 ± 1.00 km s‑1, with an infrared-only solution compared to K1 = 4.41 ± 0.33 km s‑1 with optical data from the literature, likely the result of line blending and veiling in the optical. The component spectral types correspond to G3 and K0 stars, with v\\sin i values of 43 km s‑1 and 50 km s‑1, respectively. We obtained a flux ratio of α = 0.58 ± 0.14 in the H-band, allowing us to estimate individual masses of 3.2 and 2.7 M ⊙ for the primary and secondary, respectively, using evolutionary tracks. The tracks also yield a coeval age of 1 Myr for both components to within 1σ. GW Ori is surrounded by a circumbinary/circumtriple disk. A tertiary component has been detected in previous studies; however, we did not detect this component in our near-infrared spectra, probably the result of its relative faintness and blending in the absorption lines of these rapidly rotating stars. With these results, GW Ori joins the small number of classical T Tauri, double-lined spectroscopic binaries.

  8. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  9. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duchemin, Ivan, E-mail: ivan.duchemin@cea.fr; Jacquemin, Denis; Institut Universitaire de France, 1 rue Descartes, 75005 Paris Cedex 5

    We have implemented the polarizable continuum model within the framework of the many-body Green’s function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases ofmore » interest in organic optoelectronics, wet chemistry, and biology.« less

  10. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    PubMed

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  11. Tidal Deformability from GW170817 as a Direct Probe of the Neutron Star Radius

    NASA Astrophysics Data System (ADS)

    Raithel, Carolyn A.; Özel, Feryal; Psaltis, Dimitrios

    2018-04-01

    Gravitational waves from the coalescence of two neutron stars were recently detected for the first time by the LIGO–Virgo Collaboration, in event GW170817. This detection placed an upper limit on the effective tidal deformability of the two neutron stars and tightly constrained the chirp mass of the system. We report here on a new simplification that arises in the effective tidal deformability of the binary, when the chirp mass is specified. We find that, in this case, the effective tidal deformability of the binary is surprisingly independent of the component masses of the individual neutron stars, and instead depends primarily on the ratio of the chirp mass to the neutron star radius. Thus, a measurement of the effective tidal deformability can be used to directly measure the neutron star radius. We find that the upper limit on the effective tidal deformability from GW170817 implies that the radius cannot be larger than ∼13 km, at the 90% level, independent of the assumed masses for the component stars. The result can be applied generally, to probe the stellar radii in any neutron star–neutron star merger with a measured chirp mass. The approximate mass independence disappears for neutron star–black hole mergers. Finally, we discuss a Bayesian inference of the equation of state that uses the measured chirp mass and tidal deformability from GW170817 combined with nuclear and astrophysical priors and discuss possible statistical biases in this inference.

  12. Search for Neutrinos in Super-Kamiokande Associated with the GW170817 Neutron-star Merger

    NASA Astrophysics Data System (ADS)

    Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakajima, Y.; Nakano, Y.; Nakayama, S.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Yano, T.; Akutsu, R.; Kajita, T.; Nishimura, Y.; Okumura, K.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Kachulis, C.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Bian, J.; Elnimr, M.; Kropp, W. R.; Locke, S.; Mine, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hill, J.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Li, Z.; O’Sullivan, E.; Scholberg, K.; Walter, C. W.; Gonin, M.; Imber, J.; Mueller, Th. A.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Catanesi, M. G.; Intonti, R. A.; Radicioni, E.; De Rosa, G.; Ali, A.; Collazuol, G.; Ludovici, L.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Hayashino, T.; Hirota, S.; Jiang, M.; Mori, M.; Nakamura, KE.; Nakaya, T.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Murase, M.; Muto, F.; Mijakowski, P.; Frankiewicz, K.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Viela, C.; Wilking, M. J.; Yanagisawa, C.; Fukuda, D.; Ishino, H.; Ito, S.; Kibayashi, A.; Koshio, Y.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Molina Sedgwick, S.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Murdoch, M.; Quilain, B.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Okajima, Y.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; Tanaka, H. A.; Towstego, T.; Konaka, A.; Chen, S.; Wan, L.; Minamino, A.; The Super-Kamiokande Collaboration

    2018-04-01

    We report the results of a neutrino search in Super-Kamiokande (SK) for coincident signals with the first detected gravitational wave (GW) produced by a binary neutron-star merger, GW170817, which was followed by a short gamma-ray burst, GRB170817A, and a kilonova/macronova. We searched for coincident neutrino events in the range from 3.5 MeV to ∼100 PeV, in a time window ±500 s around the gravitational wave detection time, as well as during a 14-day period after the detection. No significant neutrino signal was observed for either time window. We calculated 90% confidence level upper limits on the neutrino fluence for GW170817. From the upward-going-muon events in the energy region above 1.6 GeV, the neutrino fluence limit is {16.0}-0.6+0.7 ({21.3}-0.8+1.1) cm‑2 for muon neutrinos (muon antineutrinos), with an error range of ±5° around the zenith angle of NGC4993, and the energy spectrum is under the assumption of an index of ‑2. The fluence limit for neutrino energies less than 100 MeV, for which the emission mechanism would be different than for higher-energy neutrinos, is also calculated. It is 6.6 × 107 cm‑2 for anti-electron neutrinos under the assumption of a Fermi–Dirac spectrum with average energy of 20 MeV.

  13. On the time lags of the LIGO signals

    NASA Astrophysics Data System (ADS)

    Creswell, James; von Hausegger, Sebastian; Jackson, Andrew D.; Liu, Hao; Naselsky, Pavel

    2017-08-01

    To date, the LIGO collaboration has detected three gravitational wave (GW) events appearing in both its Hanford and Livingston detectors. In this article we reexamine the LIGO data with regard to correlations between the two detectors. With special focus on GW150914, we report correlations in the detector noise which, at the time of the event, happen to be maximized for the same time lag as that found for the event itself. Specifically, we analyze correlations in the calibration lines in the vicinity of 35 Hz as well as the residual noise in the data after subtraction of the best-fit theoretical templates. The residual noise for the other two events, GW151226 and GW170104, exhibits similar behavior. A clear distinction between signal and noise therefore remains to be established in order to determine the contribution of gravitational waves to the detected signals.

  14. On the time lags of the LIGO signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Creswell, James; Von Hausegger, Sebastian; Liu, Hao

    To date, the LIGO collaboration has detected three gravitational wave (GW) events appearing in both its Hanford and Livingston detectors. In this article we reexamine the LIGO data with regard to correlations between the two detectors. With special focus on GW150914, we report correlations in the detector noise which, at the time of the event, happen to be maximized for the same time lag as that found for the event itself. Specifically, we analyze correlations in the calibration lines in the vicinity of 35 Hz as well as the residual noise in the data after subtraction of the best-fit theoreticalmore » templates. The residual noise for the other two events, GW151226 and GW170104, exhibits similar behavior. A clear distinction between signal and noise therefore remains to be established in order to determine the contribution of gravitational waves to the detected signals.« less

  15. Seeking Counterparts to Advanced LIGO/Virgo Transients with Swift

    NASA Technical Reports Server (NTRS)

    Kanner, Jonah; Camp, Jordan; Racusin, Judith; Gehrels, Neil; White, Darren

    2012-01-01

    Binary neutron star (NS) mergers are among the most promising astrophysical sources of gravitational wave emission for Advanced LIGO and Advanced Virgo, expected to be operational in 2015 . Finding electromagnetic counterparts to these signals will be essential to placing them in an astronomical context. The Swift satellite carries a sensitive X-ray telescope (XRT), and can respond to target-of-opportunity requests within 1-2 hours, and so is uniquely poised to find the X-ray counterparts to LIGO / Virgo triggers. Assuming NS mergers are the progenitors of short gamma-ray bursts (GRBs), some percentage of LIGO/Virgo triggers will be accompanied by X-ray band afterglows that are brighter than 10(exp -12) ergs/s/sq cm in the XRT band one day after the trigger time. We find that a soft X-ray transient of this flux is bright enough to be extremely rare, and so could be confidently associated with even a moderately localized GW signal. We examine two possible search strategies with the Swift XRT to find bright transients in LIGO/Virgo error boxes. In the first strategy, XRT could search a volume of space with a approx.100 Mpc radius by observing approx 30 galaxies over the course of a day, with sufficient depth to observe the expected X-ray afterglow. For an extended LIGO / Virgo horizon distance, the XRT could employ very short 100 s exposures to cover an area of approx 35 square degrees in about a day, and still be sensitive enough to image GW discovered GRB afterglows. These strategies demonstrate that the high X-ray luminosity of short GRBs and the relatively low X-ray transient background combine to make high confidence discoveries of X-ray band counterparts to GW triggers possible, though challenging, with current satellite facilities.

  16. Draft Genome Sequence of Streptomyces specialis Type Strain GW41-1564 (DSM 41924).

    PubMed

    Loucif, Lotfi; Michelle, Caroline; Terras, Jérôme; Rolain, Jean-Marc; Raoult, Didier; Fournier, Pierre-Edouard

    2017-03-30

    Here, we report the draft genome sequence of Streptomyces specialis type strain GW41-1564, which was isolated from soil. This 5.87-Mb genome exhibits a high G+C content of 72.72% and contains 5,486 protein-coding genes. Copyright © 2017 Loucif et al.

  17. A Ka-band radial relativistic backward wave oscillator with GW-class output power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jiaxin; Zhang, Xiaoping, E-mail: zhangxiaoping@nudt.edu.cn; Dang, Fangchao

    A novel radial relativistic backward wave oscillator with a reflector is proposed and designed to generate GW-level high power microwaves at Ka-band. The segmented radial slow wave structure and the reflector are matched to enhance interaction efficiency. We choose the volume wave TM{sub 01} mode as the working mode due to the volume wave characteristic. The main structural parameters of the novel device are optimized by particle-in-cell simulation. High power microwaves with power of 2 GW and a frequency of 29.4 GHz are generated with 30% efficiency when the electron beam voltage is 383 kV, the beam current is 17 kA, and themore » guiding magnetic field is only 0.6 T. Simultaneously, the highest electric field in the novel Ka-band device is just about 960 kV/cm in second slow wave structure.« less

  18. Recent progress in infrared detector technologies

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2011-05-01

    In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.

  19. A Case Study of On-the-fly Wide-field Radio Imaging Applied to the Gravitational Wave Event GW151226

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Frail, D. A.; Myers, S. T.; Kulkarni, S. R.; Hotokezaka, K.; Singer, L. P.; Horesh, A.; Kasliwal, M. M.; Cenko, S. B.; Hallinan, G.

    2018-04-01

    We apply a newly developed on-the-fly mosaicing technique on the Jansky Very Large Array (VLA) at 3 GHz in order to carry out a sensitive search for an afterglow from the Advanced LIGO binary black hole merger event GW151226. In three epochs between 1.5 and 6 months post-merger, we observed a 100 deg2 region, with more than 80% of the survey region having an rms sensitivity of better than 150 μJy/beam, in the northern hemisphere with a merger containment probability of 10%. The data were processed in near real time and analyzed to search for transients and variables. No transients were found but we have demonstrated the ability to conduct blind searches in a time-frequency phase space where the predicted afterglow signals are strongest. If the gravitational wave event is contained within our survey region, the upper limit on any late-time radio afterglow from the merger event at an assumed mean distance of 440 Mpc is about 1029 erg s‑1 Hz‑1. Approximately 1.5% of the radio sources in the field showed variability at a level of 30%, and can be attributed to normal activity from active galactic nuclei. The low rate of false positives in the radio sky suggests that wide-field imaging searches at a few Gigahertz can be an efficient and competitive search strategy. We discuss our search method in the context of the recent afterglow detection from GW170817 and radio follow-up in future gravitational wave observing runs.

  20. Coincidence and coherent data analysis methods for gravitational wave bursts in a network of interferometric detectors

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Porter, Edward K.

    2003-11-01

    Network data analysis methods are the only way to properly separate real gravitational wave (GW) transient events from detector noise. They can be divided into two generic classes: the coincidence method and the coherent analysis. The former uses lists of selected events provided by each interferometer belonging to the network and tries to correlate them in time to identify a physical signal. Instead of this binary treatment of detector outputs (signal present or absent), the latter method involves first the merging of the interferometer data and looks for a common pattern, consistent with an assumed GW waveform and a given source location in the sky. The thresholds are only applied later, to validate or not the hypothesis made. As coherent algorithms use more complete information than coincidence methods, they are expected to provide better detection performances, but at a higher computational cost. An efficient filter must yield a good compromise between a low false alarm rate (hence triggering on data at a manageable rate) and a high detection efficiency. Therefore, the comparison of the two approaches is achieved using so-called receiving operating characteristics (ROC), giving the relationship between the false alarm rate and the detection efficiency for a given method. This paper investigates this question via Monte Carlo simulations, using the network model developed in a previous article. Its main conclusions are the following. First, a three-interferometer network such as Virgo-LIGO is found to be too small to reach good detection efficiencies at low false alarm rates: larger configurations are suitable to reach a confidence level high enough to validate as true GW a detected event. In addition, an efficient network must contain interferometers with comparable sensitivities: studying the three-interferometer LIGO network shows that the 2-km interferometer with half sensitivity leads to a strong reduction of performances as compared to a network of three

  1. Review on the characteristics of radiation detectors for dosimetry and imaging

    NASA Astrophysics Data System (ADS)

    Seco, Joao; Clasie, Ben; Partridge, Mike

    2014-10-01

    The enormous advances in the understanding of human anatomy, physiology and pathology in recent decades have led to ever-improving methods of disease prevention, diagnosis and treatment. Many of these achievements have been enabled, at least in part, by advances in ionizing radiation detectors. Radiology has been transformed by the implementation of multi-slice CT and digital x-ray imaging systems, with silver halide films now largely obsolete for many applications. Nuclear medicine has benefited from more sensitive, faster and higher-resolution detectors delivering ever-higher SPECT and PET image quality. PET/MR systems have been enabled by the development of gamma ray detectors that can operate in high magnetic fields. These huge advances in imaging have enabled equally impressive steps forward in radiotherapy delivery accuracy, with 4DCT, PET and MRI routinely used in treatment planning and online image guidance provided by cone-beam CT. The challenge of ensuring safe, accurate and precise delivery of highly complex radiation fields has also both driven and benefited from advances in radiation detectors. Detector systems have been developed for the measurement of electron, intensity-modulated and modulated arc x-ray, proton and ion beams, and around brachytherapy sources based on a very wide range of technologies. The types of measurement performed are equally wide, encompassing commissioning and quality assurance, reference dosimetry, in vivo dosimetry and personal and environmental monitoring. In this article, we briefly introduce the general physical characteristics and properties that are commonly used to describe the behaviour and performance of both discrete and imaging detectors. The physical principles of operation of calorimeters; ionization and charge detectors; semiconductor, luminescent, scintillating and chemical detectors; and radiochromic and radiographic films are then reviewed and their principle applications discussed. Finally, a general

  2. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  3. Second-generation detector work in Israel

    NASA Astrophysics Data System (ADS)

    Rosenfeld, David

    2001-10-01

    A tremendous developmental effort in the field of infrared detectors during the last decade in Israel has resulted in a variety of InSb and HgCdTe infrared detectors. Additional and significant R&D effort associated with other IR components, have also been done in Israel, in order to integrate the detectors into advanced Detector-Dewar-Cooler assemblies (DDCs). This R&D effort included notable activities in the field of materials, signal processors, dewars and cryocoolers. These activities are presented together with the status of infrared detector work in Israel. Several two-dimensional InSb staring detectors and DDCs are demonstrated. This includes two versions of the classical 256 X 256 detectors and DDCs, improved 640 X 480 InSb detectors and DDC, and a 2000- element detector with high TDI level. SADA II type HgCdTe detectors are also presented. Considerations regarding the course of future detector work are also described. The classical DDC requirement list which traditionally included demands for high D*, low NETD and high resolution is widened to include cost related issues such as higher reliability, lower maintenance, smaller volume, lower power consumption and higher operation temperature.

  4. Reconstructing the calibrated strain signal in the Advanced LIGO detectors

    NASA Astrophysics Data System (ADS)

    Viets, A. D.; Wade, M.; Urban, A. L.; Kandhasamy, S.; Betzwieser, J.; Brown, Duncan A.; Burguet-Castell, J.; Cahillane, C.; Goetz, E.; Izumi, K.; Karki, S.; Kissel, J. S.; Mendell, G.; Savage, R. L.; Siemens, X.; Tuyenbayev, D.; Weinstein, A. J.

    2018-05-01

    Advanced LIGO’s raw detector output needs to be calibrated to compute dimensionless strain h(t) . Calibrated strain data is produced in the time domain using both a low-latency, online procedure and a high-latency, offline procedure. The low-latency h(t) data stream is produced in two stages, the first of which is performed on the same computers that operate the detector’s feedback control system. This stage, referred to as the front-end calibration, uses infinite impulse response (IIR) filtering and performs all operations at a 16 384 Hz digital sampling rate. Due to several limitations, this procedure currently introduces certain systematic errors in the calibrated strain data, motivating the second stage of the low-latency procedure, known as the low-latency gstlal calibration pipeline. The gstlal calibration pipeline uses finite impulse response (FIR) filtering to apply corrections to the output of the front-end calibration. It applies time-dependent correction factors to the sensing and actuation components of the calibrated strain to reduce systematic errors. The gstlal calibration pipeline is also used in high latency to recalibrate the data, which is necessary due mainly to online dropouts in the calibrated data and identified improvements to the calibration models or filters.

  5. Restoration of enterohepatic bile acid pathways in pregnant mice following short term activation of Fxr by GW4064

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moscovitz, Jamie E.; Kong, Bo; Buckley, Kyle

    The farnesoid X receptor (Fxr) controls bile acid homeostasis by coordinately regulating the expression of synthesizing enzymes (Cyp7a1, Cyp8b1), conjugating enzymes (Bal, Baat) and transporters in the ileum (Asbt, Ostα/β) and liver (Ntcp, Bsep, Ostβ). Transcriptional regulation by Fxr can be direct, or through the ileal Fgf15/FGF19 and hepatic Shp pathways. Circulating bile acids are increased during pregnancy due to hormone-mediated disruption of Fxr signaling. While this adaptation enhances lipid absorption, elevated bile acids may predispose women to develop maternal cholestasis. The objective of this study was to determine whether short-term treatment of pregnant mice with GW4064 (a potent FXRmore » agonist) restores Fxr signaling to the level observed in virgin mice. Plasma, liver and ilea were collected from virgin and pregnant mice administered vehicle or GW4064 by oral gavage. Treatment of pregnant mice with GW4064 induced ileal Fgf15, Shp and Ostα/β mRNAs, and restored hepatic Shp, Bal, Ntcp, and Bsep back to vehicle-treated virgin levels. Pregnant mice exhibited 2.5-fold increase in Cyp7a1 mRNA compared to virgin controls, which was reduced by GW4064. Similarly treatment of mouse primary hepatocytes with plasma isolated from pregnant mice induced Cyp7a1 mRNA by nearly 3-fold as compared to virgin plasma, which could be attenuated by co-treatment with either GW4064 or recombinant FGF19 protein. Collectively, these data reveal that repressed activity of intestinal and hepatic Fxr in pregnancy, as previously demonstrated, may be restored by pharmacological activation. This study provides the basis for a novel approach to restore bile acid homeostasis in patients with maternal cholestasis. - Highlights: • Ileal bile acid pathways are altered in pregnancy in an Fxr-dependent manner. • Ileal Fxr/Fgf contributes to changes in hepatic bile acid synthesis and transport. • Treatment of pregnant mice with an Fxr agonist restores bile acid homeostasis.« less

  6. Continued development of room temperature semiconductor nuclear detectors

    NASA Astrophysics Data System (ADS)

    Kim, Hadong; Cirignano, Leonard; Churilov, Alexei; Ciampi, Guido; Kargar, Alireza; Higgins, William; O'Dougherty, Patrick; Kim, Suyoung; Squillante, Michael R.; Shah, Kanai

    2010-08-01

    Thallium bromide (TlBr) and related ternary compounds, TlBrI and TlBrCl, have been under development for room temperature gamma ray spectroscopy due to several promising properties. Due to recent advances in material processing, electron mobility-lifetime product of TlBr is close to Cd(Zn)Te's value which allowed us to fabricate large working detectors. We were also able to fabricate and obtain spectroscopic results from TlBr Capacitive Frisch Grid detector and orthogonal strip detectors. In this paper we report on our recent TlBr and related ternary detector results and preliminary results from Cinnabar (HgS) detectors.

  7. GW501516, a PPARδ agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFκB pathway in mice.

    PubMed

    Yang, Xu; Kume, Shinji; Tanaka, Yuki; Isshiki, Keiji; Araki, Shin-ichi; Chin-Kanasaki, Masami; Sugimoto, Toshiro; Koya, Daisuke; Haneda, Masakazu; Sugaya, Takeshi; Li, Detian; Han, Ping; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi; Uzu, Takashi

    2011-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(-). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases.

