Sample records for advanced imaging communication

  1. Imaging for understanding speech communication: Advances and challenges

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth

    2005-04-01

    Research in speech communication has relied on a variety of instrumentation methods to illuminate details of speech production and perception. One longstanding challenge has been the ability to examine real-time changes in the shaping of the vocal tract; a goal that has been furthered by imaging techniques such as ultrasound, movement tracking, and magnetic resonance imaging. The spatial and temporal resolution afforded by these techniques, however, has limited the scope of the investigations that could be carried out. In this talk, we focus on some recent advances in magnetic resonance imaging that allow us to perform near real-time investigations on the dynamics of vocal tract shaping during speech. Examples include Demolin et al. (2000) (4-5 images/second, ultra-fast turbo spin echo) and Mady et al. (2001,2002) (8 images/second, T1 fast gradient echo). A recent study by Narayanan et al. (2004) that used a spiral readout scheme to accelerate image acquisition has allowed for image reconstruction rates of 24 images/second. While these developments offer exciting prospects, a number of challenges lie ahead, including: (1) improving image acquisition protocols, hardware for enhancing signal-to-noise ratio, and optimizing spatial sampling; (2) acquiring quality synchronized audio; and (3) analyzing and modeling image data including cross-modality registration. [Work supported by NIH and NSF.

  2. Mission science value-cost savings from the Advanced Imaging Communication System (AICS)

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1984-01-01

    An Advanced Imaging Communication System (AICS) was proposed in the mid-1970s as an alternative to the Voyager data/communication system architecture. The AICS achieved virtually error free communication with little loss in the downlink data rate by concatenating a powerful Reed-Solomon block code with the Voyager convolutionally coded, Viterbi decoded downlink channel. The clean channel allowed AICS sophisticated adaptive data compression techniques. Both Voyager and the Galileo mission have implemented AICS components, and the concatenated channel itself is heading for international standardization. An analysis that assigns a dollar value/cost savings to AICS mission performance gains is presented. A conservative value or savings of $3 million for Voyager, $4.5 million for Galileo, and as much as $7 to 9.5 million per mission for future projects such as the proposed Mariner Mar 2 series is shown.

  3. Visual Communications And Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell; Tzou, Kou-Hu

    1989-07-01

    This special issue on Visual Communications and Image Processing contains 14 papers that cover a wide spectrum in this fast growing area. For the past few decades, researchers and scientists have devoted their efforts to these fields. Through this long-lasting devotion, we witness today the growing popularity of low-bit-rate video as a convenient tool for visual communication. We also see the integration of high-quality video into broadband digital networks. Today, with more sophisticated processing, clearer and sharper pictures are being restored from blurring and noise. Also, thanks to the advances in digital image processing, even a PC-based system can be built to recognize highly complicated Chinese characters at the speed of 300 characters per minute. This special issue can be viewed as a milestone of visual communications and image processing on its journey to eternity. It presents some overviews on advanced topics as well as some new development in specific subjects.

  4. High-speed image transmission via the Advanced Communication Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Bazzill, Todd M.; Huang, H. K.; Thoma, George R.; Long, L. Rodney; Gill, Michael J.

    1996-05-01

    We are developing a wide area test bed network using the Advanced Communication Technology Satellite (ACTS) from NASA for high speed medical image transmission. The two test sites are the University of California, San Francisco, and the National Library of Medicine. The first phase of the test bed runs over a T1 link (1.544 Mbits/sec) using a Very Small Aperture Terminal. The second phase involves the High Data Rate Terminal via an ATM OC 3C (155 Mbits/sec) connection. This paper describes the experimental set up and some preliminary results from phase 1.

  5. Advances in computer imaging/applications in facial plastic surgery.

    PubMed

    Papel, I D; Jiannetto, D F

    1999-01-01

    Rapidly progressing computer technology, ever-increasing expectations of patients, and a confusing medicolegal environment requires a clarification of the role of computer imaging/applications. Advances in computer technology and its applications are reviewed. A brief historical discussion is included for perspective. Improvements in both hardware and software with the advent of digital imaging have allowed great increases in speed and accuracy in patient imaging. This facilitates doctor-patient communication and possibly realistic patient expectations. Patients seeking cosmetic surgery now often expect preoperative imaging. Although society in general has become more litigious, a literature search up to 1998 reveals no lawsuits directly involving computer imaging. It appears that conservative utilization of computer imaging by the facial plastic surgeon may actually reduce liability and promote communication. Recent advances have significantly enhanced the value of computer imaging in the practice of facial plastic surgery. These technological advances in computer imaging appear to contribute a useful technique for the practice of facial plastic surgery. Inclusion of computer imaging should be given serious consideration as an adjunct to clinical practice.

  6. Image-Enabled Discourse: Investigating the Creation of Visual Information as Communicative Practice

    ERIC Educational Resources Information Center

    Snyder, Jaime

    2012-01-01

    Anyone who has clarified a thought or prompted a response during a conversation by drawing a picture has exploited the potential of image making as an interactive tool for conveying information. Images are increasingly ubiquitous in daily communication, in large part due to advances in visually enabled information and communication technologies…

  7. Distress detection, location, and communications using advanced space technology

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  8. Advanced Management Communication: An Elective Course in Corporate Communication.

    ERIC Educational Resources Information Center

    Argenti, Paul A.

    1986-01-01

    Proposes a college-level elective course in advanced management communication that would teach future managers how to communicate with shareholders, the media, financial analysts, and the labor force. (SRT)

  9. Potential end-to-end imaging information rate advantages of various alternative communication systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1978-01-01

    Various communication systems were considered which are required to transmit both imaging and a typically error sensitive, class of data called general science/engineering (gse) over a Gaussian channel. The approach jointly treats the imaging and gse transmission problems, allowing comparisons of systems which include various channel coding and data compression alternatives. Actual system comparisons include an Advanced Imaging Communication System (AICS) which exhibits the rather significant potential advantages of sophisticated data compression coupled with powerful yet practical channel coding.

  10. Visual Communications and Image Processing

    NASA Astrophysics Data System (ADS)

    Hsing, T. Russell

    1987-07-01

    This special issue of Optical Engineering is concerned with visual communications and image processing. The increase in communication of visual information over the past several decades has resulted in many new image processing and visual communication systems being put into service. The growth of this field has been rapid in both commercial and military applications. The objective of this special issue is to intermix advent technology in visual communications and image processing with ideas generated from industry, universities, and users through both invited and contributed papers. The 15 papers of this issue are organized into four different categories: image compression and transmission, image enhancement, image analysis and pattern recognition, and image processing in medical applications.

  11. The ACTS Flight System - Cost-Effective Advanced Communications Technology. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Holmes, W. M., Jr.; Beck, G. A.

    1984-01-01

    The multibeam communications package (MCP) for the Advanced Communications Technology Satellite (ACTS) to be STS-launched by NASA in 1988 for experimental demonstration of satellite-switched TDMA (at 220 Mbit/sec) and baseband-processor signal routing (at 110 or 27.5 Mbit/sec) is characterized. The developmental history of the ACTS, the program definition, and the spacecraft-bus and MCP parameters are reviewed and illustrated with drawings, block diagrams, and maps of the coverage plan. Advanced features of the MPC include 4.5-dB-noise-figure 30-GHz FET amplifiers and 20-GHz TWTA transmitters which provide either 40-W or 8-W RF output, depending on rain conditions. The technologies being tested in ACTS can give frequency-reuse factors as high as 20, thus greatly expanding the orbit/spectrum resources available for U.S. communications use.

  12. Outer planet Pioneer imaging communications system study. [data compression

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The effects of different types of imaging data compression on the elements of the Pioneer end-to-end data system were studied for three imaging transmission methods. These were: no data compression, moderate data compression, and the advanced imaging communications system. It is concluded that: (1) the value of data compression is inversely related to the downlink telemetry bit rate; (2) the rolling characteristics of the spacecraft limit the selection of data compression ratios; and (3) data compression might be used to perform acceptable outer planet mission at reduced downlink telemetry bit rates.

  13. Advanced communications satellites

    NASA Technical Reports Server (NTRS)

    Sivo, J. N.

    1980-01-01

    The increase in demand for satellite communications services brought about shortages in available transponder capacity, especially at C-band. Interest shifted to the Ku-band frequency and currently carriers are rapidly moving to secure orbital slots for future satellite development. Projections of communications service demands over the next decade indiate growth in voice, data, and video services such that saturation of both C-band and Ku-band will occur by 1990. Emphasis must and will shift to Ka-band (20/30 GHz) frequency for fixed-satellite service. Advanced technologies such as multibeam antennas coupled with on-board satellite switching to allow implementation in this band of very high capacity satellite systems will be applied to meet the demand. Satellite system concepts that are likely in the 1990's and are likely to bring a new dimension to satellite delivered communication service are presented. The NASA 30/20 GHz communications satellite system demonstration program is discussed with emphasis on the related technology development.

  14. Advanced imaging communication system

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Rice, R. F.

    1977-01-01

    Key elements of system are imaging and nonimaging sensors, data compressor/decompressor, interleaved Reed-Solomon block coder, convolutional-encoded/Viterbi-decoded telemetry channel, and Reed-Solomon decoding. Data compression provides efficient representation of sensor data, and channel coding improves reliability of data transmission.

  15. New coding advances for deep space communications

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H.

    1987-01-01

    Advances made in error-correction coding for deep space communications are described. The code believed to be the best is a (15, 1/6) convolutional code, with maximum likelihood decoding; when it is concatenated with a 10-bit Reed-Solomon code, it achieves a bit error rate of 10 to the -6th, at a bit SNR of 0.42 dB. This code outperforms the Voyager code by 2.11 dB. The use of source statics in decoding convolutionally encoded Voyager images from the Uranus encounter is investigated, and it is found that a 2 dB decoding gain can be achieved.

  16. Completion of a Hospital-Wide Comprehensive Image Management and Communication System

    NASA Astrophysics Data System (ADS)

    Mun, Seong K.; Benson, Harold R.; Horii, Steven C.; Elliott, Larry P.; Lo, Shih-Chung B.; Levine, Betty A.; Braudes, Robert E.; Plumlee, Gabriel S.; Garra, Brian S.; Schellinger, Dieter; Majors, Bruce; Goeringer, Fred; Kerlin, Barbara D.; Cerva, John R.; Ingeholm, Mary-Lou; Gore, Tim

    1989-05-01

    A comprehensive image management and communication (IMAC) network has been installed at Georgetown University Hospital for an extensive clinical evaluation. The network is based on the AT&T CommView system and it includes interfaces to 12 imaging devices, 15 workstations (inside and outside of the radiology department), a teleradiology link to an imaging center, an optical jukebox and a number of advanced image display and processing systems such as Sun workstations, PIXAR, and PIXEL. Details of network configuration and its role in the evaluation project are discussed.

  17. Image Steganography for Hidden Communication

    DTIC Science & Technology

    2000-04-01

    ARMY RESEARCH LABORATORY Image Steganography for Hidden Communication by Lisa M. Marvel sx:8 lÄPSilll msmmmmsi IH :’:-:’X^:-:-:-:o-x...2000 Image Steganography for Hidden Communication Lisa M. Marvel Information Science and Technology Directorate, ARL Approved for public release...Capacity for Image Steganography 14 3.4 Summary 1’ 4. Spread Spectrum Image Steganography (SSIS) 19 4.1 Modulation 21 4.1.1 Sign-Detector System

  18. NASA's Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.

    1983-01-01

    NASA recently restructured its Space Communications Program to emphasize the development of high risk communication technology useable in multiple frequency bands and to support a wide range of future communication needs. As part of this restructuring, the Advanced Communications Technology Satellite (ACTS) Project will develop and experimentally verify the technology associated with multiple fixed and scanning beam systems which will enable growth in communication satellite capacities and more effective utilization of the radio frequency spectrum. The ACTS requirements and operations as well as the technology significance for future systems are described.

  19. End-to-end imaging information rate advantages of various alternative communication systems

    NASA Technical Reports Server (NTRS)

    Rice, R. F.

    1982-01-01

    The efficiency of various deep space communication systems which are required to transmit both imaging and a typically error sensitive class of data called general science and engineering (gse) are compared. The approach jointly treats the imaging and gse transmission problems, allowing comparisons of systems which include various channel coding and data compression alternatives. Actual system comparisons include an advanced imaging communication system (AICS) which exhibits the rather significant advantages of sophisticated data compression coupled with powerful yet practical channel coding. For example, under certain conditions the improved AICS efficiency could provide as much as two orders of magnitude increase in imaging information rate compared to a single channel uncoded, uncompressed system while maintaining the same gse data rate in both systems. Additional details describing AICS compression and coding concepts as well as efforts to apply them are provided in support of the system analysis.

  20. Patient perceptions of helpful communication in the context of advanced cancer.

    PubMed

    Stajduhar, Kelli I; Thorne, Sally E; McGuinness, Liza; Kim-Sing, Charmaine

    2010-07-01

    Based on a secondary analysis of data from a large qualitative study on cancer care communication, we address the question: what do patients with advanced cancer identify as helpful in their communication encounters with health care providers? Communication is of critical importance to the care of patients with advanced cancer. A better understanding of what such patients identify as helpful in their communication encounters with nurses and other health care providers seems critical to creating evidence-informed recommendations for best practices. Secondary analysis of qualitative interview data. Data from 18 participants interviewed individually and 16 focus group participants, with advanced cancer in the palliative phase of care. Interpretive description methodology informed data collection and analysis. Findings suggest four key elements are critically important to consider in communications with patients in an advanced or palliative phase - respecting the importance of time, demonstrating caring, acknowledging fear and balancing hope and honesty in the provision of information. Communication is an important element in the provision of advanced cancer care. Findings emphasise the complex meanings inherent in cancer care communication and identify central themes that are fundamental to effective cancer care communication. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  1. Advances in Pancreatic CT Imaging.

    PubMed

    Almeida, Renata R; Lo, Grace C; Patino, Manuel; Bizzo, Bernardo; Canellas, Rodrigo; Sahani, Dushyant V

    2018-07-01

    The purpose of this article is to discuss the advances in CT acquisition and image postprocessing as they apply to imaging the pancreas and to conceptualize the role of radiogenomics and machine learning in pancreatic imaging. CT is the preferred imaging modality for assessment of pancreatic diseases. Recent advances in CT (dual-energy CT, CT perfusion, CT volumetry, and radiogenomics) and emerging computational algorithms (machine learning) have the potential to further increase the value of CT in pancreatic imaging.

  2. Review of advanced imaging techniques

    PubMed Central

    Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

    2012-01-01

    Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

  3. Advanced Communication Processing Techniques

    NASA Astrophysics Data System (ADS)

    Scholtz, Robert A.

    This document contains the proceedings of the workshop Advanced Communication Processing Techniques, held May 14 to 17, 1989, near Ruidoso, New Mexico. Sponsored by the Army Research Office (under Contract DAAL03-89-G-0016) and organized by the Communication Sciences Institute of the University of Southern California, the workshop had as its objective to determine those applications of intelligent/adaptive communication signal processing that have been realized and to define areas of future research. We at the Communication Sciences Institute believe that there are two emerging areas which deserve considerably more study in the near future: (1) Modulation characterization, i.e., the automation of modulation format recognition so that a receiver can reliably demodulate a signal without using a priori information concerning the signal's structure, and (2) the incorporation of adaptive coding into communication links and networks. (Encoders and decoders which can operate with a wide variety of codes exist, but the way to utilize and control them in links and networks is an issue). To support these two new interest areas, one must have both a knowledge of (3) the kinds of channels and environments in which the systems must operate, and of (4) the latest adaptive equalization techniques which might be employed in these efforts.

  4. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  5. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  6. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  7. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical image communications device. 892.2020... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications device. (a) Identification. A medical image communications device provides electronic transfer of medical...

  8. System architecture for an advanced Canadian communications satellite demonstration mission

    NASA Astrophysics Data System (ADS)

    Takats, P.; Irani, S.

    1992-03-01

    An advanced communications satellite system that provides single hop interconnectivity and interworking for both a personal communications network and an advanced private business network in the Ka and Ku bands respectively, is presented. An overall network perspective is discussed that studies the interface of such an advanced satellite communication system to the terrestrial network in the context of the Open Systems Interconnection model. It is shown that this proposed satellite system can dynamically establish links and efficiently allocate the satellite resource amongst the user terminal population for a mix of data and voice traffic.

  9. Distress detection, location, and communications using advanced space technology. [satellite-borne synthetic aperture radar

    NASA Technical Reports Server (NTRS)

    Sivertson, W. E., Jr.

    1977-01-01

    This paper briefly introduces a concept for low-cost, global, day-night, all-weather disaster warning and assistance. Evolving, advanced space technology with passive radio frequency reflectors in conjunction with an imaging synthetic aperture radar is employed to detect, identify, locate, and provide passive communication with earth users in distress. This concept evolved from a broad NASA research on new global search and rescue techniques. Appropriate airborne radar test results from this research are reviewed and related to potential disaster applications. The analysis indicates the approach has promise for disaster communications relative to floods, droughts, earthquakes, volcanic eruptions, and severe storms.

  10. The NASA Advanced Communications Technology Satellite (ACTS)

    NASA Astrophysics Data System (ADS)

    Beck, G. A.

    1984-10-01

    Forecasts indicate that a saturation of the capacity of the satellite communications service will occur in the U.S. domestic market by the early 1990s. In order to prevent this from happening, advanced technologies must be developed. NASA has been concerned with such a development. One key is the exploitation of the Ka-band (30/20 GHz), which is much wider than C- and Ku-bands together. Another is the use of multiple narrow antenna beams in the satellite to achieve large frequency reuse factors with very high antenna gains. NASA has developed proof-of-concept hardware components which form the basis for a flight demonstration. The Advanced Communications Technology Satellite (ACTS) system will provide this demonstration. Attention is given to the ACTS Program definition, the ACTS Flight System, the Multibeam Communications Package, and the spacecraft bus.

  11. High-fidelity video and still-image communication based on spectral information: natural vision system and its applications

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki

    2006-01-01

    In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.

  12. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  13. General consumer communication tools for improved image management and communication in medicine.

    PubMed

    Rosset, Chantal; Rosset, Antoine; Ratib, Osman

    2005-12-01

    We elected to explore new technologies emerging on the general consumer market that can improve and facilitate image and data communication in medical and clinical environment. These new technologies developed for communication and storage of data can improve the user convenience and facilitate the communication and transport of images and related data beyond the usual limits and restrictions of a traditional picture archiving and communication systems (PACS) network. We specifically tested and implemented three new technologies provided on Apple computer platforms. (1) We adopted the iPod, a MP3 portable player with a hard disk storage, to easily and quickly move large number of DICOM images. (2) We adopted iChat, a videoconference and instant-messaging software, to transmit DICOM images in real time to a distant computer for conferencing teleradiology. (3) Finally, we developed a direct secure interface to use the iDisk service, a file-sharing service based on the WebDAV technology, to send and share DICOM files between distant computers. These three technologies were integrated in a new open-source image navigation and display software called OsiriX allowing for manipulation and communication of multimodality and multidimensional DICOM image data sets. This software is freely available as an open-source project at http://homepage.mac.com/rossetantoine/OsiriX. Our experience showed that the implementation of these technologies allowed us to significantly enhance the existing PACS with valuable new features without any additional investment or the need for complex extensions of our infrastructure. The added features such as teleradiology, secure and convenient image and data communication, and the use of external data storage services open the gate to a much broader extension of our imaging infrastructure to the outside world.

  14. Bio-image warehouse system: concept and implementation of a diagnosis-based data warehouse for advanced imaging modalities in neuroradiology.

    PubMed

    Minati, L; Ghielmetti, F; Ciobanu, V; D'Incerti, L; Maccagnano, C; Bizzi, A; Bruzzone, M G

    2007-03-01

    Advanced neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), chemical shift spectroscopy imaging (CSI), diffusion tensor imaging (DTI), and perfusion-weighted imaging (PWI) create novel challenges in terms of data storage and management: huge amounts of raw data are generated, the results of analysis may depend on the software and settings that have been used, and most often intermediate files are inherently not compliant with the current DICOM (digital imaging and communication in medicine) standard, as they contain multidimensional complex and tensor arrays and various other types of data structures. A software architecture, referred to as Bio-Image Warehouse System (BIWS), which can be used alongside a radiology information system/picture archiving and communication system (RIS/PACS) system to store neuroimaging data for research purposes, is presented. The system architecture is conceived with the purpose of enabling to query by diagnosis according to a predefined two-layered classification taxonomy. The operational impact of the system and the time needed to get acquainted with the web-based interface and with the taxonomy are found to be limited. The development of modules enabling automated creation of statistical templates is proposed.

  15. Advanced Secure Optical Image Processing for Communications

    NASA Astrophysics Data System (ADS)

    Al Falou, Ayman

    2018-04-01

    New image processing tools and data-processing network systems have considerably increased the volume of transmitted information such as 2D and 3D images with high resolution. Thus, more complex networks and long processing times become necessary, and high image quality and transmission speeds are requested for an increasing number of applications. To satisfy these two requests, several either numerical or optical solutions were offered separately. This book explores both alternatives and describes research works that are converging towards optical/numerical hybrid solutions for high volume signal and image processing and transmission. Without being limited to hybrid approaches, the latter are particularly investigated in this book in the purpose of combining the advantages of both techniques. Additionally, pure numerical or optical solutions are also considered since they emphasize the advantages of one of the two approaches separately.

  16. Recent advances in imaging technologies in dentistry.

    PubMed

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-10-28

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry.

  17. Recent advances in imaging technologies in dentistry

    PubMed Central

    Shah, Naseem; Bansal, Nikhil; Logani, Ajay

    2014-01-01

    Dentistry has witnessed tremendous advances in all its branches over the past three decades. With these advances, the need for more precise diagnostic tools, specially imaging methods, have become mandatory. From the simple intra-oral periapical X-rays, advanced imaging techniques like computed tomography, cone beam computed tomography, magnetic resonance imaging and ultrasound have also found place in modern dentistry. Changing from analogue to digital radiography has not only made the process simpler and faster but also made image storage, manipulation (brightness/contrast, image cropping, etc.) and retrieval easier. The three-dimensional imaging has made the complex cranio-facial structures more accessible for examination and early and accurate diagnosis of deep seated lesions. This paper is to review current advances in imaging technology and their uses in different disciplines of dentistry. PMID:25349663

  18. Advanced Sensors Boost Optical Communication, Imaging

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Brooklyn, New York-based Amplification Technologies Inc. (ATI), employed Phase I and II SBIR funding from NASA s Jet Propulsion Laboratory to forward the company's solid-state photomultiplier technology. Under the SBIR, ATI developed a small, energy-efficient, extremely high-gain sensor capable of detecting light down to single photons in the near infrared wavelength range. The company has commercialized this technology in the form of its NIRDAPD photomultiplier, ideal for use in free space optical communications, lidar and ladar, night vision goggles, and other light sensing applications.

  19. Advanced satellite communication system

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.; Lie, Sen

    1992-01-01

    The objective of this research program was to develop an innovative advanced satellite receiver/demodulator utilizing surface acoustic wave (SAW) chirp transform processor and coherent BPSK demodulation. The algorithm of this SAW chirp Fourier transformer is of the Convolve - Multiply - Convolve (CMC) type, utilizing off-the-shelf reflective array compressor (RAC) chirp filters. This satellite receiver, if fully developed, was intended to be used as an on-board multichannel communications repeater. The Advanced Communications Receiver consists of four units: (1) CMC processor, (2) single sideband modulator, (3) demodulator, and (4) chirp waveform generator and individual channel processors. The input signal is composed of multiple user transmission frequencies operating independently from remotely located ground terminals. This signal is Fourier transformed by the CMC Processor into a unique time slot for each user frequency. The CMC processor is driven by a waveform generator through a single sideband (SSB) modulator. The output of the coherent demodulator is composed of positive and negative pulses, which are the envelopes of the chirp transform processor output. These pulses correspond to the data symbols. Following the demodulator, a logic circuit reconstructs the pulses into data, which are subsequently differentially decoded to form the transmitted data. The coherent demodulation and detection of BPSK signals derived from a CMC chirp transform processor were experimentally demonstrated and bit error rate (BER) testing was performed. To assess the feasibility of such advanced receiver, the results were compared with the theoretical analysis and plotted for an average BER as a function of signal-to-noise ratio. Another goal of this SBIR program was the development of a commercial product. The commercial product developed was an arbitrary waveform generator. The successful sales have begun with the delivery of the first arbitrary waveform generator.

  20. A new imaging technique for detecting interstellar communications

    NASA Astrophysics Data System (ADS)

    Vallerga, John; Welsh, Barry; Kotze, Marissa; Siegmund, Oswald

    2017-01-01

    We report on a unique detection methodology using the Berkeley Visible Image Tube (BVIT) mounted on the 10m Southern African Large Telescope (SALT) to search for laser pulses originating in communications from advanced extraterrestrial (ET) civilizations residing on nearby Earth-like planets located within their habitability zones. The detection technique assumes that ET communicates through high powered pulsed lasers with pulse durations on the order of 5 nanoseconds, the signals thereby being brighter than that of the host star within this very short period of time. Our technique turns down the gain of the optically sensitive photon counting microchannel plate detector such that ~30 photons are required in a 5ns window to generate an imaged event. Picking a priori targets with planets in the habitable zone substantially reduces the false alarm rate. Interplanetary communication by optical masers was first postulated by Schwartz and Townes in 1961. Under the assumption that ET has access to a 10 m class telescope operated as a transmitter then we could detect lasers with a similar power to that of the Livermore Laboratory laser (~1.8Mj per pulse), to a distance of ~ 1000 pc. In this talk we present the results of 2400 seconds of BVIT observations on the SALT of the star Wolf 1061, which is known to harbor an Earth-sized exoplanet located in the habitability zone. At this distance (4.3 pc), BVIT on SALT could detect a 48 joule per pulse laser, now commercially available as tabletop devices.

  1. Collaborative communication: learning from advanced clinical practice patient consultations.

    PubMed

    Barratt, Julian

    2018-04-28

    Advanced nurse practitioners, and nurses aspiring to this role, are required to understand how to communicate effectively and on a collaborative basis with patients and carers during consultations, with the aim of enhancing patient outcomes such as improved patient satisfaction, ability to self-manage healthcare needs and adherence to care plans. This article explores collaborative communication in consultations and how best to achieve this, using the author's doctoral observational research based on the findings of a mixed methods observational study of communication in advanced clinical practice patient consultations. ©2018 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  2. Parent-Child Communication and Adjustment Among Children With Advanced and Non-Advanced Cancer in the First Year Following Diagnosis or Relapse.

    PubMed

    Keim, Madelaine C; Lehmann, Vicky; Shultz, Emily L; Winning, Adrien M; Rausch, Joseph R; Barrera, Maru; Gilmer, Mary Jo; Murphy, Lexa K; Vannatta, Kathryn A; Compas, Bruce E; Gerhardt, Cynthia A

    2017-09-01

    To examine parent-child communication (i.e., openness, problems) and child adjustment among youth with advanced or non-advanced cancer and comparison children. Families (n = 125) were recruited after a child's diagnosis/relapse and stratified by advanced (n = 55) or non-advanced (n = 70) disease. Comparison children (n = 60) were recruited from local schools. Children (ages 10-17) reported on communication (Parent-Adolescent Communication Scale) with both parents, while mothers reported on child adjustment (Child Behavior Checklist) at enrollment (T1) and one year (T2). Openness/problems in communication did not differ across groups at T1, but problems with fathers were higher among children with non-advanced cancer versus comparisons at T2. Openness declined for all fathers, while changes in problems varied by group for both parents. T1 communication predicted later adjustment only for children with advanced cancer. Communication plays an important role, particularly for children with advanced cancer. Additional research with families affected by life-limiting conditions is needed. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions

  4. Recent technological advancements in cardiac ultrasound imaging.

    PubMed

    Dave, Jaydev K; Mc Donald, Maureen E; Mehrotra, Praveen; Kohut, Andrew R; Eisenbrey, John R; Forsberg, Flemming

    2018-03-01

    About 92.1 million Americans suffer from at least one type of cardiovascular disease. Worldwide, cardiovascular diseases are the number one cause of death (about 31% of all global deaths). Recent technological advancements in cardiac ultrasound imaging are expected to aid in the clinical diagnosis of many cardiovascular diseases. This article provides an overview of such recent technological advancements, specifically focusing on tissue Doppler imaging, strain imaging, contrast echocardiography, 3D echocardiography, point-of-care echocardiography, 3D volumetric flow assessments, and elastography. With these advancements ultrasound imaging is rapidly changing the domain of cardiac imaging. The advantages offered by ultrasound imaging include real-time imaging, imaging at patient bed-side, cost-effectiveness and ionizing-radiation-free imaging. Along with these advantages, the steps taken towards standardization of ultrasound based quantitative markers, reviewed here, will play a major role in addressing the healthcare burden associated with cardiovascular diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Fiber Optic Communication System For Medical Images

    NASA Astrophysics Data System (ADS)

    Arenson, Ronald L.; Morton, Dan E.; London, Jack W.

    1982-01-01

    This paper discusses a fiber optic communication system linking ultrasound devices, Computerized tomography scanners, Nuclear Medicine computer system, and a digital fluoro-graphic system to a central radiology research computer. These centrally archived images are available for near instantaneous recall at various display consoles. When a suitable laser optical disk is available for mass storage, more extensive image archiving will be added to the network including digitized images of standard radiographs for comparison purposes and for remote display in such areas as the intensive care units, the operating room, and selected outpatient departments. This fiber optic system allows for a transfer of high resolution images in less than a second over distances exceeding 2,000 feet. The advantages of using fiber optic cables instead of typical parallel or serial communication techniques will be described. The switching methodology and communication protocols will also be discussed.

  6. General consumer communication tools for improved image management and communication in medicine

    NASA Astrophysics Data System (ADS)

    Ratib, Osman M.; Rosset, Antoine; McCoy, J. Michael

    2005-04-01

    We elected to explore emerging consumer technologies that can be adopted to improve and facilitate image and data communication in medical and clinical environment. The wide adoption of new communication paradigm such as instant messaging, chatting and direct emailing can be integrated in specific applications. The increasing capacity of portable and hand held devices such as iPod music players offer an attractive alternative for data storage that exceeds the capabilities of traditional offline storage media such as CD or even DVD. We adapted medical image display and manipulation software called OSIRIX to integrate different innovative technologies facilitating the communication and data transfer between remote users. We integrated email and instant messaging features to the program allowing users to instantaneously email an image or a set of images that are displayed on the screen. Using iChat instant messaging application from Apple a user can share the content of his screen with a remote correspondent and communicate in real time using voice and video. To provide convenient mechanism for exchange of large data sets the program can store the data in DICOM format on CD or DVD, but was also extended to use the large storage capacity of iPod hard disks as well as Apple"s online storage service "dot Mac" that users can subscribe to benefit from scalable secure storage that accessible from anywhere on the internet. The adoption of these innovative technologies is likely to change the architecture of traditional picture archiving and communication systems and provide more flexible and efficient means of communication.

  7. Latest advances in molecular imaging instrumentation.

    PubMed

    Pichler, Bernd J; Wehrl, Hans F; Judenhofer, Martin S

    2008-06-01

    This review concentrates on the latest advances in molecular imaging technology, including PET, MRI, and optical imaging. In PET, significant improvements in tumor detection and image resolution have been achieved by introducing new scintillation materials, iterative image reconstruction, and correction methods. These advances enabled the first clinical scanners capable of time-of-flight detection and incorporating point-spread-function reconstruction to compensate for depth-of-interaction effects. In the field of MRI, the most important developments in recent years have mainly been MRI systems with higher field strengths and improved radiofrequency coil technology. Hyperpolarized imaging, functional MRI, and MR spectroscopy provide molecular information in vivo. A special focus of this review article is multimodality imaging and, in particular, the emerging field of combined PET/MRI.

  8. [Image guided and robotic treatment--the advance of cybernetics in clinical medicine].

    PubMed

    Fosse, E; Elle, O J; Samset, E; Johansen, M; Røtnes, J S; Tønnessen, T I; Edwin, B

    2000-01-10

    The introduction of advanced technology in hospitals has changed the treatment practice towards more image guided and minimal invasive procedures. Modern computer and communication technology opens up for robot aided and pre-programmed intervention. Several robotic systems are in clinical use today both in microsurgery and in major cardiac and orthopedic operations. As this trend develops, professions which are new in this context such as physicists, mathematicians and cybernetic engineers will be increasingly important in the treatment of patients.

  9. Visual communication - Information and fidelity. [of images

    NASA Technical Reports Server (NTRS)

    Huck, Freidrich O.; Fales, Carl L.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur; Reichenbach, Stephen E.

    1993-01-01

    This assessment of visual communication deals with image gathering, coding, and restoration as a whole rather than as separate and independent tasks. The approach focuses on two mathematical criteria, information and fidelity, and on their relationships to the entropy of the encoded data and to the visual quality of the restored image. Past applications of these criteria to the assessment of image coding and restoration have been limited to the link that connects the output of the image-gathering device to the input of the image-display device. By contrast, the approach presented in this paper explicitly includes the critical limiting factors that constrain image gathering and display. This extension leads to an end-to-end assessment theory of visual communication that combines optical design with digital processing.

  10. 21 CFR 892.2020 - Medical image communications device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical image communications device. 892.2020 Section 892.2020 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.2020 Medical image communications...

  11. Increase in counselling communication skills after basic and advanced microskills training.

    PubMed

    Kuntze, Jeroen; van der Molen, Henk T; Born, Marise P

    2009-03-01

    Mastering counselling communication skills is one of the requirements that lead to the diploma of a registered European psychologist. The microcounseling method proves to be effective in training these skills. Research into the effectiveness of the microcounseling method often reports overall effect sizes only. The aim of this study was to investigate the adequate use of separate counselling communication skills (seven basic skills: minimal encouragements; asking questions; paraphrasing; reflection of feeling; concreteness; summarizing; and situation clarification and five advanced skills: advanced accurate empathy; confrontation; positive relabelling; examples of one's own; and directness) after respectively a basic and an advanced training in these skills. Participants were 583 first year or second year bachelor students in psychology who took the counselling communication skills progress test (CSPT). The participants are divided in a group of freshmen, who had not received any training in counselling communication skills; first year students, who had received a training in basic skills; second year students who had followed a training in advanced skills and a control group. A between-subject design, a within-subject design and a pre-test-post-test-control group design were used to examine the scores on these skills. Seven basic skills and four advanced skills had large effect sizes. One advanced skill had a moderate effect size. The microcounseling method is very effective on the level of separate microskills. However, students perform better on the basic skills than on the advanced skills. More training seems to be needed in the latter to achieve the same level of mastery.

  12. Display-based communications for advanced transport aircraft

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1989-01-01

    The next generation of civil transport aircraft will depend increasingly upon ground-air-ground and satellite data link for information critical to safe and efficient air transportation. Previous studies which examined the concept of display-based communications in addition to, or in lieu of, conventional voice transmissions are reviewed. A full-mission flight simulation comparing voice and display-based communication modes in an advanced transport aircraft is also described. The results indicate that a display-based mode of information transfer does not result in significantly increased aircrew workload, but does result in substantially increased message acknowledgment times when compared to conventional voice transmissions. User acceptance of the display-based communication system was generally high, replicating the findings of previous studies. However, most pilots tested expressed concern over the potential loss of information available from frequency monitoring which might result from the introduction of discrete address communications. Concern was expressed by some pilots for the reduced time available to search for conflicting traffic when using the communications display system. The implications of the findings for the design of display-based communications are discussed.

  13. [Advance in imaging spectropolarimeter].

    PubMed

    Wang, Xin-quan; Xiangli, Bin; Huang, Min; Hu, Liang; Zhou, Jin-song; Jing, Juan-juan

    2011-07-01

    Imaging spectropolarimeter (ISP) is a type of novel photoelectric sensor which integrated the functions of imaging, spectrometry and polarimetry. In the present paper, the concept of the ISP is introduced, and the advances in ISP at home and abroad in recent years is reviewed. The principles of ISPs based on novel devices, such as acousto-optic tunable filter (AOTF) and liquid crystal tunable filter (LCTF), are illustrated. In addition, the principles of ISPs developed by adding polarized components to the dispersing-type imaging spectrometer, spatially modulated Fourier transform imaging spectrometer, and computer tomography imaging spectrometer are introduced. Moreover, the trends of ISP are discussed too.

  14. Hepatocellular carcinoma: Advances in diagnostic imaging.

    PubMed

    Sun, Haoran; Song, Tianqiang

    2015-10-01

    Thanks to the growing knowledge on biological behaviors of hepatocellular carcinomas (HCC), as well as continuous improvement in imaging techniques and experienced interpretation of imaging features of the nodules in cirrhotic liver, the detection and characterization of HCC has improved in the past decade. A number of practice guidelines for imaging diagnosis have been developed to reduce interpretation variability and standardize management of HCC, and they are constantly updated with advances in imaging techniques and evidence based data from clinical series. In this article, we strive to review the imaging techniques and the characteristic features of hepatocellular carcinoma associated with cirrhotic liver, with emphasis on the diagnostic value of advanced magnetic resonance imaging (MRI) techniques and utilization of hepatocyte-specific MRI contrast agents. We also briefly describe the concept of liver imaging reporting and data systems and discuss the consensus and controversy of major practice guidelines.

  15. Advanced imaging research and development at DARPA

    NASA Astrophysics Data System (ADS)

    Dhar, Nibir K.; Dat, Ravi

    2012-06-01

    Advances in imaging technology have huge impact on our daily lives. Innovations in optics, focal plane arrays (FPA), microelectronics and computation have revolutionized camera design. As a result, new approaches to camera design and low cost manufacturing is now possible. These advances are clearly evident in visible wavelength band due to pixel scaling, improvements in silicon material and CMOS technology. CMOS cameras are available in cell phones and many other consumer products. Advances in infrared imaging technology have been slow due to market volume and many technological barriers in detector materials, optics and fundamental limits imposed by the scaling laws of optics. There is of course much room for improvements in both, visible and infrared imaging technology. This paper highlights various technology development projects at DARPA to advance the imaging technology for both, visible and infrared. Challenges and potentials solutions are highlighted in areas related to wide field-of-view camera design, small pitch pixel, broadband and multiband detectors and focal plane arrays.

  16. Advances in medical image computing.

    PubMed

    Tolxdorff, T; Deserno, T M; Handels, H; Meinzer, H-P

    2009-01-01

    Medical image computing has become a key technology in high-tech applications in medicine and an ubiquitous part of modern imaging systems and the related processes of clinical diagnosis and intervention. Over the past years significant progress has been made in the field, both on methodological and on application level. Despite this progress there are still big challenges to meet in order to establish image processing routinely in health care. In this issue, selected contributions of the German Conference on Medical Image Processing (BVM) are assembled to present latest advances in the field of medical image computing. The winners of scientific awards of the German Conference on Medical Image Processing (BVM) 2008 were invited to submit a manuscript on their latest developments and results for possible publication in Methods of Information in Medicine. Finally, seven excellent papers were selected to describe important aspects of recent advances in the field of medical image processing. The selected papers give an impression of the breadth and heterogeneity of new developments. New methods for improved image segmentation, non-linear image registration and modeling of organs are presented together with applications of image analysis methods in different medical disciplines. Furthermore, state-of-the-art tools and techniques to support the development and evaluation of medical image processing systems in practice are described. The selected articles describe different aspects of the intense development in medical image computing. The image processing methods presented enable new insights into the patient's image data and have the future potential to improve medical diagnostics and patient treatment.

  17. Do photographic images of pain improve communication during pain consultations?

    PubMed

    Padfield, Deborah; Zakrzewska, Joanna M; Williams, Amanda C de C

    2015-01-01

    Visual images may facilitate the communication of pain during consultations. To assess whether photographic images of pain enrich the content and⁄or process of pain consultation by comparing patients' and clinicians' ratings of the consultation experience. Photographic images of pain previously co-created by patients with a photographer were provided to new patients attending pain clinic consultations. Seventeen patients selected and used images that best expressed their pain and were compared with 21 patients who were not shown images. Ten clinicians conducted assessments in each condition. After consultation, patients and clinicians completed ratings of aspects of communication and, when images were used, how they influenced the consultation. The majority of both patients and clinicians reported that images enhanced the consultation. Ratings of communication were generally high, with no differences between those with and without images (with the exception of confidence in treatment plan, which was rated more highly in the image group). However, patients' and clinicians' ratings of communication were inversely related only in consultations with images. Methodological shortcomings may underlie the present findings of no difference. It is also possible that using images raised patients' and clinicians' expectations and encouraged emotional disclosure, in response to which clinicians were dissatisfied with their performance. Using images in clinical encounters did not have a negative impact on the consultation, nor did it improve communication or satisfaction. These findings will inform future analysis of behaviour in the video-recorded consultations.

  18. Advanced mobile satellite communications using COMETS satellite in MM-wave and Ka-band

    NASA Technical Reports Server (NTRS)

    Ohmori, Shingo; Isobe, Shunkichi; Takeuchi, Makoto; Naito, Hideyuki

    1993-01-01

    Early in the 21st century, the demand for personal communications using mobile, hand-held, and VSAT terminals will rapidly increase. In a future system, many different types of services should be provided with one-hop connection. The Communications Research Laboratory (CRL) has studied a future advanced mobile satellite communications system using millimeter wave and Ka band. In 1990, CRL started the Communications and Broadcasting Engineering Test Satellite (COMETS) project. The satellite has been developed in conjunction with NASDA and will be launched in 1997. This paper describes the COMETS payload configuration and the experimental system for the advanced mobile communications mission.

  19. Advanced Communications Architecture Demonstration Made Significant Progress

    NASA Technical Reports Server (NTRS)

    Carek, David Andrew

    2004-01-01

    Simulation for a ground station located at 44.5 deg latitude. The Advanced Communications Architecture Demonstration (ACAD) is a concept architecture to provide high-rate Ka-band (27-GHz) direct-to-ground delivery of payload data from the International Space Station. This new concept in delivering data from the space station targets scientific experiments that buffer data onboard. The concept design provides a method to augment the current downlink capability through the Tracking Data Relay Satellite System (TDRSS) Ku-band (15-GHz) communications system. The ACAD concept pushes the limits of technology in high-rate data communications for space-qualified systems. Research activities are ongoing in examining the various aspects of high-rate communications systems including: (1) link budget parametric analyses, (2) antenna configuration trade studies, (3) orbital simulations (see the preceding figure), (4) optimization of ground station contact time (see the following graph), (5) processor and storage architecture definition, and (6) protocol evaluations and dependencies.

  20. Communicator image and Myers-Briggs Type Indicator extraversion-introversion.

    PubMed

    Opt, Susan K; Loffredo, Donald A

    2003-11-01

    This study is an examination of the relationship between communicator image and Myers-Briggs Type Indicator (MBTI) dimensions of extraversion-introversion. The authors found that individuals who prefer extraversion tend to have a more positive communicator image than those who prefer introversion. The results of this study support other research results showing that personality preferences differ in communication behaviors and traits, which could have implications for the individual's comfort and success in society. Results of this research also support the contention that communication behavior has biological aspects.

  1. Advanced imaging in COPD: insights into pulmonary pathophysiology

    PubMed Central

    Milne, Stephen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings. PMID:25478198

  2. Advanced imaging system

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This document describes the Advanced Imaging System CCD based camera. The AIS1 camera system was developed at Photometric Ltd. in Tucson, Arizona as part of a Phase 2 SBIR contract No. NAS5-30171 from the NASA/Goddard Space Flight Center in Greenbelt, Maryland. The camera project was undertaken as a part of the Space Telescope Imaging Spectrograph (STIS) project. This document is intended to serve as a complete manual for the use and maintenance of the camera system. All the different parts of the camera hardware and software are discussed and complete schematics and source code listings are provided.

  3. Advanced Land Imager Assessment System

    NASA Technical Reports Server (NTRS)

    Chander, Gyanesh; Choate, Mike; Christopherson, Jon; Hollaren, Doug; Morfitt, Ron; Nelson, Jim; Nelson, Shar; Storey, James; Helder, Dennis; Ruggles, Tim; hide

    2008-01-01

    The Advanced Land Imager Assessment System (ALIAS) supports radiometric and geometric image processing for the Advanced Land Imager (ALI) instrument onboard NASA s Earth Observing-1 (EO-1) satellite. ALIAS consists of two processing subsystems for radiometric and geometric processing of the ALI s multispectral imagery. The radiometric processing subsystem characterizes and corrects, where possible, radiometric qualities including: coherent, impulse; and random noise; signal-to-noise ratios (SNRs); detector operability; gain; bias; saturation levels; striping and banding; and the stability of detector performance. The geometric processing subsystem and analysis capabilities support sensor alignment calibrations, sensor chip assembly (SCA)-to-SCA alignments and band-to-band alignment; and perform geodetic accuracy assessments, modulation transfer function (MTF) characterizations, and image-to-image characterizations. ALIAS also characterizes and corrects band-toband registration, and performs systematic precision and terrain correction of ALI images. This system can geometrically correct, and automatically mosaic, the SCA image strips into a seamless, map-projected image. This system provides a large database, which enables bulk trending for all ALI image data and significant instrument telemetry. Bulk trending consists of two functions: Housekeeping Processing and Bulk Radiometric Processing. The Housekeeping function pulls telemetry and temperature information from the instrument housekeeping files and writes this information to a database for trending. The Bulk Radiometric Processing function writes statistical information from the dark data acquired before and after the Earth imagery and the lamp data to the database for trending. This allows for multi-scene statistical analyses.

  4. A Combined Laser-Communication and Imager for Microspacecraft (ACLAIM)

    NASA Technical Reports Server (NTRS)

    Hemmati, H.; Lesh, J.

    1998-01-01

    ACLAIM is a multi-function instrument consisting of a laser communication terminal and an imaging camera that share a common telescope. A single APS- (Active Pixel Sensor) based focal-plane-array is used to perform both the acquisition and tracking (for laser communication) and science imaging functions.

  5. The Advanced Communications Technology Satellite (ACTS) capabilities for serving science

    NASA Technical Reports Server (NTRS)

    Meyer, Thomas R.

    1990-01-01

    Results of research on potential science applications of the NASA Advanced Communications Technology Satellite (ACTS) are presented. Discussed here are: (1) general research on communications related issues; (2) a survey of science-related activities and programs in the local area; (3) interviews of selected scientists and associated telecommunications support personnel whose projects have communications requirements; (4) analysis of linkages between ACTS functionality and science user communications activities and modes of operation; and (5) an analysis of survey results and the projection of conclusions to a national scale.

  6. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH

  7. Perspective: Advanced particle imaging

    DOE PAGES

    Chandler, David W.; Houston, Paul L.; Parker, David H.

    2017-05-26

    This study discuss, the first ion imaging experiment demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variancemore » and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable “complete” experiments—the holy grail of molecular dynamics—where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control.« less

  8. Integration of a Communicating Science Module into an Advanced Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Renaud, Jessica; Squier, Christopher; Larsen, Sarah C.

    2006-01-01

    A communicating science module was introduced into an advanced undergraduate physical chemistry laboratory course. The module was integrated into the course such that students received formal instruction in communicating science interwoven with the chemistry laboratory curriculum. The content of the communicating science module included three…

  9. A Communication Architecture for an Advanced Extravehicular Mobile Unit

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Sands, Obed S.; Bakula, Casey J.; Oldham, Daniel R.; Wright, Ted; Bradish, Martin A.; Klebau, Joseph M.

    2014-01-01

    This document describes the communication architecture for the Power, Avionics and Software (PAS) 1.0 subsystem for the Advanced Extravehicular Mobility Unit (AEMU). The following systems are described in detail: Caution Warning and Control System, Informatics, Storage, Video, Audio, Communication, and Monitoring Test and Validation. This document also provides some background as well as the purpose and goals of the PAS subsystem being developed at Glenn Research Center (GRC).

  10. More than a Picture: Helping Undergraduates Learn to Communicate through Scientific Images

    PubMed Central

    Watson, Fiona L.

    2008-01-01

    Images are powerful means of communicating scientific results; a strong image can underscore an experimental result more effectively than any words, whereas a poor image can readily undermine a result or conclusion. Developmental biologists rely extensively on images to compare normal versus abnormal development and communicate their results. Most undergraduate lab science courses do not actively teach students skills to communicate effectively through images. To meet this need, we developed a series of image portfolio assignments and imaging workshops in our Developmental Biology course to encourage students to develop communication skills using images. The improvements in their images over the course of the semester were striking, and on anonymous course evaluations, 73% of students listed imaging skills as the most important skill or concept they learned in the course. The image literacy skills acquired through simple lab assignments and in-class workshops appeared to stimulate confidence in the student's own evaluations of current scientific literature to assess research conclusions. In this essay, we discuss our experiences and methodology teaching undergraduates the basic criteria involved in generating images that communicate scientific content and provide a road map for integrating this curriculum into any upper-level biology laboratory course. PMID:18316805

  11. The Army's Use of the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Ilse, Kenneth

    1996-01-01

    Tactical operations require military commanders to be mobile and have a high level of independence in their actions. Communications capabilities providing intelligence and command orders in these tactical situations have been limited to simple voice communications or low-rate narrow bandwidth communications because of the need for immediate reliable connectivity. The Advanced Communications Technology Satellite (ACTS) has brought an improved communications tool to the tactical commander giving the ability to gain access to a global communications system using high data rates and wide bandwidths. The Army has successfully tested this new capability of bandwidth-on-demand and high data rates for commanders in real-world conditions during Operation UPHOLD DEMOCRACY in Haiti during the fall and winter of 1994. This paper examines ACTS use by field commanders and details the success of the ACTS system in support of a wide variety of field condition command functions.

  12. Advanced Approach of Multiagent Based Buoy Communication

    PubMed Central

    Gricius, Gediminas; Drungilas, Darius; Dzemydiene, Dale

    2015-01-01

    Usually, a hydrometeorological information system is faced with great data flows, but the data levels are often excessive, depending on the observed region of the water. The paper presents advanced buoy communication technologies based on multiagent interaction and data exchange between several monitoring system nodes. The proposed management of buoy communication is based on a clustering algorithm, which enables the performance of the hydrometeorological information system to be enhanced. The experiment is based on the design and analysis of the inexpensive but reliable Baltic Sea autonomous monitoring network (buoys), which would be able to continuously monitor and collect temperature, waviness, and other required data. The proposed approach of multiagent based buoy communication enables all the data from the costal-based station to be monitored with limited transition speed by setting different tasks for the agent-based buoy system according to the clustering information. PMID:26345197

  13. Medication order communication using fax and document-imaging technologies.

    PubMed

    Simonian, Armen I

    2008-03-15

    The implementation of fax and document-imaging technology to electronically communicate medication orders from nursing stations to the pharmacy is described. The evaluation of a commercially available pharmacy order imaging system to improve order communication and to make document retrieval more efficient led to the selection and customization of a system already licensed and used in seven affiliated hospitals. The system consisted of existing fax machines and document-imaging software that would capture images of written orders and send them from nursing stations to a central database server. Pharmacists would then retrieve the images and enter the orders in an electronic medical record system. The pharmacy representatives from all seven hospitals agreed on the configuration and functionality of the custom application. A 30-day trial of the order imaging system was successfully conducted at one of the larger institutions. The new system was then implemented at the remaining six hospitals over a period of 60 days. The transition from a paper-order system to electronic communication via a standardized pharmacy document management application tailored to the specific needs of this health system was accomplished. A health system with seven affiliated hospitals successfully implemented electronic communication and the management of inpatient paper-chart orders by using faxes and document-imaging technology. This standardized application eliminated the problems associated with the hand delivery of paper orders, the use of the pneumatic tube system, and the printing of traditional faxes.

  14. The ACR-NEMA Digital Imaging And Communications Standard: Evolution, Overview And Implementation Considerations

    NASA Astrophysics Data System (ADS)

    Alzner, Edgar; Murphy, Laura

    1986-06-01

    The growing digital nature of radiology images led to a recognition that compatibility of communication between imaging, display and data storage devices of different modalities and different manufacturers is necessary. The ACR-NEMA Digital Imaging and Communications Standard Committee was formed to develop a communications standard for radiological images. This standard includes the overall structure of a communication message and the protocols for bi-directional communication using end-to-end connections. The evolution and rationale of the ACR-NEMA Digital Imaging and Communication Standard are described. An overview is provided and sane practical implementation considerations are discussed. PACS will became reality only if the medical community accepts and implements the ACR-NEMA Standard.

  15. Image Viewer using Digital Imaging and Communications in Medicine (DICOM)

    NASA Astrophysics Data System (ADS)

    Baraskar, Trupti N.

    2010-11-01

    Digital Imaging and Communications in Medicine is a standard for handling, storing, printing, and transmitting information in medical imaging. The National Electrical Manufacturers Association holds the copyright to this standard. It was developed by the DICOM Standards committee. The other image viewers cannot collectively store the image details as well as the patient's information. So the image may get separated from the details, but DICOM file format stores the patient's information and the image details. Main objective is to develop a DICOM image viewer. The image viewer will open .dcm i.e. DICOM image file and also will have additional features such as zoom in, zoom out, black and white inverter, magnifier, blur, B/W inverter, horizontal and vertical flipping, sharpening, contrast, brightness and .gif converter are incorporated.

  16. Perspective: Advanced particle imaging

    PubMed Central

    Chandler, David W.

    2017-01-01

    Since the first ion imaging experiment [D. W. Chandler and P. L. Houston, J. Chem. Phys. 87, 1445–1447 (1987)], demonstrating the capability of collecting an image of the photofragments from a unimolecular dissociation event and analyzing that image to obtain the three-dimensional velocity distribution of the fragments, the efficacy and breadth of application of the ion imaging technique have continued to improve and grow. With the addition of velocity mapping, ion/electron centroiding, and slice imaging techniques, the versatility and velocity resolution have been unmatched. Recent improvements in molecular beam, laser, sensor, and computer technology are allowing even more advanced particle imaging experiments, and eventually we can expect multi-mass imaging with co-variance and full coincidence capability on a single shot basis with repetition rates in the kilohertz range. This progress should further enable “complete” experiments—the holy grail of molecular dynamics—where all quantum numbers of reactants and products of a bimolecular scattering event are fully determined and even under our control. PMID:28688442

  17. Advances in Imaging in Prostate and Bladder Cancer.

    PubMed

    Srivastava, Abhishek; Douglass, Laura M; Chernyak, Victoria; Watts, Kara L

    2017-09-01

    Recent advancements in urologic imaging techniques aim to improve the initial detection of urologic malignancies and subsequent recurrence and to more accurately stage disease. This allows the urologist to make better informed treatment decisions. In particular, exciting advances in the imaging of prostate cancer and bladder cancer have recently emerged including the use of dynamic, functional imaging with MRI and PET. In this review, we will explore these imaging modalities, in addition to new sonography techniques and CT, and how they hope to improve the diagnosis and management of prostate and bladder cancer.

  18. Advances in Gamma-Ray Imaging with Intensified Quantum-Imaging Detectors

    NASA Astrophysics Data System (ADS)

    Han, Ling

    Nuclear medicine, an important branch of modern medical imaging, is an essential tool for both diagnosis and treatment of disease. As the fundamental element of nuclear medicine imaging, the gamma camera is able to detect gamma-ray photons emitted by radiotracers injected into a patient and form an image of the radiotracer distribution, reflecting biological functions of organs or tissues. Recently, an intensified CCD/CMOS-based quantum detector, called iQID, was developed in the Center for Gamma-Ray Imaging. Originally designed as a novel type of gamma camera, iQID demonstrated ultra-high spatial resolution (< 100 micron) and many other advantages over traditional gamma cameras. This work focuses on advancing this conceptually-proven gamma-ray imaging technology to make it ready for both preclinical and clinical applications. To start with, a Monte Carlo simulation of the key light-intensification device, i.e. the image intensifier, was developed, which revealed the dominating factor(s) that limit energy resolution performance of the iQID cameras. For preclinical imaging applications, a previously-developed iQID-based single-photon-emission computed-tomography (SPECT) system, called FastSPECT III, was fully advanced in terms of data acquisition software, system sensitivity and effective FOV by developing and adopting a new photon-counting algorithm, thicker columnar scintillation detectors, and system calibration method. Originally designed for mouse brain imaging, the system is now able to provide full-body mouse imaging with sub-350-micron spatial resolution. To further advance the iQID technology to include clinical imaging applications, a novel large-area iQID gamma camera, called LA-iQID, was developed from concept to prototype. Sub-mm system resolution in an effective FOV of 188 mm x 188 mm has been achieved. The camera architecture, system components, design and integration, data acquisition, camera calibration, and performance evaluation are presented in

  19. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewerdsen, J.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  20. Image analysis and modeling in medical image computing. Recent developments and advances.

