These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Advanced techniques for constrained internal coordinate molecular dynamics.  

PubMed

Internal coordinate molecular dynamics (ICMD) methods provide a more natural description of a protein by using bond, angle, and torsional coordinates instead of a Cartesian coordinate representation. Freezing high-frequency bonds and angles in the ICMD model gives rise to constrained ICMD (CICMD) models. There are several theoretical aspects that need to be developed to make the CICMD method robust and widely usable. In this article, we have designed a new framework for (1) initializing velocities for nonindependent CICMD coordinates, (2) efficient computation of center of mass velocity during CICMD simulations, (3) using advanced integrators such as Runge-Kutta, Lobatto, and adaptive CVODE for CICMD simulations, and (4) cancelling out the "flying ice cube effect" that sometimes arises in Nosé-Hoover dynamics. The Generalized Newton-Euler Inverse Mass Operator (GNEIMO) method is an implementation of a CICMD method that we have developed to study protein dynamics. GNEIMO allows for a hierarchy of coarse-grained simulation models based on the ability to rigidly constrain any group of atoms. In this article, we perform tests on the Lobatto and Runge-Kutta integrators to determine optimal simulation parameters. We also implement an adaptive coarse-graining tool using the GNEIMO Python interface. This tool enables the secondary structure-guided "freezing and thawing" of degrees of freedom in the molecule on the fly during molecular dynamics simulations and is shown to fold four proteins to their native topologies. With these advancements, we envision the use of the GNEIMO method in protein structure prediction, structure refinement, and in studying domain motion. PMID:23345138

Wagner, Jeffrey R; Balaraman, Gouthaman S; Niesen, Michiel J M; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

2013-04-30

2

Synchrotron-Based Microspectroscopic Analysis of Molecular and Biopolymer Structures Using Multivariate Techniques and Advanced Multi-Components Modeling  

SciTech Connect

More recently, advanced synchrotron radiation-based bioanalytical technique (SRFTIRM) has been applied as a novel non-invasive analysis tool to study molecular, functional group and biopolymer chemistry, nutrient make-up and structural conformation in biomaterials. This novel synchrotron technique, taking advantage of bright synchrotron light (which is million times brighter than sunlight), is capable of exploring the biomaterials at molecular and cellular levels. However, with the synchrotron RFTIRM technique, a large number of molecular spectral data are usually collected. The objective of this article was to illustrate how to use two multivariate statistical techniques: (1) agglomerative hierarchical cluster analysis (AHCA) and (2) principal component analysis (PCA) and two advanced multicomponent modeling methods: (1) Gaussian and (2) Lorentzian multi-component peak modeling for molecular spectrum analysis of bio-tissues. The studies indicated that the two multivariate analyses (AHCA, PCA) are able to create molecular spectral corrections by including not just one intensity or frequency point of a molecular spectrum, but by utilizing the entire spectral information. Gaussian and Lorentzian modeling techniques are able to quantify spectral omponent peaks of molecular structure, functional group and biopolymer. By application of these four statistical methods of the multivariate techniques and Gaussian and Lorentzian modeling, inherent molecular structures, functional group and biopolymer onformation between and among biological samples can be quantified, discriminated and classified with great efficiency.

Yu, P.

2008-01-01

3

Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques  

PubMed Central

Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

2014-01-01

4

TOWARDS ADVANCED BIOINFORMATICS TECHNIQUES FOR THE SYSTEMIC ANALYSIS AT THE MOLECULAR LEVEL OF COMPLEX DISEASES  

Microsoft Academic Search

In this paper, we present a set of bioinformatics algorithms and tools for understanding the mechanisms of complex diseases at a molecular level. We mainly concentrate on the unsupervised analysis of gene expression data, for which we have developed improved clustering algorithms based on nonnegative matrix factorizations. We also present a detailed analysis of a large colon adenocarcinoma dataset, for

Liviu Badea; Anca Hotaran; Doina Tilivea

5

Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine  

PubMed Central

Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and optical interactions in the interface areas of nanotechnology-based materials and living cells in both in vitro and in vivo settings. PMID:24258011

Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

2013-01-01

6

Gliomas: advances in molecular analysis and characterization  

Microsoft Academic Search

BackgroundGliomas represent the most common primary brain tumor. Despite recent advances in diagnostic imaging, neurosurgical technique, radiation therapy, and chemotherapy, significant advances in accurate prognosis and improved survival have not been achieved. Nevertheless, new developments in molecular biology could have potential impact on the clinical management of patients with these brain tumors. This review will describe the technological advances being

Christine R. Boudreau; Isaac Yang; Linda M. Liau

2005-01-01

7

BIOC 420 Advanced Biochemical Techniques Course Description  

E-print Network

BIOC 420 ­ Advanced Biochemical Techniques Course Description This lab course focuses on experiments and techniques relevant to modern day molecular biology-biochemistry research. The course Biochemistry and Combined Honours Biochemistry and Chemistry students. Lab Times Labs run on Tues and Thurs

Strynadka, Natalie

8

Detecting the dormant: a review of recent advances in molecular techniques for assessing the viability of bacterial endospores.  

PubMed

Due to their contribution to gastrointestinal and pulmonary disease, their ability to produce various deadly exotoxins, and their resistance to extreme temperature, pressure, radiation, and common chemical disinfecting agents, bacterial endospores of the Firmicutes phylum are a major concern for public and environmental health. In addition, the hardy and dormant nature of endospores renders them a particularly significant threat to the integrity of robotic extraterrestrial life-detection investigations. To prevent the contamination of critical surfaces with seemingly ubiquitous bacterial endospores, clean rooms maintained at exceedingly stringent cleanliness levels (i.e., fewer than 100,000 airborne particles per ft(3)) are used for surgical procedures, pharmaceutical processing and packaging, and fabrication and assembly of medical devices and spacecraft components. However, numerous spore-forming bacterial species have been reported to withstand typical clean room bioreduction strategies (e.g., UV lights, maintained humidity, paucity of available nutrients), which highlights the need for rapid and reliable molecular methods for detecting, enumerating, and monitoring the incidence of viable endospores. Robust means of evaluating and tracking spore burden not only provide much needed information pertaining to endospore ecophysiology in different environmental niches but also empower decontamination and bioreduction strategies aimed at sustaining the reliability and integrity of clean room environments. An overview of recent molecular advances in detecting and enumerating viable endospores, as well as the expanding phylogenetic diversity of pathogenic and clean room-associated spore-forming bacteria, ensues. PMID:23912118

Mohapatra, Bidyut R; La Duc, Myron T

2013-09-01

9

Advances in Atomic & Molecular Nanotechnology  

Microsoft Academic Search

In this report the author is presenting the advances made in the atomic and molecular nanotechnology, ability to systematically organize and manipulate properties and behavior of matter in the atomic and molecular levels. It is argued that through nanotechnology it has become possible to create functional devices, materials and systems on the 1 to 100 nanometer (one billionth of a

G. Ali Mansoori

2002-01-01

10

Advanced Coating Removal Techniques  

NASA Technical Reports Server (NTRS)

An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid nitrogen operations include cutting of both soft and hard materials. While the laser will not cut materials, it can be used to roughen surfaces and to remove other materials from the substrate including oil, grease, and mold. The space program can benefit from several of these applications with the need for precise removal of coatings and other organic compounds in areas adjacent to sensitive space flight hardware. Significant advantages are evident when comparing liquid nitrogen and laser removal operations over current techniques of media blasting and sanding.

Seibert, Jon

2006-01-01

11

Advanced Molecular Genetics Prerequisite  

E-print Network

The molecular mechanisms of gene action in prokaryotes and eukaryotes, including discussions of chromosome Topic . Instructor . Jan. 9 F Transcription and gene regulation - prokaryotes Westpheling Jan. 12 M - Jan. 21 W Transcription and gene regulation - prokaryotes " " Jan. 23 F RNA splicing - eukaryotes

Arnold, Jonathan

12

Review of advanced imaging techniques  

PubMed Central

Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images (“optical biopsies”) at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H.; Parwani, Anil V.; Pantanowitz, Liron

2012-01-01

13

Review of advanced imaging techniques.  

PubMed

Pathology informatics encompasses digital imaging and related applications. Several specialized microscopy techniques have emerged which permit the acquisition of digital images ("optical biopsies") at high resolution. Coupled with fiber-optic and micro-optic components, some of these imaging techniques (e.g., optical coherence tomography) are now integrated with a wide range of imaging devices such as endoscopes, laparoscopes, catheters, and needles that enable imaging inside the body. These advanced imaging modalities have exciting diagnostic potential and introduce new opportunities in pathology. Therefore, it is important that pathology informaticists understand these advanced imaging techniques and the impact they have on pathology. This paper reviews several recently developed microscopic techniques, including diffraction-limited methods (e.g., confocal microscopy, 2-photon microscopy, 4Pi microscopy, and spatially modulated illumination microscopy) and subdiffraction techniques (e.g., photoactivated localization microscopy, stochastic optical reconstruction microscopy, and stimulated emission depletion microscopy). This article serves as a primer for pathology informaticists, highlighting the fundamentals and applications of advanced optical imaging techniques. PMID:22754737

Chen, Yu; Liang, Chia-Pin; Liu, Yang; Fischer, Andrew H; Parwani, Anil V; Pantanowitz, Liron

2012-01-01

14

Yeast molecular biology recombinant DNA. Recent advances  

SciTech Connect

Insights into recombinant DNA technology, as applied to yeast research, are described in this volume based on the First Berkeley Workshop on Recent Advances in Yeast Molecular Biology. The results of various genetic engineering techniques in recombinant DNA studies in yeast are detailed and discussed. The papers describe experimental approaches using the newest technologies of DNA transformations, molecular cloning, and DNA sequence analysis. These techniques are employed to gain new information regarding chromosomal structure, gene regulation, DNA recombination and repair, and cell type control.

Esposito, M.S.

1984-01-01

15

Molecular weight characterization of advanced thermoplastic resins  

NASA Technical Reports Server (NTRS)

Analytical techniques including low angle laser light scattering photometry (LALLS), differential viscometry (DV), gel permeation chromatography (GPC), GPC-LALLS and GPC-DV, were used to characterize the molecular weight and molecular weight distribution of several advanced thermoplastics. A discussion is presented of various molecular-weight-related parameters obtained by these techniques on an experimental polyimide and poly(arylene ether ketone) and a commercially available polysulfone. Where possible, these parameters are correlated with processability and selected mechanical properties. The molecular weight was found to vary during the thermal conversion of poly(amic acid) to polyimide. However, no change in composition of the polysulfone was noted in response to various processing procedures.

Young, Philip R.; Davis, Judith R.; Chang, Alice C.

1989-01-01

16

Advanced techniques in GEO 600  

NASA Astrophysics Data System (ADS)

For almost 20 years, advanced techniques have been developed and tested at the GEO 600 laser-interferometric gravitational wave detector. Many of these innovations have improved the sensitivity of GEO 600 and could be shown to be consistent with stable and reliable operation of gravitational wave detectors. We review the performance of these techniques and show how they have influenced the upgrades of other detectors worldwide. In the second half of the paper, we consider how GEO 600 continues to pioneer new techniques for future gravitational wave detectors. We describe some of the new methods in detail and present new results on how they improve the sensitivity and/or the stability of GEO 600 and possibly of future detectors.

Affeldt, C.; Danzmann, K.; Dooley, K. L.; Grote, H.; Hewitson, M.; Hild, S.; Hough, J.; Leong, J.; Lück, H.; Prijatelj, M.; Rowan, S.; Rüdiger, A.; Schilling, R.; Schnabel, R.; Schreiber, E.; Sorazu, B.; Strain, K. A.; Vahlbruch, H.; Willke, B.; Winkler, W.; Wittel, H.

2014-11-01

17

Advances in information extraction techniques  

NASA Technical Reports Server (NTRS)

Sundry recent developments are presented which show some potential for affecting the automatic extraction of information from remotely sensed data. Pattern representations more abstract than Euclidean vector spaces offer some hope of unifying structural and decision theoretical approaches. The estimation of expected classification error rates is becoming more sophisticated and rigorous, but useful finite-sample results for nonparametric distributions appear unobtainable. Focus on computational complexity allows comparison of algorithms, while software engineering techniques reduce the effort necessary to develop and maintain complex image processing systems. Advances in computer systems architecture, commercial database technology, and man-machine communications should be closely monitored by the remote sensing community. A NASA-sponsored recommendation for research directions in mathematical pattern recognition are offered.

Nagy, G.

1982-01-01

18

Guide to molecular cloning techniques  

SciTech Connect

This book includes the following selections: requirements for a molecular biology laboratory; general methods for isolating and characterizing nucleic acids; enzymatic techniques and recombinant DNA technology; restriction enzymes; growth and maintenance of bacteria; genetic cloning, preparation and characterization of RNA; preparation of cDNA and the generation of cDNA libraries; selections of clones from libraries; and identification and characterization of specific clones.

Berger, S.L.; Kimmel, A.R.

1987-01-01

19

Advanced techniques for microwave reflectometry  

SciTech Connect

Microwave reflectometry has been applied during the last years as a plasma diagnostic of increasing interest, mainly due to its simplicity, no need for large access ports and low radiation damage of exposed components. Those characteristics make reflectometry an attractive diagnostic for the next generation devices. Systems used either for density profile or density fluctuations have also shown great development, from the original single channel heterodyne to the multichannel homodyne receivers. In the present work we discuss three different advanced reflectometer systems developed by CIEMAT members in collaboration with different institutions. The first one is the broadband heterodyne reflectometer installed on W7AS for density fluctuations measurements. The decoupling of the phase and amplitude of the reflected beam allows for quantitative analysis of the fluctuations. Recent results showing the behavior of the density turbulence during the L-H transition on W7AS are shown. The second system shows how the effect of the turbulence can be used for density profile measurements by reflectometry in situations where the complicated geometry of the waveguides cannot avoid many parasitic reflections. Experiments from the TJ-I tokamak will be shown. Finally, a reflectometer system based on the Amplitude Modulation (AM) technique for density profile measurements is discussed and experimental results from the TJ-I tokamak are shown. The AM system offers the advantage of being almost insensitive to the effect of fluctuations. It is able to take a direct measurement of the time delay of the microwave pulse which propagates to the reflecting layer and is reflected back. In order to achieve fast reconstruction for real time monitoring of the density profile application of Neural Networks algorithms will be presented the method can reduce the computing times by about three orders of magnitude. 10 refs., 10 figs.

Sanchez, J.; Branas, B.; Luna, E. de la; Estrada, T. [Asociacion Euratom-CIEMAT, Madrid (Spain); Zhuravlev, V. [Asociacion Euratom-CIEMAT, Madrid (Spain)]|[Kurchatov Institute, Moscow (Russian Federation); Hartfuss, H.J.; Hirsch, M.; Geist, T. [Max-Planck Institut fuer Plasmaphysik, Garching (Germany); Segovia, J.; Oramas, J.L. [Univ. Politecnica, Madrid (Spain)

1994-12-31

20

Advanced Metamorphic Techniques in Computer Philippe Beaucamps  

E-print Network

Advanced Metamorphic Techniques in Computer Viruses Philippe Beaucamps Abstract--Nowadays viruses metamorphic virus. Keywords--Computer virus, Viral mutation, Polymorphism, Meta- morphism, MetaPHOR, Virus of virus protection techniques against detection and then study the METAPHOR virus, today's most advanced

Paris-Sud XI, Université de

21

Advances in multimodality molecular imaging.  

PubMed

Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a "one-stop shop" and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

Zaidi, Habib; Prasad, Rameshwar

2009-07-01

22

Advances in multimodality molecular imaging  

PubMed Central

Multimodality molecular imaging using high resolution positron emission tomography (PET) combined with other modalities is now playing a pivotal role in basic and clinical research. The introduction of combined PET/CT systems in clinical setting has revolutionized the practice of diagnostic imaging. The complementarity between the intrinsically aligned anatomic (CT) and functional or metabolic (PET) information provided in a “one-stop shop” and the possibility to use CT images for attenuation correction of the PET data has been the driving force behind the success of this technology. On the other hand, combining PET with Magnetic Resonance Imaging (MRI) in a single gantry is technically more challenging owing to the strong magnetic fields. Nevertheless, significant progress has been made resulting in the design of few preclinical PET systems and one human prototype dedicated for simultaneous PET/MR brain imaging. This paper discusses recent advances in PET instrumentation and the advantages and challenges of multimodality imaging systems. Future opportunities and the challenges facing the adoption of multimodality imaging instrumentation will also be addressed. PMID:20098557

Zaidi, Habib; Prasad, Rameshwar

2009-01-01

23

Advanced spacecraft thermal control techniques  

NASA Technical Reports Server (NTRS)

The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function.

Fritz, C. H.

1977-01-01

24

Advanced Spectroscopy Technique for Biomedicine  

NASA Astrophysics Data System (ADS)

This chapter presents an overview of the applications of optical spectroscopy in biomedicine. We focus on the optical design aspects of advanced biomedical spectroscopy systems, Raman spectroscopy system in particular. Detailed components and system integration are provided. As examples, two real-time in vivo Raman spectroscopy systems, one for skin cancer detection and the other for endoscopic lung cancer detection, and an in vivo confocal Raman spectroscopy system for skin assessment are presented. The applications of Raman spectroscopy in cancer diagnosis of the skin, lung, colon, oral cavity, gastrointestinal tract, breast, and cervix are summarized.

Zhao, Jianhua; Zeng, Haishan

25

Advanced Intellect-Augmentation Techniques.  

ERIC Educational Resources Information Center

This progress report covers a two-year project which is part of a program that is exploring the value of computer aids in augmenting human intellectual capability. The background and nature of the program, its resources, and the activities it has undertaken are outlined. User experience in applying augmentation tools and techniques to various…

Engelbart, D. C.