  8. GW501516, a PPARδ Agonist, Ameliorates Tubulointerstitial Inflammation in Proteinuric Kidney Disease via Inhibition of TAK1-NFκB Pathway in Mice

    PubMed Central

    Yang, Xu; Kume, Shinji; Tanaka, Yuki; Isshiki, Keiji; Araki, Shin-ichi; Chin-Kanasaki, Masami; Sugimoto, Toshiro; Koya, Daisuke; Haneda, Masakazu; Sugaya, Takeshi; Li, Detian; Han, Ping; Nishio, Yoshihiko; Kashiwagi, Atsunori; Maegawa, Hiroshi; Uzu, Takashi

    2011-01-01

    Peroxisome proliferator-activated receptors (PPARs) are a nuclear receptor family of ligand-inducible transcription factors, which have three different isoforms: PPARα, δ and γ. It has been demonstrated that PPARα and γ agonists have renoprotective effects in proteinuric kidney diseases; however, the role of PPARδ agonists in kidney diseases remains unclear. Thus, we examined the renoprotective effect of GW501516, a PPARδ agonist, in a protein-overload mouse nephropathy model and identified its molecular mechanism. Mice fed with a control diet or GW501516-containing diet were intraperitoneally injected with free fatty acid (FFA)-bound albumin or PBS(−). In the control group, protein overload caused tubular damages, macrophage infiltration and increased mRNA expression of MCP-1 and TNFα. These effects were prevented by GW501516 treatment. In proteinuric kidney diseases, excess exposure of proximal tubular cells to albumin, FFA bound to albumin or cytokines such as TNFα is detrimental. In vitro studies using cultured proximal tubular cells showed that GW501516 attenuated both TNFα- and FFA (palmitate)-induced, but not albumin-induced, MCP-1 expression via direct inhibition of the TGF-β activated kinase 1 (TAK1)-NFκB pathway, a common downstream signaling pathway to TNFα receptor and toll-like receptor-4. In conclusion, we demonstrate that GW501516 has an anti-inflammatory effect in renal tubular cells and may serve as a therapeutic candidate to attenuate tubulointerstitial lesions in proteinuric kidney diseases. PMID:21966476

  9. The Hunt for a Counterpart to GW150914

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-07-01

    On 14 September 2015, the Laser Interferometer Gravitational-wave Observatory (LIGO) in a pre-operative testing state at the time detected its first sign of gravitational-waves. The LIGO team sprang into action, performing data-quality checks on this unexpected signal. Within two days, they had sent a notification to 63 observing teams at observatories representing the entire electromagnetic spectrum, from radio to gamma-ray wavelengths.Illustration of a binary neutron star merger. The neutron stars 1) inspiral, 2) can produce a short gamma-ray burst, 3) can fling out hot, radioactive material in the form of a kilonova, and 4) form a massive neutron star or black hole with a possible remnant debris disk around it. [NASA/ESA/A. Feild (STScI)]Thus began the very first hunt for an electromagnetic counterpart to a detected gravitational wave signal.What were they looking for?As two compact objects in a binary system merge, the system is expected to emit energy in the form of gravitational waves. If both of the compact objects are black holes, were unlikely to see any electromagnetic radiation in the process, unless the merger is occurring in an (improbable) environment filled with gas and dust.But if one or both of the two compact objects is a neutron star, then there are a number of electromagnetic signatures that could occur due to energetic outflows. If a relativistic jet forms, we could see a short gamma-ray burst and X-ray, optical, and radio afterglows. Sub-relativistic outflows could produce optical and near-infrared signals, or a radio blast wave.Timeline of observations of GW150914, separated by wavelength band, and relative to the time of the gravitational-wave trigger. The top row shows LIGO information releases. The bottom four rows show high-energy, optical, near-infrared, and radio observations, respectively. Click for a closer look! [Abbott et al. 2016]Surprise SignalSince LIGO and Virgo (LIGOs European counterpart), wereprimarily expecting to detect

  10. VizieR Online Data Catalog: Electromagnetic follow-up with LIGO/Virgo (Singer+, 2014)

    NASA Astrophysics Data System (ADS)

    Singer, L. P.; Price, L. R.; Farr, B.; Urban, A. L.; Pankow, C.; Vitale, S.; Veitch, J.; Farr, W. M.; Hanna, C.; Cannon, K.; Downes, T.; Graff, P.; Haster, C.-J.; Mandel, I.; Sidery, T.; Vecchio, A.

    2017-05-01

    Aasi et al. (2013, arXiv:1304.0670) outline five observing scenarios representing the evolving configuration and capability of the Advanced GW detector array, from the first observing run in 2015, to achieving final design sensitivity in 2019, to adding a fourth detector at design sensitivity by 2022. In this study, we focus on the first two epochs. The first, in 2015, is envisioned as a three-month science run. LIGO Hanford (H) and LIGO Livingston (L) Observatories are operating with an averaged (1.4, 1.4) Mȯ BNS range between 40 and 80 Mpc. The second, in 2016-2017, is a six-month run with H and L operating between 80 and 120 Mpc and the addition of Advanced Virgo (V) with a range between 20 and 60 Mpc. (4 data files).

  11. A Novel Variable-Focus Lens for HFGW

    NASA Astrophysics Data System (ADS)

    Woods, R. Clive

    2006-01-01

    Li and Torr published calculations claiming to show that gravitational waves (GWs) propagate inside superconductors with a phase velocity reduction (compared to free space) by a factor n ~ 300× and a wavenumber increase by a factor n. This gives major opportunities for designing future GW components able to focus, refract, reflect, and otherwise manipulate gravitational waves for efficient coupling to detectors, transmitters, generators, resonant chambers, and other sensors. To exploit this result, a novel type of HFGW lens design is proposed here using a magnetic field to adjust the focal length in an infinitely-variable manner. Type-II superconductors do not always completely expel large magnetic fields; above their lower critical field they allow vortices of magnetic flux to channel the magnetic field through the material. Within these vortices, the superconductor is magnetically quenched and so behaves as a non-superconductor. Varying the applied magnetic field varies the proportion of material that is quenched. This subsequently affects GW propagation behavior through a type II superconductor. Therefore, using a suitable non-uniform magnetic field, the GW optical path length may be arranged to vary in a technologically useful manner. A GW lens may be designed with focal length dependent upon the applied magnetic field. Such a lens would be invaluable in the design of advanced GW optics since focusing will be achieved electrically with no moving parts; for this reason it would be unparalleled in conventional optics. Since, therefore, variations in n (due to calculation error limits) can be compensated electrically, successful demonstration of this device would confirm the Li and Torr prediction much more easily than directly using a fixed lens structure. The device would also enable fast auto-focusing, zooming, and imaging tomography using electronic servos following development of the necessary HFGW detectors.

  12. Gravity wave life cycle (GW-LCYCLE): Initial results from a coordinated field program to trace gravity waves from the troposphere to the MLT-region

    NASA Astrophysics Data System (ADS)

    Rapp, Markus

    Gravity waves (GW) play an important role in the coupling between the troposphere and the middle atmosphere (˜10 - 120 km). GWs couple different atmospheric regions both in the vertical as well as in the horizontal directions by means of momentum and energy transport. Notably, this coupling is effective both from the troposphere upwards, and also in the opposite direction by indirect effects on circulation patterns. While the importance of GW for understanding atmospheric structure, dynamics and climate is now widely recognized, surprisingly little is still known about the details of the GW life cycle, i.e., the processes of GW excitation, propagation and dissipation. To address this issue a coordinated field program - named GW-LCYCLE - has been established in which ground based observations with radars, lidars and airglow imagers are combined with airborne observations, balloon soundings, and modelling to trace GWs from their source in the troposphere to their area of dissipation in the middle atmosphere. Within GW-LCYCLE an initial field campaign was conducted in December 2013 in Northern Scandinavia. The research aircraft DLR-FALCON was deployed to Kiruna, Sweden, from where several flights (with a total of 25 flight hours) were conducted to study mountain wave generation by flow over the Scandinavian mountain ridge. The FALCON was equipped with a downward looking wind lidar operating at a wavelength of 2 mum as well as with an in-flight system to measure winds, temperatures and pressures and with several in-situ instruments to detect wave signatures in trace gases like H _{2}O, CO _{2}, CO, CH _{4}, N _{2}O, HNO _{3} and SO _{2}. Ground based observations of winds and temperatures from the troposphere to the mesosphere/lower thermosphere (MLT-) region were conducted from Kiruna as well as from Andenes, Norway. These measurements were augmented by balloon soundings from the same places as well as from Sodankylä in Finland. Coordinated observations were

  13. Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis.

    PubMed

    Drout, M R; Piro, A L; Shappee, B J; Kilpatrick, C D; Simon, J D; Contreras, C; Coulter, D A; Foley, R J; Siebert, M R; Morrell, N; Boutsia, K; Di Mille, F; Holoien, T W-S; Kasen, D; Kollmeier, J A; Madore, B F; Monson, A J; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Adams, C; Alatalo, K; Bañados, E; Baughman, J; Beers, T C; Bernstein, R A; Bitsakis, T; Campillay, A; Hansen, T T; Higgs, C R; Ji, A P; Maravelias, G; Marshall, J L; Bidin, C Moni; Prieto, J L; Rasmussen, K C; Rojas-Bravo, C; Strom, A L; Ulloa, N; Vargas-González, J; Wan, Z; Whitten, D D

    2017-12-22

    On 17 August 2017, gravitational waves (GWs) were detected from a binary neutron star merger, GW170817, along with a coincident short gamma-ray burst, GRB 170817A. An optical transient source, Swope Supernova Survey 17a (SSS17a), was subsequently identified as the counterpart of this event. We present ultraviolet, optical, and infrared light curves of SSS17a extending from 10.9 hours to 18 days postmerger. We constrain the radioactively powered transient resulting from the ejection of neutron-rich material. The fast rise of the light curves, subsequent decay, and rapid color evolution are consistent with multiple ejecta components of differing lanthanide abundance. The late-time light curve indicates that SSS17a produced at least ~0.05 solar masses of heavy elements, demonstrating that neutron star mergers play a role in rapid neutron capture (r-process) nucleosynthesis in the universe. Copyright © 2017, American Association for the Advancement of Science.

  14. Update on Advanced LIGO: the second observing run

    NASA Astrophysics Data System (ADS)

    Barsotti, Lisa; LIGO Scientific Collaboration Collaboration

    2017-01-01

    After several months of detector improvements, the two Advanced LIGO gravitational wave detectors are coming back on-line by the end of 2016 for their second Observing run, O2. In this talk I will discuss the status of Advanced LIGO and its observing plan.

  15. GW quasiparticle energy study of ternary tetradymite Bi2Te2Se and Bi2Te2S thin films

    NASA Astrophysics Data System (ADS)

    Shuaibu, Alhassan; Rahman, Md. Mahmudur; Zainuddin, Hishamuddin; Talib, Zainal Abidin; Muhida, Rifki

    2015-04-01

    In this work, we have evaluated the quasiparticle energies of ternary tetradymite Bi2Te2Se and Bi2Te2S using first-principles calculation within the G0W0 methods. We have also performed a broad convergence tests in order to investigate the quasiparticle corrections to the structural parameters and to the semi core d electrons in both of the compounds. For each case, we have calculated the many-body corrections within a one-shot GW method of the compounds. Our results have shown that for Bi2Te2Se the GW corrections increase the band gap to almost 10%, and for specific atomic positions, the band structure shows a close value to the experimental one. For Bi2Te2S, despite increase in the band gap due to the GW corrections, possibility of bulk resistivity that can be significant for photovoltaic applications was observed.

  16. Multi-messenger studies of compact binary mergers in the in the ngVLA era

    NASA Astrophysics Data System (ADS)

    Corsi, Alessandra

    2018-01-01

    We explore some of the scientific opportunities that the next generation Very Large Array (ngVLA) will open in the field of multi-messenger time-domain astronomy. We focus on compact binary mergers, golden astrophysical targets of ground-based gravitational wave (GW) detectors such as advanced LIGO. A decade from now, a large number of these mergers is likely to be discovered by a world-wide network of GW detectors. We discuss how a radio array with 10 times the sensitivity of the current Karl G. Jansky VLA and 10 times the resolution, would enable resolved radio continuum studies of binary merger hosts, probing regions of the galaxy undergoing star formation (which can be heavily obscured by dust and gas), AGN components, and mapping the offset distribution of the mergers with respect to the host galaxy light. For compact binary mergers containing at least one neutron star (NS), from which electromagnetic counterparts are expected to exist, we show how the ngVLA would enable direct size measurements of the relativistic merger ejecta and probe, for the first time directly, their dynamics.

  17. Hybrid insulation coordination and optimisation for 1 MV operation of pulsed electron accelerator KALI-30GW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthil, K.; Mitra, S.; Sandeep, S., E-mail: sentilk@barc.gov.in

    In a multi-gigawatt pulsed power system like KALI-30 GW, insulation coordination is required to achieve high voltages ranging from 0.3 MV to 1 MV. At the same time optimisation of the insulation parameters is required to minimize the inductance of the system, so that nanoseconds output can be achieved. The KALI-30GW pulse power system utilizes a combination of Perspex, delrin, epoxy, transformer oil, nitrogen/SF{sub 6} gas and vacuum insulation at its various stages in compressing DC high voltage to a nanoseconds pulse. This paper describes the operation and performance of the system from 400 kV to 1030 kV output voltagemore » pulse and insulation parameters utilized for obtaining peak 1 MV output. (author)« less

  18. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cieplak-Rotowska, Maja K.; Tarnowski, Krzysztof; Rubin, Marcin; Fabian, Marc R.; Sonenberg, Nahum; Dadlez, Michal; Niedzwiecka, Anna

    2018-01-01

    The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. [Figure not available: see fulltext.

  19. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  20. Pulmonary Administration of GW0742, a High-Affinity Peroxisome Proliferator-Activated Receptor Agonist, Repairs Collapsed Alveoli in an Elastase-Induced Mouse Model of Emphysema.

    PubMed

    Ozawa, Chihiro; Horiguchi, Michiko; Akita, Tomomi; Oiso, Yuki; Abe, Kaori; Motomura, Tomoki; Yamashita, Chikamasa

    2016-01-01

    Pulmonary emphysema is a disease in which lung alveoli are irreversibly damaged, thus compromising lung function. Our previous study revealed that all-trans-retinoic acid (ATRA) induces the differentiation of human lung alveolar epithelial type 2 progenitor cells and repairs the alveoli of emphysema model mice. ATRA also reportedly has the ability to activate peroxisome proliferator-activated receptor (PPAR) β/δ. A selective PPARβ/δ ligand has been reported to induce the differentiation of human keratinocytes during wound repair. Here, we demonstrate that treatment using a high-affinity PPARβ/δ agonist, GW0742, reverses the lung tissue damage induced by elastase in emphysema-model mice and improves respiratory function. Mice treated with elastase, which collapsed their alveoli, were then treated with either 10% dimethyl sulfoxide (DMSO) in saline (control group) or GW0742 (1.0 mg/kg twice a week) by pulmonary administration. Treatment with GW0742 for 2 weeks increased the in vivo expression of surfactant proteins A and D, which are known alveolar type II epithelial cell markers. GW0742 treatment also shortened the average distance between alveolar walls in the lungs of emphysema model mice, compared with a control group treated with 10% DMSO in saline. Treatment with GW0742 for 3 weeks also improved tissue elastance (cm H2O/mL), as well as the ratio of the forced expiratory volume in the first 0.05 s to the forced vital capacity (FEV 0.05/FVC). In each of these experiments, GW0742 treatment reversed the damage caused by elastase. In conclusion, PPARβ/δ agonists are potential therapeutic agents for pulmonary emphysema.

  1. Genome Sequence of Herbaspirillum sp. Strain GW103, a Plant Growth-Promoting Bacterium

    PubMed Central

    Lee, Gun Woong; Lee, Kui-Jae

    2012-01-01

    Herbaspirillum sp. strain GW103 was isolated from rhizosphere soil of the reed Phragmites australis on reclaimed land. Here we report the 5.05-Mb draft genome sequence of the strain, providing bioinformation about the agronomic benefits of this strain, such as multiple traits relevant to plant root colonization and plant growth promotion. PMID:22815460

  2. On the Progenitor of Binary Neutron Star Merger GW170817

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holgado, A. M.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimball, C.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Larson, S. L.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O'Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ormiston, R.; Ortega, L. F.; O'Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration

    2017-12-01

    On 2017 August 17 the merger of two compact objects with masses consistent with two neutron stars was discovered through gravitational-wave (GW170817), gamma-ray (GRB 170817A), and optical (SSS17a/AT 2017gfo) observations. The optical source was associated with the early-type galaxy NGC 4993 at a distance of just ˜40 Mpc, consistent with the gravitational-wave measurement, and the merger was localized to be at a projected distance of ˜2 kpc away from the galaxy’s center. We use this minimal set of facts and the mass posteriors of the two neutron stars to derive the first constraints on the progenitor of GW170817 at the time of the second supernova (SN). We generate simulated progenitor populations and follow the three-dimensional kinematic evolution from binary neutron star (BNS) birth to the merger time, accounting for pre-SN galactic motion, for considerably different input distributions of the progenitor mass, pre-SN semimajor axis, and SN-kick velocity. Though not considerably tight, we find these constraints to be comparable to those for Galactic BNS progenitors. The derived constraints are very strongly influenced by the requirement of keeping the binary bound after the second SN and having the merger occur relatively close to the center of the galaxy. These constraints are insensitive to the galaxy’s star formation history, provided the stellar populations are older than 1 Gyr.

  3. Energy-level alignment in organic dye-sensitized TiO2 from GW calculations.

    PubMed

    Umari, P; Giacomazzi, L; De Angelis, F; Pastore, M; Baroni, Stefano

    2013-07-07

    The electronic energy levels of some representative isolated and oxide-supported organic dyes, relevant for photovoltaic applications, are investigated using many-body perturbation theory within the GW approximation. We consider a set of all-organic dyes (denominated L0, L2, L3, and L4) featuring the same donor and anchor groups and differing for the linker moieties. We first calculate the energy levels of the isolated molecules, thus allowing us to address the effects of the different linker groups, and resulting in good agreement with photo-electron spectroscopic and electrochemical data. We then consider the L0 dye adsorbed on the (101) surface of anatase-TiO2. We find a density of occupied states in agreement with experimental photo-electron data. The HOMO-LUMO energy gap of the L0 dye is found to be reduced by ~1 eV upon adsorption. Our results validate the reliability of GW calculations for photovoltaic applications and point to their potential as a powerful tool for the screening and rational design of new components of electrochemical solar cells.

  4. LOOC UP: Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Piscionere, Jennifer; Marka, S.; Shawhan, P. S.; Kanner, J.; Huard, T. L.; Murphy, D. C.

    2007-12-01

    We have begun a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP), to search promptly for optical counterparts to potential candidates for gravitational wave (GW) bursts. Several plausible GW sources are likely to also emit light, so the identification of a transient optical counterpart would confirm the GW signal and provide additional information about the progenitor. For example, it is expected that a merger of two neutron stars in a binary system close enough to be detectable in GWs may exhibit an optical counterpart as bright as R=13 magnitude initially, with a dimming of 1 magnitude per night. We carried out a pilot study in the summer of 2007 to develop methods and software tools for such a search. The first stage involves identifying potential GW burst candidates, or "triggers", by near real-time analysis of signals from the two Laser Interferometer Gravitational-Wave Observatory (LIGO) detector sites plus the Virgo GW detector in Europe, using very low thresholds on signal amplitude and requiring coincidence among the detectors. (At such low thresholds, typical noise fluctuations in the detectors produce a false trigger rate of one or more per hour.) Rough positions of putative sources are estimated from the GW data using the timing differences among detectors; this information is then used to select follow-up targets, giving preference to nearby galaxies and Milky Way globular clusters. A large number of nominal trigger times and targets were selected in this way for the pilot study. Using Las Campanas and MDM observatories, repeated optical observations of fields containing these targets were obtained starting a few hours after each trigger and continuing for several nights. We will present the methods we have developed for choosing targets for follow-ups and analyzing the optical image data for transients.

  5. Synthesis of the PPARbeta/delta-selective agonist GW501516 and C4-thiazole-substituted analogs.

    PubMed

    Pereira, Raquel; Gaudon, Claudine; Iglesias, Beatriz; Germain, Pierre; Gronemeyer, Hinrich; de Lera, Angel R

    2006-01-01

    Sequential, position-selective, Pd-catalyzed cross-coupling reactions of 2,4-dibromo-5-hydroxymethylthiazole provided the scaffold for the synthesis of GW501516, the most potent PPARbeta/delta agonist yet described, and equally selective analogs at the thiazole-C4 position.