    PubMed

    Handels, H; Deserno, T M; Meinzer, H-P; Tolxdorff, T

    2012-01-01

    Medical image computing is of growing importance in medical diagnostics and image-guided therapy. Nowadays, image analysis systems integrating advanced image computing methods are used in practice e.g. to extract quantitative image parameters or to support the surgeon during a navigated intervention. However, the grade of automation, accuracy, reproducibility and robustness of medical image computing methods has to be increased to meet the requirements in clinical routine. In the focus theme, recent developments and advances in the field of modeling and model-based image analysis are described. The introduction of models in the image analysis process enables improvements of image analysis algorithms in terms of automation, accuracy, reproducibility and robustness. Furthermore, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients. Selected contributions are assembled to present latest advances in the field. The authors were invited to present their recent work and results based on their outstanding contributions to the Conference on Medical Image Computing BVM 2011 held at the University of Lübeck, Germany. All manuscripts had to pass a comprehensive peer review. Modeling approaches and model-based image analysis methods showing new trends and perspectives in model-based medical image computing are described. Complex models are used in different medical applications and medical images like radiographic images, dual-energy CT images, MR images, diffusion tensor images as well as microscopic images are analyzed. The applications emphasize the high potential and the wide application range of these methods. The use of model-based image analysis methods can improve segmentation quality as well as the accuracy and reproducibility of quantitative image analysis. Furthermore, image-based models enable new insights and can lead to a deeper understanding of complex dynamic mechanisms in the human body

  1. Radiation-Hardened Electronics for Advanced Communications Systems

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling

    2015-01-01

    Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.

  2. Caregiver Activation and Home Hospice Nurse Communication in Advanced Cancer Care.

    PubMed

    Dingley, Catherine E; Clayton, Margaret; Lai, Djin; Doyon, Katherine; Reblin, Maija; Ellington, Lee

    Activated patients have the skills, knowledge, and confidence to manage their care, resulting in positive outcomes such as lower hospital readmission and fewer adverse consequences due to poor communication with providers. Despite extensive evidence on patient activation, little is known about activation in the home hospice setting, when family caregivers assume more responsibility in care management. We examined caregiver and nurse communication behaviors associated with caregiver activation during home hospice visits of patients with advanced cancer using a prospective observational design. We adapted Street's Activation Verbal Coding tool to caregiver communication and used qualitative thematic analysis to develop codes for nurse communications that preceded and followed each activation statement in 60 audio-recorded home hospice visits. Caregiver communication that reflected activation included demonstrating knowledge regarding the patient/care, describing care strategies, expressing opinions regarding care, requesting explanations of care, expressing concern about the patient, and redirecting the conversation toward the patient. Nurses responded by providing education, reassessing the patient/care environment, validating communications, clarifying care issues, updating/revising care, and making recommendations for future care. Nurses prompted caregiver activation through focused care-specific questions, open-ended questions/statements, and personal questions. Few studies have investigated nurse/caregiver communication in home hospice, and, to our knowledge, no other studies focused on caregiver activation. The current study provides a foundation to develop a framework of caregiver activation through enhanced communication with nurses. Activated caregivers may facilitate patient-centered care through communication with nurses in home hospice, thus resulting in enhanced outcomes for patients with advanced cancer.

  3. More than a Picture: Helping Undergraduates Learn to Communicate through Scientific Images

    ERIC Educational Resources Information Center

    Watson, Fiona L.; Lom, Barbara

    2008-01-01

    Images are powerful means of communicating scientific results; a strong image can underscore an experimental result more effectively than any words, whereas a poor image can readily undermine a result or conclusion. Developmental biologists rely extensively on images to compare normal versus abnormal development and communicate their results. Most…

  4. The development and piloting of the REnal specific Advanced Communication Training (REACT) programme to improve Advance Care Planning for renal patients.

    PubMed

    Bristowe, Katherine; Shepherd, Kate; Bryan, Liz; Brown, Heather; Carey, Irene; Matthews, Beverley; O'Donoghue, Donal; Vinen, Katie; Murtagh, Fliss E M

    2014-04-01

    In recent years, the End-Stage Kidney Disease population has increased and is ever more frail, elderly and co-morbid. A care-focused approach needs to be incorporated alongside the disease focus, to identify those who are deteriorating and improve communication about preferences and future care. Yet many renal professionals feel unprepared for such discussions. To develop and pilot a REnal specific Advanced Communication Training (REACT) programme to address the needs of End-Stage Kidney Disease patients and renal professionals. Two-part study: (1) development of the REnal specific Advanced Communication Training programme informed by multi-professional focus group and patient survey and (2) piloting of the programme. The REnal specific Advanced Communication Training programme was piloted with 16 participants (9 renal nurses/health-care assistants and 7 renal consultants) in two UK teaching hospitals. The focus group identified the need for better information about end-of-life phase, improved awareness of patient perspectives, skills to manage challenging discussions, 'hands on' practice in a safe environment and follow-up to discuss experiences. The patient survey demonstrated a need to improve communication about concerns, treatment plans and decisions. The developed REnal specific Advanced Communication Training programme was acceptable and feasible and was associated with a non-significant increase in confidence in communicating about end-of-life issues (pre-training: 6.6/10, 95% confidence interval: 5.7-7.4; post-training: 6.9/10, 95% confidence interval: 6.1-7.7, unpaired t-test - p = 0.56), maintained at 3 months. There is a need to improve end-of-life care for End-Stage Kidney Disease patients, to enable them to make informed decisions about future care. Challenges include prioritising communication training among service providers.

  5. Advanced Forensic Format: an Open Extensible Format for Disk Imaging

    NASA Astrophysics Data System (ADS)

    Garfinkel, Simson; Malan, David; Dubec, Karl-Alexander; Stevens, Christopher; Pham, Cecile

    This paper describes the Advanced Forensic Format (AFF), which is designed as an alternative to current proprietary disk image formats. AFF offers two significant benefits. First, it is more flexible because it allows extensive metadata to be stored with images. Second, AFF images consume less disk space than images in other formats (e.g., EnCase images). This paper also describes the Advanced Disk Imager, a new program for acquiring disk images that compares favorably with existing alternatives.

  6. LTE-advanced random access mechanism for M2M communication: A review

    NASA Astrophysics Data System (ADS)

    Mustafa, Rashid; Sarowa, Sandeep; Jaglan, Reena Rathee; Khan, Mohammad Junaid; Agrawal, Sunil

    2016-03-01

    Machine Type Communications (MTC) enables one or more self-sufficient machines to communicate directly with one another without human interference. MTC applications include smart grid, security, e-Health and intelligent automation system. To support huge numbers of MTC devices, one of the challenging issues is to provide a competent way for numerous access in the network and to minimize network overload. In this article, the different control mechanisms for overload random access are reviewed to avoid congestion caused by random access channel (RACH) of MTC devices. However, past and present wireless technologies have been engineered for Human-to-Human (H2H) communications, in particular, for transmission of voice. Consequently the Long Term Evolution (LTE) -Advanced is expected to play a central role in communicating Machine to Machine (M2M) and are very optimistic about H2H communications. Distinct and unique characteristics of M2M communications create new challenges from those in H2H communications. In this article, we investigate the impact of massive M2M terminals attempting random access to LTE-Advanced all at once. We discuss and review the solutions to alleviate the overload problem by Third Generation Partnership Project (3GPP). As a result, we evaluate and compare these solutions that can effectively eliminate the congestion on the random access channel for M2M communications without affecting H2H communications.

  7. Imaging evidence and recommendations for traumatic brain injury: advanced neuro- and neurovascular imaging techniques.

    PubMed

    Wintermark, M; Sanelli, P C; Anzai, Y; Tsiouris, A J; Whitlow, C T

    2015-02-01

    Neuroimaging plays a critical role in the evaluation of patients with traumatic brain injury, with NCCT as the first-line of imaging for patients with traumatic brain injury and MR imaging being recommended in specific settings. Advanced neuroimaging techniques, including MR imaging DTI, blood oxygen level-dependent fMRI, MR spectroscopy, perfusion imaging, PET/SPECT, and magnetoencephalography, are of particular interest in identifying further injury in patients with traumatic brain injury when conventional NCCT and MR imaging findings are normal, as well as for prognostication in patients with persistent symptoms. These advanced neuroimaging techniques are currently under investigation in an attempt to optimize them and substantiate their clinical relevance in individual patients. However, the data currently available confine their use to the research arena for group comparisons, and there remains insufficient evidence at the time of this writing to conclude that these advanced techniques can be used for routine clinical use at the individual patient level. TBI imaging is a rapidly evolving field, and a number of the recommendations presented will be updated in the future to reflect the advances in medical knowledge. © 2015 by American Journal of Neuroradiology.

  8. Advanced endoscopic imaging in gastric neoplasia and preneoplasia

    PubMed Central

    Lee, Jonathan W J; Lim, Lee Guan; Yeoh, Khay Guan

    2017-01-01

    Conventional white light endoscopy remains the current standard in routine clinical practice for early detection of gastric cancer. However, it may not accurately diagnose preneoplastic gastric lesions. The technological advancements in the field of endoscopic imaging for gastric lesions are fast growing. This article reviews currently available advanced endoscopic imaging modalities, in particular chromoendoscopy, narrow band imaging and confocal laser endomicroscopy, and their corresponding evidence shown to improve diagnosis of preneoplastic gastric lesions. Raman spectrometry and polarimetry are also introduced as promising emerging technologies. PMID:28176895

  9. Active Metamaterials for Terahertz Communication and Imaging

    NASA Astrophysics Data System (ADS)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in

  10. Scaling of data communications for an advanced supercomputer network

    NASA Technical Reports Server (NTRS)

    Levin, E.; Eaton, C. K.; Young, Bruce

    1986-01-01

    The goal of NASA's Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations and by remote communication to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. The implications of a projected 20-fold increase in processing power on the data communications requirements are described.

  11. [Ethical reflection on multidisciplinarity and confidentiality of information in medical imaging through new information and communication technologies].

    PubMed

    Béranger, J; Le Coz, P

    2012-05-01

    Technological advances in medical imaging has resulted in the exponential increase of the number of images per examination, caused the irreversible decline of the silver film and imposed digital imaging. This digitization is a concept whose levels of development are multiple, reflecting the complexity of this process of technological change. Under these conditions, the use of medical information via new information and communication technologies is at the crossroads of several scientific approaches and several disciplines (medicine, ethics, law, economics, psychology, etc.) surrounding the information systems in health, doctor-patient relationship and concepts that are associated. Each day, these new information and communication technologies open up new horizons and the space of possibilities, spectacularly developing access to information and knowledge. In this perspective of digital technology emergence impacting the multidisciplinary use of health information systems, the ethical questions are numerous, especially on the preservation of privacy, confidentiality and security of medical data, and their accessibility and integrity. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  12. Commercialization of Advanced Communications Technology Satellite (ACTS) technology

    NASA Astrophysics Data System (ADS)

    Plecity, Mark S.; Strickler, Walter M.; Bauer, Robert A.

    1996-03-01

    In an on-going effort to maintain United States leadership in communication satellite technology, the National Aeronautics and Space Administration (NASA), led the development of the Advanced Communications Technology Satellite (ACTS). NASA's ACTS program provides industry, academia, and government agencies the opportunity to perform both technology and telecommunication service experiments with a leading-edge communication satellite system. Over 80 organizations are using ACTS as a multi server test bed to establish communication technologies and services of the future. ACTS was designed to provide demand assigned multiple access (DAMA) digital communications with a minimum switchable circuit bandwidth of 64 Kbps, and a maximum channel bandwidth of 900 MHZ. It can, therefore, provide service to thin routes as well as connect fiber backbones in supercomputer networks, across oceans, or restore full communications in the event of national or manmade disaster. Service can also be provided to terrestrial and airborne mobile users. Commercial applications of ACTS technologies include: telemedicine; distance education; Department of Defense operations; mobile communications, aeronautical applications, terrestrial applications, and disaster recovery. This paper briefly describes the ACTS system and the enabling technologies employed by ACTS including Ka-band hopping spot beams, on-board routing and switching, and rain fade compensation. When used in conjunction with a time division multiple access (TDMA) architecture, these technologies provide a higher capacity, lower cost satellite system. Furthermore, examples of completed user experiments, future experiments, and plans of organizations to commercialize ACTS technology in their own future offerings will be discussed.

  13. Advanced endoscopic imaging: European Society of Gastrointestinal Endoscopy (ESGE) Technology Review.

    PubMed

    East, James E; Vleugels, Jasper L; Roelandt, Philip; Bhandari, Pradeep; Bisschops, Raf; Dekker, Evelien; Hassan, Cesare; Horgan, Gareth; Kiesslich, Ralf; Longcroft-Wheaton, Gaius; Wilson, Ana; Dumonceau, Jean-Marc

    2016-11-01

    Background and aim: This technical review is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). It addresses the utilization of advanced endoscopic imaging in gastrointestinal (GI) endoscopy. Methods: This technical review is based on a systematic literature search to evaluate the evidence supporting the use of advanced endoscopic imaging throughout the GI tract. Technologies considered include narrowed-spectrum endoscopy (narrow band imaging [NBI]; flexible spectral imaging color enhancement [FICE]; i-Scan digital contrast [I-SCAN]), autofluorescence imaging (AFI), and confocal laser endomicroscopy (CLE). The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was adopted to define the strength of recommendation and the quality of evidence. Main recommendations: 1. We suggest advanced endoscopic imaging technologies improve mucosal visualization and enhance fine structural and microvascular detail. Expert endoscopic diagnosis may be improved by advanced imaging, but as yet in community-based practice no technology has been shown consistently to be diagnostically superior to current practice with high definition white light. (Low quality evidence.) 2. We recommend the use of validated classification systems to support the use of optical diagnosis with advanced endoscopic imaging in the upper and lower GI tracts (strong recommendation, moderate quality evidence). 3. We suggest that training improves performance in the use of advanced endoscopic imaging techniques and that it is a prerequisite for use in clinical practice. A learning curve exists and training alone does not guarantee sustained high performances in clinical practice. (Weak recommendation, low quality evidence.) Conclusion: Advanced endoscopic imaging can improve mucosal visualization and endoscopic diagnosis; however it requires training and the use of validated classification systems. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Advanced Communication and Networking Technologies for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul; Hayden, Jeff; Agre, Jonathan R.; Clare, Loren P.; Yan, Tsun-Yee

    2001-01-01

    Next-generation Mars communications networks will provide communications and navigation services to a wide variety of Mars science vehicles including: spacecraft that are arriving at Mars, spacecraft that are entering and descending in the Mars atmosphere, scientific orbiter spacecraft, spacecraft that return Mars samples to Earth, landers, rovers, aerobots, airplanes, and sensing pods. In the current architecture plans, the communication services will be provided using capabilities deployed on the science vehicles as well as dedicated communication satellites that will together make up the Mars network. This network will evolve as additional vehicles arrive, depart or end their useful missions. Cost savings and increased reliability will result from the ability to share communication services between missions. This paper discusses the basic architecture that is needed to support the Mars Communications Network part of NASA's Space Science Enterprise (SSE) communications architecture. The network may use various networking technologies such as those employed in the terrestrial Internet, as well as special purpose deep-space protocols to move data and commands autonomously between vehicles, at disparate Mars vicinity sites (on the surface or in near-Mars space) and between Mars vehicles and earthbound users. The architecture of the spacecraft on-board local communications is being reconsidered in light of these new networking requirements. The trend towards increasingly autonomous operation of the spacecraft is aimed at reducing the dependence on resource scheduling provided by Earth-based operators and increasing system fault tolerance. However, these benefits will result in increased communication and software development requirements. As a result, the envisioned Mars communications infrastructure requires both hardware and protocol technology advancements. This paper will describe a number of the critical technology needs and some of the ongoing research

  15. Advanced imaging programs: maximizing a multislice CT investment.

    PubMed

    Falk, Robert

    2008-01-01

    Advanced image processing has moved from a luxury to a necessity in the practice of medicine. A hospital's adoption of sophisticated 3D imaging entails several important steps with many factors to consider in order to be successful. Like any new hospital program, 3D post-processing should be introduced through a strategic planning process that includes administrators, physicians, and technologists to design, implement, and market a program that is scalable-one that minimizes up front costs while providing top level service. This article outlines the steps for planning, implementation, and growth of an advanced imaging program.

  16. Advanced Communications Technology Satellite (ACTS): Design and on-orbit performance measurements

    NASA Technical Reports Server (NTRS)

    Gargione, F.; Acosta, R.; Coney, T.; Krawczyk, R.

    1995-01-01

    The Advanced Communications Technology Satellite (ACTS), developed and built by Lockheed Martin Astro space for the NASA Lewis Research Center, was launched in September 1993 on the shuttle STS 51 mission. ACTS is a digital experimental communications test bed that incorporates gigahertz bandwidth transponders operating at Ka band, hopping spot beams, on-board storage and switching, and dynamic rain fade compensation. This paper describes the ACTS enabling technologies, the design of the communications payload, the constraints imposed on the spacecraft bus, and the measurements conducted to verify the performance of the system in orbit.

  17. Effect of a Patient-Centered Communication Intervention on Oncologist-Patient Communication, Quality of Life, and Health Care Utilization in Advanced Cancer

    PubMed Central

    Epstein, Ronald M.; Duberstein, Paul R.; Fenton, Joshua J.; Fiscella, Kevin; Hoerger, Michael; Tancredi, Daniel J.; Xing, Guibo; Gramling, Robert; Mohile, Supriya; Franks, Peter; Kaesberg, Paul; Plumb, Sandy; Cipri, Camille S.; Street, Richard L.; Shields, Cleveland G.; Back, Anthony L.; Butow, Phyllis; Walczak, Adam; Tattersall, Martin; Venuti, Alison; Sullivan, Peter; Robinson, Mark; Hoh, Beth; Lewis, Linda; Kravitz, Richard L.

    2018-01-01

    IMPORTANCE Observational studies demonstrate links between patient-centered communication, quality of life (QOL), and aggressive treatments in advanced cancer, yet few randomized clinical trials (RCTs) of communication interventions have been reported. OBJECTIVE To determine whether a combined intervention involving oncologists, patients with advanced cancer, and caregivers would promote patient-centered communication, and to estimate intervention effects on shared understanding, patient-physician relationships, QOL, and aggressive treatments in the last 30 days of life. DESIGN, SETTING, AND PARTICIPANTS Cluster RCT at community- and hospital-based cancer clinics in Western New York and Northern California; 38 medical oncologists (mean age 44.6 years; 11 (29%) female) and 265 community-dwelling adult patients with advanced nonhematologic cancer participated (mean age, 64.4 years, 146 [55.0%] female, 235 [89%] white; enrolled August 2012 to June 2014; followed for 3 years); 194 patients had participating caregivers. INTERVENTIONS Oncologists received individualized communication training using standardized patient instructors while patients received question prompt lists and individualized communication coaching to identify issues to address during an upcoming oncologist visit. Both interventions focused on engaging patients in consultations, responding to emotions, informing patients about prognosis and treatment choices, and balanced framing of information. Control participants received no training. MAIN OUTCOMES AND MEASURES The prespecified primary outcome was a composite measure of patient-centered communication coded from audio recordings of the first oncologist visit following patient coaching (intervention group) or enrollment (control). Secondary outcomes included the patient-physician relationship, shared understanding of prognosis, QOL, and aggressive treatments and hospice use in the last 30 days of life. RESULTS Data from 38 oncologists (19 randomized

  18. Illumination-tolerant face verification of low-bit-rate JPEG2000 wavelet images with advanced correlation filters for handheld devices

    NASA Astrophysics Data System (ADS)

    Wijaya, Surya Li; Savvides, Marios; Vijaya Kumar, B. V. K.

    2005-02-01

    Face recognition on mobile devices, such as personal digital assistants and cell phones, is a big challenge owing to the limited computational resources available to run verifications on the devices themselves. One approach is to transmit the captured face images by use of the cell-phone connection and to run the verification on a remote station. However, owing to limitations in communication bandwidth, it may be necessary to transmit a compressed version of the image. We propose using the image compression standard JPEG2000, which is a wavelet-based compression engine used to compress the face images to low bit rates suitable for transmission over low-bandwidth communication channels. At the receiver end, the face images are reconstructed with a JPEG2000 decoder and are fed into the verification engine. We explore how advanced correlation filters, such as the minimum average correlation energy filter [Appl. Opt. 26, 3633 (1987)] and its variants, perform by using face images captured under different illumination conditions and encoded with different bit rates under the JPEG2000 wavelet-encoding standard. We evaluate the performance of these filters by using illumination variations from the Carnegie Mellon University's Pose, Illumination, and Expression (PIE) face database. We also demonstrate the tolerance of these filters to noisy versions of images with illumination variations.

  19. Architecture of distributed picture archiving and communication systems for storing and processing high resolution medical images

    NASA Astrophysics Data System (ADS)

    Tokareva, Victoria

    2018-04-01

    New generation medicine demands a better quality of analysis increasing the amount of data collected during checkups, and simultaneously decreasing the invasiveness of a procedure. Thus it becomes urgent not only to develop advanced modern hardware, but also to implement special software infrastructure for using it in everyday clinical practice, so-called Picture Archiving and Communication Systems (PACS). Developing distributed PACS is a challenging task for nowadays medical informatics. The paper discusses the architecture of distributed PACS server for processing large high-quality medical images, with respect to technical specifications of modern medical imaging hardware, as well as international standards in medical imaging software. The MapReduce paradigm is proposed for image reconstruction by server, and the details of utilizing the Hadoop framework for this task are being discussed in order to provide the design of distributed PACS as ergonomic and adapted to the needs of end users as possible.

  20. Logo image clustering based on advanced statistics

    NASA Astrophysics Data System (ADS)

    Wei, Yi; Kamel, Mohamed; He, Yiwei

    2007-11-01

    In recent years, there has been a growing interest in the research of image content description techniques. Among those, image clustering is one of the most frequently discussed topics. Similar to image recognition, image clustering is also a high-level representation technique. However it focuses on the coarse categorization rather than the accurate recognition. Based on wavelet transform (WT) and advanced statistics, the authors propose a novel approach that divides various shaped logo images into groups according to the external boundary of each logo image. Experimental results show that the presented method is accurate, fast and insensitive to defects.

  1. A randomized pilot trial of a videoconference couples communication intervention for advanced GI cancer.

    PubMed

    Porter, Laura S; Keefe, Francis J; Baucom, Donald H; Olsen, Maren; Zafar, S Yousuf; Uronis, Hope

    2017-07-01

    This study aims to test the feasibility and preliminary efficacy of a couple-based communication intervention for advanced GI cancer delivered via videoconference. Thirty-two couples were randomly assigned to either couples communication skills training (CCST) or an education comparison intervention, both delivered via videoconference. Participation was limited to couples who reported communication difficulties at screening. Patients and partners completed measures of relationship functioning and individual functioning at baseline and post-intervention. Eighty-eight percent of randomized dyads completed all six sessions and reported high levels of satisfaction with the intervention. Between-group effect sizes suggested that the CCST intervention led to improvements in relationship satisfaction for patients and partners and to improvements in intimacy and communication for patients. A couples-based communication intervention delivered via videoconference is feasible and acceptable in the context of advanced cancer. Preliminary findings suggest that the intervention shows promise in contributing to enhanced relationship functioning. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Stochastic detecting images from strong noise field in visual communications

    NASA Astrophysics Data System (ADS)

    Cai, Defu

    1991-11-01

    Random noise interference in image pick-up and image transmission is an important restriction for vision systems. In this paper, interframe shift sampling (IFSS) transform has been used for diminishing noise interference and detecting weak image signal submerged by strong noise in communication systems.

  3. Liquid lens: advances in adaptive optics

    NASA Astrophysics Data System (ADS)

    Casey, Shawn Patrick

    2010-12-01

    'Liquid lens' technologies promise significant advancements in machine vision and optical communications systems. Adaptations for machine vision, human vision correction, and optical communications are used to exemplify the versatile nature of this technology. Utilization of liquid lens elements allows the cost effective implementation of optical velocity measurement. The project consists of a custom image processor, camera, and interface. The images are passed into customized pattern recognition and optical character recognition algorithms. A single camera would be used for both speed detection and object recognition.

  4. DICOM image secure communications with Internet protocols IPv6 and IPv4.

    PubMed

    Zhang, Jianguo; Yu, Fenghai; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen

    2007-01-01

    Image-data transmission from one site to another through public network is usually characterized in term of privacy, authenticity, and integrity. In this paper, we first describe a general scenario about how image is delivered from one site to another through a wide-area network (WAN) with security features of data privacy, integrity, and authenticity. Second, we give the common implementation method of the digital imaging and communication in medicine (DICOM) image communication software library with IPv6/IPv4 for high-speed broadband Internet by using open-source software. Third, we discuss two major security-transmission methods, the IP security (IPSec) and the secure-socket layer (SSL) or transport-layer security (TLS), being used currently in medical-image-data communication with privacy support. Fourth, we describe a test schema of multiple-modality DICOM-image communications through TCP/IPv4 and TCP/IPv6 with different security methods, different security algorithms, and operating systems, and evaluate the test results. We found that there are tradeoff factors between choosing the IPsec and the SSL/TLS-based security implementation of IPv6/IPv4 protocols. If the WAN networks only use IPv6 such as in high-speed broadband Internet, the choice is IPsec-based security. If the networks are IPv4 or the combination of IPv6 and IPv4, it is better to use SSL/TLS security. The Linux platform has more security algorithms implemented than the Windows (XP) platform, and can achieve better performance in most experiments of IPv6 and IPv4-based DICOM-image communications. In teleradiology or enterprise-PACS applications, the Linux operating system may be the better choice as peer security gateways for both the IPsec and the SSL/TLS-based secure DICOM communications cross public networks.

  5. TU-AB-204-04: Advances in CBCT for Breast Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boone, J.

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac

  6. Availability of Advanced Breast Imaging at Screening Facilities Serving Vulnerable Populations.

    PubMed

    Lee, Christoph I; Bogart, Andy; Germino, Jessica C; Goldman, L Elizabeth; Hubbard, Rebecca A; Haas, Jennifer S; Hill, Deirdre A; Tosteson, Anna Na; Alford-Teaster, Jennifer A; DeMartini, Wendy B; Lehman, Constance D; Onega, Tracy L

    2016-03-01

    Among vulnerable women, unequal access to advanced breast imaging modalities beyond screening mammography may lead to delays in cancer diagnosis and unfavourable outcomes. We aimed to compare on-site availability of advanced breast imaging services (ultrasound, magnetic resonance imaging [MRI], and image-guided biopsy) between imaging facilities serving vulnerable patient populations and those serving non-vulnerable populations. 73 imaging facilities across five Breast Cancer Surveillance Consortium regional registries in the United States during 2011 and 2012. We examined facility and patient characteristics across a large, national sample of imaging facilities and patients served. We characterized facilities as serving vulnerable populations based on the proportion of mammograms performed on women with lower educational attainment, lower median income, racial/ethnic minority status, and rural residence.We performed multivariable logistic regression to determine relative risks of on-site availability of advanced imaging at facilities serving vulnerable women versus facilities serving non-vulnerable women. Facilities serving vulnerable populations were as likely (Relative risk [RR] for MRI = 0.71, 95% Confidence Interval [CI] 0.42, 1.19; RR for MRI-guided biopsy = 1.07 [0.61, 1.90]; RR for stereotactic biopsy = 1.18 [0.75, 1.85]) or more likely (RR for ultrasound = 1.38 [95% CI 1.09, 1.74]; RR for ultrasound-guided biopsy = 1.67 [1.30, 2.14]) to offer advanced breast imaging services as those serving non-vulnerable populations. Advanced breast imaging services are physically available on-site for vulnerable women in the United States, but it is unknown whether factors such as insurance coverage or out-of-pocket costs might limit their use. © The Author(s) 2015.

  7. Availability of Advanced Breast Imaging at Screening Facilities Serving Vulnerable Populations

    PubMed Central

    Lee, Christoph I.; Bogart, Andy; Germino, Jessica C.; Goldman, L. Elizabeth; Hubbard, Rebecca A.; Haas, Jennifer S.; Hill, Deirdre A.; Tosteson, Anna N.A.; Alford-Teaster, Jennifer A.; DeMartini, Wendy B.; Lehman, Constance D.; Onega, Tracy L.

    2015-01-01

    Objective Among vulnerable women, unequal access to advanced breast imaging modalities beyond screening mammography may lead to delays in cancer diagnosis and unfavorable outcomes. We aimed to compare on-site availability of advanced breast imaging services (ultrasound (US), magnetic resonance imaging (MRI), and image-guided biopsy) between imaging facilities serving vulnerable patient populations and those serving non-vulnerable populations. Setting 73 United States imaging facilities across five Breast Cancer Surveillance Consortium regional registries during calendar years 2011–2012. Methods We examined facility and patient characteristics across a large, national sample of imaging facilities and patients served. We characterized facilities as serving vulnerable populations based on the proportion of mammograms performed on women with lower educational attainment, lower median income, racial/ethnic minority status, and rural residence. We performed multivariable logistic regression to determine relative risks of on-site availability of advanced imaging at facilities serving vulnerable women versus facilities serving non-vulnerable women. Results Facilities serving vulnerable populations were as likely (RR for MRI = 0.71 [95% CI 0.42, 1.19]; RR for MRI-guided biopsy = 1.07 [0.61, 1.90]; RR for stereotactic biopsy = 1.18 [0.75, 1.85]) or more likely (RR for US = 1.38 [95% CI 1.09, 1.74]; RR for US-guided biopsy = 1.67 [1.30, 2.14]) to offer advanced breast imaging services as those serving non-vulnerable populations. Conclusions Advanced breast imaging services are physically available on-site for vulnerable women in the United States, but it is unknown whether factors such as insurance coverage or out-of-pocket costs might limit their use. PMID:26078275

  8. R and D limited partnerships (possible applications in advanced communications satellite technology experiment program)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Typical R&D limited partnership arrangements, advantages and disadvantages of R&D limited partnership (RDLPs) and antitrust and tax implications are described. A number of typical forms of RDLPs are described that may be applicable for use in stimulating R&D and experimental programs using the advanced communications technology satellite. The ultimate goal is to increase the rate of market penetration of goods and/or services based upon advanced satellite communications technology. The conditions necessary for these RDLP forms to be advantageous are outlined.

  9. Sub-component modeling for face image reconstruction in video communications

    NASA Astrophysics Data System (ADS)

    Shiell, Derek J.; Xiao, Jing; Katsaggelos, Aggelos K.

    2008-08-01

    Emerging communications trends point to streaming video as a new form of content delivery. These systems are implemented over wired systems, such as cable or ethernet, and wireless networks, cell phones, and portable game systems. These communications systems require sophisticated methods of compression and error-resilience encoding to enable communications across band-limited and noisy delivery channels. Additionally, the transmitted video data must be of high enough quality to ensure a satisfactory end-user experience. Traditionally, video compression makes use of temporal and spatial coherence to reduce the information required to represent an image. In many communications systems, the communications channel is characterized by a probabilistic model which describes the capacity or fidelity of the channel. The implication is that information is lost or distorted in the channel, and requires concealment on the receiving end. We demonstrate a generative model based transmission scheme to compress human face images in video, which has the advantages of a potentially higher compression ratio, while maintaining robustness to errors and data corruption. This is accomplished by training an offline face model and using the model to reconstruct face images on the receiving end. We propose a sub-component AAM modeling the appearance of sub-facial components individually, and show face reconstruction results under different types of video degradation using a weighted and non-weighted version of the sub-component AAM.

  10. A Mobile Communications Space Link Between the Space Shuttle Orbiter and the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Fink, Patrick; Arndt, G. D.; Bondyopadhyay, P.; Shaw, Roland

    1994-01-01

    A communications experiment is described as a link between the Space Shuttle Orbiter (SSO) and the Advanced Communications Technology Satellite (ACTS). Breadboarding for this experiment has led to two items with potential for commercial application: a 1-Watt Ka-band amplifier and a Ka-band, circularly polarized microstrip antenna. Results of the hybrid Ka-band amplifier show gain at 30 dB and a saturated output power of 28.5 dBm. A second version comprised of MMIC amplifiers is discussed. Test results of the microstrip antenna subarray show a gain of approximately 13 dB and excellent circular polarization.

  11. Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord

    PubMed Central

    Andre, Jalal B.; Bammer, Roland

    2012-01-01

    Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

  12. Today's Realities for Tomorrow's Image Makers: How Practitioners Can Prepare Students for Communication Careers.

    ERIC Educational Resources Information Center

    Ceperley, Andrew T.

    1999-01-01

    Communication internships and jobs abound in a world that responds to images. Students who can design, articulate, and create may be the image-makers of tomorrow. Article discusses how career centers can assist students. Describes National Communication Career Services Network founded at the University of Texas-Austin's Communication Career…

  13. Advanced Communications Technology Satellite (ACTS): Four-Year System Performance

    NASA Technical Reports Server (NTRS)

    Acosta, Roberto J.; Bauer, Robert; Krawczyk, Richard J.; Reinhart, Richard C.; Zernic, Michael J.; Gargione, Frank

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) was conceived at the National Aeronautics and Space Administration (NASA) in the late 1970's as a follow-on program to ATS and CTS to continue NASA's long history of satellite communications projects. The ACTS project set the stage for the C-band satellites that started the industry, and later the ACTS project established the use of Ku-band for video distribution and direct-to-home broadcasting. ACTS, launched in September 1993 from the space shuttle, created a revolution in satellite system architecture by using digital communications techniques employing key technologies such as a fast hopping multibeam antenna, an on-board baseband processor, a wide-band microwave switch matrix, adaptive rain fade compensation, and the use of 900 MHz transponders operating at Ka-band frequencies. This paper describes the lessons learned in each of the key ACTS technology areas, as well as in the propagation investigations.

  14. Improving HCAHPS Scores with Advances in Digital Radiography.

    PubMed

    Matthews, Marianne; Cretella, Gregg; Nicholas, William

    2016-01-01

    The imaging department can be instrumental in contributing to a healthcare facility's ability to succeed in this new era of competition. Advances in DR technology can improve patient perceptions in the imaging department by improving efficiencies and outcomes which, in turn, can ultimately bolster overall HCAHPS scores. Specific areas for improved scores by utilization of DR include nurse communication, doctor communication, pain management, and communication about medication. Value based purchasing brought with it a mandate for hospitals to track key metrics, which requires an investment in time, tools, and human resources. However, this mandate also presents hospitals and imaging departments, with an opportunity to leverage those very metrics to better market their facilities.

  15. A Java viewer to publish Digital Imaging and Communications in Medicine (DICOM) radiologic images on the World Wide Web.

    PubMed

    Setti, E; Musumeci, R

    2001-06-01

    The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.

  16. Advanced communications payload for mobile applications

    NASA Technical Reports Server (NTRS)

    Ames, S. A.; Kwan, R. K.

    1990-01-01

    An advanced satellite payload is proposed for single hop linking of mobile terminals of all classes as well as Very Small Aperture Terminal's (VSAT's). It relies on an intensive use of communications on-board processing and beam hopping for efficient link design to maximize capacity and a large satellite antenna aperture and high satellite transmitter power to minimize the cost of the ground terminals. Intersatellite links are used to improve the link quality and for high capacity relay. Power budgets are presented for links between the satellite and mobile, VSAT, and hub terminals. Defeating the effects of shadowing and fading requires the use of differentially coherent demodulation, concatenated forward error correction coding, and interleaving, all on a single link basis.

  17. Advanced endoscopic imaging to improve adenoma detection

    PubMed Central

    Neumann, Helmut; Nägel, Andreas; Buda, Andrea

    2015-01-01

    Advanced endoscopic imaging is revolutionizing our way on how to diagnose and treat colorectal lesions. Within recent years a variety of modern endoscopic imaging techniques was introduced to improve adenoma detection rates. Those include high-definition imaging, dye-less chromoendoscopy techniques and novel, highly flexible endoscopes, some of them equipped with balloons or multiple lenses in order to improve adenoma detection rates. In this review we will focus on the newest developments in the field of colonoscopic imaging to improve adenoma detection rates. Described techniques include high-definition imaging, optical chromoendoscopy techniques, virtual chromoendoscopy techniques, the Third Eye Retroscope and other retroviewing devices, the G-EYE endoscope and the Full Spectrum Endoscopy-system. PMID:25789092

  18. Epidermal electronics with advanced capabilities in near-field communication.

    PubMed

    Kim, Jeonghyun; Banks, Anthony; Cheng, Huanyu; Xie, Zhaoqian; Xu, Sheng; Jang, Kyung-In; Lee, Jung Woo; Liu, Zhuangjian; Gutruf, Philipp; Huang, Xian; Wei, Pinghung; Liu, Fei; Li, Kan; Dalal, Mitul; Ghaffari, Roozbeh; Feng, Xue; Huang, Yonggang; Gupta, Sanjay; Paik, Ungyu; Rogers, John A

    2015-02-25

    Epidermal electronics with advanced capabilities in near field communications (NFC) are presented. The systems include stretchable coils and thinned NFC chips on thin, low modulus stretchable adhesives, to allow seamless, conformal contact with the skin and simultaneous capabilities for wireless interfaces to any standard, NFC-enabled smartphone, even under extreme deformation and after/during normal daily activities. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Monolithic microwave integrated circuit technology for advanced space communication

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Romanofsky, Robert R.

    1988-01-01

    Future Space Communications subsystems will utilize GaAs Monolithic Microwave Integrated Circuits (MMIC's) to reduce volume, weight, and cost and to enhance system reliability. Recent advances in GaAs MMIC technology have led to high-performance devices which show promise for insertion into these next generation systems. The status and development of a number of these devices operating from Ku through Ka band will be discussed along with anticipated potential applications.

  20. Advanced imaging techniques for the study of plant growth and development.

    PubMed

    Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

    2014-05-01

    A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Enterprise-class Digital Imaging and Communications in Medicine (DICOM) image infrastructure.

    PubMed

    York, G; Wortmann, J; Atanasiu, R

    2001-06-01

    Most current picture archiving and communication systems (PACS) are designed for a single department or a single modality. Few PACS installations have been deployed that support the needs of the hospital or the entire Integrated Delivery Network (IDN). The authors propose a new image management architecture that can support a large, distributed enterprise.

  2. MO-DE-202-03: Image-Guided Surgery and Interventions in the Advanced Multimodality Image-Guided Operating (AMIGO) Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapur, T.

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  3. Application of the advanced communications technology satellite for teleradiology and telemedicine

    NASA Astrophysics Data System (ADS)

    Stewart, Brent K.; Carter, Stephen J.; Rowberg, Alan H.

    1995-05-01

    The authors have an in-kind grant from NASA to investigate the application of the Advanced Communications Technology Satellite (ACTS) to teleradiology and telemedicine using the JPL developed ACTS Mobile Terminal (AMT) uplink. This experiment involves the transmission of medical imagery (CT, MR, CR, US and digitized radiographs including mammograms), between the ACTS/AMT and the University of Washington. This is accomplished by locating the AMT experiment van in various locations throughout Washington state, Idaho, Montana, Oregon and Hawaii. The medical images are transmitted from the ACTS to the downlink at the NASA Lewis Research Center (LeRC) in Cleveland, Ohio, consisting of AMT equipment and the high burst rate-link evaluation terminal (HBR-LET). These images are then routed from LeRC to the University of Washington School of Medicine (UWSoM) through the Internet and public switched Integrated Serviced Digital Network (ISDN). Once images arrive in the UW Radiology Department, they are reviewed using both video monitor softcopy and laser-printed hardcopy. Compressed video teleconferencing and transmission of real-time ultrasound video between the AMT van and the UWSoM are also tested. Image quality comparisons are made using both subjective diagnostic criteria and quantitative engineering analysis. Evaluation is performed during various weather conditions (including rain to assess rain fade compensation algorithms). Compression techniques also are tested to evaluate their effects on image quality, allowing further evaluation of portable teleradiology/telemedicine at lower data rates and providing useful information for additional applications (e.g., smaller remote units, shipboard, emergency disaster, etc.). The medical images received at the UWSoM over the ACTS are directly evaluated against the original digital images. The project demonstrates that a portable satellite-land connection can provide subspecialty consultation and education for rural and remote

  4. Communications for unattended sensor networks

    NASA Astrophysics Data System (ADS)

    Nemeroff, Jay L.; Angelini, Paul; Orpilla, Mont; Garcia, Luis; DiPierro, Stefano

    2004-07-01

    The future model of the US Army's Future Combat Systems (FCS) and the Future Force reflects a combat force that utilizes lighter armor protection than the current standard. Survival on the future battlefield will be increased by the use of advanced situational awareness provided by unattended tactical and urban sensors that detect, identify, and track enemy targets and threats. Successful implementation of these critical sensor fields requires the development of advanced sensors, sensor and data-fusion processors, and a specialized communications network. To ensure warfighter and asset survivability, the communications must be capable of near real-time dissemination of the sensor data using robust, secure, stealthy, and jam resistant links so that the proper and decisive action can be taken. Communications will be provided to a wide-array of mission-specific sensors that are capable of processing data from acoustic, magnetic, seismic, and/or Chemical, Biological, Radiological, and Nuclear (CBRN) sensors. Other, more powerful, sensor node configurations will be capable of fusing sensor data and intelligently collect and process data images from infrared or visual imaging cameras. The radio waveform and networking protocols being developed under the Soldier Level Integrated Communications Environment (SLICE) Soldier Radio Waveform (SRW) and the Networked Sensors for the Future Force Advanced Technology Demonstration are part of an effort to develop a common waveform family which will operate across multiple tactical domains including dismounted soldiers, ground sensor, munitions, missiles and robotics. These waveform technologies will ultimately be transitioned to the JTRS library, specifically the Cluster 5 requirement.

  5. Identifying Successful Advancement Approaches in Four Catholic Universities: The Effectiveness of the Four Advancement Models of Communication

    ERIC Educational Resources Information Center

    Bonglia, Jean-Pierre K.

    2010-01-01

    The current longitudinal study of the most successful Catholic universities in the United States identifies the prevalence of four advancement models of communication that have contributed to make those institutions successful in their philanthropic efforts. While research by Grunig and Kelly maintained that the two-way symmetrical model of…

  6. EIR: enterprise imaging repository, an alternative imaging archiving and communication system.

    PubMed

    Bian, Jiang; Topaloglu, Umit; Lane, Cheryl

    2009-01-01

    The enormous number of studies performed at the Nuclear Medicine Department of University of Arkansas for Medical Sciences (UAMS) generates a huge amount PET/CT images daily. A DICOM workstation had been used as "mini-PACS" to route all studies, which is historically proven to be slow due to various reasons. However, replacing the workstation with a commercial PACS server is not only cost inefficient; and more often, the PACS vendors are reluctant to take responsibility for the final integration of these components. Therefore, in this paper, we propose an alternative imaging archiving and communication system called Enterprise Imaging Repository (EIR). EIR consists of two distinguished components: an image processing daemon and a user friendly web interface. EIR not only reduces the overall waiting time of transferring a study from the modalities to radiologists' workstations, but also provides a more preferable presentation.

  7. Advanced optical fiber communication systems

    NASA Astrophysics Data System (ADS)

    Kazovsky, Leonid G.

    1994-03-01

    Our research is focused on three major aspects of advanced optical fiber communication systems: dynamic wavelength division multiplexing (WDM) networks, fiber nonlinearities, and high dynamic range coherent analog optical links. In the area of WDM networks, we have designed and implemented two high-speed interface boards and measured their throughput and latency. Furthermore, we designed and constructed an experimental PSK/ASK transceiver that simultaneously transmits packet-switched ASK data and circuit-switched PSK data on the same optical carrier. In the area of fiber nonlinearities, we investigated the theoretical impact of modulation frequency on cross-phase modulation (XPM) in dispersive fibers. In the area of high dynamic range coherent analog optical links, we developed theoretical expressions for the RF power transfer ratio (or RF power gain) and the noise figure (NF) of angle-modulated links. We then compared the RF power gains and noise figures of these links to that of an intensity modulated direct detection (DD) link.

  8. Proceedings of the Eleventh Advanced Communications Technology Satellite Propagation Studies Workshop (APSW 11)

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor); Ho, Christian (Editor)

    1998-01-01

    The Advanced Communications Technology Satellite Propagation Studies Workshop (APSW) is convened each year to present the results of the Advanced Communications Technology Satellite (ACTS) Ka-band propagation campaign. Representatives from the space community including industry, academia, and government who are interested in radiowave propagation at Ka-band are invited to APSW for discussions and exchange of information. The ACTS Propagation campaign will complete five years of Ka-Band data collection at seven sites in North America by December 31, 1998. Through this effort, NASA is making a major contribution to the effective utilization of this band by providing timely propagation data and models for predicting the performance of Ka-band links between space and ground.

  9. [Assessment of Couples' Communication in Patients with Advanced Cancer: Validation of a German Version of the Couple Communication Scale (CCS)].

    PubMed

    Conrad, Martina; Engelmann, Dorit; Friedrich, Michael; Scheffold, Katharina; Philipp, Rebecca; Schulz-Kindermann, Frank; Härter, Martin; Mehnert, Anja; Koranyi, Susan

    2018-04-13

    There are only a few valid instruments measuring couples' communication in patients with cancer for German speaking countries. The Couple Communication Scale (CCS) represents an established instrument to assess couples' communication. However, there is no evidence regarding the psychometric properties of the German version of the CCS until now and the assumed one factor structure of the CCS was not verified for patients with advanced cancer yet. The CCS was validated as a part of the study "Managing cancer and living meaningfully" (CALM) on N=136 patients with advanced cancer (≥18 years, UICC-state III/IV). The psychometric properties of the scale were calculated (factor reliability, item reliability, average variance extracted [DEV]) and a confirmatory factor analysis was conducted (Maximum Likelihood Estimation). The concurrent validity was tested against symptoms of anxiety (GAD-7), depression (BDI-II) and attachment insecurity (ECR-M16). In the confirmatory factor analysis, the one factor structure showed a low, but acceptable model fit and explained on average 49% of every item's variance (DEV). The CCS has an excellent internal consistency (Cronbachs α=0,91) and was negatively associated with attachment insecurity (ECR-M16: anxiety: r=- 0,55, p<0,01; avoidance: r=- 0,42, p<0,01) as well as with anxiety (GAD-7: r=- 0,20, p<0,05) and depression (BDI-II: r=- 0,27, p<0,01). The CCS is a reliable and valid instrument measuring couples' communication in patients with advanced cancer. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Patient-Clinician Communication About End-of-Life Care in Patients With Advanced Chronic Organ Failure During One Year.

    PubMed

    Houben, Carmen H M; Spruit, Martijn A; Schols, Jos M G A; Wouters, Emiel F M; Janssen, Daisy J A

    2015-06-01

    Patient-clinician communication is an important prerequisite to delivering high-quality end-of-life care. However, discussions about end-of-life care are uncommon in patients with advanced chronic organ failure. The aim was to examine the quality of end-of-life care communication during one year follow-up of patients with advanced chronic organ failure. In addition, we aimed to explore whether and to what extent quality of communication about end-of-life care changes toward the end of life and whether end-of-life care communication is related to patient-perceived quality of medical care. Clinically stable outpatients (n = 265) with advanced chronic obstructive pulmonary disease, chronic heart failure, or chronic renal failure were visited at home at baseline and four, eight, and 12 months after baseline to assess quality of end-of-life care communication (Quality of Communication questionnaire). Two years after baseline, survival status was assessed, and if patients died during the study period, a bereavement interview was done with the closest relative. One year follow-up was completed by 77.7% of the patients. Quality of end-of-life care communication was rated low at baseline and did not change over one year. Quality of end-of-life care communication was comparable for patients who completed two year follow-up and patients who died during the study. The correlation between quality of end-of-life care communication and satisfaction with medical treatment was weak. End-of-life care communication is poor in patients with chronic organ failure and does not change toward the end of life. Future studies should develop an intervention aiming at initiating high-quality end-of-life care communication between patients with advanced chronic organ failure and their clinicians. Copyright © 2015 American Academy of Hospice and Palliative Medicine. Published by Elsevier Inc. All rights reserved.

  11. Health Care Professionals' Death Attitudes, Experiences, and Advance Directive Communication Behavior

    ERIC Educational Resources Information Center

    Black, Kathy

    2007-01-01

    The study surveyed 135 health care professionals (74 nurses, 32 physicians, and 29 social workers) to examine their personal death attitudes and experiences in relation to their reported advance directive communication practice behavior. Negative correlations were found between collaborating with other health care professionals regarding the…

  12. Advanced imaging in acute stroke management-Part I: Computed tomographic.

    PubMed

    Saini, Monica; Butcher, Ken

    2009-01-01

    Neuroimaging is fundamental to stroke diagnosis and management. Non-contrast computed tomography (NCCT) has been the primary imaging modality utilized for this purpose for almost four decades. Although NCCT does permit identification of intracranial hemorrhage and parenchymal ischemic changes, insights into blood vessel patency and cerebral perfusion are limited. Advances in reperfusion strategies have made identification of potentially salvageable brain tissue a more practical concern. Advances in CT technology now permit identification of acute and chronic arterial lesions, as well as cerebral blood flow deficits. This review outlines principles of advanced CT image acquisition and its utility in acute stroke management.

  13. An advanced domestic satellite communications system

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An updated traffic projection for U.S. domestic satellite communications service covering a period of 15 years; mid-1980 to mid-1995 was prepared. This model takes into account expected technology advances and reductions in transmission costs, legislative and regulatory changes permitting increased competition, and rising energy costs which will encourage more extensive substitution of telecommunications for travel. The historical development and current status of satellite systems are discussed as well as the characteristics of follow-on systems. Orbital arc utilization, spacecraft configuration for single shuttle launch, Earth station configuration, and system costs are examined. Areas which require technology development include multiple beam frequency reuse antennas, on-board switching, intersatellite links, and ka-band operation. Packing and deployment schemes for enclosing the satellite within the shuttle orbiter bay must also be devised.

  14. Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urs, Necdet Onur; Mozooni, Babak; Kustov, Mikhail

    2016-05-15

    Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated.more » Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown.« less

  15. Advanced astigmatism-corrected Czerny-Turner imaging spectrometer in spectral broadband

    NASA Astrophysics Data System (ADS)

    Cong, Hai-fang

    2014-12-01

    This paper reports an advanced Czerny-Turner optical structure which is used for the application in imaging spectrometers. To obtain the excellent imaging quality, a cylindrical lens with a wedge angle is used between the focusing mirror and the imaging plane to remove astigmatism in broadband. It makes the advanced optical system presents high resolution over the full bandwidth and decreases the cost. An example of the imaging spectrometer in the waveband of 260nm~520nm has been designed to prove our theory. It yields the excellent modulation transfer functions (MTF) of all fields of view which are more than 0.75 over the broadband under the required Nyquist frequency (20lp/mm).

  16. Advanced mobile satellite communications system using Ka and MM-wave bands in Japan's R and D satellite project

    NASA Technical Reports Server (NTRS)

    Isobe, Shunkichi; Ohmori, Shingo; Hamamoto, Naokazu; Yamamoto, Minoru

    1991-01-01

    Communications Research Laboratory (CRL) studied an advanced mobile satellite communications system using Ka and millimeter-wave bands in the R&D Satellite project. The project started in 1990 and the satellite will be launched in 1997. On-board multi-beam interconnecting is one of basic functions to realize one-hop connection among Very Small Aperture Terminals (VSATs), mobile, and hand-held terminals in future mobile satellite communications system. An Intermediate Frequency (IF) filter bank and regenerative transponder are suitable for this function. The transponder configuration of an advanced mobile communications mission of the R&D Satellite for experiment is shown. High power transmitters of Ka and millimeter-wave bands, a 3x3 IF filter band and Single Channel Per Carrier/Time Division Multiplexing (SCPC/TDM) regenerative MODEMS, which will be boarded on the R&D Satellite, are being developed for the purpose of studying the feasibility of advanced mobile communications system.

  17. Use of Advanced Solar Cells for Commercial Communication Satellites

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  18. Use of advanced solar cells for commerical communication satellites

    NASA Astrophysics Data System (ADS)

    Landis, Geoffrey A.; Bailey, Sheila G.

    1995-01-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar- and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because of the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from Low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  19. Use of advanced solar cells for commercial communication satellites

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila G.; Landis, Geoffrey A.

    1995-03-01

    The current generation of communications satellites are located primarily in geosynchronous Earth orbit (GEO). Over the next decade, however, a new generation of communications satellites will be built and launched, designed to provide a world-wide interconnection of portable telephones. For this mission, the satellites must be positioned in lower polar and near-polar orbits. To provide complete coverage, large numbers of satellites will be required. Because the required number of satellites decreases as the orbital altitude is increased, fewer satellites would be required if the orbit chosen were raised from low to intermediate orbit. However, in intermediate orbits, satellites encounter significant radiation due to trapped electrons and protons. Radiation tolerant solar cells may be necessary to make such satellites feasible. We analyze the amount of radiation encountered in low and intermediate polar orbits at altitudes of interest to next-generation communication satellites, calculate the expected degradation for silicon, GaAs, and InP solar cells, and show that the lifetimes can be significantly increased by use of advanced solar cells.

  20. Presentations of the Ninth Advanced Communications Technology Satellite Propagation Studies Workshop (APSW IX)

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser (Editor)

    1997-01-01

    The Advanced Communications Technology Satellite Propagation Studies Workshop (APSW) is convened each year to present the results of the ACTS Propagation Campaign. Representatives from the satellite communications (satcom) industry, academia, and government are invited to APSW for discussions and exchange of information. The ACTS Propagation campaign is completing three years of Ka-Band data collection at seven sites in North America. Through this effort, NASA is making a major contribution to growth of satcom services by providing timely propagation data and models for predicting the performance of Ka-Band satellite communications systems.

  1. Data communication requirements for the advanced NAS network

    NASA Technical Reports Server (NTRS)

    Levin, Eugene; Eaton, C. K.; Young, Bruce

    1986-01-01

    The goal of the Numerical Aerodynamic Simulation (NAS) Program is to provide a powerful computational environment for advanced research and development in aeronautics and related disciplines. The present NAS system consists of a Cray 2 supercomputer connected by a data network to a large mass storage system, to sophisticated local graphics workstations, and by remote communications to researchers throughout the United States. The program plan is to continue acquiring the most powerful supercomputers as they become available. In the 1987/1988 time period it is anticipated that a computer with 4 times the processing speed of a Cray 2 will be obtained and by 1990 an additional supercomputer with 16 times the speed of the Cray 2. The implications of this 20-fold increase in processing power on the data communications requirements are described. The analysis was based on models of the projected workload and system architecture. The results are presented together with the estimates of their sensitivity to assumptions inherent in the models.

  2. Use of images in a surgery consultation. Will it improve the communication?

    PubMed

    Vilallonga, R; Fort, J M; Iordache, N; Armengol, M; Clèries, X; Solà, M

    2012-01-01

    The interviews and interactions with patients are part of everyday health care provider. However, there is sometimes a difficulty in communication, linked to several factors. For this reason, the use of images to illustrate the medical conditions in the outpatient clinic can improve patient communication. We report our initial experience with the use of images to manage the quality of care to surigcal patients. He used a computer to show pictures of the following conditions: surgery for an inguinal hernia, cholelithiasis, cholecystitis and the choledocholithiasis and finally thyroid pathology. Were randomized two groups of patients. Each of the affected patients in any stage of the disease, they explained their problems. In one of the groups also showed the patient was using the current image and continued to give appropriate explanations related to pathology. Thereafter, patients in both groups filled in an anonymous questionnaire in which they responded to what degree it was considered useful this methodology, and degree of satisfaction received outpatient treatment with or without the deployment of images by computer. We have analyzed the average time expected and made a visit. 187 patients will be visited in the consultations over a period of 8 months. In 83 patients have been using images to give the explanations in external consultations. Of these, 24 patients suffering from thyroid, 24 hernias or incisional hernias and 35 patients with biliary tract pathology. Patients in the group were shown images of conditions have responded mostly be very satisfied with the use of images while the explanations are given on the patient's illness. Also, over 80% of patients report being satisfied with this system. The visiting time was not lengthened. Despite the existence of different variables that can influence patient satisfaction, use of images to illustrate surgical diseases to patients improves communication and flow of the explanations of the physician. The

  3. Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging

    PubMed Central

    Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

    2014-01-01

    Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

  4. Effect of a Patient-Centered Communication Intervention on Oncologist-Patient Communication, Quality of Life, and Health Care Utilization in Advanced Cancer: The VOICE Randomized Clinical Trial.