26

Advanced Technique in Breast Thermography Analysis  

Microsoft Academic Search

Thermography is a non-invasive and non-contact imaging technique used widely in the medical arena. This paper investigates the analysis of thermograms with the use of bio-statistical methods and artificial neural networks (ANN). It is desired that through these approaches, highly accurate diagnosis using thermography techniques can be established. The proposed advanced technique, is a multi-pronged approach comprising of linear regression

E. Y. K. Ng; E. C. Kee; R. Acharya U

2005-01-01

27

Recent advances in hybrid molecular imaging systems.  

PubMed

Nuclear medicine imaging methods that use radionuclides, such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT), offer highly sensitive and quantitative tools for the detection and localization of the biochemical and functional abnormalities associated with various diseases. The introduction of dual-modality PET/CT and SPECT/CT systems to the clinical environment in the late 1990s is regarded as a revolutionary advance in modern diagnostic imaging, bringing precise anatomical localization to conventional PET and SPECT imaging techniques and enhancing the quantitation capabilities of these modalities. The great success of PET/CT has also revived interest in the combination of PET and MR scanners, leading to commercially available clinical PET/MR systems. In this article, we review the recent improvements made in these hybrid molecular imaging systems, which have been dramatic in terms of both hardware and software over the past decade. We focus primarily on the hybrid imaging systems that are currently used in clinical practice and the technologies applied in those systems, with emphasis on the efforts to improve their diagnostic performances for musculoskeletal diseases. PMID:24715444

Lee, Jae Sung; Kim, Joong Hyun

2014-04-01

28

A molecular architecture for creating advanced GUIs  

Microsoft Academic Search

This paper presents a new GUI architecture for creating advanced interfaces. This model is based on a limited set of general principles that improve flexibility and provide capabilities for implementing information visualization techniques such as magic lenses, transparent tools or semantic zooming. This architecture also makes it possible to create multiple views and application-sharing systems (by sharing views on multiple

Eric Lecolinet; CNRS LTCI

2003-01-01

29

Advances in molecular diagnosis of parasitic enteropathogens.  

PubMed

Here, recent developments in the detection and identification of parasites causing enteric infection are reviewed including the utility and challenges of multi-target molecular assays. Difficulties in clinical interpretation arising from increased detection of parasites, of co-infection with other enteropathogens and of asymptomatic carriage are discussed. Published approaches for detection across a broad range of organisms are described, including commercial assays available to Australian laboratories. Using local data, the impact of introduction of modern molecular assays is assessed. In addition, recent advances in high density multi-target molecular platforms are discussed as potential platforms for increasing the scope of enteric pathogens to be detected whilst maintaining appropriate costs. PMID:25764204

Byrne, Shane; Robson, Jennifer M B

2015-04-01

30

Extremity amputations: principles, techniques, and recent advances.  

PubMed

It is estimated that approximately 1.7 million Americans are living with the loss of a limb, and this number is expected to nearly double by 2050. The most common reasons for amputation include vascular compromise, trauma, cancer, and congenital deformities. Orthopaedic surgeons are often called on to manage patients requiring an amputation or those with amputation-related conditions. It is helpful to review the principles and techniques for performing lower and upper limb amputations, with a focus on common complications and how to avoid them and to be familiar with recent advances in prosthetic design and management of a residual limb. PMID:25745899

Morris, Carol D; Potter, Benjamin K; Athanasian, Edward A; Lewis, Valerae O

2015-01-01

31

Advanced Tools and Techniques for Formal Techniques in Aerospace Systems  

NASA Technical Reports Server (NTRS)

This is the final technical report for grant number NAG-1-02101. The title of this grant was "Advanced Tools and Techniques for Formal Techniques In Aerospace Systems". The principal investigator on this grant was Dr. John C. Knight of the Computer Science Department, University of Virginia, Charlottesville, Virginia 22904-4740. This report summarizes activities under the grant during the period 7/01/2002 to 9/30/2004. This report is organized as follows. In section 2, the technical background of the grant is summarized. Section 3 lists accomplishments and section 4 lists students funded under the grant. In section 5, we present a list of presentations given at various academic and research institutions about the research conducted. Finally, a list of publications generated under this grant is included in section 6.

Knight, John C.

2005-01-01

32

Advanced ECCM techniques for GPS processing  

NASA Astrophysics Data System (ADS)

Two advanced Electronic Counter Countermeasures (ECCM) enhancement techniques were shown to greatly improve the antijam performance of Global Positioning System (GPS) receivers. The first method, Amplitude Domain Processing (ADP), is a nonlinear precorrelation processing technique which adapts to a changing ECM environment and exploits the statistical properties of strong nonGaussian jammers to significantly reduce their effectiveness. ADP was demonstrated in hardware against a heavily jammed GPS signal; measured performance shows a reduction in continuous wave (CW), pulsed CW and swept CW jammer power of 36, 25, and 26 dB respectively. The second technique, Extended Range Adaptive Tracking, is a correlation process which optimally adjusts tracking loop bandwidths and multiple correlator weights in response to changing levels of GPS signal dynamics and ECM power levels. The extended range feature tolerates the growth of tracking error beyond the + or -1 chip conventional limit to + or -5 chips to guard against loss-of-lock under exceptionally severe combinations of jamming and dynamics. Analysis and simulations have shown that this technique can extend the receiver tracking threshold by an additional 26 dB.

Balboni, Edmund; Dowdle, John; Przyjemski, Joseph; Mallery, Ellen

1991-02-01

33

Insect pathogens: molecular approaches and techniques  

Technology Transfer Automated Retrieval System (TEKTRAN)

This book serves as a primer for molecular techniques in insect pathology and is tailored for a wide scientific audience. Contributing authors are internationally recognized experts. The book comprises four sections: 1) pathogen identification and diagnostics, 2) pathogen population genetics and p...

34

Cancer Diagnosis by Terahertz Molecular Imaging Technique  

NASA Astrophysics Data System (ADS)

We obtained the diagnostic images of cancerous tumors by employing the THz molecular imaging (TMI) technique which measured the THz response change by surface plasmon resonance induced on the surface of nanoparticles with a irradiation of near-infrared (NIR) beam. To demonstrate the principle of the TMI technique, THz images of tissues with nanoprobes were observed and compared with THz only images. The sensitivity of TMI was further enhanced by adopting a THz differential measurement technique, which was realized by modulating the NIR beams. By employing this differential TMI technique, the diagnostic images of cancerous tumors were obtained ex vivo and in vivo in the preclinical stage. These images indicated the feasibility of applying the differential TMI technique in the clinical stage.

Oh, Seung Jae; Huh, Yong-Min; Suh, Jin-Suck; Choi, Jihye; Haam, Seungjoo; Son, Joo-Hiuk

2012-01-01

35

Advances in nanodiagnostic techniques for microbial agents.  

PubMed

Infectious diseases account for millions of sufferings and deaths in both developing as well as developed countries with a substantial economic loss. Massive increase in world population and international travel has facilitated their spread from one part of the world to other areas, making them one of the most significant global health risks. Furthermore, detection of bioterrorism agents in water, food and environmental samples as well traveler's baggage is a great challenge of the time for security purpose. Prevention strategies against infectious agents demand rapid and accurate detection and identification of the causative agents with highest sensitivity which should be equally available in different parts of the globe. Similarly, rapid and early diagnosis of infectious diseases has always been indispensable for their prompt cure and management, which has stimulated scientists to develop highly sophisticated techniques over centuries and the efforts continue unabated. Conventional diagnostic techniques are time consuming, tedious, expensive, less sensitive, and unsuitable for field situations. Nanodiagnostic assays have been promising for early, sensitive, point-of-care and cost-effective detection of microbial agents. There has been an explosive research in this area of science in last two decades yielding highly fascinating results. This review highlights some of the advancements made in the field of nanotechnology based assays for microbial detection since 2005 along with providing the basic understanding. PMID:24012709

Syed, Muhammad Ali

2014-01-15

36

Microcomposition of Human Urinary Calculi Using Advanced Imaging Techniques  

PubMed Central

Purpose Common methods of commercial urolithiasis analysis, such as light microscopy and Fourier transform infrared spectroscopy, provide limited or no information on the molecular composition of stones, which is vital when studying early stone pathogenesis. We used synchrotron radiation based microfocused x-ray fluorescence, x-ray absorption and x-ray diffraction advanced imaging techniques to identify and map the elemental composition, including trace elements, of urinary calculi on a ?m (0.0001 cm) scale. Materials and Methods Human stone samples were obtained during serial percutaneous nephrolithotomy and ureteroscopy procedures. A portion of each sample was sent for commercial stone analysis and a portion was retained for synchrotron radiation based advanced imaging analysis. Results Synchrotron radiation based methods of stone analysis correctly identified stone composition and provided additional molecular detail on elemental components and spatial distribution in uroliths. Resolution was on the order of a few ?m. Conclusions Knowledge of all elements present in lithogenesis at this detail allows for better understanding of early stone formation events, which may provide additional insight to prevent and treat stone formation. PMID:23021997

Blaschko, Sarah D.; Miller, Joe; Chi, Thomas; Flechner, Lawrence; Fakra, Sirine; Kahn, Arnold; Kapahi, Pankaj; Stoller, Marshall L.

2013-01-01

37

Below-the-knee revascularization. Advanced techniques.  

PubMed

This review summarizes new developments in revascularization and advanced techniques to treat lesions below the knee (BTK). The primary goal of endovascular therapy is the re-establishment of pulsatile, straight-line flow to the foot. This treatment results in relieving ischemic pain, healing of (neuro)ischemic ulcers, preventing limb loss, improving quality of life and potentially prolong survival. Balloon angioplasty is the currently established therapy, bare-metal stents are reserved for failed percutaneous transluminal angioplasty (PTA). Novel devices such as laser, excisional and rotational atherectomy systems, drug eluting stents or drug coated balloons still lack data demonstrating improved efficacy compared to conventional balloon angioplasty. The typical patient group of complex below-the-knee lesions represents an increasing population due to the increasing prevalence of diabetes and end-stage renal failure. Excellent acute technical success rates above 90%, a low frequency of complications, and high limb salvage rate of about 95% even in patients with long segment and diffuse disease seem to justify a more widespread use of endovascular therapy in tibial arteries. However, the current results of balloon angioplasty studies show a 1-year restenosis rate between 30% for short stenoses treatment and up to 80% following recanalization of an occlusion. PMID:19741578

SCHWARZWALDER, U; ZELLER, T

2009-10-01

38

Advances in procedural techniques--antegrade.  

PubMed

There have been many technological advances in antegrade CTO PCI, but perhaps most importantly has been the evolution of the "hybrid' approach where ideally there exists a seamless interplay of antegrade wiring, antegrade dissection re-entry and retrograde approaches as dictated by procedural factors. Antegrade wire escalation with intimal tracking remains the preferred initial strategy in short CTOs without proximal cap ambiguity. More complex CTOs, however, usually require either a retrograde or an antegrade dissection re-entry approach, or both. Antegrade dissection re-entry is well suited to long occlusions where there is a healthy distal vessel and limited "interventional" collaterals. Early use of a dissection re-entry strategy will increase success rates, reduce complications, and minimise radiation exposure, contrast use as well as procedural times. Antegrade dissection can be achieved with a knuckle wire technique or the CrossBoss catheter whilst re-entry will be achieved in the most reproducible and reliable fashion by the Stingray balloon/wire. It should be avoided where there is potential for loss of large side branches. It remains to be seen whether use of newer dissection re-entry strategies will be associated with lower restenosis rates compared with the more uncontrolled subintimal tracking strategies such as STAR and whether stent insertion in the subintimal space is associated with higher rates of late stent malapposition and stent thrombosis. It is to be hoped that the algorithms, which have been developed to guide CTO operators, allow for a better transfer of knowledge and skills to increase uptake and acceptance of CTO PCI as a whole. PMID:24694104

Wilson, William; Spratt, James C

2014-05-01

39

Bringing Advanced Computational Techniques to Energy Research  

SciTech Connect

Please find attached our final technical report for the BACTER Institute award. BACTER was created as a graduate and postdoctoral training program for the advancement of computational biology applied to questions of relevance to bioenergy research.

Mitchell, Julie C

2012-11-17

40

Recent Advances in Molecular Magnetic Resonance Imaging of Liver Fibrosis  

PubMed Central

Liver fibrosis is a life-threatening disease with high morbidity and mortality owing to its diverse causes. Liver biopsy, as the current gold standard for diagnosing and staging liver fibrosis, has a number of limitations, including sample variability, relatively high cost, an invasive nature, and the potential of complications. Most importantly, in clinical practice, patients often reject additional liver biopsies after initiating treatment despite their being necessary for long-term follow-up. To resolve these problems, a number of different noninvasive imaging-based methods have been developed for accurate diagnosis of liver fibrosis. However, these techniques only reflect morphological or perfusion-related alterations in the liver, and thus they are generally only useful for the diagnosis of late-stage liver fibrosis (liver cirrhosis), which is already characterized by “irreversible” anatomic and hemodynamic changes. Thus, it is essential that new approaches are developed for accurately diagnosing early-stage liver fibrosis as at this stage the disease may be “reversed” by active treatment. The development of molecular MR imaging technology has potential in this regard, as it facilitates noninvasive, target-specific imaging of liver fibrosis. We provide an overview of recent advances in molecular MR imaging for the diagnosis and staging of liver fibrosis and we compare novel technologies with conventional MR imaging techniques.

Li, Zhiming; Sun, Jihong; Yang, Xiaoming

2015-01-01

41

Polyphase merge sorting: an advanced technique  

Microsoft Academic Search

Designers of generalized library sort packages for the current and future generations of computers are faced with the challenge of developing new techniques that provide more effective use of these computers. The major concern in developing efficient sorting routines in the past has been the internal sorting techniques, that is, the methods of manipulating the data within the memory of

R. L. Gilstad

1960-01-01

42

Automatic Molecular Design using Evolutionary Techniques  

NASA Technical Reports Server (NTRS)

Molecular nanotechnology is the precise, three-dimensional control of materials and devices at the atomic scale. An important part of nanotechnology is the design of molecules for specific purposes. This paper describes early results using genetic software techniques to automatically design molecules under the control of a fitness function. The fitness function must be capable of determining which of two arbitrary molecules is better for a specific task. The software begins by generating a population of random molecules. The population is then evolved towards greater fitness by randomly combining parts of the better individuals to create new molecules. These new molecules then replace some of the worst molecules in the population. The unique aspect of our approach is that we apply genetic crossover to molecules represented by graphs, i.e., sets of atoms and the bonds that connect them. We present evidence suggesting that crossover alone, operating on graphs, can evolve any possible molecule given an appropriate fitness function and a population containing both rings and chains. Prior work evolved strings or trees that were subsequently processed to generate molecular graphs. In principle, genetic graph software should be able to evolve other graph representable systems such as circuits, transportation networks, metabolic pathways, computer networks, etc.

Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

1998-01-01

43

Group Members Synthesis of Nanostructured Materials Advanced Characterization Techniques  

E-print Network

, and electric properties. · Development of new experimental tools for synthesis and nanoscale characterizationGroup Members Synthesis of Nanostructured Materials Advanced Characterization Techniques and optical properties in individual ZnO nanostructures", invited review article, Nanoscale 4, 1455 - 1462

44

Advanced interference management techniques for future wireless networks   

E-print Network

In this thesis, we design advanced interference management techniques for future wireless networks under the availability of perfect and imperfect channel state information (CSI). We do so by considering a generalized ...

Razavi, Seyed Morteza

2014-06-30

45

Advanced airfoil design empirically based transonic aircraft drag buildup technique  

NASA Technical Reports Server (NTRS)

To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

Morrison, W. D., Jr.

1976-01-01

46

ADVANCED CODING TECHNIQUES FOR MULTICASTING IN WIRELESS  

E-print Network

-to-point transmission, reliability is achieved by means of Automatic Retransmission reQuest (ARQ). Forward Error some open problems in the area of efficient transmission of loss- sensitive and delay-sensitive data-to-point transmission with modern coding techniques (Low Density Parity Check codes, LDPC). The theoretical analysis

Paris-Sud XI, Université de

47

Advances in molecular breeding of flowering dogwood (Cornus florida L.)  

Technology Transfer Automated Retrieval System (TEKTRAN)

Although the production and sales of ornamental crops represent significant contributions to the global economy, breeding and selection of ornamental plants using molecular markers lags far behind that used for agronomic crops. However, with the recent advances in molecular technologies including r...

48

Application of molecular techniques on heterotrophic hydrogen production research  

Microsoft Academic Search

This paper reviews the application of molecular techniques in heterotrophic hydrogen production studies. Commonly used molecular techniques are introduced briefly first, including cloning-sequencing after polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), terminal-restriction fragment length polymorphism (T-RFLP), fluorescence in situ hybridization (FISH) and quantitative real-time PCR. Application of the molecular techniques in heterotrophic hydrogen production studies are discussed in

R. Y. Li; T. Zhang; H. H. P. Fang

2011-01-01

49

Rapid identification of pathogens using molecular techniques.  