  6. Electronic structure and metallization of cubic GdH{sub 3} under pressure: Ab initio many-body GW calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, Bo, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn; Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018; Zhang, Yachao, E-mail: kong79@yeah.net, E-mail: yachao.zhang@pku.edu.cn

    The electronic structures of the cubic GdH{sub 3} are extensively investigated using the ab initio many-body GW calculations treating the Gd 4f electrons either in the core (4f-core) or in the valence states (4f-val). Different degrees of quasiparticle (QP) self-consistent calculations with the different starting points are used to correct the failures of the GGA/GGA + U/HSE03 calculations. In the 4f-core case, GGA + G{sub 0}W{sub 0} calculations give a fundamental band gap of 1.72 eV, while GGA+ GW{sub 0} or GGA + GW calculations present a larger band gap. In the 4f-val case, the nonlocal exchange-correlation (xc) functional HSE03 can account much better for the strong localizationmore » of the 4f states than the semilocal or Hubbard U corrected xc functional in the Kohn–Sham equation. We show that the fundamental gap of the antiferromagnetic (AFM) or ferromagnetic (FM) GdH{sub 3} can be opened up by solving the QP equation with improved starting point of eigenvalues and wave functions given by HSE03. The HSE03 + G{sub 0}W{sub 0} calculations present a fundamental band gap of 2.73 eV in the AFM configuration, and the results of the corresponding GW{sub 0} and GW calculations are 2.89 and 3.03 eV, respectively. In general, for the cubic structure, the fundamental gap from G{sub 0}W{sub 0} calculations in the 4f-core case is the closest to the real result. By G{sub 0}W{sub 0} calculations in the 4f-core case, we find that H or Gd defects can strongly affect the band structure, especially the H defects. We explain the mechanism in terms of the possible electron correlation on the hydrogen site. Under compression, the insulator-to-metal transition in the cubic GdH{sub 3} occurs around 40 GPa, which might be a satisfied prediction.« less

  7. Accuracy of Binary Black Hole Waveform Models for Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Kumar, Prayush; Fong, Heather; Barkett, Kevin; Bhagwat, Swetha; Afshari, Nousha; Chu, Tony; Brown, Duncan; Lovelace, Geoffrey; Pfeiffer, Harald; Scheel, Mark; Szilagyi, Bela; Simulating Extreme Spacetimes (SXS) Team

    2016-03-01

    Coalescing binaries of compact objects, such as black holes and neutron stars, are the primary targets for gravitational-wave (GW) detection with Advanced LIGO. Accurate modeling of the emitted GWs is required to extract information about the binary source. The most accurate solution to the general relativistic two-body problem is available in numerical relativity (NR), which is however limited in application due to computational cost. Current searches use semi-analytic models that are based in post-Newtonian (PN) theory and calibrated to NR. In this talk, I will present comparisons between contemporary models and high-accuracy numerical simulations performed using the Spectral Einstein Code (SpEC), focusing at the questions: (i) How well do models capture binary's late-inspiral where they lack a-priori accurate information from PN or NR, and (ii) How accurately do they model binaries with parameters outside their range of calibration. These results guide the choice of templates for future GW searches, and motivate future modeling efforts.

  8. Comparison of predicted pesticide concentrations in groundwater from SCI-GROW and PRZM-GW models with historical monitoring data.

    PubMed

    Estes, Tammara L; Pai, Naresh; Winchell, Michael F

    2016-06-01

    A key factor in the human health risk assessment process for the registration of pesticides by the US Environmental Protection Agency (EPA) is an estimate of pesticide concentrations in groundwater used for drinking water. From 1997 to 2011, these estimates were obtained from the EPA empirical model SCI-GROW. Since 2012, these estimates have been obtained from the EPA deterministic model PRZM-GW, which has resulted in a significant increase in estimated groundwater concentrations for many pesticides. Historical groundwater monitoring data from the National Ambient Water Quality Assessment (NAWQA) Program (1991-2014) were compared with predicted groundwater concentrations from both SCI-GROW (v.2.3) and PRZM-GW (v.1.07) for 66 different pesticides of varying environmental fate properties. The pesticide environmental fate parameters associated with over- and underprediction of groundwater concentrations by the two models were evaluated. In general, SCI-GROW2.3 predicted groundwater concentrations were close to maximum historically observed groundwater concentrations. However, for pesticides with soil organic carbon content values below 1000 L kg(-1) and no simulated hydrolysis, PRZM-GW overpredicted, often by greater than 100 ppb. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. Flight performance of an advanced CZT imaging detector in a balloon-borne wide-field hard X-ray telescope—ProtoEXIST1

    NASA Astrophysics Data System (ADS)

    Hong, J.; Allen, B.; Grindlay, J.; Barthelemy, S.; Baker, R.; Garson, A.; Krawczynski, H.; Apple, J.; Cleveland, W. H.

    2011-10-01

    We successfully carried out the first high-altitude balloon flight of a wide-field hard X-ray coded-aperture telescope ProtoEXIST1, which was launched from the Columbia Scientific Balloon Facility at Ft. Sumner, New Mexico on October 9, 2009. ProtoEXIST1 is the first implementation of an advanced CdZnTe (CZT) imaging detector in our ongoing program to establish the technology required for next generation wide-field hard X-ray telescopes such as the High Energy Telescope (HET) in the Energetic X-ray Imaging Survey Telescope (EXIST). The CZT detector plane in ProtoEXIST1 consists of an 8×8 array of closely tiled 2 cm×2 cm×0.5 cm thick pixellated CZT crystals, each with 8×8 pixels, mounted on a set of readout electronics boards and covering a 256 cm2 active area with 2.5 mm pixels. A tungsten mask, mounted at 90 cm above the detector provides shadowgrams of X-ray sources in the 30-600 keV band for imaging, allowing a fully coded field of view of 9°×9° (and 19°×19° for 50% coding fraction) with an angular resolution of 20‧. In order to reduce the background radiation, the detector is surrounded by semi-graded (Pb/Sn/Cu) passive shields on the four sides all the way to the mask. On the back side, a 26 cm×26 cm×2 cm CsI(Na) active shield provides signals to tag charged particle induced events as well as ≳100keV background photons from below. The flight duration was only about 7.5 h due to strong winds (60 knots) at float altitude (38-39 km). Throughout the flight, the CZT detector performed excellently. The telescope observed Cyg X-1, a bright black hole binary system, for ˜1h at the end of the flight. Despite a few problems with the pointing and aspect systems that caused the telescope to track about 6.4° off the target, the analysis of the Cyg X-1 data revealed an X-ray source at 7.2σ in the 30-100 keV energy band at the expected location from the optical images taken by the onboard daytime star camera. The success of this first flight is very

  10. Superhumps linked to X-ray emission. The superoutbursts of SSS J122221.7-311525 and GW Lib

    NASA Astrophysics Data System (ADS)

    Neustroev, V. V.; Page, K. L.; Kuulkers, E.; Osborne, J. P.; Beardmore, A. P.; Knigge, C.; Marsh, T.; Suleimanov, V. F.; Zharikov, S. V.

    2018-03-01

    Context. We present more than 4 years of Swift X-ray observations of the 2013 superoutburst, subsequent decline and quiescence of the WZ Sge-type dwarf nova SSS J122221.7-311525 (SSS J122222) from 6 days after discovery. Aims: Only a handful of WZ Sge-type dwarf novae have been observed in X-rays, and until recently GW Lib was the only binary of this type with complete coverage of an X-ray light curve throughout a superoutburst. We collected extensive X-ray data of a second such system to understand the extent to which the unexpected properties of GW Lib are common to the WZ Sge class. Methods: We collected 60 Swift-XRT observations of SSS J122222 between 2013 January 6 and 2013 July 1. Four follow-up observations were performed in 2014, 2015, 2016 and 2017. The total exposure time of our observations is 86.6 ks. We analysed the X-ray light curve and compared it with the behaviour of superhumps which were detected in the optical light curve. We also performed spectral analysis of the data. The results were compared with the properties of GW Lib, for which new X-ray observations were also obtained. Results: SSS J122222 was variable and around five times brighter in 0.3-10 keV X-rays during the superoutburst than in quiescence, mainly because of a significant strengthening of a high-energy component of the X-ray spectrum. The post-outburst decline of the X-ray flux lasted at least 500 d. The data show no evidence of the expected optically thick boundary layer in the system during the outburst. SSS J122222 also exhibited a sudden X-ray flux change in the middle of the superoutburst, which occurred exactly at the time of the superhump stage transition. A similar X-ray behaviour was also detected in GW Lib. Conclusions: We show that the X-ray flux exhibits changes at the times of changes in the superhump behaviour of both SSS J122222 and GW Lib. This result demonstrates a relationship between the outer disc and the white dwarf boundary layer for the first time, and

  11. Advanced Silicon Detectors for High Energy Astrophysics Missions

    NASA Technical Reports Server (NTRS)

    Ricker, George

    2005-01-01

    A viewgraph presentation on the development of silicon detectors for high energy astrophysics missions is presented. The topics include: 1) Background: Motivation for Event-Driven CCD; 2) Report of Grant Activity; 3) Packaged EDCCD; 4) Measured X-ray Energy Resolution of the Gen1 EDCCDs Operated in "Conventional Mode"; and 5) EDCCD Gen 1.5-Lot 1 Planning.

  12. Integrated infrared detector arrays for low-background applications

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1982-01-01

    Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.

  13. GW study of topological insulators Bi2Se3, Bi2Te3, and Sb2Te3: Beyond the perturbative one-shot approach

    NASA Astrophysics Data System (ADS)

    Aguilera, Irene; Friedrich, Christoph; Bihlmayer, Gustav; Blügel, Stefan

    2013-07-01

    We present GW calculations of the topological insulators Bi2Se3, Bi2Te3, and Sb2Te3 within the all-electron full-potential linearized augmented-plane-wave formalism. Quasiparticle effects produce significant qualitative changes in the band structures of these materials when compared to density functional theory (DFT), especially at the Γ point, where band inversion takes place. There, the widely used perturbative one-shot GW approach can produce unphysical band dispersions, as the quasiparticle wave functions are forced to be identical to the noninteracting single-particle states. We show that a treatment beyond the perturbative approach, which incorporates the off-diagonal GW matrix elements and thus enables many-body hybridization to be effective in the quasiparticle wave functions, is crucial in these cases to describe the characteristics of the band inversion around the Γ point in an appropriate way. In addition, this beyond one-shot GW approach allows us to calculate the values of the Z2 topological invariants and compare them with those previously obtained within DFT.

  14. Advanced Multilayer Composite Heavy-Oxide Scintillator Detectors for High Efficiency Fast Neutron Detection

    NASA Astrophysics Data System (ADS)

    Ryzhikov, Vladimir D.; Naydenov, Sergei V.; Pochet, Thierry; Onyshchenko, Gennadiy M.; Piven, Leonid A.; Smith, Craig F.

    2018-01-01

    We have developed and evaluated a new approach to fast neutron and neutron-gamma detection based on large-area multilayer composite heterogeneous detection media consisting of dispersed granules of small-crystalline scintillators contained in a transparent organic (plastic) matrix. Layers of the composite material are alternated with layers of transparent plastic scintillator material serving as light guides. The resulting detection medium - designated as ZEBRA - serves as both an active neutron converter and a detection scintillator which is designed to detect both neutrons and gamma-quanta. The composite layers of the ZEBRA detector consist of small heavy-oxide scintillators in the form of granules of crystalline BGO, GSO, ZWO, PWO and other materials. We have produced and tested the ZEBRA detector of sizes 100x100x41 mm and greater, and determined that they have very high efficiency of fast neutron detection (up to 49% or greater), comparable to that which can be achieved by large sized heavy-oxide single crystals of about Ø40x80 cm3 volume. We have also studied the sensitivity variation to fast neutron detection by using different types of multilayer ZEBRA detectors of 100 cm2 surface area and 41 mm thickness (with a detector weight of about 1 kg) and found it to be comparable to the sensitivity of a 3He-detector representing a total cross-section of about 2000 cm2 (with a weight of detector, including its plastic moderator, of about 120 kg). The measured count rate in response to a fast neutron source of 252Cf at 2 m for the ZEBRA-GSO detector of size 100x100x41 mm3 was 2.84 cps/ng, and this count rate can be doubled by increasing the detector height (and area) up to 200x100 mm2. In summary, the ZEBRA detectors represent a new type of high efficiency and low cost solid-state neutron detector that can be used for stationary neutron/gamma portals. They may represent an interesting alternative to expensive, bulky gas counters based on 3He or 10B neutron

  15. GW study of the half-metallic Heusler compounds Co2MnSi and Co2FeSi

    NASA Astrophysics Data System (ADS)

    Meinert, Markus; Friedrich, Christoph; Reiss, Günter; Blügel, Stefan

    2012-12-01

    Quasiparticle spectra of potentially half-metallic Co2MnSi and Co2FeSi Heusler compounds have been calculated within the one-shot GW approximation in an all-electron framework without adjustable parameters. For Co2FeSi the many-body corrections are crucial: a pseudogap opens and good agreement of the magnetic moment with experiment is obtained. Otherwise, however, the changes with respect to the density-functional-theory starting point are moderate. For both cases we find that photoemission and x-ray absorption spectra are well described by the calculations. By comparison with the GW density of states, we conclude that the Kohn-Sham eigenvalue spectrum provides a reasonable approximation for the quasiparticle spectrum of the Heusler compounds considered in this work.

  16. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, Simon; Ohme, Frank; Fairhurst, Stephen, E-mail: simon.stevenson@ligo.org

    2015-09-01

    The coalescence of compact binaries containing neutron stars or black holes is one of the most promising signals for advanced ground-based laser interferometer gravitational-wave (GW) detectors, with the first direct detections expected over the next few years. The rate of binary coalescences and the distribution of component masses is highly uncertain, and population synthesis models predict a wide range of plausible values. Poorly constrained parameters in population synthesis models correspond to poorly understood astrophysics at various stages in the evolution of massive binary stars, the progenitors of binary neutron star and binary black hole systems. These include effects such asmore » supernova kick velocities, parameters governing the energetics of common envelope evolution and the strength of stellar winds. Observing multiple binary black hole systems through GWs will allow us to infer details of the astrophysical mechanisms that lead to their formation. Here we simulate GW observations from a series of population synthesis models including the effects of known selection biases, measurement errors and cosmology. We compare the predictions arising from different models and show that we will be able to distinguish between them with observations (or the lack of them) from the early runs of the advanced LIGO and Virgo detectors. This will allow us to narrow down the large parameter space for binary evolution models.« less

  17. Rates of short-GRB afterglows in association with binary neutron star mergers

    NASA Astrophysics Data System (ADS)

    Saleem, M.; Pai, Archana; Misra, Kuntal; Resmi, L.; Arun, K. G.

    2018-03-01

    Assuming all binary neutron star (BNS) mergers produce short gamma-ray bursts, we combine the merger rates of BNS from population synthesis studies, the sensitivities of advanced gravitational wave (GW) interferometer networks, and of the electromagnetic (EM) facilities in various wavebands, to compute the detection rate of associated afterglows in these bands. Using the inclination angle measured from GWs as a proxy for the viewing angle and assuming a uniform distribution of jet opening angle between 3° and 30°, we generate light curves of the counterparts using the open access afterglow hydrodynamics package BOXFIT for X-ray, optical, and radio bands. For different EM detectors, we obtain the fraction of EM counterparts detectable in these three bands by imposing appropriate detection thresholds. In association with BNS mergers detected by five (three) detector networks of advanced GW interferometers, assuming a BNS merger rate of 0.6-774 Gpc-3 yr-1 from population synthesis models, we find the afterglow detection rates (per year) to be 0.04-53 (0.02-27), 0.03-36 (0.01-19), and 0.04-47 (0.02-25) in the X-ray, optical, and radio bands, respectively. Our rates represent maximum possible detections for the given BNS rate since we ignore effects of cadence and field of view in EM follow-up observations.

  18. COALESCENCE OF STRANGE-QUARK PLANETS WITH STRANGE STARS: A NEW KIND OF SOURCE FOR GRAVITATIONAL WAVE BURSTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, J. J.; Huang, Y. F.; Lu, T., E-mail: hyf@nju.edu.cn

    2015-05-01

    Strange-quark matter (SQM) may be the true ground state of hadronic matter, indicating that the observed pulsars may actually be strange stars (SSs), but not neutron stars. According to the SQM hypothesis, the existence of a hydrostatically stable sequence of SQM stars has been predicted, ranging from 1 to 2 solar mass SSs, to smaller strange dwarfs and even strange planets. While gravitational wave (GW) astronomy is expected to open a new window to the universe, it will shed light on the search for SQM stars. Here we show that due to their extreme compactness, strange planets can spiral verymore » close to their host SSs without being tidally disrupted. Like inspiraling neutron stars or black holes, these systems would serve as new sources of GW bursts, producing strong GWs at the final stage. The events occurring in our local universe can be detected by upcoming GW detectors, such as Advanced LIGO and the Einstein Telescope. This effect provides a unique probe to SQM objects and is hopefully a powerful tool for testing the SQM hypothesis.« less

  19. Electronic structure of gadolinium complexes in ZnO in the GW approximation

    NASA Astrophysics Data System (ADS)

    Rosa, A. L.; Frauenheim, Th.

    2018-04-01

    The role of intrinsic defects has been investigated to determine binding energies and the electronic structure of Gd complexes in ZnO. We use density-functional theory and the GW method to show that the presence of vacancies and interstitials affect the electronic structure of Gd doped ZnO. However, the strong localization of the Gd-f and d states suggest that carrier mediated ferromagnetism in this material may be difficult to achieve.

  20. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817

    NASA Astrophysics Data System (ADS)

    Mooley, K. P.; Nakar, E.; Hotokezaka, K.; Hallinan, G.; Corsi, A.; Frail, D. A.; Horesh, A.; Murphy, T.; Lenc, E.; Kaplan, D. L.; de, K.; Dobie, D.; Chandra, P.; Deller, A.; Gottlieb, O.; Kasliwal, M. M.; Kulkarni, S. R.; Myers, S. T.; Nissanke, S.; Piran, T.; Lynch, C.; Bhalerao, V.; Bourke, S.; Bannister, K. W.; Singer, L. P.

    2018-02-01

    GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.

  1. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817.

    PubMed

    Mooley, K P; Nakar, E; Hotokezaka, K; Hallinan, G; Corsi, A; Frail, D A; Horesh, A; Murphy, T; Lenc, E; Kaplan, D L; De, K; Dobie, D; Chandra, P; Deller, A; Gottlieb, O; Kasliwal, M M; Kulkarni, S R; Myers, S T; Nissanke, S; Piran, T; Lynch, C; Bhalerao, V; Bourke, S; Bannister, K W; Singer, L P

    2018-02-08

    GW170817 was the first gravitational-wave detection of a binary neutron-star merger. It was accompanied by radiation across the electromagnetic spectrum and localized to the galaxy NGC 4993 at a distance of 40 megaparsecs. It has been proposed that the observed γ-ray, X-ray and radio emission is due to an ultra-relativistic jet being launched during the merger (and successfully breaking out of the surrounding material), directed away from our line of sight (off-axis). The presence of such a jet is predicted from models that posit neutron-star mergers as the drivers of short hard-γ-ray bursts. Here we report that the radio light curve of GW170817 has no direct signature of the afterglow of an off-axis jet. Although we cannot completely rule out the existence of a jet directed away from the line of sight, the observed γ-ray emission could not have originated from such a jet. Instead, the radio data require the existence of a mildly relativistic wide-angle outflow moving towards us. This outflow could be the high-velocity tail of the neutron-rich material that was ejected dynamically during the merger, or a cocoon of material that breaks out when a jet launched during the merger transfers its energy to the dynamical ejecta. Because the cocoon model explains the radio light curve of GW170817, as well as the γ-ray and X-ray emission (and possibly also the ultraviolet and optical emission), it is the model that is most consistent with the observational data. Cocoons may be a ubiquitous phenomenon produced in neutron-star mergers, giving rise to a hitherto unidentified population of radio, ultraviolet, X-ray and γ-ray transients in the local Universe.

  2. Conformationally constrained farnesoid X receptor (FXR) agonists: Naphthoic acid-based analogs of GW 4064.

    PubMed

    Akwabi-Ameyaw, Adwoa; Bass, Jonathan Y; Caldwell, Richard D; Caravella, Justin A; Chen, Lihong; Creech, Katrina L; Deaton, David N; Jones, Stacey A; Kaldor, Istvan; Liu, Yaping; Madauss, Kevin P; Marr, Harry B; McFadyen, Robert B; Miller, Aaron B; Navas, Frank; Parks, Derek J; Spearing, Paul K; Todd, Dan; Williams, Shawn P; Wisely, G Bruce

    2008-08-01

    Starting from the known FXR agonist GW 4064 1a, a series of stilbene replacements were prepared. The 6-substituted 1-naphthoic acid 1b was an equipotent FXR agonist with improved developability parameters relative to 1a. Analog 1b also reduced the severity of cholestasis in the ANIT acute cholestatic rat model.

  3. Fate of Large-Scale Structure in Modified Gravity After GW170817 and GRB170817A

    NASA Astrophysics Data System (ADS)

    Amendola, Luca; Kunz, Martin; Saltas, Ippocratis D.; Sawicki, Ignacy

    2018-03-01

    The coincident detection of gravitational waves (GW) and a gamma-ray burst from a merger of neutron stars has placed an extremely stringent bound on the speed of GWs. We showed previously that the presence of gravitational slip (η ) in cosmology is intimately tied to modifications of GW propagation. This new constraint implies that the only remaining viable source of gravitational slip is a conformal coupling to gravity in scalar-tensor theories, while viable vector-tensor theories cannot now generate gravitational slip at all. We discuss structure formation in the remaining viable models, demonstrating that (i) the dark-matter growth rate must now be at least as fast as in general relativity (GR), with the possible exception of that beyond the Horndeski model, and (ii) if there is any scale dependence at all in the slip parameter, it is such that it takes the GR value at large scales. We show a consistency relation that must be violated if gravity is modified.

  4. Fast response pyroelectric detector-preamplifier assembled device

    NASA Astrophysics Data System (ADS)

    Bai, PiJi; Tai, Yunjian; Liu, Huiping

    2008-03-01

    The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.