    PubMed

    Epstein, Ronald M; Duberstein, Paul R; Fenton, Joshua J; Fiscella, Kevin; Hoerger, Michael; Tancredi, Daniel J; Xing, Guibo; Gramling, Robert; Mohile, Supriya; Franks, Peter; Kaesberg, Paul; Plumb, Sandy; Cipri, Camille S; Street, Richard L; Shields, Cleveland G; Back, Anthony L; Butow, Phyllis; Walczak, Adam; Tattersall, Martin; Venuti, Alison; Sullivan, Peter; Robinson, Mark; Hoh, Beth; Lewis, Linda; Kravitz, Richard L

    2017-01-01

    Observational studies demonstrate links between patient-centered communication, quality of life (QOL), and aggressive treatments in advanced cancer, yet few randomized clinical trials (RCTs) of communication interventions have been reported. To determine whether a combined intervention involving oncologists, patients with advanced cancer, and caregivers would promote patient-centered communication, and to estimate intervention effects on shared understanding, patient-physician relationships, QOL, and aggressive treatments in the last 30 days of life. Cluster RCT at community- and hospital-based cancer clinics in Western New York and Northern California; 38 medical oncologists (mean age 44.6 years; 11 (29%) female) and 265 community-dwelling adult patients with advanced nonhematologic cancer participated (mean age, 64.4 years, 146 [55.0%] female, 235 [89%] white; enrolled August 2012 to June 2014; followed for 3 years); 194 patients had participating caregivers. Oncologists received individualized communication training using standardized patient instructors while patients received question prompt lists and individualized communication coaching to identify issues to address during an upcoming oncologist visit. Both interventions focused on engaging patients in consultations, responding to emotions, informing patients about prognosis and treatment choices, and balanced framing of information. Control participants received no training. The prespecified primary outcome was a composite measure of patient-centered communication coded from audio recordings of the first oncologist visit following patient coaching (intervention group) or enrollment (control). Secondary outcomes included the patient-physician relationship, shared understanding of prognosis, QOL, and aggressive treatments and hospice use in the last 30 days of life. Data from 38 oncologists (19 randomized to intervention) and 265 patients (130 intervention) were analyzed. In fully adjusted models, the

  5. Attitude Control Subsystem for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Hewston, Alan W.; Mitchell, Kent A.; Sawicki, Jerzy T.

    1996-01-01

    This paper provides an overview of the on-orbit operation of the Attitude Control Subsystem (ACS) for the Advanced Communications Technology Satellite (ACTS). The three ACTS control axes are defined, including the means for sensing attitude and determining the pointing errors. The desired pointing requirements for various modes of control as well as the disturbance torques that oppose the control are identified. Finally, the hardware actuators and control loops utilized to reduce the attitude error are described.

  6. Update of the ACR-NEMA digital imaging and communications in medicine standard

    NASA Astrophysics Data System (ADS)

    Best, David E.; Horii, Steven C.; Bennett, William C.; Parisot, Charles R.

    1992-07-01

    The American College of Radiology and the National Electrical Manufacturers Association published the ACR-NEMA Digital Imaging and Communications Standard in 1985. Implementations are just now becoming available. Working groups of the committee have been very active. An expanded version of the Standard was published in 1988 and in a third version, to be known as Digital Imaging and Communications in Medicine (DICOM), is being prepared for publication in 1992. This paper briefly reviews the history of the Standard, describes the participation of the committee in international radiological imaging standards activities, and outlines the extensions planned for the DICOM Standard.

  7. Emergency physician perceptions of medically unnecessary advanced diagnostic imaging.

    PubMed

    Kanzaria, Hemal K; Hoffman, Jerome R; Probst, Marc A; Caloyeras, John P; Berry, Sandra H; Brook, Robert H

    2015-04-01

    The objective was to determine emergency physician (EP) perceptions regarding 1) the extent to which they order medically unnecessary advanced diagnostic imaging, 2) factors that contribute to this behavior, and 3) proposed solutions for curbing this practice. As part of a larger study to engage physicians in the delivery of high-value health care, two multispecialty focus groups were conducted to explore the topic of decision-making around resource utilization, after which qualitative analysis was used to generate survey questions. The survey was extensively pilot-tested and refined for emergency medicine (EM) to focus on advanced diagnostic imaging (i.e., computed tomography [CT] or magnetic resonance imaging [MRI]). The survey was then administered to a national, purposive sample of EPs and EM trainees. Simple descriptive statistics to summarize physician responses are presented. In this study, 478 EPs were approached, of whom 435 (91%) completed the survey; 68% of respondents were board-certified, and roughly half worked in academic emergency departments (EDs). Over 85% of respondents believe too many diagnostic tests are ordered in their own EDs, and 97% said at least some (mean = 22%) of the advanced imaging studies they personally order are medically unnecessary. The main perceived contributors were fear of missing a low-probability diagnosis and fear of litigation. Solutions most commonly felt to be "extremely" or "very" helpful for reducing unnecessary imaging included malpractice reform (79%), increased patient involvement through education (70%) and shared decision-making (56%), feedback to physicians on test-ordering metrics (55%), and improved education of physicians on diagnostic testing (50%). Overordering of advanced imaging may be a systemic problem, as many EPs believe a substantial proportion of such studies, including some they personally order, are medically unnecessary. Respondents cited multiple complex factors with several potential high

  8. Advances in high-resolution imaging--techniques for three-dimensional imaging of cellular structures.

    PubMed

    Lidke, Diane S; Lidke, Keith A

    2012-06-01

    A fundamental goal in biology is to determine how cellular organization is coupled to function. To achieve this goal, a better understanding of organelle composition and structure is needed. Although visualization of cellular organelles using fluorescence or electron microscopy (EM) has become a common tool for the cell biologist, recent advances are providing a clearer picture of the cell than ever before. In particular, advanced light-microscopy techniques are achieving resolutions below the diffraction limit and EM tomography provides high-resolution three-dimensional (3D) images of cellular structures. The ability to perform both fluorescence and electron microscopy on the same sample (correlative light and electron microscopy, CLEM) makes it possible to identify where a fluorescently labeled protein is located with respect to organelle structures visualized by EM. Here, we review the current state of the art in 3D biological imaging techniques with a focus on recent advances in electron microscopy and fluorescence super-resolution techniques.

  9. Optimizing Patient-centered Communication and Multidisciplinary Care Coordination in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Sabbatini, Amber K; Merck, Lisa H; Froemming, Adam T; Vaughan, William; Brown, Michael D; Hess, Erik P; Applegate, Kimberly E; Comfere, Nneka I

    2015-12-01

    Patient-centered emergency diagnostic imaging relies on efficient communication and multispecialty care coordination to ensure optimal imaging utilization. The construct of the emergency diagnostic imaging care coordination cycle with three main phases (pretest, test, and posttest) provides a useful framework to evaluate care coordination in patient-centered emergency diagnostic imaging. This article summarizes findings reached during the patient-centered outcomes session of the 2015 Academic Emergency Medicine consensus conference "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The primary objective was to develop a research agenda focused on 1) defining component parts of the emergency diagnostic imaging care coordination process, 2) identifying gaps in communication that affect emergency diagnostic imaging, and 3) defining optimal methods of communication and multidisciplinary care coordination that ensure patient-centered emergency diagnostic imaging. Prioritized research questions provided the framework to define a research agenda for multidisciplinary care coordination in emergency diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.

  10. Technology-aided leisure and communication: Opportunities for persons with advanced Parkinson's disease.

    PubMed

    Lancioni, Giulio; Singh, Nirbhay; O'Reilly, Mark; Sigafoos, Jeff; D'Amico, Fiora; Sasanelli, Giovanni; Denitto, Floriana; Lang, Russell

    2016-12-01

    This study investigated whether simple technology-aided programs could be used to promote leisure and communication engagement in three persons with advanced Parkinson's disease. The programs included music and video options, which were combined with (a) text messaging and telephone calls for the first participant, (b) verbal statements/requests, text messaging, and reading for the second participant, and (c) verbal statements/requests and prayers for the third participant. The participants could activate those options via hand movement or vocal emission and specific microswitches. All three participants were successful in activating the options available. The mean cumulative frequencies of option activations were about five per 15-min session for the first two participants and about four per 10-min session for the third participant. The results were considered encouraging and relevant given the limited amount of evidence available on helping persons with advanced Parkinson's disease with leisure and communication.

  11. Quantum image processing: A review of advances in its security technologies

    NASA Astrophysics Data System (ADS)

    Yan, Fei; Iliyasu, Abdullah M.; Le, Phuc Q.

    In this review, we present an overview of the advances made in quantum image processing (QIP) comprising of the image representations, the operations realizable on them, and the likely protocols and algorithms for their applications. In particular, we focus on recent progresses on QIP-based security technologies including quantum watermarking, quantum image encryption, and quantum image steganography. This review is aimed at providing readers with a succinct, yet adequate compendium of the progresses made in the QIP sub-area. Hopefully, this effort will stimulate further interest aimed at the pursuit of more advanced algorithms and experimental validations for available technologies and extensions to other domains.

  12. Advanced digital image archival system using MPEG technologies

    NASA Astrophysics Data System (ADS)

    Chang, Wo

    2009-08-01

    Digital information and records are vital to the human race regardless of the nationalities and eras in which they were produced. Digital image contents are produced at a rapid pace from cultural heritages via digitalization, scientific and experimental data via high speed imaging sensors, national defense satellite images from governments, medical and healthcare imaging records from hospitals, personal collection of photos from digital cameras. With these mass amounts of precious and irreplaceable data and knowledge, what standards technologies can be applied to preserve and yet provide an interoperable framework for accessing the data across varieties of systems and devices? This paper presents an advanced digital image archival system by applying the international standard of MPEG technologies to preserve digital image content.

  13. Performance evaluation of cognitive radio in advanced metering infrastructure communication

    NASA Astrophysics Data System (ADS)

    Hiew, Yik-Kuan; Mohd Aripin, Norazizah; Din, Norashidah Md

    2016-03-01

    Smart grid is an intelligent electricity grid system. A reliable two-way communication system is required to transmit both critical and non-critical smart grid data. However, it is difficult to locate a huge chunk of dedicated spectrum for smart grid communications. Hence, cognitive radio based communication is applied. Cognitive radio allows smart grid users to access licensed spectrums opportunistically with the constraint of not causing harmful interference to licensed users. In this paper, a cognitive radio based smart grid communication framework is proposed. Smart grid framework consists of Home Area Network (HAN) and Advanced Metering Infrastructure (AMI), while AMI is made up of Neighborhood Area Network (NAN) and Wide Area Network (WAN). In this paper, the authors only report the findings for AMI communication. AMI is smart grid domain that comprises smart meters, data aggregator unit, and billing center. Meter data are collected by smart meters and transmitted to data aggregator unit by using cognitive 802.11 technique; data aggregator unit then relays the data to billing center using cognitive WiMAX and TV white space. The performance of cognitive radio in AMI communication is investigated using Network Simulator 2. Simulation results show that cognitive radio improves the latency and throughput performances of AMI. Besides, cognitive radio also improves spectrum utilization efficiency of WiMAX band from 5.92% to 9.24% and duty cycle of TV band from 6.6% to 10.77%.

  14. Advanced Image Search: A Strategy for Creating Presentation Boards

    ERIC Educational Resources Information Center

    Frey, Diane K.; Hines, Jean D.; Swinker, Mary E.

    2008-01-01

    Finding relevant digital images to create presentation boards requires advanced search skills. This article describes a course assignment involving a technique designed to develop students' literacy skills with respect to locating images of desired quality and content from Internet databases. The assignment was applied in a collegiate apparel…

  15. A basic technology-aided programme for leisure and communication of persons with advanced amyotrophic lateral sclerosis: performance and social rating.

    PubMed

    Lancioni, Giulio E; Singh, Nirbhay N; O'Reilly, Mark F; Sigafoos, Jeff; D'Amico, Fiora; Ferlisi, Gabriele; Zullo, Valeria; Denitto, Floriana; Lauta, Enrico; Abbinante, Crescenza; Pesce, Caterina V

    2017-02-01

    This study assessed (a) the impact of a technology-aided programme on the leisure and communication engagement of persons with advanced amyotrophic lateral sclerosis (ALS) and (b) the opinion of rehabilitation and care personnel regarding the programme. The programme's impact was assessed with four participants who were allowed to activate leisure and communication options through basic responses (e.g. knee, finger or lip movements) and microswitches. Forty-two care and health professionals rated the programme after watching video clips of persons with ALS (three of the four involved in this study and three involved in previous studies) during and outside of the programme. The programme was effective with all participants. Their mean percentages of session time with independently initiated leisure and communication engagements were zero during baseline and increased to between nearly 70 and 80 during the intervention. The care and health professionals rated the technology-aided programme as beneficial for the participants' positive engagement and social image, fairly practical for daily contexts and interesting from a personal standpoint. The programme might be viewed as a viable resource for persons with advanced ALS. Implications for Rehabilitation A programme characterised by versatility, simplicity and relatively low cost could be considered practically relevant for persons with ALS and their contexts. A programme that is effective in fostering participants' independent leisure and communication engagement and is positively rated by care and rehabilitation personnel is more likely to be accepted and used with consistency. Any programme directed at persons affected by ALS needs to be adapted to the persons' progressive deterioration, starting from the response and microswitch used for accessing the programme's options.

  16. Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping

    DTIC Science & Technology

    2012-06-01

    of thiolated poly(acrylic acid) with fluorescein attached. (b) Bright field image of large bubbles stabilized by polymer and phospholipid...Page 1 of 6 AD_________________ Award Number: W81XWH-11-1-0215 TITLE:   Multifunctional Polymer Microbubbles for Advanced... Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b. GRANT NUMBER W81XWH-11-1-0215   5c. PROGRAM ELEMENT NUMBER 6

  17. Advanced magnetic resonance imaging in glioblastoma: a review.

    PubMed

    Shukla, Gaurav; Alexander, Gregory S; Bakas, Spyridon; Nikam, Rahul; Talekar, Kiran; Palmer, Joshua D; Shi, Wenyin

    2017-08-01

    Glioblastoma, the most common and most rapidly progressing primary malignant tumor of the central nervous system, continues to portend a dismal prognosis, despite improvements in diagnostic and therapeutic strategies over the last 20 years. The standard of care radiographic characterization of glioblastoma is magnetic resonance imaging (MRI), which is a widely utilized examination in the diagnosis and post-treatment management of patients with glioblastoma. Basic MRI modalities available from any clinical scanner, including native T1-weighted (T1w) and contrast-enhanced (T1CE), T2-weighted (T2w), and T2-fluid-attenuated inversion recovery (T2-FLAIR) sequences, provide critical clinical information about various processes in the tumor environment. In the last decade, advanced MRI modalities are increasingly utilized to further characterize glioblastomas more comprehensively. These include multi-parametric MRI sequences, such as dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE), higher order diffusion techniques such as diffusion tensor imaging (DTI), and MR spectroscopy (MRS). Significant efforts are ongoing to implement these advanced imaging modalities into improved clinical workflows and personalized therapy approaches. Functional MRI (fMRI) and tractography are increasingly being used to identify eloquent cortices and important tracts to minimize postsurgical neuro-deficits. A contemporary review of the application of standard and advanced MRI in clinical neuro-oncologic practice is presented here.

  18. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.

  19. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  20. Beyond Linear Syntax: An Image-Oriented Communication Aid

    ERIC Educational Resources Information Center

    Patel, Rupal; Pilato, Sam; Roy, Deb

    2004-01-01

    This article presents a novel AAC communication aid based on semantic rather than syntactic schema, leading to more natural message construction. Users interact with a two-dimensional spatially organized image schema, which depicts the semantic structure and contents of the message. An overview of the interface design is presented followed by…

  1. Earth Observing-1 Advanced Land Imager: Radiometric Response Calibration

    NASA Technical Reports Server (NTRS)

    Mendenhall, J. A.; Lencioni, D. E.; Evans, J. B.

    2000-01-01

    The Advanced Land Imager (ALI) is one of three instruments to be flown on the first Earth Observing mission (EO-1) under NASA's New Millennium Program (NMP). ALI contains a number of innovative features, including a wide field of view optical design, compact multispectral focal plane arrays, non-cryogenic HgCdTe detectors for the short wave infrared bands, and silicon carbide optics. This document outlines the techniques adopted during ground calibration of the radiometric response of the Advanced Land Imager. Results from system level measurements of the instrument response, signal-to-noise ratio, saturation radiance, and dynamic range for all detectors of every spectral band are also presented.

  2. Display nonlinearity in digital image processing for visual communications

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1992-11-01

    The luminance emitted from a cathode ray tube (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image property represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. The effect of this nonlinear transformation on a variety of image-processing applications used in visual communications is described.

  3. Display nonlinearity in digital image processing for visual communications

    NASA Astrophysics Data System (ADS)

    Peli, Eli

    1991-11-01

    The luminance emitted from a cathode ray tube, (CRT) display is a nonlinear function (the gamma function) of the input video signal voltage. In most analog video systems, compensation for this nonlinear transfer function is implemented in the camera amplifiers. When CRT displays are used to present psychophysical stimuli in vision research, the specific display nonlinearity usually is measured and accounted for to ensure that the luminance of each pixel in the synthetic image properly represents the intended value. However, when using digital image processing, the linear analog-to-digital converters store a digital image that is nonlinearly related to the displayed or recorded image. This paper describes the effect of this nonlinear transformation on a variety of image-processing applications used in visual communications.

  4. Advanced communications technology satellite high burst rate link evaluation terminal communication protocol software user's guide, version 1.0

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.

    1993-01-01

    The Communication Protocol Software was developed at the NASA Lewis Research Center to support the Advanced Communications Technology Satellite High Burst Rate Link Evaluation Terminal (ACTS HBR-LET). The HBR-LET is an experimenters terminal to communicate with the ACTS for various experiments by government, university, and industry agencies. The Communication Protocol Software is one segment of the Control and Performance Monitor (C&PM) Software system of the HBR-LET. The Communication Protocol Software allows users to control and configure the Intermediate Frequency Switch Matrix (IFSM) on board the ACTS to yield a desired path through the spacecraft payload. Besides IFSM control, the C&PM Software System is also responsible for instrument control during HBR-LET experiments, uplink power control of the HBR-LET to demonstrate power augmentation during signal fade events, and data display. The Communication Protocol Software User's Guide, Version 1.0 (NASA CR-189162) outlines the commands and procedures to install and operate the Communication Protocol Software. Configuration files used to control the IFSM, operator commands, and error recovery procedures are discussed. The Communication Protocol Software Maintenance Manual, Version 1.0 (NASA CR-189163, to be published) is a programmer's guide to the Communication Protocol Software. This manual details the current implementation of the software from a technical perspective. Included is an overview of the Communication Protocol Software, computer algorithms, format representations, and computer hardware configuration. The Communication Protocol Software Test Plan (NASA CR-189164, to be published) provides a step-by-step procedure to verify the operation of the software. Included in the Test Plan is command transmission, telemetry reception, error detection, and error recovery procedures.

  5. Practical low-cost visual communication using binary images for deaf sign language.

    PubMed

    Manoranjan, M D; Robinson, J A

    2000-03-01

    Deaf sign language transmitted by video requires a temporal resolution of 8 to 10 frames/s for effective communication. Conventional videoconferencing applications, when operated over low bandwidth telephone lines, provide very low temporal resolution of pictures, of the order of less than a frame per second, resulting in jerky movement of objects. This paper presents a practical solution for sign language communication, offering adequate temporal resolution of images using moving binary sketches or cartoons, implemented on standard personal computer hardware with low-cost cameras and communicating over telephone lines. To extract cartoon points an efficient feature extraction algorithm adaptive to the global statistics of the image is proposed. To improve the subjective quality of the binary images, irreversible preprocessing techniques, such as isolated point removal and predictive filtering, are used. A simple, efficient and fast recursive temporal prefiltering scheme, using histograms of successive frames, reduces the additive and multiplicative noise from low-cost cameras. An efficient three-dimensional (3-D) compression scheme codes the binary sketches. Subjective tests performed on the system confirm that it can be used for sign language communication over telephone lines.

  6. Advanced microlens and color filter process technology for the high-efficiency CMOS and CCD image sensors

    NASA Astrophysics Data System (ADS)

    Fan, Yang-Tung; Peng, Chiou-Shian; Chu, Cheng-Yu

    2000-12-01

    New markets are emerging for digital electronic image device, especially in visual communications, PC camera, mobile/cell phone, security system, toys, vehicle image system and computer peripherals for document capture. To enable one-chip image system that image sensor is with a full digital interface, can make image capture devices in our daily lives. Adding a color filter to such image sensor in a pattern of mosaics pixel or wide stripes can make image more real and colorful. We can say 'color filter makes the life more colorful color filter is? Color filter means can filter image light source except the color with specific wavelength and transmittance that is same as color filter itself. Color filter process is coating and patterning green, red and blue (or cyan, magenta and yellow) mosaic resists onto matched pixel in image sensing array pixels. According to the signal caught from each pixel, we can figure out the environment image picture. Widely use of digital electronic camera and multimedia applications today makes the feature of color filter becoming bright. Although it has challenge but it is very worthy to develop the process of color filter. We provide the best service on shorter cycle time, excellent color quality, high and stable yield. The key issues of advanced color process have to be solved and implemented are planarization and micro-lens technology. Lost of key points of color filter process technology have to consider will also be described in this paper.

  7. Advanced Communications Technology Satellite Now Operating in an Inclined Orbit

    NASA Technical Reports Server (NTRS)

    Bauer, Robert A.

    1999-01-01

    The Advanced Communications Technology Satellite (ACTS) system has been modified to support operation in an inclined orbit that is virtually transparent to users, and plans are to continue this final phase of its operation through September 2000. The next 2 years of ACTS will provide a new opportunity for using the technologies that this system brought online over 5 years ago and that are still being used to resolve the technical issues that face NASA and the satellite industry in the area of seamless networking and interoperability with terrestrial systems. New goals for ACTS have been defined that align the program with recent changes in NASA and industry. ACTS will be used as a testbed to: Show how NASA and other Government agencies can use commercial systems for 1. future support of their operations Test, characterize, and resolve technical issues in using advanced communications 2. protocols such as asynchronous transfer mode (ATM) and transmission control protocol/Internet protocol (TCP/IP) over long latency links as found when interoperating satellites with terrestrial systems Evaluate narrow-spot-beam Ka-band satellite operation in an inclined orbit 3. Verify Ka-band satellite technologies since no other Ka-band system is yet 4. available in the United States

  8. Infrared cloud imaging in support of Earth-space optical communication.

    PubMed

    Nugent, Paul W; Shaw, Joseph A; Piazzolla, Sabino

    2009-05-11

    The increasing need for high data return from near-Earth and deep-space missions is driving a demand for the establishment of Earth-space optical communication links. These links will require a nearly obstruction-free path to the communication platform, so there is a need to measure spatial and temporal statistics of clouds at potential ground-station sites. A technique is described that uses a ground-based thermal infrared imager to provide continuous day-night cloud detection and classification according to the cloud optical depth and potential communication channel attenuation. The benefit of retrieving cloud optical depth and corresponding attenuation is illustrated through measurements that identify cloudy times when optical communication may still be possible through thin clouds.

  9. Osteoporosis Imaging: State of the Art and Advanced Imaging

    PubMed Central

    2012-01-01

    Osteoporosis is becoming an increasingly important public health issue, and effective treatments to prevent fragility fractures are available. Osteoporosis imaging is of critical importance in identifying individuals at risk for fractures who would require pharmacotherapy to reduce fracture risk and also in monitoring response to treatment. Dual x-ray absorptiometry is currently the state-of-the-art technique to measure bone mineral density and to diagnose osteoporosis according to the World Health Organization guidelines. Motivated by a 2000 National Institutes of Health consensus conference, substantial research efforts have focused on assessing bone quality by using advanced imaging techniques. Among these techniques aimed at better characterizing fracture risk and treatment effects, high-resolution peripheral quantitative computed tomography (CT) currently plays a central role, and a large number of recent studies have used this technique to study trabecular and cortical bone architecture. Other techniques to analyze bone quality include multidetector CT, magnetic resonance imaging, and quantitative ultrasonography. In addition to quantitative imaging techniques measuring bone density and quality, imaging needs to be used to diagnose prevalent osteoporotic fractures, such as spine fractures on chest radiographs and sagittal multidetector CT reconstructions. Radiologists need to be sensitized to the fact that the presence of fragility fractures will alter patient care, and these fractures need to be described in the report. This review article covers state-of-the-art imaging techniques to measure bone mineral density, describes novel techniques to study bone quality, and focuses on how standard imaging techniques should be used to diagnose prevalent osteoporotic fractures. © RSNA, 2012 PMID:22438439

  10. Establishing advanced practice for medical imaging in New Zealand

    PubMed Central

    Yielder, Jill; Young, Adrienne; Park, Shelley; Coleman, Karen

    2014-01-01

    IntroductionThis article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). MethodsThe study sought to support the development of profiles and criteria that could be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. ResultsFindings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. ConclusionsThe authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ. PMID:26229631

  11. Establishing advanced practice for medical imaging in New Zealand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yielder, Jill, E-mail: j.yielder@auckland.ac.nz; Young, Adrienne; Park, Shelley

    Introduction: This article presents the outcome and recommendations following the second stage of a role development project conducted on behalf of the New Zealand Institute of Medical Radiation Technology (NZIMRT). The study sought to support the development of profiles and criteria that may be used to formulate Advanced Scopes of Practice for the profession. It commenced in 2011, following on from initial research that occurred between 2005 and 2008 investigating role development and a possible career structure for medical radiation technologists (MRTs) in New Zealand (NZ). Methods: The study sought to support the development of profiles and criteria that couldmore » be used to develop Advanced Scopes of Practice for the profession through inviting 12 specialist medical imaging groups in NZ to participate in a survey. Results: Findings showed strong agreement on potential profiles and on generic criteria within them; however, there was less agreement on specific skills criteria within specialist areas. Conclusions: The authors recommend that one Advanced Scope of Practice be developed for Medical Imaging, with the establishment of generic and specialist criteria. Systems for approval of the overall criteria package for any individual Advanced Practitioner (AP) profile, audit and continuing professional development requirements need to be established by the Medical Radiation Technologists Board (MRTB) to meet the local needs of clinical departments. It is further recommended that the NZIMRT and MRTB promote and support the need for an AP pathway for medical imaging in NZ.« less

  12. ACTS TDMA network control. [Advanced Communication Technology Satellite

    NASA Technical Reports Server (NTRS)

    Inukai, T.; Campanella, S. J.

    1984-01-01

    This paper presents basic network control concepts for the Advanced Communications Technology Satellite (ACTS) System. Two experimental systems, called the low-burst-rate and high-burst-rate systems, along with ACTS ground system features, are described. The network control issues addressed include frame structures, acquisition and synchronization procedures, coordinated station burst-time plan and satellite-time plan changes, on-board clock control based on ground drift measurements, rain fade control by means of adaptive forward-error-correction (FEC) coding and transmit power augmentation, and reassignment of channel capacities on demand. The NASA ground system, which includes a primary station, diversity station, and master control station, is also described.

  13. Advancements in MR Imaging of the Prostate: From Diagnosis to Interventions

    PubMed Central

    Bonekamp, David; Jacobs, Michael A.; El-Khouli, Riham; Stoianovici, Dan

    2011-01-01

    Prostate cancer is the most frequently diagnosed cancer in males and the second leading cause of cancer-related death in men. Assessment of prostate cancer can be divided into detection, localization, and staging; accurate assessment is a prerequisite for optimal clinical management and therapy selection. Magnetic resonance (MR) imaging has been shown to be of particular help in localization and staging of prostate cancer. Traditional prostate MR imaging has been based on morphologic imaging with standard T1-weighted and T2-weighted sequences, which has limited accuracy. Recent advances include additional functional and physiologic MR imaging techniques (diffusion-weighted imaging, MR spectroscopy, and perfusion imaging), which allow extension of the obtainable information beyond anatomic assessment. Multiparametric MR imaging provides the highest accuracy in diagnosis and staging of prostate cancer. In addition, improvements in MR imaging hardware and software (3-T vs 1.5-T imaging) continue to improve spatial and temporal resolution and the signal-to-noise ratio of MR imaging examinations. Another recent advancement in the field is MR imaging guidance for targeted prostate biopsy, which is an alternative to the current standard of transrectal ultrasonography–guided systematic biopsy. © RSNA, 2011 PMID:21571651

  14. Radio Synthesis Imaging - A High Performance Computing and Communications Project

    NASA Astrophysics Data System (ADS)

    Crutcher, Richard M.

    The National Science Foundation has funded a five-year High Performance Computing and Communications project at the National Center for Supercomputing Applications (NCSA) for the direct implementation of several of the computing recommendations of the Astronomy and Astrophysics Survey Committee (the "Bahcall report"). This paper is a summary of the project goals and a progress report. The project will implement a prototype of the next generation of astronomical telescope systems - remotely located telescopes connected by high-speed networks to very high performance, scalable architecture computers and on-line data archives, which are accessed by astronomers over Gbit/sec networks. Specifically, a data link has been installed between the BIMA millimeter-wave synthesis array at Hat Creek, California and NCSA at Urbana, Illinois for real-time transmission of data to NCSA. Data are automatically archived, and may be browsed and retrieved by astronomers using the NCSA Mosaic software. In addition, an on-line digital library of processed images will be established. BIMA data will be processed on a very high performance distributed computing system, with I/O, user interface, and most of the software system running on the NCSA Convex C3880 supercomputer or Silicon Graphics Onyx workstations connected by HiPPI to the high performance, massively parallel Thinking Machines Corporation CM-5. The very computationally intensive algorithms for calibration and imaging of radio synthesis array observations will be optimized for the CM-5 and new algorithms which utilize the massively parallel architecture will be developed. Code running simultaneously on the distributed computers will communicate using the Data Transport Mechanism developed by NCSA. The project will also use the BLANCA Gbit/s testbed network between Urbana and Madison, Wisconsin to connect an Onyx workstation in the University of Wisconsin Astronomy Department to the NCSA CM-5, for development of long

  15. Advanced Vehicle Monitoring And Communication Systems For Bus Transit Benefits And Economic Feasibility

    DOT National Transportation Integrated Search

    1993-03-01

    THIS REPORT ANALYZES THE FEASIBILITY OF ADVANCED VEHICLE MONITORING AND COMMUNICATION (AVM/C) SYSTEMS FOR BUS TRANSIT IN THE UNITED STATES. SUCH SYSTEMS ARE WIDELY USED IN EUROPE AND CANADA TO PROVIDE MORE RELIABLE AND EFFICIENT BUS SERVICES, BUT HAV...

  16. Advanced Vehicle Monitoring And Communication Systems For Bus Transit, Benefits And Economic Feasibility

    DOT National Transportation Integrated Search

    1991-09-01

    THIS REPORT ANALYZES THE FEASIBILITY OF ADVANCED VEHICLE MONITORING AND COMMUNICATION (AVM/C) SYSTEMS FOR BUS TRANSIT IN THE UNITED STATES. SUCH SYSTEMS ARE WIDELY USED IN EUROPE AND CANADA TO PROVIDE MORE RELIABLE AND EFFICIENT BUS SERVICES, BUT HAV...

  17. [Rational imaging in locally advanced prostate cancer].

    PubMed

    Beissert, M; Lorenz, R; Gerharz, E W

    2008-11-01

    Prostate cancer is one of the principal medical problems facing the male population in developed countries with an increasing need for sophisticated imaging techniques and risk-adapted treatment options. This article presents an overview of the current imaging procedures in the diagnosis of locally advanced prostate cancer. Apart from conventional gray-scale transrectal ultrasound (TRUS) as the most frequently used primary imaging modality we describe computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). CT and MRI not only allow assessment of prostate anatomy but also a specific evaluation of the pelvic region. Color-coded and contrast-enhanced ultrasound, real-time elastography, dynamic contrast enhancement in MR imaging, diffusion imaging, and MR spectroscopy may lead to a clinically relevant improvement in the diagnosis of prostate cancer. While bone scintigraphy with (99m)Tc-bisphosphonates is still the method of choice in the evaluation of bone metastasis, whole-body MRI and PET using (18)F-NaF, (18)F-FDG, (11)C-choline, (11)C-acetate, and (18)F-choline as tracers achieve higher sensitivities.

  18. AXIOM: Advanced X-Ray Imaging Of the Magnetosheath

    NASA Technical Reports Server (NTRS)

    Sembay, S.; Branduardi-Rayrnont, G.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C; Kataria, D.; hide

    2012-01-01

    AXIOM (Advanced X-ray Imaging Of the Magnetosphere) is a concept mission which aims to explain how the Earth's magnetosphere responds to the changing impact of the solar wind using a unique method never attempted before; performing wide-field soft X-ray imaging and spectroscopy of the magnetosheath. magnetopause and bow shock at high spatial and temporal resolution. Global imaging of these regions is possible because of the solar wind charge exchange (SWCX) process which produces elevated soft X-ray emission from the interaction of high charge-state solar wind ions with primarily neutral hydrogen in the Earth's exosphere and near-interplanetary space.

  19. AXIS - Advanced X-ray Imaging Sarellite

    NASA Astrophysics Data System (ADS)

    Loewenstein, Michael; AXIS Team

    2018-01-01

    We present an overview of the Advanced X-ray Imaging Satellite (AXIS), a probe mission concept under study to the 2020 Decadal survey. AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band over a 15' field of view. These capabilities are designed to attain a wide range of science goals such as (i) measuring the event horizon scale structure in AGN accretion disks and the spin of supermassive black holes through monitoring of gravitationally microlensed quasars; (ii) understanding AGN and starburst feedback in galaxies and galaxy clusters through direct imaging of winds and interaction of jets and via spatially resolved imaging of galaxies at high-z; (iii) probing the fueling of AGN by resolving the SMBH sphere of influence in nearby galaxies; (iv) investigating hierarchical structure formation and the SMBH merger rate through measurement of the occurrence rate of dual AGN and occupation fraction of SMBHs; (v) advancing SNR physics and galaxy ecology through large detailed samples of SNR in nearby galaxies; (vi) measuring the Cosmic Web through its connection to cluster outskirts. With a nominal 2028 launch, AXIS benefits from natural synergies with LSST, ELTs, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS utilizes breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, and developments in the fabrication of large format, small pixel, high readout detectors.

  20. How Advances in Imaging Will Affect Precision Radiation Oncology.

    PubMed

    Jaffray, David A; Das, Shiva; Jacobs, Paula M; Jeraj, Robert; Lambin, Philippe

    2018-06-01

    Radiation oncology is 1 of the most structured disciplines in medicine. It is of a highly technical nature with reliance on robotic systems to deliver intervention, engagement of diverse expertise, and early adoption of digital approaches to optimize and execute the application of this highly effective cancer treatment. As a localized intervention, the dependence on sensitive, specific, and accurate imaging to define the extent of disease, its heterogeneity, and adjacency to normal tissues directly affects the therapeutic ratio. Image-based in vivo temporal monitoring of the response to treatment enables adaptation and further affects the therapeutic ratio. Thus, more precise intervention will enable fractionation schedules that better interoperate with advances such as immunotherapy. In the data set-rich era that promises precision and personalized medicine, the radiation oncology field will integrate these new data into highly protocoled pathways of care that begin with multimodality prediction and enable patient-specific adaptation of therapy based on quantitative measures of the individual's dose-volume temporal trajectory and midtherapy predictions of response. In addition to advancements in computed tomography imaging, emerging technologies, such as ultra-high-field magnetic resonance and molecular imaging will bring new information to the design of treatments. Next-generation image guided radiation therapy systems will inject high specificity and sensitivity data and stimulate adaptive replanning. In addition, a myriad of pre- and peritherapeutic markers derived from advances in molecular pathology (eg, tumor genomics), automated and comprehensive imaging analytics (eg, radiomics, tumor microenvironment), and many other emerging biomarkers (eg, circulating tumor cell assays) will need to be integrated to maximize the benefit of radiation therapy for an individual patient. We present a perspective on the promise and challenges of fully exploiting imaging

  1. Image management and communication in patient care: perspectives on implementation and impact.

    PubMed

    Greberman, M; Mun, S K

    1989-02-01

    Image management and communication (IMAC) systems are automated and integrated systems that capture digital medical images and related patient information and transmit them electronically, display them for interpretation, and store them for future retrieval. The IMAC system concept includes images and relevant information from all clinical sources. The First International Conference on Image Management and Communication in Patient Care (IMAC 89) provides a forum for expert presentations, poster sessions, and discussion and debate among all attendees interested in the implementation and impact of IMAC systems. Plenary sessions provide an international perspective and explore the role of image-based information in patient care, approaches to improved IMAC systems, current technical barriers, quality of care issues, evaluation approaches, and scenarios for the future. Invited participants are from North America, Europe, Japan, Australia, and the WHO. Conference organizers are working with numerous professional organizations and representatives of meetings which focus on IMAC-related technology to complement, and not duplicate, the contribution of other groups.

  2. European Union RACE program contributions to digital audiovisual communications and services

    NASA Astrophysics Data System (ADS)

    de Albuquerque, Augusto; van Noorden, Leon; Badique', Eric

    1995-02-01

    The European Union RACE (R&D in advanced communications technologies in Europe) and the future ACTS (advanced communications technologies and services) programs have been contributing and continue to contribute to world-wide developments in audio-visual services. The paper focuses on research progress in: (1) Image data compression. Several methods of image analysis leading to the use of encoders based on improved hybrid DCT-DPCM (MPEG or not), object oriented, hybrid region/waveform or knowledge-based coding methods are discussed. (2) Program production in the aspects of 3D imaging, data acquisition, virtual scene construction, pre-processing and sequence generation. (3) Interoperability and multimedia access systems. The diversity of material available and the introduction of interactive or near- interactive audio-visual services led to the development of prestandards for video-on-demand (VoD) and interworking of multimedia services storage systems and customer premises equipment.

  3. Application of advanced on-board processing concepts to future satellite communications systems

    NASA Technical Reports Server (NTRS)

    Katz, J. L.; Hoffman, M.; Kota, S. L.; Ruddy, J. M.; White, B. F.

    1979-01-01

    An initial definition of on-board processing requirements for an advanced satellite communications system to service domestic markets in the 1990's is presented. An exemplar system architecture with both RF on-board switching and demodulation/remodulation baseband processing was used to identify important issues related to system implementation, cost, and technology development.

  4. MO-DE-202-00: Image-Guided Interventions: Advances in Intraoperative Imaging, Guidance, and An Emerging Role for Medical Physics in Surgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guidedmore » neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41

  5. Netscape Communicator 4.5. Volume II: Beyond the Basics. Advanced Searches, Multimedia, and Composing a Web Page.

    ERIC Educational Resources Information Center

    Gallo, Gail; Wichowski, Chester P.

    This second of two guides on Netscape Communicator 4.5 contains six lessons on advanced searches, multimedia, and composing a World Wide Web page. Lesson 1 is a review of the Navigator window, toolbars, and menus. Lesson 2 covers AltaVista's advanced search tips, searching for information excluding certain text, and advanced and nested Boolean…

  6. Advanced biologically plausible algorithms for low-level image processing

    NASA Astrophysics Data System (ADS)

    Gusakova, Valentina I.; Podladchikova, Lubov N.; Shaposhnikov, Dmitry G.; Markin, Sergey N.; Golovan, Alexander V.; Lee, Seong-Whan

    1999-08-01

    At present, in computer vision, the approach based on modeling the biological vision mechanisms is extensively developed. However, up to now, real world image processing has no effective solution in frameworks of both biologically inspired and conventional approaches. Evidently, new algorithms and system architectures based on advanced biological motivation should be developed for solution of computational problems related to this visual task. Basic problems that should be solved for creation of effective artificial visual system to process real world imags are a search for new algorithms of low-level image processing that, in a great extent, determine system performance. In the present paper, the result of psychophysical experiments and several advanced biologically motivated algorithms for low-level processing are presented. These algorithms are based on local space-variant filter, context encoding visual information presented in the center of input window, and automatic detection of perceptually important image fragments. The core of latter algorithm are using local feature conjunctions such as noncolinear oriented segment and composite feature map formation. Developed algorithms were integrated into foveal active vision model, the MARR. It is supposed that proposed algorithms may significantly improve model performance while real world image processing during memorizing, search, and recognition.

  7. Advanced magnetic resonance imaging of neurodegenerative diseases.

    PubMed

    Agosta, Federica; Galantucci, Sebastiano; Filippi, Massimo

    2017-01-01

    Magnetic resonance imaging (MRI) is playing an increasingly important role in the study of neurodegenerative diseases, delineating the structural and functional alterations determined by these conditions. Advanced MRI techniques are of special interest for their potential to characterize the signature of each neurodegenerative condition and aid both the diagnostic process and the monitoring of disease progression. This aspect will become crucial when disease-modifying (personalized) therapies will be established. MRI techniques are very diverse and go from the visual inspection of MRI scans to more complex approaches, such as manual and automatic volume measurements, diffusion tensor MRI, and functional MRI. All these techniques allow us to investigate the different features of neurodegeneration. In this review, we summarize the most recent advances concerning the use of MRI in some of the most important neurodegenerative conditions, putting an emphasis on the advanced techniques.

  8. Effects of the Advanced Innovative Internet-Based Communication Education Program on Promoting Communication Between Nurses and Patients With Dementia.

    PubMed

    Chao, Hui-Chen; Kaas, Merrie; Su, Ying-Hwa; Lin, Mei-Feng; Huang, Mei-Chih; Wang, Jing-Jy

    2016-06-01

    Effective communication between nurses and patients with dementia promotes the quality of patient care by improving the identification of patient needs and by reducing the miscommunication-related frustration of patients and nurses. This study evaluates the effects of an advanced innovative Internet-based communication education (AIICE) program on nurses' communication knowledge, attitudes, frequency of assessing patient communication capacity, and communication performance in the context of care for patients with dementia. In addition, this study attempts to evaluate the indirect effects of this program on outcomes for patients with dementia, including memory and behavior-related problems and depressive symptoms. A quasi-experimental research design with a one-group repeated measure was conducted. Convenience sampling was used to recruit nurses from long-term care facilities in southern Taiwan. Data were analyzed using general estimating equations to compare changes over time across three points: baseline, fourth-week posttest, and 16th-week posttest. One hundred five nurses completed the AIICE program and the posttest surveys. The findings indicate that nurses' communication knowledge, frequency in assessing patients' communication capacity, and communication performance had improved significantly over the baseline by either the 4th- or 16th-week posttest (p < .01). However, communication attitude showed no significant improvement in the posttest survey (p = .40). Furthermore, the findings indicate that the memory and behavior-related problems and the depressive symptoms of patients had decreased significantly by the 16th-week posttest (p = .05). This study showed that the AIICE program improves nurses' communication knowledge, frequency to assess patients' communication capacity, and communication performance and alleviates the memory and behavior-related problems and depressive symptoms of patients. The continuous communication training of nurses using the

  9. Enhancing presentation skills for the advanced practice nurse: strategies for success.

    PubMed

    Vollman, Kathleen M

    2005-01-01

    Professional speaking is a component of the professional practice role of the advanced practice nurse (APN). The skills to communicate effectively to one person or an audience of 100 provide the APN with the essential tools for implementing change, collaborating effectively, presenting information at professional meetings, or communicating the impact of clinical outcomes in the boardroom. Public speaking skills, a professional image, and improved communication can facilitate advancement along any career ladder. The greater your fear, the more self-confidence you will gain by stepping up to a challenge and conquering it. This article describes strategies for organizing and presenting your message in a clear and concise format. Techniques to manage the anxiety produced when attempting to articulate your thoughts is essential for effective communication. Skills for enhancing the delivery of your message through effective body language, professional image, voice modulation, and use of audiovisual aids are addressed. Creative techniques for fielding questions are key in promoting a dynamic closure and provide consistent reinforcement of the key message content.

  10. Lack of communication and control: experiences of distance caregivers of parents with advanced cancer.

    PubMed

    Mazanec, Polly; Daly, Barbara J; Ferrell, Betty Rolling; Prince-Paul, Maryjo

    2011-05-01

    To explore the new and complex phenomenon of distance caregiving in the advanced cancer population. Qualitative. A large comprehensive cancer center in the midwestern region of the United States. 14 distance caregivers of parents with advanced cancer. Patients with advanced lung, gastrointestinal, and gynecologic malignancies consented to have their distance caregiving adult children contacted to participate in the study. Responses to three open-ended questions guided the tape-recorded telephone interviews with the distance caregivers. Following transcription, content analysis with inductive coding was performed. Two major themes, communication and control, and five subthemes, benefits and burdens of distance caregiving, dealing with uncertainty, direct action through information seeking, protecting, and staying connected, emerged from the data. Distance caregivers experience some of the same stressors that local caregivers of patients with cancer experience. In addition, they have unique psychosocial needs related to the burden of geographic distance. Distance caregivers could benefit from nursing interventions targeted at their unique needs. Innovative interventions using Web-based computer technology for improved communication, as well as supportive care interventions, may be helpful.

  11. Methods to prefetch comparison images in image management and communication system

    NASA Astrophysics Data System (ADS)

    Levin, Kenneth; Fielding, Robert

    1990-08-01

    A high-level description of a system to pre-fetch comparison radiographs in an Image Management and Communication System (IMAC) is presented. This rule based system estimates the relevance of previous examinations for comparison to the current examination arid uses this determination to pre-fetch comparison studies. A machine learning module should allow the system to improve its skill in pre-fetching examinations for each individual radiologist. This system could be tailored to fit the desires of individual radiologists.

  12. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2014-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks , through innovative signal processing, coding, and...4. TITLE AND SUBTITLE Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and...coding: 3) OFDM modulated dynamic coded cooperation in underwater acoustic channels; 3 Localization, Networking , and Testbed: 4) On-demand

  13. Advances in targeting strategies for nanoparticles in cancer imaging and therapy.

    PubMed

    Yhee, Ji Young; Lee, Sangmin; Kim, Kwangmeyung

    2014-11-21

    In the last decade, nanoparticles have offered great advances in diagnostic imaging and targeted drug delivery. In particular, nanoparticles have provided remarkable progress in cancer imaging and therapy based on materials science and biochemical engineering technology. Researchers constantly attempted to develop the nanoparticles which can deliver drugs more specifically to cancer cells, and these efforts brought the advances in the targeting strategy of nanoparticles. This minireview will discuss the progress in targeting strategies for nanoparticles focused on the recent innovative work for nanomedicine.

  14. Quantitative imaging biomarkers: the application of advanced image processing and analysis to clinical and preclinical decision making.

    PubMed

    Prescott, Jeffrey William

    2013-02-01

    The importance of medical imaging for clinical decision making has been steadily increasing over the last four decades. Recently, there has also been an emphasis on medical imaging for preclinical decision making, i.e., for use in pharamaceutical and medical device development. There is also a drive towards quantification of imaging findings by using quantitative imaging biomarkers, which can improve sensitivity, specificity, accuracy and reproducibility of imaged characteristics used for diagnostic and therapeutic decisions. An important component of the discovery, characterization, validation and application of quantitative imaging biomarkers is the extraction of information and meaning from images through image processing and subsequent analysis. However, many advanced image processing and analysis methods are not applied directly to questions of clinical interest, i.e., for diagnostic and therapeutic decision making, which is a consideration that should be closely linked to the development of such algorithms. This article is meant to address these concerns. First, quantitative imaging biomarkers are introduced by providing definitions and concepts. Then, potential applications of advanced image processing and analysis to areas of quantitative imaging biomarker research are described; specifically, research into osteoarthritis (OA), Alzheimer's disease (AD) and cancer is presented. Then, challenges in quantitative imaging biomarker research are discussed. Finally, a conceptual framework for integrating clinical and preclinical considerations into the development of quantitative imaging biomarkers and their computer-assisted methods of extraction is presented.

  15. Advanced information processing system: Inter-computer communication services

    NASA Technical Reports Server (NTRS)

    Burkhardt, Laura; Masotto, Tom; Sims, J. Terry; Whittredge, Roy; Alger, Linda S.

    1991-01-01

    The purpose is to document the functional requirements and detailed specifications for the Inter-Computer Communications Services (ICCS) of the Advanced Information Processing System (AIPS). An introductory section is provided to outline the overall architecture and functional requirements of the AIPS and to present an overview of the ICCS. An overview of the AIPS architecture as well as a brief description of the AIPS software is given. The guarantees of the ICCS are provided, and the ICCS is described as a seven-layered International Standards Organization (ISO) Model. The ICCS functional requirements, functional design, and detailed specifications as well as each layer of the ICCS are also described. A summary of results and suggestions for future work are presented.

  16. TU-AB-204-03: Advances in CBCT for Orhtopaedics and Bone Health Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zbijewski, W.

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac

  17. TU-AB-204-01: Advances in C-Arm CBCT for Brain Perfusion Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.

    This symposium highlights advanced cone-beam CT (CBCT) technologies in four areas of emerging application in diagnostic imaging and image-guided interventions. Each area includes research that extends the spatial, temporal, and/or contrast resolution characteristics of CBCT beyond conventional limits through advances in scanner technology, acquisition protocols, and 3D image reconstruction techniques. Dr. G. Chen (University of Wisconsin) will present on the topic: Advances in C-arm CBCT for Brain Perfusion Imaging. Stroke is a leading cause of death and disability, and a fraction of people having an acute ischemic stroke are suitable candidates for endovascular therapy. Critical factors that affect both themore » likelihood of successful revascularization and good clinical outcome are: 1) the time between stroke onset and revascularization; and 2) the ability to distinguish patients who have a small volume of irreversibly injured brain (ischemic core) and a large volume of ischemic but salvageable brain (penumbra) from patients with a large ischemic core and little or no penumbra. Therefore, “time is brain” in the care of the stroke patients. C-arm CBCT systems widely available in angiography suites have the potential to generate non-contrast-enhanced CBCT images to exclude the presence of hemorrhage, time-resolved CBCT angiography to evaluate the site of occlusion and collaterals, and CBCT perfusion parametric images to assess the extent of the ischemic core and penumbra, thereby fulfilling the imaging requirements of a “one-stop-shop” in the angiography suite to reduce the time between onset and revascularization therapy. The challenges and opportunities to advance CBCT technology to fully enable the one-stop-shop C-arm CBCT platform for brain imaging will be discussed. Dr. R. Fahrig (Stanford University) will present on the topic: Advances in C-arm CBCT for Cardiac Interventions. With the goal of providing functional information during cardiac

  18. Medical image computing for computer-supported diagnostics and therapy. Advances and perspectives.

    PubMed

    Handels, H; Ehrhardt, J

    2009-01-01

    Medical image computing has become one of the most challenging fields in medical informatics. In image-based diagnostics of the future software assistance will become more and more important, and image analysis systems integrating advanced image computing methods are needed to extract quantitative image parameters to characterize the state and changes of image structures of interest (e.g. tumors, organs, vessels, bones etc.) in a reproducible and objective way. Furthermore, in the field of software-assisted and navigated surgery medical image computing methods play a key role and have opened up new perspectives for patient treatment. However, further developments are needed to increase the grade of automation, accuracy, reproducibility and robustness. Moreover, the systems developed have to be integrated into the clinical workflow. For the development of advanced image computing systems methods of different scientific fields have to be adapted and used in combination. The principal methodologies in medical image computing are the following: image segmentation, image registration, image analysis for quantification and computer assisted image interpretation, modeling and simulation as well as visualization and virtual reality. Especially, model-based image computing techniques open up new perspectives for prediction of organ changes and risk analysis of patients and will gain importance in diagnostic and therapy of the future. From a methodical point of view the authors identify the following future trends and perspectives in medical image computing: development of optimized application-specific systems and integration into the clinical workflow, enhanced computational models for image analysis and virtual reality training systems, integration of different image computing methods, further integration of multimodal image data and biosignals and advanced methods for 4D medical image computing. The development of image analysis systems for diagnostic support or

  19. Advanced technology development for image gathering, coding, and processing

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.

    1990-01-01

    Three overlapping areas of research activities are presented: (1) Information theory and optimal filtering are extended to visual information acquisition and processing. The goal is to provide a comprehensive methodology for quantitatively assessing the end-to-end performance of image gathering, coding, and processing. (2) Focal-plane processing techniques and technology are developed to combine effectively image gathering with coding. The emphasis is on low-level vision processing akin to the retinal processing in human vision. (3) A breadboard adaptive image-coding system is being assembled. This system will be used to develop and evaluate a number of advanced image-coding technologies and techniques as well as research the concept of adaptive image coding.

  20. The Impact of the Advancing Social-Communication and Play (ASAP) Intervention on Preschoolers with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dykstra, Jessica R.; Boyd, Brian A.; Watson, Linda R.; Crais, Elizabeth R.; Baranek, Grace T.

    2012-01-01

    This study evaluates an intervention targeting social-communication and play skills (Advancing Social-communication And Play; ASAP) implemented by school staff in a public preschool setting. With increases in enrollment of children with autism spectrum disorder (ASD) in school systems, establishing the effectiveness and feasibility of…

  1. The Impact of the Advancing Social-Communication and Play (ASAP) Intervention on Preschoolers with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dykstra, Jessica R.; Boyd, Brian A.; Watson, Linda R.; Crais, Elizabeth R.; Baranek, Grace T.

    2012-01-01

    This study evaluates an intervention targeting social-communication and play skills (Advancing Social-communication and Play; ASAP) implemented by school staff in a public preschool setting. With increases in enrollment of children with autism spectrum disorder (ASD) in school systems, establishing the effectiveness and feasibility of…

  2. Advances in Magnetic Resonance Imaging of the Skull Base

    PubMed Central

    Kirsch, Claudia F.E.

    2014-01-01

    Introduction Over the past 20 years, magnetic resonance imaging (MRI) has advanced due to new techniques involving increased magnetic field strength and developments in coils and pulse sequences. These advances allow increased opportunity to delineate the complex skull base anatomy and may guide the diagnosis and treatment of the myriad of pathologies that can affect the skull base. Objectives The objective of this article is to provide a brief background of the development of MRI and illustrate advances in skull base imaging, including techniques that allow improved conspicuity, characterization, and correlative physiologic assessment of skull base pathologies. Data Synthesis Specific radiographic illustrations of increased skull base conspicuity including the lower cranial nerves, vessels, foramina, cerebrospinal fluid (CSF) leaks, and effacement of endolymph are provided. In addition, MRIs demonstrating characterization of skull base lesions, such as recurrent cholesteatoma versus granulation tissue or abscess versus tumor, are also provided as well as correlative clinical findings in CSF flow studies in a patient pre- and post-suboccipital decompression for a Chiari I malformation. Conclusions This article illustrates MRI radiographic advances over the past 20 years, which have improved clinicians' ability to diagnose, define, and hopefully improve the treatment and outcomes of patients with underlying skull base pathologies. PMID:25992137

  3. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  4. Concepts for image management and communication system for space vehicle health management

    NASA Astrophysics Data System (ADS)

    Alsafadi, Yasser; Martinez, Ralph

    On a space vehicle, the Crew Health Care System will handle minor accidents or illnesses immediately, thereby eliminating the necessity of early mission termination or emergency rescue. For practical reasons, only trained personnel with limited medical experience can be available on space vehicles to render preliminary health care. There is the need to communicate with medical experts at different locations on earth. Interplanetary Image Management and Communication System (IIMACS) will be a bridge between worlds and deliver medical images acquired in space to physicians at different medical centers on earth. This paper discusses the implementation of IIMACS by extending the Global Picture Archiving and Communication System (GPACS) being developed to interconnect medical centers on earth. Furthermore, this paper explores system requirements of IIMACS and different user scenarios. Our conclusion is that IIMACS is feasible using the maturing technology base of GPACS.

  5. Recent advances in high-throughput QCL-based infrared microspectral imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rowlette, Jeremy A.; Fotheringham, Edeline; Nichols, David; Weida, Miles J.; Kane, Justin; Priest, Allen; Arnone, David B.; Bird, Benjamin; Chapman, William B.; Caffey, David B.; Larson, Paul; Day, Timothy

    2017-02-01

    The field of infrared spectral imaging and microscopy is advancing rapidly due in large measure to the recent commercialization of the first high-throughput, high-spatial-definition quantum cascade laser (QCL) microscope. Having speed, resolution and noise performance advantages while also eliminating the need for cryogenic cooling, its introduction has established a clear path to translating the well-established diagnostic capability of infrared spectroscopy into clinical and pre-clinical histology, cytology and hematology workflows. Demand for even higher throughput while maintaining high-spectral fidelity and low-noise performance continues to drive innovation in QCL-based spectral imaging instrumentation. In this talk, we will present for the first time, recent technological advances in tunable QCL photonics which have led to an additional 10X enhancement in spectral image data collection speed while preserving the high spectral fidelity and SNR exhibited by the first generation of QCL microscopes. This new approach continues to leverage the benefits of uncooled microbolometer focal plane array cameras, which we find to be essential for ensuring both reproducibility of data across instruments and achieving the high-reliability needed in clinical applications. We will discuss the physics underlying these technological advancements as well as the new biomedical applications these advancements are enabling, including automated whole-slide infrared chemical imaging on clinically relevant timescales.

  6. A Review of Significant Advances in Neutron Imaging from Conception to the Present

    NASA Astrophysics Data System (ADS)

    Brenizer, J. S.