PubMed

Real-time PCR is the traditional face of nucleic acid detection in the diagnostic microbiology laboratory and is now generally regarded as robust enough to be widely adopted. Methods based on nucleic acid detection of this type are bringing increased accuracy to diagnosis in areas where culture is difficult and/or expensive, and these methods are often effective partners to other rapid molecular diagnostic tools such as matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS). This change in practice has particularly affected the recognition of viruses and fastidious or antibiotic-exposed bacteria, but has been also shown to be effective in the recognition of troublesome or specialised phenotypes such as antiviral resistance and transmissible antibiotic resistance in the Enterobacteriaceae. Quantitation and high-intensity sequencing (of multiple whole genomes) has brought new opportunities as well as new challenges to the microbiology community. Diagnostic microbiologists currently training might be expected to deal less with the culture-based techniques of the last half-century than with the high-volume data and complex analyses of the next. PMID:25714588

Sloots, Theo P; Nissen, Michael D; Ginn, Andrew N; Iredell, Jonathan R

2015-04-01

50

Molecular Technique to Understand Deep Microbial Diversity  

NASA Technical Reports Server (NTRS)

Current sequencing-based and DNA microarray techniques to study microbial diversity are based on an initial PCR (polymerase chain reaction) amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of the minor template appears to be suppressed by the exponential amplification of the more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck has overlooked the presence of the less abundant minority population, and underestimated their role in the ecosystem maintenance. To generate PCR amplicons for subsequent diversity analysis, bacterial l6S rRNA genes are amplified by PCR using universal primers. Two distinct PCR regimes are employed in parallel: one using normal and the other using biotinlabeled universal primers. PCR products obtained with biotin-labeled primers are mixed with streptavidin-labeled magnetic beads and selectively captured in the presence of a magnetic field. Less-abundant DNA templates that fail to amplify in this first round of PCR amplification are subjected to a second round of PCR using normal universal primers. These PCR products are then subjected to downstream diversity analyses such as conventional cloning and sequencing. A second round of PCR amplified the minority population and completed the deep diversity picture of the environmental sample.

Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

2012-01-01

51

Advanced analysis techniques for uranium assay  

SciTech Connect

Uranium has a negligible passive neutron emission rate making its assay practicable only with an active interrogation method. The active interrogation uses external neutron sources to induce fission events in the uranium in order to determine the mass. This technique requires careful calibration with standards that are representative of the items to be assayed. The samples to be measured are not always well represented by the available standards which often leads to large biases. A technique of active multiplicity counting is being developed to reduce some of these assay difficulties. Active multiplicity counting uses the measured doubles and triples count rates to determine the neutron multiplication (f4) and the product of the source-sample coupling ( C ) and the 235U mass (m). Since the 35U mass always appears in the multiplicity equations as the product of Cm, the coupling needs to be determined before the mass can be known. A relationship has been developed that relates the coupling to the neutron multiplication. The relationship is based on both an analytical derivation and also on empirical observations. To determine a scaling constant present in this relationship, known standards must be used. Evaluation of experimental data revealed an improvement over the traditional calibration curve analysis method of fitting the doubles count rate to the 235Um ass. Active multiplicity assay appears to relax the requirement that the calibration standards and unknown items have the same chemical form and geometry.

Geist, W. H. (William H.); Ensslin, Norbert; Carrillo, L. A. (Louis A.); Beard, C. A. (Carl A.)

2001-01-01

52

Recent advances in DNA sequencing techniques  

NASA Astrophysics Data System (ADS)

Successful mapping of the draft human genome in 2001 and more recent mapping of the human microbiome genome in 2012 have relied heavily on the parallel processing of the second generation/Next Generation Sequencing (NGS) DNA machines at a cost of several millions dollars and long computer processing times. These have been mainly biochemical approaches. Here a system analysis approach is used to review these techniques by identifying the requirements, specifications, test methods, error estimates, repeatability, reliability and trends in the cost reduction. The first generation, NGS and the Third Generation Single Molecule Real Time (SMART) detection sequencing methods are reviewed. Based on the National Human Genome Research Institute (NHGRI) data, the achieved cost reduction of 1.5 times per yr. from Sep. 2001 to July 2007; 7 times per yr., from Oct. 2007 to Apr. 2010; and 2.5 times per yr. from July 2010 to Jan 2012 are discussed.

Singh, Rama Shankar

2013-06-01

53

Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment  

Microsoft Academic Search

\\u000a Culture-based methods are important in investigating the microbial ecology of natural and anthropogenically impacted environments,\\u000a but they are extremely biased in their evaluation of microbial genetic diversity by selecting a particular population of microorganisms.\\u000a With recent advances in genomics and sequencing technologies, microbial community analyses using culture-independent molecular\\u000a techniques have initiated a new era of microbial ecology. Molecular analyses of

Gurdeep Rastogi; Rajesh K. Sani

54

Molecular Genetics Techniques to Develop New Treatments for Brain Cancers  

SciTech Connect

The objectives of this report are: (1) to devise novel molecular gene therapies for malignant brain tumors, (2) advance our understanding of the immune system in the central nervous system; and (3) apply genomics to find molecular probes to diagnose brain tumors, predict prognosis, biological behavior and their response to treatment.

Fox, Jacob; Fathallan-Shaykh, Hassan

2006-09-22

55

Innovative Tools Advance Revolutionary Weld Technique  

NASA Technical Reports Server (NTRS)

The iconic, orange external tank of the space shuttle launch system not only contains the fuel used by the shuttle s main engines during liftoff but also comprises the shuttle s backbone, supporting the space shuttle orbiter and solid rocket boosters. Given the tank s structural importance and the extreme forces (7.8 million pounds of thrust load) and temperatures it encounters during launch, the welds used to construct the tank must be highly reliable. Variable polarity plasma arc welding, developed for manufacturing the external tank and later employed for building the International Space Station, was until 1994 the best process for joining the aluminum alloys used during construction. That year, Marshall Space Flight Center engineers began experimenting with a relatively new welding technique called friction stir welding (FSW), developed in 1991 by The Welding Institute, of Cambridge, England. FSW differs from traditional fusion welding in that it is a solid-state welding technique, using frictional heat and motion to join structural components without actually melting any of the material. The weld is created by a shouldered pin tool that is plunged into the seam of the materials to be joined. The tool traverses the line while rotating at high speeds, generating friction that heats and softens but does not melt the metal. (The heat produced approaches about 80 percent of the metal s melting temperature.) The pin tool s rotation crushes and stirs the plasticized metal, extruding it along the seam as the tool moves forward. The material cools and consolidates, resulting in a weld with superior mechanical properties as compared to those weld properties of fusion welds. The innovative FSW technology promises a number of attractive benefits. Because the welded materials are not melted, many of the undesirables associated with fusion welding porosity, cracking, shrinkage, and distortion of the weld are minimized or avoided. The process is more energy efficient, safe (no toxic smoke or shielding gas, liquid metal splatter, arcing, dangerous voltage, or radiation), and environmentally sound (no consumables, fumes, or noise) than fusion welding. Under computer control, an automated FSW machine can create welds with high reproducibility, improving efficiency and overall quality of manufactured materials. The process also allows for welding dissimilar metals as well as those metals considered to be "unweldable" such as the 7xxx series aluminum alloys. Its effectiveness and versatility makes FSW useful for aerospace, rail, automotive, marine, and military applications. A downside to FSW, however, is the keyhole opening left in the weld when the FSW pin tool exits the weld joint. This is a significant problem when using the FSW process to join circumferential structures such as pipes and storage containers. Furthermore, weld joints that taper in material thickness also present problems when using the conventional FSW pin tool, because the threaded pin rotating within the weld joint material is a fixed length. There must be capability for the rotating pin to both increase and decrease in length in real time while welding the tapered material. (Both circumferential and tapered thickness weldments are found in the space shuttle external tank.) Marshall engineers addressed both the keyhole and tapered material thickness problems by developing the auto-adjustable pin tool. This unique piece of equipment automatically withdraws the pin into the tool s shoulder for keyhole closeout. In addition, the auto-adjustable pin tool retracts, or shortens, the rotating pin while welding a weld joint that tapers from one thickness to a thinner thickness. This year, the impact of the Marshall innovation was recognized with an "Excellence in Technology Transfer Award" from the Federal Laboratory Consortium.

2009-01-01

56

Advanced liner-cooling techniques for gas turbine combustors  

NASA Technical Reports Server (NTRS)

Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

Norgren, C. T.; Riddlebaugh, S. M.

1985-01-01

57

Advanced wiring technique and hardware application: Airplane and space vehicle  

NASA Technical Reports Server (NTRS)

An advanced wiring system is described which achieves the safety/reliability required for present and future airplane and space vehicle applications. Also, present wiring installation techniques and hardware are analyzed to establish existing problem areas. An advanced wiring system employing matrix interconnecting unit, plug to plug trunk bundles (FCC or ribbon cable) is outlined, and an installation study presented. A planned program to develop, lab test and flight test key features of these techniques and hardware as a part of the SST technology follow-on activities is discussed.

Ernst, H. L.; Eichman, C. D.

1972-01-01

58

Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics  

PubMed Central

Over the last three decades, our understanding of the molecular changes associated with cancer development and progression has advanced greatly. This has led to new cancer therapeutics targeted against specific molecular pathways; such therapies show great promise to reduce mortality, in part by enabling physicians to tailor therapy for patients based on a molecular profile of their tumor. Unfortunately, the tools for definitive cancer diagnosis – light microscopic examination of biopsied tissue stained with nonspecific dyes – remain focused on the analysis of tissue ex vivo. There is an important need for new clinical tools to support the molecular diagnosis of cancer. Optical molecular imaging is emerging as a technique to help meet this need. Targeted, optically active contrast agents can specifically label extra-and intracellular biomarkers of cancer. Optical images can be acquired in real time with high spatial resolution to image-specific molecular targets, while still providing morphologic context. This article reviews recent advances in optical molecular imaging, highlighting the advances in technology required to improve early cancer detection, guide selection of targeted therapy and rapidly evaluate therapeutic efficacy. PMID:22385200

Hellebust, Anne; Richards-Kortum, Rebecca

2012-01-01

59

Molecular techniques to interrogate and edit the Chlamydomonas nuclear genome.  

PubMed

The success of the green alga Chlamydomonas reinhardtii as a model organism is to a large extent due to the wide range of molecular techniques that are available for its characterization. Here, we review some of the techniques currently used to modify and interrogate the C. reinhardtii nuclear genome and explore several technologies under development. Nuclear mutants can be generated with ultraviolet (UV) light and chemical mutagens, or by insertional mutagenesis. Nuclear transformation methods include biolistic delivery, agitation with glass beads, and electroporation. Transforming DNA integrates into the genome at random sites, and multiple strategies exist for mapping insertion sites. A limited number of studies have demonstrated targeted modification of the nuclear genome by approaches such as zinc-finger nucleases and homologous recombination. RNA interference is widely used to knock down expression levels of nuclear genes. A wide assortment of transgenes has been successfully expressed in the Chlamydomonas nuclear genome, including transformation markers, fluorescent proteins, reporter genes, epitope tagged proteins, and even therapeutic proteins. Optimized expression constructs and strains help transgene expression. Emerging technologies such as the CRISPR/Cas9 system, high-throughput mutant identification, and a whole-genome knockout library are being developed for this organism. We discuss how these advances will propel future investigations. PMID:25704665

Jinkerson, Robert E; Jonikas, Martin C

2015-05-01

60

Characterization of sSMC by FISH and molecular techniques.  

PubMed

Small supernumerary marker chromosome (sSMC) is a structurally altered additional chromosome that may not be explicitly clarified by conventional karyotyping alone. About one third of sSMC carriers have abnormal phenotypes and its clinical correlation is difficult, especially in prenatal studies. The present study was aimed at characterizing 19 sSMC identified in 15 patients with dysmorphic features with or without multiple congenital anomalies, conspicuous family history, short stature and/or ambiguous genitalia. All the sSMC were primarily identified by routine cytogenetics studies (performed with banding techniques) from peripheral blood except in one patient, where amniotic fluid was used. All sSMCs were further characterized by array-CGH (using 44 K oligonucleotide probe) and/or fluorescence in situ hybridization (FISH) using multicolor banding (MCB), centromere specific multicolor FISH (cenM-FISH), subcentromere-specific multicolor FISH (subcenM-FISH), micro-dissection and/or reverse FISH. This report demonstrates the worth of advanced molecular (cyto)genetic techniques in characterizing sSMC, their utility in genotype-phenotype correlation and risk of clinical presentation. PMID:21316495

Sheth, Frenny; Andrieux, Joris; Ewers, Elisabeth; Kosyakova, Nadezda; Weise, Anja; Sheth, Harsh; Romana, Serge-Pierrick; LeLorc'h, Marc; Delobel, Bruno; Theisen, Olivier; Liehr, Thomas; Nampoothiri, Sheela; Sheth, Jayesh

2011-01-01

61

Advances in relativistic molecular quantum mechanics  

NASA Astrophysics Data System (ADS)

A quantum mechanical equation H?=E? is composed of three components, viz., Hamiltonian H, wave function ?, and property E(?), each of which is confronted with fundamental issues in the relativistic regime, e.g., (1) What is the most appropriate relativistic many-body Hamiltonian? How to solve the resulting equation? (2) How does the relativistic wave function behave at the coalescence of two electrons? How to do relativistic explicit correlation? (3) How to formulate relativistic properties properly?, to name just a few. It is shown here that the charge-conjugated contraction of Fermion operators, dictated by the charge conjugation symmetry, allows for a bottom-up construction of a relativistic Hamiltonian that is in line with the principles of quantum electrodynamics (QED). Various approximate but accurate forms of the Hamiltonian can be obtained based entirely on physical arguments. In particular, the exact two-component Hamiltonians can be formulated in a general way to cast electric and magnetic fields, as well as electron self-energy and vacuum polarization, into a unified framework. While such algebraic two-component Hamiltonians are incompatible with explicit correlation, four-component relativistic explicitly correlated approaches can indeed be made fully parallel to the nonrelativistic counterparts by virtue of the ‘extended no-pair projection’ and the coalescence conditions. These findings open up new avenues for future developments of relativistic molecular quantum mechanics. In particular, ‘molecular QED’ will soon become an active and exciting field.

Liu, Wenjian

2014-04-01

62

Noise source identification techniques: simple to advanced applications  

E-print Network

required. Practical application examples ranging from hearing aids to wind turbines are presented to optimise the noise emission from a wide range of products including vehicles, household goods and windNoise source identification techniques: simple to advanced applications K.B. Ginn and K. Haddad Br

Paris-Sud XI, Université de

63

GENE 8600 GENETICS SEMINAR Description: Seminars emphasizing advances in genetics, molecular genetics,  

E-print Network

GENE 8600 GENETICS SEMINAR Description: Seminars emphasizing advances in genetics, molecular genetics, and molecular biology. Course Objectives Students will gain experience in reading and presenting the primary literature in genetics, molecular genetics, and molecular biology. Evaluations will be based

Arnold, Jonathan

64

Application of molecular techniques on heterotrophic hydrogen production research.  

PubMed

This paper reviews the application of molecular techniques in heterotrophic hydrogen production studies. Commonly used molecular techniques are introduced briefly first, including cloning-sequencing after polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), terminal-restriction fragment length polymorphism (T-RFLP), fluorescence in situ hybridization (FISH) and quantitative real-time PCR. Application of the molecular techniques in heterotrophic hydrogen production studies are discussed in details, focusing on identification of new isolates for hydrogen production, characterization of microbial compositions in bioreactors, monitoring microbial diversity variation, visualization of microbial distribution in hydrogen-producing granular sludge, and quantification of various microbial populations. Some significant findings in recent hydrogen production studies with the application of molecular techniques are discussed, followed by a research outlook of the heterotrophic biohydrogen field. PMID:21398117

Li, R Y; Zhang, T; Fang, H H P

2011-09-01

65

Hybrid opto-electric techniques for molecular diagnostics  

SciTech Connect

Hybrid optoelectric techniques reflect a new paradigm in microfluidics. In essence, these are microfluidic techniques that employ a synergistic combination of optical and electrical forces to enable noninvasive manipulation of fluids and/or particle-type entities at the micro/nano-scale [1]. Synergy between optical and electrical forces bestows these techniques with several unique features that are promising to bring new opportunities in molecular diagnostics. Within the scope of molecular diagnostics, several aspects of optoelectric techniques promise to play a relevant role. These include, but are not limited to, sample preparation, sorting, purification, amplification and detection.

Haque, Aeraj Ul [Argonne National Laboratory (ANL)

2012-01-01

66

Teaching Molecular Biological Techniques in a Research Content  

ERIC Educational Resources Information Center

Molecular biological methods, such as the polymerase chain reaction (PCR) and gel electrophoresis, are now commonly taught to students in introductory biology courses at the college and even high school levels. This often includes hands-on experience with one or more molecular techniques as part of a general biology laboratory. To assure that most…

Stiller, John W.; Coggins, T. Chad

2006-01-01

67

Advanced Fault Diagnosis Methods in Molecular Networks  

PubMed Central

Analysis of the failure of cell signaling networks is an important topic in systems biology and has applications in target discovery and drug development. In this paper, some advanced methods for fault diagnosis in signaling networks are developed and then applied to a caspase network and an SHP2 network. The goal is to understand how, and to what extent, the dysfunction of molecules in a network contributes to the failure of the entire network. Network dysfunction (failure) is defined as failure to produce the expected outputs in response to the input signals. Vulnerability level of a molecule is defined as the probability of the network failure, when the molecule is dysfunctional. In this study, a method to calculate the vulnerability level of single molecules for different combinations of input signals is developed. Furthermore, a more complex yet biologically meaningful method for calculating the multi-fault vulnerability levels is suggested, in which two or more molecules are simultaneously dysfunctional. Finally, a method is developed for fault diagnosis of networks based on a ternary logic model, which considers three activity levels for a molecule instead of the previously published binary logic model, and provides equations for the vulnerabilities of molecules in a ternary framework. Multi-fault analysis shows that the pairs of molecules with high vulnerability typically include a highly vulnerable molecule identified by the single fault analysis. The ternary fault analysis for the caspase network shows that predictions obtained using the more complex ternary model are about the same as the predictions of the simpler binary approach. This study suggests that by increasing the number of activity levels the complexity of the model grows; however, the predictive power of the ternary model does not appear to be increased proportionally. PMID:25290670

Habibi, Iman; Emamian, Effat S.; Abdi, Ali

2014-01-01

68

Responses of Cell Renewal Systems to Long-term Low-Level Radiation Exposure: A Feasibility Study Applying Advanced Molecular Biology Techniques on Available Histological and Cytological Material of Exposed Animals and Men  

SciTech Connect

First results of this feasibility study showed that evaluation of the stored material of the chronically irradiated dogs with modern molecular biological techniques proved to be successful and extremely promising. Therefore an in deep analysis of at least part of the huge amount of remaining material is of outmost interest. The methods applied in this feasibility study were pathological evaluation with different staining methods, protein analysis by means of immunohistochemistry, strand break analysis with the TdT-assay, DNA- and RNA-analysis as well as genomic examination by gene array. Overall more than 50% of the investigated material could be used. In particular the results of an increased stimulation of the immune system within the dogs of the 3mSv group as both compared to the control and higher dose groups gives implications for the in depth study of the cellular events occurring in context with low dose radiation. Based on the findings of this study a further evaluation and statistically analysis of more material can help to identify promising biomarkers for low dose radiation. A systematic evaluation of a correlation of dose rates and strand breaks within the dog tissue might moreover help to explain mechanisms of tolerance to IR. One central problem is that most sequences for dog specific primers are not known yet. The discovery of the dog genome is still under progress. In this study the isolation of RNA within the dog tissue was successful. But up to now there are no gene arrays or gene chips commercially available, tested and adapted for canine tissue. The uncritical use of untested genomic test systems for canine tissue seems to be ineffective at the moment, time consuming and ineffective. Next steps in the investigation of genomic changes after IR within the stored dog tissue should be limited to quantitative RT-PCR of tested primer sequences for the dog. A collaboration with institutions working in the field of the discovery of the dog genome could have synergistic effects.