  5. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  6. Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.

    This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. Here, we compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  7. Supplement: Localization and broadband follow-up of the gravitational-wave transient GW150914

    DOE PAGES

    Abbott, B. P.

    2016-07-20

    This Supplement provides supporting material for arXiv:1602.08492 . We briefly summarize past electromagnetic (EM) follow-up efforts as well as the organization and policy of the current EM follow-up program. Here, we compare the four probability sky maps produced for the gravitational-wave transient GW150914, and provide additional details of the EM follow-up observations that were performed in the different bands.

  8. Subsequent Nonthermal Emission Due to the Kilonova Ejecta in GW170817

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; To, Sho

    2018-01-01

    The ejected material at the binary neutron star merger GW170817 was confirmed as a kilonova by UV, optical, and IR observations. This event provides a unique opportunity to investigate the particle acceleration at a mildly relativistic shock propagating in the circumbinary medium. In this paper, we simulate the nonthermal emission from electrons accelerated by the shock induced by the kilonova ejecta with a time-dependent method. The initial velocity and mass of the ejecta in the simulations are obtained from the kilonova observations in GW170817. If the ambient density is high enough (≥10‑2 cm‑3), radio, optical/IR, and X-ray signals will be detected in a few years, though the off-axis short gamma-ray burst models, accounting for the X-ray/radio counterpart detected at ∼10 days after the merger, imply low ambient density. We also demonstrate that the additional low-mass (∼10‑5 M ⊙) component with a velocity of 0.5c–0.8c can reproduce the early X-ray/radio counterpart. This alternative model allows a favorably high density to detect the nonthermal emission due to the kilonova ejecta. Even for a low ambient density such as ∼10‑3 cm‑3, depending on the microscopic parameters for the electron acceleration, we can expect a growth of radio flux of ∼0.1 mJy in a few years.

  9. Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Del Pozzo, W.; Berry, C. P. L.; Ghosh, A.; Haines, T. S. F.; Singer, L. P.; Vecchio, A.

    2018-06-01

    We reconstruct posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. We use a Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability density functions with a flexible set of assumptions. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are ˜104-105 Mpc3 corresponding to ˜102-103 potential host galaxies. The localization volume is a strong function of the network signal-to-noise ratio, scaling roughly ∝ϱnet-6. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.

  10. Next decade in infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2017-10-01

    Fundamental and technological issues associated with the development and exploitation of the most advanced infrared technologies is discussed. In these classes of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys, type II superlattices (T2SLs), barrier detectors, quantum wells, extrinsic detectors, and uncooled thermal bolometers. The sophisticated physics associated with the antimonide-based bandgap engineering will give a new impact and interest in development of infrared detector structures. Important advantage of T2SLs is the high quality, high uniformity and stable nature of the material. In general, III-V semiconductors are more robust than their II-VI counterparts due to stronger, less ionic chemical bonding. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. The microbolometer detectors are now produced in larger volumes than all other IR array technologies together. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VOx) or amorphous silicon (a-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement.

  11. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  12. Strong gravitational lensing of gravitational waves from double compact binaries—perspectives for the Einstein Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biesiada, Marek; Ding, Xuheng; Zhu, Zong-Hong

    Gravitational wave (GW) experiments are entering their advanced stage which should soon open a new observational window on the Universe. Looking into this future, the Einstein Telescope (ET) was designed to have a fantastic sensitivity improving significantly over the advanced GW detectors. One of the most important astrophysical GW sources supposed to be detected by the ET in large numbers are double compact objects (DCO) and some of such events should be gravitationally lensed by intervening galaxies. We explore the prospects of observing gravitationally lensed inspiral DCO events in the ET. This analysis is a significant extension of our previousmore » paper [1]. We are using the intrinsic merger rates of the whole class of DCO (NS-NS,BH-NS,BH-BH) located at different redshifts as calculated by [2] by using StarTrack population synthesis evolutionary code. We discuss in details predictions from each evolutionary scenario. Our general conclusion is that ET would register about 50–100 strongly lensed inspiral events per year. Only the scenario in which nascent BHs receive strong kick gives the predictions of a few events per year. Such lensed events would be dominated by the BH-BH merging binary systems. Our results suggest that during a few years of successful operation ET will provide a considerable catalog of strongly lensed events.« less

  13. Preparing Interprofessional Faculty to Be Humanistic Mentors for Medical Students: The GW-Gold Mentor Development Program.

    PubMed

    Blatt, Benjamin; Plack, Margaret M; Simmens, Samuel J

    2018-01-01

    The GW-Gold Humanistic Mentor Development Program addresses the challenge faced by medical schools to educate faculty to prepare students for humanistic practice. Grounded in Branch's Teaching Professional and Humanistic Values model, the program prepares interprofessional faculty mentoring teams in humanistic communities of practice. The teams consist of physician-psychosocial professional pairs, each mentoring a small student group in their professional development course. Through GW-Gold workshops, faculty mentors develop interprofessional humanistic communities of practice, preparing them to lead second such communities with their students. This article describes the program and its evaluation. To assess outcomes and better understand the mentor experience, we used a mixed-method validating triangulation design consisting of simultaneous collection of quantitative (mentor and student surveys) and qualitative (open-ended survey questions and focus group) data. Data were analyzed in parallel and merged at the point of interpretation, allowing for triangulation and validation of outcomes. Mentors rated the program highly, gained confidence in their humanistic skills, and received high scores from students. Three themes emerged that validated program design, confirmed outcomes, and expanded on the mentor experience: (1) Interprofessional faculty communities developed through observation, collaboration, reflection, and dialogue; (2) Humanistic mentors created safe environments for student engagement; and (3) Engaging in interprofessional humanistic communities of practice expanded mentors' personal and professional identities. Outcomes support the value of the GW-Gold program's distinctive features in preparing faculty to sustain humanism in medical education: an interprofessional approach and small communities of practice built on humanistic values.

  14. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck

    NASA Astrophysics Data System (ADS)

    Valenti, Stefano; David; Sand, J.; Yang, Sheng; Cappellaro, Enrico; Tartaglia, Leonardo; Corsi, Alessandra; Jha, Saurabh W.; Reichart, Daniel E.; Haislip, Joshua; Kouprianov, Vladimir

    2017-10-01

    During the second observing run of the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger detected by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey that fell within the combined LIGO+Virgo localization region and the larger Fermi gamma-ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a; it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck is unique, with an absolute peak magnitude of M r = -15.8 ± 0.1 and an r-band decline rate of 1.1 mag day-1. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data does not show any sign of transient activity at the location of DLT17ck down to r ˜ 19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy, opening a new path by which to study and understand binary neutron star coalescences, short gamma-ray bursts, and their optical counterparts.

  15. Cherenkov neutron detector for fusion reaction and runaway electron diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, MunSeong, E-mail: munseong@nfri.re.kr; Kim, Junghee

    2015-08-15

    A Cherenkov-type neutron detector was newly developed and neutron measurement experiments were performed at Korea Superconducting Tokamak Advanced Research. It was shown that the Cherenkov neutron detector can monitor the time-resolved neutron flux from deuterium-fueled fusion plasmas. Owing to the high temporal resolution of the detector, fast behaviors of runaway electrons, such as the neutron spikes, could be observed clearly. It is expected that the Cherenkov neutron detector could be utilized to provide useful information on runaway electrons as well as fusion reaction rate in fusion plasmas.

  16. An array of correlated atom interferometers to study to study the local fluctuations of the gravitational field and its impact on low fequency gravitational waves observations

    NASA Astrophysics Data System (ADS)

    Bouyer, P.; Canuel, B.; Pelisson, S.; Harms, J.; Bertoldi, A.; Gaffet, S.; Landragin, A.; Lefevre, G.; Riou, I.; Geiger, R.

    2016-12-01

    We will present here the Matter-Wave laser Interferometer Gravitation Antenna, MIGA, a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods for geophysics for the characterization of spatial and temporal variations of the local gravity field and will also be a demonstrator for future low frequency Gravitational Wave (GW) detections. The recent first direct observation of gravitational radiation opens the way towards a novel astronomy requires a new class of low frequency Gravitational Wave detectors such as MIGA. Nevertheless, the fluctuations of the Earth gravitational field over different baselines are of high relevance for the functioning of such experiments. Indeed, a fluctuating gravity gradient causes a tidal effect that cannot, in principle, be distinguished from Gravitational Waves.This so-called « Newtonian Noise » is therefore considered up to now as a fundamental limit for any ground based detector and the main reason for restricting future low frequency GW detectors to space. Nevertheless, these two contributions may become discernible by the use of a network of test masses. Indeed, both GW and NN effects will have different spatial signatures over the test mass network. While GW has extremely long characteristic length, NN has shorter characteristic lengths going from the meter to a few kilometers.The array of distant Atom Interferometers in MIGA can be used as network of test masses, which can be correlated using a common laser link. Differential measurements between the atom interferometers of the Network enables for a large reduction of the effect of NN and opens the way towards the realization of low frequency GW detectors.In this paper, we will detail the projection of background NN in the underground environment of the LSBB and

  17. The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum

    NASA Astrophysics Data System (ADS)

    Margutti, R.; Alexander, K. D.; Xie, X.; Sironi, L.; Metzger, B. D.; Kathirgamaraju, A.; Fong, W.; Blanchard, P. K.; Berger, E.; MacFadyen, A.; Giannios, D.; Guidorzi, C.; Hajela, A.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Zrake, J.

    2018-03-01

    We report deep Chandra X-ray Observatory (CXO), Hubble Space Telescope (HST), and Karl J. Jansky Very Large Array (VLA) observations of the binary neutron star event GW170817 at t < 160 days after merger. These observations show that GW170817 has been steadily brightening with time and might have now reached its peak, and constrain the emission process as non-thermal synchrotron emission where the cooling frequency ν c is above the X-ray band and the synchrotron frequency ν m is below the radio band. The very simple power-law spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index p of the distribution of non-thermal relativistic electrons N(γ )\\propto {γ }-p accelerated by a shock launched by a neutron star (NS)–NS merger to date. We find p = 2.17 ± 0.01, which indicates that radiation from ejecta with Γ ∼ 3–10 dominates the observed emission. While constraining the nature of the emission process, these observations do not constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal short gamma-ray burst (SGRB) directed away from our line of sight. Observations at t ≤ 200 days are unlikely to settle the debate, as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.

  18. Sampling results, DNAPL monitoring well GW-726, Oak Ridge Y-12 plant, Oak Ridge, Tennessee. Quarterly report, April 1, 1994--September 30, 1994.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-31

    In January 1990, dense, non aqueous phase liquids (DNAPLs) were discovered at a depth of approximately 274 foot below ground surface along the southern border of the Y-12 Plant Burial Grounds. Immediately after the discovery, an investigation was conducted to assess the occurrence of DNAPL at the site and to make recommendations for further action. This report summarizes purging and sampling activities for one of these multiport wells, GW-726, and presents analytical results for GW-726.

  19. Terahertz detectors and focal plane arrays

    NASA Astrophysics Data System (ADS)

    Rogalski, A.; Sizov, F.

    2011-09-01

    Terahertz (THz) technology is one of emerging technologies that will change our life. A lot of attractive applications in security, medicine, biology, astronomy, and non-destructive materials testing have been demonstrated already. However, the realization of THz emitters and receivers is a challenge because the frequencies are too high for conventional electronics and the photon energies are too small for classical optics. As a result, THz radiation is resistant to the techniques commonly employed in these well established neighbouring bands. In the paper, issues associated with the development and exploitation of THz radiation detectors and focal plane arrays are discussed. Historical impressive progress in THz detector sensitivity in a period of more than half century is analyzed. More attention is put on the basic physical phenomena and the recent progress in both direct and heterodyne detectors. After short description of general classification of THz detectors, more details concern Schottky barrier diodes, pair braking detectors, hot electron mixers and field-effect transistor detectors, where links between THz devices and modern technologies such as micromachining are underlined. Also, the operational conditions of THz detectors and their upper performance limits are reviewed. Finally, recent advances in novel nanoelectronic materials and technologies are described. It is expected that applications of nanoscale materials and devices will open the door for further performance improvement in THz detectors.

  20. Afterglows and Kilonovae Associated with Nearby Low-luminosity Short-duration Gamma-Ray Bursts: Application to GW170817/GRB 170817A

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Liu, Liang-Duan; Dai, Zi-Gao; Wu, Xue-Feng

    2017-12-01

    Very recently, the gravitational-wave (GW) event GW170817 was discovered to be associated with the short gamma-ray burst (GRB) 170817A. Multi-wavelength follow-up observations were carried out, and X-ray, optical, and radio counterparts to GW170817 were detected. The observations undoubtedly indicate that GRB 170817A originates from a binary neutron star merger. However, the GRB falls into the low-luminosity class that could have a higher statistical occurrence rate and detection probability than the normal (high-luminosity) class. This implies the possibility that GRB 170817A is intrinsically powerful, but we are off-axis and only observe its side emission. In this Letter, we provide a timely modeling of the multi-wavelength afterglow emission from this GRB and the associated kilonova signal from the merger ejecta, under the assumption of a structured jet, a two-component jet, and an intrinsically less-energetic quasi-isotropic fireball, respectively. Comparing the afterglow properties with the multi-wavelength follow-up observations, we can distinguish between these three models. Furthermore, a few model parameters (e.g., the ejecta mass and velocity) can be constrained.

  1. The evolution of the X-ray afterglow emission of GW 170817/ GRB 170817A in XMM-Newton observations

    NASA Astrophysics Data System (ADS)

    D'Avanzo, P.; Campana, S.; Salafia, O. S.; Ghirlanda, G.; Ghisellini, G.; Melandri, A.; Bernardini, M. G.; Branchesi, M.; Chassande-Mottin, E.; Covino, S.; D'Elia, V.; Nava, L.; Salvaterra, R.; Tagliaferri, G.; Vergani, S. D.

    2018-05-01

    We report our observation of the short gamma-ray burst (GRB) GRB 170817A, associated to the binary neutron star merger gravitational wave (GW) event GW 170817, performed in the X-ray band with XMM-Newton 135 d after the event (on 29 December, 2017). We find evidence for a flattening of the X-ray light curve with respect to the previously observed brightening. This is also supported by a nearly simultaneous optical Hubble Space Telescope observation and successive X-ray Chandra and low-frequency radio observations recently reported in the literature. Since the optical-to-X-ray spectral slope did not change with respect to previous observations, we exclude that the change in the temporal evolution of the light curve is due to the passage of the cooling frequency: its origin must be geometric or dynamical. We interpret all the existing afterglow data with two models: i) a structured jet and ii) a jet-less isotropic fireball with some stratification in its radial velocity structure. Both models fit the data and predict that the radio flux must decrease simultaneously with the optical and X-ray emission, making it difficult to distinguish between them at the present stage. Polarimetric measurements and the rate of short GRB-GW associations in future LIGO/Virgo runs will be key to disentangle these two geometrically different scenarios.

  2. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Austin, L.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barker, D.; Barnum, S. H.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Bergmann, G.; Berliner, J. M.; Bersanetti, D.; Bertolini, A.; Bessis, D.; Betzwieser, J.; Beyersdorf, P. T.; Bhadbhade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Blom, M.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogan, C.; Bond, C.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bowers, J.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brannen, C. A.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brückner, F.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Calderón Bustillo, J.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Castiglia, A.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chu, Q.; Chua, S. S. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Colombini, M.; Constancio, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M. W.; Coulon, J.-P.; Countryman, S.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Craig, K.; Creighton, J. D. E.; Creighton, T. D.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Canton, T. Dal; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Deleeuw, E.; Deléglise, S.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; DeSalvo, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dmitry, K.; Donovan, F.; Dooley, K. L.; Doravari, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edwards, M.; Effler, A.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Endrőczi, G.; Essick, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R.; Flaminio, R.; Foley, E.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gair, J.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gordon, N.; Gorodetsky, M. L.; Gossan, S.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Groot, P.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, B.; Hall, E.; Hammer, D.; Hammond, G.; Hanke, M.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Heefner, J.; Heidmann, A.; Heintze, M.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Horrom, T.; Hosken, D. J.; Hough, J.; Howell, E. J.; Hu, Y.; Hua, Z.; Huang, V.; Huerta, E. A.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh, M.; Huynh-Dinh, T.; Iafrate, J.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Iyer, B. R.; Izumi, K.; Jacobson, M.; James, E.; Jang, H.; Jang, Y. J.; Jaranowski, P.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Haris, K.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, K.; Kim, N.; Kim, W.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Koehlenbeck, S.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kremin, A.; Kringel, V.; Królak, A.; Kucharczyk, C.; Kudla, S.; Kuehn, G.; Kumar, A.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Landry, M.; Lantz, B.; Larson, S.; Lasky, P. D.; Lawrie, C.; Lazzarini, A.; Le Roux, A.; Leaci, P.; Lebigot, E. O.; Lee, C.-H.; Lee, H. K.; Lee, H. M.; Lee, J.; Lee, J.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levine, B.; Lewis, J. B.; Lhuillier, V.; Li, T. G. F.; Lin, A. C.; Littenberg, T. B.; Litvine, V.; Liu, F.; Liu, H.; Liu, Y.; Liu, Z.; Lloyd, D.; Lockerbie, N. A.; Lockett, V.; Lodhia, D.; Loew, K.; Logue, J.; Lombardi, A. L.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Luan, J.; Lubinski, M. J.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Manca, G. M.; Mandel, I.; Mandic, V.; Mangano, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Martinelli, L.; Martynov, D.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; May, G.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Meier, T.; Melatos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Mikhailov, E. E.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Mokler, F.; Moraru, D.; Moreno, G.; Morgado, N.; Mori, T.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nagy, M. F.; Nanda Kumar, D.; Nardecchia, I.; Nash, T.; Naticchioni, L.; Nayak, R.; Necula, V.; Nelemans, G.; Neri, I.; Neri, M.; Newton, G.; Nguyen, T.; Nishida, E.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L. K.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oppermann, P.; O'Reilly, B.; Ortega Larcher, W.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Ou, J.; Overmier, H.; Owen, B. J.; Padilla, C.; Pai, A.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Paris, H.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Peiris, P.; Penn, S.; Perreca, A.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pinard, L.; Pindor, B.; Pinto, I. M.; Pitkin, M.; Poeld, J.; Poggiani, R.; Poole, V.; Poux, C.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quintero, E.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Raja, S.; Rajalakshmi, G.; Rakhmanov, M.; Ramet, C.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Robertson, N. A.; Robinet, F.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Roever, C.; Rolland, L.; Rollins, J. G.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sanders, J.; Sannibale, V.; Santiago-Prieto, I.; Saracco, E.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schreiber, E.; Schuette, D.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siellez, K.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Soden, K.; Son, E. J.; Sorazu, B.; Souradeep, T.; Sperandio, L.; Staley, A.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stevens, D.; Stochino, A.; Stone, R.; Strain, K. A.; Straniero, N.; Strigin, S.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Talukder, D.; Tang, L.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thirugnanasambandam, M. P.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Unnikrishnan, C. S.; Vahlbruch, H.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Heijningen, J.; van Veggel, A. A.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Verma, S.; Vetrano, F.; Viceré, A.; Vincent-Finley, R.; Vinet, J.-Y.; Vitale, S.; Vlcek, B.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vrinceanu, D.; Vyachanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Walker, M.; Wallace, L.; Wan, Y.; Wang, J.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wibowo, S.; Wiesner, K.; Wilkinson, C.; Williams, L.; Williams, R.; Williams, T.; Willis, J. L.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yum, H.; Yvert, M.; ZadroŻny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zhu, H.; Zhu, X. J.; Zotov, N.; Zucker, M. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2014-04-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10-8 in some regions of the cosmic string parameter space.

  3. Constraints on Cosmic Strings from the LIGO-Virgo Gravitational-Wave Detectors

    NASA Technical Reports Server (NTRS)

    Aasi, J.; Abadie, J.; Abbott, B.P.; Abbott, R.; Abbott, T.; Abernathy, M.R.; Accadia, T.; Adams, C.; Adams, T.; Adhikari, R.X.; hide

    2014-01-01

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension (Newton's Constant x mass per unit length) below 10(exp -8) in some regions of the cosmic string parameter space.