    This review summarizes the history of neutron imaging with a focus on the significant events and technical advancements in neutron imaging methods, from the first radiograph to more recent imaging methods. A timeline is presented to illustrate the key accomplishments that advanced the neutron imaging technique. Only three years after the discovery of the neutron by English physicist James Chadwick in 1932, neutron imaging began with the work of Hartmut Kallmann and Ernst Kuhn in Berlin, Germany, from 1935-1944. Kallmann and Kuhn were awarded a joint US Patent issued in January 1940. Little progress was made until the mid-1950's when Thewlis utilized a neutron beam from the BEPO reactor at Harwell, marking the beginning of the application of neutron imaging to practical applications. As the film method was improved, imaging moved from a qualitative to a quantitative technique, with applications in industry and in nuclear fuels. Standards were developed to aid in the quantification of the neutron images and the facility's capabilities. The introduction of dynamic neutron imaging (initially called real-time neutron radiography and neutron television) in the late 1970's opened the door to new opportunities and new challenges. As the electronic imaging matured, the introduction of the CCD imaging devices and solid-state light intensifiers helped address some of these challenges. Development of improved imaging devices for the medical community has had a major impact on neutron imaging. Additionally, amorphous silicon sensors provided improvements in temporal resolution, while providing a reasonably large imaging area. The development of new neutron imaging sensors and the development of new neutron imaging techniques in the past decade has advanced the technique's ability to provide insight and understanding of problems that other non-destructive techniques could not provide. This rapid increase in capability and application would not have been possible without the

  7. Rationale for Modernising Imaging in Advanced Prostate Cancer.

    PubMed

    Padhani, Anwar R; Lecouvet, Frederic E; Tunariu, Nina; Koh, Dow-Mu; De Keyzer, Frederik; Collins, David J; Sala, Evis; Fanti, Stefano; Vargas, H Alberto; Petralia, Giuseppe; Schlemmer, Heinz Peter; Tombal, Bertrand; de Bono, Johann

    2017-04-01

    To effectively manage patients with advanced prostate cancer (APC), it is essential to have accurate, reproducible, and validated methods for detecting and quantifying the burden of bone and soft tissue metastases and for assessing their response to therapy. Current standard of care imaging with bone and computed tomography (CT) scans have significant limitations for the assessment of bone metastases in particular. We aimed to undertake a critical comparative review of imaging methods used for diagnosis and disease monitoring of metastatic APC from the perspective of their availability and ability to assess disease presence, extent, and response of bone and soft tissue disease. An expert panel of radiologists, nuclear medicine physicians, and medical physicists with the greatest experience of imaging in advanced prostate cancer prepared a review of the practicalities, performance, merits, and limitations of currently available imaging methods. Meta-analyses showed that positron emission tomography (PET)/CT with different radiotracers and whole-body magnetic resonance imaging (WB-MRI) are more accurate for bone lesion detection than CT and bone scans (BSs). At a patient level, the pooled sensitivities for bone disease by using choline (CH)-PET/CT, WB-MRI, and BS were 91% (95% confidence interval [CI], 83-96%), 97% (95% CI, 91-99%), and 79% (95% CI, 73-83%), respectively. The pooled specificities for bone metastases detection using CH-PET/CT, WB-MRI, and BS were 99% (95% CI, 93-100%), 95% (95% CI, 90-97%), and 82% (95% CI, 78-85%), respectively. The ability of PET/CT and WB-MRI to assess therapeutic benefits is promising but has not been comprehensively evaluated. There is variability in the cost, availability, and quality of PET/CT and WB-MRI. Standardisation of acquisition, interpretation, and reporting of WB-MRI and PET/CT scans is required to assess the performance of these techniques in clinical trials of treatment approaches in APC. PET/CT and whole-body MRI

  8. Barriers and strategies to an iterative model of advance care planning communication.

    PubMed

    Ahluwalia, Sangeeta C; Bekelman, David B; Huynh, Alexis K; Prendergast, Thomas J; Shreve, Scott; Lorenz, Karl A

    2015-12-01

    Early and repeated patient-provider conversations about advance care planning (ACP) are now widely recommended. We sought to characterize barriers and strategies for realizing an iterative model of ACP patient-provider communication. A total of 2 multidisciplinary focus groups and 3 semistructured interviews with 20 providers at a large Veterans Affairs medical center. Thematic analysis was employed to identify salient themes. Barriers included variation among providers in approaches to ACP, lack of useful information about patient values to guide decision making, and ineffective communication between providers across settings. Strategies included eliciting patient values rather than specific treatment choices and an increased role for primary care in the ACP process. Greater attention to connecting providers across the continuum, maximizing the potential of the electronic health record, and linking patient experiences to their values may help to connect ACP communication across the continuum. © The Author(s) 2014.

  9. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members install the Advanced Base Line Imager, the primary optical instrument, on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  10. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    The Advanced Base Line Imager, the primary optical instrument, has been installed on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  11. Knowledge About and Perceptions of Advance Care Planning and Communication of Chinese-American Older Adults.

    PubMed

    Yonashiro-Cho, Jeanine; Cote, Sarah; Enguidanos, Susan

    2016-09-01

    Although advance care planning (ACP) is associated with better care at the end of life, better quality of death, and less psychological distress in survivors, ethnic disparities in ACP completion rates have been documented and may be attributable to lack of knowledge about ACP or differences in cultural values and preferences. Despite rapid increases in the size of the Asian-American population, little is known about ACP preferences of Chinese Americans. The purpose of this study is to explore the knowledge, attitudes, and preferences of older Chinese Americans toward ACP. Focus groups with Chinese older adults (n = 34) were conducted in Mandarin, Cantonese, and English, and transcripts were analyzed using a grounded theory approach. Identified themes included knowledge and experience with ACP and end-of-life care options, health as a factor in timing of ACP and communication, and communication of end-of-life care preferences. Knowledge of and experience with ACP and end-of-life decision-making varied according to focus group, although few participants had an advance directive. Findings suggest that Chinese older adults prefer to use indirect communication strategies, such as commenting on the circumstances of others rather than directly stating their wishes, and informal contexts, such as during a family dinner rather than formal meeting, to convey their care preferences to loved ones and may employ similar tactics when communicating with clinicians. This is particularly important given the recent decision by the Centers for Medicare and Medicaid Services to provide reimbursement to physicians for engaging in advance care planning conversations. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  12. Decoding mobile-phone image sensor rolling shutter effect for visible light communications

    NASA Astrophysics Data System (ADS)

    Liu, Yang

    2016-01-01

    Optical wireless communication (OWC) using visible lights, also known as visible light communication (VLC), has attracted significant attention recently. As the traditional OWC and VLC receivers (Rxs) are based on PIN photo-diode or avalanche photo-diode, deploying the complementary metal-oxide-semiconductor (CMOS) image sensor as the VLC Rx is attractive since nowadays nearly every person has a smart phone with embedded CMOS image sensor. However, deploying the CMOS image sensor as the VLC Rx is challenging. In this work, we propose and demonstrate two simple contrast ratio (CR) enhancement schemes to improve the contrast of the rolling shutter pattern. Then we describe their processing algorithms one by one. The experimental results show that both the proposed CR enhancement schemes can significantly mitigate the high-intensity fluctuations of the rolling shutter pattern and improve the bit-error-rate performance.

  13. MDCT imaging of the stomach: advances and applications

    PubMed Central

    Prakash, Anjali; Pradhan, Gaurav; Vidholia, Aditi; Nagpal, Nishant; Saboo, Sachin S; Kuehn, David M; Khandelwal, Ashish

    2017-01-01

    The stomach may be involved by a myriad of pathologies ranging from benign aetiologies like inflammation to malignant aetiologies like carcinoma or lymphoma. Multidetector CT (MDCT) of the stomach is the first-line imaging for patients with suspected gastric pathologies. Conventionally, CT imaging had the advantage of simultaneous detection of the mural and extramural disease extent, but advances in MDCT have allowed mucosal assessment by virtual endoscopy (VE). Also, better three-dimensional (3D) post-processing techniques have enabled more robust and accurate pre-operative planning in patients undergoing gastrectomy and even predict the response to surgery for patients undergoing laparoscopic sleeve gastrectomy for weight loss. The ability of CT to obtain stomach volume (for bariatric surgery patients) and 3D VE images depends on various patient and protocol factors that are important for a radiologist to understand. We review the appropriate CT imaging protocol in the patients with suspected gastric pathologies and highlight the imaging pearls of various gastric pathologies on CT and VE. PMID:27785936

  14. MDCT imaging of the stomach: advances and applications.

    PubMed

    Nagpal, Prashant; Prakash, Anjali; Pradhan, Gaurav; Vidholia, Aditi; Nagpal, Nishant; Saboo, Sachin S; Kuehn, David M; Khandelwal, Ashish

    2017-01-01

    The stomach may be involved by a myriad of pathologies ranging from benign aetiologies like inflammation to malignant aetiologies like carcinoma or lymphoma. Multidetector CT (MDCT) of the stomach is the first-line imaging for patients with suspected gastric pathologies. Conventionally, CT imaging had the advantage of simultaneous detection of the mural and extramural disease extent, but advances in MDCT have allowed mucosal assessment by virtual endoscopy (VE). Also, better three-dimensional (3D) post-processing techniques have enabled more robust and accurate pre-operative planning in patients undergoing gastrectomy and even predict the response to surgery for patients undergoing laparoscopic sleeve gastrectomy for weight loss. The ability of CT to obtain stomach volume (for bariatric surgery patients) and 3D VE images depends on various patient and protocol factors that are important for a radiologist to understand. We review the appropriate CT imaging protocol in the patients with suspected gastric pathologies and highlight the imaging pearls of various gastric pathologies on CT and VE.

  15. Performance evaluation of secured DICOM image communication with next generation internet protocol IPv6

    NASA Astrophysics Data System (ADS)

    Yu, Fenghai; Zhang, Jianguo; Chen, Xiaomeng; Huang, H. K.

    2005-04-01

    Next Generation Internet (NGI) technology with new communication protocol IPv6 emerges as a potential solution for low-cost and high-speed networks for image data transmission. IPv6 is designed to solve many of the problems of the current version of IP (known as IPv4) with regard to address depletion, security, autoconfiguration, extensibility, and more. We choose CTN (Central Test Node) DICOM software developed by The Mallinckrodt Institute of Radiology to implement IPv6/IPv4 enabled DICOM communication software on different operating systems (Windows/Linux), and used this DICOM software to evaluate the performance of the IPv6/IPv4 enabled DICOM image communication with different security setting and environments. We compared the security communications of IPsec with SSL/TLS on different TCP/IP protocols (IPv6/IPv4), and find that there are some trade-offs to choose security solution between IPsec and SSL/TLS in the security implementation of IPv6/IPv4 communication networks.

  16. WE-H-206-00: Advances in Preclinical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi

  17. New secure communication-layer standard for medical image management (ISCL)

    NASA Astrophysics Data System (ADS)

    Kita, Kouichi; Nohara, Takashi; Hosoba, Minoru; Yachida, Masuyoshi; Yamaguchi, Masahiro; Ohyama, Nagaaki

    1999-07-01

    This paper introduces a summary of the standard draft of ISCL 1.00 which will be published by MEDIS-DC officially. ISCL is abbreviation of Integrated Secure Communication Layer Protocols for Secure Medical Image Management Systems. ISCL is a security layer which manages security function between presentation layer and TCP/IP layer. ISCL mechanism depends on basic function of a smart IC card and symmetric secret key mechanism. A symmetry key for each session is made by internal authentication function of a smart IC card with a random number. ISCL has three functions which assure authentication, confidently and integrity. Entity authentication process is done through 3 path 4 way method using functions of internal authentication and external authentication of a smart iC card. Confidentially algorithm and MAC algorithm for integrity are able to be selected. ISCL protocols are communicating through Message Block which consists of Message Header and Message Data. ISCL protocols are evaluating by applying to regional collaboration system for image diagnosis, and On-line Secure Electronic Storage system for medical images. These projects are supported by Medical Information System Development Center. These project shows ISCL is useful to keep security.

  18. Forum: Communication Activism Pedagogy. Communication Activism Pedagogy and Research: Communication Education Scholarship to Promote Social Justice

    ERIC Educational Resources Information Center

    Frey, Lawrence R.; Palmer, David L.

    2017-01-01

    The recent formation of the National Communication Association's Activism and Social Justice Division puts a spotlight on the extent to which instructional communication and instructional communication research have advanced--or even should advance--the goals of social justice. To examine this issue, two of the leading scholars on this topic,…

  19. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus.

    PubMed

    Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra

    2016-05-31

    In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly

  20. Computational and design methods for advanced imaging

    NASA Astrophysics Data System (ADS)

    Birch, Gabriel C.

    This dissertation merges the optical design and computational aspects of imaging systems to create novel devices that solve engineering problems in optical science and attempts to expand the solution space available to the optical designer. This dissertation is divided into two parts: the first discusses a new active illumination depth sensing modality, while the second part discusses a passive illumination system called plenoptic, or lightfield, imaging. The new depth sensing modality introduced in part one is called depth through controlled aberration. This technique illuminates a target with a known, aberrated projected pattern and takes an image using a traditional, unmodified imaging system. Knowing how the added aberration in the projected pattern changes as a function of depth, we are able to quantitatively determine depth of a series of points from the camera. A major advantage this method permits is the ability for illumination and imaging axes to be coincident. Plenoptic cameras capture both spatial and angular data simultaneously. This dissertation present a new set of parameters that permit the design and comparison of plenoptic devices outside the traditionally published plenoptic 1.0 and plenoptic 2.0 configurations. Additionally, a series of engineering advancements are presented, including full system raytraces of raw plenoptic images, Zernike compression techniques of raw image files, and non-uniform lenslet arrays to compensate for plenoptic system aberrations. Finally, a new snapshot imaging spectrometer is proposed based off the plenoptic configuration.

  1. Challenges in sending large radiology images over military communications channels

    NASA Astrophysics Data System (ADS)

    Cleary, Kevin R.; Levine, Betty A.; Norton, Gary S.; Mundur, Padmavathi V.

    1997-05-01

    In cooperation with the US Army, Georgetown University Medical Center (GUMC) deployed a teleradiology network to sites in Bosnia-Herzegovina, Hungary, and Germany in early 1996. This deployment was part of Operation Primetime III, a military project to provide state-of-the-art medical care to the 20,000 US troops stationed in Bosnia-Herzegovina.In a three-month time frame from January to April 1996, the Imaging Sciences and Information Systems (ISIS) Center at GUMC worked with the Army to design, develop, and deploy a teleradiology network for the digital storage and transmission of radiology images. This paper will discuss some of the problems associated with sending large files over communications networks with significant delays such as those introduced by satellite transmissions.Radiology images of up to 10 megabytes are acquired, stored, and transmitted over the wide area network (WAN). The WAN included leased lines from Germany to Hungary and a satellite link form Germany to Bosnia-Herzegovina. The communications links provided at least a T-1 bandwidth. The satellite link introduces a round-trip delay of approximately 500 milliseconds. This type of high bandwidth, high delay network is called a long fat network. The images are transferred across this network using the Transmission Control Protocol (TCP/IP). By modifying the TCP/IP software to increase the window size, the throughput of the satellite link can be greatly improved.

  2. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tobias, B.; Chang, Y.-T.; Yu, J.-H.; Li, M.; Hu, F.; Chen, M.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Gu, J.; Liu, X.; Zhu, Y.; Domier, C. W.; Shi, L.; Valeo, E.; Kramer, G. J.; Kuwahara, D.; Nagayama, Y.; Mase, A.; Luhmann, N. C., Jr.

    2017-07-01

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfvén eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today’s most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.

  3. Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding

    DOE PAGES

    Wang, Y.; Tobias, B.; Chang, Y. -T.; ...

    2017-03-14

    Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. The microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These also have the potential to greatly advance microwavemore » fusion plasma imaging, enabling compact and low-noise transceiver systems with real-time, fast tracking ability to address critical fusion physics issues, including ELM suppression and disruptions in the ITER baseline scenario, naturally ELM-free states such as QH-mode, and energetic particle confinement (i.e. Alfven eigenmode stability) in high-performance regimes that include steady-state and advanced tokamak scenarios. Furthermore, these systems are fully compatible with today's most challenging non-inductive heating and current drive systems and capable of operating in harsh environments, making them the ideal approach for diagnosing long-pulse and steady-state tokamaks.« less

  4. Advanced and Conventional Magnetic Resonance Imaging in Neuropsychiatric Lupus

    PubMed Central

    Sarbu, Nicolae; Bargalló, Núria; Cervera, Ricard

    2015-01-01

    Neuropsychiatric lupus is a major diagnostic challenge, and a main cause of morbidity and mortality in patients with systemic lupus erythematosus (SLE). Magnetic resonance imaging (MRI) is, by far, the main tool for assessing the brain in this disease. Conventional and advanced MRI techniques are used to help establishing the diagnosis, to rule out alternative diagnoses, and recently, to monitor the evolution of the disease. This review explores the neuroimaging findings in SLE, including the recent advances in new MRI methods. PMID:26236469

  5. Earth Observing-1 Advanced Land Imager: Imaging Performance On-Orbit

    NASA Technical Reports Server (NTRS)

    Hearn, D. R.

    2002-01-01

    This report analyzes the on-orbit imaging performance of the Advanced Land Imager (ALI) on the Earth Observing-1 satellite. The pre-flight calibrations are first summarized. The methods used to reconstruct and geometrically correct the image data from this push-broom sensor are described. The method used here does not refer to the position and attitude telemetry from the spacecraft. Rather, it is assumed that the image of the scene moves across the focal plane with a constant velocity, which can be ascertained from the image data itself. Next, an assortment of the images so reconstructed is presented. Color images sharpened with the 10-m panchromatic band data are shown, and the algorithm for producing them from the 30-m multispectral data is described. The approach taken for assessing spatial resolution is to compare the sharpness of features in the on-orbit image data with profiles predicted on the basis of the pre-flight calibrations. A large assortment of bridge profiles is analyzed, and very good fits to the predicted shapes are obtained. Lunar calibration scans are analyzed to examine the sharpness of the edge-spread function at the limb of the moon. The darkness of the space beyond the limb is better for this purpose than anything that could be simulated on the ground. From these scans, we find clear evidence of scattering in the optical system, as well as some weak ghost images. Scans of planets and stars are also analyzed. Stars are useful point sources of light at all wavelengths, and delineate the point-spread functions of the system. From a quarter-speed scan over the Pleiades, we find that the ALI can detect 6th magnitude stars. The quality of the reconstructed images verifies the capability of the ALI to produce Landsat-type multi spectral data. The signal-to-noise and panchromatic spatial resolution are considerably superior to those of the existing Landsat sensors. The spatial resolution is confirmed to be as good as it was designed to be.

  6. RF Technologies for Advancing Space Communication Infrastructure

    NASA Technical Reports Server (NTRS)

    Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.

    2006-01-01

    This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.

  7. Automated alignment system for optical wireless communication systems using image recognition.

    PubMed

    Brandl, Paul; Weiss, Alexander; Zimmermann, Horst

    2014-07-01

    In this Letter, we describe the realization of a tracked line-of-sight optical wireless communication system for indoor data distribution. We built a laser-based transmitter with adaptive focus and ray steering by a microelectromechanical systems mirror. To execute the alignment procedure, we used a CMOS image sensor at the transmitter side and developed an algorithm for image recognition to localize the receiver's position. The receiver is based on a self-developed optoelectronic integrated chip with low requirements on the receiver optics to make the system economically attractive. With this system, we were able to set up the communication link automatically without any back channel and to perform error-free (bit error rate <10⁻⁹) data transmission over a distance of 3.5 m with a data rate of 3 Gbit/s.

  8. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members prepare the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  9. VICAR - VIDEO IMAGE COMMUNICATION AND RETRIEVAL

    NASA Technical Reports Server (NTRS)

    Wall, R. J.

    1994-01-01

    VICAR (Video Image Communication and Retrieval) is a general purpose image processing software system that has been under continuous development since the late 1960's. Originally intended for data from the NASA Jet Propulsion Laboratory's unmanned planetary spacecraft, VICAR is now used for a variety of other applications including biomedical image processing, cartography, earth resources, and geological exploration. The development of this newest version of VICAR emphasized a standardized, easily-understood user interface, a shield between the user and the host operating system, and a comprehensive array of image processing capabilities. Structurally, VICAR can be divided into roughly two parts; a suite of applications programs and an executive which serves as the interfaces between the applications, the operating system, and the user. There are several hundred applications programs ranging in function from interactive image editing, data compression/decompression, and map projection, to blemish, noise, and artifact removal, mosaic generation, and pattern recognition and location. An information management system designed specifically for handling image related data can merge image data with other types of data files. The user accesses these programs through the VICAR executive, which consists of a supervisor and a run-time library. From the viewpoint of the user and the applications programs, the executive is an environment that is independent of the operating system. VICAR does not replace the host computer's operating system; instead, it overlays the host resources. The core of the executive is the VICAR Supervisor, which is based on NASA Goddard Space Flight Center's Transportable Applications Executive (TAE). Various modifications and extensions have been made to optimize TAE for image processing applications, resulting in a user friendly environment. The rest of the executive consists of the VICAR Run-Time Library, which provides a set of subroutines (image

  10. Prospects for Significant Theoretical Advances in Communication: The Role of the Interesting Question.

    ERIC Educational Resources Information Center

    Gouran, Dennis S.

    This paper discusses ways in which the field of speech communication can be advanced. The first half of the paper characterizes the objectivist and subjectivist views of how knowledge is acquired and the forms of inquiry to which these views have led. The remainder of the paper demonstrates the role that the "interesting question" (one for which…

  11. Making the PACS workstation a browser of image processing software: a feasibility study using inter-process communication techniques.

    PubMed

    Wang, Chunliang; Ritter, Felix; Smedby, Orjan

    2010-07-01

    To enhance the functional expandability of a picture archiving and communication systems (PACS) workstation and to facilitate the integration of third-part image-processing modules, we propose a browser-server style method. In the proposed solution, the PACS workstation shows the front-end user interface defined in an XML file while the image processing software is running in the background as a server. Inter-process communication (IPC) techniques allow an efficient exchange of image data, parameters, and user input between the PACS workstation and stand-alone image-processing software. Using a predefined communication protocol, the PACS workstation developer or image processing software developer does not need detailed information about the other system, but will still be able to achieve seamless integration between the two systems and the IPC procedure is totally transparent to the final user. A browser-server style solution was built between OsiriX (PACS workstation software) and MeVisLab (Image-Processing Software). Ten example image-processing modules were easily added to OsiriX by converting existing MeVisLab image processing networks. Image data transfer using shared memory added <10ms of processing time while the other IPC methods cost 1-5 s in our experiments. The browser-server style communication based on IPC techniques is an appealing method that allows PACS workstation developers and image processing software developers to cooperate while focusing on different interests.

  12. Flight Test Results of the Earth Observing-1 Advanced Land Imager Advanced Land Imager

    NASA Astrophysics Data System (ADS)

    Mendenhall, Jeffrey A.; Lencioni, Donald E.; Hearn, David R.; Digenis, Constantine J.

    2002-09-01

    The Advanced Land Imager (ALI) is the primary instrument on the Earth Observing-1 spacecraft (EO-1) and was developed under NASA's New Millennium Program (NMP). The NMP mission objective is to flight-validate advanced technologies that will enable dramatic improvements in performance, cost, mass, and schedule for future, Landsat-like, Earth Science Enterprise instruments. ALI contains a number of innovative features designed to achieve this objective. These include the basic instrument architecture, which employs a push-broom data collection mode, a wide field-of-view optical design, compact multi-spectral detector arrays, non-cryogenic HgCdTe for the short wave infrared bands, silicon carbide optics, and a multi-level solar calibration technique. The sensor includes detector arrays that operate in ten bands, one panchromatic, six VNIR and three SWIR, spanning the range from 0.433 to 2.35 μm. Launched on November 21, 2000, ALI instrument performance was monitored during its first year on orbit using data collected during solar, lunar, stellar, and earth observations. This paper will provide an overview of EO-1 mission activities during this period. Additionally, the on-orbit spatial and radiometric performance of the instrument will be compared to pre-flight measurements and the temporal stability of ALI will be presented.

  13. Recent Advances in Microwave Imaging for Breast Cancer Detection

    PubMed Central

    Kwon, Sollip

    2016-01-01

    Breast cancer is a disease that occurs most often in female cancer patients. Early detection can significantly reduce the mortality rate. Microwave breast imaging, which is noninvasive and harmless to human, offers a promising alternative method to mammography. This paper presents a review of recent advances in microwave imaging for breast cancer detection. We conclude by introducing new research on a microwave imaging system with time-domain measurement that achieves short measurement time and low system cost. In the time-domain measurement system, scan time would take less than 1 sec, and it does not require very expensive equipment such as VNA. PMID:28096808

  14. Interoperative fundus image and report sharing in compliance with integrating the healthcare enterprise conformance and web access to digital imaging and communication in medicine persistent object protocol.

    PubMed

    Wu, Hui-Qun; Lv, Zheng-Min; Geng, Xing-Yun; Jiang, Kui; Tang, Le-Min; Zhou, Guo-Min; Dong, Jian-Cheng

    2013-01-01

    To address issues in interoperability between different fundus image systems, we proposed a web eye-picture archiving and communication system (PACS) framework in conformance with digital imaging and communication in medicine (DICOM) and health level 7 (HL7) protocol to realize fundus images and reports sharing and communication through internet. Firstly, a telemedicine-based eye care work flow was established based on integrating the healthcare enterprise (IHE) Eye Care technical framework. Then, a browser/server architecture eye-PACS system was established in conformance with the web access to DICOM persistent object (WADO) protocol, which contains three tiers. In any client system installed with web browser, clinicians could log in the eye-PACS to observe fundus images and reports. Multipurpose internet mail extensions (MIME) type of a structured report is saved as pdf/html with reference link to relevant fundus image using the WADO syntax could provide enough information for clinicians. Some functions provided by open-source Oviyam could be used to query, zoom, move, measure, view DICOM fundus images. Such web eye-PACS in compliance to WADO protocol could be used to store and communicate fundus images and reports, therefore is of great significance for teleophthalmology.

  15. Study of repeater technology for advanced multifunctional communications satellites

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Investigations are presented concerning design concepts and implementation approaches for the satellite communication repeater subsystems of advanced multifunctional satellites. In such systems the important concepts are the use of multiple antenna beams, repeater switching (routing), and efficient spectrum utilization through frequency reuse. An information base on these techniques was developed and tradeoff analyses were made of repeater design concepts, with the work design taken in a broad sense to include modulation beam coverage patterns. There were five major areas of study: requirements analysis and processing; study of interbeam interference in multibeam systems; characterization of multiple-beam switching repeaters; estimation of repeater weight and power for a number of alternatives; and tradeoff analyses based on these weight and power data.

  16. Advances in imaging: impact on studying craniofacial bone structure.

    PubMed

    Majumdar, S

    2003-01-01

    Methods for measuring the structure of craniofacial bones are discussed in this paper. In addition to the three-dimensional macro-structure of the craniofacial skeleton, there is considerable interest in imaging the bone at a microscopic resolution in order to depict the micro-architecture of the trabecular bone itself. In addition to the density of the bone, the microarchitecture reflects bone quality. An understanding of bone quality and density changes has implications for a number of craniofacial pathologies, as well as for implant design and understanding the biomechanical function and loading of the jaw. Trabecular bone micro-architecture has been recently imaged using imaging methods such as micro-computed tomography, magnetic resonance imaging, and the images have been used in finite element models to assess bone mechanical properties. In this paper, some of the recent advances in micro-computed tomography and magnetic resonance imaging are reviewed, and their potential for imaging the trabecular bone in mandibular bones is presented. Examples of in vitro and in vivo images are presented.

  17. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members assist as a crane lifts the Advanced Base Line Imager, the primary optical instrument, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  18. GOES-R Advanced Base Line Imager Installation

    NASA Image and Video Library

    2016-08-30

    Team members assist as a crane moves the Advanced Base Line Imager, the primary optical instruments, for installation on the Geostationary Operational Environmental Satellite (GOES-R) inside the Astrotech payload processing facility in Titusville, Florida near NASA’s Kennedy Space Center. GOES-R will be the first satellite in a series of next-generation NOAA GOES Satellites. The spacecraft is to launch aboard a United Launch Alliance Atlas V rocket in November.

  19. Clinical skills assessment of procedural and advanced communication skills: performance expectations of residency program directors.

    PubMed

    Langenau, Erik E; Zhang, Xiuyuan; Roberts, William L; DeChamplain, Andre F; Boulet, John R

    2012-01-01

    High stakes medical licensing programs are planning to augment and adapt current examinations to be relevant for a two-decision point model for licensure: entry into supervised practice and entry into unsupervised practice. Therefore, identifying which skills should be assessed at each decision point is critical for informing examination development, and gathering input from residency program directors is important. Using data from previously developed surveys and expert panels, a web-delivered survey was distributed to 3,443 residency program directors. For each of the 28 procedural and 18 advanced communication skills, program directors were asked which clinical skills should be assessed, by whom, when, and how. Descriptive statistics were collected, and Intraclass Correlations (ICC) were conducted to determine consistency across different specialties. Among 347 respondents, program directors reported that all advanced communication and some procedural tasks are important to assess. The following procedures were considered 'important' or 'extremely important' to assess: sterile technique (93.8%), advanced cardiovascular life support (ACLS) (91.1%), basic life support (BLS) (90.0%), interpretation of electrocardiogram (89.4%) and blood gas (88.7%). Program directors reported that most clinical skills should be assessed at the end of the first year of residency (or later) and not before graduation from medical school. A minority were considered important to assess prior to the start of residency training: demonstration of respectfulness (64%), sterile technique (67.2%), BLS (68.9%), ACLS (65.9%) and phlebotomy (63.5%). Results from this study support that assessing procedural skills such as cardiac resuscitation, sterile technique, and phlebotomy would be amenable to assessment at the end of medical school, but most procedural and advanced communications skills would be amenable to assessment at the end of the first year of residency training or later. Gathering

  20. Advanced Communications Technology Satellite (ACTS) Experiments Program - A market-driven approach to government/industry cooperation

    NASA Astrophysics Data System (ADS)

    Olmstead, Dean A.; Schertler, Ronald R.; Randall, Laura A.

    1992-03-01

    The Advanced Communications Technology Satellite (ACTS), now under development and scheduled for launch in early 1993, is the current focus of NASA's commercial communications satellite program. The full power of the key technologies on ACTS can only be realized if industry assumes an active role in the conduct of experiments and demonstrations. This paper discusses the current market-driven rationale behind the ACTS Experiments Program activities aimed at getting industry involved - a rationale that addresses industry concerns and responds to industry inputs.

  1. Communication with children about a parent's advanced cancer and measures of parental anxiety and depression: a cross-sectional mixed-methods study.

    PubMed

    Hailey, Claire E; Yopp, Justin M; Deal, Allison M; Mayer, Deborah K; Hanson, Laura C; Grunfeld, Gili; Rosenstein, Donald L; Park, Eliza M

    2018-01-01

    Parents with advanced cancer are faced with difficult decision-making about communication about their illness with their children. The objectives of this study were to describe how parents communicated with their children about advanced cancer and to explore associations between communication and parental depression and anxiety. This was a cross-sectional, mixed-methods study of 42 patients with stage IV solid tumor malignancies who had at least one child less than 18 years of age. Participants completed a semi-structured interview and the Hospital Anxiety and Depression Scale (HADS). We used multiple linear regression to evaluate the association between extent of communication and HADS Anxiety and Depression scores. Interview data were analyzed using standard qualitative content and thematic techniques and triangulated with survey data. Higher HADS Anxiety scores, but not HADS Depression scores, were cross-sectionally associated with greater extent of parental communication (p = 0.003), even when controlling for performance status and children's ages. In qualitative analyses, parents who acknowledged the terminal nature of their illness or experienced higher symptom burden were more likely to report that they also communicated more extensively with children. A third of parents (n = 14, 33%) described difficulty with illness-related communication with their children. In this pilot study, parents with advanced cancer who reported more illness-related communication with their children also reported more symptoms of general anxiety. Future interventions should address psychological distress relevant to parenting and further assess how parental communication may be linked to parental mood symptoms.

  2. Advanced digital modulation: Communication techniques and monolithic GaAs technology

    NASA Technical Reports Server (NTRS)

    Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

    1983-01-01

    Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

  3. Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping

    DTIC Science & Technology

    2012-03-01

    undesired PMA attached to microbubble surface. Figure 1: One-pot polymer -lipid microbubbles. (a) Synthesis of thiolated poly(acrylic acid) with...Award Number: W81XWH-11-1-0215 TITLE: Multifunctional Polymer Microbubbles for Advanced Sentinel...February 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Multifunctional Polymer Microbubbles for Advanced Sentinel Lymph Node Imaging and Mapping 5b

  4. Seeing and believing: recent advances in imaging cell-cell interactions.

    PubMed

    Yap, Alpha S; Michael, Magdalene; Parton, Robert G

    2015-01-01

    Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions.

  5. Recent Advances in Techniques for Hyperspectral Image Processing

    NASA Technical Reports Server (NTRS)

    Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; hide

    2009-01-01

    Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

  6. Advances in MR imaging for cervical spondylotic myelopathy.

    PubMed

    Ellingson, Benjamin M; Salamon, Noriko; Holly, Langston T

    2015-04-01

    To outline the pathogenesis of cervical spondylotic myelopathy (CSM), the correlative abnormalities observed on standard magnetic resonance imaging (MRI), the biological implications and current status of diffusion tensor imaging (DTI), and MR spectroscopy (MRS) as clinical tools, and future directions of MR technology in the management of CSM patients. A systematic review of the pathogenesis and current state-of-the-art in MR imaging technology for CSM was performed. CSM is caused by progressive, degenerative, vertebral column abnormalities that result in spinal cord damage related to both primary mechanical and secondary biological injuries. The T2 signal change on conventional MRI is most commonly associated with neurological deficits, but tends not to be a sensitive predictor of recovery of function. DTI and MRS show altered microstructure and biochemistry that reflect patient-specific pathogenesis. Advanced imaging techniques, including DTI and MRS, show higher sensitivity to microstructural and biochemical changes within the cord, and may aid in management of CSM patients.

  7. Selection of bi-level image compression method for reduction of communication energy in wireless visual sensor networks

    NASA Astrophysics Data System (ADS)

    Khursheed, Khursheed; Imran, Muhammad; Ahmad, Naeem; O'Nils, Mattias

    2012-06-01

    Wireless Visual Sensor Network (WVSN) is an emerging field which combines image sensor, on board computation unit, communication component and energy source. Compared to the traditional wireless sensor network, which operates on one dimensional data, such as temperature, pressure values etc., WVSN operates on two dimensional data (images) which requires higher processing power and communication bandwidth. Normally, WVSNs are deployed in areas where installation of wired solutions is not feasible. The energy budget in these networks is limited to the batteries, because of the wireless nature of the application. Due to the limited availability of energy, the processing at Visual Sensor Nodes (VSN) and communication from VSN to server should consume as low energy as possible. Transmission of raw images wirelessly consumes a lot of energy and requires higher communication bandwidth. Data compression methods reduce data efficiently and hence will be effective in reducing communication cost in WVSN. In this paper, we have compared the compression efficiency and complexity of six well known bi-level image compression methods. The focus is to determine the compression algorithms which can efficiently compress bi-level images and their computational complexity is suitable for computational platform used in WVSNs. These results can be used as a road map for selection of compression methods for different sets of constraints in WVSN.

  8. A highly reliable, autonomous data communication subsystem for an advanced information processing system

    NASA Technical Reports Server (NTRS)

    Nagle, Gail; Masotto, Thomas; Alger, Linda

    1990-01-01

    The need to meet the stringent performance and reliability requirements of advanced avionics systems has frequently led to implementations which are tailored to a specific application and are therefore difficult to modify or extend. Furthermore, many integrated flight critical systems are input/output intensive. By using a design methodology which customizes the input/output mechanism for each new application, the cost of implementing new systems becomes prohibitively expensive. One solution to this dilemma is to design computer systems and input/output subsystems which are general purpose, but which can be easily configured to support the needs of a specific application. The Advanced Information Processing System (AIPS), currently under development has these characteristics. The design and implementation of the prototype I/O communication system for AIPS is described. AIPS addresses reliability issues related to data communications by the use of reconfigurable I/O networks. When a fault or damage event occurs, communication is restored to functioning parts of the network and the failed or damage components are isolated. Performance issues are addressed by using a parallelized computer architecture which decouples Input/Output (I/O) redundancy management and I/O processing from the computational stream of an application. The autonomous nature of the system derives from the highly automated and independent manner in which I/O transactions are conducted for the application as well as from the fact that the hardware redundancy management is entirely transparent to the application.

  9. Atmospheric turbulence compensation in orbital angular momentum communications: Advances and perspectives

    NASA Astrophysics Data System (ADS)

    Li, Shuhui; Chen, Shi; Gao, Chunqing; Willner, Alan E.; Wang, Jian

    2018-02-01

    Orbital angular momentum (OAM)-carrying beams have recently generated considerable interest due to their potential use in communication systems to increase transmission capacity and spectral efficiency. For OAM-based free-space optical (FSO) links, a critical challenge is the atmospheric turbulence that will distort the helical wavefronts of OAM beams leading to the decrease of received power, introducing crosstalk between multiple channels, and impairing link performance. In this paper, we review recent advances in turbulence effects compensation techniques for OAM-based FSO communication links. First, basic concepts of atmospheric turbulence and theoretical model are introduced. Second, atmospheric turbulence effects on OAM beams are theoretically and experimentally investigated and discussed. Then, several typical turbulence compensation approaches, including both adaptive optics-based (optical domain) and signal processing-based (electrical domain) techniques, are presented. Finally, key challenges and perspectives of compensation of turbulence-distorted OAM links are discussed.

  10. WE-DE-207A-04: Advances in Radiological Neuro-Endovascular Interventional Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudin, S.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are

  11. Communication and Reception in Teaching: The Age of Image "versus" the "Weight" of Words

    ERIC Educational Resources Information Center

    Bradea, Adela

    2015-01-01

    Contemporary culture is mainly a culture of image. We get our information seeing. Examination of images is free, while reading is impelled by the necessity of browsing the whole text. The image seems more appropriate than the text when trying to communicate easy and quickly. The speech calls for articulated language, expressed through a symbolic…

  12. Advanced Imaging Utilization Trends in Privately Insured Patients From 2007 to 2013.

    PubMed

    Horný, Michal; Burgess, James F; Cohen, Alan B

    2015-12-01

    The aim of the study was to investigate whether the increase in utilization of advanced diagnostic imaging for privately insured patients in 2011 was the beginning of a new trend in imaging utilization growth, or an isolated deviation from the declining trend that began in 2008. We extracted outpatient and inpatient CT, diagnostic ultrasound, MRI, and PET procedures from databases, for the years 2007 to 2013. This study extended previous work, covering 2012 to 2013, using the same methodology. For every year of the study period, we calculated the following: number of procedures per person-year covered by private health insurance; proportion of office and emergency visits that resulted in an imaging session; average payments per procedure; and total payments per person-year covered by private health insurance. Outpatient utilization of CT and PET decreased in both 2012 and 2013; outpatient utilization of MRI mildly increased in 2012, but then decreased in 2013. Outpatient utilization of diagnostic ultrasound showed a very different pattern, increasing throughout the study period. Inpatient utilization of all imaging modalities except PET decreased in both 2012 and 2013. Adjusted payments for all imaging modalities increased in 2012, and then dropped substantially in 2013, except the adjusted payments for diagnostic ultrasound that increased in 2013 again. The trend of increasing utilization of advanced diagnostic imaging seems to be over for some, but not all, imaging modalities. A combination of policy (eg, breast density notification laws), technologic advancement, and wider access seems to be responsible for at least part of an increasing utilization of diagnostic ultrasound. Copyright © 2015 American College of Radiology. All rights reserved.

  13. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2014-10-01

    death and disability in children. Recent advances in pediatric magnetic resonance imaging ( MRI ) techniques are revolutionizing our understanding of... MRI , brain injury. 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC a...principles of pediatric brain injury and recovery following injury, as well as the clinical application of sophisticated MRI techniques that are

  14. Proceedings of the Advanced Communications Technology Satellite (ACTS) Conference 2000

    NASA Technical Reports Server (NTRS)

    Bauer, Robert (Editor); Derwae, Robert (Editor)

    2000-01-01

    The ACTS experiments program, which began in December 1993 and consisted of 103 different experiments, has made significant contributions to minimizing the risk of advanced satellite communications technology. The ACTS Conference 2000 (AC2000) was held to report the results of the program since the last ACTS conference was held in 1995 and to celebrate the end of a very successful satellite program. The conference was held on May 31, 2000, as part of the 6th Ka-band Utilization Conference in Cleveland, Ohio. Approximately 280 representatives of industry, academia, and government attended. The conference was organized into two parts: a technical session during the day and an evening reception. During the day, a series of five technical sessions included presentations of 17 papers covering the results of the experiment activity and technical performance of the satellite. In the evening, a reception was held to celebrate the end of the ACTS Experiments Program on one of NASA's most successful experimental communications satellite. These proceedings were developed to capture the entire event, including the evening reception.

  15. Destructive Thomas Fire Continues Its Advance in New NASA Satellite Image

    NASA Image and Video Library

    2017-12-11

    The Thomas fire, west of Los Angeles, continues to advance to the west and north and is threatening a number of coastal communities, including Santa Barbara. It is now the fifth largest wildfire in modern California history. According to CAL FIRE, as of midday Dec. 11, the fire had consumed more than 230,000 acres and was 15 percent contained. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument on NASA's Terra satellite captured this image on Dec. 10. The image depicts vegetation in red, smoke in light brown, burned areas in dark grey, and active fires in yellow, as detected by the thermal infrared bands. The image covers an area of 14.3 by 19.6 miles (23 by 31.5 kilometers), and is located at 34.5 degrees north, 119.4 degrees west. https://photojournal.jpl.nasa.gov/catalog/PIA22122

  16. High-resolution imaging of the central nervous system: how novel imaging methods combined with navigation strategies will advance patient care.

    PubMed

    Farooq, Hamza; Genis, Helen; Alarcon, Joseph; Vuong, Barry; Jivraj, Jamil; Yang, Victor X D; Cohen-Adad, Julien; Fehlings, Michael G; Cadotte, David W

    2015-01-01

    This narrative review captures a subset of recent advances in imaging of the central nervous system. First, we focus on improvements in the spatial and temporal profile afforded by optical coherence tomography, fluorescence-guided surgery, and Coherent Anti-Stokes Raman Scattering Microscopy. Next, we highlight advances in the generation and uses of imaging-based atlases and discuss how this will be applied to specific clinical situations. To conclude, we discuss how these and other imaging tools will be combined with neuronavigation techniques to guide surgeons in the operating room. Collectively, this work aims to highlight emerging biomedical imaging strategies that hold potential to be a valuable tool for both clinicians and researchers in the years to come. © 2015 Elsevier B.V. All rights reserved.

  17. Advanced communication satellites worldwide - Satellites of opportunity for the ACTS mobile terminal

    NASA Technical Reports Server (NTRS)

    Girardey, Catherine C.

    1993-01-01

    Space agencies worldwide are involved in advanced satellite communication systems. This paper presents an overview of these satellites and related technologies in the U.S., Europe, and Japan. They are geostationary satellites using high frequency bands such as K/Ka (20/30 GHz) and O-band (millimeter wave), as well as optical frequencies. The similarity of these programs demonstrate a common interest to develop large capacity satellite communication systems, and shows that closer international cooperation could be set up. The ACTS Mobile Terminal (AMT) project discussed here is such an example. The AMT's compatibility with satellites other than ACTS has been studied, and a proposed common experiment is presented here. The Japanese Engineering Test Satellite ETS-VI has been identified as the best initial 'satellite of opportunity' for AMT in this preliminary assessment.

  18. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  19. MO-D-213-06: Quantitative Image Quality Metrics Are for Physicists, Not Radiologists: How to Communicate to Your Radiologists Using Their Language

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szczykutowicz, T; Rubert, N; Ranallo, F

    Purpose: A framework for explaining differences in image quality to non-technical audiences in medial imaging is needed. Currently, this task is something that is learned “on the job.” The lack of a formal methodology for communicating optimal acquisition parameters into the clinic effectively mitigates many technological advances. As a community, medical physicists need to be held responsible for not only advancing image science, but also for ensuring its proper use in the clinic. This work outlines a framework that bridges the gap between the results from quantitative image quality metrics like detectability, MTF, and NPS and their effect on specificmore » anatomical structures present in diagnostic imaging tasks. Methods: Specific structures of clinical importance were identified for a body, an extremity, a chest, and a temporal bone protocol. Using these structures, quantitative metrics were used to identify the parameter space that should yield optimal image quality constrained within the confines of clinical logistics and dose considerations. The reading room workflow for presenting the proposed changes for imaging each of these structures is presented. The workflow consists of displaying images for physician review consisting of different combinations of acquisition parameters guided by quantitative metrics. Examples of using detectability index, MTF, NPS, noise and noise non-uniformity are provided. During review, the physician was forced to judge the image quality solely on those features they need for diagnosis, not on the overall “look” of the image. Results: We found that in many cases, use of this framework settled mis-agreements between physicians. Once forced to judge images on the ability to detect specific structures inter reader agreement was obtained. Conclusion: This framework will provide consulting, research/industrial, or in-house physicists with clinically relevant imaging tasks to guide reading room image review. This framework

  20. The Advanced X-ray Imaging Satellite (AXIS)

    NASA Astrophysics Data System (ADS)

    Reynolds, Christopher S.; Mushotzky, Richard

    2017-08-01

    The Advanced X-ray Imaging Satellite (AXIS) will follow in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10keV band. These capabilities will enable major advances in many of the most active areas of astrophysics, including (i) mapping event horizon scale structure in AGN accretion disks and the determination of supermassive black hole (SMBH) spins through monitoring of gravitationally-microlensed quasars; (ii) dramatically deepening our understanding of AGN feedback in galaxies and galaxy clusters out to high-z through the direct imaging of AGN winds and the interaction of jets with the hot interstellar/intracluster medium; (iii) understanding the fueling of AGN by probing hot flows inside of the SMBH sphere of influence; (iv) obtaining geometric distance measurements using dust scattering halos. With a nominal 2028 launch, AXIS will be enormously synergistic with LSST, ALMA, WFIRST and ATHENA, and will be a valuable precursor to Lynx. AXIS is enabled by breakthroughs in the construction of light-weight X-ray optics from mono-crystalline silicon blocks, building on recent developments in the semiconductor industry. Here, we describe the straw-man concept for AXIS, some of the high profile science that this observatory will address, and how you can become involved.

  1. Advances in Imaging Approaches to Fracture Risk Evaluation

    PubMed Central

    Manhard, Mary Kate; Nyman, Jeffry S.; Does, Mark D.

    2016-01-01

    Fragility fractures are a growing problem worldwide, and current methods for diagnosing osteoporosis do not always identify individuals who require treatment to prevent a fracture and may misidentify those not a risk. Traditionally, fracture risk is assessed using dual-energy X-ray absorptiometry, which provides measurements of areal bone mineral density (BMD) at sites prone to fracture. Recent advances in imaging show promise in adding new information that could improve the prediction of fracture risk in the clinic. As reviewed herein, advances in quantitative computed tomography (QCT) predict hip and vertebral body strength; high resolution HR-peripheral QCT (HR-pQCT) and micro-magnetic resonance imaging (μMRI) assess the micro-architecture of trabecular bone; quantitative ultrasound (QUS) measures the modulus or tissue stiffness of cortical bone; and quantitative ultra-short echo time MRI methods quantify the concentrations of bound water and pore water in cortical bone, which reflect a variety of mechanical properties of bone. Each of these technologies provides unique characteristics of bone and may improve fracture risk diagnoses and reduce prevalence of fractures by helping to guide treatment decisions. PMID:27816505

  2. Advances in bioluminescence imaging: new probes from old recipes.

    PubMed

    Yao, Zi; Zhang, Brendan S; Prescher, Jennifer A

    2018-06-04

    Bioluminescent probes are powerful tools for visualizing biology in live tissues and whole animals. Recent years have seen a surge in the number of new luciferases, luciferins, and related tools available for bioluminescence imaging. Many were crafted using classic methods of optical probe design and engineering. Here we highlight recent advances in bioluminescent tool discovery and development, along with applications of the probes in cells, tissues, and organisms. Collectively, these tools are improving in vivo imaging capabilities and bolstering new research directions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Seeing and believing: recent advances in imaging cell-cell interactions

    PubMed Central

    Yap, Alpha S.; Michael, Magdalene; Parton, Robert G.

    2015-01-01

    Advances in cell and developmental biology have often been closely linked to advances in our ability to visualize structure and function at many length and time scales. In this review, we discuss how new imaging technologies and new reagents have provided novel insights into the biology of cadherin-based cell-cell junctions. We focus on three developments: the application of super-resolution optical technologies to characterize the nanoscale organization of cadherins at cell-cell contacts, new approaches to interrogate the mechanical forces that act upon junctions, and advances in electron microscopy which have the potential to transform our understanding of cell-cell junctions. PMID:26543555

  4. Advanced EUV mask and imaging modeling

    NASA Astrophysics Data System (ADS)

    Evanschitzky, Peter; Erdmann, Andreas

    2017-10-01

    The exploration and optimization of image formation in partially coherent EUV projection systems with complex source shapes requires flexible, accurate, and efficient simulation models. This paper reviews advanced mask diffraction and imaging models for the highly accurate and fast simulation of EUV lithography systems, addressing important aspects of the current technical developments. The simulation of light diffraction from the mask employs an extended rigorous coupled wave analysis (RCWA) approach, which is optimized for EUV applications. In order to be able to deal with current EUV simulation requirements, several additional models are included in the extended RCWA approach: a field decomposition and a field stitching technique enable the simulation of larger complex structured mask areas. An EUV multilayer defect model including a database approach makes the fast and fully rigorous defect simulation and defect repair simulation possible. A hybrid mask simulation approach combining real and ideal mask parts allows the detailed investigation of the origin of different mask 3-D effects. The image computation is done with a fully vectorial Abbe-based approach. Arbitrary illumination and polarization schemes and adapted rigorous mask simulations guarantee a high accuracy. A fully vectorial sampling-free description of the pupil with Zernikes and Jones pupils and an optimized representation of the diffraction spectrum enable the computation of high-resolution images with high accuracy and short simulation times. A new pellicle model supports the simulation of arbitrary membrane stacks, pellicle distortions, and particles/defects on top of the pellicle. Finally, an extension for highly accurate anamorphic imaging simulations is included. The application of the models is demonstrated by typical use cases.

  5. Communicating with patients who have advanced dementia: training nurse aide students.

    PubMed

    Beer, Laura E; Hutchinson, Susan R; Skala-Cordes, Kristine K

    2012-01-01

    The increase of dementia in older adults is changing how medical care is delivered. Recognizing symptoms of pain, managing behaviors, and providing quality of life for people who have advanced dementia requires a new skill set for caregivers. Researchers in this study targeted nurse aide students to test an educational module's effect on students' perceptions of dementia and their ability to care for patients with dementia. The results indicated the training was effective regarding nurse aides' understanding of residual cognitive abilities and need for meaningful contact among patients with advanced dementia; however, the training was not successful in terms of nurse aides' comfort level or perceived skills in working with this population of patients. The findings suggest a need to transform how caregivers are trained in communication techniques. Incorporating this training into nurse aide education has the potential to increase quality of life for people with dementia.

  6. ACTS (Advanced Communications Technology Satellite) Propagation Experiment: Preprocessing Software User's Manual

    NASA Technical Reports Server (NTRS)

    Crane, Robert K.; Wang, Xuhe; Westenhaver, David

    1996-01-01

    The preprocessing software manual describes the Actspp program originally developed to observe and diagnose Advanced Communications Technology Satellite (ACTS) propagation terminal/receiver problems. However, it has been quite useful for automating the preprocessing functions needed to convert the terminal output to useful attenuation estimates. Prior to having data acceptable for archival functions, the individual receiver system must be calibrated and the power level shifts caused by ranging tone modulation must be received. Actspp provides three output files: the daylog, the diurnal coefficient file, and the file that contains calibration information.

  7. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation and contrast of the spatial structures present in the image. Then the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines using the available spectral information and the extracted spatial information. Spatial post-processing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple classifier system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral-spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  8. Advances in Spectral-Spatial Classification of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Fauvel, Mathieu; Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2012-01-01

    Recent advances in spectral-spatial classification of hyperspectral images are presented in this paper. Several techniques are investigated for combining both spatial and spectral information. Spatial information is extracted at the object (set of pixels) level rather than at the conventional pixel level. Mathematical morphology is first used to derive the morphological profile of the image, which includes characteristics about the size, orientation, and contrast of the spatial structures present in the image. Then, the morphological neighborhood is defined and used to derive additional features for classification. Classification is performed with support vector machines (SVMs) using the available spectral information and the extracted spatial information. Spatial postprocessing is next investigated to build more homogeneous and spatially consistent thematic maps. To that end, three presegmentation techniques are applied to define regions that are used to regularize the preliminary pixel-wise thematic map. Finally, a multiple-classifier (MC) system is defined to produce relevant markers that are exploited to segment the hyperspectral image with the minimum spanning forest algorithm. Experimental results conducted on three real hyperspectral images with different spatial and spectral resolutions and corresponding to various contexts are presented. They highlight the importance of spectral–spatial strategies for the accurate classification of hyperspectral images and validate the proposed methods.

  9. Diagnostic imaging advances in murine models of colitis.

    PubMed

    Brückner, Markus; Lenz, Philipp; Mücke, Marcus M; Gohar, Faekah; Willeke, Peter; Domagk, Dirk; Bettenworth, Dominik

    2016-01-21

    Inflammatory bowel diseases (IBD) such as Crohn's disease and ulcerative colitis are chronic-remittent inflammatory disorders of the gastrointestinal tract still evoking challenging clinical diagnostic and therapeutic situations. Murine models of experimental colitis are a vital component of research into human IBD concerning questions of its complex pathogenesis or the evaluation of potential new drugs. To monitor the course of colitis, to the present day, classical parameters like histological tissue alterations or analysis of mucosal cytokine/chemokine expression often require euthanasia of animals. Recent advances mean revolutionary non-invasive imaging techniques for in vivo murine colitis diagnostics are increasingly available. These novel and emerging imaging techniques not only allow direct visualization of intestinal inflammation, but also enable molecular imaging and targeting of specific alterations of the inflamed murine mucosa. For the first time, in vivo imaging techniques allow for longitudinal examinations and evaluation of intra-individual therapeutic response. This review discusses the latest developments in the different fields of ultrasound, molecularly targeted contrast agent ultrasound, fluorescence endoscopy, confocal laser endomicroscopy as well as tomographic imaging with magnetic resonance imaging, computed tomography and fluorescence-mediated tomography, discussing their individual limitations and potential future diagnostic applications in the management of human patients with IBD.

  10. Advances in molecular imaging for breast cancer detection and characterization

    PubMed Central

    2012-01-01

    Advances in our ability to assay molecular processes, including gene expression, protein expression, and molecular and cellular biochemistry, have fueled advances in our understanding of breast cancer biology and have led to the identification of new treatments for patients with breast cancer. The ability to measure biologic processes without perturbing them in vivo allows the opportunity to better characterize tumor biology and to assess how biologic and cytotoxic therapies alter critical pathways of tumor response and resistance. By accurately characterizing tumor properties and biologic processes, molecular imaging plays an increasing role in breast cancer science, clinical care in diagnosis and staging, assessment of therapeutic targets, and evaluation of responses to therapies. This review describes the current role and potential of molecular imaging modalities for detection and characterization of breast cancer and focuses primarily on radionuclide-based methods. PMID:22423895

  11. Exploring the boundaries of quantum mechanics: advances in satellite quantum communications.

    PubMed

    Agnesi, Costantino; Vedovato, Francesco; Schiavon, Matteo; Dequal, Daniele; Calderaro, Luca; Tomasin, Marco; Marangon, Davide G; Stanco, Andrea; Luceri, Vincenza; Bianco, Giuseppe; Vallone, Giuseppe; Villoresi, Paolo

    2018-07-13

    Recent interest in quantum communications has stimulated great technological progress in satellite quantum technologies. These advances have rendered the aforesaid technologies mature enough to support the realization of experiments that test the foundations of quantum theory at unprecedented scales and in the unexplored space environment. Such experiments, in fact, could explore the boundaries of quantum theory and may provide new insights to investigate phenomena where gravity affects quantum objects. Here, we review recent results in satellite quantum communications and discuss possible phenomena that could be observable with current technologies. Furthermore, stressing the fact that space represents an incredible resource to realize new experiments aimed at highlighting some physical effects, we challenge the community to propose new experiments that unveil the interplay between quantum mechanics and gravity that could be realizable in the near future.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Author(s).

  12. Important advances in technology and unique applications related to cardiac magnetic resonance imaging.

    PubMed

    Ghosn, Mohamad G; Shah, Dipan J

    2014-01-01

    Cardiac magnetic resonance has become a well-established imaging modality and is considered the gold standard for myocardial tissue viability assessment and ventricular volumes quantification. Recent technological hardware and software advancements in magnetic resonance imaging technology have allowed the development of new methods that can improve clinical cardiovascular diagnosis and prognosis. The advent of a new generation of higher magnetic field scanners can be beneficial to various clinical applications. Also, the development of faster acquisition techniques have allowed mapping of the magnetic relaxation properties T1, T2, and T2* in the myocardium that can be used to quantify myocardial diffuse fibrosis, determine the presence of edema or inflammation, and measure iron within the myocardium, respectively. Another recent major advancement in CMR has been the introduction of three-dimension (3D) phase contrast imaging, also known as 4D flow. The following review discusses key advances in cardiac magnetic resonance technology and their potential to improve clinical cardiovascular diagnosis and outcomes.