Fliedner Theodor M.; Feinendegen Ludwig E.; Meineke Viktor; Fritz Thomas E.

2005-02-28

69

Airborne myxomycete spores: detection using molecular techniques  

NASA Astrophysics Data System (ADS)

Myxomycetes are organisms characterized by a life cycle that includes a fruiting body stage. Myxomycete fruiting bodies contain spores, and wind dispersal of the spores is considered important for this organism to colonize new areas. In this study, the presence of airborne myxomycetes and the temporal changes in the myxomycete composition of atmospheric particles (aerosols) were investigated with a polymerase chain reaction (PCR)-based method for Didymiaceae and Physaraceae. Twenty-one aerosol samples were collected on the roof of a three-story building located in Sapporo, Hokkaido Island, northern Japan. PCR analysis of DNA extracts from the aerosol samples indicated the presence of airborne myxomycetes in all the samples, except for the one collected during the snowfall season. Denaturing gradient gel electrophoresis (DGGE) analysis of the PCR products showed seasonally varying banding patterns. The detected DGGE bands were subjected to sequence analyses, and four out of nine obtained sequences were identical to those of fruiting body samples collected in Hokkaido Island. It appears that the difference in the fruiting period of each species was correlated with the seasonal changes in the myxomycete composition of the aerosols. Molecular evidence shows that newly formed spores are released and dispersed in the air, suggesting that wind-driven dispersal of spores is an important process in the life history of myxomycetes. This study is the first to detect airborne myxomycetes with the use of molecular ecological analyses and to characterize their seasonal distribution.

Kamono, Akiko; Kojima, Hisaya; Matsumoto, Jun; Kawamura, Kimitaka; Fukui, Manabu

2009-01-01

70

Technology development of fabrication techniques for advanced solar dynamic concentrators  

NASA Technical Reports Server (NTRS)

The objective of the advanced concentrator program is to develop the technology that will lead to lightweight, highly reflective, accurate, scaleable, and long lived space solar dynamic concentrators. The advanced concentrator program encompasses new and innovative concepts, fabrication techniques, materials selection, and simulated space environmental testing. Fabrication techniques include methods of fabricating the substrates and coating substrate surfaces to produce high quality optical surfaces, acceptable for further coating with vapor deposited optical films. The selected materials to obtain a high quality optical surface include microsheet glass and Eccocoat EP-3 epoxy, with DC-93-500 selected as a candidate silicone adhesive and levelizing layer. The following procedures are defined: cutting, cleaning, forming, and bonding microsheet glass. Procedures are also defined for surface cleaning, and EP-3 epoxy application. The results and analyses from atomic oxygen and thermal cycling tests are used to determine the effects of orbital conditions in a space environment.

Richter, Scott W.

1991-01-01

71

Advanced techniques in radiation therapy for head and neck cancers.  

PubMed

This article focuses on a number of innovative radiotherapeutic methods to improve local and regional control with increased chances of preservation of normal function compared with the use of standard external beam irradiation alone in the management of selected head and neck cancers. Some of these radiotherapeutic techniques are well established (brachytherapy and neutron therapy in advanced salivary gland tumors); some have a large body of experience accumulated and are currently being investigated in phase III trials (thermoradiotherapy and altered fractionation); whereas the other techniques (intraoperative therapy, charged-particle therapy, and sterotactic radiosurgery) are highly experimental. PMID:1792085

Mittal, B B

1991-12-01

72

Organic conductors as novel ``molecular rulers`` for advanced manufacturing processes  

SciTech Connect

Future advanced manufacturing equipment used in high technology programs will require ultra-high precision and associated machining tool operations that require placement accuracy of {approximately} 1--100 nm (1 nm = 10 {angstrom}). There is consensus among engineers that this equipment will be based on STM (Scanning Tunneling Microscope) technology. All such STM-based ``drivers`` must contain a metrology system that requires absolute length standards referenced to atomic spacings for calibration. Properly designed organic conductor substrate crystals have the potential to be molecular rulers for STM-based advanced manufacturing equipment. The major challenges in future organic conductor research aimed at STM metrology application are listed.

Williams, J.M.

1995-12-31

73

Molecular techniques in the diagnosis of central nervous system infections  

Microsoft Academic Search

Development of polymerase chain reaction (PCR)-based molecular techniques has initiated a revolution in the field of diagnostic\\u000a microbiology. These techniques have not only provided rapid, noninvasive detection of microorganisms that cause central nervous\\u000a system (CNS) infections, but have also demonstrated that several neurologic disorders are linked to infectious agents. While\\u000a PCR-based techniques are predicted to be widely used in diagnosing

Hong-Zhou Lu; Karen C. Bloch; Yi-Wei Tang

2002-01-01

74

Recent Advances in Molecular, Multimodal and Theranostic Ultrasound Imaging  

PubMed Central

Ultrasound (US) imaging is an exquisite tool for the non-invasive and real-time diagnosis of many different diseases. In this context, US contrast agents can improve lesion delineation, characterization and therapy response evaluation. US contrast agents are usually micrometer-sized gas bubbles, stabilized with soft or hard shells. By conjugating antibodies to the microbubble (MB) surface, and by incorporating diagnostic agents, drugs or nucleic acids into or onto the MB shell, molecular, multimodal and theranostic MB can be generated. We here summarize recent advances in molecular, multimodal and theranostic US imaging, and introduce concepts how such advanced MB can be generated, applied and imaged. Examples are given for their use to image and treat oncological, cardiovascular and neurological diseases. Furthermore, we discuss for which therapeutic entities incorporation into (or conjugation to) MB is meaningful, and how US-mediated MB destruction can increase their extravasation, penetration, internalization and efficacy. PMID:24316070

Kiessling, Fabian; Fokong, Stanley; Bzyl, Jessica; Lederle, Wiltrud; Palmowski, Moritz; Lammers, Twan

2014-01-01

75

Recent Advances in the Molecular Characterization of Circulating Tumor Cells  

PubMed Central

Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch® system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a “real-time liquid biopsy” that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing. PMID:24633084

Lowes, Lori E.; Allan, Alison L.

2014-01-01

76

Recent Advances in Molecular Diagnosis of Thyroid Cancer  

PubMed Central

Recent molecular studies have described a number of abnormalities associated with the progression and dedifferentiation of thyroid carcinoma. These distinct molecular events are often associated with specific stages of tumor development. In particular, remarkable advances have occurred in several major biological areas of thyroid cancer, including the molecular alterations for the loss of radioiodine avidity of thyroid cancer, the pathogenic role of the MAP kinase and PI3K/Akt pathways and their related genetic alterations, and the aberrant methylation of functionally important genes in thyroid tumorigenesis and pathogenesis. Recognition of these features is crucial to the management of patients with thyroid cancer. Novel treatments are being designed based on our enhanced understanding of this disease process. PMID:21603167

Legakis, Ioannis; Syrigos, Konstantinos

2011-01-01

77

An Effective Technique for Endoscopic Resection of Advanced Stage Angiofibroma  

PubMed Central

Introduction: In recent years, the surgical management of angiofibroma has been greatly influenced by the use of endoscopic techniques. However, large tumors that extend into difficult anatomic sites present major challenges for management by either endoscopy or an open-surgery approach which needs new technique for the complete en block resection. Materials and Methods: In a prospective observational study we developed an endoscopic transnasal technique for the resection of angiofibroma via pushing and pulling the mass with 1/100000 soaked adrenalin tampons. Thirty two patients were treated using this endoscopic technique over 7 years. The mean follow-up period was 36 months. The main outcomes measured were tumor staging, average blood loss, complications, length of hospitalization, and residual and/or recurrence rate of the tumor. Results: According to the Radkowski staging, 23,5, and 4 patients were at stage IIC, IIIA, and IIIB, respectively. Twenty five patients were operated on exclusively via transnasal endoscopy while 7 patients were managed using endoscopy-assisted open-surgery techniques. Mean blood loss in patients was 1261± 893 cc. The recurrence rate was 21.88% (7 cases) at two years following surgery. Mean hospitalization time was 3.56 ± 0.6 days. Conclusion: Using this effective technique, endoscopic removal of more highly advanced angiofibroma is possible. Better visualization, less intraoperative blood loss, lower rates of complication and recurrence, and shorter hospitalization time are some of the advantages. PMID:24505571

Mohammadi Ardehali, Mojtaba; Samimi, Seyyed Hadi; Bakhshaee, Mehdi

2014-01-01

78

Advanced aeroservoelastic stabilization techniques for hypersonic flight vehicles  

NASA Technical Reports Server (NTRS)

Advanced high performance vehicles, including Single-Stage-To-Orbit (SSTO) hypersonic flight vehicles, that are statically unstable, require higher bandwidth flight control systems to compensate for the instability resulting in interactions between the flight control system, the engine/propulsion dynamics, and the low frequency structural modes. Military specifications, such as MIL-F-9490D and MIL-F-87242, tend to limit treatment of structural modes to conventional gain stabilization techniques. The conventional gain stabilization techniques, however, introduce low frequency effective time delays which can be troublesome from a flying qualities standpoint. These time delays can be alleviated by appropriate blending of gain and phase stabilization techniques (referred to as Hybrid Phase Stabilization or HPS) for the low frequency structural modes. The potential of using HPS for compensating structural mode interaction was previously explored. It was shown that effective time delay was significantly reduced with the use of HPS; however, the HPS design was seen to have greater residual response than a conventional gain stablized design. Additional work performed to advance and refine the HPS design procedure, to further develop residual response metrics as a basis for alternative structural stability specifications, and to develop strategies for validating HPS design and specification concepts in manned simulation is presented. Stabilization design sensitivity to structural uncertainties and aircraft-centered requirements are also assessed.

Chan, Samuel Y.; Cheng, Peter Y.; Myers, Thomas T.; Klyde, David H.; Magdaleno, Raymond E.; Mcruer, Duane T.

1992-01-01

79

Molecular ultrastructure of the urothelial surface: insights from a combination of various microscopic techniques.  

PubMed

The urothelium forms the blood-urine barrier, which depends on the complex organization of transmembrane proteins, uroplakins, in the apical plasma membrane of umbrella cells. Uroplakins compose 16 nm intramembrane particles, which are assembled into urothelial plaques. Here we present an integrated survey on the molecular ultrastructure of urothelial plaques in normal umbrella cells with advanced microscopic techniques. We analyzed the ultrastructure and performed measurements of urothelial plaques in the normal mouse urothelium. We used field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) on immunolabeled ultrathin sections (immuno-TEM), and freeze-fracture replicas (FRIL). We performed immunolabeling of uroplakins for scanning electron microscopy (immuno-FESEM). All microscopic techniques revealed a variability of urothelial plaque diameters ranging from 332 to 1179 nm. All immunolabeling techniques confirmed the presence of uroplakins in urothelial plaques. FRIL showed the association of uroplakins with 16 nm intramembrane particles and their organization into plaques. Using different microscopic techniques and applied qualitative and quantitative evaluation, new insights into the urothelial apical surface molecular ultrastructure have emerged and may hopefully provide a timely impulse for many ongoing studies. The combination of various microscopic techniques used in this study shows how these techniques complement one another. The described advantages and disadvantages of each technique should be considered for future studies of molecular and structural membrane specializations in other cells and tissues. PMID:25060677

Zupan?i?, Daša; Romih, Rok; Robenek, Horst; Žužek Rožman, Kristina; Samardžija, Zoran; Kostanjšek, Rok; Kreft, Mateja Erdani

2014-11-01

80

A Brief Review of Molecular Techniques to Assess Plant Diversity  

PubMed Central

Massive loss of valuable plant species in the past centuries and its adverse impact on environmental and socioeconomic values has triggered the conservation of plant resources. Appropriate identification and characterization of plant materials is essential for the successful conservation of plant resources and to ensure their sustainable use. Molecular tools developed in the past few years provide easy, less laborious means for assigning known and unknown plant taxa. These techniques answer many new evolutionary and taxonomic questions, which were not previously possible with only phenotypic methods. Molecular techniques such as DNA barcoding, random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), microsatellites and single nucleotide polymorphisms (SNP) have recently been used for plant diversity studies. Each technique has its own advantages and limitations. These techniques differ in their resolving power to detect genetic differences, type of data they generate and their applicability to particular taxonomic levels. This review presents a basic description of different molecular techniques that can be utilized for DNA fingerprinting and molecular diversity analysis of plant species. PMID:20559503

Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.; Al Farhan, Ahmad H.; Al Homaidan, Ali A.; Bahkali, Ali H.; Sadoon, Mohammad Al; Shobrak, Mohammad

2010-01-01

81

Measuring the microbiome: perspectives on advances in DNA-based techniques for exploring microbial life  

PubMed Central

This article reviews recent advances in ‘microbiome studies’: molecular, statistical and graphical techniques to explore and quantify how microbial organisms affect our environments and ourselves given recent increases in sequencing technology. Microbiome studies are moving beyond mere inventories of specific ecosystems to quantifications of community diversity and descriptions of their ecological function. We review the last 24 months of progress in this sort of research, and anticipate where the next 2 years will take us. We hope that bioinformaticians will find this a helpful springboard for new collaborations with microbiologists. PMID:22308073

Bunge, John; Gilbert, Jack A.; Moore, Jason H.

2012-01-01

82

Recent Advances in Techniques for Hyperspectral Image Processing  

NASA Technical Reports Server (NTRS)

Imaging spectroscopy, also known as hyperspectral imaging, has been transformed in less than 30 years from being a sparse research tool into a commodity product available to a broad user community. Currently, there is a need for standardized data processing techniques able to take into account the special properties of hyperspectral data. In this paper, we provide a seminal view on recent advances in techniques for hyperspectral image processing. Our main focus is on the design of techniques able to deal with the highdimensional nature of the data, and to integrate the spatial and spectral information. Performance of the discussed techniques is evaluated in different analysis scenarios. To satisfy time-critical constraints in specific applications, we also develop efficient parallel implementations of some of the discussed algorithms. Combined, these parts provide an excellent snapshot of the state-of-the-art in those areas, and offer a thoughtful perspective on future potentials and emerging challenges in the design of robust hyperspectral imaging algorithms

Plaza, Antonio; Benediktsson, Jon Atli; Boardman, Joseph W.; Brazile, Jason; Bruzzone, Lorenzo; Camps-Valls, Gustavo; Chanussot, Jocelyn; Fauvel, Mathieu; Gamba, Paolo; Gualtieri, Anthony; Marconcini, Mattia; Tilton, James C.; Trianni, Giovanna

2009-01-01

83

Nonculture molecular techniques for diagnosis of bacterial disease in animals: a diagnostic laboratory perspective.  