  4. Constraints on cosmic strings from the LIGO-Virgo gravitational-wave detectors.

    PubMed

    Aasi, J; Abadie, J; Abbott, B P; Abbott, R; Abbott, T; Abernathy, M R; Accadia, T; Acernese, F; Adams, C; Adams, T; Adhikari, R X; Affeldt, C; Agathos, M; Aggarwal, N; Aguiar, O D; Ajith, P; Allen, B; Allocca, A; Amador Ceron, E; Amariutei, D; Anderson, R A; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C; Areeda, J; Ast, S; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Austin, L; Aylott, B E; Babak, S; Baker, P T; Ballardin, G; Ballmer, S W; Barayoga, J C; Barker, D; Barnum, S H; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J; Bauchrowitz, J; Bauer, Th S; Bebronne, M; Behnke, B; Bejger, M; Beker, M G; Bell, A S; Bell, C; Belopolski, I; Bergmann, G; Berliner, J M; Bersanetti, D; Bertolini, A; Bessis, D; Betzwieser, J; Beyersdorf, P T; Bhadbhade, T; Bilenko, I A; Billingsley, G; Birch, J; Bitossi, M; Bizouard, M A; Black, E; Blackburn, J K; Blackburn, L; Blair, D; Blom, M; Bock, O; Bodiya, T P; Boer, M; Bogan, C; Bond, C; Bondu, F; Bonelli, L; Bonnand, R; Bork, R; Born, M; Boschi, V; Bose, S; Bosi, L; Bowers, J; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brannen, C A; Brau, J E; Breyer, J; Briant, T; Bridges, D O; Brillet, A; Brinkmann, M; Brisson, V; Britzger, M; Brooks, A F; Brown, D A; Brown, D D; Brückner, F; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Calderón Bustillo, J; Calloni, E; Camp, J B; Campsie, P; Cannon, K C; Canuel, B; Cao, J; Capano, C D; Carbognani, F; Carbone, L; Caride, S; Castiglia, A; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, X; Chen, Y; Chincarini, A; Chiummo, A; Cho, H S; Chow, J; Christensen, N; Chu, Q; Chua, S S Y; Chung, S; Ciani, G; Clara, F; Clark, D E; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Colombini, M; Constancio, M; Conte, A; Conte, R; Cook, D; Corbitt, T R; Cordier, M; Cornish, N; Corsi, A; Costa, C A; Coughlin, M W; Coulon, J-P; Countryman, S; Couvares, P; Coward, D M; Cowart, M; Coyne, D C; Craig, K; Creighton, J D E; Creighton, T D; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dahl, K; Dal Canton, T; Damjanic, M; Danilishin, S L; D'Antonio, S; Danzmann, K; Dattilo, V; Daudert, B; Daveloza, H; Davier, M; Davies, G S; Daw, E J; Day, R; Dayanga, T; De Rosa, R; Debreczeni, G; Degallaix, J; Del Pozzo, W; Deleeuw, E; Deléglise, S; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; DeSalvo, R; Dhurandhar, S; Di Fiore, L; Di Lieto, A; Di Palma, I; Di Virgilio, A; Díaz, M; Dietz, A; Dmitry, K; Donovan, F; Dooley, K L; Doravari, S; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Dumas, J-C; Dwyer, S; Eberle, T; Edwards, M; Effler, A; Ehrens, P; Eichholz, J; Eikenberry, S S; Endrőczi, G; Essick, R; Etzel, T; Evans, K; Evans, M; Evans, T; Factourovich, M; Fafone, V; Fairhurst, S; Fang, Q; Farinon, S; Farr, B; Farr, W; Favata, M; Fazi, D; Fehrmann, H; Feldbaum, D; Ferrante, I; Ferrini, F; Fidecaro, F; Finn, L S; Fiori, I; Fisher, R; Flaminio, R; Foley, E; Foley, S; Forsi, E; Fotopoulos, N; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frede, M; Frei, M; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fujimoto, M-K; Fulda, P; Fyffe, M; Gair, J; Gammaitoni, L; Garcia, J; Garufi, F; Gehrels, N; Gemme, G; Genin, E; Gennai, A; Gergely, L; Ghosh, S; Giaime, J A; Giampanis, S; Giardina, K D; Giazotto, A; Gil-Casanova, S; Gill, C; Gleason, J; Goetz, E; Goetz, R; Gondan, L; González, G; Gordon, N; Gorodetsky, M L; Gossan, S; Goßler, S; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greenhalgh, R J S; Gretarsson, A M; Griffo, C; Groot, P; Grote, H; Grover, K; Grunewald, S; Guidi, G M; Guido, C; Gushwa, K E; Gustafson, E K; Gustafson, R; Hall, B; Hall, E; Hammer, D; Hammond, G; Hanke, M; Hanks, J; Hanna, C; Hanson, J; Harms, J; Harry, G M; Harry, I W; Harstad, E D; Hartman, M T; Haughian, K; Hayama, K; Heefner, J; Heidmann, A; Heintze, M; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Holt, K; Holtrop, M; Hong, T; Hooper, S; Horrom, T; Hosken, D J; Hough, J; Howell, E J; Hu, Y; Hua, Z; Huang, V; Huerta, E A; Hughey, B; Husa, S; Huttner, S H; Huynh, M; Huynh-Dinh, T; Iafrate, J; Ingram, D R; Inta, R; Isogai, T; Ivanov, A; Iyer, B R; Izumi, K; Jacobson, M; James, E; Jang, H; Jang, Y J; Jaranowski, P; Jiménez-Forteza, F; Johnson, W W; Jones, D; Jones, D I; Jones, R; Jonker, R J G; Ju, L; K, Haris; Kalmus, P; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Kasprzack, M; Kasturi, R; Katsavounidis, E; Katzman, W; Kaufer, H; Kaufman, K; Kawabe, K; Kawamura, S; Kawazoe, F; Kéfélian, F; Keitel, D; Kelley, D B; Kells, W; Keppel, D G; Khalaidovski, A; Khalili, F Y; Khazanov, E A; Kim, B K; Kim, C; Kim, K; Kim, N; Kim, W; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Klimenko, S; Kline, J; Koehlenbeck, S; Kokeyama, K; Kondrashov, V; Koranda, S; Korth, W Z; Kowalska, I; Kozak, D; Kremin, A; Kringel, V; Królak, A; Kucharczyk, C; Kudla, S; Kuehn, G; Kumar, A; Kumar, P; Kumar, R; Kurdyumov, R; Kwee, P; Landry, M; Lantz, B; Larson, S; Lasky, P D; Lawrie, C; Lazzarini, A; Le Roux, A; Leaci, P; Lebigot, E O; Lee, C-H; Lee, H K; Lee, H M; Lee, J; Lee, J; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levine, B; Lewis, J B; Lhuillier, V; Li, T G F; Lin, A C; Littenberg, T B; Litvine, V; Liu, F; Liu, H; Liu, Y; Liu, Z; Lloyd, D; Lockerbie, N A; Lockett, V; Lodhia, D; Loew, K; Logue, J; Lombardi, A L; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J; Luan, J; Lubinski, M J; Lück, H; Lundgren, A P; Macarthur, J; Macdonald, E; Machenschalk, B; MacInnis, M; Macleod, D M; Magana-Sandoval, F; Mageswaran, M; Mailand, K; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Manca, G M; Mandel, I; Mandic, V; Mangano, V; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A; Maros, E; Marque, J; Martelli, F; Martin, I W; Martin, R M; Martinelli, L; Martynov, D; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Matichard, F; Matone, L; Matzner, R A; Mavalvala, N; May, G; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McGuire, S C; McIntyre, G; McIver, J; Meacher, D; Meadors, G D; Mehmet, M; Meidam, J; Meier, T; Melatos, A; Mendell, G; Mercer, R A; Meshkov, S; Messenger, C; Meyer, M S; Miao, H; Michel, C; Mikhailov, E E; Milano, L; Miller, J; Minenkov, Y; Mingarelli, C M F; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moe, B; Mohan, M; Mohapatra, S R P; Mokler, F; Moraru, D; Moreno, G; Morgado, N; Mori, T; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D; Murray, P G; Mytidis, A; Nagy, M F; Nanda Kumar, D; Nardecchia, I; Nash, T; Naticchioni, L; Nayak, R; Necula, V; Nelemans, G; Neri, I; Neri, M; Newton, G; Nguyen, T; Nishida, E; Nishizawa, A; Nitz, A; Nocera, F; Nolting, D; Normandin, M E; Nuttall, L K; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oppermann, P; O'Reilly, B; Ortega Larcher, W; O'Shaughnessy, R; Osthelder, C; Ott, C D; Ottaway, D J; Ottens, R S; Ou, J; Overmier, H; Owen, B J; Padilla, C; Pai, A; Palomba, C; Pan, Y; Pankow, C; Paoletti, F; Paoletti, R; Papa, M A; Paris, H; Pasqualetti, A; Passaquieti, R; Passuello, D; Pedraza, M; Peiris, P; Penn, S; Perreca, A; Phelps, M; Pichot, M; Pickenpack, M; Piergiovanni, F; Pierro, V; Pinard, L; Pindor, B; Pinto, I M; Pitkin, M; Poeld, J; Poggiani, R; Poole, V; Poux, C; Predoi, V; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prix, R; Prodi, G A; Prokhorov, L; Puncken, O; Punturo, M; Puppo, P; Quetschke, V; Quintero, E; Quitzow-James, R; Raab, F J; Rabeling, D S; Rácz, I; Radkins, H; Raffai, P; Raja, S; Rajalakshmi, G; Rakhmanov, M; Ramet, C; Rapagnani, P; Raymond, V; Re, V; Reed, C M; Reed, T; Regimbau, T; Reid, S; Reitze, D H; Ricci, F; Riesen, R; Riles, K; Robertson, N A; Robinet, F; Rocchi, A; Roddy, S; Rodriguez, C; Rodruck, M; Roever, C; Rolland, L; Rollins, J G; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Salemi, F; Sammut, L; Sandberg, V; Sanders, J; Sannibale, V; Santiago-Prieto, I; Saracco, E; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Savage, R; Schilling, R; Schnabel, R; Schofield, R M S; Schreiber, E; Schuette, D; Schulz, B; Schutz, B F; Schwinberg, P; Scott, J; Scott, S M; Seifert, F; Sellers, D; Sengupta, A S; Sentenac, D; Sergeev, A; Shaddock, D; Shah, S; Shahriar, M S; Shaltev, M; Shapiro, B; Shawhan, P; Shoemaker, D H; Sidery, T L; Siellez, K; Siemens, X; Sigg, D; Simakov, D; Singer, A; Singer, L; Sintes, A M; Skelton, G R; Slagmolen, B J J; Slutsky, J; Smith, J R; Smith, M R; Smith, R J E; Smith-Lefebvre, N D; Soden, K; Son, E J; Sorazu, B; Souradeep, T; Sperandio, L; Staley, A; Steinert, E; Steinlechner, J; Steinlechner, S; Steplewski, S; Stevens, D; Stochino, A; Stone, R; Strain, K A; Straniero, N; Strigin, S; Stroeer, A S; Sturani, R; Stuver, A L; Summerscales, T Z; Susmithan, S; Sutton, P J; Swinkels, B; Szeifert, G; Tacca, M; Talukder, D; Tang, L; Tanner, D B; Tarabrin, S P; Taylor, R; ter Braack, A P M; Thirugnanasambandam, M P; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, V; Tokmakov, K V; Tomlinson, C; Toncelli, A; Tonelli, M; Torre, O; Torres, C V; Torrie, C I; Travasso, F; Traylor, G; Tse, M; Ugolini, D; Unnikrishnan, C S; Vahlbruch, H; Vajente, G; Vallisneri, M; van den Brand, J F J; Van Den Broeck, C; van der Putten, S; van der Sluys, M V; van Heijningen, J; van Veggel, A A; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Verma, S; Vetrano, F; Viceré, A; Vincent-Finley, R; Vinet, J-Y; Vitale, S; Vlcek, B; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vrinceanu, D; Vyachanin, S P; Wade, A; Wade, L; Wade, M; Waldman, S J; Walker, M; Wallace, L; Wan, Y; Wang, J; Wang, M; Wang, X; Wanner, A; Ward, R L; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Wessels, P; West, M; Westphal, T; Wette, K; Whelan, J T; Whitcomb, S E; White, D J; Whiting, B F; Wibowo, S; Wiesner, K; Wilkinson, C; Williams, L; Williams, R; Williams, T; Willis, J L; Willke, B; Wimmer, M; Winkelmann, L; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Yablon, J; Yakushin, I; Yamamoto, H; Yancey, C C; Yang, H; Yeaton-Massey, D; Yoshida, S; Yum, H; Yvert, M; Zadrożny, A; Zanolin, M; Zendri, J-P; Zhang, F; Zhang, L; Zhao, C; Zhu, H; Zhu, X J; Zotov, N; Zucker, M E; Zweizig, J

    2014-04-04

    Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them, powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature. In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string parameters, which complement and improve existing limits from previous searches for a stochastic background of GWs from cosmic microwave background measurements and pulsar timing data. In particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the string tension Gμ below 10(-8) in some regions of the cosmic string parameter space.

  5. iPTF search for an optical counterpart to gravitational-wave transient GW150914

    DOE PAGES

    Kasliwal, M. M.; Cenko, S. B.; Singer, L. P.; ...

    2016-06-16

    The intermediate Palomar Transient Factory (iPTF) autonomously responded to and promptly tiled the error region of the first gravitational-wave event GW150914 to search for an optical counterpart. Only a small fraction of the total localized region was immediately visible in the northern night sky, due both to Sun-angle and elevation constraints. Here, we report on the transient candidates identified and rapid follow-up undertaken to determine the nature of each candidate. Even in the small area imaged of 126 deg 2, after extensive filtering, eight candidates were deemed worthy of additional follow-up. Within two hours, all eight were spectroscopically classified bymore » the Keck II telescope. Curiously, even though such events are rare, one of our candidates was a superluminous supernova. We obtained radio data with the Jansky Very Large Array and X-ray follow-up with the Swift satellite for this transient. None of our candidates appear to be associated with the gravitational-wave trigger, which is unsurprising given that GW150914 came from the merger of two stellar-mass black holes. In conclusion, this end-to-end discovery and follow-up campaign bodes well for future searches in this post-detection era of gravitational waves.« less

  6. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE PAGES

    Vaccaro, S.; Gauld, I. C.; Hu, J.; ...

    2018-01-31

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false

  7. Advancing the Fork detector for quantitative spent nuclear fuel verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaccaro, S.; Gauld, I. C.; Hu, J.

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations.more » A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This study describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false

  8. Advancing the Fork detector for quantitative spent nuclear fuel verification

    NASA Astrophysics Data System (ADS)

    Vaccaro, S.; Gauld, I. C.; Hu, J.; De Baere, P.; Peterson, J.; Schwalbach, P.; Smejkal, A.; Tomanin, A.; Sjöland, A.; Tobin, S.; Wiarda, D.

    2018-04-01

    The Fork detector is widely used by the safeguards inspectorate of the European Atomic Energy Community (EURATOM) and the International Atomic Energy Agency (IAEA) to verify spent nuclear fuel. Fork measurements are routinely performed for safeguards prior to dry storage cask loading. Additionally, spent fuel verification will be required at the facilities where encapsulation is performed for acceptance in the final repositories planned in Sweden and Finland. The use of the Fork detector as a quantitative instrument has not been prevalent due to the complexity of correlating the measured neutron and gamma ray signals with fuel inventories and operator declarations. A spent fuel data analysis module based on the ORIGEN burnup code was recently implemented to provide automated real-time analysis of Fork detector data. This module allows quantitative predictions of expected neutron count rates and gamma units as measured by the Fork detectors using safeguards declarations and available reactor operating data. This paper describes field testing of the Fork data analysis module using data acquired from 339 assemblies measured during routine dry cask loading inspection campaigns in Europe. Assemblies include both uranium oxide and mixed-oxide fuel assemblies. More recent measurements of 50 spent fuel assemblies at the Swedish Central Interim Storage Facility for Spent Nuclear Fuel are also analyzed. An evaluation of uncertainties in the Fork measurement data is performed to quantify the ability of the data analysis module to verify operator declarations and to develop quantitative go/no-go criteria for safeguards verification measurements during cask loading or encapsulation operations. The goal of this approach is to provide safeguards inspectors with reliable real-time data analysis tools to rapidly identify discrepancies in operator declarations and to detect potential partial defects in spent fuel assemblies with improved reliability and minimal false positive alarms

  9. GW627368X ((N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl} benzene sulphonamide): a novel, potent and selective prostanoid EP4 receptor antagonist

    PubMed Central

    Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather

    2006-01-01

    N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093

  10. ATLAST Detector Needs for Direct Spectroscopic Biosignature Characterization in the Visible and Near-IR

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Bolcar, Matthew R.; Clampin, Mark; Domagal-Goldman, Shawn D.; McElwain, Michael W.; Moseley, S. H.; Stahle, Carl; Stark, Christopher C.; Thronson, Harley A.

    2015-01-01

    Are we alone? Answering this ageless question will be a major focus for astrophysics in coming decades. Our tools will include unprecedentedly large UV-Optical-IR space telescopes working with advanced coronagraphs and starshades. Yet, these facilities will not live up to their full potential without better detectors than we have today. To inform detector development, this paper provides an overview of visible and near-IR (VISIR; lambda = 0.4 - 1.8 micrometers) detector needs for the Advanced Technology Large Aperture Space Telescope (ATLAST), specifically for spectroscopic characterization of atmospheric biosignature gasses. We also provide a brief status update on some promising detector technologies for meeting these needs in the context of a passively cooled ATLAST.

  11. MIGA: combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy

    NASA Astrophysics Data System (ADS)

    Canuel, B.; Pelisson, S.; Amand, L.; Bertoldi, A.; Cormier, E.; Fang, B.; Gaffet, S.; Geiger, R.; Harms, J.; Holleville, D.; Landragin, A.; Lefèvre, G.; Lhermite, J.; Mielec, N.; Prevedelli, M.; Riou, I.; Bouyer, P.

    2016-04-01

    The Matter-Wave laser Interferometer Gravitation Antenna, MIGA, will be a hybrid instrument composed of a network of atom interferometers horizontally aligned and interrogated by the resonant field of an optical cavity. This detector will provide measurements of sub Hertz variations of the gravitational strain tensor. MIGA will bring new methods for geophysics for the characterization of spatial and temporal variations of the local gravity field and will also be a demonstrator for future low frequency Gravitational Wave (GW) detections. MIGA will enable a better understanding of the coupling at low frequency between these different signals. The detector will be installed underground in Rustrel (FR), at the "Laboratoire Souterrain Bas Bruit" (LSBB), a facility with exceptionally low environmental noise and located far away from major sources of anthropogenic disturbances. We give in this paper an overview of the operating mode and status of the instrument before detailing simulations of the gravitational background noise at the MIGA installation site.