  13. Experiments applications guide: Advanced Communications Technology Satellite (ACTS)

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This applications guide first surveys the capabilities of the Advanced Communication Technology Satellite (ACTS) system (both the flight and ground segments). This overview is followed by a description of the baseband processor (BBP) and microwave switch matrix (MSM) operating modes. Terminals operating with the baseband processor are referred to as low burst rate (LBR); and those operating with the microwave switch matrix, as high burst rate (HBR). Three very small-aperture terminals (VSATs), LBR-1, LBR-2, and HBR, are described for various ACTS operating modes. Also described is the NASA Lewis link evaluation terminal. A section on ACTS experiment opportunities introduces a wide spectrum of network control, telecommunications, system, and scientific experiments. The performance of the VSATs is discussed in detail. This guide is intended as a catalyst to encourage participation by the telecommunications, business, and science communities in a broad spectrum of experiments.

  14. A Graph Theory Practice on Transformed Image: A Random Image Steganography

    PubMed Central

    Thanikaiselvan, V.; Arulmozhivarman, P.; Subashanthini, S.; Amirtharajan, Rengarajan

    2013-01-01

    Modern day information age is enriched with the advanced network communication expertise but unfortunately at the same time encounters infinite security issues when dealing with secret and/or private information. The storage and transmission of the secret information become highly essential and have led to a deluge of research in this field. In this paper, an optimistic effort has been taken to combine graceful graph along with integer wavelet transform (IWT) to implement random image steganography for secure communication. The implementation part begins with the conversion of cover image into wavelet coefficients through IWT and is followed by embedding secret image in the randomly selected coefficients through graph theory. Finally stegoimage is obtained by applying inverse IWT. This method provides a maximum of 44 dB peak signal to noise ratio (PSNR) for 266646 bits. Thus, the proposed method gives high imperceptibility through high PSNR value and high embedding capacity in the cover image due to adaptive embedding scheme and high robustness against blind attack through graph theoretic random selection of coefficients. PMID:24453857

  15. Transportation informatics : advanced image processing techniques automated pavement distress evaluation.

    DOT National Transportation Integrated Search

    2010-01-01

    The current project, funded by MIOH-UTC for the period 1/1/2009- 4/30/2010, is concerned : with the development of the framework for a transportation facility inspection system using : advanced image processing techniques. The focus of this study is ...

  16. Diffusion-weighted imaging and demyelinating diseases: new aspects of an old advanced sequence.

    PubMed

    Rueda-Lopes, Fernanda C; Hygino da Cruz, Luiz C; Doring, Thomas M; Gasparetto, Emerson L

    2014-01-01

    The purpose of this article is to discuss classic applications in diffusion-weighted imaging (DWI) in demyelinating disease and progression of DWI in the near future. DWI is an advanced technique used in the follow-up of demyelinating disease patients, focusing on the diagnosis of a new lesion before contrast enhancement. With technical advances, diffusion-tensor imaging; new postprocessing techniques, such as tract-based spatial statistics; new ways of calculating diffusion, such as kurtosis; and new applications for DWI and its spectrum are about to arise.

  17. A new image representation for compact and secure communication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Lakshman; Skourikhine, A. N.

    In many areas of nuclear materials management there is a need for communication, archival, and retrieval of annotated image data between heterogeneous platforms and devices to effectively implement safety, security, and safeguards of nuclear materials. Current image formats such as JPEG are not ideally suited in such scenarios as they are not scalable to different viewing formats, and do not provide a high-level representation of images that facilitate automatic object/change detection or annotation. The new Scalable Vector Graphics (SVG) open standard for representing graphical information, recommended by the World Wide Web Consortium (W3C) is designed to address issues of imagemore » scalability, portability, and annotation. However, until now there has been no viable technology to efficiently field images of high visual quality under this standard. Recently, LANL has developed a vectorized image representation that is compatible with the SVG standard and preserves visual quality. This is based on a new geometric framework for characterizing complex features in real-world imagery that incorporates perceptual principles of processing visual information known from cognitive psychology and vision science, to obtain a polygonal image representation of high fidelity. This representation can take advantage of all textual compression and encryption routines unavailable to other image formats. Moreover, this vectorized image representation can be exploited to facilitate automated object recognition that can reduce time required for data review. The objects/features of interest in these vectorized images can be annotated via animated graphics to facilitate quick and easy display and comprehension of processed image content.« less

  18. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    PubMed

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  19. Clinical skills assessment of procedural and advanced communication skills: performance expectations of residency program directors

    PubMed Central

    Langenau, Erik E.; Zhang, Xiuyuan; Roberts, William L.; DeChamplain, Andre F.; Boulet, John R.

    2012-01-01

    Background High stakes medical licensing programs are planning to augment and adapt current examinations to be relevant for a two-decision point model for licensure: entry into supervised practice and entry into unsupervised practice. Therefore, identifying which skills should be assessed at each decision point is critical for informing examination development, and gathering input from residency program directors is important. Methods Using data from previously developed surveys and expert panels, a web-delivered survey was distributed to 3,443 residency program directors. For each of the 28 procedural and 18 advanced communication skills, program directors were asked which clinical skills should be assessed, by whom, when, and how. Descriptive statistics were collected, and Intraclass Correlations (ICC) were conducted to determine consistency across different specialties. Results Among 347 respondents, program directors reported that all advanced communication and some procedural tasks are important to assess. The following procedures were considered ‘important’ or ‘extremely important’ to assess: sterile technique (93.8%), advanced cardiovascular life support (ACLS) (91.1%), basic life support (BLS) (90.0%), interpretation of electrocardiogram (89.4%) and blood gas (88.7%). Program directors reported that most clinical skills should be assessed at the end of the first year of residency (or later) and not before graduation from medical school. A minority were considered important to assess prior to the start of residency training: demonstration of respectfulness (64%), sterile technique (67.2%), BLS (68.9%), ACLS (65.9%) and phlebotomy (63.5%). Discussion Results from this study support that assessing procedural skills such as cardiac resuscitation, sterile technique, and phlebotomy would be amenable to assessment at the end of medical school, but most procedural and advanced communications skills would be amenable to assessment at the end of the first

  20. Advanced synthetic image generation models and their application to multi/hyperspectral algorithm development

    NASA Astrophysics Data System (ADS)

    Schott, John R.; Brown, Scott D.; Raqueno, Rolando V.; Gross, Harry N.; Robinson, Gary

    1999-01-01

    The need for robust image data sets for algorithm development and testing has prompted the consideration of synthetic imagery as a supplement to real imagery. The unique ability of synthetic image generation (SIG) tools to supply per-pixel truth allows algorithm writers to test difficult scenarios that would require expensive collection and instrumentation efforts. In addition, SIG data products can supply the user with `actual' truth measurements of the entire image area that are not subject to measurement error thereby allowing the user to more accurately evaluate the performance of their algorithm. Advanced algorithms place a high demand on synthetic imagery to reproduce both the spectro-radiometric and spatial character observed in real imagery. This paper describes a synthetic image generation model that strives to include the radiometric processes that affect spectral image formation and capture. In particular, it addresses recent advances in SIG modeling that attempt to capture the spatial/spectral correlation inherent in real images. The model is capable of simultaneously generating imagery from a wide range of sensors allowing it to generate daylight, low-light-level and thermal image inputs for broadband, multi- and hyper-spectral exploitation algorithms.

  1. Advances in High-Throughput Speed, Low-Latency Communication for Embedded Instrumentation (7th Annual SFAF Meeting, 2012)

    ScienceCinema

    Jordan, Scott

    2018-01-24

    Scott Jordan on "Advances in high-throughput speed, low-latency communication for embedded instrumentation" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  2. Innovative Networking Concepts Tested on the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Friedman, Daniel; Gupta, Sonjai; Zhang, Chuanguo; Ephremides, Anthony

    1996-01-01

    This paper describes a program of experiments conducted over the advanced communications technology satellite (ACTS) and the associated TI-VSAT (very small aperture terminal). The experiments were motivated by the commercial potential of low-cost receive only satellite terminals that can operate in a hybrid network environment, and by the desire to demonstrate frame relay technology over satellite networks. The first experiment tested highly adaptive methods of satellite bandwidth allocation in an integrated voice-data service environment. The second involved comparison of forward error correction (FEC) and automatic repeat request (ARQ) methods of error control for satellite communication with emphasis on the advantage that a hybrid architecture provides, especially in the case of multicasts. Finally, the third experiment demonstrated hybrid access to databases and compared the performance of internetworking protocols for interconnecting local area networks (LANs) via satellite. A custom unit termed frame relay access switch (FRACS) was developed by COMSAT Laboratories for these experiments; the preparation and conduct of these experiments involved a total of 20 people from the University of Maryland, the University of Colorado and COMSAT Laboratories, from late 1992 until 1995.

  3. The impact of the Advancing Social-communication And Play (ASAP) intervention on preschoolers with autism spectrum disorder.

    PubMed

    Dykstra, Jessica R; Boyd, Brian A; Watson, Linda R; Crais, Elizabeth R; Baranek, Grace T

    2012-01-01

    This study evaluates an intervention targeting social-communication and play skills (Advancing Social-communication And Play; ASAP) implemented by school staff in a public preschool setting. With increases in enrollment of children with autism spectrum disorder (ASD) in school systems, establishing the effectiveness and feasibility of interventions implemented in school settings is important. In clinical settings, interventions targeting social-communication and play behaviors have increased these skills and impacted later language abilities. Results of this single-case design study indicated the ASAP intervention had a positive impact on social-communication and play skills for three preschoolers with ASD. All participants showed either increases in frequency or more stability in targeted behaviors. Social validity results provide additional support for the use of ASAP with preschoolers with ASD.

  4. Red fluorescent proteins: advanced imaging applications and future design.

    PubMed

    Shcherbakova, Daria M; Subach, Oksana M; Verkhusha, Vladislav V

    2012-10-22

    In the past few years a large series of the advanced red-shifted fluorescent proteins (RFPs) has been developed. These enhanced RFPs provide new possibilities to study biological processes at the levels ranging from single molecules to whole organisms. Herein the relationship between the properties of the RFPs of different phenotypes and their applications to various imaging techniques are described. Existing and emerging imaging approaches are discussed for conventional RFPs, far-red FPs, RFPs with a large Stokes shift, fluorescent timers, irreversibly photoactivatable and reversibly photoswitchable RFPs. Advantages and limitations of specific RFPs for each technique are presented. Recent progress in understanding the chemical transformations of red chromophores allows the future RFP phenotypes and their respective novel imaging applications to be foreseen. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Advances in Ka-Band Communication System for CubeSats and SmallSats

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah; Wong, Yen F.; Altunc, Serhat

    2016-01-01

    A study was performed that evaluated the feasibility of Ka-band communication system to provide CubeSat/SmallSat high rate science data downlink with ground antennas ranging from the small portable 1.2m/2.4m to apertures 5.4M, 7.3M, 11M, and 18M, for Low Earth Orbit (LEO) to Lunar CubeSat missions. This study included link analysis to determine the data rate requirement, based on the current TRL of Ka-band flight hardware and ground support infrastructure. Recent advances in Ka-band transceivers and antennas, options of portable ground stations, and various coverage distances were included in the analysis. The link/coverage analysis results show that Cubesat/Smallsat missions communication requirements including frequencies and data rates can be met by utilizing Near Earth Network (NEN) Ka-band support with 2 W and high gain (>6 dBi) antennas.

  6. Advanced astigmatism-corrected tandem Wadsworth mounting for small-scale spectral broadband imaging spectrometer.

    PubMed

    Lei, Yu; Lin, Guan-yu

    2013-01-01

    Tandem gratings of double-dispersion mount make it possible to design an imaging spectrometer for the weak light observation with high spatial resolution, high spectral resolution, and high optical transmission efficiency. The traditional tandem Wadsworth mounting is originally designed to match the coaxial telescope and large-scale imaging spectrometer. When it is used to connect the off-axis telescope such as off-axis parabolic mirror, it presents lower imaging quality than to connect the coaxial telescope. It may also introduce interference among the detector and the optical elements as it is applied to the short focal length and small-scale spectrometer in a close volume by satellite. An advanced tandem Wadsworth mounting has been investigated to deal with the situation. The Wadsworth astigmatism-corrected mounting condition for which is expressed as the distance between the second concave grating and the imaging plane is calculated. Then the optimum arrangement for the first plane grating and the second concave grating, which make the anterior Wadsworth condition fulfilling each wavelength, is analyzed by the geometric and first order differential calculation. These two arrangements comprise the advanced Wadsworth mounting condition. The spectral resolution has also been calculated by these conditions. An example designed by the optimum theory proves that the advanced tandem Wadsworth mounting performs excellently in spectral broadband.

  7. Advanced structural multimodal imaging of a patient with subcortical band heterotopia.

    PubMed

    Kini, Lohith G; Nasrallah, Ilya M; Coto, Carlos; Ferraro, Lindsay C; Davis, Kathryn A

    2016-12-01

    Subcortical band heterotopia (SBH) is a disorder of neuronal migration most commonly due to mutations of the Doublecortin (DCX) gene. A range of phenotypes is seen, with most patients having some degree of epilepsy and intellectual disability. Advanced diffusion and structural magnetic resonance imaging (MRI) sequences may be useful in identifying heterotopias and dysplasias of different sizes in drug-resistant epilepsy. We describe a patient with SBH and drug-resistant epilepsy and investigate neurite density, neurite dispersion, and diffusion parameters as compared to a healthy control through the use of multiple advanced MRI modalities. Neurite density and dispersion in heterotopia was found to be more similar to white matter than gray matter. Neurite density and dispersion maps obtained using diffusion imaging may be able to better characterize different subtypes of heterotopia.

  8. Themes addressed by couples with advanced cancer during a communication skills training intervention.

    PubMed

    Porter, Laura S; Fish, Laura; Steinhauser, Karen

    2018-04-25

    Couple-based communication interventions have beneficial effects for patients with cancer and their partners. However, few studies have targeted patients with advanced stages of disease and little is known about how best to assist couples in discussing issues related to life-limiting illness. The purpose of the present study was to identify themes couples addressed during a couple communication skills intervention, and the frequency with which they discussed issues related to end-of-life. Content analyses were conducted on recordings of 72 sessions from 12 couples facing advanced gastrointestinal (GI) cancer. Coding was based six themes identified a priori from the framework for understanding what patients and family value at end of life. The percent of couples addressing each theme was calculated to gauge level of importance and acceptability of these topics. The majority of couples addressed topics previously identified as salient at end-of-life, including clear decision making, affirmation of the whole person, pain and symptom management, contributing to others, and preparation for death. In addition, novel aspects to these themes emerged in the context of couples' conversations, illustrating the importance of the couple relationship in adjusting to life with a life-limiting illness and anticipating the transition to end-of-life. Findings suggest that couples likely would be receptive to an intervention that combines training in communication skills with guidance in focusing on issues related to life completion to assist with transitions at end of life. Such interventions might enhance both individuals' abilities to cope with illness-related symptoms and demands, enjoy the time they have together, and derive meaning from the experience. Copyright © 2018. Published by Elsevier Inc.

  9. Advanced Shipboard Communications Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Axford, Roy A.; Jedrey, Thomas C.; Rupar, Michael A.

    2000-01-01

    For ships at sea. satellites provide the only option for high data rate (HDR), long haul communications. Furthermore the demand for HDR satellite communications (SATCOM) for military and commercial ships. and other offshore platforms is increasing. Presently the bulk of this maritime HDR SATCOM connectivity is provided via C-band and X-band. However, the shipboard antenna sizes required to achieve a data rate of, say T 1 (1.544 Mbps) with present C-/X-band SATCOM systems range from seven to ten feet in diameter. This limits the classes of ships to which HDR services can be provided to those which are large enough to accommodate the massive antennas. With its high powered K/Ka-band spot beams, the National Aeronautics and Space Administration's (NASA) Advanced Communications Technology Satellite (ACTS) was able to provide T I and higher rate services to ships at sea using much smaller shipboard antennas. This paper discusses three shipboard HDR SATCOM demonstrations that were conducted with ACTS between 1996 and 1998. The first demonstration involved a 2 Mbps link provided to the seismic survey ship MN Geco Diamond equipped with a 16-inch wide, 4.5-inch tall, mechanically steered slotted waveguide array antenna developed by the Jet Propulsion Laboratory. In this February 1996 demonstration ACTS allowed supercomputers ashore to process Geco Diamond's voluminous oceanographic seismic data in near real time. This capability allowed the ship to adjust its search parameters on a daily basis based on feedback from the processed data, thereby greatly increasing survey efficiency. The second demonstration was conducted on the US Navy cruiser USS Princeton (CG 59) with the same antenna used on Geco Diamond. Princeton conducted a six-month (January-July 1997) Western Hemisphere solo deployment during which time T1 connectivity via ACTS provided the ship with a range of valuable tools for operational, administrative and quality-of-life tasks. In one instance, video

  10. Content-based image retrieval in medical applications for picture archiving and communication systems

    NASA Astrophysics Data System (ADS)

    Lehmann, Thomas M.; Guld, Mark O.; Thies, Christian; Fischer, Benedikt; Keysers, Daniel; Kohnen, Michael; Schubert, Henning; Wein, Berthold B.

    2003-05-01

    Picture archiving and communication systems (PACS) aim to efficiently provide the radiologists with all images in a suitable quality for diagnosis. Modern standards for digital imaging and communication in medicine (DICOM) comprise alphanumerical descriptions of study, patient, and technical parameters. Currently, this is the only information used to select relevant images within PACS. Since textual descriptions insufficiently describe the great variety of details in medical images, content-based image retrieval (CBIR) is expected to have a strong impact when integrated into PACS. However, existing CBIR approaches usually are limited to a distinct modality, organ, or diagnostic study. In this state-of-the-art report, we present first results implementing a general approach to content-based image retrieval in medical applications (IRMA) and discuss its integration into PACS environments. Usually, a PACS consists of a DICOM image server and several DICOM-compliant workstations, which are used by radiologists for reading the images and reporting the findings. Basic IRMA components are the relational database, the scheduler, and the web server, which all may be installed on the DICOM image server, and the IRMA daemons running on distributed machines, e.g., the radiologists" workstations. These workstations can also host the web-based front-ends of IRMA applications. Integrating CBIR and PACS, a special focus is put on (a) location and access transparency for data, methods, and experiments, (b) replication transparency for methods in development, (c) concurrency transparency for job processing and feature extraction, (d) system transparency at method implementation time, and (e) job distribution transparency when issuing a query. Transparent integration will have a certain impact on diagnostic quality supporting both evidence-based medicine and case-based reasoning.

  11. Micro-scale thermal imaging of advanced organic and polymeric materials

    NASA Astrophysics Data System (ADS)

    Morikawa, Junko

    2012-10-01

    Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.

  12. Integrating medical imaging analyses through a high-throughput bundled resource imaging system

    NASA Astrophysics Data System (ADS)

    Covington, Kelsie; Welch, E. Brian; Jeong, Ha-Kyu; Landman, Bennett A.

    2011-03-01

    Exploitation of advanced, PACS-centric image analysis and interpretation pipelines provides well-developed storage, retrieval, and archival capabilities along with state-of-the-art data providence, visualization, and clinical collaboration technologies. However, pursuit of integrated medical imaging analysis through a PACS environment can be limiting in terms of the overhead required to validate, evaluate and integrate emerging research technologies. Herein, we address this challenge through presentation of a high-throughput bundled resource imaging system (HUBRIS) as an extension to the Philips Research Imaging Development Environment (PRIDE). HUBRIS enables PACS-connected medical imaging equipment to invoke tools provided by the Java Imaging Science Toolkit (JIST) so that a medical imaging platform (e.g., a magnetic resonance imaging scanner) can pass images and parameters to a server, which communicates with a grid computing facility to invoke the selected algorithms. Generated images are passed back to the server and subsequently to the imaging platform from which the images can be sent to a PACS. JIST makes use of an open application program interface layer so that research technologies can be implemented in any language capable of communicating through a system shell environment (e.g., Matlab, Java, C/C++, Perl, LISP, etc.). As demonstrated in this proof-of-concept approach, HUBRIS enables evaluation and analysis of emerging technologies within well-developed PACS systems with minimal adaptation of research software, which simplifies evaluation of new technologies in clinical research and provides a more convenient use of PACS technology by imaging scientists.

  13. Compressive Sampling based Image Coding for Resource-deficient Visual Communication.

    PubMed

    Liu, Xianming; Zhai, Deming; Zhou, Jiantao; Zhang, Xinfeng; Zhao, Debin; Gao, Wen

    2016-04-14

    In this paper, a new compressive sampling based image coding scheme is developed to achieve competitive coding efficiency at lower encoder computational complexity, while supporting error resilience. This technique is particularly suitable for visual communication with resource-deficient devices. At the encoder, compact image representation is produced, which is a polyphase down-sampled version of the input image; but the conventional low-pass filter prior to down-sampling is replaced by a local random binary convolution kernel. The pixels of the resulting down-sampled pre-filtered image are local random measurements and placed in the original spatial configuration. The advantages of local random measurements are two folds: 1) preserve high-frequency image features that are otherwise discarded by low-pass filtering; 2) remain a conventional image and can therefore be coded by any standardized codec to remove statistical redundancy of larger scales. Moreover, measurements generated by different kernels can be considered as multiple descriptions of the original image and therefore the proposed scheme has the advantage of multiple description coding. At the decoder, a unified sparsity-based soft-decoding technique is developed to recover the original image from received measurements in a framework of compressive sensing. Experimental results demonstrate that the proposed scheme is competitive compared with existing methods, with a unique strength of recovering fine details and sharp edges at low bit-rates.

  14. Advances in retinal imaging for diabetic retinopathy and diabetic macular edema.

    PubMed

    Tan, Colin Siang Hui; Chew, Milton Cher Yong; Lim, Louis Wei Yi; Sadda, Srinivas R

    2016-01-01

    Diabetic retinopathy and diabetic macular edema (DME) are leading causes of blindness throughout the world, and cause significant visual morbidity. Ocular imaging has played a significant role in the management of diabetic eye disease, and the advent of advanced imaging modalities will be of great value as our understanding of diabetic eye diseases increase, and the management options become increasingly varied and complex. Color fundus photography has established roles in screening for diabetic eye disease, early detection of progression, and monitoring of treatment response. Fluorescein angiography (FA) detects areas of capillary nonperfusion, as well as leakage from both microaneurysms and neovascularization. Recent advances in retinal imaging modalities complement traditional fundus photography and provide invaluable new information for clinicians. Ultra-widefield imaging, which can be used to produce both color fundus photographs and FAs, now allows unprecedented views of the posterior pole. The pathologies that are detected in the periphery of the retina have the potential to change the grading of disease severity, and may be of prognostic significance to disease progression. Studies have shown that peripheral ischemia may be related to the presence and severity of DME. Optical coherence tomography (OCT) provides structural detail of the retina, and the quantitative and qualitative features are useful in the monitoring of diabetic eye disease. A relatively recent innovation, OCT angiography, produces images of the fine blood vessels at the macula and optic disc, without the need for contrast agents. This paper will review the roles of each of these imaging modalities for diabetic eye disease.

  15. Advances in retinal imaging for diabetic retinopathy and diabetic macular edema

    PubMed Central

    Tan, Colin Siang Hui; Chew, Milton Cher Yong; Lim, Louis Wei Yi; Sadda, Srinivas R

    2016-01-01

    Diabetic retinopathy and diabetic macular edema (DME) are leading causes of blindness throughout the world, and cause significant visual morbidity. Ocular imaging has played a significant role in the management of diabetic eye disease, and the advent of advanced imaging modalities will be of great value as our understanding of diabetic eye diseases increase, and the management options become increasingly varied and complex. Color fundus photography has established roles in screening for diabetic eye disease, early detection of progression, and monitoring of treatment response. Fluorescein angiography (FA) detects areas of capillary nonperfusion, as well as leakage from both microaneurysms and neovascularization. Recent advances in retinal imaging modalities complement traditional fundus photography and provide invaluable new information for clinicians. Ultra-widefield imaging, which can be used to produce both color fundus photographs and FAs, now allows unprecedented views of the posterior pole. The pathologies that are detected in the periphery of the retina have the potential to change the grading of disease severity, and may be of prognostic significance to disease progression. Studies have shown that peripheral ischemia may be related to the presence and severity of DME. Optical coherence tomography (OCT) provides structural detail of the retina, and the quantitative and qualitative features are useful in the monitoring of diabetic eye disease. A relatively recent innovation, OCT angiography, produces images of the fine blood vessels at the macula and optic disc, without the need for contrast agents. This paper will review the roles of each of these imaging modalities for diabetic eye disease. PMID:26953028

  16. Technical advances of interventional fluoroscopy and flat panel image receptor.

    PubMed

    Lin, Pei-Jan Paul

    2008-11-01

    In the past decade, various radiation reducing devices and control circuits have been implemented on fluoroscopic imaging equipment. Because of the potential for lengthy fluoroscopic procedures in interventional cardiovascular angiography, these devices and control circuits have been developed for the cardiac catheterization laboratories and interventional angiography suites. Additionally, fluoroscopic systems equipped with image intensifiers have benefited from technological advances in x-ray tube, x-ray generator, and spectral shaping filter technologies. The high heat capacity x-ray tube, the medium frequency inverter generator with high performance switching capability, and the patient dose reduction spectral shaping filter had already been implemented on the image intensified fluoroscopy systems. These three underlying technologies together with the automatic dose rate and image quality (ADRIQ) control logic allow patients undergoing cardiovascular angiography procedures to benefit from "lower patient dose" with "high image quality." While photoconductor (or phosphor plate) x-ray detectors and signal capture thin film transistor (TFT) and charge coupled device (CCD) arrays are analog in nature, the advent of the flat panel image receptor allowed for fluoroscopy procedures to become more streamlined. With the analog-to-digital converter built into the data lines, the flat panel image receptor appears to become a digital device. While the transition from image intensified fluoroscopy systems to flat panel image receptor fluoroscopy systems is part of the on-going "digitization of imaging," the value of a flat panel image receptor may have to be evaluated with respect to patient dose, image quality, and clinical application capabilities. The advantage of flat panel image receptors has yet to be fully explored. For instance, the flat panel image receptor has its disadvantages as compared to the image intensifiers; the cost of the equipment is probably the most

  17. Reduction of patient anxiety in PET/CT imaging by improving communication between patient and technologist.

    PubMed

    Acuff, Shelley N; Bradley, Yong C; Barlow, Patrick; Osborne, Dustin R

    2014-09-01

    Patients experience anxiety during imaging procedures because of the confined space, uncertainty about the procedure, worry about the results, and other concerns. When a patient experiences anxiety during PET/CT imaging, the quality of the scan can be affected in several ways. Current patient-technologist communication is limited in PET/CT because the technologist must be separated from the patient during the course of the imaging workflow. This study investigated the use of a call device enabling rapid communication to reduce patient anxiety. Clinical patients with various oncologic indications and undergoing (18)F-FDG PET/CT imaging were asked to participate in anxiety surveys under several conditions. Metrics were tracked regarding the survey results for comparison between groups and survey conditions. During the course of this study, 2 patient surveys were used. One of the patient populations was asked to fill out a survey on personal perceptions of the use of such a device, with questions related to their comfort with the device and the degree to which they perceived the device to reduce their anxiety. The 2 remaining populations were given a standard Spielberger State Anxiety survey for anxiety assessments against control populations. Perception survey results indicated that 75% of the respondents experienced a reduction in anxiety and that 84% would request this type of device for other procedures. A correlation was observed between improved patient-technologist communication and perceived feelings of safety, with identical percentages of positive responses. Although responses were mostly positive, 18.8% did not perceive any reduction in anxiety, and the same number indicated they would not use the system in the future. For those patients given the standard Spielberger State Anxiety survey, a statistically significant reduction in anxiety was observed (P < 0.05) in those patients given a call device. Reductions in anxiety were observed for all patient

  18. Imaging in the evaluation and follow-up of early and advanced breast cancer: When, why, and how often?

    PubMed

    Bychkovsky, Brittany L; Lin, Nancy U

    2017-02-01

    Imaging in the evaluation and follow-up of patients with early or advanced breast cancer is an important aspect of cancer care. The role of imaging in breast cancer depends on the goal and should only be performed to guide clinical decisions. Imaging is valuable if a finding will change the course of treatment and improve outcomes, whether this is disease-free survival, overall survival or quality-of-life. In the last decade, imaging is often overused in oncology and contributes to rising healthcare costs. In this context, we review the data that supports the appropriate use of imaging for breast cancer patients. We will discuss: 1) the optimal use of staging imaging in both early (Stage 0-II) and locally advanced (Stage III) breast cancer, 2) the role of surveillance imaging to detect recurrent disease in Stage 0-III breast cancer and 3) how patients with metastatic breast cancer should be followed with advanced imaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Clinical applications of advanced magnetic resonance imaging techniques for arthritis evaluation

    PubMed Central

    Martín Noguerol, Teodoro; Luna, Antonio; Gómez Cabrera, Marta; Riofrio, Alexie D

    2017-01-01

    Magnetic resonance imaging (MRI) has allowed a comprehensive evaluation of articular disease, increasing the detection of early cartilage involvement, bone erosions, and edema in soft tissue and bone marrow compared to other imaging techniques. In the era of functional imaging, new advanced MRI sequences are being successfully applied for articular evaluation in cases of inflammatory, infectious, and degenerative arthropathies. Diffusion weighted imaging, new fat suppression techniques such as DIXON, dynamic contrast enhanced-MRI, and specific T2 mapping cartilage sequences allow a better understanding of the physiopathological processes that underlie these different arthropathies. They provide valuable quantitative information that aids in their differentiation and can be used as potential biomarkers of articular disease course and treatment response. PMID:28979849

  20. Advancing Instructional Communication: Integrating a Biosocial Approach

    ERIC Educational Resources Information Center

    Horan, Sean M.; Afifi, Tamara D.

    2014-01-01

    Celebrating 100 years of the National Communication Association necessitates that, as we commemorate our past, we also look toward our future. As part of a larger conversation about the future of instructional communication, this essay reinvestigates the importance of integrating biosocial approaches into instructional communication research. In…

  1. Advanced mathematics communication beyond modality of\\xA0sight

    NASA Astrophysics Data System (ADS)

    Sedaghatjou, Mina

    2018-01-01

    This study illustrates how mathematical communication and learning are inherently multimodal and embodied; hence, sight-disabled students are also able to conceptualize visuospatial information and mathematical concepts through tactile and auditory activities. Adapting a perceptuomotor integration approach, the study shows that the lack of access to visual fields in an advanced mathematics course does not obstruct a blind student's ability to visualize, but transforms it. The goal of this study is not to compare the visually impaired student with non-visually impaired students to address the 'differences' in understanding; instead, I discuss the challenges that a blind student, named Anthony, has encountered and the ways that we tackled those problems. I also demonstrate how the proper and precisely crafted tactile materials empowered Anthony to learn mathematical functions.

  2. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    NASA Technical Reports Server (NTRS)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  3. Challenges and recent advances in mass spectrometric imaging of neurotransmitters

    PubMed Central

    Gemperline, Erin; Chen, Bingming; Li, Lingjun

    2014-01-01

    Mass spectrometric imaging (MSI) is a powerful tool that grants the ability to investigate a broad mass range of molecules, from small molecules to large proteins, by creating detailed distribution maps of selected compounds. To date, MSI has demonstrated its versatility in the study of neurotransmitters and neuropeptides of different classes toward investigation of neurobiological functions and diseases. These studies have provided significant insight in neurobiology over the years and current technical advances are facilitating further improvements in this field. neurotransmitters, focusing specifically on the challenges and recent Herein, we advances of MSI of neurotransmitters. PMID:24568355

  4. Personal graphical communicator.

    PubMed

    Stephens, Michael; Barrett, Steven

    2008-01-01

    A device to help a child communicate was requested by an educator. The child cannot read, write, or speak but can recognize symbols and use those symbols to communicate. While this communication works, it doesn't work well in situations where another person does not know how to use the symbols to communicate. For this reason, a device was requested that could display images to a child and play a phrase when that image was chosen. To meet this need an MP3 player like device was constructed. The device stores images and Mpeg-Layer III (MP3) sound clips on a replaceable Secure Digital (SD) card. The images are displayed on a color Liquid Crystal Display (LCD) where the user is able to skip through images to find the phrase that needs to be said. Once found simply hitting the play button will play the sound clip associated with the image. The device is portable and compact for easy use. It uses Universal Serial Bus (USB) to recharge its batteries, communicate with the PC and update the firmware.

  5. Differences in end-of-life communication for children with advanced cancer who were referred to a palliative care team.

    PubMed

    Kassam, Alisha; Skiadaresis, Julia; Alexander, Sarah; Wolfe, Joanne

    2015-08-01

    There is a general consensus that involving a specialized palliative care team in the care of children with advanced cancer can help optimize end-of-life communication; however, how this compares to standard oncology care is still unknown. We aimed to determine whether there was an association between specialist palliative care involvement and improved end-of-life communication for children with advanced cancer and their families. We administered questionnaires to 75 bereaved parents (response rate 54%). Outcome measures were presence or absence of 11 elements related to end-of-life communication. Parents were significantly more likely to receive five communication elements if their child was referred to a palliative care team. These elements are: discussion of death and dying with parents by the healthcare team (P<0.01); discussion of death and dying with child by the healthcare team when appropriate (P < 0.01); providing parents with guidance on how to talk to their child about death and dying when appropriate (P < 0.01); preparing parents for medical aspects surrounding death (P = 0.02) and sibling support (P = 0.02). Children were less likely to be referred to a palliative care team if they had a hematologic malignancy. Children who receive standard oncology care are at higher risk of not receiving critical communication elements at end of life. Strategies to optimize end-of-life communication for children who are not referred to a palliative care team are needed. © 2015 Wiley Periodicals, Inc.

  6. The Advanced Gamma-ray Imaging System (AGIS): Simulation Studies

    NASA Astrophysics Data System (ADS)

    Fegan, Stephen; Buckley, J. H.; Bugaev, S.; Funk, S.; Konopelko, A.; Maier, G.; Vassiliev, V. V.; Simulation Studies Working Group; AGIS Collaboration

    2008-03-01

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. We present the results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  7. User Interface for the ESO Advanced Data Products Image Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Rité, C.; Delmotte, N.; Retzlaff, J.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    The poster presents a friendly user interface for image reduction, totally written in Python and developed by the Advanced Data Products (ADP) group. The interface is a front-end to the ESO/MVM image reduction package, originally developed in the ESO Imaging Survey (EIS) project and used currently to reduce imaging data from several instruments such as WFI, ISAAC, SOFI and FORS1. As part of its scope, the interface produces high-level, VO-compliant, science images from raw data providing the astronomer with a complete monitoring system during the reduction, computing also statistical image properties for data quality assessment. The interface is meant to be used for VO services and it is free but un-maintained software and the intention of the authors is to share code and experience. The poster describes the interface architecture and current capabilities and give a description of the ESO/MVM engine for image reduction. The ESO/MVM engine should be released by the end of this year.

  8. Renewable Energy SCADA/Training Using NASA's Advanced Technology Communication Satellite

    NASA Technical Reports Server (NTRS)

    Kalu, A.; Emrich, C.; Ventre, G.; Wilson, W.; Acosta, Roberto (Technical Monitor)

    2000-01-01

    The lack of electrical energy in the rural communities of developing countries is well known, as is the economic unfeasibility of providing much needed energy to these regions via electric grids. Renewable energy (RE) can provide an economic advantage over conventional forms in meeting some of these energy needs. The use of a Supervisory Control and Data Acquisition (SCADA) arrangement via satellite could enable experts at remote locations to provide technical assistance to local trainees while they acquire a measure of proficiency with a newly installed RE system through hands-on training programs using the same communications link. Upon full mastery of the technologies, indigenous personnel could also employ similar SCADA arrangements to remotely monitor and control their constellation of RE systems. Two separate ACTS technology verification experiments (TVEs) have demonstrated that the portability of the Ultra Small Aperture Terminal (USAT) and the versatility of NASA's Advanced Communications Technology Satellite (ACTS), as well as the advantages of Ka band satellites, can be invaluable in providing energy training via distance education (DE), and for implementing renewable energy system SCADA. What has not been tested is the capabilities of these technologies for a simultaneous implementation of renewable energy DE and SCADA. Such concurrent implementations will be useful for preparing trainees in developing countries for their eventual SCADA operations. The project described in this correspondence is the first effort, to our knowledge, in this specific TVE. The setup for this experiment consists of a one-Watt USAT located at Florida Solar Energy Center (FSEC) connected to two satellite modems tuned to different frequencies to establish two duplex ACTS Ka-band communication channels. A short training program on operation and maintenance of the system will be delivered while simultaneously monitoring and controlling the hybrid using the same satellite

  9. The Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Otte, Nepomuk

    The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation of imag-ing atmospheric Cherenkov telescope arrays. It has the goal of providing an order of magnitude increase in sensitivity for Very High Energy Gamma-ray ( 100 GeV to 100 TeV) astronomy compared to currently operating arrays such as CANGAROO, HESS, MAGIC, and VERITAS. After an overview of the science such an array would enable, we discuss the development of the components of the telescope system that are required to achieve the sensitivity goal. AGIS stresses improvements in several areas of IACT technology including component reliability as well as exploring cost reduction possibilities in order to achieve its goal. We discuss alterna-tives for the telescopes and positioners: a novel Schwarzschild-Couder telescope offering a wide field of view with a relatively smaller plate scale, and possibilities for rapid slewing in order to address the search for and/or study of Gamma-ray Bursts in the VHE gamma-ray regime. We also discuss options for a high pixel count camera system providing the necessary finer solid angle per pixel and possibilities for a fast topological trigger that would offer improved realtime background rejection and lower energy thresholds.

  10. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  11. Mobile visual communications and displays

    NASA Astrophysics Data System (ADS)

    Valliath, George T.

    2004-09-01

    The different types of mobile visual communication modes and the types of displays needed in cellular handsets are explored. The well-known 2-way video conferencing is only one of the possible modes. Some modes are already supported on current handsets while others need the arrival of advanced network capabilities to be supported. Displays for devices that support these visual communication modes need to deliver the required visual experience. Over the last 20 years the display has grown in size while the rest of the handset has shrunk. However, the display is still not large enough - the processor performance and network capabilities continue to outstrip the display ability. This makes the display a bottleneck. This paper will explore potential solutions to a small large image on a small handset.

  12. Advanced imaging techniques for small bowel Crohn's disease: what does the future hold?

    PubMed

    Pita, Inês; Magro, Fernando

    2018-01-01

    Treatment of Crohn's disease (CD) is intrinsically reliant on imaging techniques, due to the preponderance of small bowel disease and its transmural pattern of inflammation. Ultrasound (US), computed tomography (CT) and magnetic resonance imaging (MRI) are the most widely employed imaging methods and have excellent diagnostic accuracy in most instances. Some limitations persist, perhaps the most clinically relevant being the distinction between inflammatory and fibrotic strictures. In this regard, several methodologies have recently been tested in animal models and human patients, namely US strain elastography, shear wave elastography, contrast-enhanced US, magnetization transfer MRI and contrast dynamics in standard MRI. Technical advances in each of the imaging methods may expand their indications. The addition of oral contrast to abdominal US appears to substantially improve its diagnostic capabilities compared to standard US. Ionizing dose-reduction methods in CT can decrease concern about cumulative radiation exposure in CD patients and diffusion-weighted MRI may reduce the need for gadolinium contrast. Clinical indexes of disease activity and severity are also increasingly relying on imaging scores, such as the recently developed Lémann Index. In this review we summarize some of the recent advances in small bowel CD imaging and how they might affect clinical practice in the near future.

  13. Recent advances in targeted endoscopic imaging: Early detection of gastrointestinal neoplasms

    PubMed Central

    Kwon, Yong-Soo; Cho, Young-Seok; Yoon, Tae-Jong; Kim, Ho-Shik; Choi, Myung-Gyu

    2012-01-01

    Molecular imaging has emerged as a new discipline in gastrointestinal endoscopy. This technology encompasses modalities that can visualize disease-specific morphological or functional tissue changes based on the molecular signature of individual cells. Molecular imaging has several advantages including minimal damage to tissues, repetitive visualization, and utility for conducting quantitative analyses. Advancements in basic science coupled with endoscopy have made early detection of gastrointestinal cancer possible. Molecular imaging during gastrointestinal endoscopy requires the development of safe biomarkers and exogenous probes to detect molecular changes in cells with high specificity anda high signal-to-background ratio. Additionally, a high-resolution endoscope with an accurate wide-field viewing capability must be developed. Targeted endoscopic imaging is expected to improve early diagnosis and individual therapy of gastrointestinal cancer. PMID:22442742

  14. Pediatric Palliative Care in the Age of eHealth: Opportunities for Advances in HIT to Improve Patient-Centered Communication

    PubMed Central

    Madhavan, Subha; Sanders, Amy; Chou, Wen-Ying Sylvia; Shusterdg, Alex; Boone, Keith; Dente, Mark; Shad, Aziza T.; Hesse, Bradford W.

    2013-01-01

    Pediatric palliative care is an organized method for delivering effective, compassionate and timely care to children with cancer and their families, but it currently faces many challenges despite advances in technology and health care delivery. A key challenge involves unnecessary suffering from debilitating symptoms, such as pain, resulting from insufficient personalized treatment. Additionally, breakdowns in communication and a paucity of usable patient-centric information impede effective care. Recent advances in informatics for consumer health through eHealth initiatives have begun to be adopted in care coordination and communication, but overall remain under-utilized. Tremendous potentials exist in effective use of health information technology (HIT) to improve areas requiring personalized care such as pain management in pediatric oncology patients. This article aims first to identify communication challenges and needs in pediatric palliative cancer care from the perspectives of the entire group of individuals around the pediatric oncology patient, and then to describe how adoption and adaptation of these technologies can improve patient-provider communication, behavioral support, pain assessment, and education through integration into existing work flows. The goal of this research is to promote the value of using HIT standards-based technology solutions and stimulate development of interoperable, standardized technologies and delivery of context-sensitive information through user-friendly portals to facilitate communication in an existing pediatric clinical care setting. PMID:21521596

  15. AFFECTS - Advanced Forecast For Ensuring Communications Through Space

    NASA Astrophysics Data System (ADS)

    Bothmer, Volker

    2013-04-01

    Through the AFFECTS project funded by the European Union's 7th Framework Programme, European and US scientists develop an advanced proto-type space weather warning system to safeguard the operation of telecommunication and navigation systems on Earth to the threat of solar storms. The project is led by the University of Göttingen's Institute for Astrophysics and comprises worldwide leading research and academic institutions and industrial enterprises from Germany, Belgium, Ukraine, Norway and the United States. The key objectives of the AFFECTS project are: State-of-the-art analysis and modelling of the Sun-Earth chain of effects on the Earth's ionosphere and their subsequent impacts on communication systems based on multipoint space observations and complementary ground-based data. Development of a prototype space weather early warning system and reliable space weather forecasts, with specific emphasis on ionospheric applications. Dissemination of new space weather products and services to end users, the scientific community and general public. The presentation summarizes the project highlights, with special emphasis on the developed space weather forecast tools.

  16. End-to-end communication test on variable length packet structures utilizing AOS testbed

    NASA Technical Reports Server (NTRS)

    Miller, Warner H.; Sank, V.; Fong, Wai; Miko, J.; Powers, M.; Folk, John; Conaway, B.; Michael, K.; Yeh, Pen-Shu

    1994-01-01

    This paper describes a communication test, which successfully demonstrated the transfer of losslessly compressed images in an end-to-end system. These compressed images were first formatted into variable length Consultative Committee for Space Data Systems (CCSDS) packets in the Advanced Orbiting System Testbed (AOST). The CCSDS data Structures were transferred from the AOST to the Radio Frequency Simulations Operations Center (RFSOC), via a fiber optic link, where data was then transmitted through the Tracking and Data Relay Satellite System (TDRSS). The received data acquired at the White Sands Complex (WSC) was transferred back to the AOST where the data was captured and decompressed back to the original images. This paper describes the compression algorithm, the AOST configuration, key flight components, data formats, and the communication link characteristics and test results.

  17. Advancing Unmanned Aircraft Sensor Collection and Communication Capabilities with Optical Communications

    NASA Astrophysics Data System (ADS)

    Lukaczyk, T.

    2015-12-01

    Unmanned aircraft systems (UAS) are now being used for monitoring climate change over both land and seas. Their uses include monitoring of cloud conditions and atmospheric composition of chemicals and aerosols due to pollution, dust storms, fires, volcanic activity and air-sea fluxes. Additional studies of carbon flux are important for various ecosystem studies of both marine and terrestrial environments specifically, and can be related to climate change dynamics. Many measurements are becoming more complex as additional sensors become small enough to operate on more widely available small UAS. These include interferometric radars as well as scanning and fan-beam lidar systems which produce data streams even greater than those of high resolution video. These can be used to precisely map surfaces of the earth, ocean or ice features that are important for a variety of earth system studies. As these additional sensor capabilities are added to UAS the ability to transmit data back to ground or ship monitoring sites is limited by traditional wireless communication protocols. We describe results of tests of optical communication systems that provide significantly greater communication bandwidths for UAS, and discuss both the bandwidth and effective range of these systems, as well as their power and weight requirements both for systems on UAS, as well as those of ground-based receiver stations. We justify our additional use of Delay and Disruption Tolerant Networking (DTN) communication protocols with optical communication methods to ensure security and continuity of command and control operations. Finally, we discuss the implications for receiving, geo-referencing, archiving and displaying data streams from sensors communicated via optical communication to better enable real-time anomaly detection and adaptive sampling capabilities using multiple UAS or other unmanned or manned systems.

  18. Advances in Magnetic Resonance Imaging Contrast Agents for Biomarker Detection

    PubMed Central

    Sinharay, Sanhita; Pagel, Mark D.

    2016-01-01

    Recent advances in magnetic resonance imaging (MRI) contrast agents have provided new capabilities for biomarker detection through molecular imaging. MRI contrast agents based on the T2 exchange mechanism have more recently expanded the armamentarium of agents for molecular imaging. Compared with T1 and T2* agents, T2 exchange agents have a slower chemical exchange rate, which improves the ability to design these MRI contrast agents with greater specificity for detecting the intended biomarker. MRI contrast agents that are detected through chemical exchange saturation transfer (CEST) have even slower chemical exchange rates. Another emerging class of MRI contrast agents uses hyperpolarized 13C to detect the agent with outstanding sensitivity. These hyperpolarized 13C agents can be used to track metabolism and monitor characteristics of the tissue microenvironment. Together, these various MRI contrast agents provide excellent opportunities to develop molecular imaging for biomarker detection. PMID:27049630

  19. Advanced hip osteoarthritis: magnetic resonance imaging aspects and histopathology correlations.

    PubMed

    Leydet-Quilici, H; Le Corroller, T; Bouvier, C; Giorgi, R; Argenson, J-N; Champsaur, P; Pham, T; de Paula, A Maues; Lafforgue, P

    2010-11-01

    To correlate magnetic resonance imaging (MRI) aspects of the femoral head with histological findings in advanced hip osteoarthritis (OA), with special emphasis on bone marrow edema (BME). MRI was performed in patients with advanced hip OA scheduled for hip arthroplasty. Coronal T1-, fat-suppressed T2-, T1 with gadolinium intravenous injection sequences were obtained on a 1.5 T MR-scanner within 1 month before surgery. Coronal MR images corresponding to the ligamentum teres plane were analyzed by two independent readers blinded to histological data. Normal bone marrow, subchondral cyst, subchondral fracture, edema-like, necrosis-like, and necrosis MR patterns were reported on a synthesis scheme. After surgery, the femoral heads specimens were cut through the ligamentum teres plane and histologically analyzed for correlations. Twenty-three femoral heads were analyzed (female 56.5%, mean age 64.5 years). Edema-like MR pattern was correlated with histological (H) edema (Kappa (K): 0.77). Necrosis-like MR pattern was correlated with H fibrosis (K: 0.49) and with H necrosis (K: 0.24). Cyst MR pattern was correlated with H bone cysts (K: 0.58). Necrosis MR pattern corresponded to a mixture of histological lesions. Sensitivity and specificity of MRI varied from 26% to 80% and from 86% to 95% respectively. In advanced hip OA, the so-called "BME" MR lesion corresponds to a combination of edema, fibrosis, and necrosis at histopathology. When the classical "BME" is more specifically separated into edema-like and necrosis-like MR patterns, MR Imaging and histological findings show substantial agreement, with edema-like MR pattern mainly corresponding to histological edema. Copyright © 2010 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  20. Advanced image based methods for structural integrity monitoring: Review and prospects

    NASA Astrophysics Data System (ADS)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  1. "Doctor, Make My Decisions": Decision Control Preferences, Advance Care Planning, and Satisfaction With Communication Among Diverse Older Adults.

    PubMed

    Chiu, Catherine; Feuz, Mariko A; McMahan, Ryan D; Miao, Yinghui; Sudore, Rebecca L

    2016-01-01

    Culturally diverse older adults may prefer varying control over medical decisions. Decision control preferences (DCPs) may profoundly affect advance care planning (ACP) and communication. To determine the DCPs of diverse, older adults and whether DCPs are associated with participant characteristics, ACP, and communication satisfaction. A total of 146 participants were recruited from clinics and senior centers in San Francisco. We assessed DCPs using the control preferences scale: doctor makes all decisions (low), shares with doctor (medium), makes own decisions (high). We assessed associations between DCPs and demographics; prior advance directives; ability to make in-the-moment goals of care decisions; self-efficacy, readiness, and prior asked questions; and satisfaction with patient-doctor communication (on a five-point Likert scale), using Chi-square and Kruskal-Wallis analysis of variance. Mean age was 71 ± 10 years, 53% were non-white, 47% completed an advance directive, and 70% made goals of care decisions. Of the sample, 18% had low DCPs, 33% medium, and 49% high. Older age was the only characteristic associated with DCPs (low: 75 ± 11 years, medium: 69 ± 10 years, high: 70 ± 9 years, P = 0.003). DCPs were not associated with ACP, in-the-moment decisions, or communication satisfaction. Readiness was the only question-asking behavior associated (low: 3.8 ± 1.2, medium: 4.1 ± 1.2, high: 4.3 ± 1.2, P = 0.05). Nearly one-fifth of diverse, older adults want doctors to make their medical decisions. Older age and lower readiness to ask questions were the only demographic variables significantly associated with low DCPs. Yet, older adults with low DCPs still engaged in ACP, asked questions, and reported communication satisfaction. Clinicians can encourage ACP and questions for all patients, but should assess DCPs to provide the desired amount of decision support. Copyright © 2016 American Academy of Hospice and Palliative Medicine. All

  2. Recent advances in imaging cancer of the kidney and urinary tract.

    PubMed

    Hilton, Susan; Jones, Lisa P

    2014-10-01

    Modern radiologic imaging is an aid to treatment planning for localized renal cancer, enabling characterization of mass lesions. For patients who present with advanced renal cancer, new imaging techniques enable a functional assessment of treatment response not possible using anatomic measurements alone. Multidetector CT urography permits simultaneous assessment of the kidneys and urinary tract for patients with unexplained hematuria. Both CT and MRI play a significant role in staging and follow up of patients treated for urothelial cancer. Newer imaging methods such as diffusion-weighted MRI have shown promising results for improving accuracy of staging and follow up of urothelial cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. MO-FG-207-00: Technological Advances in PET/MR Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The use of integrated PET/MRI systems in clinical applications can best benefit from understanding their technological advances and limitations. The currently available clinical PET/MRI systems have their own characteristics. Thorough analyses of existing technical data and evaluation of necessary performance metrics for quality assurances could be conducted to optimize application-specific PET/MRI protocols. This Symposium will focus on technical advances and limitations of clinical PET/MRI systems, and how this exciting imaging modality can be utilized in applications that can benefit from both PET and MRI. Learning Objectives: To understand the technological advances of clinical PET/MRI systems To correctly identify clinical applicationsmore » that can benefit from PET/MRI To understand ongoing work to further improve the current PET/MRI technology Floris Jansen is a GE Healthcare employee.« less

  4. Interdepartmental conflict management and negotiation in cardiovascular imaging.

    PubMed

    Otero, Hansel J; Nallamshetty, Leelakrishna; Rybicki, Frank J

    2008-07-01

    Although the relationship between cardiologists and radiologists has a thorny history, advanced cardiac imaging technology and the promise of cardiac computed tomography are forcing both specialties back to the negotiation table. These discussions represent an opportunity for better communication, collaboration, and resource allocation. The authors address the aspects of interdepartmental conflict management and negotiation through their radiology department's ongoing efforts to provide high-quality advanced noninvasive cardiovascular imaging services at a large academic institution. The definition and causes of conflict are defined, with a specific focus on noninvasive cardiovascular imaging, followed by a description of steps used in the negotiation process. The authors encourage radiologists to entertain an open dialogue with cardiology, because in many cases, both sides can benefit. The benefits of a negotiated outcome include minimizing internal competitors, incorporating cardiologists' expertise to cardiac imaging algorithms, and more effective training opportunities.

  5. Recent Efforts in Advanced High Frequency Communications at the Glenn Research Center in Support of NASA Mission

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2015-01-01

    This presentation will discuss research and technology development work at the NASA Glenn Research Center in advanced frequency communications in support of NASAs mission. An overview of the work conducted in-house and also in collaboration with academia, industry, and other government agencies (OGA) in areas such as antenna technology, power amplifiers, radio frequency (RF) wave propagation through Earths atmosphere, ultra-sensitive receivers, among others, will be presented. In addition, the role of these and other related RF technologies in enabling the NASA next generation space communications architecture will be also discussed.

  6. Intraoperative utilization of advanced imaging modalities in a complex kidney stone case: a pilot case study.

    PubMed

    Christiansen, Andrew R; Shorti, Rami M; Smith, Cory D; Prows, William C; Bishoff, Jay T

    2018-05-01

    Despite the increasing use of advanced 3D imaging techniques and 3D printing, these techniques have not yet been comprehensively compared in a surgical setting. The purpose of this study is to explore the effectiveness of five different advanced imaging modalities during a complex renal surgical procedure. A patient with a horseshoe kidney and multiple large, symptomatic stones that had failed Extracorporeal Shock Wave Lithotripsy (ESWL) and ureteroscopy treatment was used for this evaluation. CT data were used to generate five different imaging modalities, including a 3D printed model, three different volume rendered models, and a geometric CAD model. A survey was used to evaluate the quality and breadth of the imaging modalities during four different phases of the laparoscopic procedure. In the case of a complex kidney procedure, the CAD model, 3D print, volume render on an autostereoscopic 3D display, interactive and basic volume render models demonstrated added insight and complemented the surgical procedure. CAD manual segmentation allowed tissue layers and/or kidney stones to be made colorful and semi-transparent, allowing easier navigation through abnormal vasculature. The 3D print allowed for simultaneous visualization of renal pelvis and surrounding vasculature. Our preliminary exploration indicates that various advanced imaging modalities, when properly utilized and supported during surgery, can be useful in complementing the CT data and laparoscopic display. This study suggests that various imaging modalities, such as ones utilized in this case, can be beneficial intraoperatively depending on the surgical step involved and may be more helpful than 3D printed models. We also present factors to consider when evaluating advanced imaging modalities during complex surgery.

  7. The Advanced Communications Technology Satellite - Performance, Reliability and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Krawczyk, Richard J.; Ignaczak, Louis R.

    2000-01-01

    The Advanced Communications Satellite (ACTS) was conceived and developed in the mid- 1980s as an experimental satellite to demonstrate unproven Ka-band technology, and potential new commercial applications and services. Since launch into geostationary orbit in September 1993. ACTS has accumulated almost seven years of essentially trouble-free operation and met all program objectives. The unique technology, service experiments. and system level demonstrations accomplished by ACTS have been reported in many forums over the past several years. As ACTS completes its final experiments activity, this paper will relate the top-level program goals that have been achieved in the design, operation, and performance of the particular satellite subsystems. Pre-launch decisions to ensure satellite reliability and the subsequent operational experiences contribute to lessons learned that may be applicable to other comsat programs.

  8. Dynamic rain fade compensation techniques for the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1992-01-01

    The dynamic and composite nature of propagation impairments that are incurred on earth-space communications links at frequencies in and above the 30/20 GHz Ka band necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) project by the implementation of optimal processing schemes derived through the use of the ACTS Rain Attenuation Prediction Model and nonlinear Markov filtering theory. The ACTS Rain Attenuation Prediction Model discerns climatological variations on the order of 0.5 deg in latitude and longitude in the continental U.S. The time-dependent portion of the model gives precise availability predictions for the 'spot beam' links of ACTS. However, the structure of the dynamic portion of the model, which yields performance parameters such as fade duration probabilities, is isomorphic to the state-variable approach of stochastic control theory and is amenable to the design of such statistical fade processing schemes which can be made specific to the particular climatological location at which they are employed.

  9. Magnetic particle imaging: advancements and perspectives for real-time in vivo monitoring and image-guided therapy

    NASA Astrophysics Data System (ADS)

    Pablico-Lansigan, Michele H.; Situ, Shu F.; Samia, Anna Cristina S.