PubMed

The past decade has seen remarkable technical advances in infectious disease diagnosis, and the pace of innovation is likely to continue. Many of these techniques are well suited to pathogen identification directly from pathologic or clinical samples, which is the focus of this review. Polymerase chain reaction (PCR) and gene sequencing are now routinely performed on frozen or fixed tissues for diagnosis of bacterial infections of animals. These assays are most useful for pathogens that are difficult to culture or identify phenotypically, when propagation poses a biosafety hazard, or when suitable fresh tissue is not available. Multiplex PCR assays, DNA microarrays, in situ hybridization, massive parallel DNA sequencing, microbiome profiling, molecular typing of pathogens, identification of antimicrobial resistance genes, and mass spectrometry are additional emerging technologies for the diagnosis of bacterial infections from pathologic and clinical samples in animals. These technical advances come, however, with 2 caveats. First, in the age of molecular diagnosis, quality control has become more important than ever to identify and control for the presence of inhibitors, cross-contamination, inadequate templates from diagnostic specimens, and other causes of erroneous microbial identifications. Second, the attraction of these technologic advances can obscure the reality that medical diagnoses cannot be made on the basis of molecular testing alone but instead through integrated consideration of clinical, pathologic, and laboratory findings. Proper validation of the method is required. It is critical that veterinary diagnosticians understand not only the value but also the limitations of these technical advances for routine diagnosis of infectious disease. PMID:24569613

Cai, H Y; Caswell, J L; Prescott, J F

2014-03-01

84

Recent Molecular Advances on Downstream Plant Responses to Abiotic Stress  

PubMed Central

Abiotic stresses such as extremes of temperature and pH, high salinity and drought, comprise some of the major factors causing extensive losses to crop production worldwide. Understanding how plants respond and adapt at cellular and molecular levels to continuous environmental changes is a pre-requisite for the generation of resistant or tolerant plants to abiotic stresses. In this review we aimed to present the recent advances on mechanisms of downstream plant responses to abiotic stresses and the use of stress-related genes in the development of genetically engineered crops. PMID:22942725

dos Reis, Sávio Pinho; Lima, Aline Medeiros; de Souza, Cláudia Regina Batista

2012-01-01

85

Molecular risk stratification in advanced heart failure patients  

PubMed Central

Abstract Risk stratification in advanced heart failure (HF) is crucial for the individualization of therapeutic strategy, in particular for heart transplantation and ventricular assist device implantation. We tested the hypothesis that cardiac gene expression profiling can distinguish between HF patients with different disease severity. We obtained tissue samples from both left (LV) and right (RV) ventricle of explanted hearts of 44 patients undergoing cardiac transplantation or ventricular assist device placement. Gene expression profiles were obtained using an in-house microarray containing 4217 muscular organ-relevant genes. Based on their clinical status, patients were classified into three HF-severity groups: deteriorating (n= 12), intermediate (n= 19) and stable (n= 13). Two-class statistical analysis of gene expression profiles of deteriorating and stable patients identified a 170-gene and a 129-gene predictor for LV and RV samples, respectively. The LV molecular predictor identified patients with stable and deteriorating status with a sensitivity of 88% and 92%, and a specificity of 100% and 96%, respectively. The RV molecular predictor identified patients with stable and deteriorating status with a sensitivity of 100% and 96%, and a specificity of 100% and 100%, respectively. The molecular prediction was reproducible across biological replicates in LV and RV samples. Gene expression profiling has the potential to reproducibly detect HF patients with highest HF severity with high sensitivity and specificity. In addition, not only LV but also RV samples could be used for molecular risk stratification with similar predictive power. PMID:19793385

Lamirault, Guillaume; Meur, Nolwenn Le; Roussel, Jean-Christian; Cunff, Marie-France Le; Baron, Daniel; Bihouée, Audrey; Guisle, Isabelle; Raharijaona, Mahatsangy; Ramstein, Gérard; Teusan, Raluca; Chevalier, Catherine; Gueffet, Jean-Pierre; Trochu, Jean-Noël; Léger, Jean J; Houlgatte, Rémi; Steenman, Marja

2010-01-01

86

Advanced Techniques for Removal of Retrievable Inferior Vena Cava Filters  

SciTech Connect

Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application.

Iliescu, Bogdan; Haskal, Ziv J., E-mail: ziv2@mac.com [University of Maryland School of Medicine, Division of Vascular and Interventional Radiology (United States)

2012-08-15

87

Advanced techniques for removal of retrievable inferior vena cava filters.  

PubMed

Inferior vena cava (IVC) filters have proven valuable for the prevention of primary or recurrent pulmonary embolism in selected patients with or at high risk for venous thromboembolic disease. Their use has become commonplace, and the numbers implanted increase annually. During the last 3 years, in the United States, the percentage of annually placed optional filters, i.e., filters than can remain as permanent filters or potentially be retrieved, has consistently exceeded that of permanent filters. In parallel, the complications of long- or short-term filtration have become increasingly evident to physicians, regulatory agencies, and the public. Most filter removals are uneventful, with a high degree of success. When routine filter-retrieval techniques prove unsuccessful, progressively more advanced tools and skill sets must be used to enhance filter-retrieval success. These techniques should be used with caution to avoid damage to the filter or cava during IVC retrieval. This review describes the complex techniques for filter retrieval, including use of additional snares, guidewires, angioplasty balloons, and mechanical and thermal approaches as well as illustrates their specific application. PMID:21674279

Iliescu, Bogdan; Haskal, Ziv J

2012-08-01

88

Advanced Synchrotron Techniques at High Pressure Collaborative Access Team (HPCAT)  

NASA Astrophysics Data System (ADS)

High Pressure Collaborative Access Team (HPCAT) is dedicated to advancing cutting-edge, multidisciplinary, high-pressure science and technology using synchrotron radiation at Sector 16 of the Advanced Photon Source (APS) of Argonne National Laboratory. At HPCAT an array of novel x-ray diffraction and spectroscopic techniques has been integrated with high pressure and extreme temperature instrumentation for studies of structure and materials properties at extreme conditions.. HPCAT consists of four active independent beamlines performing a large range of various experiments at extreme conditions. 16BM-B beamline is dedicated to energy dispersive and white Laue X-ray diffraction. The majority of experiments are performed with a Paris-Edinburgh large volume press (to 7GPa and 2500K) and include amorphous and liquid structure measurement, white beam radiography, elastic sound wave velocity measurement of amorphous solid materials, with viscosity and density measurement of liquid being under development. 16BM-D is a monochromatic diffraction beamline for powder and single crystal diffraction at high pressure and high (resistive heating) / low (cryostats) temperature. The additional capabilities include high-resolution powder diffraction and x-ray absorption near edge structure (XANES) spectroscopy. The insertion device beamline of HPCAT has two undulators in canted mode (operating independently) and LN cooled Si monochromators capable of providing a large range of energies. 16IDB is a microdiffraction beamline mainly focusing on high-pressure powder and single crystal diffraction in DAC at high temperatures (double-sided laser heating and resistive heating) and low temperature (various cryostats). The modern instrumentation allows high-quality diffraction at megabar pressures from light element, fast experiments with pulsed laser heating, fast dynamic experiments with Pilatus detector, and so on. 16ID-D beamline is dedicated to x-ray scattering and spectroscopy research of materials under high pressure in DAC. The available techniques include nuclear forward scattering, nuclear resonant inelastic scattering with 2meV energy resolution for determining phonon density of state and Mössbauer effect, x-ray inelastic scattering (X-ray Raman) with 1eV energy resolution for the study of charge dynamics and chemical bonding, x-ray spectroscopy for the study of electronic excitations, X-ray emission (including partial fluorescence yield, resonant emission). Many of these measurements can be done at low temperature, with in-situ pressure measurement, or at high temperature with portable laser heating. All these advanced synchrotron techniques, as well as supporting facilities, employed at HPCAT, will be discussed.

Shen, G.; Sinogeikin, S. V.; Chow, P.; Kono, Y.; Meng, Y.; Park, C.; Popov, D.; Rod, E.; Smith, J.; Xiao, Y.; Mao, H.

2012-12-01

89

Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly  

NASA Astrophysics Data System (ADS)

The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

Anthony, Neil R.

90

Techniques for developing approximate optimal advanced launch system guidance  

NASA Technical Reports Server (NTRS)

An extension to the authors' previous technique used to develop a real-time guidance scheme for the Advanced Launch System is presented. The approach is to construct an optimal guidance law based upon an asymptotic expansion associated with small physical parameters, epsilon. The trajectory of a rocket modeled as a point mass is considered with the flight restricted to an equatorial plane while reaching an orbital altitude at orbital injection speeds. The dynamics of this problem can be separated into primary effects due to thrust and gravitational forces, and perturbation effects which include the aerodynamic forces and the remaining inertial forces. An analytic solution to the reduced-order problem represented by the primary dynamics is possible. The Hamilton-Jacobi-Bellman or dynamic programming equation is expanded in an asymptotic series where the zeroth-order term (epsilon = 0) can be obtained in closed form.

Feeley, Timothy S.; Speyer, Jason L.

1991-01-01

91

Advanced Techniques for Power System Identification from Measured Data  

SciTech Connect

Time-synchronized measurements provide rich information for estimating a power-system's electromechanical modal properties via advanced signal processing. This information is becoming critical for the improved operational reliability of interconnected grids. A given mode's properties are described by its frequency, damping, and shape. Modal frequencies and damping are useful indicators of power-system stress, usually declining with increased load or reduced grid capacity. Mode shape provides critical information for operational control actions. This project investigated many advanced techniques for power system identification from measured data focusing on mode frequency and damping ratio estimation. Investigators from the three universities coordinated their effort with Pacific Northwest National Laboratory (PNNL). Significant progress was made on developing appropriate techniques for system identification with confidence intervals and testing those techniques on field measured data and through simulation. Experimental data from the western area power system was provided by PNNL and Bonneville Power Administration (BPA) for both ambient conditions and for signal injection tests. Three large-scale tests were conducted for the western area in 2005 and 2006. Measured field PMU (Phasor Measurement Unit) data was provided to the three universities. A 19-machine simulation model was enhanced for testing the system identification algorithms. Extensive simulations were run with this model to test the performance of the algorithms. University of Wyoming researchers participated in four primary activities: (1) Block and adaptive processing techniques for mode estimation from ambient signals and probing signals, (2) confidence interval estimation, (3) probing signal design and injection method analysis, and (4) performance assessment and validation from simulated and field measured data. Subspace based methods have been use to improve previous results from block processing techniques. Bootstrap techniques have been developed to estimate confidence intervals for the electromechanical modes from field measured data. Results were obtained using injected signal data provided by BPA. A new probing signal was designed that puts more strength into the signal for a given maximum peak to peak swing. Further simulations were conducted on a model based on measured data and with the modifications of the 19-machine simulation model. Montana Tech researchers participated in two primary activities: (1) continued development of the 19-machine simulation test system to include a DC line; and (2) extensive simulation analysis of the various system identification algorithms and bootstrap techniques using the 19 machine model. Researchers at the University of Alaska-Fairbanks focused on the development and testing of adaptive filter algorithms for mode estimation using data generated from simulation models and on data provided in collaboration with BPA and PNNL. There efforts consist of pre-processing field data, testing and refining adaptive filter techniques (specifically the Least Mean Squares (LMS), the Adaptive Step-size LMS (ASLMS), and Error Tracking (ET) algorithms). They also improved convergence of the adaptive algorithms by using an initial estimate from block processing AR method to initialize the weight vector for LMS. Extensive testing was performed on simulated data from the 19 machine model. This project was also extensively involved in the WECC (Western Electricity Coordinating Council) system wide tests carried out in 2005 and 2006. These tests involved injecting known probing signals into the western power grid. One of the primary goals of these tests was the reliable estimation of electromechanical mode properties from measured PMU data. Applied to the system were three types of probing inputs: (1) activation of the Chief Joseph Dynamic Brake, (2) mid-level probing at the Pacific DC Intertie (PDCI), and (3) low-level probing on the PDCI. The Chief Joseph Dynamic Brake is a 1400 MW disturbance to the system and is injected for a ha

Pierre, John W.; Wies, Richard; Trudnowski, Daniel

2008-11-25

92

Multiple advanced surgical techniques to treat acquired seminal duct obstruction  

PubMed Central

The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery) for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months). Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12) semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml?1 of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51), and the patency rate and natural pregnancy rate were 89.4% (42/47) and 38.1% (16/42), respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved. PMID:25337841

Jiang, Hong-Tao; Yuan, Qian; Liu, Yu; Liu, Zeng-Qin; Zhou, Zhen-Yu; Xiao, Ke-Feng; Yang, Jiang-Gen

2014-01-01

93

Multiple advanced surgical techniques to treat acquired seminal duct obstruction.  

PubMed

The aim of this study was to evaluate the outcomes of multiple advanced surgical treatments (i.e. microsurgery, laparoscopic surgery and endoscopic surgery) for acquired obstructive azoospermia. We analyzed the surgical outcomes of 51 patients with suspected acquired obstructive azoospermia consecutively who enrolled at our center between January 2009 and May 2013. Modified vasoepididymostomy, laparoscopically assisted vasovasostomy and transurethral incision of the ejaculatory duct with holmium laser were chosen and performed based on the different obstruction sites. The mean postoperative follow-up time was 22 months (range: 9 months to 52 months). Semen analyses were initiated at four postoperative weeks, followed by trimonthly (months 3, 6, 9 and 12) semen analyses, until no sperm was found at 12 months or until pregnancy was achieved. Patency was defined as >10,000 sperm ml?¹ of semen. The obstruction sites, postoperative patency and natural pregnancy rate were recorded. Of 51 patients, 47 underwent bilateral or unilateral surgical reconstruction; the other four patients were unable to be treated with surgical reconstruction because of pelvic vas or intratesticular tubules obstruction. The reconstruction rate was 92.2% (47/51), and the patency rate and natural pregnancy rate were 89.4% (42/47) and 38.1% (16/42), respectively. No severe complications were observed. Using multiple advanced surgical techniques, more extensive range of seminal duct obstruction was accessible and correctable; thus, a favorable patency and pregnancy rate can be achieved. PMID:25337841

Jiang, Hong-Tao; Yuan, Qian; Liu, Yu; Liu, Zeng-Qin; Zhou, Zhen-Yu; Xiao, Ke-Feng; Yang, Jiang-Gen

2014-01-01

94

Advanced Fibre Bragg Grating and Microfibre Bragg Grating Fabrication Techniques  

NASA Astrophysics Data System (ADS)

Fibre Bragg gratings (FBGs) have become a very important technology for communication systems and fibre optic sensing. Typically, FBGs are less than 10-mm long and are fabricated using fused silica uniform phase masks which become more expensive for longer length or non-uniform pitch. Generally, interference UV laser beams are employed to make long or complex FBGs, and this technique introduces critical precision and control issues. In this work, we demonstrate an advanced FBG fabrication system that enables the writing of long and complex gratings in optical fibres with virtually any apodisation profile, local phase and Bragg wavelength using a novel optical design in which the incident angles of two UV beams onto an optical fibre can be adjusted simultaneously by moving just one optical component, instead of two optics employed in earlier configurations, to vary the grating pitch. The key advantage of the grating fabrication system is that complex gratings can be fabricated by controlling the linear movements of two translation stages. In addition to the study of advanced grating fabrication technique, we also focus on the inscription of FBGs written in optical fibres with a cladding diameter of several ten's of microns. Fabrication of microfibres was investigated using a sophisticated tapering method. We also proposed a simple but practical technique to filter out the higher order modes reflected from the FBG written in microfibres via a linear taper region while the fundamental mode re-couples to the core. By using this technique, reflection from the microfibre Bragg grating (MFBG) can be effectively single mode, simplifying the demultiplexing and demodulation processes. MFBG exhibits high sensitivity to contact force and an MFBG-based force sensor was also constructed and tested to investigate their suitability for use as an invasive surgery device. Performance of the contact force sensor packaged in a conforming elastomer material compares favourably to one of the best-performing commercial contact force sensors in catheterization applications. The proposed sensor features extremely high sensitivity up to 1.37-mN, miniature size (2.4-mm) that meets standard specification, excellent linearity, low hysteresis, and magnetic resonance imaging compatibility.

Chung, Kit Man

95

Recent advances in molecular diagnostics of hepatitis B virus.  

PubMed

Hepatitis B virus (HBV) is one of the important global health problems today. Infection with HBV can lead to a variety of clinical manifestations including severe hepatic complications like liver cirrhosis and hepatocellular carcinoma. Presently, routine HBV screening and diagnosis is primarily based on the immuno-detection of HBV surface antigen (HBsAg). However, identification of HBV DNA positive cases, who do not have detectable HBsAg has greatly encouraged the use of nucleic acid amplification based assays, that are highly sensitive, specific and are to some extent tolerant to sequence variation. In the last few years, the field of HBV molecular diagnostics has evolved rapidly with advancements in the molecular biology tools, such as polymerase chain reaction (PCR) and real-time PCR. Recently, apart of PCR based amplification methods, a number of isothermal amplification assays, such as loop mediated isothermal amplification, transcription mediated amplification, ligase chain reaction, and rolling circle amplification have been utilized for HBV diagnosis. These assays also offer options for real time detection and integration into biosensing devices. In this manuscript, we review the molecular technologies that are presently available for HBV diagnostics, with special emphasis on isothermal amplification based technologies. We have also included the recent trends in the development of biosensors and use of next generation sequencing technologies for HBV. PMID:25356025

Datta, Sibnarayan; Chatterjee, Soumya; Veer, Vijay

2014-10-28

96

Advances in the Rising Bubble Technique for discharge measurement  

NASA Astrophysics Data System (ADS)

Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of the Institution of Civil Engineers (London), Part 2, 71, 1-15, 1981. Viol, V. and Semenov, V.: Experiments in measuring discharges in canals by the photo-integration method, Soviet Hydrol. Selected Pap, 2, 198-199, 1964.

Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

2014-05-01

97

Variable Sample Rate Conversion Techniques for the Advanced Receiver  

NASA Astrophysics Data System (ADS)

One of the primary challenges in the development of the Advanced Receiver is the ability to accommodate a wide variety of possible data rates, motivated by the desire to support different missions for the Deep Space Network (DSN) under different adverse conditions. To conform to fixed architectures such as the analog-to-digital converter (ADC) used at the front end and tracking loops used subsequently, this requires that the sampling rate be varied entirely digitally after the ADC to accommodate the fixed parameters of the tracking loops. In this article, we present a series of methods to achieve variable sample rate conversion (SRC). Specifically, we focus on two sets of schemes to alter the sampling rate: coarse techniques to lower the bulk of the sampling rate near the desired amount while removing out-of-band artifacts due to noise and interference, and fine techniques used to accurately tailor the sampling rate to the exact desired value. Advantages and disadvantages of both sets of methods are investigated in terms of implementation complexities and performance metrics.

Tkacenko, A.

2007-02-01

98

Advanced Cell Culture Techniques for Cancer Drug Discovery  

PubMed Central

Human cancer cell lines are an integral part of drug discovery practices. However, modeling the complexity of cancer utilizing these cell lines on standard plastic substrata, does not accurately represent the tumor microenvironment. Research into developing advanced tumor cell culture models in a three-dimensional (3D) architecture that more prescisely characterizes the disease state have been undertaken by a number of laboratories around the world. These 3D cell culture models are particularly beneficial for investigating mechanistic processes and drug resistance in tumor cells. In addition, a range of molecular mechanisms deconstructed by studying cancer cells in 3D models suggest that tumor cells cultured in two-dimensional monolayer conditions do not respond to cancer therapeutics/compounds in a similar manner. Recent studies have demonstrated the potential of utilizing 3D cell culture models in drug discovery programs; however, it is evident that further research is required for the development of more complex models that incorporate the majority of the cellular and physical properties of a tumor. PMID:24887773

Lovitt, Carrie J.; Shelper, Todd B.; Avery, Vicky M.