  12. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Aiello, L; Ain, A; Ajith, P; Akutsu, T; Allen, B; Allocca, A; Altin, P A; Ananyeva, A; Anderson, S B; Anderson, W G; Ando, M; Appert, S; Arai, K; Araya, A; Araya, M C; Areeda, J S; Arnaud, N; Arun, K G; Asada, H; Ascenzi, S; Ashton, G; Aso, Y; Ast, M; Aston, S M; Astone, P; Atsuta, S; Aufmuth, P; Aulbert, C; Avila-Alvarez, A; Awai, K; Babak, S; Bacon, P; Bader, M K M; Baiotti, L; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Barton, M A; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Bécsy, B; Beer, C; Bejger, M; Belahcene, I; Belgin, M; Bell, A S; Berger, B K; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Billman, C R; Birch, J; Birney, R; Birnholtz, O; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blackman, J; Blair, C D; Blair, D G; Blair, R M; Bloemen, S; Bock, O; Boer, M; Bogaert, G; Bohe, A; Bondu, F; Bonnand, R; Boom, B A; Bork, R; Boschi, V; Bose, S; Bouffanais, Y; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Broida, J E; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Brunett, S; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cabero, M; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T A; Calloni, E; Camp, J B; Cannon, K C; Cao, H; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C B; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Cheeseboro, B D; Chen, H Y; Chen, Y; Cheng, H-P; Chincarini, A; Chiummo, A; Chmiel, T; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, A J K; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Cocchieri, C; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Cominsky, L; Constancio, M; Conti, L; Cooper, S J; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Covas, P B; Cowan, E E; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Creighton, J D E; Creighton, T D; Cripe, J; Crowder, S G; Cullen, T J; Cumming, A; Cunningham, L; Cuoco, E; Canton, T Dal; Danilishin, S L; D'Antonio, S; Danzmann, K; Dasgupta, A; Da Silva Costa, C F; Dattilo, V; Dave, I; Davier, M; Davies, G S; Davis, D; Daw, E J; Day, B; Day, R; De, S; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dergachev, V; De Rosa, R; DeRosa, R T; DeSalvo, R; Devine, R C; Dhurandhar, S; Díaz, M C; Fiore, L Di; Giovanni, M Di; Girolamo, T Di; Lieto, A Di; Pace, S Di; Palma, I Di; Virgilio, A Di; Doctor, Z; Doi, K; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Dorrington, I; Douglas, R; Dovale Álvarez, M; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Eda, K; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J; Eikenberry, S S; Eisenstein, R A; Essick, R C; Etienne, Z; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Farinon, S; Farr, B; Farr, W M; Fauchon-Jones, E J; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Fernández Galiana, A; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fiorucci, D; Fisher, R P; Flaminio, R; Fletcher, M; Fong, H; Forsyth, S S; Fournier, J-D; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Frey, V; Fries, E M; Fritschel, P; Frolov, V V; Fujii, Y; Fujimoto, M-K; Fulda, P; Fyffe, M; Gabbard, H; Gadre, B U; Gaebel, S M; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gaur, G; Gayathri, V; Gehrels, N; Gemme, G; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghonge, S; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Gonzalez Castro, J M; Gopakumar, A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Grado, A; Graef, C; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hagiwara, A; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Hayama, K; Healy, J; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Henry, J; Heptonstall, A W; Heurs, M; Hild, S; Hirose, E; Hoak, D; Hofman, D; Holt, K; Holz, D E; Hopkins, P; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Indik, N; Ingram, D R; Inta, R; Ioka, K; Isa, H N; Isac, J-M; Isi, M; Isogai, T; Itoh, Y; Iyer, B R; Izumi, K; Jacqmin, T; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Junker, J; Kagawa, T; Kajita, T; Kakizaki, M; Kalaghatgi, C V; Kalogera, V; Kamiizumi, M; Kanda, N; Kandhasamy, S; Kanemura, S; Kaneyama, M; Kang, G; Kanner, J B; Karki, S; Karvinen, K S; Kasprzack, M; Kataoka, Y; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawai, N; Kawamura, S; Kéfélian, F; Keitel, D; Kelley, D B; Kennedy, R; Key, J S; Khalili, F Y; Khan, I; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, H; Kim, J C; Kim, J; Kim, W; Kim, Y-M; Kimbrell, S J; Kimura, N; King, E J; King, P J; Kirchhoff, R; Kissel, J S; Klein, B; Kleybolte, L; Klimenko, S; Koch, P; Koehlenbeck, S M; Kojima, Y; Kokeyama, K; Koley, S; Komori, K; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kotake, K; Kowalska, I; Kozak, D B; Krämer, C; Kringel, V; Krishnan, B; Królak, A; Kuehn, G; Kumar, P; Kumar, Rahul; Kumar, Rakesh; Kuo, L; Kuroda, K; Kutynia, A; Kuwahara, Y; Lackey, B D; Landry, M; Lang, R N; Lange, J; Lantz, B; Lanza, R K; Lartaux-Vollard, A; Lasky, P D; Laxen, M; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E O; Lee, C H; Lee, H K; Lee, H M; Lee, H W; Lee, K; Lehmann, J; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Li, T G F; Libson, A; Littenberg, T B; Liu, J; Lockerbie, N A; Lombardi, A L; London, L T; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lousto, C O; Lovelace, G; Lück, H; Lundgren, A P; Lynch, R; Ma, Y; Macfoy, S; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandic, V; Mangano, V; Mano, S; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marchio, M; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martynov, D V; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Mastrogiovanni, S; Matichard, F; Matone, L; Matsumoto, N; Matsushima, F; Mavalvala, N; Mazumder, N; McCarthy, R; McClelland, D E; McCormick, S; McGrath, C; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McRae, T; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E L; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Metzdorff, R; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Michimura, Y; Middleton, H; Mikhailov, E E; Milano, L; Miller, A L; Miller, A; Miller, B B; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Miyakawa, O; Miyamoto, A; Miyamoto, T; Miyoki, S; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morii, W; Morisaki, S; Moriwaki, Y; Morriss, S R; Mours, B; Mow-Lowry, C M; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mukund, N; Mullavey, A; Munch, J; Muniz, E A M; Murray, P G; Mytidis, A; Nagano, S; Nakamura, K; Nakamura, T; Nakano, H; Nakano, Masaya; Nakano, Masayuki; Nakao, K; Napier, K; Nardecchia, I; Narikawa, T; Naticchioni, L; Nelemans, G; Nelson, T J N; Neri, M; Nery, M; Neunzert, A; Newport, J M; Newton, G; Nguyen, T T; Ni, W-T; Nielsen, A B; Nissanke, S; Nitz, A; Noack, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohashi, M; Ohishi, N; Ohkawa, M; Ohme, F; Okutomi, K; Oliver, M; Ono, K; Ono, Y; Oohara, K; Oppermann, P; Oram, Richard J; O'Reilly, B; O'Shaughnessy, R; Ottaway, D J; Overmier, H; Owen, B J; Pace, A E; Page, J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patricelli, B; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Peña Arellano, F E; Penn, S; Perez, C J; Perreca, A; Perri, L M; Pfeiffer, H P; Phelps, M; Piccinni, O J; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poe, M; Poggiani, R; Popolizio, P; Post, A; Powell, J; Prasad, J; Pratt, J W W; Predoi, V; Prestegard, T; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L G; Puncken, O; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Qiu, S; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rajan, C; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Reyes, S D; Rhoades, E; Ricci, F; Riles, K; Rizzo, M; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, R; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Sago, N; Saijo, M; Saito, Y; Sakai, K; Sakellariadou, M; Salconi, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sampson, L M; Sanchez, E J; Sandberg, V; Sanders, J R; Sasaki, Y; Sassolas, B; Sathyaprakash, B S; Sato, S; Sato, T; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Scheuer, J; Schmidt, E; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Schwalbe, S G; Scott, J; Scott, S M; Sekiguchi, T; Sekiguchi, Y; Sellers, D; Sengupta, A S; Sentenac, D; Sequino, V; Sergeev, A; Setyawati, Y; Shaddock, D A; Shaffer, T J; Shahriar, M S; Shapiro, B; Shawhan, P; Sheperd, A; Shibata, M; Shikano, Y; Shimoda, T; Shoda, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sieniawska, M; Sigg, D; Silva, A D; Singer, A; Singer, L P; Singh, A; Singh, R; Singhal, A; Sintes, A M; Slagmolen, B J J; Smith, B; Smith, J R; Smith, R J E; Somiya, K; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Spencer, A P; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stevenson, S P; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strigin, S E; Sturani, R; Stuver, A L; Sugimoto, Y; Summerscales, T Z; Sun, L; Sunil, S; Sutton, P J; Suzuki, T; Swinkels, B L; Szczepańczyk, M J; Tacca, M; Tagoshi, H; Takada, S; Takahashi, H; Takahashi, R; Takamori, A; Talukder, D; Tanaka, H; Tanaka, K; Tanaka, T; Tanner, D B; Tápai, M; Taracchini, A; Tatsumi, D; Taylor, R; Telada, S; Theeg, T; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thrane, E; Tippens, T; Tiwari, S; Tiwari, V; Tokmakov, K V; Toland, K; Tomaru, T; Tomlinson, C; Tonelli, M; Tornasi, Z; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Trinastic, J; Tringali, M C; Trozzo, L; Tse, M; Tso, R; Tsubono, K; Tsuzuki, T; Turconi, M; Tuyenbayev, D; Uchiyama, T; Uehara, T; Ueki, S; Ueno, K; Ugolini, D; Unnikrishnan, C S; Urban, A L; Ushiba, T; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; Van Den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van Heijningen, J V; van Putten, M H P M; van Veggel, A A; Vardaro, M; Varma, V; Vass, S; Vasúth, M; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Venugopalan, G; Verkindt, D; Vetrano, F; Viceré, A; Viets, A D; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Voss, D V; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Wakamatsu, T; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, Y; Ward, R L; Warner, J; Was, M; Watchi, J; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; Whiting, B F; Whittle, C; Williams, D; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Woehler, J; Worden, J; Wright, J L; Wu, D S; Wu, G; Yam, W; Yamamoto, H; Yamamoto, K; Yamamoto, T; Yancey, C C; Yano, K; Yap, M J; Yokoyama, J; Yokozawa, T; Yoon, T H; Yu, Hang; Yu, Haocun; Yuzurihara, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zeidler, S; Zendri, J-P; Zevin, M; Zhang, L; Zhang, M; Zhang, T; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, S J; Zhu, X J; Zucker, M E; Zweizig, J

    2018-01-01

    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and [Formula: see text] credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-[Formula: see text] requires at least three detectors of sensitivity within a factor of [Formula: see text] of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  13. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Akutsu, T.; Allen, B.; Allocca, A.; Altin, P. A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Ando, M.; Appert, S.; Arai, K.; Araya, A.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Asada, H.; Ascenzi, S.; Ashton, G.; Aso, Y.; Ast, M.; Aston, S. M.; Astone, P.; Atsuta, S.; Aufmuth, P.; Aulbert, C.; Avila-Alvarez, A.; Awai, K.; Babak, S.; Bacon, P.; Bader, M. K. M.; Baiotti, L.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Belgin, M.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Cheeseboro, B. D.; Chen, H. Y.; Chen, Y.; Cheng, H.-P.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Cominsky, L.; Constancio, M.; Conti, L.; Cooper, S. J.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Canton, T. Dal; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davies, G. S.; Davis, D.; Daw, E. J.; Day, B.; Day, R.; De, S.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; DeSalvo, R.; Devine, R. C.; Dhurandhar, S.; Díaz, M. C.; Fiore, L. Di; Giovanni, M. Di; Girolamo, T. Di; Lieto, A. Di; Pace, S. Di; Palma, I. Di; Virgilio, A. Di; Doctor, Z.; Doi, K.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Eda, K.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Etienne, Z.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Fernández Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fiorucci, D.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fong, H.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fujii, Y.; Fujimoto, M.-K.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hagiwara, A.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Hayama, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Henry, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hirose, E.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Ingram, D. R.; Inta, R.; Ioka, K.; Isa, H. N.; Isac, J.-M.; Isi, M.; Isogai, T.; Itoh, Y.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kagawa, T.; Kajita, T.; Kakizaki, M.; Kalaghatgi, C. V.; Kalogera, V.; Kamiizumi, M.; Kanda, N.; Kandhasamy, S.; Kanemura, S.; Kaneyama, M.; Kang, G.; Kanner, J. B.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Kataoka, Y.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawai, N.; Kawamura, S.; Kéfélian, F.; Keitel, D.; Kelley, D. B.; Kennedy, R.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, H.; Kim, J. C.; Kim, J.; Kim, W.; Kim, Y.-M.; Kimbrell, S. J.; Kimura, N.; King, E. J.; King, P. J.; Kirchhoff, R.; Kissel, J. S.; Klein, B.; Kleybolte, L.; Klimenko, S.; Koch, P.; Koehlenbeck, S. M.; Kojima, Y.; Kokeyama, K.; Koley, S.; Komori, K.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kotake, K.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, Rahul; Kumar, Rakesh; Kuo, L.; Kuroda, K.; Kutynia, A.; Kuwahara, Y.; Lackey, B. D.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E. O.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Liu, J.; Lockerbie, N. A.; Lombardi, A. L.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña-Sandoval, F.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandic, V.; Mangano, V.; Mano, S.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marchio, M.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martynov, D. V.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matichard, F.; Matone, L.; Matsumoto, N.; Matsushima, F.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGrath, C.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Michimura, Y.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, A.; Miller, B. B.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Miyamoto, A.; Miyamoto, T.; Miyoki, S.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morii, W.; Morisaki, S.; Moriwaki, Y.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muniz, E. A. M.; Murray, P. G.; Mytidis, A.; Nagano, S.; Nakamura, K.; Nakamura, T.; Nakano, H.; Nakano, Masaya; Nakano, Masayuki; Nakao, K.; Napier, K.; Nardecchia, I.; Narikawa, T.; Naticchioni, L.; Nelemans, G.; Nelson, T. J. N.; Neri, M.; Nery, M.; Neunzert, A.; Newport, J. M.; Newton, G.; Nguyen, T. T.; Ni, W.-T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohashi, M.; Ohishi, N.; Ohkawa, M.; Ohme, F.; Okutomi, K.; Oliver, M.; Ono, K.; Ono, Y.; Oohara, K.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Peña Arellano, F. E.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Qiu, S.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Reyes, S. D.; Rhoades, E.; Ricci, F.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sago, N.; Saijo, M.; Saito, Y.; Sakai, K.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sandberg, V.; Sanders, J. R.; Sasaki, Y.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Sato, T.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheuer, J.; Schmidt, E.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Sekiguchi, T.; Sekiguchi, Y.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Setyawati, Y.; Shaddock, D. A.; Shaffer, T. J.; Shahriar, M. S.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shibata, M.; Shikano, Y.; Shimoda, T.; Shoda, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somiya, K.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stevenson, S. P.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strigin, S. E.; Sturani, R.; Stuver, A. L.; Sugimoto, Y.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Sutton, P. J.; Suzuki, T.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tagoshi, H.; Takada, S.; Takahashi, H.; Takahashi, R.; Takamori, A.; Talukder, D.; Tanaka, H.; Tanaka, K.; Tanaka, T.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tatsumi, D.; Taylor, R.; Telada, S.; Theeg, T.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tippens, T.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tomaru, T.; Tomlinson, C.; Tonelli, M.; Tornasi, Z.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tse, M.; Tso, R.; Tsubono, K.; Tsuzuki, T.; Turconi, M.; Tuyenbayev, D.; Uchiyama, T.; Uehara, T.; Ueki, S.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Ushiba, T.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Putten, M. H. P. M.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Voss, D. V.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Wakamatsu, T.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Worden, J.; Wright, J. L.; Wu, D. S.; Wu, G.; Yam, W.; Yamamoto, H.; Yamamoto, K.; Yamamoto, T.; Yancey, C. C.; Yano, K.; Yap, M. J.; Yokoyama, J.; Yokozawa, T.; Yoon, T. H.; Yu, Hang; Yu, Haocun; Yuzurihara, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zeidler, S.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zucker, M. E.; Zweizig, J.

    2018-04-01

    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg^2 requires at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  14. Symmetrical Josephson vortex interferometer as an advanced ballistic single-shot detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloviev, I. I., E-mail: isol@phys.msu.ru; Lukin Scientific Research Institute of Physical Problems, 124460 Zelenograd, Moscow; Laboratory of Cryogenic Nanoelectronics, Nizhny Novgorod State Technical University n.a. R.E. Alekseev, 603950 Nizhny Novgorod

    2014-11-17

    We consider a ballistic detector formed in an interferometer manner which operational principle relies on Josephson vortex scattering at a measurement potential. We propose an approach to symmetrize the detector scheme and explore arising advantages in the signal-to-noise ratio and in the back-action on a measured object by means of recently presented numerical and analytical methods for modeling of a soliton scattering dynamics in the presence of thermal fluctuations. The obtained characteristics for experimentally relevant parameters reveal practical applicability of the considered schemes including possibility of coupling with standard digital rapid single flux quantum circuits.

  15. Calibration methods for explosives detectors

    NASA Astrophysics Data System (ADS)

    MacDonald, Stephen J.; Rounbehler, David P.

    1992-05-01

    Airport security has become an important concern to cultures in every corner of the world. Presently, efforts to improve airport security have brought additional technological solutions, in the form of advanced instrumentation for the detection of explosives, into use at airport terminals in many countries. This new generation of explosives detectors is often used to augment existing security measures and provide a more encompassing screening capability for airline passengers. This paper describes two calibration procedures used for the Thermedics' EGIS explosives detectors. The systems were designed to screen people, electronic components, luggage, automobiles, and other objects for the presence of concealed explosives. The detectors have the ability to detect a wide range of explosives in both the vapor state or as surface adsorbed solids, therefore, calibrations were designed to challenge the system with explosives in each form.

  16. GW170817: Tracking the X-ray light curve to study the origin of the emission

    NASA Astrophysics Data System (ADS)

    Wilkes, Belinda

    2016-09-01

    This proposal is a merger of several DDT requests to follow-up the NS-NS merger: GW170817 as it comes out of sunblock. We will include the proposing DDT teams as co-Is on this proposal. They will all have access to the data, but this proposal does not require that they work together.

  17. Multimessenger Predictions from 3D General-Relativistic Core-Collapse Supernovae Models

    NASA Astrophysics Data System (ADS)

    Kotake, Kei; Kuroda, Takami; Hayama, Kazuhiro

    2017-02-01

    In this contribution, we present results from fully general-relativistic three-dimensional (3D) simulations of a non-rotating 15M ⊙ star using different nuclear equations of state (EOSs). We show that the SASI (standing-accretion-shock-instability) activity occurs much more vigorously in models with softer EOS. By performing detailed analysis of the gravitational-wave (GW) emission, we find a new GW signature that is produced predominantly by the SASI-induced downflows to the proto-neutron star. We discuss the detectability of the GW signal by performing a coherent network analysis where multiple detectors including LIGO Hanford, LIGO Livingston, VIRGO, and KAGRA are considered. We point out that the GW signal, whose typical frequency is in the best sensitivity range of the laser-interferometers, could potentially provide the live broadcast that pictures how the supernova shock is dancing in the core. The detection horizon of the signal is estimated as 2~3 kpc for the current generation detectors, which can extend up to ~100 kpc for the third generation detectors like Cosmic Explorer. We furthermore perform a correlation analysis between the SASI-modulated GW and neutrino signals. Our results show that the time correlation of the two signals becomes highest when we take into account the travel timescale of adverting material from the (average) neutrino-sphere to the proto-neutron star surface.

  18. High performance visual display for HENP detectors

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel

    2001-08-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations.

  19. Constraints on Einstein-aether theory after GW170817

    NASA Astrophysics Data System (ADS)

    Oost, Jacob; Mukohyama, Shinji; Wang, Anzhong

    2018-06-01

    In this paper, we carry out a systematic analysis of the theoretical and observational constraints on the dimensionless coupling constants ci (i =1 , 2, 3, 4) of the Einstein-aether theory, taking into account the events GW170817 and GRB 170817A. The combination of these events restricts the deviation of the speed cT of the spin-2 graviton to the range, -3 ×10-15

  20. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenti, Stefano; Yang, Sheng; Tartaglia, Leonardo

    During the second observing run of the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo Interferometer, a gravitational-wave signal consistent with a binary neutron star coalescence was detected on 2017 August 17th (GW170817), quickly followed by a coincident short gamma-ray burst trigger detected by the Fermi satellite. The Distance Less Than 40 (DLT40) Mpc supernova search performed pointed follow-up observations of a sample of galaxies regularly monitored by the survey that fell within the combined LIGO+Virgo localization region and the larger Fermi gamma-ray burst error box. Here we report the discovery of a new optical transient (DLT17ck, also known as SSS17a;more » it has also been registered as AT 2017gfo) spatially and temporally coincident with GW170817. The photometric and spectroscopic evolution of DLT17ck is unique, with an absolute peak magnitude of M {sub r} = −15.8 ± 0.1 and an r -band decline rate of 1.1 mag day{sup −1}. This fast evolution is generically consistent with kilonova models, which have been predicted as the optical counterpart to binary neutron star coalescences. Analysis of archival DLT40 data does not show any sign of transient activity at the location of DLT17ck down to r ∼ 19 mag in the time period between 8 months and 21 days prior to GW170817. This discovery represents the beginning of a new era for multi-messenger astronomy, opening a new path by which to study and understand binary neutron star coalescences, short gamma-ray bursts, and their optical counterparts.« less

  1. NASA's Ultraviolet Astrophysics Branch: Present and future detector program

    NASA Technical Reports Server (NTRS)

    Welsh, Barry Y.

    1992-01-01

    The various concepts in ultraviolet detector technology currently being funded by NASA's Astrophysics Division to carry out observations in the 100 to 3000 A region are reviewed. In order to match the science objectives of future space missions with new observational techniques, critical detector technology needs in the ultraviolet regime have been identified. The attempt by NASA's Astrophysics Division Advanced Programs Branch to formulate an integrated detector technology plan as part of the ongoing 'Astrotech 21' program in order to provide the technology base for these astrophysics missions of the 21st century is described.

  2. High-Reflection Coatings for Gravitational-Wave Detectors: State of The Art and Future Developments

    NASA Astrophysics Data System (ADS)

    Amato, Alex; Cagnoli, Gianpietro; Canepa, Maurizio; Coillet, Elodie; Degallaix, Jerome; Dolique, Vincent; Forest, Daniele; Granata, Massimo; Martinez, Valérie; Michel, Christophe; Pinard, Laurent; Sassolas, Benoit; Teillon, Julien

    2018-02-01

    We report on the optical, mechanical and structural characterization of the sputtered coating materials of Advanced LIGO, Advanced Virgo and KAGRA gravitational- waves detectors. We present the latest results of our research program aiming at decreasing coating thermal noise through doping, optimization of deposition parameters and post- deposition annealing. Finally, we propose sputtered Si3N4 as a candidate material for the mirrors of future detectors.

  3. Synthesis, biological evaluation and molecular modeling of GW 501516 analogues.

    PubMed

    Ciocoiu, Calin C; Ravna, Aina W; Sylte, Ingebrigt; Hansen, Trond Vidar

    2010-11-01

    Eleven analogues of GW 501516 (1) were prepared and subjected to biological testing in a semi-high throughput human skeletal muscle cell assay. The assay testing indicated that all analogues elicited oxidation of oleic acid. Among the most potent agonists, 2e (2-{2-ethyl-4-[(4-methyl-2-(4-trifluoromethylphenyl)thiazol-5-yl)methylthio]phenoxy}-2-methylpropanoic acid), was also subjected to a luciferase-based transfection assay, which showed that this compound is a potent agonist against PPARδ and a moderate agonist against PPARα. Docking of compound 2e into PPARδ revealed that it occupied the agonist binding site and exhibited key hydrogen bonding interactions with His323, His449, and Tyr473.

  4. Macromolecular crystallography with a large format CMOS detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nix, Jay C., E-mail: jcnix@lbl.gov

    Recent advances in CMOS technology have allowed the production of large surface area detectors suitable for macromolecular crystallography experiments [1]. The Molecular Biology Consortium (MBC) Beamline 4.2.2 at the Advanced Light Source in Berkeley, CA, has installed a 2952 x 2820 mm RDI CMOS-8M detector with funds from NIH grant S10OD012073. The detector has a 20nsec dead pixel time and performs well with shutterless data collection strategies. The sensor obtains sharp point response and minimal optical distortion by use of a thin fiber-optic plate between the phosphor and sensor module. Shutterless data collections produce high-quality redundant datasets that can bemore » obtained in minutes. The fine-sliced data are suitable for processing in standard crystallographic software packages (XDS, HKL2000, D*TREK, MOSFLM). Faster collection times relative to the previous CCD detector have resulted in a record number of datasets collected in a calendar year and de novo phasing experiments have resulted in publications in both Science and Nature [2,3]. The faster collections are due to a combination of the decreased overhead requirements of shutterless collections combined with exposure times that have decreased by over a factor of 2 for images with comparable signal to noise of the NOIR-1 detector. The overall increased productivity has allowed the development of new beamline capabilities and data collection strategies.« less

  5. Superconducting Detectors Come of Age, or Ready to Leave the Lab

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel H.