    2013-05-01

    Magnetic particle imaging (MPI) is an emerging biomedical imaging technology that allows the direct quantitative mapping of the spatial distribution of superparamagnetic iron oxide nanoparticles. MPI's increased sensitivity and short image acquisition times foster the creation of tomographic images with high temporal and spatial resolution. The contrast and sensitivity of MPI is envisioned to transcend those of other medical imaging modalities presently used, such as magnetic resonance imaging (MRI), X-ray scans, ultrasound, computed tomography (CT), positron emission tomography (PET) and single photon emission computed tomography (SPECT). In this review, we present an overview of the recent advances in the rapidly developing field of MPI. We begin with a basic introduction of the fundamentals of MPI, followed by some highlights over the past decade of the evolution of strategies and approaches used to improve this new imaging technique. We also examine the optimization of iron oxide nanoparticle tracers used for imaging, underscoring the importance of size homogeneity and surface engineering. Finally, we present some future research directions for MPI, emphasizing the novel and exciting opportunities that it offers as an important tool for real-time in vivo monitoring. All these opportunities and capabilities that MPI presents are now seen as potential breakthrough innovations in timely disease diagnosis, implant monitoring, and image-guided therapeutics.

  10. An Ecological Framework for Cancer Communication: Implications for Research

    PubMed Central

    Intille, Stephen S; Zabinski, Marion F

    2005-01-01

    The field of cancer communication has undergone a major revolution as a result of the Internet. As recently as the early 1990s, face-to-face, print, and the telephone were the dominant methods of communication between health professionals and individuals in support of the prevention and treatment of cancer. Computer-supported interactive media existed, but this usually required sophisticated computer and video platforms that limited availability. The introduction of point-and-click interfaces for the Internet dramatically improved the ability of non-expert computer users to obtain and publish information electronically on the Web. Demand for Web access has driven computer sales for the home setting and improved the availability, capability, and affordability of desktop computers. New advances in information and computing technologies will lead to similarly dramatic changes in the affordability and accessibility of computers. Computers will move from the desktop into the environment and onto the body. Computers are becoming smaller, faster, more sophisticated, more responsive, less expensive, and—essentially—ubiquitous. Computers are evolving into much more than desktop communication devices. New computers include sensing, monitoring, geospatial tracking, just-in-time knowledge presentation, and a host of other information processes. The challenge for cancer communication researchers is to acknowledge the expanded capability of the Web and to move beyond the approaches to health promotion, behavior change, and communication that emerged during an era when language- and image-based interpersonal and mass communication strategies predominated. Ecological theory has been advanced since the early 1900s to explain the highly complex relationships among individuals, society, organizations, the built and natural environments, and personal and population health and well-being. This paper provides background on ecological theory, advances an Ecological Model of Internet

  11. Advanced radiology information system.

    PubMed

    Kolovou, L; Vatousi, M; Lymperopoulos, D; Koukias, M

    2005-01-01

    The innovative features of an advanced Radiology Information System (RIS) are presented in this paper. The interoperability of RIS with the other Intra-hospital Information Systems that interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms [1]. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol's specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The same mechanism allows the secure and HL7-compatible interactions with the Hospital Information System (HIS) too. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS). The whole structure ensures the automation of the every-day procedures that the ;medical protocol' specifies and provides its services through a friendly and easy to manage graphical user interface.

  12. Advancements in optical techniques and imaging in the diagnosis and management of bladder cancer.

    PubMed

    Rose, Tracy L; Lotan, Yair

    2018-03-01

    Accurate detection and staging is critical to the appropriate management of urothelial cancer (UC). The use of advanced optical techniques during cystoscopy is becoming more widespread to prevent recurrent nonmuscle invasive bladder cancer. Standard of care for muscle-invasive UC includes the use of computed tomography and/or magnetic resonance imaging, but staging accuracy of these tests remains imperfect. Novel imaging modalities are being developed to improve current test performance. Positron emission tomography/computed tomography has a role in the initial evaluation of select patients with muscle-invasive bladder cancer and in disease recurrence in some cases. Several novel immuno-positron emission tomography tracers are currently in development to address the inadequacy of current imaging modalities for monitoring of tumor response to newer immune-based treatments. This review summaries the current standards and recent advances in optical techniques and imaging modalities in localized and metastatic UC. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Science with the Advanced Gamma Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo

    2009-05-01

    We present the scientific drivers for the Advanced Gamma Ray Imaging System (AGIS), a concept for the next-generation ground- based gamma-ray experiment, comprised of an array of ˜100 imaging atmospheric Cherenkov telescopes. Design requirements for AGIS include achieving a sensitivity an order of magnitude better than the current generation of space or ground-based instruments in the energy range of 40 GeV to ˜100 TeV. We present here an overview of the scientific goals of AGIS, including the prospects for understanding VHE phenomena in the vicinity of accreting black holes, particle acceleration in a variety of astrophysical environments, indirect detection of dark matter, study of cosmological background radiation fields, and particle physics beyond the standard model.

  14. High-resolution x-ray imaging for microbiology at the Advanced Photon Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Kemner, K. M.; Maser, J.

    1999-11-02

    Exciting new applications of high-resolution x-ray imaging have emerged recently due to major advances in high-brilliance synchrotrons sources and high-performance zone plate optics. Imaging with submicron resolution is now routine with hard x-rays: the authors have demonstrated 150 run in the 6--10 keV range with x-ray microscopes at the Advanced Photon Source (APS), a third-generation synchrotrons radiation facility. This has fueled interest in using x-ray imaging in applications ranging from the biomedical, environmental, and materials science fields to the microelectronics industry. One important application they have pursued at the APS is a study of the microbiology of bacteria and theirmore » associated extracellular material (biofilms) using fluorescence microanalysis. No microscopy techniques were previously available with sufficient resolution to study live bacteria ({approx}1 {micro}m x 4 {micro}m in size) and biofilms in their natural hydrated state with better than part-per-million elemental sensitivity and the capability of determining g chemical speciation. In vivo x-ray imaging minimizes artifacts due to sample fixation, drying, and staining. This provides key insights into the transport of metal contaminants by bacteria in the environment and potential new designs for remediation and sequestration strategies.« less

  15. Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017.

    PubMed

    Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron

    2018-01-01

    As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products.

  16. Wireless image-data transmission from an implanted image sensor through a living mouse brain by intra body communication

    NASA Astrophysics Data System (ADS)

    Hayami, Hajime; Takehara, Hiroaki; Nagata, Kengo; Haruta, Makito; Noda, Toshihiko; Sasagawa, Kiyotaka; Tokuda, Takashi; Ohta, Jun

    2016-04-01

    Intra body communication technology allows the fabrication of compact implantable biomedical sensors compared with RF wireless technology. In this paper, we report the fabrication of an implantable image sensor of 625 µm width and 830 µm length and the demonstration of wireless image-data transmission through a brain tissue of a living mouse. The sensor was designed to transmit output signals of pixel values by pulse width modulation (PWM). The PWM signals from the sensor transmitted through a brain tissue were detected by a receiver electrode. Wireless data transmission of a two-dimensional image was successfully demonstrated in a living mouse brain. The technique reported here is expected to provide useful methods of data transmission using micro sized implantable biomedical sensors.

  17. Gold nanoparticle contrast agents in advanced X-ray imaging technologies.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Sang Joon

    2013-05-17

    Recently, there has been significant progress in the field of soft- and hard-X-ray imaging for a wide range of applications, both technically and scientifically, via developments in sources, optics and imaging methodologies. While one community is pursuing extensive applications of available X-ray tools, others are investigating improvements in techniques, including new optics, higher spatial resolutions and brighter compact sources. For increased image quality and more exquisite investigation on characteristic biological phenomena, contrast agents have been employed extensively in imaging technologies. Heavy metal nanoparticles are excellent absorbers of X-rays and can offer excellent improvements in medical diagnosis and X-ray imaging. In this context, the role of gold (Au) is important for advanced X-ray imaging applications. Au has a long-history in a wide range of medical applications and exhibits characteristic interactions with X-rays. Therefore, Au can offer a particular advantage as a tracer and a contrast enhancer in X-ray imaging technologies by sensing the variation in X-ray attenuation in a given sample volume. This review summarizes basic understanding on X-ray imaging from device set-up to technologies. Then this review covers recent studies in the development of X-ray imaging techniques utilizing gold nanoparticles (AuNPs) and their relevant applications, including two- and three-dimensional biological imaging, dynamical processes in a living system, single cell-based imaging and quantitative analysis of circulatory systems and so on. In addition to conventional medical applications, various novel research areas have been developed and are expected to be further developed through AuNP-based X-ray imaging technologies.

  18. Imaging Transcriptional Regulation of Eukaryotic mRNA Genes: Advances and Outlook.

    PubMed

    Yao, Jie

    2017-01-06

    Regulation of eukaryotic transcription in vivo occurs at distinct stages. Previous research has identified many active or repressive transcription factors (TFs) and core transcription components and studied their functions in vitro and in vivo. Nonetheless, how individual TFs act in concert to regulate mRNA gene expression in a single cell remains poorly understood. Direct observation of TF assembly and disassembly and various biochemical reactions during transcription of a single-copy gene in vivo is the ideal approach to study this problem. Research in this area requires developing novel techniques for single-cell transcription imaging and integrating imaging studies into understanding the molecular biology of transcription. In the past decade, advanced cell imaging has enabled unprecedented capabilities to visualize individual TF molecules, to track single transcription sites, and to detect individual mRNA in fixed and living cells. These studies have raised several novel insights on transcriptional regulation such as the "hit-and-run" model and transcription bursting that could not be obtained by in vitro biochemistry analysis. At this point, the key question is how to achieve deeper understandings or discover novel mechanisms of eukaryotic transcriptional regulation by imaging transcription in single cells. Meanwhile, further technical advancements are likely required for visualizing distinct kinetic steps of transcription on a single-copy gene in vivo. This review article summarizes recent progress in the field and describes the challenges and opportunities ahead. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. NASA's First Laser Communication System

    NASA Image and Video Library

    2017-12-08

    A new NASA-developed, laser-based space communication system will enable higher rates of satellite communications similar in capability to high-speed fiber optic networks on Earth. The space terminal for the Lunar Laser Communication Demonstration (LLCD), NASA's first high-data-rate laser communication system, was recently integrated onto the Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft. LLCD will demonstrate laser communications from lunar orbit to Earth at six times the rate of the best modern-day advanced radio communication systems. Credit: NASA ----- What is LADEE? The Lunar Atmosphere and Dust Environment Explorer (LADEE) is designed to study the Moon's thin exosphere and the lunar dust environment. An "exosphere" is an atmosphere that is so thin and tenuous that molecules don't collide with each other. Studying the Moon's exosphere will help scientists understand other planetary bodies with exospheres too, like Mercury and some of Jupiter's bigger moons. The orbiter will determine the density, composition and temporal and spatial variability of the Moon's exosphere to help us understand where the species in the exosphere come from and the role of the solar wind, lunar surface and interior, and meteoric infall as sources. The mission will also examine the density and temporal and spatial variability of dust particles that may get lofted into the atmosphere. The mission also will test several new technologies, including a modular spacecraft bus that may reduce the cost of future deep space missions and demonstrate two-way high rate laser communication for the first time from the Moon. LADEE now is ready to launch when the window opens on Sept. 6, 2013. Read more: www.nasa.gov/ladee NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing

  20. Young Girls' Eating Attitudes and Body Image Dissatisfaction: Associations with Communication and Modeling

    ERIC Educational Resources Information Center

    Kichler, Jessica C.; Crowther, Janis H.

    2009-01-01

    The relationships among communication, modeling, body image dissatisfaction, and maladaptive eating attitudes and behaviors in preadolescent girls were investigated in a cross-sectional study of 69 girls in fourth through sixth grade and their mothers. Participants completed questionnaires assessing familial and peer influences, body image…

  1. Intelligent distributed medical image management

    NASA Astrophysics Data System (ADS)

    Garcia, Hong-Mei C.; Yun, David Y.

    1995-05-01

    The rapid advancements in high performance global communication have accelerated cooperative image-based medical services to a new frontier. Traditional image-based medical services such as radiology and diagnostic consultation can now fully utilize multimedia technologies in order to provide novel services, including remote cooperative medical triage, distributed virtual simulation of operations, as well as cross-country collaborative medical research and training. Fast (efficient) and easy (flexible) retrieval of relevant images remains a critical requirement for the provision of remote medical services. This paper describes the database system requirements, identifies technological building blocks for meeting the requirements, and presents a system architecture for our target image database system, MISSION-DBS, which has been designed to fulfill the goals of Project MISSION (medical imaging support via satellite integrated optical network) -- an experimental high performance gigabit satellite communication network with access to remote supercomputing power, medical image databases, and 3D visualization capabilities in addition to medical expertise anywhere and anytime around the country. The MISSION-DBS design employs a synergistic fusion of techniques in distributed databases (DDB) and artificial intelligence (AI) for storing, migrating, accessing, and exploring images. The efficient storage and retrieval of voluminous image information is achieved by integrating DDB modeling and AI techniques for image processing while the flexible retrieval mechanisms are accomplished by combining attribute- based and content-based retrievals.

  2. Initial experience with a handheld device digital imaging and communications in medicine viewer: OsiriX mobile on the iPhone.

    PubMed

    Choudhri, Asim F; Radvany, Martin G

    2011-04-01

    Medical imaging is commonly used to diagnose many emergent conditions, as well as plan treatment. Digital images can be reviewed on almost any computing platform. Modern mobile phones and handheld devices are portable computing platforms with robust software programming interfaces, powerful processors, and high-resolution displays. OsiriX mobile, a new Digital Imaging and Communications in Medicine viewing program, is available for the iPhone/iPod touch platform. This raises the possibility of mobile review of diagnostic medical images to expedite diagnosis and treatment planning using a commercial off the shelf solution, facilitating communication among radiologists and referring clinicians.

  3. Efficient demodulation scheme for rolling-shutter-patterning of CMOS image sensor based visible light communications.

    PubMed

    Chen, Chia-Wei; Chow, Chi-Wai; Liu, Yang; Yeh, Chien-Hung

    2017-10-02

    Recently even the low-end mobile-phones are equipped with a high-resolution complementary-metal-oxide-semiconductor (CMOS) image sensor. This motivates using a CMOS image sensor for visible light communication (VLC). Here we propose and demonstrate an efficient demodulation scheme to synchronize and demodulate the rolling shutter pattern in image sensor based VLC. The implementation algorithm is discussed. The bit-error-rate (BER) performance and processing latency are evaluated and compared with other thresholding schemes.

  4. Effect of Picture Archiving and Communication System Image Manipulation on the Agreement of Chest Radiograph Interpretation in the Neonatal Intensive Care Unit.

    PubMed

    Castro, Denise A; Naqvi, Asad Ahmed; Vandenkerkhof, Elizabeth; Flavin, Michael P; Manson, David; Soboleski, Donald

    2016-01-01

    Variability in image interpretation has been attributed to differences in the interpreters' knowledge base, experience level, and access to the clinical scenario. Picture archiving and communication system (PACS) has allowed the user to manipulate the images while developing their impression of the radiograph. The aim of this study was to determine the agreement of chest radiograph (CXR) impressions among radiologists and neonatologists and help determine the effect of image manipulation with PACS on report impression. Prospective cohort study included 60 patients from the Neonatal Intensive Care Unit undergoing CXRs. Three radiologists and three neonatologists reviewed two consecutive frontal CXRs of each patient. Each physician was allowed manipulation of images as needed to provide a decision of "improved," "unchanged," or "disease progression" lung disease for each patient. Each physician repeated the process once more; this time, they were not allowed to individually manipulate the images, but an independent radiologist presets the image brightness and contrast to best optimize the CXR appearance. Percent agreement and opposing reporting views were calculated between all six physicians for each of the two methods (allowing and not allowing image manipulation). One hundred percent agreement in image impression between all six observers was only seen in 5% of cases when allowing image manipulation; 100% agreement was seen in 13% of the cases when there was no manipulation of the images. Agreement in CXR interpretation is poor; the ability to manipulate the images on PACS results in a decrease in agreement in the interpretation of these studies. New methods to standardize image appearance and allow improved comparison with previous studies should be sought to improve clinician agreement in interpretation consistency and advance patient care.

  5. Family caregiver communication in oncology: advancing a typology.

    PubMed

    Goldsmith, Joy; Wittenberg, Elaine; Platt, Christine Small; Iannarino, Nicholas T; Reno, Jenna

    2016-04-01

    The quality of communication between the patient and family caregiver impacts quality of life and well-being for the two; however, providers have few tools to understand communication patterns and assess the communication needs and preferences of caregivers. The aims of this study were to examine family communication patterns among oncology patients and their caregivers and to identify common characteristics among four different types of family caregivers. Nurses recruited oncology patient-caregiver dyads through a large cancer treatment center in the Southeast. Patients and caregivers were separated from one another and interviewed during chemotherapeutic infusions. Interviews were recorded, transcribed, coded, and thematized. A sample of 24 patients and their caregivers (n = 48) were interviewed. The majority of dyads (21, 88%) shared the same family communication pattern. Common caregiver communication features support previous work identifying four caregiver communication types: Manager, Carrier, Partner, and Lone caregivers. Manager caregivers lead patients by utilizing extensive medical knowledge, whereas Carrier caregivers were led by patients and described tireless acts to maintain the family and avoid difficult conversations. Partner caregivers facilitated family involvement and open communication on a variety of topics, while Lone caregivers focused solely on biomedical matters and a hope for cure. Caregiver communication types were corroborated by patient-caregiver descriptions of caregiving. However, more information is needed to ascertain the variables associated with each caregiver type. Future work to improve identification of caregiver types and create targeted caregiver care plans will require further study of health literacy levels and tested communication interventions per type. Copyright © 2015 John Wiley & Sons, Ltd.

  6. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging.

    PubMed

    Schultz, Simon R; Copeland, Caroline S; Foust, Amanda J; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size.

  7. Advances in two photon scanning and scanless microscopy technologies for functional neural circuit imaging

    PubMed Central

    Schultz, Simon R.; Copeland, Caroline S.; Foust, Amanda J.; Quicke, Peter; Schuck, Renaud

    2017-01-01

    Recent years have seen substantial developments in technology for imaging neural circuits, raising the prospect of large scale imaging studies of neural populations involved in information processing, with the potential to lead to step changes in our understanding of brain function and dysfunction. In this article we will review some key recent advances: improved fluorophores for single cell resolution functional neuroimaging using a two photon microscope; improved approaches to the problem of scanning active circuits; and the prospect of scanless microscopes which overcome some of the bandwidth limitations of current imaging techniques. These advances in technology for experimental neuroscience have in themselves led to technical challenges, such as the need for the development of novel signal processing and data analysis tools in order to make the most of the new experimental tools. We review recent work in some active topics, such as region of interest segmentation algorithms capable of demixing overlapping signals, and new highly accurate algorithms for calcium transient detection. These advances motivate the development of new data analysis tools capable of dealing with spatial or spatiotemporal patterns of neural activity, that scale well with pattern size. PMID:28757657

  8. Advances in detection of diffuse seafloor venting using structured light imaging.

    NASA Astrophysics Data System (ADS)

    Smart, C.; Roman, C.; Carey, S.

    2016-12-01

    Systematic, remote detection and high resolution mapping of low temperature diffuse hydrothermal venting is inefficient and not currently tractable using traditional remotely operated vehicle (ROV) mounted sensors. Preliminary results for hydrothermal vent detection using a structured light laser sensor were presented in 2011 and published in 2013 (Smart) with continual advancements occurring in the interim. As the structured light laser passes over active venting, the projected laser line effectively blurs due to the associated turbulence and density anomalies in the vent fluid. The degree laser disturbance is captured by a camera collecting images of the laser line at 20 Hz. Advancements in the detection of the laser and fluid interaction have included extensive normalization of the collected laser data and the implementation of a support vector machine algorithm to develop a classification routine. The image data collected over a hydrothermal vent field is then labeled as seafloor, bacteria or a location of venting. The results can then be correlated with stereo images, bathymetry and backscatter data. This sensor is a component of an ROV mounted imaging suite which also includes stereo cameras and a multibeam sonar system. Originally developed for bathymetric mapping, the structured light laser sensor, and other imaging suite components, are capable of creating visual and bathymetric maps with centimeter level resolution. Surveys are completed in a standard mowing the lawn pattern completing a 30m x 30m survey with centimeter level resolution in under an hour. Resulting co-registered data includes, multibeam and structured light laser bathymetry and backscatter, stereo images and vent detection. This system allows for efficient exploration of areas with diffuse and small point source hydrothermal venting increasing the effectiveness of scientific sampling and observation. Recent vent detection results collected during the 2013-2015 E/V Nautilus seasons will be

  9. A Complete Image Management and Communications Network for the Neuroradiology Service at Georgetown University Hospital

    NASA Astrophysics Data System (ADS)

    Horii, Steven C.; Muraki, Alan; Mallon-Ingeholm, Mary L.; Mun, Seong K.; Clark, Letitia; Schellinger, Dieter

    1989-05-01

    A complete image management and communications system has been installed at Georgetown University Hospital (GUH). The network is based on the A T & T CommView System. In the Neuroradiology Division, this comprehensive network supports a multiscreen workstation with access to multiple imaging modalities such as CT and MRI from both the hospital and a remote imaging center. In addition, the radiologist can access these images from various workstations located throughout the hospital as well as from remote sites such as the home. Among the radiology services supported by the network, neuroradiology has the greatest need for such a system with extensive daily requirements involving the remote imaging center and on-line consultation around the clock. By providing neuroradiology with all available communication links, the radiologist can monitor, diagnose, and consult. The remote site has a subsystem capable of acquiring images and transmitting them over a high speed T1 data circuit. The GUH neuroradiologist can view these images on the neuro workstation or any of the workstations available in the Hospital. Fast and easy access to the images allows a radiologist to monitor multiple examinations as well as to utilize the workstation for diagnosis. To provide the neuroradiologist quick access to images at all times, a PC-based Results Viewing Station (RVS) has been placed in a doctor's home. Images may be sent to the RVS, or the user may request images from the central database at the hospital. Images can be viewed at home either as they are transmitted, or following transfer of a whole study. The efficiency and effectiveness of the system's capabilities with special regard to remote and teleradiology (RVS) operations have been studied for the neuroradiology service. This paper will discuss the current clinical acceptance and use, problems in implementation, and ways these difficulties are being surmounted.

  10. Socioeconomic and Demographic Predictors of Missed Opportunities to Provide Advanced Imaging Services.

    PubMed

    Glover, McKinley; Daye, Dania; Khalilzadeh, Omid; Pianykh, Oleg; Rosenthal, Daniel I; Brink, James A; Flores, Efrén J

    2017-11-01

    The extent to which racial and socioeconomic disparities exist in accessing clinically appropriate, advanced diagnostic imaging has not been well studied. This study assesses the relationship between demographic and socioeconomic factors and the incidence of imaging missed care opportunities (IMCOs). We performed a retrospective review of outpatient CT and MRI appointments at a quaternary academic medical center and affiliated outpatient facilities during a 12-month period. Missed appointments not rescheduled in advance were classified as IMCOs. Appropriateness criteria scores and demographics were also obtained. Univariate and multivariate analyses were performed to determine if demographic and socioeconomic factors were predictive of IMCOs. Overall, 57,847 patients met inclusion criteria, representing 89,943 scheduled unique imaging appointments of which 5,840 (6.1%) were IMCOs; 0.8% of IMCO appointments had low appropriateness scores compared with 1.2% of completed appointments (P < .01). Appointments covered by commercial insurance (5.2%) had a significantly lower rate of IMCOs than other payers: Medicare = 6.3%, Medicaid = 14.5%, self-pay = 12.0% (P < .05). The following factors were independent predictors of a patient having ≥ 1 IMCO: noncommercial insurance [odds ratio (OR) = 1.7-2.6], African American (OR = 1.8), Hispanic (OR = 1.2), other race (OR = 1.1), language other than English or Spanish (OR = 1.2), male gender (OR = 1.2), age ≥ 65 (OR = 0.71), and median household income of patient home zip code <$50,000 (OR = 1.4). Race and socioeconomic status are independent predictors of IMCOs. In efforts to enhance patient engagement, radiologists should be aware of the impact of race and socioeconomic status on access to clinically appropriate advanced diagnostic imaging. Copyright © 2017 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  11. Advanced information society(5)

    NASA Astrophysics Data System (ADS)

    Tanizawa, Ippei

    Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).

  12. Smart image sensors: an emerging key technology for advanced optical measurement and microsystems

    NASA Astrophysics Data System (ADS)

    Seitz, Peter

    1996-08-01

    Optical microsystems typically include photosensitive devices, analog preprocessing circuitry and digital signal processing electronics. The advances in semiconductor technology have made it possible today to integrate all photosensitive and electronical devices on one 'smart image sensor' or photo-ASIC (application-specific integrated circuits containing photosensitive elements). It is even possible to provide each 'smart pixel' with additional photoelectronic functionality, without compromising the fill factor substantially. This technological capability is the basis for advanced cameras and optical microsystems showing novel on-chip functionality: Single-chip cameras with on- chip analog-to-digital converters for less than $10 are advertised; image sensors have been developed including novel functionality such as real-time selectable pixel size and shape, the capability of performing arbitrary convolutions simultaneously with the exposure, as well as variable, programmable offset and sensitivity of the pixels leading to image sensors with a dynamic range exceeding 150 dB. Smart image sensors have been demonstrated offering synchronous detection and demodulation capabilities in each pixel (lock-in CCD), and conventional image sensors are combined with an on-chip digital processor for complete, single-chip image acquisition and processing systems. Technological problems of the monolithic integration of smart image sensors include offset non-uniformities, temperature variations of electronic properties, imperfect matching of circuit parameters, etc. These problems can often be overcome either by designing additional compensation circuitry or by providing digital correction routines. Where necessary for technological or economic reasons, smart image sensors can also be combined with or realized as hybrids, making use of commercially available electronic components. It is concluded that the possibilities offered by custom smart image sensors will influence the design

  13. WE-DE-207A-00: Advances in Image-Guided Neurointerventions-Clinical Pull and Technology Push

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are

  14. An experiment in remote manufacturing using the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Tsatsoulis, Costas; Frost, Victor

    1991-01-01

    The goal of the completed project was to develop an experiment in remote manufacturing that would use the capabilities of the ACTS satellite. A set of possible experiments that could be performed using the Advanced Communications Technology Satellite (ACTS), and which would perform remote manufacturing using a laser cutter and an integrated circuit testing machine are described in detail. The proposed design is shown to be a feasible solution to the offered problem and it takes into consideration the constraints that were placed on the experiment. In addition, we have developed two more experiments that are included in this report: backup of rural telecommunication networks, and remote use of Synthetic Aperture Radar (SAR) data analysis for on-site collection of glacier scattering data in the Antarctic.

  15. Advanced networks and computing in healthcare

    PubMed Central

    Ackerman, Michael

    2011-01-01

    As computing and network capabilities continue to rise, it becomes increasingly important to understand the varied applications for using them to provide healthcare. The objective of this review is to identify key characteristics and attributes of healthcare applications involving the use of advanced computing and communication technologies, drawing upon 45 research and development projects in telemedicine and other aspects of healthcare funded by the National Library of Medicine over the past 12 years. Only projects publishing in the professional literature were included in the review. Four projects did not publish beyond their final reports. In addition, the authors drew on their first-hand experience as project officers, reviewers and monitors of the work. Major themes in the corpus of work were identified, characterizing key attributes of advanced computing and network applications in healthcare. Advanced computing and network applications are relevant to a range of healthcare settings and specialties, but they are most appropriate for solving a narrower range of problems in each. Healthcare projects undertaken primarily to explore potential have also demonstrated effectiveness and depend on the quality of network service as much as bandwidth. Many applications are enabling, making it possible to provide service or conduct research that previously was not possible or to achieve outcomes in addition to those for which projects were undertaken. Most notable are advances in imaging and visualization, collaboration and sense of presence, and mobility in communication and information-resource use. PMID:21486877

  16. The Advanced Communication Technology Satellite and ISDN

    NASA Technical Reports Server (NTRS)

    Lowry, Peter A.

    1996-01-01

    This paper depicts the Advanced Communication Technology Satellite (ACTS) system as a global central office switch. The ground portion of the system is the collection of earth stations or T1-VSAT's (T1 very small aperture terminals). The control software for the T1-VSAT's resides in a single CPU. The software consists of two modules, the modem manager and the call manager. The modem manager (MM) controls the RF modem portion of the T1-VSAT. It processes the orderwires from the satellite or from signaling generated by the call manager (CM). The CM controls the Recom Laboratories MSPs by receiving signaling messages from the stacked MSP shelves ro units and sending appropriate setup commands to them. There are two methods used to setup and process calls in the CM; first by dialing up a circuit using a standard telephone handset or, secondly by using an external processor connected to the CPU's second COM port, by sending and receiving signaling orderwires. It is the use of the external processor which permits the ISDN (Integrated Services Digital Network) Signaling Processor to implement ISDN calls. In August 1993, the initial testing of the ISDN Signaling Processor was carried out at ACTS System Test at Lockheed Marietta, Princeton, NJ using the spacecraft in its test configuration on the ground.

  17. Advanced ovarian cancer: multiparametric MR imaging demonstrates response- and metastasis-specific effects.

    PubMed

    Sala, Evis; Kataoka, Masako Y; Priest, Andrew N; Gill, Andrew B; McLean, Mary A; Joubert, Ilse; Graves, Martin J; Crawford, Robin A F; Jimenez-Linan, Mercedes; Earl, Helena M; Hodgkin, Charlotte; Griffiths, John R; Lomas, David J; Brenton, James D

    2012-04-01

    To investigate the role of multiparametric magnetic resonance (MR) imaging in the evaluation of response to platinum-based neoadjuvant chemotherapy in advanced ovarian cancer and to compare imaging parameters between primary ovarian mass and metastatic disease. Evaluable patients suspected of having advanced ovarian carcinoma were enrolled in a prospective protocol-driven study. Research ethics committee approval and written informed consent were obtained. Multiparametric MR imaging (diffusion-weighted MR imaging, dynamic contrast material-enhanced [DCE] MR imaging, and hydrogen 1 MR spectroscopy) was performed with a 3.0-T wholebody MR imaging system. Three marker lesions-primary ovarian mass, omental cake, and peritoneal deposit-were outlined by a radiologist on apparent diffusion coefficient (ADC) and vascular signal fraction (VSF) maps and on DCE MR images. Comparisons of mean ADC, mean VSF, DCE MR imaging parameters, and choline concentration between responders and nonresponders were based on Response Evaluation Criteria in Solid Tumors and CA-125 criteria. Twenty-two patients were evaluable. The mean ADC for peritoneal metastases was lower than that for ovarian (P = .015) and omental (P = .006) sites. There were no differences in pretreatment DCE MR imaging parameters between tumor sites. After treatment, responders showed a significantly larger increase in ADC (P = .021) and fractional volume of the extravascular extracellular space (v(e)) (P = .025) of ovarian lesions compared with nonresponders, but there was no change in ADC at other sites. Pre- and posttreatment values of choline concentration of ovarian lesions were lower in responders (P = .025) than in nonresponders (P = .010). The significant differences in baseline ADCs among primary ovarian cancer, omental cake, and peritoneal deposits indicate that diffusivity profiles may be tumor-site dependent, suggesting biologic heterogeneity of disease. ADC and v(e) parameters correlated with the cytotoxic

  18. The impact of emotional intelligence, self-esteem, and self-image on romantic communication over MySpace.

    PubMed

    Dong, Qingwen; Urista, Mark A; Gundrum, Duane

    2008-10-01

    A study based on a survey of 240 individual MySpace users found that low self-esteem encourages young adults to engage in romantic communication (such as having intimate communication with the opposite sex and looking for romantic partners) while higher emotional intelligence discourages such activity. The results also suggested that those who have higher self-image, such as thinking themselves attractive and happy with their appearance, tend to engage in romantic communication. Limitations of the study and suggestion for future study are discussed.

  19. Development of a mobile emergency patient information and imaging communication system based on CDMA-1X EVDO

    NASA Astrophysics Data System (ADS)

    Yang, Keon Ho; Jung, Haijo; Kang, Won-Suk; Jang, Bong Mun; Kim, Joong Il; Han, Dong Hoon; Yoo, Sun-Kook; Yoo, Hyung-Sik; Kim, Hee-Joung

    2006-03-01

    The wireless mobile service with a high bit rate using CDMA-1X EVDO is now widely used in Korea. Mobile devices are also increasingly being used as the conventional communication mechanism. We have developed a web-based mobile system that communicates patient information and images, using CDMA-1X EVDO for emergency diagnosis. It is composed of a Mobile web application system using the Microsoft Windows 2003 server and an internet information service. Also, a mobile web PACS used for a database managing patient information and images was developed by using Microsoft access 2003. A wireless mobile emergency patient information and imaging communication system is developed by using Microsoft Visual Studio.NET, and JPEG 2000 ActiveX control for PDA phone was developed by using the Microsoft Embedded Visual C++. Also, the CDMA-1X EVDO is used for connections between mobile web servers and the PDA phone. This system allows fast access to the patient information database, storing both medical images and patient information anytime and anywhere. Especially, images were compressed into a JPEG2000 format and transmitted from a mobile web PACS inside the hospital to the radiologist using a PDA phone located outside the hospital. Also, this system shows radiological images as well as physiological signal data, including blood pressure, vital signs and so on, in the web browser of the PDA phone so radiologists can diagnose more effectively. Also, we acquired good results using an RW-6100 PDA phone used in the university hospital system of the Sinchon Severance Hospital in Korea.

  20. Where in the Cell Are You? Probing HIV-1 Host Interactions through Advanced Imaging Techniques

    PubMed Central

    Dirk, Brennan S.; Van Nynatten, Logan R.; Dikeakos, Jimmy D.

    2016-01-01

    Viruses must continuously evolve to hijack the host cell machinery in order to successfully replicate and orchestrate key interactions that support their persistence. The type-1 human immunodeficiency virus (HIV-1) is a prime example of viral persistence within the host, having plagued the human population for decades. In recent years, advances in cellular imaging and molecular biology have aided the elucidation of key steps mediating the HIV-1 lifecycle and viral pathogenesis. Super-resolution imaging techniques such as stimulated emission depletion (STED) and photoactivation and localization microscopy (PALM) have been instrumental in studying viral assembly and release through both cell–cell transmission and cell–free viral transmission. Moreover, powerful methods such as Forster resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) have shed light on the protein-protein interactions HIV-1 engages within the host to hijack the cellular machinery. Specific advancements in live cell imaging in combination with the use of multicolor viral particles have become indispensable to unravelling the dynamic nature of these virus-host interactions. In the current review, we outline novel imaging methods that have been used to study the HIV-1 lifecycle and highlight advancements in the cell culture models developed to enhance our understanding of the HIV-1 lifecycle. PMID:27775563

  1. Secure Display of Space-Exploration Images

    NASA Technical Reports Server (NTRS)

    Cheng, Cecilia; Thornhill, Gillian; McAuley, Michael

    2006-01-01

    Java EDR Display Interface (JEDI) is software for either local display or secure Internet distribution, to authorized clients, of image data acquired from cameras aboard spacecraft engaged in exploration of remote planets. ( EDR signifies experimental data record, which, in effect, signifies image data.) Processed at NASA s Multimission Image Processing Laboratory (MIPL), the data can be from either near-realtime processing streams or stored files. JEDI uses the Java Advanced Imaging application program interface, plus input/output packages that are parts of the Video Image Communication and Retrieval software of the MIPL, to display images. JEDI can be run as either a standalone application program or within a Web browser as a servlet with an applet front end. In either operating mode, JEDI communicates using the HTTP(s) protocol(s). In the Web-browser case, the user must provide a password to gain access. For each user and/or image data type, there is a configuration file, called a "personality file," containing parameters that control the layout of the displays and the information to be included in them. Once JEDI has accepted the user s password, it processes the requested EDR (provided that user is authorized to receive the specific EDR) to create a display according to the user s personality file.

  2. The Advanced Gamma-ray Imaging System (AGIS)-Simulation Studies

    NASA Astrophysics Data System (ADS)

    Maier, G.; Buckley, J.; Bugaev, V.; Fegan, S.; Funk, S.; Konopelko, A.; Vassiliev, V. V.

    2008-12-01

    The Advanced Gamma-ray Imaging System (AGIS) is a US-led concept for a next-generation instrument in ground-based very-high-energy gamma-ray astronomy. The most important design requirement for AGIS is a sensitivity of about 10 times greater than current observatories like Veritas, H.E.S.S or MAGIC. We present results of simulation studies of various possible designs for AGIS. The primary characteristics of the array performance, collecting area, angular resolution, background rejection, and sensitivity are discussed.

  3. Advanced Contrast Agents for Multimodal Biomedical Imaging Based on Nanotechnology.

    PubMed

    Calle, Daniel; Ballesteros, Paloma; Cerdán, Sebastián

    2018-01-01

    Clinical imaging modalities have reached a prominent role in medical diagnosis and patient management in the last decades. Different image methodologies as Positron Emission Tomography, Single Photon Emission Tomography, X-Rays, or Magnetic Resonance Imaging are in continuous evolution to satisfy the increasing demands of current medical diagnosis. Progress in these methodologies has been favored by the parallel development of increasingly more powerful contrast agents. These are molecules that enhance the intrinsic contrast of the images in the tissues where they accumulate, revealing noninvasively the presence of characteristic molecular targets or differential physiopathological microenvironments. The contrast agent field is currently moving to improve the performance of these molecules by incorporating the advantages that modern nanotechnology offers. These include, mainly, the possibilities to combine imaging and therapeutic capabilities over the same theranostic platform or improve the targeting efficiency in vivo by molecular engineering of the nanostructures. In this review, we provide an introduction to multimodal imaging methods in biomedicine, the sub-nanometric imaging agents previously used and the development of advanced multimodal and theranostic imaging agents based in nanotechnology. We conclude providing some illustrative examples from our own laboratories, including recent progress in theranostic formulations of magnetoliposomes containing ω-3 poly-unsaturated fatty acids to treat inflammatory diseases, or the use of stealth liposomes engineered with a pH-sensitive nanovalve to release their cargo specifically in the acidic extracellular pH microenvironment of tumors.

  4. Design, dissemination, and evaluation of an advanced communication elective at seven U.S. medical schools.

    PubMed

    Mauksch, Larry; Farber, Stuart; Greer, H Thomas

    2013-06-01

    To test educational methods that continue communication training into the fourth year of medical school. The authors disseminated and evaluated an advanced communication elective in seven U.S. medical schools between 2007 and 2009; a total of 9 faculty and 22 fourth-year students participated. The elective emphasized peer learning, practice with real patients, direct observation, and applications of video technology. The authors used qualitative and quantitative survey methods and video review to evaluate the experience of students and faculty. Students reported that the elective was better than most medical school clerkships they had experienced. Their self-confidence in time management and in the use of nine communication skills improved significantly. The most valued course components were video review, repeated practice with real patients, and peer observation. Analysis of student videos with real patients and in role-plays showed that some skills (e.g., agenda setting, understanding the patient perspective) were more frequently demonstrated than others (e.g., exploring family and cultural values, communication while using the electronic health record). Faculty highly valued this learner-centered model and reported that their self-awareness and communication skills grew as teachers and as clinicians. Learner-centered methods such as peer observation and video review and editing may strengthen communication training and reinforce skills introduced earlier in medical education. The course design may counteract a "hidden curriculum" that devalues respectful interactions with trainees and patients. Future research should assess the impact of course elements on skill retention, attitudes for lifelong learning, and patients' health outcomes.

  5. Advances in imaging secondary ion mass spectrometry for biological samples

    DOE PAGES

    Boxer, Steven G.; Kraft, Mary L.; Weber, Peter K.

    2008-12-16

    Imaging mass spectrometry combines the power of mass spectrometry to identify complex molecules based on mass with sample imaging. Recent advances in secondary ion mass spectrometry have improved sensitivity and spatial resolution, so that these methods have the potential to bridge between high-resolution structures obtained by X-ray crystallography and cyro-electron microscopy and ultrastructure visualized by conventional light microscopy. Following background information on the method and instrumentation, we address the key issue of sample preparation. Because mass spectrometry is performed in high vacuum, it is essential to preserve the lateral organization of the sample while removing bulk water, and this hasmore » been a major barrier for applications to biological systems. Furthermore, recent applications of imaging mass spectrometry to cell biology, microbial communities, and biosynthetic pathways are summarized briefly, and studies of biological membrane organization are described in greater depth.« less

  6. Women seeking treatment for advanced pelvic organ prolapse have decreased body image and quality of life.

    PubMed

    Jelovsek, J Eric; Barber, Matthew D

    2006-05-01

    Women who seek treatment for pelvic organ prolapse strive for an improvement in quality of life. Body image has been shown to be an important component of differences in quality of life. To date, there are no data on body image in patients with advanced pelvic organ prolapse. Our objective was to compare body image and quality of life in women with advanced pelvic organ prolapse with normal controls. We used a case-control study design. Cases were defined as subjects who presented to a tertiary urogynecology clinic with advanced pelvic organ prolapse (stage 3 or 4). Controls were defined as subjects who presented to a tertiary care gynecology or women's health clinic for an annual visit with normal pelvic floor support (stage 0 or 1) and without urinary incontinence. All patients completed a valid and reliable body image scale and a generalized (Short Form Health Survey) and condition-specific (Pelvic Floor Distress Inventory-20) quality-of-life scale. Linear and logistic regression analyses were performed to adjust for possible confounding variables. Forty-seven case and 51 control subjects were enrolled. After controlling for age, race, parity, previous hysterectomy, and medical comorbidities, subjects with advanced pelvic organ prolapse were more likely to feel self-conscious (adjusted odds ratio 4.7; 95% confidence interval 1.4 to 18, P = .02), less likely to feel physically attractive (adjusted odds ratio 11; 95% confidence interval 2.9 to 51, P < .001), less likely to feel feminine (adjusted odds ratio 4.0; 95% confidence interval 1.2 to 15, P = .03), and less likely to feel sexually attractive (adjusted odds ratio 4.6; 95% confidence interval 1.4 to 17, P = .02) than normal controls. The groups were similar in their feeling of dissatisfaction with appearance when dressed, difficulty looking at themselves naked, avoiding people because of appearance, and overall dissatisfaction with their body. Subjects with advanced pelvic organ prolapse suffered

  7. Digital Imaging and Communications in Medicine Whole Slide Imaging Connectathon at Digital Pathology Association Pathology Visions 2017

    PubMed Central

    Clunie, David; Hosseinzadeh, Dan; Wintell, Mikael; De Mena, David; Lajara, Nieves; Garcia-Rojo, Marcial; Bueno, Gloria; Saligrama, Kiran; Stearrett, Aaron; Toomey, David; Abels, Esther; Apeldoorn, Frank Van; Langevin, Stephane; Nichols, Sean; Schmid, Joachim; Horchner, Uwe; Beckwith, Bruce; Parwani, Anil; Pantanowitz, Liron

    2018-01-01

    As digital pathology systems for clinical diagnostic work applications become mainstream, interoperability between these systems from different vendors becomes critical. For the first time, multiple digital pathology vendors have publicly revealed the use of the digital imaging and communications in medicine (DICOM) standard file format and network protocol to communicate between separate whole slide acquisition, storage, and viewing components. Note the use of DICOM for clinical diagnostic applications is still to be validated in the United States. The successful demonstration shows that the DICOM standard is fundamentally sound, though many lessons were learned. These lessons will be incorporated as incremental improvements in the standard, provide more detailed profiles to constrain variation for specific use cases, and offer educational material for implementers. Future Connectathon events will expand the scope to include more devices and vendors, as well as more ambitious use cases including laboratory information system integration and annotation for image analysis, as well as more geographic diversity. Users should request DICOM features in all purchases and contracts. It is anticipated that the growth of DICOM-compliant manufacturers will likely also ease DICOM for pathology becoming a recognized standard and as such the regulatory pathway for digital pathology products. PMID:29619278

  8. Science Communications: Providing a Return on Investment to the Taxpayer

    NASA Technical Reports Server (NTRS)

    Horack, John M.; Borchelt, Rick E.

    1999-01-01

    Nowhere is the disconnect between needing to better communicate science and technology and the skills and techniques used for that communication more evident than in the Federal research enterprise. As Federal research budgets stagnate or decline, and despite public clamor for more and better scientific information, communication of basic research results continues to rank among the lowest agency priorities, mortgaged against traditional public-relations activities to polish an agency's image or control negative information flow to the press and public. Alone among the Federal agencies, NASA articulates in its strategic plan the need "...to advance and communicate scientific knowledge and understanding..." These words emphasize the reality that if new knowledge is generated but not communicated, only half the job has been done. This is a reflection of the transition of NASA from primarily an engineering organization used to help win the Cold War to a producer of new knowledge and technology in the National interest for the 21st century.

  9. An advanced scanning method for space-borne hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Wang, Yue-ming; Lang, Jun-Wei; Wang, Jian-Yu; Jiang, Zi-Qing

    2011-08-01

    Space-borne hyper-spectral imagery is an important means for the studies and applications of earth science. High cost efficiency could be acquired by optimized system design. In this paper, an advanced scanning method is proposed, which contributes to implement both high temporal and spatial resolution imaging system. Revisit frequency and effective working time of space-borne hyper-spectral imagers could be greatly improved by adopting two-axis scanning system if spatial resolution and radiometric accuracy are not harshly demanded. In order to avoid the quality degradation caused by image rotation, an idea of two-axis rotation has been presented based on the analysis and simulation of two-dimensional scanning motion path and features. Further improvement of the imagers' detection ability under the conditions of small solar altitude angle and low surface reflectance can be realized by the Ground Motion Compensation on pitch axis. The structure and control performance are also described. An intelligent integration technology of two-dimensional scanning and image motion compensation is elaborated in this paper. With this technology, sun-synchronous hyper-spectral imagers are able to pay quick visit to hot spots, acquiring both high spatial and temporal resolution hyper-spectral images, which enables rapid response of emergencies. The result has reference value for developing operational space-borne hyper-spectral imagers.

  10. In-flight control and communication architecture of the GLORIA imaging limb sounder on atmospheric research aircraft

    NASA Astrophysics Data System (ADS)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-06-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier-transform-spectrometer-based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  11. In-flight control and communication architecture of the GLORIA imaging limb-sounder on atmospheric research aircraft

    NASA Astrophysics Data System (ADS)

    Kretschmer, E.; Bachner, M.; Blank, J.; Dapp, R.; Ebersoldt, A.; Friedl-Vallon, F.; Guggenmoser, T.; Gulde, T.; Hartmann, V.; Lutz, R.; Maucher, G.; Neubert, T.; Oelhaf, H.; Preusse, P.; Schardt, G.; Schmitt, C.; Schönfeld, A.; Tan, V.

    2015-02-01

    The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA), a Fourier transform spectrometer based limb spectral imager, operates on high-altitude research aircraft to study the transit region between the troposphere and the stratosphere. It is one of the most sophisticated systems to be flown on research aircraft in Europe, requiring constant monitoring and human intervention in addition to an automation system. To ensure proper functionality and interoperability on multiple platforms, a flexible control and communication system was laid out. The architectures of the communication system as well as the protocols used are reviewed. The integration of this architecture in the automation process as well as the scientific campaign flight application context are discussed.

  12. Ultra-high-speed variable focus optics for novel applications in advanced imaging

    NASA Astrophysics Data System (ADS)

    Kang, S.; Dotsenko, E.; Amrhein, D.; Theriault, C.; Arnold, C. B.

    2018-02-01

    With the advancement of ultra-fast manufacturing technologies, high speed imaging with high 3D resolution has become increasingly important. Here we show the use of an ultra-high-speed variable focus optical element, the TAG Lens, to enable new ways to acquire 3D information from an object. The TAG Lens uses sound to adjust the index of refraction profile in a liquid and thereby can achieve focal scanning rates greater than 100 kHz. When combined with a high-speed pulsed LED and a high-speed camera, we can exploit this phenomenon to achieve high-resolution imaging through large depths. By combining the image acquisition with digital image processing, we can extract relevant parameters such as tilt and angle information from objects in the image. Due to the high speeds at which images can be collected and processed, we believe this technique can be used as an efficient method of industrial inspection and metrology for high throughput applications.

  13. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2017-12-09

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  14. The Role of Nurse Leaders in Advancing Carer Communication Needs across Transitions of Care: A Call to Action.

    PubMed

    Udod, Sonia A; Lobchuk, Michelle

    2017-01-01

    This paper focuses on the central role of senior nurse leaders in advancing organizational resources and support for communication between healthcare providers and carers that influences patient and carer outcomes during the transition from hospital to the community. A Think Tank (Lobchuk 2012) funded by the Canadian Institutes of Health Research (CIHR) gathered interdisciplinary and intersectoral stakeholders from local, national and international levels to develop a Family Carer Communication Research Collaboration. Workshop stakeholders addressed critical challenges in meeting communication needs of carers as partners with clinicians in promoting safe care for the elderly, chronically or seriously ill or disabled individuals in the community. Key priority areas identified the need to uncover nurse leader perspectives at the system, nurse leader, healthcare provider and patient levels where communication with carers occurs. The overarching outcome from the workshop focuses on the need for nurse leaders to advocate for patients and their families in meeting carer communication needs. The authors' "call to action" requires commitment and investment from nurse leaders in the critical juncture of healthcare delivery to strengthen communication between healthcare providers and carers that influence patient and carer outcomes in seamless transitions of care.

  15. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    Provides expertise, and plans, conducts and directs research and engineering development in the competency fields of advanced communications and intelligent systems technologies for applications in current and future aeronautics and space systems.Advances communication systems engineering, development and analysis needed for Glenn Research Center's leadership in communications and intelligent systems technology. Focus areas include advanced high frequency devices, components, and antennas; optical communications, health monitoring and instrumentation; digital signal processing for communications and navigation, and cognitive radios; network architectures, protocols, standards and network-based applications; intelligent controls, dynamics and diagnostics; and smart micro- and nano-sensors and harsh environment electronics. Research and discipline engineering allow for the creation of innovative concepts and designs for aerospace communication systems with reduced size and weight, increased functionality and intelligence. Performs proof-of-concept studies and analyses to assess the impact of the new technologies.

  16. Comparative performance evaluation of transform coding in image pre-processing

    NASA Astrophysics Data System (ADS)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  17. Recent advances in surface plasmon resonance imaging: detection speed, sensitivity, and portability

    NASA Astrophysics Data System (ADS)

    Zeng, Youjun; Hu, Rui; Wang, Lei; Gu, Dayong; He, Jianan; Wu, Shu-Yuen; Ho, Ho-Pui; Li, Xuejin; Qu, Junle; Gao, Bruce Zhi; Shao, Yonghong

    2017-06-01

    Surface plasmon resonance (SPR) biosensor is a powerful tool for studying the kinetics of biomolecular interactions because they offer unique real-time and label-free measurement capabilities with high detection sensitivity. In the past two decades, SPR technology has been successfully commercialized and its performance has continuously been improved with lots of engineering efforts. In this review, we describe the recent advances in SPR technologies. The developments of SPR technologies focusing on detection speed, sensitivity, and portability are discussed in details. The incorporation of imaging techniques into SPR sensing is emphasized. In addition, our SPR imaging biosensors based on the scanning of wavelength by a solid-state tunable wavelength filter are highlighted. Finally, significant advances of the vast developments in nanotechnology-associated SPR sensing for sensitivity enhancements are also reviewed. It is hoped that this review will provide some insights for researchers who are interested in SPR sensing, and help them develop SPR sensors with better sensitivity and higher throughput.

  18. Bilingual toddlers have advanced abilities to repair communication failure.

    PubMed

    Wermelinger, Stephanie; Gampe, Anja; Daum, Moritz M

    2017-03-01

    Recent research has demonstrated enhanced communicative abilities in bilingual children compared with monolingual children throughout childhood and in a variety of domains. The processes underlying these advantages are, however, not well understood. It has been suggested that one aspect that particularly stimulates bilinguals' communication skills is their daily experience with challenging communication. In the current study, we investigated whether children's assumed experience with communication failures would increase their skills when it came to repairing communication failure. Non-German bilingual, German bilingual, and monolingual 2.5-year-old toddlers participated in a communication task in which a misunderstanding occurred. We hypothesized that monolingual and German bilingual children would have fewer daily communication failures-and, therefore, less well-trained repair skills-compared with non-German bilinguals. The results showed that non-German bilinguals were more likely to repair the misunderstanding compared with both monolingual children and German bilingual children. The current findings support the view that the communicative advantages of bilingual individuals develop based on their unique experience with interpersonal communication and its difficulties. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Advanced Imaging Adds Little Value in the Diagnosis of Femoroacetabular Impingement Syndrome.

    PubMed

    Cunningham, Daniel J; Paranjape, Chinmay S; Harris, Joshua D; Nho, Shane J; Olson, Steven A; Mather, Richard C

    2017-12-20

    Femoroacetabular impingement (FAI) syndrome is an increasingly recognized source of hip pain and disability in young active adults. In order to confirm the diagnosis, providers often supplement physical examination maneuvers and radiographs with intra-articular hip injection, magnetic resonance imaging (MRI), or magnetic resonance arthrography (MRA). Since diagnostic imaging represents the fastest rising cost segment in U.S. health care, there is a need for value-driven diagnostic algorithms. The purpose of this study was to identify cost-effective diagnostic strategies for symptomatic FAI, comparing history and physical examination (H&P) alone (utilizing only radiographic imaging) with supplementation with injection, MRI, or MRA. A simple-chain decision model run as a cost-utility analysis was constructed to assess the diagnostic value of the MRI, MRA, and injection that are added to the H&P and radiographs in diagnosing symptomatic FAI. Strategies were compared using the incremental cost-utility ratio (ICUR) with a willingness to pay (WTP) of $100,000/QALY (quality-adjusted life year). Direct costs were measured using the Humana database (PearlDiver). Diagnostic test accuracy, treatment outcome probabilities, and utilities were extracted from the literature. H&P with and without supplemental diagnostic injection was the most cost-effective. Adjunct injection was preferred in situations with a WTP of >$60,000/QALY, low examination sensitivity, and high FAI prevalence. With low disease prevalence and low examination sensitivity, as may occur in a general practitioner's office, H&P with injection was the most cost-effective strategy, whereas in the reciprocal scenario, H&P with injection was only favored at exceptionally high WTP (∼$990,000). H&P and radiographs with supplemental diagnostic injection are preferred over advanced imaging, even with reasonable deviations from published values of disease prevalence, test sensitivity, and test specificity. Providers

  20. The outcome of interprofessional education: Integrating communication studies into a standardized patient experience for advanced practice nursing students.

    PubMed

    Defenbaugh, Nicole; Chikotas, Noreen E

    2016-01-01

    The purpose of this qualitative study was to examine the impact of standardized patient experiences (SPE) in the education of the Advanced Practice Nurse (APN). The education of the APN requires educators to make every attempt to promote competency in the areas of communication and clinical-decision making. SPE programs have been found to improve the interpersonal, problem solving, and critical thinking skills of nursing students. For this research twenty-nine APN students participated in SPEs over the course of two semesters. Fifteen student volunteers of those 29 participants were then interviewed three months after the experience. Results revealed that having an expert in the field of communication studies increased awareness of communication skills and how to improve nurse-patient encounters in the clinical setting. The interprofessional collaboration during the SPEs assisted in facilitating the application of learned communication skills into patient-centered care of the APN student. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Advancing Patient-centered Outcomes in Emergency Diagnostic Imaging: A Research Agenda.

    PubMed

    Kanzaria, Hemal K; McCabe, Aileen M; Meisel, Zachary M; LeBlanc, Annie; Schaffer, Jason T; Bellolio, M Fernanda; Vaughan, William; Merck, Lisa H; Applegate, Kimberly E; Hollander, Judd E; Grudzen, Corita R; Mills, Angela M; Carpenter, Christopher R; Hess, Erik P

    2015-12-01

    Diagnostic imaging is integral to the evaluation of many emergency department (ED) patients. However, relatively little effort has been devoted to patient-centered outcomes research (PCOR) in emergency diagnostic imaging. This article provides background on this topic and the conclusions of the 2015 Academic Emergency Medicine consensus conference PCOR work group regarding "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The goal was to determine a prioritized research agenda to establish which outcomes related to emergency diagnostic imaging are most important to patients, caregivers, and other key stakeholders and which methods will most optimally engage patients in the decision to undergo imaging. Case vignettes are used to emphasize these concepts as they relate to a patient's decision to seek care at an ED and the care received there. The authors discuss applicable research methods and approaches such as shared decision-making that could facilitate better integration of patient-centered outcomes and patient-reported outcomes into decisions regarding emergency diagnostic imaging. Finally, based on a modified Delphi process involving members of the PCOR work group, prioritized research questions are proposed to advance the science of patient-centered outcomes in ED diagnostic imaging. © 2015 by the Society for Academic Emergency Medicine.

  2. Antennas Designed for Advanced Communications for Air Traffic Management (AC/ATM) Project

    NASA Technical Reports Server (NTRS)

    Zakrajsek, Robert J.