2014-01-01

99

Recent advances in understanding molecular mechanisms of primary afferent activation  

PubMed Central

Thermal, mechanical, and chemical stimuli depolarise specialised damage sensing neurons to initiate electrical signals that may ultimately result in a sensation of pain. Over the past decade many of the receptors that transduce these signals have been identified by molecular cloning. In the absence of specific blockers, null mutant mice have proved valuable in exploring the function of these specialised receptors. As well as the mechanisms of signal transduction, the setting of thresholds for excitation and the transmission of electrical signals have also been the focus of intense interest. In vitro studies of dorsal root ganglion sensory neurons have thus facilitated rapid advances in our understanding of the biology of nociceptors. However, the specific properties of visceral afferents are poorly defined, and useful animal models of visceral pain are only now being developed. Visceral neuron receptor subtypes and the consequences of their activation in terms of pain perception and behaviour are thus subjects that still demand a major research effort. PMID:14960551

Wood, J

2004-01-01

100

Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming.  

PubMed

Plant molecular pharming is a promising system to produce important recombinant proteins such as therapeutic antibodies, pharmaceuticals, enzymes, growth factors, and vaccines. The system provides an interesting alternative method to the direct extraction of proteins from inappropriate source material while offering the possibility to overcome problems related to product safety and source availability. Multiple factors including plant hosts, genes of interest, expression vector cassettes, and extraction and purification techniques play important roles in the plant molecular pharming. Plant species, as a biosynthesis platform, are a crucial factor in achieving high yields of recombinant protein in plant. The choice of recombinant gene and its expression strategy is also of great importance in ensuring a high amount of the recombinant proteins. Many studies have been conducted to improve expression, accumulation, and purification of the recombinant protein from molecular pharming systems. Re-engineered vectors and expression cassettes are also pivotal tools in enhancing gene expression at the transcription and translation level, and increasing protein accumulation, stability, retention and targeting of specific organelles. In this review, we report recent advances and strategies of plant molecular pharming while focusing on the choice of plant hosts and the role of some molecular pharming elements and approaches: promoters, codon optimization, signal sequences, and peptides used for upstream design, purification and downstream processing. PMID:23959796

Makhzoum, Abdullah; Benyammi, Roukia; Moustafa, Khaled; Trémouillaux-Guiller, Jocelyne

2014-04-01

101

REVIEW ARTICLE: Emission measurement techniques for advanced powertrains  

NASA Astrophysics Data System (ADS)

Recent developments in high-efficiency low-emission powertrains require the emission measurement technologies to be able to detect regulated and unregulated compounds with very high sensitivity and a fast response. For example, levels of a variety of nitrogen compounds and sulphur compounds should be analysed in real time in order to develop aftertreatment systems to decrease emission of NOx for the lean burning powertrains. Also, real-time information on the emission of particulate matter for the transient operation of diesel engines and direct injection gasoline engines is invaluable. The present paper reviews newly introduced instrumentation for such emission measurement that is demanded for the developments in advanced powertrain systems. They include Fourier transform infrared spectroscopy, mass spectrometry and fast response flame ionization detection. In addition, demands and applications of the fuel reformer developments for fuel cell electric vehicles are discussed. Besides the detection methodologies, sample handling techniques for the measurement of concentrations emitted from low emission vehicles for which the concentrations of the pollutants are significantly lower than the concentrations present in ambient air, are also described.

Adachi, Masayuki

2000-10-01

102

Nanocrystalline materials: recent advances in crystallographic characterization techniques  

PubMed Central

Most properties of nanocrystalline materials are shape-dependent, providing their exquisite tunability in optical, mechanical, electronic and catalytic properties. An example of the former is localized surface plasmon resonance (LSPR), the coherent oscillation of conduction electrons in metals that can be excited by the electric field of light; this resonance frequency is highly dependent on both the size and shape of a nanocrystal. An example of the latter is the marked difference in catalytic activity observed for different Pd nanoparticles. Such examples highlight the importance of particle shape in nanocrystalline materials and their practical applications. However, one may ask ‘how are nanoshapes created?’, ‘how does the shape relate to the atomic packing and crystallography of the material?’, ‘how can we control and characterize the external shape and crystal structure of such small nanocrystals?’. This feature article aims to give the reader an overview of important techniques, concepts and recent advances related to these questions. Nucleation, growth and how seed crystallography influences the final synthesis product are discussed, followed by shape prediction models based on seed crystallography and thermodynamic or kinetic parameters. The crystallographic implications of epitaxy and orientation in multilayered, core-shell nanoparticles are overviewed, and, finally, the development and implications of novel, spatially resolved analysis tools are discussed. PMID:25485133

Ringe, Emilie

2014-01-01

103

Recommended advanced techniques for waterborne pathogen detection in developing countries.  

PubMed

The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries. PMID:25699486

Alhamlan, Fatimah S; Al-Qahtani, Ahmed Ali; Al-Ahdal, Mohammed N Ahmed

2015-02-01

104

Removing baseline flame's spectrum by using advanced recovering spectrum techniques.  

PubMed

In this paper, a novel automated algorithm to estimate and remove the continuous baseline from measured flame spectra is proposed. The algorithm estimates the continuous background based on previous information obtained from a learning database of continuous flame spectra. Then, the discontinuous flame emission is calculated by subtracting the estimated continuous baseline from the measured spectrum. The key issue subtending the learning database is that the continuous flame emissions are predominant in the sooty regions, in absence of discontinuous radiation. The proposed algorithm was tested using natural gas and bio-oil flames spectra at different combustion conditions, and the goodness-of-fit coefficient (GFC) quality metric was used to quantify the performance in the estimation process. Additionally, the commonly used first derivative method (FDM) for baseline removing was applied to the same testing spectra in order to compare and to evaluate the proposed technique. The achieved results show that the proposed method is a very attractive tool for designing advanced combustion monitoring strategies of discontinuous emissions. PMID:22945158

Arias, Luis; Sbarbaro, Daniel; Torres, Sergio

2012-09-01

105

Development of advanced strain diagnostic techniques for reactor environments.  

SciTech Connect

The following research is operated as a Laboratory Directed Research and Development (LDRD) initiative at Sandia National Laboratories. The long-term goals of the program include sophisticated diagnostics of advanced fuels testing for nuclear reactors for the Department of Energy (DOE) Gen IV program, with the future capability to provide real-time measurement of strain in fuel rod cladding during operation in situ at any research or power reactor in the United States. By quantifying the stress and strain in fuel rods, it is possible to significantly improve fuel rod design, and consequently, to improve the performance and lifetime of the cladding. During the past year of this program, two sets of experiments were performed: small-scale tests to ensure reliability of the gages, and reactor pulse experiments involving the most viable samples in the Annulated Core Research Reactor (ACRR), located onsite at Sandia. Strain measurement techniques that can provide useful data in the extreme environment of a nuclear reactor core are needed to characterize nuclear fuel rods. This report documents the progression of solutions to this issue that were explored for feasibility in FY12 at Sandia National Laboratories, Albuquerque, NM.

Fleming, Darryn D.; Holschuh, Thomas Vernon,; Miller, Timothy J.; Hall, Aaron Christopher; Urrea, David Anthony,; Parma, Edward J.,

2013-02-01

106

Hybrid inverse lithography techniques for advanced hierarchical memories  

NASA Astrophysics Data System (ADS)

Traditional segment-based model-based OPC methods have been the mainstream mask layout optimization techniques in volume production for memory and embedded memory devices for many device generations. These techniques have been continually optimized over time to meet the ever increasing difficulties of memory and memory periphery patterning. There are a range of difficult issues for patterning embedded memories successfully. These difficulties include the need for a very high level of symmetry and consistency (both within memory cells themselves and between cells) due to circuit effects such as noise margin requirements in SRAMs. Memory cells and access structures consume a large percentage of area in embedded devices so there is a very high return from shrinking the cell area as much as possible. This aggressive scaling leads to very difficult resolution, 2D CD control and process window requirements. Additionally, the range of interactions between mask synthesis corrections of neighboring areas can extend well beyond the size of the memory cell, making it difficult to fully take advantage of the inherent designed cell hierarchy in mask pattern optimization. This is especially true for non-traditional (i.e., less dependent on geometric rule) OPC/RET methods such as inverse lithography techniques (ILT) which inherently have more model-based decisions in their optimizations. New inverse methods such as model-based SRAF placement and ILT are, however, well known to have considerable benefits in finding flexible mask pattern solutions to improve process window, improve 2D CD control, and improve resolution in ultra-dense memory patterns. They also are known to reduce recipe complexity and provide native MRC compliant mask pattern solutions. Unfortunately, ILT is also known to be several times slower than traditional OPC methods due to the increased computational lithographic optimizations it performs. In this paper, we describe and present results for a methodology to greatly improve the ability of ILT to optimize advanced embedded memory designs while retaining significant hierarchy and cell design symmetry, therefore, have good turnaround time and CD uniformity. This paper will explain the enhancements which have been developed in order to overcome the traditional difficulties listed above. These enhancements are in the categories of local CD control, global chip processing options, process window benefit, turn-around time and hierarchy retention.

Xiao, Guangming; Hooker, Kevin; Irby, Dave; Zhang, Yunqiang; Ward, Brian; Cecil, Tom; Hall, Brett; Lee, Mindy; Kim, Dave; Lucas, Kevin

2014-03-01

107

Molecular dynamics techniques in the studies of the bacterial ribosome  

NASA Astrophysics Data System (ADS)

We summarize here the recent applications of molecular dynamics (MD) and enhanced sampling methods used to elucidate the role of flexibility in ribosome functioning. In the last decade, many atomic resolution structures of the bacterial ribosome have been solved, which allowed for extensive all-atom MD studies of this system. However, the time scale of such simulations is often not sufficient due to the large number of atoms building the ribosome complex. One of the ways to overcome this problem are enhanced sampling techniques. For instance, steered MD gave us knowledge about the dynamics of nascent peptide chain in the ribosomal exit tunnel. Targeted MD was used to study pathways of tRNA accommodation into the ribosome. Other MD-based techniques (MDFF and MDfit) allowed for generation of full-atom models from mediumresolution cryo-electron microscopy (cryo-EM) maps. Also, the studies on models of ribosomal aminoacyl-tRNA binding site (A-site) improved our understanding of the mRNA decoding process. For example, replica exchange molecular dynamics (REMD) was used to study the movement of the two key adenines, involved in the mRNA decoding process. The REMD extensive sampling allowed for construction of free energy landscapes. In summary, the MD-based techniques are very helpful in expanding our knowledge of the ribosome functioning and they successfully complement the experimental studies.

Panecka, Joanna; Trylska, Joanna

2012-06-01

108

[Molecular techniques for detection and identification of pathogens in food: advantages and limitations].  

PubMed

Foodborne diseases, caused by pathogenic microorganisms, are a major public health problem worldwide. Microbiological methods commonly used in the detection of these foodborne pathogens are laborious and time consuming. This situation, coupled with the demand for immediate results and with technological advances, has led to the development of a wide range of rapid methods in recent decades. On this basis, this review describes the advantages and limitations of the main molecular methods used in detection and identification of foodborne pathogens. To this end, we considered how recent the information was published, the objective analysis of the topic and its scope. Recent literature reports a significant number of alternative, sensitive and selective molecular techniques for detection, enumeration and identification of pathogenic microorganisms in food. Polymerase chain reaction (PCR) is the most popular platform, while high performance sequencing is emerging as a technique of wide applicability for the future. However, even with all the advantages of these new methodologies, their limitations should not be overlooked. For example, molecular methods are not standardized protocols, which hinders its use in some cases. For this reason, hard work should be done to overcome these limitations and improve the application of these techniques in complex matrices such as food systems. PMID:25418655

Palomino-Camargo, Carolina; González-Muñoz, Yuniesky

2014-01-01

109

Advances and Trends in the Molecular Systematics of the Parasitic Platyhelminthes  

Microsoft Academic Search

The application of molecular systematics to the parasitic Platyhelminthes (Cestoda, Digenea and Monogenea) over the last decade has advanced our understanding of their interrelationships and evolution substantially. Here we review the current state of play and the early works that led to the molecular-based hypotheses that now predominate in the field; advances in their systematics, taxonomy, classification and phylogeny, as

Peter D. Olson; Vasyl V. Tkach

2005-01-01

110

A Sensitive TLRH Targeted Imaging Technique for Ultrasonic Molecular Imaging  

PubMed Central

The primary goals of ultrasound molecular imaging are the detection and imaging of ultrasound contrast agents (microbubbles), which are bound to specific vascular surface receptors. Imaging methods that can sensitively and selectively detect and distinguish bound microbubbles from freely circulating microbubbles (free microbubbles) and surrounding tissue are critically important for the practical application of ultrasound contrast molecular imaging. Microbubbles excited by low frequency acoustic pulses emit wide-band echoes with a bandwidth extending beyond 20 MHz; we refer to this technique as TLRH (transmission at a low frequency and reception at a high frequency). Using this wideband, transient echo, we have developed and implemented a targeted imaging technique incorporating a multi-frequency co-linear array and the Siemens Antares® imaging system. The multi-frequency co-linear array integrates a center 5.4 MHz array, used to receive echoes and produce radiation force, and two outer 1.5 MHz arrays used to transmit low frequency incident pulses. The targeted imaging technique makes use of an acoustic radiation force sub-sequence to enhance accumulation and a TLRH imaging sub-sequence to detect bound microbubbles. The radiofrequency (RF) data obtained from the TLRH imaging sub-sequence are processsed to separate echo signatures between tissue, free microbubbles, and bound microbubbles. By imaging biotin-coated microbubbles targeted to avidin-coated cellulose tubes, we demonstrate that the proposed method has a high contrast-to-tissue ratio (up to 34 dB) and a high sensitivity to bound microbubbles (with the ratio of echoes from bound microbubbles versus free microbubbles extending up to 23 dB). The effects of the imaging pulse acoustic pressure, the radiation force sub-sequence and the use of various slow-time filters on the targeted imaging quality are studied. The TLRH targeted imaging method is demonstrated in this study to provide sensitive and selective detection of bound microbubbles for ultrasound molecularly-targeted imaging. PMID:20178897

Hu, Xiaowen; Zheng, Hairong; Kruse, Dustin E.; Sutcliffe, Patrick; Stephens, Douglas N.; Ferrara, Katherine W.

2010-01-01

111

Ciceromics: Advancement in Genomics and Recent Molecular Techniques  

Technology Transfer Automated Retrieval System (TEKTRAN)

Genomics is a branch of science that decodes the encrypted information in DNA and reveals information such as the number of genes, genome organization and content. This information has tremendous application in agriculture, evolutionary biology and other areas of science. Although genomics has allow...

112

Integrating advanced materials simulation techniques into an automated data analysis workflow at the Spallation Neutron Source  

SciTech Connect

This presentation will review developments on the integration of advanced modeling and simulation techniques into the analysis step of experimental data obtained at the Spallation Neutron Source. A workflow framework for the purpose of refining molecular mechanics force-fields against quasi-elastic neutron scattering data is presented. The workflow combines software components to submit model simulations to remote high performance computers, a message broker interface for communications between the optimizer engine and the simulation production step, and tools to convolve the simulated data with the experimental resolution. A test application shows the correction to a popular fixed-charge water model in order to account polarization effects due to the presence of solvated ions. Future enhancements to the refinement workflow are discussed. This work is funded through the DOE Center for Accelerating Materials Modeling.

Borreguero Calvo, Jose M [ORNL] [ORNL; Campbell, Stuart I [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL; Doucet, Mathieu [ORNL] [ORNL; Goswami, Monojoy [ORNL] [ORNL; Hagen, Mark E [ORNL] [ORNL; Lynch, Vickie E [ORNL] [ORNL; Proffen, Thomas E [ORNL] [ORNL; Ren, Shelly [ORNL] [ORNL; Savici, Andrei T [ORNL] [ORNL; Sumpter, Bobby G [ORNL] [ORNL

2014-01-01

113

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS  

SciTech Connect

Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

Louis J. Durlofsky; Khalid Aziz

2004-08-20

114

Weldability and joining techniques for advanced fossil energy system alloys  

SciTech Connect

The efforts represent the concerns for the basic understanding of the weldability and fabricability of the advanced high temperature alloys so necessary to affect increases in the efficiency of the next generation Fossil Energy Power Plants. The effort was divided into three tasks with the first effort dealing with the welding and fabrication behavior of 310HCbN (HR3C), the second task details the studies aimed at understanding the weldability of a newly developed 310TaN high temperature stainless (a modification of 310 stainless) and Task 3 addressed the cladding of austenitic tubing with Iron-Aluminide using the GTAW process. Task 1 consisted of microstructural studies on 310HCbN and the development of a Tube Weldability test which has applications to production welding techniques as well as laboratory weldability assessments. In addition, the evaluation of ex-service 310HCbN which showed fireside erosion and cracking at the attachment weld locations was conducted. Task 2 addressed the behavior of the newly developed 310 TaN modification of standard 310 stainless steel and showed that the weldability was excellent and that the sensitization potential was minimal for normal welding and fabrication conditions. The microstructural evolution during elevated temperature testing was characterized and the second phase particles evolved upon aging were identified. Task 3 details the investigation undertaken to clad 310HCbN tubing with Iron Aluminide and developed welding conditions necessary to provide a crack free cladding. The work showed that both a preheat and a post-heat was necessary for crack free deposits and the effect of a third element on the cracking potential was defined together with the effect of the aluminum level for optimum weldability.