    2008-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provide a mechanism for high sensitivity detection of submillil.neter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large-scale superconducting detection systems is now being deployed. Improved understanding of the operation of these detectors, combined with rapidly improving fabrication techniques, is quickly expanding the capability of these detectors. I will review the development and application of superconductor-based detectors, the ultimate limits to their performance, and consider prospects for their future applications. Continued advances promise to enable important new measurements in physics, and with appropriate advances in cryogenic infrastncturem, ay result in the use of these detectors in everyday monitoring applications.

  6. High-efficiency neutron detectors and methods of making same

    DOEpatents

    McGregor, Douglas S.; Klann, Raymond

    2007-01-16

    Neutron detectors, advanced detector process techniques and advanced compound film designs have greatly increased neutron-detection efficiency. One embodiment of the detectors utilizes a semiconductor wafer with a matrix of spaced cavities filled with one or more types of neutron reactive material such as 10B or 6LiF. The cavities are etched into both the front and back surfaces of the device such that the cavities from one side surround the cavities from the other side. The cavities may be etched via holes or etched slots or trenches. In another embodiment, the cavities are different-sized and the smaller cavities extend into the wafer from the lower surfaces of the larger cavities. In a third embodiment, multiple layers of different neutron-responsive material are formed on one or more sides of the wafer. The new devices operate at room temperature, are compact, rugged, and reliable in design.

  7. State-of-the-art radiation detectors for medical imaging: Demands and trends

    NASA Astrophysics Data System (ADS)

    Darambara, Dimitra G.

    2006-12-01

    Over the last half-century a variety of significant technical advances in several scientific fields has been pointing to an exploding growth in the field of medical imaging leading to a better interpretation of more specific anatomical, biochemical and molecular pathways. In particular, the development of novel imaging detectors and readout electronics has been critical to the advancement of medical imaging allowing the invention of breakthrough platforms for simultaneous acquisition of multi-modality images at molecular level. The present paper presents a review of the challenges, demands and constraints on radiation imaging detectors imposed by the nature of the modality and the physics of the imaging source. This is followed by a concise review and perspective on various types of state-of-the-art detector technologies that have been developed to meet these requirements. Trends, prospects and new concepts for future imaging detectors are also highlighted.

  8. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    NASA Technical Reports Server (NTRS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; hide

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 sq. deg to 20 sq. deg will require at least three detectors of sensitivity within a factor of approximately 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  9. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo

    NASA Astrophysics Data System (ADS)

    Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Ain, A.; Ajith, P.; Allen, B.; Allocca, A.; Altin, P. A.; Amariutei, D. V.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Baune, C.; Bavigadda, V.; Bazzan, M.; Behnke, B.; Bejger, M.; Belczynski, C.; Bell, A. S.; Bell, C. J.; Berger, B. K.; Bergman, J.; Bergmann, G.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birney, R.; Biscans, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blair, C. D.; Blair, D.; Blair, R. M.; Bloemen, S.; Bock, O.; Bodiya, T. P.; Boer, M.; Bogaert, G.; Bogan, C.; Bohe, A.; Bojtos, P.; Bond, C.; Bondu, F.; Bonnand, R.; Bork, R.; Boschi, V.; Bose, S.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brown, N. M.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T.; Calloni, E.; Camp, J. B.; Cannon, K. C.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cerboni Baiardi, L.; Cerretani, G.; Cesarini, E.; Chakraborty, R.; Chalermsongsak, T.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chassande-Mottin, E.; Chen, H. Y.; Chen, Y.; Cheng, C.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, S.; Chung, S.; Ciani, G.; Clara, F.; Clark, J. A.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colla, A.; Collette, C. G.; Constancio, M.; Conte, A.; Conti, L.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Craig, K.; Creighton, J. D. E.; Cripe, J.; Crowder, S. G.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Darman, N. S.; Dattilo, V.; Dave, I.; Daveloza, H. P.; Davier, M.; Davies, G. S.; Daw, E. J.; Day, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Denker, T.; Dent, T.; Dereli, H.; Dergachev, V.; DeRosa, R.; De Rosa, R.; DeSalvo, R.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Lieto, A.; Di Palma, I.; Di Virgilio, A.; Dojcinoski, G.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Douglas, R.; Downes, T. P.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J. M.; Eikenberry, S. S.; Engels, W.; Essick, R. C.; Etzel, T.; Evans, M.; Evans, T. M.; Everett, R.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Fang, Q.; Farinon, S.; Farr, B.; Farr, W. M.; Favata, M.; Fays, M.; Fehrmann, H.; Fejer, M. M.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Fletcher, M.; Fournier, J.-D.; Franco, S.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H. A. G.; Gair, J. R.; Gammaitoni, L.; Gaonkar, S. G.; Garufi, F.; Gatto, A.; Gaur, G.; Gehrels, N.; Gemme, G.; Gendre, B.; Genin, E.; Gennai, A.; George, J.; Gergely, L.; Germain, V.; Ghosh, A.; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glaefke, A.; Goetz, E.; Goetz, R.; Gondan, L.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gordon, N. A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Groot, P.; Grote, H.; Grunewald, S.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hacker, J. J.; Hall, B. R.; Hall, E. D.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Hartman, M. T.; Haster, C.-J.; Haughian, K.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Hofman, D.; Hollitt, S. E.; Holt, K.; Holz, D. E.; Hopkins, P.; Hosken, D. J.; Hough, J.; Houston, E. A.; Howell, E. J.; Hu, Y. M.; Huang, S.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Idrisy, A.; Indik, N.; Ingram, D. R.; Inta, R.; Isa, H. N.; Isac, J.-M.; Isi, M.; Islas, G.; Isogai, T.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jang, H.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; K, Haris; Kalaghatgi, C. V.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Karki, S.; Kasprzack, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kaur, T.; Kawabe, K.; Kawazoe, F.; Kéfélian, F.; Kehl, M. S.; Keitel, D.; Kelley, D. B.; Kells, W.; Kennedy, R.; Key, J. S.; Khalaidovski, A.; Khalili, F. Y.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, C.; Kim, J.; Kim, K.; Kim, N.; Kim, N.; Kim, Y.-M.; King, E. J.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Koehlenbeck, S. M.; Kokeyama, K.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Kringel, V.; Krishnan, B.; Królak, A.; Krueger, C.; Kuehn, G.; Kumar, P.; Kuo, L.; Kutynia, A.; Lackey, B. D.; Landry, M.; Lange, J.; Lantz, B.; Lasky, P. D.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lebigot, E.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, K.; Lenon, A.; Leonardi, M.; Leong, J. R.; Leroy, N.; Letendre, N.; Levin, Y.; Levine, B. M.; Li, T. G. F.; Libson, A.; Littenberg, T. B.; Lockerbie, N. A.; Logue, J.; Lombardi, A. L.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lück, H.; Lundgren, A. P.; Luo, J.; Lynch, R.; Ma, Y.; MacDonald, T.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magana-Sandoval, F.; Magee, R. M.; Mageswaran, M.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Marx, J. N.; Mason, K.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Meidam, J.; Melatos, A.; Mendell, G.; Mendoza-Gandara, D.; Mercer, R. A.; Merilh, E.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Meyers, P. M.; Mezzani, F.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, J.; Millhouse, M.; Minenkov, Y.; Ming, J.; Mirshekari, S.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moggi, A.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, B. C.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mullavey, A.; Munch, J.; Murphy, D. J.; Murray, P. G.; Mytidis, A.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Necula, V.; Nedkova, K.; Nelemans, G.; Neri, M.; Neunzert, A.; Newton, G.; Nguyen, T. T.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E. N.; Nuttall, L. K.; Oberling, J.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; O'Shaughnessy, R.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Paris, H. R.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patrick, Z.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Pereira, R.; Perreca, A.; Phelps, M.; Piccinni, O.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Poggiani, R.; Post, A.; Powell, J.; Prasad, J.; Predoi, V.; Premachandra, S. S.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Qin, J.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rakhmanov, M.; Rapagnani, P.; Raymond, V.; Razzano, M.; Re, V.; Read, J.; Reed, C. M.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Rew, H.; Ricci, F.; Riles, K.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, J. D.; Romano, R.; Romanov, G.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sanchez, E. J.; Sandberg, V.; Sandeen, B.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Schilling, R.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schutz, B. F.; Scott, J.; Scott, S. M.; Sellers, D.; Sentenac, D.; Sequino, V.; Sergeev, A.; Serna, G.; Setyawati, Y.; Sevigny, A.; Shaddock, D. A.; Shah, S.; Shahriar, M. S.; Shaltev, M.; Shao, Z.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sigg, D.; Silva, A. D.; Simakov, D.; Singer, A.; Singer, L. P.; Singh, A.; Singh, R.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, J. R.; Smith, N. D.; Smith, R. J. E.; Son, E. J.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Srivastava, A. K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stephens, B. C.; Stone, R.; Strain, K. A.; Straniero, N.; Stratta, G.; Strauss, N. A.; Strigin, S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sutton, P. J.; Swinkels, B. L.; Szczepanczyk, M. J.; Tacca, M.; Talukder, D.; Tanner, D. B.; Tápai, M.; Tarabrin, S. P.; Taracchini, A.; Taylor, R.; Theeg, T.; Thirugnanasambandam, M. P.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Tomlinson, C.; Tonelli, M.; Torres, C. V.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trifirò, D.; Tringali, M. C.; Trozzo, L.; Tse, M.; Turconi, M.; Tuyenbayev, D.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; van den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van der Sluys, M. V.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Vass, S.; Vasúth, M.; Vaulin, R.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vousden, W. D.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, M.; Wang, X.; Wang, Y.; Ward, R. L.; Warner, J.; Was, M.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Weßels, P.; Westphal, T.; Wette, K.; Whelan, J. T.; White, D. J.; Whiting, B. F.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Worden, J.; Wright, J. L.; Wu, G.; Yablon, J.; Yam, W.; Yamamoto, H.; Yancey, C. C.; Yap, M. J.; Yu, H.; Yvert, M.; Zadrożny, A.; Zangrando, L.; Zanolin, M.; Zendri, J.-P.; Zevin, M.; Zhang, F.; Zhang, L.; Zhang, M.; Zhang, Y.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, X. J.; Zucker, M. E.; Zuraw, S. E.; Zweizig, J.; LIGO Scientific Collaboration; Virgo Collaboration

    2016-02-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg2 to 20 deg2 will require at least three detectors of sensitivity within a factor of ˜ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  10. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo.

    PubMed

    Abbott, B P; Abbott, R; Abbott, T D; Abernathy, M R; Acernese, F; Ackley, K; Adams, C; Adams, T; Addesso, P; Adhikari, R X; Adya, V B; Affeldt, C; Agathos, M; Agatsuma, K; Aggarwal, N; Aguiar, O D; Ain, A; Ajith, P; Allen, B; Allocca, A; Altin, P A; Amariutei, D V; Anderson, S B; Anderson, W G; Arai, K; Araya, M C; Arceneaux, C C; Areeda, J S; Arnaud, N; Arun, K G; Ashton, G; Ast, M; Aston, S M; Astone, P; Aufmuth, P; Aulbert, C; Babak, S; Baker, P T; Baldaccini, F; Ballardin, G; Ballmer, S W; Barayoga, J C; Barclay, S E; Barish, B C; Barker, D; Barone, F; Barr, B; Barsotti, L; Barsuglia, M; Barta, D; Bartlett, J; Bartos, I; Bassiri, R; Basti, A; Batch, J C; Baune, C; Bavigadda, V; Bazzan, M; Behnke, B; Bejger, M; Belczynski, C; Bell, A S; Bell, C J; Berger, B K; Bergman, J; Bergmann, G; Berry, C P L; Bersanetti, D; Bertolini, A; Betzwieser, J; Bhagwat, S; Bhandare, R; Bilenko, I A; Billingsley, G; Birch, J; Birney, R; Biscans, S; Bisht, A; Bitossi, M; Biwer, C; Bizouard, M A; Blackburn, J K; Blair, C D; Blair, D; Blair, R M; Bloemen, S; Bock, O; Bodiya, T P; Boer, M; Bogaert, G; Bogan, C; Bohe, A; Bojtos, P; Bond, C; Bondu, F; Bonnand, R; Bork, R; Boschi, V; Bose, S; Bozzi, A; Bradaschia, C; Brady, P R; Braginsky, V B; Branchesi, M; Brau, J E; Briant, T; Brillet, A; Brinkmann, M; Brisson, V; Brockill, P; Brooks, A F; Brown, D A; Brown, D D; Brown, N M; Buchanan, C C; Buikema, A; Bulik, T; Bulten, H J; Buonanno, A; Buskulic, D; Buy, C; Byer, R L; Cadonati, L; Cagnoli, G; Cahillane, C; Calderón Bustillo, J; Callister, T; Calloni, E; Camp, J B; Cannon, K C; Cao, J; Capano, C D; Capocasa, E; Carbognani, F; Caride, S; Casanueva Diaz, J; Casentini, C; Caudill, S; Cavaglià, M; Cavalier, F; Cavalieri, R; Cella, G; Cepeda, C; Cerboni Baiardi, L; Cerretani, G; Cesarini, E; Chakraborty, R; Chalermsongsak, T; Chamberlin, S J; Chan, M; Chao, S; Charlton, P; Chassande-Mottin, E; Chen, H Y; Chen, Y; Cheng, C; Chincarini, A; Chiummo, A; Cho, H S; Cho, M; Chow, J H; Christensen, N; Chu, Q; Chua, S; Chung, S; Ciani, G; Clara, F; Clark, J A; Cleva, F; Coccia, E; Cohadon, P-F; Colla, A; Collette, C G; Constancio, M; Conte, A; Conti, L; Cook, D; Corbitt, T R; Cornish, N; Corsi, A; Cortese, S; Costa, C A; Coughlin, M W; Coughlin, S B; Coulon, J-P; Countryman, S T; Couvares, P; Coward, D M; Cowart, M J; Coyne, D C; Coyne, R; Craig, K; Creighton, J D E; Cripe, J; Crowder, S G; Cumming, A; Cunningham, L; Cuoco, E; Dal Canton, T; Danilishin, S L; D'Antonio, S; Danzmann, K; Darman, N S; Dattilo, V; Dave, I; Daveloza, H P; Davier, M; Davies, G S; Daw, E J; Day, R; DeBra, D; Debreczeni, G; Degallaix, J; De Laurentis, M; Deléglise, S; Del Pozzo, W; Denker, T; Dent, T; Dereli, H; Dergachev, V; DeRosa, R; De Rosa, R; DeSalvo, R; Dhurandhar, S; Díaz, M C; Di Fiore, L; Di Giovanni, M; Di Lieto, A; Di Palma, I; Di Virgilio, A; Dojcinoski, G; Dolique, V; Donovan, F; Dooley, K L; Doravari, S; Douglas, R; Downes, T P; Drago, M; Drever, R W P; Driggers, J C; Du, Z; Ducrot, M; Dwyer, S E; Edo, T B; Edwards, M C; Effler, A; Eggenstein, H-B; Ehrens, P; Eichholz, J M; Eikenberry, S S; Engels, W; Essick, R C; Etzel, T; Evans, M; Evans, T M; Everett, R; Factourovich, M; Fafone, V; Fair, H; Fairhurst, S; Fan, X; Fang, Q; Farinon, S; Farr, B; Farr, W M; Favata, M; Fays, M; Fehrmann, H; Fejer, M M; Ferrante, I; Ferreira, E C; Ferrini, F; Fidecaro, F; Fiori, I; Fisher, R P; Flaminio, R; Fletcher, M; Fournier, J-D; Franco, S; Frasca, S; Frasconi, F; Frei, Z; Freise, A; Frey, R; Fricke, T T; Fritschel, P; Frolov, V V; Fulda, P; Fyffe, M; Gabbard, H A G; Gair, J R; Gammaitoni, L; Gaonkar, S G; Garufi, F; Gatto, A; Gaur, G; Gehrels, N; Gemme, G; Gendre, B; Genin, E; Gennai, A; George, J; Gergely, L; Germain, V; Ghosh, A; Ghosh, S; Giaime, J A; Giardina, K D; Giazotto, A; Gill, K; Glaefke, A; Goetz, E; Goetz, R; Gondan, L; González, G; Castro, J M Gonzalez; Gopakumar, A; Gordon, N A; Gorodetsky, M L; Gossan, S E; Gosselin, M; Gouaty, R; Graef, C; Graff, P B; Granata, M; Grant, A; Gras, S; Gray, C; Greco, G; Green, A C; Groot, P; Grote, H; Grunewald, S; Guidi, G M; Guo, X; Gupta, A; Gupta, M K; Gushwa, K E; Gustafson, E K; Gustafson, R; Hacker, J J; Hall, B R; Hall, E D; Hammond, G; Haney, M; Hanke, M M; Hanks, J; Hanna, C; Hannam, M D; Hanson, J; Hardwick, T; Harms, J; Harry, G M; Harry, I W; Hart, M J; Hartman, M T; Haster, C-J; Haughian, K; Heidmann, A; Heintze, M C; Heitmann, H; Hello, P; Hemming, G; Hendry, M; Heng, I S; Hennig, J; Heptonstall, A W; Heurs, M; Hild, S; Hoak, D; Hodge, K A; Hofman, D; Hollitt, S E; Holt, K; Holz, D E; Hopkins, P; Hosken, D J; Hough, J; Houston, E A; Howell, E J; Hu, Y M; Huang, S; Huerta, E A; Huet, D; Hughey, B; Husa, S; Huttner, S H; Huynh-Dinh, T; Idrisy, A; Indik, N; Ingram, D R; Inta, R; Isa, H N; Isac, J-M; Isi, M; Islas, G; Isogai, T; Iyer, B R; Izumi, K; Jacqmin, T; Jang, H; Jani, K; Jaranowski, P; Jawahar, S; Jiménez-Forteza, F; Johnson, W W; Jones, D I; Jones, R; Jonker, R J G; Ju, L; Haris, K; Kalaghatgi, C V; Kalogera, V; Kandhasamy, S; Kang, G; Kanner, J B; Karki, S; Kasprzack, M; Katsavounidis, E; Katzman, W; Kaufer, S; Kaur, T; Kawabe, K; Kawazoe, F; Kéfélian, F; Kehl, M S; Keitel, D; Kelley, D B; Kells, W; Kennedy, R; Key, J S; Khalaidovski, A; Khalili, F Y; Khan, S; Khan, Z; Khazanov, E A; Kijbunchoo, N; Kim, C; Kim, J; Kim, K; Kim, N; Kim, Y-M; King, E J; King, P J; Kinzel, D L; Kissel, J S; Kleybolte, L; Klimenko, S; Koehlenbeck, S M; Kokeyama, K; Koley, S; Kondrashov, V; Kontos, A; Korobko, M; Korth, W Z; Kowalska, I; Kozak, D B; Kringel, V; Krishnan, B; Królak, A; Krueger, C; Kuehn, G; Kumar, P; Kuo, L; Kutynia, A; Lackey, B D; Landry, M; Lange, J; Lantz, B; Lasky, P D; Lazzarini, A; Lazzaro, C; Leaci, P; Leavey, S; Lebigot, E; Lee, C H; Lee, H K; Lee, H M; Lee, K; Lenon, A; Leonardi, M; Leong, J R; Leroy, N; Letendre, N; Levin, Y; Levine, B M; Li, T G F; Libson, A; Littenberg, T B; Lockerbie, N A; Logue, J; Lombardi, A L; Lord, J E; Lorenzini, M; Loriette, V; Lormand, M; Losurdo, G; Lough, J D; Lück, H; Lundgren, A P; Luo, J; Lynch, R; Ma, Y; MacDonald, T; Machenschalk, B; MacInnis, M; Macleod, D M; Magaña-Sandoval, F; Magee, R M; Mageswaran, M; Majorana, E; Maksimovic, I; Malvezzi, V; Man, N; Mandel, I; Mandic, V; Mangano, V; Mansell, G L; Manske, M; Mantovani, M; Marchesoni, F; Marion, F; Márka, S; Márka, Z; Markosyan, A S; Maros, E; Martelli, F; Martellini, L; Martin, I W; Martin, R M; Martynov, D V; Marx, J N; Mason, K; Masserot, A; Massinger, T J; Masso-Reid, M; Matichard, F; Matone, L; Mavalvala, N; Mazumder, N; Mazzolo, G; McCarthy, R; McClelland, D E; McCormick, S; McGuire, S C; McIntyre, G; McIver, J; McManus, D J; McWilliams, S T; Meacher, D; Meadors, G D; Meidam, J; Melatos, A; Mendell, G; Mendoza-Gandara, D; Mercer, R A; Merilh, E; Merzougui, M; Meshkov, S; Messenger, C; Messick, C; Meyers, P M; Mezzani, F; Miao, H; Michel, C; Middleton, H; Mikhailov, E E; Milano, L; Miller, J; Millhouse, M; Minenkov, Y; Ming, J; Mirshekari, S; Mishra, C; Mitra, S; Mitrofanov, V P; Mitselmakher, G; Mittleman, R; Moggi, A; Mohan, M; Mohapatra, S R P; Montani, M; Moore, B C; Moore, C J; Moraru, D; Moreno, G; Morriss, S R; Mossavi, K; Mours, B; Mow-Lowry, C M; Mueller, C L; Mueller, G; Muir, A W; Mukherjee, Arunava; Mukherjee, D; Mukherjee, S; Mullavey, A; Munch, J; Murphy, D J; Murray, P G; Mytidis, A; Nardecchia, I; Naticchioni, L; Nayak, R K; Necula, V; Nedkova, K; Nelemans, G; Neri, M; Neunzert, A; Newton, G; Nguyen, T T; Nielsen, A B; Nissanke, S; Nitz, A; Nocera, F; Nolting, D; Normandin, M E N; Nuttall, L K; Oberling, J; Ochsner, E; O'Dell, J; Oelker, E; Ogin, G H; Oh, J J; Oh, S H; Ohme, F; Oliver, M; Oppermann, P; Oram, R J; O'Reilly, B; O'Shaughnessy, R; Ott, C D; Ottaway, D J; Ottens, R S; Overmier, H; Owen, B J; Pai, A; Pai, S A; Palamos, J R; Palashov, O; Palomba, C; Pal-Singh, A; Pan, H; Pankow, C; Pannarale, F; Pant, B C; Paoletti, F; Paoli, A; Papa, M A; Paris, H R; Parker, W; Pascucci, D; Pasqualetti, A; Passaquieti, R; Passuello, D; Patrick, Z; Pearlstone, B L; Pedraza, M; Pedurand, R; Pekowsky, L; Pele, A; Penn, S; Pereira, R; Perreca, A; Phelps, M; Piccinni, O; Pichot, M; Piergiovanni, F; Pierro, V; Pillant, G; Pinard, L; Pinto, I M; Pitkin, M; Poggiani, R; Post, A; Powell, J; Prasad, J; Predoi, V; Premachandra, S S; Prestegard, T; Price, L R; Prijatelj, M; Principe, M; Privitera, S; Prodi, G A; Prokhorov, L; Punturo, M; Puppo, P; Pürrer, M; Qi, H; Qin, J; Quetschke, V; Quintero, E A; Quitzow-James, R; Raab, F J; Rabeling, D S; Radkins, H; Raffai, P; Raja, S; Rakhmanov, M; Rapagnani, P; Raymond, V; Razzano, M; Re, V; Read, J; Reed, C M; Regimbau, T; Rei, L; Reid, S; Reitze, D H; Rew, H; Ricci, F; Riles, K; Robertson, N A; Robie, R; Robinet, F; Rocchi, A; Rolland, L; Rollins, J G; Roma, V J; Romano, J D; Romano, R; Romanov, G; Romie, J H; Rosińska, D; Rowan, S; Rüdiger, A; Ruggi, P; Ryan, K; Sachdev, S; Sadecki, T; Sadeghian, L; Saleem, M; Salemi, F; Samajdar, A; Sammut, L; Sanchez, E J; Sandberg, V; Sandeen, B; Sanders, J R; Sassolas, B; Sathyaprakash, B S; Saulson, P R; Sauter, O; Savage, R L; Sawadsky, A; Schale, P; Schilling, R; Schmidt, J; Schmidt, P; Schnabel, R; Schofield, R M S; Schönbeck, A; Schreiber, E; Schuette, D; Schutz, B F; Scott, J; Scott, S M; Sellers, D; Sentenac, D; Sequino, V; Sergeev, A; Serna, G; Setyawati, Y; Sevigny, A; Shaddock, D A; Shah, S; Shahriar, M S; Shaltev, M; Shao, Z; Shapiro, B; Shawhan, P; Sheperd, A; Shoemaker, D H; Shoemaker, D M; Siellez, K; Siemens, X; Sigg, D; Silva, A D; Simakov, D; Singer, A; Singer, L P; Singh, A; Singh, R; Sintes, A M; Slagmolen, B J J; Smith, J R; Smith, N D; Smith, R J E; Son, E J; Sorazu, B; Sorrentino, F; Souradeep, T; Srivastava, A K; Staley, A; Steinke, M; Steinlechner, J; Steinlechner, S; Steinmeyer, D; Stephens, B C; Stone, R; Strain, K A; Straniero, N; Stratta, G; Strauss, N A; Strigin, S; Sturani, R; Stuver, A L; Summerscales, T Z; Sun, L; Sutton, P J; Swinkels, B L; Szczepanczyk, M J; Tacca, M; Talukder, D; Tanner, D B; Tápai, M; Tarabrin, S P; Taracchini, A; Taylor, R; Theeg, T; Thirugnanasambandam, M P; Thomas, E G; Thomas, M; Thomas, P; Thorne, K A; Thorne, K S; Thrane, E; Tiwari, S; Tiwari, V; Tokmakov, K V; Tomlinson, C; Tonelli, M; Torres, C V; Torrie, C I; Töyrä, D; Travasso, F; Traylor, G; Trifirò, D; Tringali, M C; Trozzo, L; Tse, M; Turconi, M; Tuyenbayev, D; Ugolini, D; Unnikrishnan, C S; Urban, A L; Usman, S A; Vahlbruch, H; Vajente, G; Valdes, G; van Bakel, N; van Beuzekom, M; van den Brand, J F J; van den Broeck, C; Vander-Hyde, D C; van der Schaaf, L; van der Sluys, M V; van Heijningen, J V; van Veggel, A A; Vardaro, M; Vass, S; Vasúth, M; Vaulin, R; Vecchio, A; Vedovato, G; Veitch, J; Veitch, P J; Venkateswara, K; Verkindt, D; Vetrano, F; Viceré, A; Vinciguerra, S; Vine, D J; Vinet, J-Y; Vitale, S; Vo, T; Vocca, H; Vorvick, C; Vousden, W D; Vyatchanin, S P; Wade, A R; Wade, L E; Wade, M; Walker, M; Wallace, L; Walsh, S; Wang, G; Wang, H; Wang, M; Wang, X; Wang, Y; Ward, R L; Warner, J; Was, M; Weaver, B; Wei, L-W; Weinert, M; Weinstein, A J; Weiss, R; Welborn, T; Wen, L; Weßels, P; Westphal, T; Wette, K; Whelan, J T; White, D J; Whiting, B F; Williams, R D; Williamson, A R; Willis, J L; Willke, B; Wimmer, M H; Winkler, W; Wipf, C C; Wittel, H; Woan, G; Worden, J; Wright, J L; Wu, G; Yablon, J; Yam, W; Yamamoto, H; Yancey, C C; Yap, M J; Yu, H; Yvert, M; Zadrożny, A; Zangrando, L; Zanolin, M; Zendri, J-P; Zevin, M; Zhang, F; Zhang, L; Zhang, M; Zhang, Y; Zhao, C; Zhou, M; Zhou, Z; Zhu, X J; Zucker, M E; Zuraw, S E; Zweizig, J