    2000-01-01

    The goal of the Advanced Communications for Air Traffic Management (AC/ATM) Project at the NASA Glenn Research Center at Lewis Field is to enable a communications infrastructure that provides the capacity, efficiency, and flexibility necessary to realize a mature free-flight environment. The technical thrust of the AC/ATM Project is targeted at the design, development, integration, test, and demonstration of enabling technologies for global broadband aeronautical communications. Since Ku-band facilities and equipment are readily available, one of the near-term demonstrations involves a link through a Kuband communications satellite. Two conformally mounted antennas will support the initial AC/ATM communications links. Both of these are steered electronically through monolithic microwave integrated circuit (MMIC) amplifiers and phase shifters. This link will be asymmetrical with the downlink to the aircraft (mobile vehicle) at a throughput rate of greater than 1.5 megabits per second (Mbps), whereas the throughput rate of the uplink from the aircraft will be greater than 100 kilobits per second (kbps). The data on the downlink can be narrow-band, wide-band, or a combination of both, depending on the requirements of the experiment. The AC/ATM project is purchasing a phased-array Ku-band transmitting antenna for the uplink from the test vehicle. Many Ku-band receiving antennas have been built, and one will be borrowed for a short time to perform the initial experiments at the NASA Glenn Research Center at Lewis Field. The Ku-band transmitting antenna is a 254-element MMIC phased-array antenna being built by Boeing Phantom Works. Each element can radiate 100 mW. The antenna is approximately 43-cm high by 24-cm wide by 3.3-cm thick. It can be steered beyond 60 from broadside. The beamwidth varies from 6 at broadside to 12 degrees at 60 degrees, which is typical of phased-array antennas. When the antenna is steered to 60 degrees, the beamwidth will illuminate

  3. 37 CFR 201.22 - Advance notices of potential infringement of works consisting of sounds, images, or both.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... infringement of works consisting of sounds, images, or both. 201.22 Section 201.22 Patents, Trademarks, and... Advance notices of potential infringement of works consisting of sounds, images, or both. (a) Definitions... after the first fixation of a work consisting of sounds, images, or both that is first fixed...

  4. 37 CFR 201.22 - Advance notices of potential infringement of works consisting of sounds, images, or both.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... infringement of works consisting of sounds, images, or both. 201.22 Section 201.22 Patents, Trademarks, and... Advance notices of potential infringement of works consisting of sounds, images, or both. (a) Definitions... after the first fixation of a work consisting of sounds, images, or both that is first fixed...

  5. 37 CFR 201.22 - Advance notices of potential infringement of works consisting of sounds, images, or both.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... infringement of works consisting of sounds, images, or both. 201.22 Section 201.22 Patents, Trademarks, and... Advance notices of potential infringement of works consisting of sounds, images, or both. (a) Definitions... after the first fixation of a work consisting of sounds, images, or both that is first fixed...

  6. Design of compact off-axis four-mirror anastigmatic system for space communications

    NASA Astrophysics Data System (ADS)

    Zhao, Fa-cai; Sun, Quan-she; Chen, Kun-feng; Zhu, Xing-bang; Wang, Shao-shui; Wang, Guo-quan; Zheng, Xiang-liang

    2013-08-01

    The deployment of advanced hyperspectral imaging and other Earth sensing instruments onboard Earth observing satellites is driving the demand for high-data rate communications. Space laser communications technology offers the potential for significantly increasing in data return capability from space to Earth. Compared to the current state of the art radio frequency communications links, lasercom links operate at much higher carrier frequencies. The use of higher carrier frequencies implies a much smaller diffraction loss, which in turn, results in a much higher efficiency in delivering the signal energy. Optical communications meet the required data rates with small, low-mass, and low-power communications packages. The communications optical system assembly typically consists of a front aperture, reflection or refraction type telescope, with or without a solar rejection filter, aft optics, fine-pointing mirrors, and array detectors. Optical system used in space laser communications usually has long focal length, large aperture compared with common optical systems. So the reflective optical system is widely used. An unobstructed four-mirror anastigmatic telescope system was proposed, which was modified based on the theory about geometry optics of common-axis three-mirror systems. Intermediate image was between secondary and tertiary mirror. In order to fold the optical path, four-mirror was designed by adding the plane reflective mirror at intermediate image. The design was analyzed, then a system with effective aperture of 200mm and field of view of 1.0°x1.0° was designed, total length and magnification are 700mm and 20, respectively. The system has advantages of large magnification, relative short physical size and loose manufacturing tolerances.

  7. Recent advances in the applications of vibrational spectroscopic imaging and mapping to pharmaceutical formulations

    NASA Astrophysics Data System (ADS)

    Ewing, Andrew V.; Kazarian, Sergei G.

    2018-05-01

    Vibrational spectroscopic imaging and mapping approaches have continued in their development and applications for the analysis of pharmaceutical formulations. Obtaining spatially resolved chemical information about the distribution of different components within pharmaceutical formulations is integral for improving the understanding and quality of final drug products. This review aims to summarise some key advances of these technologies over recent years, primarily since 2010. An overview of FTIR, NIR, terahertz spectroscopic imaging and Raman mapping will be presented to give a perspective of the current state-of-the-art of these techniques for studying pharmaceutical samples. This will include their application to reveal spatial information of components that reveals molecular insight of polymorphic or structural changes, behaviour of formulations during dissolution experiments, uniformity of materials and detection of counterfeit products. Furthermore, new advancements will be presented that demonstrate the continuing novel applications of spectroscopic imaging and mapping, namely in FTIR spectroscopy, for studies of microfluidic devices. Whilst much of the recently developed work has been reported by academic groups, examples of the potential impacts of utilising these imaging and mapping technologies to support industrial applications have also been reviewed.

  8. Recent Advances in Image-Guided Radiotherapy for Head and Neck Carcinoma

    PubMed Central

    Nath, Sameer K.; Simpson, Daniel R.; Rose, Brent S.; Sandhu, Ajay P.

    2009-01-01

    Radiotherapy has a well-established role in the management of head and neck cancers. Over the past decade, a variety of new imaging modalities have been incorporated into the radiotherapy planning and delivery process. These technologies are collectively referred to as image-guided radiotherapy and may lead to significant gains in tumor control and radiation side effect profiles. In the following review, these techniques as they are applied to head and neck cancer patients are described, and clinical studies analyzing their use in target delineation, patient positioning, and adaptive radiotherapy are highlighted. Finally, we conclude with a brief discussion of potential areas of further radiotherapy advancement. PMID:19644564

  9. Advancing multiscale structural mapping of the brain through fluorescence imaging and analysis across length scales

    PubMed Central

    Hogstrom, L. J.; Guo, S. M.; Murugadoss, K.; Bathe, M.

    2016-01-01

    Brain function emerges from hierarchical neuronal structure that spans orders of magnitude in length scale, from the nanometre-scale organization of synaptic proteins to the macroscopic wiring of neuronal circuits. Because the synaptic electrochemical signal transmission that drives brain function ultimately relies on the organization of neuronal circuits, understanding brain function requires an understanding of the principles that determine hierarchical neuronal structure in living or intact organisms. Recent advances in fluorescence imaging now enable quantitative characterization of neuronal structure across length scales, ranging from single-molecule localization using super-resolution imaging to whole-brain imaging using light-sheet microscopy on cleared samples. These tools, together with correlative electron microscopy and magnetic resonance imaging at the nanoscopic and macroscopic scales, respectively, now facilitate our ability to probe brain structure across its full range of length scales with cellular and molecular specificity. As these imaging datasets become increasingly accessible to researchers, novel statistical and computational frameworks will play an increasing role in efforts to relate hierarchical brain structure to its function. In this perspective, we discuss several prominent experimental advances that are ushering in a new era of quantitative fluorescence-based imaging in neuroscience along with novel computational and statistical strategies that are helping to distil our understanding of complex brain structure. PMID:26855758

  10. Neurovascular and Immuno-Imaging: From Mechanisms to Therapies. Proceedings of the Inaugural Symposium

    PubMed Central

    Akassoglou, Katerina; Agalliu, Dritan; Chang, Christopher J.; Davalos, Dimitrios; Grutzendler, Jaime; Hillman, Elizabeth M. C.; Khakh, Baljit S.; Kleinfeld, David; McGavern, Dorian B.; Nelson, Sarah J.; Zlokovic, Berislav V.

    2016-01-01

    Breakthrough advances in intravital imaging have launched a new era for the study of dynamic interactions at the neurovascular interface in health and disease. The first Neurovascular and Immuno-Imaging Symposium was held at the Gladstone Institutes, University of California, San Francisco in March, 2015. This highly interactive symposium brought together a group of leading researchers who discussed how recent studies have unraveled fundamental biological mechanisms in diverse scientific fields such as neuroscience, immunology, and vascular biology, both under physiological and pathological conditions. These Proceedings highlight how advances in imaging technologies and their applications revolutionized our understanding of the communication between brain, immune, and vascular systems and identified novel targets for therapeutic intervention in neurological diseases. PMID:26941593

  11. Advances in MMIC technology for communications satellites

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F.

    1992-01-01

    This paper discusses NASA Lewis Research Center's program for development of monolithic microwave integrated circuits (MMIC) for application in space communications. Emphasis will be on the improved performance in power amplifiers and low noise receivers which has been made possible by the development of new semiconductor materials and devices. Possible applications of high temperature superconductivity for space communications will also be presented.

  12. WE-AB-207A-08: BEST IN PHYSICS (IMAGING): Advanced Scatter Correction and Iterative Reconstruction for Improved Cone-Beam CT Imaging On the TrueBeam Radiotherapy Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, A; Paysan, P; Brehm, M

    2016-06-15

    Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative

  13. Parlaying digital imaging and communications in medicine and open architecture to our advantage: the new Department of Defense picture archiving and communications system.

    PubMed

    Cawthon, M A

    1999-05-01

    The Department of Defense (DoD) undertook a major systems specification, acquisition, and implementation project of multivendor picture archiving and communications system (PACS) and teleradiology systems during 1997 with deployment of the first systems in 1998. These systems differ from their DoD predecessor system in being multivendor in origin, specifying adherence to the developing Digital Imaging and Communications in Medicine (DICOM) 3.0 standard and all of its service classes, emphasizing open architecture, using personal computer (PC) and web-based image viewing access, having radiologic telepresence over large geographic areas as a primary focus of implementation, and requiring bidirectional interfacing with the DoD hospital information system (HIS). The benefits and advantages to the military health-care system accrue through the enabling of a seamless implementation of a virtual radiology operational environment throughout this vast healthcare organization providing efficient general and subspecialty radiologic interpretive and consultative services for our medical beneficiaries to any healthcare provider, anywhere and at any time of the night or day.

  14. Communication training for advanced medical students improves information recall of medical laypersons in simulated informed consent talks--a randomized controlled trial.

    PubMed

    Werner, Anne; Holderried, Friederike; Schäffeler, Norbert; Weyrich, Peter; Riessen, Reimer; Zipfel, Stephan; Celebi, Nora

    2013-02-01

    Informed consent talks are mandatory before invasive interventions. However, the patients' information recall has been shown to be rather poor. We investigated, whether medical laypersons recalled more information items from a simulated informed consent talk after advanced medical students participated in a communication training aiming to reduce a layperson's cognitive load. Using a randomized, controlled, prospective cross-over-design, 30 5th and 6th year medical students were randomized into two groups. One group received communication training, followed by a comparison intervention (early intervention group, EI); the other group first received the comparison intervention and then communication training (late intervention group, LI). Before and after the interventions, the 30 medical students performed simulated informed consent talks with 30 blinded medical laypersons using a standardized set of information. We then recorded the number of information items the medical laypersons recalled. After the communication training both groups of medical laypersons recalled significantly more information items (EI: 41 ± 9% vs. 23 ± 9%, p < .0001, LI 49 ± 10% vs. 35 ± 6%, p < .0001). After the comparison intervention the improvement was modest and significant only in the LI (EI: 42 ± 9% vs. 40 ± 9%, p = .41, LI 35 ± 6% vs. 29 ± 9%, p = .016). Short communication training for advanced medical students improves information recall of medical laypersons in simulated informed consent talks.

  15. Giant step for communication satellite technology

    NASA Technical Reports Server (NTRS)

    Lovell, R. R.

    1984-01-01

    NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.

  16. Giant step for communication satellite technology

    NASA Astrophysics Data System (ADS)

    Lovell, R. R.

    1984-03-01

    NASA's communications program, which is concerned with advanced communications technology, reflects the need for operational communications satellite capacity beyond the capabilities of current technology and the unwillingness of private industry in the U.S. to undertake making the required long-range, high-risk technology advances. It is pointed out that current satellites will not satisfy the forecasted demand for additional capacity in the 1990s and beyond. Current technology exists primarily up to 18 GHz. Designing a communications satellite at each of the three major uplink/downlink frequency bands (C, Ku, and Ka, 6/4 GHz, 14/11 GHz, and 30/20 GHz, respectively) presents different program management and technical problems. Increasing frequency or power can be done only by intensive sustained research. This is the rationale for NASA to pursue the Advanced Communications Technology Satellite (ACTS) program.

  17. AXIOM: Advanced X-ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; hide

    2012-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways - by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques. which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located. X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock. with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose 'AXIOM: Advanced X-ray Imaging Of the Magnetosphere', a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth - Moon Ll point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and

  18. AXIOM: Advanced X-Ray Imaging of the Magnetosphere

    NASA Technical Reports Server (NTRS)

    Branduardi-Raymont, G.; Sembay, S. F.; Eastwood, J. P.; Sibeck, D. G.; Abbey, A.; Brown, P.; Carter, J. A.; Carr, C. M.; Forsyth, C.; Kataria, D.; hide

    2011-01-01

    Planetary plasma and magnetic field environments can be studied in two complementary ways by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth's magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth's magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth's magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose AXIOM: Advanced X-ray Imaging Of the Magnetosphere, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterize the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction

  19. Radiologic image communication and archive service: a secure, scalable, shared approach

    NASA Astrophysics Data System (ADS)

    Fellingham, Linda L.; Kohli, Jagdish C.

    1995-11-01

    The Radiologic Image Communication and Archive (RICA) service is designed to provide a shared archive for medical images to the widest possible audience of customers. Images are acquired from a number of different modalities, each available from many different vendors. Images are acquired digitally from those modalities which support direct digital output and by digitizing films for projection x-ray exams. The RICA Central Archive receives standard DICOM 3.0 messages and data streams from the medical imaging devices at customer institutions over the public telecommunication network. RICA represents a completely scalable resource. The user pays only for what he is using today with the full assurance that as the volume of image data that he wishes to send to the archive increases, the capacity will be there to accept it. To provide this seamless scalability imposes several requirements on the RICA architecture: (1) RICA must support the full array of transport services. (2) The Archive Interface must scale cost-effectively to support local networks that range from the very small (one x-ray digitizer in a medical clinic) to the very large and complex (a large hospital with several CTs, MRs, Nuclear medicine devices, ultrasound machines, CRs, and x-ray digitizers). (3) The Archive Server must scale cost-effectively to support rapidly increasing demands for service providing storage for and access to millions of patients and hundreds of millions of images. The architecture must support the incorporation of improved technology as it becomes available to maintain performance and remain cost-effective as demand rises.

  20. Future directions in communication research: individual health behaviors and the influence of family communication.

    PubMed

    Baiocchi-Wagner, Elizabeth A

    2015-01-01

    Although numerous fields continue to advance research toward various areas of health prevention, communication researchers have yet to examine fully the link between communication and health improvement. This is particularly true of those studying the intersections of family and health communication--unfortunate, given that family members serve as primary socialization agents in health attitudes and behaviors. Using the example of obesity-related health behaviors, the following essay advances the argument that continued research aimed at understanding the intersection of health and families' communicative influence may help to illuminate the nature, causes, and redress to health issues that are correlated with individual health practices. This is accomplished by (a) reviewing contributions and limitations of pioneering studies in (family) health literature and (b) offering three key research areas for health communication exploration that will move scholars toward communication-based solutions (e.g., family-level communication health interventions).

  1. The National Institutes of Health Clinical Center Digital Imaging Network, Picture Archival and Communication System, and Radiology Information System.

    PubMed

    Goldszal, A F; Brown, G K; McDonald, H J; Vucich, J J; Staab, E V

    2001-06-01

    In this work, we describe the digital imaging network (DIN), picture archival and communication system (PACS), and radiology information system (RIS) currently being implemented at the Clinical Center, National Institutes of Health (NIH). These systems are presently in clinical operation. The DIN is a redundant meshed network designed to address gigabit density and expected high bandwidth requirements for image transfer and server aggregation. The PACS projected workload is 5.0 TB of new imaging data per year. Its architecture consists of a central, high-throughput Digital Imaging and Communications in Medicine (DICOM) data repository and distributed redundant array of inexpensive disks (RAID) servers employing fiber-channel technology for immediate delivery of imaging data. On demand distribution of images and reports to clinicians and researchers is accomplished via a clustered web server. The RIS follows a client-server model and provides tools to order exams, schedule resources, retrieve and review results, and generate management reports. The RIS-hospital information system (HIS) interfaces include admissions, discharges, and transfers (ATDs)/demographics, orders, appointment notifications, doctors update, and results.

  2. Web Applications for Patient Communication.

    PubMed

    Lewis, Kristopher; Reicher, Murray A

    2016-12-01

    Communication between imaging professionals and patients can help achieve many goals, including improved patient understanding of imaging-related diagnostic and treatment options, better compliance with appropriate imaging screening procedures, and improved efficiency of service. The explosive growth of out-of-pocket consumer spending on health care has heightened health care shopping, thus making patient communication an important goal of any imaging practice or health care organization. Furthermore, the Merit-Based Incentive Payment System introduced by CMS will publicly disclose physicians' quality ratings, which are in part dependent on patient engagement. The authors summarize the rationale for web communication with patients, the range of content that should be considered, and the technology options. The aim is to help imaging providers develop organized patient communication strategic and implementation plans. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  3. Communications and Intelligent Systems Division Overview

    NASA Technical Reports Server (NTRS)

    Emerson, Dawn

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.

  4. NASA/DARPA advanced communications technology satellite project for evaluation of telemedicine outreach using next-generation communications satellite technology: Mayo Foundation participation.

    PubMed

    Gilbert, B K; Mitchell, M P; Bengali, A R; Khandheria, B K

    1999-08-01

    To describe the development of telemedicine capabilities-application of remote consultation and diagnostic techniques-and to evaluate the feasibility and practicality of such clinical outreach to rural and underserved communities with limited telecommunications infrastructures. In 1992, Mayo Foundation (Rochester, Minn, Jacksonville, Fla, and Scottsdale, Ariz), the National Aeronautics and Space Administration, and the Defense Advanced Research Projects Agency collaborated to create a complex network of fiberoptic landlines, video recording systems, satellite terminals, and specially developed data translators linking Mayo sites with other locations in the continental United States on an on-demand basis. The purpose was to transmit data via the asynchronous transfer mode (ATM) digital communications protocol over the Advanced Communications Technology Satellite. The links were intended to provide a conduit for transmission of data for patient-specific consultations between physicians, evaluation of medical imagery, and medical education for clinical staffs at remote sites. Low-data-rate (LDR) experiments went live late in 1993. Mayo Clinic Rochester successfully provided medical consultation and services to 2 small regional medical facilities. High-data-rate (HDR) experiments included studies of remote digital echocardiography, store-and-forward telemedicine, cardiac catheterization, and teleconsultation for congenital heart disease. These studies combined landline data transmission with use of the satellite. The complexity of the routing paths and network components, immaturity of available software, and inexperience with existing telecommunications caused significant study delays. These experiments demonstrated that next-generation satellite technology can provide batch and real-time imagery for telemedicine. The first-generation of the ATM and satellite network technology used in these experiments created several technical problems and inconveniences that should

  5. Advanced cardiovascular imaging in Williams syndrome: Abnormalities, usefulness, and strategy for use.

    PubMed

    Hills, Jordan A; Zarate, Yuri A; Danylchuk, Noelle R; Lepard, Tiffany; Chen, Jean Chi-Jen; Collins, Ronnie Thomas

    2017-05-01

    Extracardiac arterial stenoses are not uncommon in Williams syndrome (WS); however, data on the utility of advanced cardiovascular imaging (CVI) to assess these stenoses are lacking. We retrospectively reviewed the frequency, indication, and diagnostic outcomes of CVI modalities performed in patients with WS evaluated at a single institution between 2001 and 2014. Data were collected and analyzed from 34 patients (56% female) who underwent CVI during the study period. The median age was 10 years (range 1.8-33 years). Excluding echocardiograms, 78 CVI studies "advanced" were performed in the 34 patients (mean 2.3 studies/patient). The most common advanced CVI was renal ultrasound with Doppler (29/34, 85%), followed by computed tomographic angiography (13/34, 38%) and magnetic resonance angiography in (9/34, 26%). Abnormalities were detected in 62% of patients (21/34). For the 20 patients in whom advanced CVI were performed for defined clinical indications, the rate of abnormalities were 73, 70, 57, and 100% when performed for anatomic delineation (15 patients), hypertension (10 patients), bruits (7 patients), and/or decreased peripheral pulses (2 patients), respectively. Advanced CVI in patients with WS reveals abnormalities in the majority of cases, and physical exam findings frequently indicate abnormalities on advanced CVI. © 2017 Wiley Periodicals, Inc.

  6. Recent advances in live cell imaging of hepatoma cells

    PubMed Central

    2014-01-01

    Live cell imaging enables the study of dynamic processes of living cells in real time by use of suitable reporter proteins and the staining of specific cellular structures and/or organelles. With the availability of advanced optical devices and improved cell culture protocols it has become a rapidly growing research methodology. The success of this technique relies mainly on the selection of suitable reporter proteins, construction of recombinant plasmids possessing cell type specific promoters as well as reliable methods of gene transfer. This review aims to provide an overview of the recent developments in the field of marker proteins (bioluminescence and fluorescent) and methodologies (fluorescent resonance energy transfer, fluorescent recovery after photobleaching and proximity ligation assay) employed as to achieve an improved imaging of biological processes in hepatoma cells. Moreover, different expression systems of marker proteins and the modes of gene transfer are discussed with emphasis on the study of lipid droplet formation in hepatocytes as an example. PMID:25005127

  7. WE-DE-207A-02: Advances in Cone Beam CT Anatomical and Functional Imaging in Angio-Suite to Enable One-Stop-Shop Stroke Imaging Workflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, G.

    1. Parallels in the evolution of x-ray angiographic systems and devices used for minimally invasive endovascular therapy Charles Strother - DSA, invented by Dr. Charles Mistretta at UW-Madison, was the technology which enabled the development of minimally invasive endovascular procedures. As DSA became widely available and the potential benefits for accessing the cerebral vasculature from an endovascular approach began to be apparent, industry began efforts to develop tools for use in these procedures. Along with development of catheters, embolic materials, pushable coils and the GDC coils there was simultaneous development and improvement of 2D DSA image quality and the introductionmore » of 3D DSA. Together, these advances resulted in an enormous expansion in the scope and numbers of minimally invasive endovascular procedures. The introduction of flat detectors for c-arm angiographic systems in 2002 provided the possibility of the angiographic suite becoming not just a location for vascular imaging where physiological assessments might also be performed. Over the last decade algorithmic and hardware advances have been sufficient to now realize this potential in clinical practice. The selection of patients for endovascular treatments is enhanced by this dual capability. Along with these advances has been a steady reduction in the radiation exposure required so that today, vascular and soft tissue images may be obtained with equal or in many cases less radiation exposure than is the case for comparable images obtained with multi-detector CT. Learning Objectives: To understand the full capabilities of today’s angiographic suite To understand how c-arm cone beam CT soft tissue imaging can be used for assessments of devices, blood flow and perfusion. Advances in real-time x-ray neuro-endovascular image guidance Stephen Rudin - Reacting to the demands on real-time image guidance for ever finer neurovascular interventions, great improvements in imaging chains are

  8. A geometric performance assessment of the EO-1 advanced land imager

    USGS Publications Warehouse

    Storey, James C.; Choate, M.J.; Meyer, D.J.

    2004-01-01

    The Earth Observing 1 (EO-1) Advanced Land Imager (ALI) demonstrates technology applicable to a successor system to the Landsat Thematic Mapper series. A study of the geometric performance characteristics of the ALI was conducted under the auspices of the EO-1 Science Validation Team. This study evaluated ALI performance with respect to absolute pointing knowledge, focal plane sensor chip assembly alignment, and band-to-band registration for purposes of comparing this new technology to the heritage Landsat systems. On-orbit geometric calibration procedures were developed that allowed the generation of ALI geometrically corrected products that compare favorably with their Landsat 7 counterparts with respect to absolute geodetic accuracy, internal image geometry, and band registration.

  9. Diffraction based overlay and image based overlay on production flow for advanced technology node

    NASA Astrophysics Data System (ADS)

    Blancquaert, Yoann; Dezauzier, Christophe

    2013-04-01

    One of the main challenges for lithography step is the overlay control. For the advanced technology node like 28nm and 14nm, the overlay budget becomes very tight. Two overlay techniques compete in our advanced semiconductor manufacturing: the Diffraction based Overlay (DBO) with the YieldStar S200 (ASML) and the Image Based Overlay (IBO) with ARCHER (KLA). In this paper we will compare these two methods through 3 critical production layers: Poly Gate, Contact and first metal layer. We will show the overlay results of the 2 techniques, explore the accuracy and compare the total measurement uncertainty (TMU) for the standard overlay targets of both techniques. We will see also the response and impact for the Image Based Overlay and Diffraction Based Overlay techniques through a process change like an additional Hardmask TEOS layer on the front-end stack. The importance of the target design is approached; we will propose more adapted design for image based targets. Finally we will present embedded targets in the 14 FDSOI with first results.

  10. Recent advances in synchrotron-based hard x-ray phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Nelson, J.; Holzner, C.; Andrews, J. C.; Pianetta, P.

    2013-12-01

    Ever since the first demonstration of phase contrast imaging (PCI) in the 1930s by Frits Zernike, people have realized the significant advantage of phase contrast over conventional absorption-based imaging in terms of sensitivity to ‘transparent’ features within specimens. Thus, x-ray phase contrast imaging (XPCI) holds great potential in studies of soft biological tissues, typically containing low Z elements such as C, H, O and N. Particularly when synchrotron hard x-rays are employed, the favourable brightness, energy tunability, monochromatic characteristics and penetration depth have dramatically enhanced the quality and variety of XPCI methods, which permit detection of the phase shift associated with 3D geometry of relatively large samples in a non-destructive manner. In this paper, we review recent advances in several synchrotron-based hard x-ray XPCI methods. Challenges and key factors in methodological development are discussed, and biological and medical applications are presented.

  11. Progress in Design and Construction of the Optical Communications Laser Laboratory

    NASA Technical Reports Server (NTRS)

    Wilson, K. E.; Britcliffe, M.; Golshan, N.

    1999-01-01

    The deployment of advanced hyperspectral imaging and other Earth sensing instruments on board Earth observing satellites is driving the demand for high-data-rate communications. Optical communications meet the required data rates with small, low mass, and low-power communications packages. JPL, as NASA's lead center in optical communications, plans to construct a 1-m Optical Communications Telescope Laboratory (OCTL) at its Table Mountain Facility (TMF) complex in the San Gabriel Mountains of Southern California. The design of the building has been completed, and the construction contractor has been selected. Ground breaking is expected to start at the beginning of the 1999 TMF construction season. A request for proposal (RFP) has been issued for the procurement of the telescope system. Prior to letting the RFP we conducted a request for information with industry for the telescope system. Several vendors responded favorably and provided information on key elements of the proposed design. These inputs were considered in developing the final requirements in the RFP. Keywords: Free space optical communications, lasercom, telescopes, ground stations, adaptive optics, astrometry, Table Mountain Facility

  12. Medical imaging, PACS, and imaging informatics: retrospective.

    PubMed

    Huang, H K

    2014-01-01

    Historical reviews of PACS (picture archiving and communication system) and imaging informatics development from different points of view have been published in the past (Huang in Euro J Radiol 78:163-176, 2011; Lemke in Euro J Radiol 78:177-183, 2011; Inamura and Jong in Euro J Radiol 78:184-189, 2011). This retrospective attempts to look at the topic from a different angle by identifying certain basic medical imaging inventions in the 1960s and 1970s which had conceptually defined basic components of PACS guiding its course of development in the 1980s and 1990s, as well as subsequent imaging informatics research in the 2000s. In medical imaging, the emphasis was on the innovations at Georgetown University in Washington, DC, in the 1960s and 1970s. During the 1980s and 1990s, research and training support from US government agencies and public and private medical imaging manufacturers became available for training of young talents in biomedical physics and for developing the key components required for PACS development. In the 2000s, computer hardware and software as well as communication networks advanced by leaps and bounds, opening the door for medical imaging informatics to flourish. Because many key components required for the PACS operation were developed by the UCLA PACS Team and its collaborative partners in the 1980s, this presentation is centered on that aspect. During this period, substantial collaborative research efforts by many individual teams in the US and in Japan were highlighted. Credits are due particularly to the Pattern Recognition Laboratory at Georgetown University, and the computed radiography (CR) development at the Fuji Electric Corp. in collaboration with Stanford University in the 1970s; the Image Processing Laboratory at UCLA in the 1980s-1990s; as well as the early PACS development at the Hokkaido University, Sapporo, Japan, in the late 1970s, and film scanner and digital radiography developed by Konishiroku Photo Ind. Co. Ltd

  13. Recent advancements in structured-illumination microscopy toward live-cell imaging.

    PubMed

    Hirano, Yasuhiro; Matsuda, Atsushi; Hiraoka, Yasushi

    2015-08-01

    Fluorescence microscopy allows us to observe fluorescently labeled molecules in diverse biological processes and organelle structures within living cells. However, the diffraction limit restricts its spatial resolution to about half of its wavelength, limiting the capability of biological observation at the molecular level. Structured-illumination microscopy (SIM), a type of super-resolution microscopy, doubles the spatial resolution in all three dimensions by illuminating the sample with a patterned excitation light, followed by computer reconstruction. SIM uses a relatively low illumination power compared with other methods of super-resolution microscopy and is easily available for multicolor imaging. SIM has great potential for meeting the requirements of live-cell imaging. Recent developments in diverse types of SIM have achieved higher spatial (∼50 nm lateral) and temporal (∼100 Hz) resolutions. Here, we review recent advancements in SIM and discuss its application in noninvasive live-cell imaging. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Space communication link propagation data for selected cities within the multiple beam and steerable antenna coverage areas of the advanced communications technology satellite

    NASA Technical Reports Server (NTRS)

    Manning, Robert M.

    1988-01-01

    Rain attenuation propagation data for 68 cities within the coverage area of the multiple beam and steerable antennas of the Advanced Communications Technology Satellite (ACTS) are presented. These data provide the necessary data base for purposes of communication link power budgeting and rain attenuation mitigation controller design. These propagation parameters are derived by applying the ACTS Rain Attenuation Prediction Model to these 68 locations. The propagation parameters enumerated in tabular form for each location are as follows: (1) physical description of the link and location (e.g., latitude, longitude, antenna elevation angle, etc.), link availability versus attenuation margin (also in graphical form), fading time across fade depths of 3, 5, 8, and 15 dB versus fade duration, and required fade control response time for controller availabilities of 99.999, 99.99, 99.9, and 99 percent versus sub-threshold attenuation levels. The data for these specific locations can be taken to be representative of regions near these locations.

  15. Recent advances of ultrasound imaging in dentistry--a review of the literature.

    PubMed

    Marotti, Juliana; Heger, Stefan; Tinschert, Joachim; Tortamano, Pedro; Chuembou, Fabrice; Radermacher, Klaus; Wolfart, Stefan

    2013-06-01

    Ultrasonography as an imaging modality in dentistry has been extensively explored in recent years due to several advantages that diagnostic ultrasound provides. It is a non-invasive, inexpensive, painless method and unlike X-ray, it does not cause harmful ionizing radiation. Ultrasound has a promising future as a diagnostic imaging tool in all specialties in dentistry, for both hard and soft tissue detection. The aim of this review is to provide the scientific community and clinicians with an overview of the most recent advances of ultrasound imaging in dentistry. The use of ultrasound is described and discussed in the fields of dental scanning, caries detection, dental fractures, soft tissue and periapical lesions, maxillofacial fractures, periodontal bony defects, gingival and muscle thickness, temporomandibular disorders, and implant dentistry. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Low-complex energy-aware image communication in visual sensor networks

    NASA Astrophysics Data System (ADS)

    Phamila, Yesudhas Asnath Victy; Amutha, Ramachandran

    2013-10-01

    A low-complex, low bit rate, energy-efficient image compression algorithm explicitly designed for resource-constrained visual sensor networks applied for surveillance, battle field, habitat monitoring, etc. is presented, where voluminous amount of image data has to be communicated over a bandwidth-limited wireless medium. The proposed method overcomes the energy limitation of individual nodes and is investigated in terms of image quality, entropy, processing time, overall energy consumption, and system lifetime. This algorithm is highly energy efficient and extremely fast since it applies energy-aware zonal binary discrete cosine transform (DCT) that computes only the few required significant coefficients and codes them using enhanced complementary Golomb Rice code without using any floating point operations. Experiments are performed using the Atmel Atmega128 and MSP430 processors to measure the resultant energy savings. Simulation results show that the proposed energy-aware fast zonal transform consumes only 0.3% of energy needed by conventional DCT. This algorithm consumes only 6% of energy needed by Independent JPEG Group (fast) version, and it suits for embedded systems requiring low power consumption. The proposed scheme is unique since it significantly enhances the lifetime of the camera sensor node and the network without any need for distributed processing as was traditionally required in existing algorithms.

  17. Advanced Communication Technology Satellite (ACTS) Multibeam Antenna On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Lewis Research Center's Advanced Communication Technology Satellite (ACTS) was launched in September 1993. ACTS introduced several new technologies, including a multibeam antenna (MBA) operating at extremely short wavelengths never before used in communications. This antenna, which has both fixed and rapidly reconfigurable high-energy spot beams (150 miles in diameter), serves users equipped with small antenna terminals. Extensive structural and thermal analyses have been performed for simulating the ACTS MBA on-orbit performance. The results show that the reflector surfaces (mainly the front subreflector), antenna support assembly, and metallic surfaces on the spacecraft body will be distorted because of the thermal effects of varying solar heating, which degrade the ACTS MBA performance. Since ACTS was launched, a number of evaluations have been performed to assess MBA performance in the space environment. For example, the on-orbit performance measurements found systematic environmental disturbances to the MBA beam pointing. These disturbances were found to be imposed by the attitude control system, antenna and spacecraft mechanical alignments, and on-orbit thermal effects. As a result, the MBA may not always exactly cover the intended service area. In addition, the on-orbit measurements showed that antenna pointing accuracy is the performance parameter most sensitive to thermal distortions on the front subreflector surface and antenna support assemblies. Several compensation approaches were tested and evaluated to restore on-orbit pointing stability. A combination of autotrack (75 percent of the time) and Earth sensor control (25 percent of the time) was found to be the best way to compensate for antenna pointing error during orbit. This approach greatly minimizes the effects of thermal distortions on antenna beam pointing.

  18. The Advanced Gamma-ray Imaging System (AGIS): Focal Plane Detectors

    NASA Astrophysics Data System (ADS)

    Mukherjee, Reshmi; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Tajima, H.; Wagner, B.; Williams, D.

    2008-04-01

    Report of the Focal Plane Instrumentation Working Group, AGIS collaboration: The Advanced Gamma-ray Imaging System (AGIS) is a concept for the next generation instrument in ground-based very high energy gamma-ray astronomy. It has the goal of achieving significant improvement in sensitivity over current experiments. One of the main requirements for AGIS will be to achieve higher angular resolution than current imaging atmospheric Cherenkov telescopes (IACTs). Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, below that of current IACTs. Reducing the cost per channel and improving reliability and modularity are other important considerations. Here we present several alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs) and summarize results from feasibility testing by various AGIS photodetector group members.

  19. The Advanced Gamma-ray Imaging System (AGIS): Galactic Astrophysics

    NASA Astrophysics Data System (ADS)

    Digel, Seth William; Funk, S.; Kaaret, P. E.; Tajima, H.; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a concept for a next-generation atmospheric Cherenkov telescope array, would provide unprecedented sensitivity and resolution in the energy range >50 GeV, allowing great advances in the understanding of the populations and physics of sources of high-energy gamma rays in the Milky Way. Extrapolation based on the known source classes and the performance parameters for AGIS indicates that a survey of the Galactic plane with AGIS will reveal hundreds of TeV sources in exquisite detail, for population studies of a variety of source classes, and detailed studies of individual sources. AGIS will be able to study propagation effects on the cosmic rays produced by Galactic sources by detecting the diffuse glow from their interactions in dense interstellar gas. AGIS will complement and extend results now being obtained in the GeV range with the Fermi mission, by providing superior angular resolution and sensitivity to variability on short time scales, and of course by probing energies that Fermi cannot reach.

  20. Globalization and advances in information and communication technologies: the impact on nursing and health.

    PubMed

    Abbott, Patricia A; Coenen, Amy

    2008-01-01

    Globalization and information and communication technology (ICT) continue to change us and the world we live in. Nursing stands at an opportunity intersection where challenging global health issues, an international workforce shortage, and massive growth of ICT combine to create a very unique space for nursing leadership and nursing intervention. Learning from prior successes in the field can assist nurse leaders in planning and advancing strategies for global health using ICT. Attention to lessons learned will assist in combating the technological apartheid that is already present in many areas of the globe and will highlight opportunities for innovative applications in health. ICT has opened new channels of communication, creating the beginnings of a global information society that will facilitate access to isolated areas where health needs are extreme and where nursing can contribute significantly to the achievement of "Health for All." The purpose of this article is to discuss the relationships between globalization, health, and ICT, and to illuminate opportunities for nursing in this flattening and increasingly interconnected world.

  1. Advanced imaging approaches for characterizing nanoparticle delivery and dispersion in skin (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Prow, Tarl W.; Yamada, Miko; Dang, Nhung; Evans, Conor L.

    2017-02-01

    The purpose of this research was to develop advanced imaging approaches to characterise the combination of elongated silica microparticles (EMP) and nanoparticles to control topical delivery of drugs and peptides. The microparticles penetrate through the epidermis and stop at the dermal-epidermal junction (DEJ). In this study we incorporated a fluorescent lipophilic dye, DiI, as a hydrophobic drug surrogate into the nanoparticle for visualization with microscopy. In another nanoparticle-based approach we utilized a chemically functionalized melanin nanoparticle for peptide delivery. These nanoparticles were imaged by coherent anti-Stoke Raman scattering (CARS) microscopy to characterize the delivery of these nanoparticles into freshly excised human skin. We compared four different coating approaches to combine EMP and nanoparticles. These data showed that a freeze-dried formulation with cross-linked alginate resulted in 100% of the detectable nanoparticle retained on the EMP. When this dry form of EMP-nanoparticle was applied to excised, living human abdominal skin, the EMP penetrated to the DEJ followed by controlled release of the nanoparticles. This formulation resulted in a sustained release profile, whereas a freeze-dried formulation without crosslinking showed an immediate burst-type release profile. These data show that advanced imaging techniques can give unique, label free data that shows promise for clinical investigations.

  2. Sound localization with communications headsets: comparison of passive and active systems.

    PubMed

    Abel, Sharon M; Tsang, Suzanne; Boyne, Stephen

    2007-01-01

    Studies have demonstrated that conventional hearing protectors interfere with sound localization. This research examines possible benefits from advanced communications devices. Horizontal plane sound localization was compared in normal-hearing males with the ears unoccluded and fitted with Peltor H10A passive attenuation earmuffs, Racal Slimgard II communications muffs in active noise reduction (ANR) and talk-through-circuitry (TTC) modes and Nacre QUIETPRO TM communications earplugs in off (passive attenuation) and push-to-talk (PTT) modes. Localization was assessed using an array of eight loudspeakers, two in each spatial quadrant. The stimulus was 75 dB SPL, 300-ms broadband noise. One block of 120 forced-choice loudspeaker identification trials was presented in each condition. Subjects responded using a laptop response box with a set of eight microswitches in the same configuration as the speaker array. A repeated measures ANOVA was applied to the dataset. The results reveal that the overall percent correct response was highest in the unoccluded condition (94%). A significant reduction of 24% was observed for the communications devices in TTC and PTT modes and a reduction of 49% for the passive muff and plug and muff with ANR. Disruption in performance was due to an increase in front-back reversal errors for mirror image spatial positions. The results support the conclusion that communications devices with advanced technologies are less detrimental to directional hearing than conventional, passive, limited amplification and ANR devices.

  3. Shuttle ku-band communications/radar technical concepts

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.; Kelley, J. S.; Steiner, A. W.; Vang, H. A.; Zrubek, W. E.; Huth, G. K.

    1985-01-01

    Technical data on the Shuttle Orbiter K sub u-band communications/radar system are presented. The more challenging aspects of the system design and development are emphasized. The technical problems encountered and the advancements made in solving them are discussed. The radar functions are presented first. Requirements and design/implementation approaches are discussed. Advanced features are explained, including Doppler measurement, frequency diversity, multiple pulse repetition frequencies and pulse widths, and multiple modes. The communications functions that are presented include advances made because of the requirements for multiple communications modes. Spread spectrum, quadrature phase shift keying (QPSK), variable bit rates, and other advanced techniques are discussed. Performance results and conclusions reached are outlined.

  4. A comparison of diagnostic imaging ordering patterns between advanced practice clinicians and primary care physicians following office-based evaluation and management visits.

    PubMed

    Hughes, Danny R; Jiang, Miao; Duszak, Richard

    2015-01-01

    Little is known about the use of diagnostic testing, such as medical imaging, by advanced practice clinicians (APCs), specifically, nurse practitioners and physician assistants. To examine the use of diagnostic imaging ordered by APCs relative to that of primary care physicians (PCPs) following office-based encounters. Using 2010-2011 Medicare claims for a 5% sample of beneficiaries, we compared diagnostic imaging ordering between APC and PCP episodes of care, controlling for geographic variation, patient demographics, and Charlson Comorbidity Index scores. Provider specialty codes were used to identify PCPs and APCs (general practice, family practice, or internal medicine for PCP; nurse practitioner or physician assistant for APC). Episodes were constructed using evaluation and management (E&M) office visits without any claims 30 days prior to the index visit and (1) no claims at all within the subsequent 30 days; (2) no claims within the subsequent 30 days other than a single imaging event; or (3) claims for any nonimaging services in that subsequent 30-day period. The primary outcome was whether an imaging event followed a qualifying E&M visit. Advanced practice clinicians and PCPs ordered imaging in 2.8% and 1.9% episodes of care, respectively. In adjusted estimates and across all patient groups and imaging services, APCs were associated with more imaging than PCPs (odds ratio [OR], 1.34 [95% CI, 1.27-1.42]), ordering 0.3% more images per episode. Advanced practice clinicians were associated with increased radiography orders on both new (OR, 1.36 [95% CI, 1.13-1.66]) and established (OR, 1.33 [95% CI, 1.24-1.43]) patients, ordering 0.3% and 0.2% more images per episode of care, respectively. For advanced imaging, APCs were associated with increased imaging on established patients (OR, 1.28 [95% CI, 1.14-1.44]), ordering 0.1% more images, but were not significantly different from PCPs ordering imaging on new patients. Advanced practice clinicians are associated

  5. Advances in PET myocardial perfusion imaging: F-18 labeled tracers.

    PubMed

    Rischpler, Christoph; Park, Min-Jae; Fung, George S K; Javadi, Mehrbod; Tsui, Benjamin M W; Higuchi, Takahiro

    2012-01-01

    Coronary artery disease and its related cardiac disorders represent the most common cause of death in the USA and Western world. Despite advancements in treatment and accompanying improvements in outcome with current diagnostic and therapeutic modalities, it is the correct assignment of these diagnostic techniques and treatment options which are crucial. From a diagnostic standpoint, SPECT myocardial perfusion imaging (MPI) using traditional radiotracers like thallium-201 chloride, Tc-99m sestamibi or Tc-99m tetrofosmin is the most utilized imaging technique. However, PET MPI using N-13 ammonia, rubidium-82 chloride or O-15 water is increasing in availability and usage as a result of the growing number of medical centers with new-generation PET/CT systems taking advantage of the superior imaging properties of PET over SPECT. The routine clinical use of PET MPI is still limited, in part because of the short half-life of conventional PET MPI tracers. The disadvantages of these conventional PET tracers include expensive onsite production and inconvenient on-scanner tracer administration making them unsuitable for physical exercise stress imaging. Recently, two F-18 labeled radiotracers with longer radioactive half-lives than conventional PET imaging agents have been introduced. These are flurpiridaz F 18 (formerly known as F-18 BMS747158-02) and F-18 fluorobenzyltriphenylphosphonium. These longer half-life F-18 labeled perfusion tracers can overcome the production and protocol limitations of currently used radiotracers for PET MPI.

  6. A review of earth observation using mobile personal communication devices

    NASA Astrophysics Data System (ADS)

    Ferster, Colin J.; Coops, Nicholas C.

    2013-02-01

    Earth observation using mobile personal communication devices (MPCDs) is a recent advance with considerable promise for acquiring important and timely measurements. Globally, over 5 billion people have access to mobile phones, with an increasing proportion having access to smartphones with capabilities such as a camera, microphone, global positioning system (GPS), data storage, and networked data transfer. Scientists can view these devices as embedded sensors with the potential to take measurements of the Earth's surface and processes. To advance the state of Earth observation using MPCDs, scientists need to consider terms and concepts, from a broad range of disciplines including citizen science, image analysis, and computer vision. In this paper, as a result of our literature review, we identify a number of considerations for Earth observation using MPCDs such as methods of field collection, collecting measurements over broad areas, errors and biases, data processing, and accessibility of data. Developing effective frameworks for mobile data collection with public participation and strategies for minimizing bias, in combination with advancements in image processing techniques, will offer opportunities to collect Earth sensing data across a range of scales and perspectives, complimenting airborne and spaceborne remote sensing measurements.

  7. Subependymal Heterotopia Mimicking Mass in Conventional Magnetic Resonance Imaging: Demonstration With 3T Advanced Neuroimages.

    PubMed

    Aktas, Filiz; Ogul, Hayri

    2017-10-01

    The authors reported a rare patient with large subependymal heterotopia mimicking cerebral neoplasia. A 22-year-old female was admitted with a history of right-sided paresthesia accompanied by progressive headache. Cerebral magnetic resonance (MR) imaging showed a large solid lesion in the left frontal lobe. Advanced MR images proved that the lesion was compatible with subependymal heterotopia. Large subependymal heterotopia may mimick cerebral neoplasia.

  8. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, R. G.; Byrum, K.; Drake, G.; Funk, S.; Otte, N.; Smith, A.; Tajima, H.; Williams, D.

    2009-05-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfills this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to 0.05 deg, i.e. two to three times smaller than for current IACT cameras. Here we present results from testing of alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs).

  9. AGIS -- the Advanced Gamma-ray Imaging System

    NASA Astrophysics Data System (ADS)

    Krennrich, Frank

    2009-05-01

    The Advanced Gamma-ray Imaging System, AGIS, is envisioned to become the follow-up mission of the current generation of very high energy gamma-ray telescopes, namely, H.E.S.S., MAGIC and VERITAS. These instruments have provided a glimpse of the TeV gamma-ray sky, showing more than 70 sources while their detailed studies constrain a wealth of physics and astrophysics. The particle acceleration, emission and absorption processes in these sources permit the study of extreme physical conditions found in galactic and extragalactic TeV sources. AGIS will dramatically improve the sensitivity and angular resolution of TeV gamma-ray observations and therefore provide unique prospects for particle physics, astrophysics and cosmology. This talk will provide an overview of the science drivers, scientific capabilities and the novel technical approaches that are pursued to maximize the performance of the large array concept of AGIS.

  10. The link evaluation terminal for the advanced communications technology satellite experiments program

    NASA Technical Reports Server (NTRS)

    May, Brian D.

    1992-01-01

    The experimental NASA satellite, Advanced Communications Technology Satellite (ACTS), introduces new technology for high throughput 30 to 20 GHz satellite services. Contained in a single communication payload is both a regenerative TDMA system and multiple 800 MHz 'bent pipe' channels routed to spot beams by a switch matrix. While only one mode of operation is typical during any experiment, both modes can operate simultaneously with reduced capability due to sharing of the transponder. NASA-Lewis instituted a ground terminal development program in anticipation of the satellite launch to verify the performance of the switch matrix mode of operations. Specific functions are built into the ground terminal to evaluate rain fade compensation with uplink power control and to monitor satellite transponder performance with bit error rate measurements. These functions were the genesis of the ground terminal's name, Link Evaluation Terminal, often referred to as LET. Connectors are included in LET that allow independent experimenters to run unique modulation or network experiments through ACTS using only the RF transmit and receive portions of LET. Test data indicate that LET will be able to verify important parts of ACTS technology and provide independent experimenters with a useful ground terminal. Lab measurements of major subsystems integrated into LET are presented. Bit error rate is measured with LET in an internal loopback mode.

  11. 29 CFR 102.129 - Communications prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... § 102.114(a). (b) Such communications, when oral, unless advance notice thereof is given by the... 29 Labor 2 2010-07-01 2010-07-01 false Communications prohibited. 102.129 Section 102.129 Labor... Communications § 102.129 Communications prohibited. Except as provided in § 102.130, ex parte communications...

  12. NASA high performance computing, communications, image processing, and data visualization-potential applications to medicine.

    PubMed

    Kukkonen, C A

    1995-06-01

    High-speed information processing technologies being developed and applied by the Jet Propulsion Laboratory for NASA and Department of Defense mission needs have potential dual-uses in telemedicine and other medical applications. Fiber optic ground networks connected with microwave satellite links allow NASA to communicate with its astronauts in Earth orbit or on the moon, and with its deep space probes billions of miles away. These networks monitor the health of astronauts and or robotic spacecraft. Similar communications technology will also allow patients to communicate with doctors anywhere on Earth. NASA space missions have science as a major objective. Science sensors have become so sophisticated that they can take more data than our scientists can analyze by hand. High performance computers--workstations, supercomputer and massively parallel computers are being used to transform this data into knowledge. This is done using image processing, data visualization and other techniques to present the data--one's and zero's in forms that a human analyst can readily relate to and understand. Medical sensors have also explored in the in data output--witness CT scans, MRI, and ultrasound. This data must be presented in visual form and computers will allow routine combination of many two dimensional MRI images into three dimensional reconstructions of organs that then can be fully examined by physicians. Emerging technologies such as neural networks that are being "trained" to detect craters on planets or incoming missiles amongst decoys can be used to identify microcalcification in mammograms.

  13. Systems, Purposes, Images, Plans: A Communication Model.

    ERIC Educational Resources Information Center

    Hildum, Donald C.

    A definition and a general description of communication that makes use of the insights of linguistics and psychology are presented in this paper, along with a conceptual model of communication that incorporates a systems approach. Following a lengthy discussion of the components required for a communication exchange, the systems approach model is…

  14. Communications and Intelligent Systems Division - Division Overview

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition,and systems development for application in current and future aeronautics and space communications systems.

  15. Communications and Intelligent Systems Division - Division Overview

    NASA Technical Reports Server (NTRS)

    Miranda, Felix A.

    2017-01-01

    This presentation provides an overview of the research and engineering work being performed in the competency fields of advanced communications and intelligent systems with emphasis on advanced technologies, architecture definition, and systems development for application in current and future aeronautics and space communications systems.

  16. Providing image management and communication functionality as an integral part of an existing hospital information system

    NASA Astrophysics Data System (ADS)

    Dayhoff, Ruth E.; Maloney, Daniel L.

    1990-08-01

    The effective delivery of health care has become increasingly dependent on a wide range of medical data which includes a variety of images. Manual and computer-based medical records ordinarily do not contain image data, leaving the physician to deal with a fragmented patient record widely scattered throughout the hospital. The Department of Veterans Affairs (VA) is currently installing a prototype hospital information system (HIS) workstation network to demonstrate the feasibility of providing image management and communications (IMAC) functionality as an integral part of an existing hospital information system. The core of this system is a database management system adapted to handle images as a new data type. A general model for this integration is discussed and specifics of the hospital-wide network of image display workstations are given.

  17. Three-dimensional image signals: processing methods

    NASA Astrophysics Data System (ADS)

    Schiopu, Paul; Manea, Adrian; Craciun, Anca-Ileana; Craciun, Alexandru

    2010-11-01

    Over the years extensive studies have been carried out to apply coherent optics methods in real-time processing, communications and transmission image. This is especially true when a large amount of information needs to be processed, e.g., in high-resolution imaging. The recent progress in data-processing networks and communication systems has considerably increased the capacity of information exchange. We describe the results of literature investigation research of processing methods for the signals of the three-dimensional images. All commercially available 3D technologies today are based on stereoscopic viewing. 3D technology was once the exclusive domain of skilled computer-graphics developers with high-end machines and software. The images capture from the advanced 3D digital camera can be displayed onto screen of the 3D digital viewer with/ without special glasses. For this is needed considerable processing power and memory to create and render the complex mix of colors, textures, and virtual lighting and perspective necessary to make figures appear three-dimensional. Also, using a standard digital camera and a technique called phase-shift interferometry we can capture "digital holograms." These are holograms that can be stored on computer and transmitted over conventional networks. We present some research methods to process "digital holograms" for the Internet transmission and results.

  18. At the Fulcrum of Air Force Identity: Balancing the Internal and External Pressures of Image and Culture

    DTIC Science & Technology

    2014-01-01

    Jeffrey J . Smith, Colonel, PhD, Commandant and Dean AIR UNIVERSITY SCHOOL OF ADVANCED AIR AND SPACE STUDIES At the Fulcrum of Air Force Identity...ORGANIZATION STAKEHOLDER Figure 2. Key viewpoints of identity and image. (Adapted from Tom J . Brown et al., “Identity, Intended Image, Construed Image, and...Falklands, see Anno and Einspahr, Command and Control and Communications Lessons Learned. 15. Locher, “Has It Worked?,” 99. 16. Trest, Air Force Roles and

  19. Advanced x-ray imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Callas, John L. (Inventor); Soli, George A. (Inventor)

    1998-01-01

    An x-ray spectrometer that also provides images of an x-ray source. Coded aperture imaging techniques are used to provide high resolution images. Imaging position-sensitive x-ray sensors with good energy resolution are utilized to provide excellent spectroscopic performance. The system produces high resolution spectral images of the x-ray source which can be viewed in any one of a number of specific energy bands.

  20. Implementation of a light-route TDMA communications satellite system for advanced business networks

    NASA Astrophysics Data System (ADS)

    Hanson, B.; Smalley, A.; Zuliani, M.

    The application of Light Route TDMA systems to various business communication requirements is discussed. It is noted that full development of this technology for use in advanced business networks will be guided by considerations of flexibility, reliability, security, and cost. The implementation of the TDMA system for demonstrating these advantages to a wide range of public and private organizations is described in detail. Among the advantages offered by this system are point-to-point and point-to-multipoint (broadcast) capability; the ability to vary the mix and quantity of services between destinations in a fully connected mesh network on an almost instantaneous basis through software control; and enhanced reliability with centralized monitor, alarm and control functions by virtue of an overhead channel.

  1. Proceedings of the Seventeenth NASA Propagation Experimenters Meeting (NAPEX 17) and the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop

    NASA Technical Reports Server (NTRS)

    Davarian, Faramaz (Editor)

    1993-01-01

    The NASA Propagation Experimenters Meeting (NAPEX) is convened annually to discuss studies made on radio wave propagation by investors from domestic and international organizations. NAPEX 17 was held on 15 June 1993. The meeting was organized into two technical sessions. The first session was dedicated to slant path propagation studies and experiments. The second session focused on propagation studies for mobile and personal communications. Preceding NAPEX 17, the Advanced Communications Technology Satellite (ACTS) Propagation Studies Miniworkshop was held on 14 June 1993 to review ACTS propagation activities with emphasis on ACTS experiments status and data collection, processing, and exchange.

  2. X-ray phase-contrast imaging of the breast—advances towards clinical implementation

    PubMed Central

    Herzen, J; Willner, M; Grandl, S; Scherer, K; Bamberg, F; Reiser, M F; Pfeiffer, F; Hellerhoff, K

    2014-01-01

    Breast cancer constitutes about one-quarter of all cancers and is the leading cause of cancer death in women. To reduce breast cancer mortality, mammographic screening programmes have been implemented in many Western countries. However, these programmes remain controversial because of the associated radiation exposure and the need for improvement in terms of diagnostic accuracy. Phase-contrast imaging is a new X-ray-based technology that has been shown to provide enhanced soft-tissue contrast and improved visualization of cancerous structures. Furthermore, there is some indication that these improvements of image quality can be maintained at reduced radiation doses. Thus, X-ray phase-contrast mammography may significantly contribute to advancements in early breast cancer diagnosis. Feasibility studies of X-ray phase-contrast breast CT have provided images that allow resolution of the fine structure of tissue that can otherwise only be obtained by histology. This implies that X-ray phase-contrast imaging may also lead to the development of entirely new (micro-) radiological applications. This review provides a brief overview of the physical characteristics of this new technology and describes recent developments towards clinical implementation of X-ray phase-contrast imaging of the breast. PMID:24452106

  3. 5 CFR 2414.5 - Communications prohibited.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...; and (b) Such communications, when oral, unless advance notice thereof is given by the communicator to... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Communications prohibited. 2414.5 Section... RELATIONS AUTHORITY AND FEDERAL SERVICE IMPASSES PANEL GENERAL PROVISIONS EX PARTE COMMUNICATIONS § 2414.5...