Lundin, C.D.; Qiao, C.Y.P.; Liu, W.; Yang, D.; Zhou, G.; Morrison, M. [Univ. of Tennessee, Knoxville, TN (United States)

1998-05-01

115

Clinical Advances in Molecular Biomarkers for Cancer Diagnosis and Therapy  

PubMed Central

Cancer diagnosis is currently undergoing a paradigm shift with the incorporation of molecular biomarkers as part of routine diagnostic panel. The molecular alteration ranges from those involving the DNA, RNA, microRNAs (miRNAs) and proteins. The miRNAs are recently discovered small non-coding endogenous single-stranded RNAs that critically regulates the development, invasion and metastasis of cancers. They are altered in cancers and have the potential to serve as diagnostic markers for cancer. Moreover, deregulating their activity offers novel cancer therapeutic approaches. The availability of high throughput techniques for the identification of altered cellular molecules allowed their use in cancer diagnosis. Their application to a variety of body specimens from blood to tissues has been helpful for appreciating their use in the clinical context. The development of innovative antibodies for immunohistochemical detection of proteins also assists in diagnosis and risk stratification. Overall, the novel cancer diagnostic tools have extended their application as prognostic risk factors and can be used as targets for personalized medicine. PMID:23863689

Sethi, Seema; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

2013-01-01

116

Double-Edge Molecular Technique for Doppler Lidar Wind Measurement  

NASA Technical Reports Server (NTRS)

The double-edge lidar technique for measuring the wind using molecular backscatter is described. Two high spectral resolution edge filters are located in the wings of the Rayleigh-Brillouin profile. This doubles the signal change per unit Doppler shift, the sensitivity, and gives nearly a factor of two improvement in measurement accuracy. The use of a crossover region is described where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering over a frequency range of +/- 100 m/s. We give methods for correcting for short-term frequency jitter and drift using a laser reference frequency measurement and methods for long-term frequency correction using a servo control system. The effects of Rayleigh-Brillouin scattering on the measurement are shown to be significant and are included in the analysis. Simulations for a conical scanning satellite-based lidar at 355 nm show an accuracy of 2-3 m/s for altitudes of 2 to 15 km for a 1 km vertical resolution, a satellite altitude of 400 km and a 200 km x 200 km spatial resolution. Results of ground based wind measurements are presented.

Flesia, Cristina; Korb, C. Laurence

1998-01-01

117

Marie Curie Initial Training Network in Advanced Techniques in Computational Mechanics Page 1 of 4  

E-print Network

Marie Curie Initial Training Network in Advanced Techniques in Computational Mechanics ATCoMe Page): ....................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... ............................................................................................................................... #12;Marie Curie Initial Training Network in Advanced Techniques in Computational Mechanics ATCoMe Page Speaking Reading Writing English French Spanish German Portuguese #12;Marie Curie Initial Training Network

Huerta, Antonio

118

Advanced Photogrammetric Techniques Ayman F. Habib Photogrammetric & LiDAR Data  

E-print Network

Advanced Photogrammetric Techniques Ayman F. Habib 1 Photogrammetric & LiDAR Data Integration Chapter 5 #12;Advanced Photogrammetric Techniques Ayman F. Habib 2 Overview · Photogrammetric and LiDAR data: why? · Photogrammetric and LiDAR data: How? ­ Registration (co-alignment) paradigm ­ Experimental

Habib, Ayman

119

Ayman F. HabibAdvanced Photogrammetric Techniques LiDAR Mapping  

E-print Network

Ayman F. HabibAdvanced Photogrammetric Techniques 1 LiDAR Mapping Chapter 4 #12;Ayman F. HabibAdvanced Photogrammetric Techniques 2 Overview · Passive versus active sensors · LASER principles · LiDAR principles · LiDAR equation · Error sources (systematic and random errors) · Quality assurance for LiDAR systems · Quality

Habib, Ayman

120

Molecular genetic techniques for gene manipulation in Candida albicans.  

PubMed

Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains. PMID:24759671

Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

2014-05-15

121

Modeling large RNAs and ribonucleoprotein particles using molecular mechanics techniques.  

PubMed Central

There is a growing body of low-resolution structural data that can be utilized to devise structural models for large RNAs and ribonucleoproteins. These models are routinely built manually. We introduce an automated refinement protocol to utilize such data for building low-resolution three-dimensional models using the tools of molecular mechanics. In addition to specifying the positions of each nucleotide, the protocol provides quantitative estimates of the uncertainties in those positions, i.e., the resolution of the model. In typical applications, the resolution of the models is about 10-20 A. Our method uses reduced representations and allows us to refine three-dimensional structures of systems as big as the 16S and 23S ribosomal RNAs, which are about one to two orders of magnitude larger than nucleic acids that can be examined by traditional all-atom modeling methods. Nonatomic resolution structural data--secondary structure, chemical cross-links, chemical and enzymatic footprinting patterns, protein positions, solvent accessibility, and so on--are combined with known motifs in RNA structure to predict low-resolution models of large RNAs. These structural constraints are imposed on the RNA chain using molecular mechanics-type potential functions with parameters based on the quality of experimental data. Surface potential functions are used to incorporate shape and positional data from electron microscopy image reconstruction experiments into our models. The structures are optimized using techniques of energy refinement to get RNA folding patterns. In addition to providing a consensus model, the method finds the range of models consistent with the data, which allows quantitative evaluation of the resolution of the model. The method also identifies conflicts in the experimental data. Although our protocol is aimed at much larger RNAs, we illustrate these techniques using the tRNA structure as an example and test-bed. Images FIGURE 7 FIGURE 8 PMID:7521223

Malhotra, A; Tan, R K; Harvey, S C

1994-01-01

122

New Molecular Techniques to Study the Skin Microbiota of Diabetic Foot Ulcers  

PubMed Central

Significance: Diabetic foot ulcers (DFU) are a major and growing public health problem. They pose difficulties in clinical practice in both diagnosis and management. Bacterial interactions on the skin surface are important in the pathophysiology of DFU and may contribute to a delay in healing. Fully identifying bacteria present in these wounds is difficult with traditional culture methods. New molecular tools, however, have greatly contributed to our understanding of the role of the cutaneous microbiota in DFU. Recent Advances: Molecular technologies revealed new information concerning how bacteria are organized in DFU. This has led to the concept of “functionally equivalent pathogroups,” meaning that certain bacterial species which are usually nonpathogenic (or at least incapable of maintaining a chronic infection on their own) may coaggregate symbiotically in a pathogenic biofilm and act synergistically to cause a chronic infection. The distribution of pathogens in multispecies biofilms is nonrandom. The high bacterial diversity is probably related to the development of a microbial biofilm that is irreversibly attached to the wound matrix. Critical Issues: Using molecular techniques requires a financial outlay for high-cost equipment. They are still too time-consuming to perform and reporting is too delayed for them to be used in routine practice. Finally, they do not differentiate live from dead or pathogenic from nonpathogenic microorganisms. Future Directions: Molecular tools have better documented the composition and organization of the skin flora. Further advances are required to elucidate which among the many bacteria in the DFU flora are likely to be pathogens, rather than colonizers. PMID:25566413

Lavigne, Jean-Philippe; Sotto, Albert; Dunyach-Remy, Catherine; Lipsky, Benjamin A.

2015-01-01

123

Advanced froth flotation techniques for fine coal cleaning  

SciTech Connect

Advanced column flotation cells offer many potential advantages for the treatment of fine coal. The most important of these is the ability to achieve high separation efficiencies using only a single stage of processing. Unfortunately, industrial flotation columns often suffer from poor recovery, low throughput and high maintenance requirements as compared to mechanically-agitated conventional cells. These problems can usually be attributed to poorly-designed air sparging systems. This article examines the problems of air sparging in greater detail and offers useful guidelines for designing bubble generators for industrial flotation columns. The application of these principles in the design of a successful advanced fine coal flotation circuit is also presented.

Yoon, R.H.; Luttrell, G.H. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

1994-12-31

124

Thin-film growth and patterning techniques for small molecular organic compounds used in optoelectronic device applications.  

PubMed

Rapid advances in research and development in organic electronics have resulted in many exciting discoveries and applications, including organic light-emitting devices for information display and illumination, solar cells, photodetectors, chemosensors, and logic. Organic optoelectronic materials are broadly classified as polymeric or small molecular. For the latter category, solvent-free deposition techniques are generally preferred to form well-defined interfaces and improve device performance. This article reviews several deposition and patterning methods for small molecular thin films and devices, including organic molecular beam deposition, vacuum thermal evaporation, organic vapor phase deposition, and organic vapor jet printing, and compares them to several other methods that have been proposed recently. We hope this review provides a compact but informative summary of the state of the art in organic device processing and addresses the various techniques' governing physical principles. PMID:23540286

Biswas, Shaurjo; Shalev, Olga; Shtein, Max

2013-01-01

125

Bricklaying Curriculum: Advanced Bricklaying Techniques. Instructional Materials. Revised.  

ERIC Educational Resources Information Center

This curriculum guide is designed to assist bricklaying instructors in providing performance-based instruction in advanced bricklaying. Included in the first section of the guide are units on customized or architectural masonry units; glass block; sills, lintels, and copings; and control (expansion) joints. The next two units deal with cut,…

Turcotte, Raymond J.; Hendrix, Laborn J.

126

Processing of advanced electroceramic components by fused deposition technique  

Microsoft Academic Search

A variety of advanced ceramic components were fabricated using the fused deposition of ceramics (FDC) process. In FDC, ceramic loaded polymer filaments are used to build parts in a layer-by-layer fashion. A process map, based on the compressive strength and modulus of the FDC feedstock, was developed to predict the feasibility of deposition with a variety of FDC filaments. Alumina

M Allahverdi; S. C Danforth; M Jafari; A Safari

2001-01-01

127

Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (Final Report)  

EPA Science Inventory

This final report, "Next Generation Risk Assessment: Recent Advances in Molecular, Computational, and Systems Biology", describes new approaches that are faster, less resource intensive, and more robust that can help address the challenges of assessing potential health hazards fo...

128

Advancing the Frontiers in Nanocatalysis, Biointerfaces, and Renewable Energy Conversion by Innovations of Surface Techniques  

SciTech Connect

The challenge of chemistry in the 21st century is to achieve 100% selectivity of the desired product molecule in multipath reactions ('green chemistry') and develop renewable energy based processes. Surface chemistry and catalysis play key roles in this enterprise. Development of in situ surface techniques such as high-pressure scanning tunneling microscopy, sum frequency generation (SFG) vibrational spectroscopy, time-resolved Fourier transform infrared methods, and ambient pressure X-ray photoelectron spectroscopy enabled the rapid advancement of three fields: nanocatalysts, biointerfaces, and renewable energy conversion chemistry. In materials nanoscience, synthetic methods have been developed to produce monodisperse metal and oxide nanoparticles (NPs) in the 0.8-10 nm range with controlled shape, oxidation states, and composition; these NPs can be used as selective catalysts since chemical selectivity appears to be dependent on all of these experimental parameters. New spectroscopic and microscopic techniques have been developed that operate under reaction conditions and reveal the dynamic change of molecular structure of catalysts and adsorbed molecules as the reactions proceed with changes in reaction intermediates, catalyst composition, and oxidation states. SFG vibrational spectroscopy detects amino acids, peptides, and proteins adsorbed at hydrophobic and hydrophilic interfaces and monitors the change of surface structure and interactions with coadsorbed water. Exothermic reactions and photons generate hot electrons in metal NPs that may be utilized in chemical energy conversion. The photosplitting of water and carbon dioxide, an important research direction in renewable energy conversion, is discussed.

Somorjai, G.A.; Frei, H.; Park, J.Y.

2009-07-23

129

Development of Advanced In-Situ Techniques for Chemistry Monitoring and Corrosion Mitigation in SCWO Environments  

SciTech Connect

This project is developing sensing technologies and corrosion monitoring techniques for use in super critical water oxidation (SCWO) systems to reduce the volume of mixed low-level nuclear waste by oxidizing organic components in a closed cycle system where CO2 and other gaseous oxides are produced, leaving the radioactive elements concentrated in ash. The technique uses water at supercritical temperatures under highly oxidized conditions by maintaining a high fugacity of molecular oxygen in the system, which causes high corrosion rates of even the most corrosive resistant reactor materials. This project significantly addresses the high corrosion shortcoming through development of (a) advanced electrodes and sensors for in situ potentiometric monitoring of pH in high subcritical and supercritical aqueous solutions, (b) an approach for evaluating the association constants for 1-1 aqueous electrolytes using a flow-through electrochemical thermocell; (c) an electrochemical noise sensor for the in situ measurement of corrosion rate in subcritical and supercritical aqueous systems; (d) a model for estimating the effect of pressure on reaction rates, including corrosion reactions, in high subcritical and supercritical aqueous systems. The project achieved all objectives, except for installing some of the sensors into a fully operating SCWO system.

Macdonald, D. D.; Lvov, S. N.

2000-03-31

130

Investigation of PACVD protective coating processes using advanced diagnostics techniques  

SciTech Connect

Objective is to understand the mechanisms governing nonequilibrium plasma atomistic or molecular deposition of hard face coatings. Laser diagnostic methods include coherent anti-Stokes Raman spectroscopy (CARS) and laser-induced fluorescence. TiB[sub 2] and diamonds were used as the hard face coating materials. Diborane was used as precursor to TiB[sub 2].

Roman, W.C.

1993-05-07

131

Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology  

PubMed Central

Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus of crop biofortification, phytoremediation, and food security research. This paper focuses on the potential for advancing plant metal(loid) research by combining molecular biology and synchrotron-based techniques. Recent advances in x-ray focussing optics and fluorescence detection have greatly improved the potential of synchrotron techniques for plant science research, allowing metal(loids) to be imaged in vivo in hydrated plant tissues at sub-micron resolution. Laterally resolved metal(loid) speciation can also be determined. By using molecular techniques to probe the location of gene expression and protein localisation and combining it with this synchrotron-derived data, functional information can be effectively and efficiently assigned to specific genes. This paper provides a review of the state of the art in this field, and provides examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. PMID:22200921

Donner, Erica; Punshon, Tracy; Guerinot, Mary Lou; Lombi, Enzo

2013-01-01

132

Techniques in molecular spectroscopy: from broad bandwidth to high resolution  

NASA Astrophysics Data System (ADS)

This thesis presents a range of different experiments all seeking to extended the capabilities of molecular spectroscopy and enable new applications. The new technique of cavity-enhanced direct frequency comb spectroscopy (CE-DFCS) provides a unique combination of broad bandwidth, high resolution, and high sensitivity that can be useful for a wide range of applications. Previous demonstrations of CE-DFCS were confined to the visible or near-infrared and operated over a limited bandwidth: for many applications it is desirable to increase the spectral coverage and to extend to the mid-infrared where strong, fundamental vibrational modes of molecules occur. There are several key requirements for CE-DFCS: a frequency comb source that provides broad bandwidth and high resolution, an optical cavity for high sensitivity, and a detection system capable of multiplex detection of the comb spectrum transmitted through the cavity. We first discuss comb sources with emphasis on the coherence properties of spectral broadening in nonlinear fiber and the development of a high-power frequency comb source in the mid-infrared based on an optical-parametric oscillator (OPO). To take advantage of this new mid-infrared comb source for spectroscopy, we also discuss the development of a rapid-scan Fourier-transform spectrometer (FTS). We then discuss the first demonstration of CE-DFCS with spectrally broadened light from a highly nonlinear fiber with the application to measurements of impurities in semiconductor manufacturing gases. We also cover our efforts towards extending CE-DFCS to the mid-infrared using the mid-infrared OPO and FTS to measure ppb levels of various gases important for breath analysis and atmospheric chemistry and highlight some future applications of this system. In addition to the study of neutral molecules, broad-bandwidth and high-resolution spectra of molecular ions are useful for astrochemistry where many of the observed molecules are ionic, for studying molecules such as CH5 + with highly non-classical behavior, and for tests of fundamental physics. We have developed a new technique---frequency comb velocity-modulation spectroscopy---that is the first system to enable rapid, broadband spectroscopy of molecular ions with high resolution. We have demonstrated the ability to record 150 cm-1 of spectra consisting of 45,000 points in 30 minutes and have used this system to record over 1000 cm-1 of spectra of HfF+ in the near-infrared around 800 nm. After improvements, the system can now cover more than 3250 cm-1 (700-900 nm). We have combined this with standard velocity-modulation spectroscopy to measure and analyze 19 ro-vibronic bands of HfF+. These measurements enabled precision spectroscopy of trapped HfF + for testing time-reversal symmetry. For this experiment, we perform Ramsey spectroscopy between spin states in the metastable 3Delta 1 level to look for a permanent electric dipole moment of the electron with what we believe is the narrowest line observed in a molecular system (Fourier limited with 500 ms of coherence time). The long coherence time is a major advantage of using ions, but there are also some added complexities. We discuss various aspects metastable state preparation, state detection, and spectroscopy in a rotating frame (due to the necessary rotating electric bias field) that were particular challenging. In addition, we discuss limits to the coherence time---in particular, ion-ion collisions---as well as the sensitivity of the current measurements and provide a path towards a new limit on the electric dipole moment of the electron.

Cossel, Kevin C.

133

Advanced Coding Techniques with Applications to Storage Systems  

E-print Network

This dissertation considers several coding techniques based on Reed-Solomon (RS) and low-density parity-check (LDPC) codes. These two prominent families of error-correcting codes have attracted a great amount of interest from both theorists...

Nguyen, Phong Sy

2012-07-16

134

Backscattered Electron Microscopy as an Advanced Technique in Petrography.  

ERIC Educational Resources Information Center

Three uses of this method with sandstone, desert varnish, and granite weathering are described. Background information on this technique is provided. Advantages of this type of microscopy are stressed. (CW)

Krinsley, David Henry; Manley, Curtis Robert

1989-01-01

135

ADVANCED NANOIMPRINT TECHNIQUE FOR MULTILAYER STRUCTURES AND FUNCTIONAL POLYMER APPLICATIONS  

E-print Network

impact on the applications of soft materials such as polymers including functional polymers in micro- and nanofabricated devices and systems. Although NIL technique is developing rapidly in recent years, there are still issues that need to be addressed...