    2016-01-01

    We present a possible observing scenario for the Advanced LIGO and Advanced Virgo gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We determine the expected sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron-star systems, which are considered the most promising for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5 deg 2 to 20 deg 2 will require at least three detectors of sensitivity within a factor of ∼ 2 of each other and with a broad frequency bandwidth. Should the third LIGO detector be relocated to India as expected, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone.

  11. Strong Constraints on Cosmological Gravity from GW170817 and GRB 170817A

    NASA Astrophysics Data System (ADS)

    Baker, T.; Bellini, E.; Ferreira, P. G.; Lagos, M.; Noller, J.; Sawicki, I.

    2017-12-01

    The detection of an electromagnetic counterpart (GRB 170817A) to the gravitational-wave signal (GW170817) from the merger of two neutron stars opens a completely new arena for testing theories of gravity. We show that this measurement allows us to place stringent constraints on general scalar-tensor and vector-tensor theories, while allowing us to place an independent bound on the graviton mass in bimetric theories of gravity. These constraints severely reduce the viable range of cosmological models that have been proposed as alternatives to general relativistic cosmology.

  12. EDITORIAL: Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves, Bankoku Shinryoukan, Okinawa, Japan, 20-24 June 2005 Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves, Bankoku Shinryoukan, Okinawa, Japan, 20-24 June 2005

    NASA Astrophysics Data System (ADS)

    Mio, N.

    2006-04-01

    This issue is published as the Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves, held on 20-24 June 2005 at Bankoku Shinryoukan in Okinawa, Japan. Since the first Amaldi conference was held in Frascati in 1994, eleven years have passed and the scale of the conference has grown with the increasing activity in the field of gravitational waves. As the centenary celebration of Einstein's 'miracle year', 2005 was called 'World Year of Physics'. Among his breakthroughs published in 1905, the special theory of relativity is recognized as the most significant revolution in physics, completely changing our views concerning time and space. Ten years later, Einstein proposed the general theory of relativity, by which he predicted the existence of gravitational waves (GWs). At that time, it was only a dream to observe a GW because its effect was so small. Efforts to detect GWs, pioneered by Weber, have continued for almost 40 years, yet their detection remained a dream. However, the presentations at this conference have convinced us that it is no longer a dream. The GW detector projects have made extraordinary advances; in particular, the significant sensitivity improvement of LIGO and the completion of the VIRGO detector mark the beginning of the new era of GW physics. Firm developments in theories and source estimations were also reported. In particular, the data analysis session was very active and various discussions were held. Elaborate experimental techniques were presented, some of them already achieving the requirements for the next generation of detectors, such as Advanced LIGO and LCGT. In addition to the earth-based detectors, many presentations concerning space detectors were contributed; they indicated that space would become the new stage for GW physics and astronomy. This issue brings together the papers which were presented at this exciting conference. The proceedings comprise two volumes; the largest part is published as a volume of

  13. EDITORIAL: Proceedings of the Sixth Edoardo Amaldi Conference on Gravitational Waves

    NASA Astrophysics Data System (ADS)

    Mio, N.

    2006-03-01

    This issue is published as the Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves, held on 20 24 June 2005 at Bankoku Shinryoukan in Okinawa, Japan. Since the first Amaldi conference was held in Frascati in 1994, eleven years have passed and the scale of the conference has grown with the increasing activity in the field of gravitational waves. As the centenary celebration of Einstein's `miracle year', 2005 was called `World Year of Physics'. Among his breakthroughs published in 1905, the special theory of relativity is recognized as the most significant revolution in physics, completely changing our views concerning time and space. Ten years later, Einstein proposed the general theory of relativity, by which he predicted the existence of gravitational waves (GWs). At that time, it was only a dream to observe a GW because its effect was so small. Efforts to detect GWs, pioneered by Weber, have continued for almost 40 years, yet their detection remained a dream. However, the presentations at this conference have convinced us that it is no longer a dream. The GW detector projects have made extraordinary advances; in particular, the significant sensitivity improvement of LIGO and the completion of the VIRGO detector mark the beginning of the new era of GW physics. Firm developments in theories and source estimations were also reported. In particular, the data analysis session was very active and various discussions were held. Elaborate experimental techniques were presented, some of them already achieving the requirements for the next generation of detectors, such as Advanced LIGO and LCGT. In addition to the earth-based detectors, many presentations concerning space detectors were contributed; they indicated that space would become the new stage for GW physics and astronomy. This issue brings together the papers which were presented at this exciting conference. The proceedings comprise two volumes; the largest part is published as a volume of

  14. Short-term administration of GW501516 improves inflammatory state in white adipose tissue and liver damage in high-fructose-fed mice through modulation of the renin-angiotensin system.

    PubMed

    Magliano, D'Angelo C; Penna-de-Carvalho, Aline; Vazquez-Carrera, Manuel; Mandarim-de-Lacerda, Carlos A; Aguila, Marcia B

    2015-11-01

    High activation of the angiotensin-converting enzyme (ACE)/(angiotensin-II type 1 receptor) AT1r axis is closely linked to pro-inflammatory effects and liver damage. The aim of this study was to evaluate the effects of the short-term administration of GW501516 on pro-inflammatory markers in white adipose tissue (WAT) and hepatic stellate cells (HSCs), lipogenesis and insulin resistance in the liver upon high-fructose diet (HFru)-induced ACE/AT1r axis activation. Three-month-old male C57Bl/6 mice were fed a standard chow diet or a HFru for 8 weeks. Then, the animals were separated randomly into four groups and treated with GW501516 for 3 weeks. Morphological variables, systolic blood pressure, and plasma determinations were analyzed. In the WAT, the ACE/AT1r axis and pro-inflammatory cytokines were assessed, and in the liver, the ACE/AT1r axis, HSCs, fatty acid oxidation, insulin resistance, and AMPK activation were evaluated. The HFru group displayed a high activation of the ACE/AT1r axis in both the WAT and liver; consequently, we detected inflammation and liver damage. Although GW501516 abolished the increased activation of the ACE/AT1r axis in the WAT, no differences were found in the liver. GW501516 blunted the inflammatory state in the WAT and reduced HSC activation in the liver. In addition, GW501516 alleviates damage in the liver by increasing the expression of the genes that regulate beta-oxidation and decreasing the expression of the genes and proteins that are involved in lipogenesis and gluconeogenesis. We conclude that GW501516 may serve as a therapeutic option for the treatment of a highly activated ACE/AT1r axis in WAT and liver.

  15. Nifedipine inhibits advanced glycation end products (AGEs) and their receptor (RAGE) interaction-mediated proximal tubular cell injury via peroxisome proliferator-activated receptor-gamma activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsui, Takanori; Yamagishi, Sho-ichi, E-mail: shoichi@med.kurume-u.ac.jp; Takeuchi, Masayoshi

    2010-07-23

    Research highlights: {yields} Nifedipine inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma}. {yields} GW9662 treatment alone increased RAGE mRNA levels in tubular cells. {yields} Nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-{beta} gene expression in tubular cells, all of which were blocked by GW9662. -- Abstract: There is a growing body of evidence that advanced glycation end products (AGEs) and their receptor (RAGE) interaction evokes oxidative stress generation and subsequently elicits inflammatory and fibrogenicmore » reactions, thereby contributing to the development and progression of diabetic nephropathy. We have previously found that nifedipine, a calcium-channel blocker (CCB), inhibits the AGE-induced mesangial cell damage in vitro. However, effects of nifedipine on proximal tubular cell injury remain unknown. We examined here whether and how nifedipine blocked the AGE-induced tubular cell damage. Nifedipine, but not amlodipine, a control CCB, inhibited the AGE-induced up-regulation of RAGE mRNA levels in tubular cells, which was prevented by the simultaneous treatment of GW9662, an inhibitor of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}). GW9662 treatment alone was found to increase RAGE mRNA levels in tubular cells. Further, nifedipine inhibited the AGE-induced reactive oxygen species generation, NF-{kappa}B activation and increases in intercellular adhesion molecule-1 and transforming growth factor-beta gene expression in tubular cells, all of which were blocked by GW9662. Our present study provides a unique beneficial aspect of nifedipine on diabetic nephropathy; it could work as an anti-oxidative and anti-inflammatory agent against AGEs in tubular cells by suppressing RAGE

  16. Effects of the PPAR-beta agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination.

    PubMed

    Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne

    2009-05-07

    Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-gamma (IFN-gamma) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-beta seems to play an important role in the regulation of central inflammation. In addition, PPAR-beta agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-beta agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-gamma and LPS. Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-gamma and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-beta, PPAR-gamma, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. GW 501516 decreased the IFN-gamma-induced up-regulation of TNF-alpha and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-beta agonist. However, it increased IL-6 m

  17. Effects of the PPAR-β agonist GW501516 in an in vitro model of brain inflammation and antibody-induced demyelination

    PubMed Central

    Defaux, Antoinette; Zurich, Marie-Gabrielle; Braissant, Olivier; Honegger, Paul; Monnet-Tschudi, Florianne

    2009-01-01

    Background Brain inflammation plays a central role in numerous brain pathologies, including multiple sclerosis (MS). Microglial cells and astrocytes are the effector cells of neuroinflammation. They can be activated also by agents such as interferon-γ (IFN-γ) and lipopolysaccharide (LPS). Peroxisome proliferator-associated receptor (PPAR) pathways are involved in the control of the inflammatory processes, and PPAR-β seems to play an important role in the regulation of central inflammation. In addition, PPAR-β agonists were shown to have trophic effects on oligodendrocytes in vitro, and to confer partial protection in experimental autoimmune encephalomyelitis (EAE), an animal model of MS. In the present work, a three-dimensional brain cell culture system was used as in vitro model to study antibody-induced demyelination and inflammatory responses. GW 501516, a specific PPAR-β agonist, was examined for its capacity to protect from antibody-mediated demyelination and to prevent inflammatory responses induced by IFN-γ and LPS. Methods Aggregating brain cells cultures were prepared from embryonal rat brain, and used to study the inflammatory responses triggered by IFN-γ and LPS and by antibody-mediated demyelination induced by antibodies directed against myelin-oligodendrocyte glycoprotein (MOG). The effects of GW 501516 on cellular responses were characterized by the quantification of the mRNA expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), inducible NO synthase (i-NOS), PPAR-β, PPAR-γ, glial fibrillary acidic protein (GFAP), myelin basic protein (MBP), and high molecular weight neurofilament protein (NF-H). GFAP expression was also examined by immunocytochemistry, and microglial cells were visualized by isolectin B4 (IB4) and ED1 labeling. Results GW 501516 decreased the IFN-γ-induced up-regulation of TNF-α and iNOS in accord with the proposed anti-inflammatory effects of this PPAR-β agonist. However, it increased IL-6 m

  18. Hybrid Stars in the Light of GW170817

    NASA Astrophysics Data System (ADS)

    Nandi, Rana; Char, Prasanta

    2018-04-01

    We have studied the effect of the tidal deformability constraint given by the binary neutron star merger event GW170817 on the equations of state (EOS) of hybrid stars. The EOS are constructed by matching the hadronic EOS described by the relativistic mean-field model and parameter sets NL3, TM1, and NL3ωρ with the quark matter EOS described by the modified MIT bag model, via a Gibbs construction. It is found that the tidal deformability constraints along with the lower bound on the maximum mass (M max = 2.01 ± 0.04 M ⊙) significantly limits the bag model parameter space ({B}eff}1/4, a 4). We also obtain upper limits on the radius of 1.4 M ⊙ and 1.6 M ⊙ stars as R 1.4 ≤ 13.2–13.5 km and R 1.6 ≤ 13.2–13.4 km, respectively, for the different hadronic EOS considered here.

  19. GRB 170817A as a jet counterpart to gravitational wave trigger GW 170817

    NASA Astrophysics Data System (ADS)

    Lamb, Gavin P.; Kobayashi, Shiho

    2018-05-01

    Fermi/GBM (Gamma-ray Burst Monitor) and INTEGRAL (the International Gamma-ray Astrophysics Laboratory) reported the detection of the γ-ray counterpart, GRB 170817A, to the LIGO (Light Interferometer Gravitational-wave Observatory)/Virgo gravitational wave detected binary neutron star merger, GW 170817. GRB 170817A is likely to have an internal jet or another origin such as cocoon emission, shock-breakout, or a flare from a viscous disc. In this paper we assume that the γ-ray emission is caused by energy dissipation within a relativistic jet and we model the afterglow synchrotron emission from a reverse- and forward-shock in the outflow. We show the afterglow for a low-luminosity γ-ray burst (GRB) jet with a high Lorentz-factor (Γ); a low-Γ and low-kinetic energy jet; a low-Γ, high kinetic energy jet; structured jets viewed at an inclination within the jet-half-opening angle; and an off-axis `typical' GRB jet. All jet models will produce observable afterglows on various timescales. The late-time afterglow from 10-110 days can be fit by a Gaussian structured jet viewed at a moderate inclination, however the GRB is not directly reproduced by this model. These jet afterglow models can be used for future GW detected NS merger counterparts with a jet afterglow origin.

  20. Visualizing the gravitational lensing and vortex and tendex lines of colliding black holes

    NASA Astrophysics Data System (ADS)

    Khan, Haroon; Lovelace, Geoffery; SXS Collaboration

    2016-03-01

    Gravitational waves (GW's) are ripples of space and time that are created when the universe unleashes its violent nature in the presence of strong gravity. Merging black holes (BH) are one of the most promising sources of GW's. In order to detect and physically study the GW's emitted by merging BH with ground based detectors such as Advanced LIGO, we must accurately predict how the waveforms look and behave. This can only be done by numerically simulating BH mergers on supercomputers, because all analytical approximations fail near the time of merger. This poster focuses on using these simulations to answer the question of ``What do merging BH look like''? I will present visualizations made using the Spectral Einstein Code (SpEC) and in particular a raytracing lensing code, developed by the SXS Lensing team, that shows how merging BH bend the light around them. I will also present visualizations of the vortex and tendex lines for a binary BH system, using SpEC. Vortex lines describe how an observer will be twisted by the BH and the tendex lines describe how much an observer would be stretched and squeezed. I am exploring how these lines change with time.