  4. Advanced Image Enhancement Method for Distant Vessels and Structures in Capsule Endoscopy

    PubMed Central

    Pedersen, Marius

    2017-01-01

    This paper proposes an advanced method for contrast enhancement of capsule endoscopic images, with the main objective to obtain sufficient information about the vessels and structures in more distant (or darker) parts of capsule endoscopic images. The proposed method (PM) combines two algorithms for the enhancement of darker and brighter areas of capsule endoscopic images, respectively. The half-unit weighted-bilinear algorithm (HWB) proposed in our previous work is used to enhance darker areas according to the darker map content of its HSV's component V. Enhancement of brighter areas is achieved thanks to the novel threshold weighted-bilinear algorithm (TWB) developed to avoid overexposure and enlargement of specular highlight spots while preserving the hue, in such areas. The TWB performs enhancement operations following a gradual increment of the brightness of the brighter map content of its HSV's component V. In other words, the TWB decreases its averaged weights as the intensity content of the component V increases. Extensive experimental demonstrations were conducted, and, based on evaluation of the reference and PM enhanced images, a gastroenterologist (Ø.H.) concluded that the PM enhanced images were the best ones based on the information about the vessels, contrast in the images, and the view or visibility of the structures in more distant parts of the capsule endoscopy images. PMID:29225668

  5. Communication training for advanced medical students improves information recall of medical laypersons in simulated informed consent talks – a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Informed consent talks are mandatory before invasive interventions. However, the patients’ information recall has been shown to be rather poor. We investigated, whether medical laypersons recalled more information items from a simulated informed consent talk after advanced medical students participated in a communication training aiming to reduce a layperson’s cognitive load. Methods Using a randomized, controlled, prospective cross-over-design, 30 5th and 6th year medical students were randomized into two groups. One group received communication training, followed by a comparison intervention (early intervention group, EI); the other group first received the comparison intervention and then communication training (late intervention group, LI). Before and after the interventions, the 30 medical students performed simulated informed consent talks with 30 blinded medical laypersons using a standardized set of information. We then recorded the number of information items the medical laypersons recalled. Results After the communication training both groups of medical laypersons recalled significantly more information items (EI: 41 ± 9% vs. 23 ± 9%, p < .0001, LI 49 ± 10% vs. 35 ± 6%, p < .0001). After the comparison intervention the improvement was modest and significant only in the LI (EI: 42 ± 9% vs. 40 ± 9%, p = .41, LI 35 ± 6% vs. 29 ± 9%, p = .016). Conclusion Short communication training for advanced medical students improves information recall of medical laypersons in simulated informed consent talks. PMID:23374907

  6. Purchase of a Raman and Photoluminescence Imaging System for Characterization of Advanced Electrochemical and Electronic Materials

    DTIC Science & Technology

    2016-01-05

    regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an interesting...regularly used the Raman imaging system to characterize the doping chemistry of colloidal indium nitride nanoparticles . This material shows an...analysis of thin film coatings, bulk materials, powders and nanoparticles . The instrument is extensively used to characterize advanced electrochemical and

  7. Advances in Alzheimer's imaging are changing the experience of Alzheimer's disease.

    PubMed

    Stites, Shana D; Milne, Richard; Karlawish, Jason

    2018-01-01

    Neuroimaging is advancing a new definition of Alzheimer's disease (AD). Using imaging biomarkers, clinicians may begin to diagnose the disease by identifying pathology and neurodegeneration in either cognitively impaired or unimpaired adults. This "biomarker-based" diagnosis may allow clinicians novel opportunities to use interventions that either delay the onset or slow the progression of cognitive decline, but it will also bring novel challenges. How will changing the definition of AD from a clinical to a biomarker construct change the experience of living with the disease? Knowledge of AD biomarker status can affect how individuals feel about themselves (internalized stigma) and how others judge them (public stigma). Following a review of AD stigma, we appraise how advances in diagnosis may enable or interrupt its transfer from clinical to preclinical stages and then explore conceptual and pragmatic challenges to addressing stigma in routine care.

  8. An advanced communications synthesizer

    NASA Astrophysics Data System (ADS)

    Scherer, Ernst F.

    1994-02-01

    With the proliferation of smaller and lower cost EHF terminals, the fast-hopping microwave synthesizer subsystem is rapidly becoming the limiting factor for further size and cost reduction. A new approach, based on a high-speed direct digital synthesizer (DDS) and a very fast voltage controlled oscillator (VCO) tracking loop, has yielded a highly integrable design with true low-cost potential. A frequency range of 1 to 20 GHz can be covered by a simple substitution of the VCO module. This advanced synthesizer realization promises a generic solution to a large class of synthesizer requirements, greatly facilitating standardization and promoting modular system concepts.

  9. Emerging Communication Technologies (ECT) Phase 3 Final Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Bates, Lakesha D.; Nelson, Richard A.

    2004-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Second Generation Reusable Launch Vehicle (2nd Gen RLV), Orbital Space Plane, Advanced Range Technology Working Group (ARTWG) and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures. ECT was a continuation of the Range Information System Management (RISM) task started in 2002. RISM identified the three advance communication technologies investigated under ECT. These were Wireless Ethernet (Wi-Fi), Free Space Optics (FSO), and Ultra Wideband (UWB). Due to the report s size, it has been broken into three volumes: 1) Main Report 2) Appendices 3) UWB.

  10. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.

    PubMed

    Renault, Renaud; Sukenik, Nirit; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Peyrin, Jean-Michel; Bottani, Samuel; Monceau, Pascal; Moses, Elisha; Vignes, Maéva

    2015-01-01

    In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.

  11. Advancing the Use of Administrative Data for Emergency Department Diagnostic Imaging Research.

    PubMed

    Kuehl, Damon R; Berdahl, Carl T; Jackson, Tiffany D; Venkatesh, Arjun K; Mistry, Rakesh D; Bhargavan-Chatfield, Mythreyi; Raukar, Neha P; Carr, Brendan G; Schuur, Jeremiah D; Kocher, Keith E

    2015-12-01

    Administrative data are critical to describing patterns of use, cost, and appropriateness of imaging in emergency care. These data encompass a range of source materials that have been collected primarily for a nonresearch use: documenting clinical care (e.g., medical records), administering care (e.g., picture archiving and communication systems), or financial transactions (e.g., insurance claims). These data have served as the foundation for large, descriptive studies that have documented the rise and expanded role of diagnostic imaging in the emergency department (ED). This article summarizes the discussions of the breakout session on the use of administrative data for emergency imaging research at the May 2015 Academic Emergency Medicine consensus conference, "Diagnostic Imaging in the Emergency Department: A Research Agenda to Optimize Utilization." The authors describe the areas where administrative data have been applied to research evaluating the use of diagnostic imaging in the ED, the common sources for these data, and the strengths and limitations of administrative data. Next, the future role of administrative data is examined for answering key research questions in an evolving health system increasingly focused on measuring appropriateness, ensuring quality, and improving value for health spending. This article specifically focuses on four thematic areas: data quality, appropriateness and value, special populations, and policy interventions. © 2015 by the Society for Academic Emergency Medicine.

  12. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    PubMed

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Advances in target imaging of deep Earth structure

    NASA Astrophysics Data System (ADS)

    Masson, Y.; Romanowicz, B. A.; Clouzet, P.

    2015-12-01

    A new generation of global tomographic models (Lekić and Romanowicz, 2011; French et al, 2013, 2014) has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features, requires further efforts to obtain higher resolution images. The focus of our ongoing effort is to develop advanced tomographic methods to image remote regions of the Earth at fine scales. We have developed an approach in which distant sources (located outside of the target region) are replaced by an equivalent set of local sources located at the border of the computational domain (Masson et al., 2014). A limited number of global simulations in a reference 3D earth model is then required. These simulations are computed prior to the regional inversion, while iterations of the model need to be performed only within the region of interest, potentially allowing us to include shorter periods at limited additional computational cost. Until now, the application was limited to a distribution of receivers inside the target region. This is particularly suitable for studies of upper mantle structure in regions with dense arrays (e.g. see our companion presentation Clouzet et al., this Fall AGU). Here we present our latest development that now can include teleseismic data recorded outside the imaged region. This allows us to perform regional waveform tomography in the situation where

  14. Improving Image Drizzling in the HST Archive: Advanced Camera for Surveys

    NASA Astrophysics Data System (ADS)

    Hoffmann, Samantha L.; Avila, Roberto J.

    2017-06-01

    The Mikulski Archive for Space Telescopes (MAST) pipeline performs geometric distortion corrections, associated image combinations, and cosmic ray rejections with AstroDrizzle on Hubble Space Telescope (HST) data. The MDRIZTAB reference table contains a list of relevant parameters that controls this program. This document details our photometric analysis of Advanced Camera for Surveys Wide Field Channel (ACS/WFC) data processed by AstroDrizzle. Based on this analysis, we update the MDRIZTAB table to improve the quality of the drizzled products delivered by MAST.

  15. Advanced imaging in acute and chronic deep vein thrombosis

    PubMed Central

    Karande, Gita Yashwantrao; Sanchez, Yadiel; Baliyan, Vinit; Mishra, Vishala; Ganguli, Suvranu; Prabhakar, Anand M.

    2016-01-01

    Deep venous thrombosis (DVT) affecting the extremities is a common clinical problem. Prompt imaging aids in rapid diagnosis and adequate treatment. While ultrasound (US) remains the workhorse of detection of extremity venous thrombosis, CT and MRI are commonly used as the problem-solving tools either to visualize the thrombosis in central veins like superior or inferior vena cava (IVC) or to test for the presence of complications like pulmonary embolism (PE). The cross-sectional modalities also offer improved visualization of venous collaterals. The purpose of this article is to review the established modalities used for characterization and diagnosis of DVT, and further explore promising innovations and recent advances in this field. PMID:28123971

  16. Recent advances in MRI technology: Implications for image quality and patient safety

    PubMed Central

    Sobol, Wlad T.

    2012-01-01

    Recent advances in MRI technology are presented, with emphasis on how this new technology impacts clinical operations (better image quality, faster exam times, and improved throughput). In addition, implications for patient safety are discussed with emphasis on the risk of patient injury due to either high local specific absorption rate (SAR) or large cumulative energy doses delivered during long exam times. Patient comfort issues are examined as well. PMID:23961024

  17. Advances in serological, imaging techniques and molecular diagnosis of Toxoplasma gondii infection.

    PubMed

    Rostami, Ali; Karanis, Panagiotis; Fallahi, Shirzad

    2018-06-01

    Toxoplasmosis is worldwide distributed zoonotic infection disease with medical importance in immunocompromised patients, pregnant women and congenitally infected newborns. Having basic information on the traditional and new developed methods is essential for general physicians and infectious disease specialists for choosing a suitable diagnostic approach for rapid and accurate diagnosis of the disease and, consequently, timely and effective treatment. We conducted English literature searches in PubMed from 1989 to 2016 using relevant keywords and summarized the recent advances in diagnosis of toxoplasmosis. Enzyme-linked immunosorbent assay (ELISA) was most used method in past century. Recently advanced ELISA-based methods including chemiluminescence assays (CLIA), enzyme-linked fluorescence assay (ELFA), immunochromatographic test (ICT), serum IgG avidity test and immunosorbent agglutination assays (ISAGA) have shown high sensitivity and specificity. Recent studies using recombinant or chimeric antigens and multiepitope peptides method demonstrated very promising results to development of new strategies capable of discriminating recently acquired infections from chronic infection. Real-time PCR and loop-mediated isothermal amplification (LAMP) are two recently developed PCR-based methods with high sensitivity and specificity and could be useful to early diagnosis of infection. Computed tomography, magnetic resonance imaging, nuclear imaging and ultrasonography could be useful, although their results might be not specific alone. This review provides a summary of recent developed methods and also attempts to improve their sensitivity for diagnosis of toxoplasmosis. Serology, molecular and imaging technologies each has their own advantages and limitations which can certainly achieve definitive diagnosis of toxoplasmosis by combining these diagnostic techniques.

  18. Emerging Communication Technologies (ECT) Phase 4 Report

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.; Harris, William G.; Marin, Jose A.; Nelson, Richard A.

    2005-01-01

    The Emerging Communication Technology (ECT) project investigated three First Mile communication technologies in support of NASA s Crew Exploration Vehicle (CEV), Advanced Range Technology Working Group (ARTWG), and the Advanced Spaceport Technology Working Group (ASTWG). These First Mile technologies have the purpose of interconnecting mobile users with existing Range Communication infrastructures on a 24/7 basis. ECT is a continuation of the Range Information System Management (RISM) task started in 2002. This is the fourth year of the project.

  19. Advancements in Transmitters and Sensors for Biological Tissue Imaging in Magnetic Induction Tomography

    PubMed Central

    Zakaria, Zulkarnay; Rahim, Ruzairi Abdul; Mansor, Muhammad Saiful Badri; Yaacob, Sazali; Ayub, Nor Muzakkir Nor; Muji, Siti Zarina Mohd.; Rahiman, Mohd Hafiz Fazalul; Aman, Syed Mustafa Kamal Syed

    2012-01-01

    Magnetic Induction Tomography (MIT), which is also known as Electromagnetic Tomography (EMT) or Mutual Inductance Tomography, is among the imaging modalities of interest to many researchers around the world. This noninvasive modality applies an electromagnetic field and is sensitive to all three passive electromagnetic properties of a material that are conductivity, permittivity and permeability. MIT is categorized under the passive imaging family with an electrodeless technique through the use of excitation coils to induce an electromagnetic field in the material, which is then measured at the receiving side by sensors. The aim of this review is to discuss the challenges of the MIT technique and summarize the recent advancements in the transmitters and sensors, with a focus on applications in biological tissue imaging. It is hoped that this review will provide some valuable information on the MIT for those who have interest in this modality. The need of this knowledge may speed up the process of adopted of MIT as a medical imaging technology. PMID:22969341

  20. Smartphones as Multimodal Communication Devices to Facilitate Clinical Knowledge Processes: Randomized Controlled Trial

    PubMed Central

    Mateescu, Magdalena; Zahn, Carmen; Genewein, Urs

    2013-01-01

    Background Despite the widespread use and advancements of mobile technology that facilitate rich communication modes, there is little evidence demonstrating the value of smartphones for effective interclinician communication and knowledge processes. Objective The objective of this study was to determine the effects of different synchronous smartphone-based modes of communication, such as (1) speech only, (2) speech and images, and (3) speech, images, and image annotation (guided noticing) on the recall and transfer of visually and verbally represented medical knowledge. Methods The experiment was conducted from November 2011 to May 2012 at the University Hospital Basel (Switzerland) with 42 medical students in a master’s program. All participants analyzed a standardized case (a patient with a subcapital fracture of the fifth metacarpal bone) based on a radiological image, photographs of the hand, and textual descriptions, and were asked to consult a remote surgical specialist via a smartphone. Participants were randomly assigned to 3 experimental conditions/groups. In group 1, the specialist provided verbal explanations (speech only). In group 2, the specialist provided verbal explanations and displayed the radiological image and the photographs to the participants (speech and images). In group 3, the specialist provided verbal explanations, displayed the radiological image and the photographs, and annotated the radiological image by drawing structures/angle elements (speech, images, and image annotation). To assess knowledge recall, participants were asked to write brief summaries of the case (verbally represented knowledge) after the consultation and to re-analyze the diagnostic images (visually represented knowledge). To assess knowledge transfer, participants analyzed a similar case without specialist support. Results Data analysis by ANOVA found that participants in groups 2 and 3 (images used) evaluated the support provided by the specialist as

  1. Smartphones as multimodal communication devices to facilitate clinical knowledge processes: randomized controlled trial.

    PubMed

    Pimmer, Christoph; Mateescu, Magdalena; Zahn, Carmen; Genewein, Urs

    2013-11-27

    Despite the widespread use and advancements of mobile technology that facilitate rich communication modes, there is little evidence demonstrating the value of smartphones for effective interclinician communication and knowledge processes. The objective of this study was to determine the effects of different synchronous smartphone-based modes of communication, such as (1) speech only, (2) speech and images, and (3) speech, images, and image annotation (guided noticing) on the recall and transfer of visually and verbally represented medical knowledge. The experiment was conducted from November 2011 to May 2012 at the University Hospital Basel (Switzerland) with 42 medical students in a master's program. All participants analyzed a standardized case (a patient with a subcapital fracture of the fifth metacarpal bone) based on a radiological image, photographs of the hand, and textual descriptions, and were asked to consult a remote surgical specialist via a smartphone. Participants were randomly assigned to 3 experimental conditions/groups. In group 1, the specialist provided verbal explanations (speech only). In group 2, the specialist provided verbal explanations and displayed the radiological image and the photographs to the participants (speech and images). In group 3, the specialist provided verbal explanations, displayed the radiological image and the photographs, and annotated the radiological image by drawing structures/angle elements (speech, images, and image annotation). To assess knowledge recall, participants were asked to write brief summaries of the case (verbally represented knowledge) after the consultation and to re-analyze the diagnostic images (visually represented knowledge). To assess knowledge transfer, participants analyzed a similar case without specialist support. Data analysis by ANOVA found that participants in groups 2 and 3 (images used) evaluated the support provided by the specialist as significantly more positive than group 1, the

  2. [Advance directives and advance care planning].

    PubMed

    Vayne-Bossert, Petra; Vailloud, Christiane; Ducloux, Dominique; Matis, Caroline; Déramé, Laurence

    2017-02-01

    Advance directives (AD) and Advance Care Planning (ACP) are two measures a person may undertake to assure that their treatment preferences will be respected until the end of his / her life. Anticipation is based on an open and honest communication between the patient, the durable medical power of attorney and the health care professionals. ADs and ACPs are based on a person's values and beliefs that are important to his quality of life. ACP is a continuing process, initiated by health care professionals and integrated into the health care plan of a person. It should be adjusted all along the disease trajectory and favors communication and anticipation in the health care network. ADs are often a personal initiative to ensure one's wishes in relation to health issues. In Switzerland, they are based on a legal framework and their application is therefore mandatory for health care professionals.

  3. The Role of Social Presence in Learner-Centered Communicative Language Learning Using Synchronous Computer-Mediated Communication: Experimental Study

    ERIC Educational Resources Information Center

    Yamada, Masanori

    2009-01-01

    This study aimed to clarify the relationship between media, learners' perception of social presence, and output in communicative learning using synchronous computer-mediated communication (SCMC). In this study, we developed four types of SCMC: videoconferencing (image and voice), audioconferencing (voice but no image), text chat with image (image…

  4. Disruption or innovation? A qualitative descriptive study on the use of electronic patient-physician communication in patients with advanced cancer.

    PubMed

    Voruganti, Teja; Husain, Amna; Grunfeld, Eva; Webster, Fiona

    2018-03-04

    In the advanced cancer context, care coordination is often inadequate, leading to suboptimal continuity of care. We evaluated an electronic web-based tool which assembles the patient, their caregivers, and their healthcare providers in a virtual space for team-based communication. We sought to understand participant perceptions on electronic communication in general and the added value of the new tool in particular. We conducted a qualitative descriptive study with participants (patients, caregivers, cancer physicians) who participated in a 3-month pilot trial evaluating the tool. Interviews were thematically analyzed and the perspectives from patients, caregivers, and cancer physicians were triangulated. Interviews from six patients, five of their caregivers, and seven cancer physicians conducted alongside monthly outcome assessments were analyzed. We identified five themes relating participants' perspectives on electronic communication to their experience of care: (1) apparent gaps in care, (2) uncertainty in defining the circle of care, (3) relational aspects of communication, (4) incongruence between technology and social norms of patient-physician communication, and (5) appreciation but apprehension about the team-based communication tool for improving the experience of care. The potential of tools for electronic communication to bring together a team of healthcare providers with the patient and caregivers is significant but may pose new challenges to existing team structure and interpersonal dynamics. Patients and physicians were worried about the impact that electronic communication may have on the patient-physician relationship. Implementation approaches, which build on the relationship and integrate the team as a whole, could positively position electronic communication to enhance the team-based care.

  5. Patient Anxiety Before and Immediately After Imaging-Guided Breast Biopsy Procedures: Impact of Radiologist-Patient Communication.

    PubMed

    Miller, Lauren S; Shelby, Rebecca A; Balmadrid, Melissa Hayes; Yoon, Sora; Baker, Jay A; Wildermann, Liz; Soo, Mary Scott

    2016-11-01

    The aim of this study was to evaluate patient anxiety and its association with perceived radiologist-patient communication in the setting of imaging-guided breast biopsy. After informed consent was obtained, 138 women recommended for imaging-guided breast procedures completed questionnaires immediately before and after biopsies, measuring state anxiety using the State-Trait Anxiety Inventory (range, 20-80). Before biopsies, women also completed questionnaires regarding their perceived communication with the radiologists recommending the procedures (modified Questionnaire on the Quality of Physician-Patient Interaction), demographic characteristics, and medical history; immediately after the biopsies, they completed a measure of perceived communication with the radiologists performing the biopsies. Experience levels (eg, attending radiologist, fellow) of the radiologists recommending and performing the biopsies were recorded. Data were analyzed using paired and independent t tests, one-way analysis of variance, Pearson's correlations, and multiple linear regression analyses. Average prebiopsy anxiety was 44.5 ± 12.4 (range, 20-77) on a scale ranging from 20 to 80 points. Perceived communication with radiologists recommending biopsies averaged 52.4 ± 11.5 (range, 18-65). Better communication with radiologists recommending biopsies was significantly associated with lower levels of prebiopsy anxiety (r = -0.22, P = .01). After the biopsies, women's anxiety significantly decreased (paired t = -7.32, P < .001). Better communication with radiologists performing biopsies (mean, 57.8 ± 8.4; range, 32-65) was associated with lower postbiopsy anxiety after accounting for patients' baseline anxiety levels (β = -0.17, P = .04). White women reported higher prebiopsy and postbiopsy anxiety; nonwhite women reported poorer communication with recommending radiologists. Patients' perceptions of better communication with radiologists were associated with lower levels of

  6. Design of multifunctional nanoparticles for combined in-vivo imaging and advanced drug delivery

    NASA Astrophysics Data System (ADS)

    Leary, James F.

    2018-02-01

    Design of multifunctional nanoparticles for multimodal in-vivo imaging and advanced targeting to diseased single cells for massive parallel processing nanomedicine approaches requires careful overall design and a multilayered approach. Initial core materials can include non-toxic metals which not only serve as an x-ray contrast agent for CAT scan imaging, but can contain T1 or T2 contrast agents for MRI imaging. One choice is superparamagnetic iron oxide NPs which also allow for convenient magnetic manipulation during manufacturing but also for re-positioning inside the body and for single cell hyperthermia therapies. To permit real-time fluorescence-guided surgery, fluorescence molecules can be included. Advanced targeting can be achieved by attaching antibodies, peptides, aptamers, or other targeting molecules to the nanoparticle in a multilayered approach producing "programmable nanoparticles" whereby the "programming" means controlling a sequence of multi-step targeting methods. Addition of membrane permeating peptides can facilitate uptake by the cell. Addition of "stealth" molecules (e.g. PEG or chitosan) to the outer surfaces of the nanoparticles can permit greatly enhanced circulation times in-vivo which in turn lead to lower amounts of drug exposure to the patient which can reduce undesirable side effects. Nanoparticles with incomplete layers can be removed by affinity purification methods to minimize mistargeting events in-vivo. Nanoscale imaging of these manufactured, multifunctional nanoparticles can be achieved either directly through superresolution microscopy or indirectly through single nanoparticle zeta-sizing or x-ray correlation microscopy. Since these multifunctional nanoparticles are best analyzed by technologies permitting analysis in aqueous environments, superresolution microscopy is, in most cases, the preferred method.

  7. Ethics in Technical Communication. The Allyn & Bacon Series in Technical Communication.

    ERIC Educational Resources Information Center

    Dombrowski, Paul

    Arguing that ethics is an important part of technical communication, this book discusses ethics in the broad sense including not only the act of communication but also where technical information came from and how it likely will be used. It is intended for advanced undergraduate and graduate audiences, and assumes some familiarity with technical…

  8. Potential markets for advanced satellite communications

    NASA Astrophysics Data System (ADS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-09-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  9. Potential markets for advanced satellite communications

    NASA Technical Reports Server (NTRS)

    Adamson, Steven; Roberts, David; Schubert, Leroy; Smith, Brian; Sogegian, Robert; Walters, Daniel

    1993-01-01

    This report identifies trends in the volume and type of traffic offered to the U.S. domestic communications infrastructure and extrapolates these trends through the year 2011. To describe how telecommunications service providers are adapting to the identified trends, this report assesses the status, plans, and capacity of the domestic communications infrastructure. Cable, satellite, and radio components of the infrastructure are examined separately. The report also assesses the following major applications making use of the infrastructure: (1) Broadband services, including Broadband Integrated Services Digital Network (BISDN), Switched Multimegabit Data Service (SMDS), and frame relay; (2) mobile services, including voice, location, and paging; (3) Very Small Aperture Terminals (VSAT), including mesh VSAT; and (4) Direct Broadcast Satellite (DBS) for audio and video. The report associates satellite implementation of specific applications with market segments appropriate to their features and capabilities. The volume and dollar value of these market segments are estimated. For the satellite applications able to address the needs of significant market segments, the report also examines the potential of each satellite-based application to capture business from alternative technologies.

  10. Advances in indirect detector systems for ultra high-speed hard X-ray imaging with synchrotron light

    NASA Astrophysics Data System (ADS)

    Olbinado, M. P.; Grenzer, J.; Pradel, P.; De Resseguier, T.; Vagovic, P.; Zdora, M.-C.; Guzenko, V. A.; David, C.; Rack, A.

    2018-04-01

    We report on indirect X-ray detector systems for various full-field, ultra high-speed X-ray imaging methodologies, such as X-ray phase-contrast radiography, diffraction topography, grating interferometry and speckle-based imaging performed at the hard X-ray imaging beamline ID19 of the European Synchrotron—ESRF. Our work highlights the versatility of indirect X-ray detectors to multiple goals such as single synchrotron pulse isolation, multiple-frame recording up to millions frames per second, high efficiency, and high spatial resolution. Besides the technical advancements, potential applications are briefly introduced and discussed.

  11. Infrared Cloud Imager Development for Atmospheric Optical Communication Characterization, and Measurements at the JPL Table Mountain Facility

    NASA Astrophysics Data System (ADS)

    Nugent, P. W.; Shaw, J. A.; Piazzolla, S.

    2013-02-01

    The continuous demand for high data return in deep space and near-Earth satellite missions has led NASA and international institutions to consider alternative technologies for high-data-rate communications. One solution is the establishment of wide-bandwidth Earth-space optical communication links, which require (among other things) a nearly obstruction-free atmospheric path. Considering the atmospheric channel, the most common and most apparent impairments on Earth-space optical communication paths arise from clouds. Therefore, the characterization of the statistical behavior of cloud coverage for optical communication ground station candidate sites is of vital importance. In this article, we describe the development and deployment of a ground-based, long-wavelength infrared cloud imaging system able to monitor and characterize the cloud coverage. This system is based on a commercially available camera with a 62-deg diagonal field of view. A novel internal-shutter-based calibration technique allows radiometric calibration of the camera, which operates without a thermoelectric cooler. This cloud imaging system provides continuous day-night cloud detection with constant sensitivity. The cloud imaging system also includes data-processing algorithms that calculate and remove atmospheric emission to isolate cloud signatures, and enable classification of clouds according to their optical attenuation. Measurements of long-wavelength infrared cloud radiance are used to retrieve the optical attenuation (cloud optical depth due to absorption and scattering) in the wavelength range of interest from visible to near-infrared, where the cloud attenuation is quite constant. This article addresses the specifics of the operation, calibration, and data processing of the imaging system that was deployed at the NASA/JPL Table Mountain Facility (TMF) in California. Data are reported from July 2008 to July 2010. These data describe seasonal variability in cloud cover at the TMF site

  12. WE-H-206-02: Recent Advances in Multi-Modality Molecular Imaging of Small Animals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsui, B.

    significantly to biomedical research during the past decade. The initial development was an extension of clinical PET/CT and SPECT/CT from human to small animals and combine the unique functional information obtained from PET and SPECT with anatomical information provided by the CT in registered multi-modality images. The requirements to image a mouse whose size is an order of magnitude smaller than that of a human have spurred advances in new radiation detector technologies, novel imaging system designs and special image reconstruction and processing techniques. Examples are new detector materials and designs with high intrinsic resolution, multi-pinhole (MPH) collimator design for much improved resolution and detection efficiency compared to the conventional collimator designs in SPECT, 3D high-resolution and artifact-free MPH and sparse-view image reconstruction techniques, and iterative image reconstruction methods with system response modeling for resolution recovery and image noise reduction for much improved image quality. The spatial resolution of PET and SPECT has improved from ∼6–12 mm to ∼1 mm a few years ago to sub-millimeter today. A recent commercial small animal SPECT system has achieved a resolution of ∼0.25 mm which surpasses that of a state-of-art PET system whose resolution is limited by the positron range. More recently, multimodality SA PET/MRI and SPECT/MRI systems have been developed in research laboratories. Also, multi-modality SA imaging systems that include other imaging modalities such as optical and ultrasound are being actively pursued. In this presentation, we will provide a review of the development, recent advances and future outlook of multi-modality molecular imaging of small animals. Learning Objectives: To learn about the two major multi-modality molecular imaging techniques of small animals. To learn about the spatial resolution achievable by the molecular imaging systems for small animal today. To learn about the new multi

  13. Communicating Biotech Advances: Fiction versus Reality.

    PubMed

    Małyska, Aleksandra; Bolla, Robert; Twardowski, Tomasz

    2018-02-01

    Bioscience novels use selected technologies of genetic engineering and synthetic biology to create entertaining stories. These novels are usually based on scientific knowledge, but they may arouse public concerns about technology and drive public reluctance to accept innovative technologies. The scientific community must adopt more efficient communication and transparency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. NOTE: An innovative phantom for quantitative and qualitative investigation of advanced x-ray imaging technologies

    NASA Astrophysics Data System (ADS)

    Chiarot, C. B.; Siewerdsen, J. H.; Haycocks, T.; Moseley, D. J.; Jaffray, D. A.

    2005-11-01

    Development, characterization, and quality assurance of advanced x-ray imaging technologies require phantoms that are quantitative and well suited to such modalities. This note reports on the design, construction, and use of an innovative phantom developed for advanced imaging technologies (e.g., multi-detector CT and the numerous applications of flat-panel detectors in dual-energy imaging, tomosynthesis, and cone-beam CT) in diagnostic and image-guided procedures. The design addresses shortcomings of existing phantoms by incorporating criteria satisfied by no other single phantom: (1) inserts are fully 3D—spherically symmetric rather than cylindrical; (2) modules are quantitative, presenting objects of known size and contrast for quality assurance and image quality investigation; (3) features are incorporated in ideal and semi-realistic (anthropomorphic) contexts; and (4) the phantom allows devices to be inserted and manipulated in an accessible module (right lung). The phantom consists of five primary modules: (1) head, featuring contrast-detail spheres approximate to brain lesions; (2) left lung, featuring contrast-detail spheres approximate to lung modules; (3) right lung, an accessible hull in which devices may be placed and manipulated; (4) liver, featuring conrast-detail spheres approximate to metastases; and (5) abdomen/pelvis, featuring simulated kidneys, colon, rectum, bladder, and prostate. The phantom represents a two-fold evolution in design philosophy—from 2D (cylindrically symmetric) to fully 3D, and from exclusively qualitative or quantitative to a design accommodating quantitative study within an anatomical context. It has proven a valuable tool in investigations throughout our institution, including low-dose CT, dual-energy radiography, and cone-beam CT for image-guided radiation therapy and surgery.

  15. Discussing religion and spirituality is an advanced communication skill: an exploratory structural equation model of physician trainee self-ratings.

    PubMed

    Ford, Dee W; Downey, Lois; Engelberg, Ruth; Back, Anthony L; Curtis, J Randall

    2012-01-01

    Communication about religious and spiritual issues is fundamental to palliative care, yet little empirical data exist to guide curricula in this area. The goal of this study was to develop an improved understanding of physicians' perspectives on their communication competence about religious and spiritual issues. We examined surveys of physician trainees (n=297) enrolled in an ongoing communication skills study at two medical centers in the northwestern and southeastern United States. Our primary outcome was self-assessed competence in discussing religion and spirituality. We used exploratory structural equation modeling (SEM) to develop measurement and full models for acquisition of self-assessed communication competencies. Our measurement SEM identified two latent constructs that we label Basic and Intermediate Competence, composed of five self-assessed communication skills. The Basic Competence construct included overall satisfaction with palliative care skills and with discussing do not resuscitate (DNR) status. The Intermediate Competence construct included responding to inappropriate treatment requests, maintaining hope, and addressing fears about the end-of-life. Our full SEM model found that Basic Competence predicted Intermediate Competence and that Intermediate Competence predicted competence in religious and spiritual discussions. Years of clinical training directly influenced Basic Competence. Increased end-of-life discussions positively influenced Basic Competence and had a complex association with Intermediate Competence. Southeastern trainees perceived more competence in religious and spiritual discussions than northwestern trainees. This study suggests that discussion of religious and spiritual issues is a communication skill that trainees consider more advanced than other commonly taught communication skills, such as discussing DNR orders.

  16. Imaging genetics in autism spectrum disorders: Linking genetics and brain imaging in the pursuit of the underlying neurobiological mechanisms.

    PubMed

    Fakhoury, Marc

    2018-01-03

    Autism spectrum disorders (ASD) include a wide range of heterogeneous neurodevelopmental conditions that affect an individual in several aspects of social communication and behavior. Recent advances in molecular genetic technologies have dramatically increased our understanding of ASD etiology through the identification of several autism risk genes, most of which serve important functions in synaptic plasticity and protein synthesis. However, despite significant progress in this field of research, the characterization of the neurobiological mechanisms by which common genetic risk variants might operate to give rise to ASD symptomatology has proven to be far more difficult than expected. The imaging genetics approach holds great promise for advancing our understanding of ASD etiology by bridging the gap between genetic variations and their resultant biological effects on the brain. This paper provides a conceptual overview of the contribution of genetics in ASD and discusses key findings from the emerging field of imaging genetics. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2015-11-24

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  18. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-10-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  19. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2016-11-22

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  20. Microscopy imaging device with advanced imaging properties

    DOEpatents

    Ghosh, Kunal; Burns, Laurie; El Gamal, Abbas; Schnitzer, Mark J.; Cocker, Eric; Ho, Tatt Wei

    2017-04-25

    Systems, methods and devices are implemented for microscope imaging solutions. One embodiment of the present disclosure is directed toward an epifluorescence microscope. The microscope includes an image capture circuit including an array of optical sensor. An optical arrangement is configured to direct excitation light of less than about 1 mW to a target object in a field of view of that is at least 0.5 mm.sup.2 and to direct epi-fluorescence emission caused by the excitation light to the array of optical sensors. The optical arrangement and array of optical sensors are each sufficiently close to the target object to provide at least 2.5 .mu.m resolution for an image of the field of view.

  1. Advanced information processing system: Authentication protocols for network communication

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Adams, Stuart J.; Babikyan, Carol A.; Butler, Bryan P.; Clark, Anne L.; Lala, Jaynarayan H.

    1994-01-01

    In safety critical I/O and intercomputer communication networks, reliable message transmission is an important concern. Difficulties of communication and fault identification in networks arise primarily because the sender of a transmission cannot be identified with certainty, an intermediate node can corrupt a message without certainty of detection, and a babbling node cannot be identified and silenced without lengthy diagnosis and reconfiguration . Authentication protocols use digital signature techniques to verify the authenticity of messages with high probability. Such protocols appear to provide an efficient solution to many of these problems. The objective of this program is to develop, demonstrate, and evaluate intercomputer communication architectures which employ authentication. As a context for the evaluation, the authentication protocol-based communication concept was demonstrated under this program by hosting a real-time flight critical guidance, navigation and control algorithm on a distributed, heterogeneous, mixed redundancy system of workstations and embedded fault-tolerant computers.

  2. Toward uniform implementation of parametric map Digital Imaging and Communication in Medicine standard in multisite quantitative diffusion imaging studies.

    PubMed

    Malyarenko, Dariya; Fedorov, Andriy; Bell, Laura; Prah, Melissa; Hectors, Stefanie; Arlinghaus, Lori; Muzi, Mark; Solaiyappan, Meiyappan; Jacobs, Michael; Fung, Maggie; Shukla-Dave, Amita; McManus, Kevin; Boss, Michael; Taouli, Bachir; Yankeelov, Thomas E; Quarles, Christopher Chad; Schmainda, Kathleen; Chenevert, Thomas L; Newitt, David C

    2018-01-01

    This paper reports on results of a multisite collaborative project launched by the MRI subgroup of Quantitative Imaging Network to assess current capability and provide future guidelines for generating a standard parametric diffusion map Digital Imaging and Communication in Medicine (DICOM) in clinical trials that utilize quantitative diffusion-weighted imaging (DWI). Participating sites used a multivendor DWI DICOM dataset of a single phantom to generate parametric maps (PMs) of the apparent diffusion coefficient (ADC) based on two models. The results were evaluated for numerical consistency among models and true phantom ADC values, as well as for consistency of metadata with attributes required by the DICOM standards. This analysis identified missing metadata descriptive of the sources for detected numerical discrepancies among ADC models. Instead of the DICOM PM object, all sites stored ADC maps as DICOM MR objects, generally lacking designated attributes and coded terms for quantitative DWI modeling. Source-image reference, model parameters, ADC units and scale, deemed important for numerical consistency, were either missing or stored using nonstandard conventions. Guided by the identified limitations, the DICOM PM standard has been amended to include coded terms for the relevant diffusion models. Open-source software has been developed to support conversion of site-specific formats into the standard representation.

  3. Iodine-131-MIBG imaging to monitor chemotherapy response in advanced neuroblastoma: comparison with laboratory analysis.

    PubMed

    Maurea, S; Lastoria, S; Caracò, C; Indolfi, P; Casale, F; di Tullio, M T; Salvatore, M

    1994-09-01

    The rationale of this study was the evaluation of response to chemotherapy in children with advanced neuroblastoma using currently available diagnostic modalities. Iodine-131-metaiodobenzylguanidine (MIBG) imaging and 24-hr urinary vanillylmandelic acid (VMA) measurement were evaluated in 14 patients (7 males, 7 females, age range: 2-68 mo) with advanced neuroblastoma both pre- and postchemotherapy (5.6 +/- 2.8 mo) as well as serum ferritin (FER) and neuron-specific enolase (NSE) levels in 9 and 8 patients, respectively. MIBG images were qualitatively compared in each patient. Prechemotherapy, a total of 39 abnormal foci of MIBG uptake was detected. Postchemotherapy, 15 of these showed unchanged MIBG uptake, 7 had decreased uptake and 17 showed no uptake. In addition, four new abnormal foci of uptake were found. Postchemotherapy, a significant reduction of abnormal MIBG uptake (p < 0.01) was observed using a lesion-by-lesion analysis. When biochemical and MIBG postchemotherapy changes were compared, a significant relationship was found only between MIBG and VMA results (r = 0.84, p < 0.01). In postchemotherapy follow-up of children with advanced neuroblastoma, laboratory evaluation using VMA, FER and NSE measurements reflect only the global functional status of the disease, and are not helpful in defining the response of individual tumor lesions to treatment. Conversely, qualitative analysis using MIBG imaging may allow lesion-by-lesion evaluation of the heterogeneity of neuroblastoma response to chemotherapy. In this setting, changes in MIBG uptake are mirrored by the changes in catecholamine production, as measured by VMA levels.

  4. Advance directives from haematology departments: the patient's freedom of choice and communication with families. A qualitative analysis of 35 written documents.

    PubMed

    Trarieux-Signol, S; Bordessoule, D; Ceccaldi, J; Malak, S; Polomeni, A; Fargeas, J B; Signol, N; Pauliat, H; Moreau, S

    2018-01-02

    In France, advance directives are favourably perceived by most of the population, although the drafting rate is low. This ambivalence is challenging because advance directives are meant to promote the autonomy and freedom of choice of patients. The purpose of this study was to analyse the content of advance directives written by patients suffering from malignant haemopathies to better understand how patients put them into practice. These could be relevant as early as the initial diagnosis of haematological malignancies because of the uncertain course of the disease. This was a multicentre, qualitative, descriptive study. The advance directives written by patients with malignant haemopathies treated in one of the six French hospital departments were included in the study from 01/06/2008 to 15/04/2016. A thematic analysis of the advance directives was performed by two researchers: a senior haematologist and a research assistant. The median age of the patients was 69. Most were women (sex ratio: 0.59), living as a couple (57%), with lymphoid pathologies (66%), who were still alive two years after the instructions were written (63%) and had nominated a health care proxy (88.6%). Free texts (62.9%) were richer in content than pre-defined forms. The advance directives were used in three ways: for a purely legal purpose, to focus on medical treatments or actions, or to communicate a message to the family. Three main themes emerged: (1) refusal of medical treatment (100%), in which patients express refusal of life-sustaining care (97.1%). The actual treatments or the moment when they should be limited or stopped were not always mentioned in detail. (2) A desire for effective pain relief to avoid suffering (57.1%) and (3) messages for their family (34.3%), such as funeral arrangements (17.1%) and messages of love or trust (14.3%). Patients who write advance directives are not necessarily at the end of their lives. Their content mainly conveys treatment wishes, although

  5. Estimating and communicating prognosis in advanced neurologic disease

    PubMed Central

    Gramling, Robert; Kelly, Adam G.

    2013-01-01

    Prognosis can no longer be relegated behind diagnosis and therapy in high-quality neurologic care. High-stakes decisions that patients (or their surrogates) make often rest upon perceptions and beliefs about prognosis, many of which are poorly informed. The new science of prognostication—the estimating and communication “what to expect”—is in its infancy and the evidence base to support “best practices” is lacking. We propose a framework for formulating a prediction and communicating “what to expect” with patients, families, and surrogates in the context of common neurologic illnesses. Because neurologic disease affects function as much as survival, we specifically address 2 important prognostic questions: “How long?” and “How well?” We provide a summary of prognostic information and highlight key points when tailoring a prognosis for common neurologic diseases. We discuss the challenges of managing prognostic uncertainty, balancing hope and realism, and ways to effectively engage surrogate decision-makers. We also describe what is known about the nocebo effects and the self-fulfilling prophecy when communicating prognoses. There is an urgent need to establish research and educational priorities to build a credible evidence base to support best practices, improve communication skills, and optimize decision-making. Confronting the challenges of prognosis is necessary to fulfill the promise of delivering high-quality, patient-centered care. PMID:23420894

  6. The Integrated Safety-Critical Advanced Avionics Communication and Control (ISAACC) System Concept: Infrastructure for ISHM

    NASA Technical Reports Server (NTRS)

    Gwaltney, David A.; Briscoe, Jeri M.

    2005-01-01

    Integrated System Health Management (ISHM) architectures for spacecraft will include hard real-time, critical subsystems and soft real-time monitoring subsystems. Interaction between these subsystems will be necessary and an architecture supporting multiple criticality levels will be required. Demonstration hardware for the Integrated Safety-Critical Advanced Avionics Communication & Control (ISAACC) system has been developed at NASA Marshall Space Flight Center. It is a modular system using a commercially available time-triggered protocol, ?Tp/C, that supports hard real-time distributed control systems independent of the data transmission medium. The protocol is implemented in hardware and provides guaranteed low-latency messaging with inherent fault-tolerance and fault-containment. Interoperability between modules and systems of modules using the TTP/C is guaranteed through definition of messages and the precise message schedule implemented by the master-less Time Division Multiple Access (TDMA) communications protocol. "Plug-and-play" capability for sensors and actuators provides automatically configurable modules supporting sensor recalibration and control algorithm re-tuning without software modification. Modular components of controlled physical system(s) critical to control algorithm tuning, such as pumps or valve components in an engine, can be replaced or upgraded as "plug and play" components without modification to the ISAACC module hardware or software. ISAACC modules can communicate with other vehicle subsystems through time-triggered protocols or other communications protocols implemented over Ethernet, MIL-STD- 1553 and RS-485/422. Other communication bus physical layers and protocols can be included as required. In this way, the ISAACC modules can be part of a system-of-systems in a vehicle with multi-tier subsystems of varying criticality. The goal of the ISAACC architecture development is control and monitoring of safety critical systems of a

  7. The Advanced Gamma-ray Imaging System (AGIS): Extragalactic Science

    NASA Astrophysics Data System (ADS)

    Coppi, Paolo S.; Extragalactic Science Working Group; AGIS Collaboration

    2010-03-01

    The Advanced Gamma-ray Imaging System (AGIS), a proposed next-generation array of Cherenkov telescopes, will provide an unprecedented view of the high energy universe. We discuss how AGIS, with its larger effective area, improved angular resolution, lower threshold, and an order of magnitude increase in sensitivity, impacts the extragalactic science possible in the very high energy domain. Likely source classes detectable by AGIS include AGN, GRBs, clusters, star-forming galaxies, and possibly the cascade radiation surrounding powerful cosmic accelerators. AGIS should see many of the sources discovered by Fermi. With its better sensitivity and angular resolution, AGIS then becomes a key instrument for identifying and characterizing Fermi survey sources, the majority of which will have limited Fermi photon statistics and localizations.

  8. Advanced pushbroom hyperspectral LWIR imagers

    NASA Astrophysics Data System (ADS)

    Holma, Hannu; Hyvärinen, Timo; Lehtomaa, Jarmo; Karjalainen, Harri; Jaskari, Risto

    2009-05-01

    Performance studies and instrument designs for hyperspectral pushbroom imagers in thermal wavelength region are introduced. The studies involve imaging systems based on both MCT and microbolometer detector. All the systems employ pushbroom imaging spectrograph with transmission grating and on-axis optics. The aim of the work was to design high performance instruments with good image quality and compact size for various application requirements. A big challenge in realizing these goals without considerable cooling of the whole instrument is to control the instrument radiation from all the surfaces of the instrument itself. This challenge is even bigger in hyperspectral instruments, where the optical power from the target is spread spectrally over tens of pixels, but the instrument radiation is not dispersed. Without any suppression, the instrument radiation can overwhelm the radiation from the target by 1000 times. In the first imager design, BMC-technique (background monitoring on-chip), background suppression and temperature stabilization have been combined with cryo-cooled MCT-detector. The performance of a very compact hyperspectral imager with 84 spectral bands and 384 spatial samples has been studied and NESR of 18 mW/(m2srμm) at 10 μm wavelength for 300 K target has been achieved. This leads to SNR of 580. These results are based on a simulation model. The second version of the imager with an uncooled microbolometer detector and optics in ambient temperature aims at imaging targets at higher temperatures or with illumination. Heater rods with ellipsoidal reflectors can be used to illuminate the swath line of the hyperspectral imager on a target or sample, like drill core in mineralogical analysis. Performance characteristics for microbolometer version have been experimentally verified.

  9. Japan's telecommunications - New initiatives in space communications

    NASA Astrophysics Data System (ADS)

    Iida, T.

    1992-04-01

    Despite recent advances in optical transmission technology, intensive R&D work in the field of satellite communications is now being undertaken in Japan. It is believed that satellites offer advantages in several important areas, including wide coverage broadcasting, immediacy of service, suitability for the implementation of HDTV, and advantages in disaster communications and other social services. Here, some experimental projects in the field of satellite communications planned in Japan for the 1990s are summarized. In particular, attention is given to broadcast satellite development, intersatellite links, advanced mobile communication concepts, large antenna assembly experiment, small satellite R&D, and Pan-Pacific information network experiment.

  10. Conjoined twins – role of imaging and recent advances

    PubMed Central

    Francis, Swati; Basti, Ram Shenoy; Suresh, Hadihally B.; Rajarathnam, Annie; Cunha, Prema D.; Rao, Sujaya V.

    2017-01-01

    Introduction Conjoined twins are identical twins with fused bodies, joined in utero. They are rare complications of monochorionic twinning. The purpose of this study is to describe the various types of conjoined twins, the role of imaging and recent advances aiding in their management. Material and methods This was a twin institutional study involving 3 cases of conjoined twins diagnosed over a period of 6 years from 2010 to 2015. All the 3 cases were identified antenatally by ultrasound. Only one case was further evaluated by MRI. Results Three cases of conjoined twins (cephalopagus, thoracopagus and omphalopagus) were accurately diagnosed on antenatal ultrasound. After detailed counseling of the parents and obtaining written consent, all the three cases of pregnancy were terminated. Delivery of the viable conjoined twins was achieved without any complications to the mothers, and all the three conjoined twins died after a few minutes. Conclusion Ultrasound enables an early and accurate diagnosis of conjoined twins, which is vital for obstetric management. MRI is reserved for better tissue characterization. Termination of pregnancy when opted, should be done at an early stage as later stages are fraught with problems. Recent advances, such as 3D printing, may aid in surgical pre-planning, thereby enabling successful surgical separation of conjoined twins. PMID:29375901

  11. Application of advanced signal processing techniques to the rectification and registration of spaceborne imagery. [technology transfer, data transmission

    NASA Technical Reports Server (NTRS)

    Caron, R. H.; Rifman, S. S.; Simon, K. W.

    1974-01-01

    The development of an ERTS/MSS image processing system responsive to the needs of the user community is discussed. An overview of the TRW ERTS/MSS processor is presented, followed by a more detailed discussion of image processing functions satisfied by the system. The particular functions chosen for discussion are evolved from advanced signal processing techniques rooted in the areas of communication and control. These examples show how classical aerospace technology can be transferred to solve the more contemporary problems confronting the users of spaceborne imagery.

  12. Benchmarking Investments in Advancement: Results of the Inaugural CASE Advancement Investment Metrics Study (AIMS). CASE White Paper

    ERIC Educational Resources Information Center

    Kroll, Juidith A.

    2012-01-01

    The inaugural Advancement Investment Metrics Study, or AIMS, benchmarked investments and staffing in each of the advancement disciplines (advancement services, alumni relations, communications and marketing, fundraising and advancement management) as well as the return on the investment in fundraising specifically. This white paper reports on the…

  13. Military and government applications of human-machine communication by voice.

    PubMed Central

    Weinstein, C J

    1995-01-01

    This paper describes a range of opportunities for military and government applications of human-machine communication by voice, based on visits and contacts with numerous user organizations in the United States. The applications include some that appear to be feasible by careful integration of current state-of-the-art technology and others that will require a varying mix of advances in speech technology and in integration of the technology into applications environments. Applications that are described include (1) speech recognition and synthesis for mobile command and control; (2) speech processing for a portable multifunction soldier's computer; (3) speech- and language-based technology for naval combat team tactical training; (4) speech technology for command and control on a carrier flight deck; (5) control of auxiliary systems, and alert and warning generation, in fighter aircraft and helicopters; and (6) voice check-in, report entry, and communication for law enforcement agents or special forces. A phased approach for transfer of the technology into applications is advocated, where integration of applications systems is pursued in parallel with advanced research to meet future needs. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:7479718

  14. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  15. Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)

    NASA Astrophysics Data System (ADS)

    Wagner, Robert G.; AGIS Photodetector Group; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Tajima, H.; Williams, D.

    2008-03-01

    The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. It is being designed to achieve a significant improvement in sensitivity compared to current Imaging Air Cherenkov Telescope (IACT) Arrays. One of the main requirements in order that AGIS fulfill this goal will be to achieve higher angular resolution than current IACTs. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel size is reduced to less than 0.05 deg, i.e. two to three times smaller than the pixel size of current IACT cameras. With finer pixelation and the plan to deploy on the order of 100 telescopes in the AGIS array, the channel count will exceed 1,000,000 imaging pixels. High uniformity and long mean time-to-failure will be important aspects of a successful photodetector technology choice. Here we present alternatives being considered for AGIS, including both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Results from laboratory testing of MAPMTs and SiPMs are presented along with results from the first incorporation of these devices in cameras on test bed Cherenkov telescopes.

  16. Values and options in cancer care (VOICE): study design and rationale for a patient-centered communication and decision-making intervention for physicians, patients with advanced cancer, and their caregivers

    PubMed Central

    2013-01-01

    Background Communication about prognosis and treatment choices is essential for informed decision making in advanced cancer. This article describes an investigation designed to facilitate communication and decision making among oncologists, patients with advanced cancer, and their caregivers. Methods/design The Values and Options in Cancer Care (VOICE) Study is a National Cancer Institute sponsored randomized controlled trial conducted in the Rochester/Buffalo, NY and Sacramento, CA regions. A total of 40 oncologists, approximately 400 patients with advanced cancer, and their family/friend caregivers (one per patient, when available) are expected to enroll in the study. Drawing upon ecological theory, the intervention uses a two-pronged approach: oncologists complete a multifaceted tailored educational intervention involving standardized patient instructors (SPIs), and patients and caregivers complete a coaching intervention to facilitate prioritizing and discussing questions and concerns. Follow-up data will be collected approximately quarterly for up to three years. Discussion The intervention is hypothesized to enhance patient-centered communication, quality of care, and patient outcomes. Analyses will examine the effects of the intervention on key elements of physician-patient-caregiver communication (primary outcomes), the physician-patient relationship, shared understanding of prognosis, patient well-being, and health service utilization (secondary outcomes). Trial registration Clinical Trials Identifier: NCT01485627 PMID:23570278

  17. Information theoretical assessment of visual communication with subband coding

    NASA Astrophysics Data System (ADS)

    Rahman, Zia-ur; Fales, Carl L.; Huck, Friedrich O.

    1994-09-01

    A well-designed visual communication channel is one which transmits the most information about a radiance field with the fewest artifacts. The role of image processing, encoding and restoration is to improve the quality of visual communication channels by minimizing the error in the transmitted data. Conventionally this role has been analyzed strictly in the digital domain neglecting the effects of image-gathering and image-display devices on the quality of the image. This results in the design of a visual communication channel which is `suboptimal.' We propose an end-to-end assessment of the imaging process which incorporates the influences of these devices in the design of the encoder and the restoration process. This assessment combines Shannon's communication theory with Wiener's restoration filter and with the critical design factors of the image gathering and display devices, thus providing the metrics needed to quantify and optimize the end-to-end performance of the visual communication channel. Results show that the design of the image-gathering device plays a significant role in determining the quality of the visual communication channel and in designing the analysis filters for subband encoding.

  18. A phonology-free mobile communication app.

    PubMed

    Kondapalli, Ananya; Zhang, Lee R; Patel, Shreya; Han, Xiao; Kim, Hee Jin; Li, Xintong; Altschuler, Eric L

    2016-11-01

    Aphasia - loss of comprehension or expression of language - is a devastating functional sequela of stroke. There are as yet no effective methods for rehabilitation of aphasia. An assistive device that allows aphasia patients to communicate and interact at speeds approaching real time is urgently needed. Behavioral and linguistic studies of aphasia patients show that they retain normal thinking processes and most aspects of language. They lack only phonology: the ability to translate (input) and/or output sounds (or written words) such as "ta-ble" into the image of a four-legged object with a top at which one works or eats. We have made a phonology-free communication mobile app that may be useful for patients with aphasia and other communication disorders. Particular innovations of our app include calling Google Images as a "subroutine" to allow a near-infinite number of choices (e.g. food or clothing items) for patients without having to make countless images, and by the use of animation for words, phrases or concepts that cannot be represented by a single image. We have tested our app successfully in one patient. The app may be of great benefit to patients with aphasia and other communication disorders. Implications for Rehabilitation We have made a phonology-free mobile communication app. This app may facilitate communication for patients with aphasia and other communication disorders.

  19. Approximating tasseled cap values to evaluate brightness, greenness, and wetness for the Advanced Land Imager (ALI)

    USGS Publications Warehouse

    Yamamoto, Kristina H.; Finn, Michael P.

    2012-01-01

    The Tasseled Cap transformation is a method of image band conversion to enhance spectral information. It primarily is used to detect vegetation using the derived brightness, greenness, and wetness bands. An approximation of Tasseled Cap values for the Advanced Land Imager was investigated and compared to the Landsat Thematic Mapper Tasseled Cap values. Despite sharing similar spectral, temporal, and spatial resolution, the two systems are not interchangeable with regard to Tasseled Cap matrices.

  20. Design and Development of a Baseband Processor for the Advanced Communications Technology Satellite

    NASA Technical Reports Server (NTRS)

    Lee, Kerry D.

    1996-01-01

    This paper describes the implementation of the operational baseband processor (BBP) subsystem on board the NASA Advanced Communications Technology Satellite (ACTS). The BBP supports the network consisting of the NASA ground station (NGS) low burst rate (LBR) terminals, and the T1 very small aperture terminals (VSAT's), to provide flexible, demand assigned satellite switched (SS), baseband processed frequency division modulated (FDM)/time division multiple access (TDMA) operations. This paper presents an overview of the baseband processor and includes a description of the data flow, functional block diagrams, and a discussion of the implementation of BBP. A discussion of the supporting technologies for the BBP is presented. A brief summary of BBP-level performance testing is also presented. Finally, a discussion of the implications of current technology on the BBP design, if it were to be developed today, is presented.