Park, Hyunsoo

2010-07-14

136

How Molecular Structure Affects Mechanical Properties of an Advanced Polymer  

NASA Technical Reports Server (NTRS)

density was performed over a range of temperatures below the glass transition temperature. The physical characterization, elastic properties and notched tensile strength all as a function of molecular weight and test temperature were determined. For the uncrosslinked SI material, it was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature. For the crosslinked PETI-SI material, it was shown that the effect of crosslinking significantly enhances the mechanical performance of the low molecular weight material; comparable to that exhibited by the high molecular weight material.

Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.; Hinkley, Jeffrey A.

2000-01-01

137

A Coupled Meshless Technique/Molecular Dynamics Approach for Deformation Characterization of Mono-crystalline Metal  

SciTech Connect

This paper presents a multiscale study using the coupled Meshless technique/Molecular Dynamics (M{sup 2}) for exploring the deformation mechanism of mono-crystalline metal (focus on copper) under uniaxial tension. In M{sup 2}, an advanced transition algorithm using transition particles is employed to ensure the compatibility of both displacements and their gradients, and an effective local quasi-continuum approach is also applied to obtain the equivalent continuum strain energy density based on the atomistic potentials and Cauchy-Born rule. The key parameters used in M{sup 2} are firstly investigated using a benchmark problem. Then, M{sup 2} is applied to the multiscale simulation for a mono-crystalline copper bar. It has found that the mono-crystalline copper has very good elongation property, and the ultimate strength and Young's modulus are much higher than those obtained in macro-scale.

Gu, Y. T.; Yarlagadda, Prasad K. D. V. [School of Engineering Systems, Queensland Uni. of Technology, GPO Box 2434, Brisbane, QLD 4001 (Australia)

2010-05-21

138

Tagging and Purifying Proteins to Teach Molecular Biology and Advanced Biochemistry  

ERIC Educational Resources Information Center

Two distinct courses, "Molecular Biology" taught by the Biology Department and "Advanced Biochemistry" taught by the Chemistry Department, complement each other and, when taught in a coordinated and integrated way, can enhance student learning and understanding of complex material. "Molecular Biology" is a comprehensive lecture-based course with a…

Roecklein-Canfield, Jennifer A.; Lopilato, Jane

2004-01-01

139

Evaluation of Concurrent Error Detection Techniques on the Advanced Encryption Standard  

E-print Network

252 Evaluation of Concurrent Error Detection Techniques on the Advanced Encryption Standard K of the Advanced Encryption Standard. The protection schemes under comparison are either directly issued from Encryption Standard. Secure devices are used for storage and processing of confidential data. For that

Paris-Sud XI, Université de

140

Elastic Green's function techniques for molecular dynamics. Applications to tribology  

NASA Astrophysics Data System (ADS)

The contact mechanics of solid bodies with rough surfaces is a topic of great practical importance because it affects, among other quantities, friction, adhesion, wear and heat transfer at the interface between two solids. Calculating pressure distributions in contacts has proven difficult due to the complex, multiscale topographies of real surfaces. Being able to predict the distribution of loads in mechanical components within industrial applications bears potential for an improved design of the components' surfaces. For example, unraveling the contact mechanics of aluminum-silicon alloys used in engines of fuel-efficient, lightweight cars, could constitute a big step towards designing an alloy with a reasonable safety factor to avoid aluminum adhesion and scuffing. In this thesis we introduce a new multiscale technique recently developed by us for the simulation of rough, semi-infinite elastic solids. With its help, we address open questions concerning contact mechanics. Pressure profiles, pressure distributions as well as areas of contact are calculated for single and multi-asperites interfaces with both idealized self-affine and experimentally-measured topographies. The methodology is also employed to shed light on the contact mechanics of aluminum-silicon alloys. Our numerical results are compared to the predictions of the analytical theories by Greenwood and Persson. We show how the theory by Greenwood is unable to predict the correct contact morphologies while Perssons' theory fails when predicting the pressure tails on individual silicon grains within aluminum-silicon alloys. Keywords. Contact Mechanics, Molecular Dynamics, Green's Functions, Tribology, Multiscale Techniques, Linear Elasticity, Rough Surfaces.

Campana Cue, Carlos E.

141

The advancing clinical impact of molecular imaging in CVD.  

PubMed

Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging), as well as in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g., the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in phase II clinical trials. Here, we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

Osborn, Eric A; Jaffer, Farouc A

2013-12-01

142

The Advancing Clinical Impact of Molecular Imaging in Cardiovascular Disease  

PubMed Central

Molecular imaging seeks to unravel critical molecular and cellular events in living subjects by providing complementary biological information to current structural clinical imaging modalities. In recent years, molecular imaging efforts have marched forward into the clinical cardiovascular arena, and are now actively illuminating new biology in a broad range of conditions, including atherosclerosis, myocardial infarction, thrombosis, vasculitis, aneurysm, cardiomyopathy, and valvular disease. Development of novel molecular imaging reporters is occurring for many clinical cardiovascular imaging modalities (PET, SPECT, MRI), as well in translational platforms such as intravascular fluorescence imaging. The ability to image, track, and quantify molecular biomarkers in organs not routinely amenable to biopsy (e.g. the heart and vasculature) open new clinical opportunities to tailor therapeutics based on a cardiovascular disease molecular profile. In addition, molecular imaging is playing an increasing role in atherosclerosis drug development in Phase II clinical trials. Here we present state-of-the-art clinical cardiovascular molecular imaging strategies, and explore promising translational approaches positioned for clinical testing in the near term. PMID:24332285

Osborn, Eric A; Jaffer, Farouc A

2013-01-01

143

Application of advanced coating techniques to rocket engine components  

NASA Technical Reports Server (NTRS)

The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

Verma, S. K.

1988-01-01

144

Clinical application of high throughput molecular screening techniques for pharmacogenomics  

PubMed Central

Genetic analysis is one of the fastest-growing areas of clinical diagnostics. Fortunately, as our knowledge of clinically relevant genetic variants rapidly expands, so does our ability to detect these variants in patient samples. Increasing demand for genetic information may necessitate the use of high throughput diagnostic methods as part of clinically validated testing. Here we provide a general overview of our current and near-future abilities to perform large-scale genetic testing in the clinical laboratory. First we review in detail molecular methods used for high throughput mutation detection, including techniques able to monitor thousands of genetic variants for a single patient or to genotype a single genetic variant for thousands of patients simultaneously. These methods are analyzed in the context of pharmacogenomic testing in the clinical laboratories, with a focus on tests that are currently validated as well as those that hold strong promise for widespread clinical application in the near future. We further discuss the unique economic and clinical challenges posed by pharmacogenomic markers. Our ability to detect genetic variants frequently outstrips our ability to accurately interpret them in a clinical context, carrying implications both for test development and introduction into patient management algorithms. These complexities must be taken into account prior to the introduction of any pharmacogenomic biomarker into routine clinical testing. PMID:23226057

Wiita, Arun P; Schrijver, Iris

2011-01-01

145

Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques  

NASA Technical Reports Server (NTRS)

The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

Clancy, Thomas C.; Gates, Thomas S.

2005-01-01

146

Quantitative analysis of genomic element interactions by molecular colony technique  

PubMed Central

Distant genomic elements were found to interact within the folded eukaryotic genome. However, the used experimental approach (chromosome conformation capture, 3C) enables neither determination of the percentage of cells in which the interactions occur nor demonstration of simultaneous interaction of >2 genomic elements. Each of the above can be done using in-gel replication of interacting DNA segments, the technique reported here. Chromatin fragments released from formaldehyde–cross-linked cells by sodium dodecyl sulfate extraction and sonication are distributed in a polyacrylamide gel layer followed by amplification of selected test regions directly in the gel by multiplex polymerase chain reaction. The fragments that have been cross-linked and separate fragments give rise to multi- and monocomponent molecular colonies, respectively, which can be distinguished and counted. Using in-gel replication of interacting DNA segments, we demonstrate that in the material from mouse erythroid cells, the majority of fragments containing the promoters of active ?-globin genes and their remote enhancers do not form complexes stable enough to survive sodium dodecyl sulfate extraction and sonication. This indicates that either these elements do not interact directly in the majority of cells at a given time moment, or the formed DNA–protein complex cannot be stabilized by formaldehyde cross-linking. PMID:24369423

Gavrilov, Alexey A.; Chetverina, Helena V.; Chermnykh, Elina S.; Razin, Sergey V.; Chetverin, Alexander B.

2014-01-01

147

SJSU Information Support Services MSG101: Advanced Messaging Techniques info-support@sjsu.edu, 408-924-1530 Page 1  

E-print Network

SJSU Information Support Services MSG101: Advanced Messaging Techniques info-support@sjsu.edu, 408-924-1530 Page 1 MSG101: Advanced Messaging Techniques Overview This user guide demonstrates how to send messages ............................................................................................................................................................23 #12;SJSU Information Support Services MSG101: Advanced Messaging Techniques info

Su, Xiao

148

Advanced imaging techniques for the study of plant growth and development.  

PubMed

A variety of imaging methodologies are being used to collect data for quantitative studies of plant growth and development from living plants. Multi-level data, from macroscopic to molecular, and from weeks to seconds, can be acquired. Furthermore, advances in parallelized and automated image acquisition enable the throughput to capture images from large populations of plants under specific growth conditions. Image-processing capabilities allow for 3D or 4D reconstruction of image data and automated quantification of biological features. These advances facilitate the integration of imaging data with genome-wide molecular data to enable systems-level modeling. PMID:24434036

Sozzani, Rosangela; Busch, Wolfgang; Spalding, Edgar P; Benfey, Philip N

2014-05-01

149

Advances in reduction techniques for tire contact problems  

NASA Astrophysics Data System (ADS)

Some recent developments in reduction techniques, as applied to predicting the tire contact response and evaluating the sensitivity coefficients of the different response quantities, are reviewed. The sensitivity coefficients measure the sensitivity of the contact response to variations in the geometric and material parameters of the tire. The tire is modeled using a two-dimensional laminated anisotropic shell theory with the effects of variation in geometric and material parameters, transverse shear deformation, and geometric nonlinearities included. The contact conditions are incorporated into the formulation by using a perturbed Lagrangian approach with the fundamental unknowns consisting of the stress resultants, the generalized displacements, and the Lagrange multipliers associated with the contact conditions. The elemental arrays are obtained by using a modified two-field, mixed variational principle. For the application of reduction techniques, the tire finite element model is partitioned into two regions. The first region consists of the nodes that are likely to come in contact with the pavement, and the second region includes all the remaining nodes. The reduction technique is used to significantly reduce the degrees of freedom in the second region. The effectiveness of the computational procedure is demonstrated by a numerical example of the frictionless contact response of the space shuttle nose-gear tire, inflated and pressed against a rigid flat surface. Also, the research topics which have high potential for enhancing the effectiveness of reduction techniques are outlined.

Noor, Ahmed K.

1995-08-01

150

In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment  

ERIC Educational Resources Information Center

This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

Saricayir, Hakan; Uce, Musa; Koca, Atif

2010-01-01

151

Benefits of advanced software techniques for mission planning systems  

NASA Technical Reports Server (NTRS)

The increasing complexity of modern spacecraft, and the stringent requirement for maximizing their mission return, call for a new generation of Mission Planning Systems (MPS). In this paper, we discuss the requirements for the Space Mission Planning and the benefits which can be expected from Artificial Intelligence techniques through examples of applications developed by Matra Marconi Space.

Gasquet, A.; Parrod, Y.; Desaintvincent, A.

1994-01-01

152

Tumor Functional and Molecular Imaging Utilizing Ultrasound and Ultrasound-Mediated Optical Techniques  

PubMed Central

Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques. PMID:23219728

Yuan, Baohong; Rychak, Joshua

2014-01-01

153

Advanced materials and techniques for fibre-optic sensing  

NASA Astrophysics Data System (ADS)

Fibre-optic monitoring systems came of age in about 1999 upon the emergence of the world's first significant commercialising company - a spin-out from the UK's collaborative MAST project. By using embedded fibre-optic technology, the MAST project successfully measured transient strain within high-performance composite yacht masts. Since then, applications have extended from smart composites into civil engineering, energy, military, aerospace, medicine and other sectors. Fibre-optic sensors come in various forms, and may be subject to embedment, retrofitting, and remote interrogation. The unique challenges presented by each implementation require careful scrutiny before widespread adoption can take place. Accordingly, various aspects of design and reliability are discussed spanning a range of representative technologies that include resonant microsilicon structures, MEMS, Bragg gratings, advanced forms of spectroscopy, and modern trends in nanotechnology. Keywords: Fibre-optic sensors, fibre Bragg gratings, MEMS, MOEMS, nanotechnology, plasmon.

Henderson, Philip J.

2014-06-01

154

Characterization of PTFE Using Advanced Thermal Analysis Techniques  

NASA Astrophysics Data System (ADS)

Polytetrafluoroethylene (PTFE) is a synthetic fluoropolymer used in numerous industrial applications. It is often referred to by its trademark name, Teflon. Thermal characterization of a PTFE material was carried out using various thermal analysis and thermophysical properties test techniques. The transformation energetics and specific heat were measured employing differential scanning calorimetry. The thermal expansion and the density changes were determined employing pushrod dilatometry. The viscoelastic properties (storage and loss modulus) were analyzed using dynamic mechanical analysis. The thermal diffusivity was measured using the laser flash technique. Combining thermal diffusivity data with specific heat and density allows calculation of the thermal conductivity of the polymer. Measurements were carried out from - 125 °C up to 150 °C. Additionally, measurements of the mechanical properties were carried out down to - 170 °C. The specific heat tests were conducted into the fully molten regions up to 370 °C.

Blumm, J.; Lindemann, A.; Meyer, M.; Strasser, C.

2010-10-01

155

Advanced interferometric SAR techniques with TanDEM-X  

Microsoft Academic Search

TanDEM-X is an innovative mission with a TerraSAR-X add-on satellite for high-resolution single-pass SAR interferometry. The TanDEM-X mission has the primary objective of generating a consistent, global DEM with an unprecedented accuracy according to the HRTI-3 specifications (2 m height accuracy, 12 m posting). Beyond that, TanDEM-X provides a configurable SAR interferometric platform for demonstrating new SAR techniques and applications.

Alberto Moreira; Gerhard Krieger; Hauke Fiedler; Irena Hajnsek; Marwan Younis; Manfred Zink; Marian Werner

2008-01-01

156

Protein NMR Techniques, 3rd Methods in Molecular Biology, Springer Verlag (Humana Press), 2011  

E-print Network

Protein NMR Techniques, 3rd ed. Methods in Molecular Biology, Springer Verlag (Humana Press), 2011, molecular biology and cell biology research that were impossible to study as recently as ten years ago, molecular and cell biology while avoiding excessive repetition of existing material, which is readily

Linsley, Braddock K.

157

Functional characterisation of metal(loid) processes in planta through the integration of synchrotron techniques and plant molecular biology.  

PubMed

Functional characterisation of the genes regulating metal(loid) homeostasis in plants is a major focus for phytoremediation, crop biofortification and food security research. Recent advances in X-ray focussing optics and fluorescence detection have greatly improved the potential to use synchrotron techniques in plant science research. With use of methods such as micro X-ray fluorescence mapping, micro computed tomography and micro X-ray absorption near edge spectroscopy, metal(loids) can be imaged in vivo in hydrated plant tissues at submicron resolution, and laterally resolved metal(loid) speciation can also be determined under physiologically relevant conditions. This article focuses on the benefits of combining molecular biology and synchrotron-based techniques. By using molecular techniques to probe the location of gene expression and protein production in combination with laterally resolved synchrotron techniques, one can effectively and efficiently assign functional information to specific genes. A review of the state of the art in this field is presented, together with examples as to how synchrotron-based methods can be combined with molecular techniques to facilitate functional characterisation of genes in planta. The article concludes with a summary of the technical challenges still remaining for synchrotron-based hard X-ray plant science research, particularly those relating to subcellular level research. PMID:22200921

Donner, Erica; Punshon, Tracy; Guerinot, Mary Lou; Lombi, Enzo

2012-04-01

158

Advanced Sonar Processing Techniques for Underwater Acoustic Multi-Input Multi-Output Communications  

E-print Network

Advanced Sonar Processing Techniques for Underwater Acoustic Multi-Input Multi sonar array processing techniques such as multichan- nel combining. In order to justify this assertion the communications as well as sonar fields; however, due to the unique propagat- ing physics of sound waves in water

Evans, Brian L.

159

Analysis techniques for coronary arteries and cardiac function using advanced MRI and CT imaging  

E-print Network

Analysis techniques for coronary arteries and cardiac function using advanced MRI and CT imaging angiography is used to assess the coronary arteries due to its high spatial resolution, and MR is used by CT feasible, while new MR techniques increase the spatial resolution imaging the coronary arteries

Greenaway, Alan

160

Advanced Techniques for Reservoir Simulation and Modeling of Non-Conventional Wells  

SciTech Connect

This project targets the development of (1) advanced reservoir simulation techniques for modeling non-conventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and well index (for use in simulation models), including the effects of wellbore flow; and (3) accurate approaches to account for heterogeneity in the near-well region.

Durlofsky, Louis J.

2000-08-28

161

Advanced techniques for determining long term compatibility of materials with propellants  

NASA Technical Reports Server (NTRS)

A method for the prediction of propellant-material compatibility for periods of time up to ten years is presented. Advanced sensitive measurement techniques used in the prediction method are described. These include: neutron activation analysis, radioactive tracer technique, and atomic absorption spectroscopy with a graphite tube furnace sampler. The results of laboratory tests performed to verify the prediction method are presented.

Green, R. L.; Stebbins, J. P.; Smith, A. W.; Pullen, K. E.

1973-01-01

162

Advances in dental veneers: materials, applications, and techniques  

PubMed Central

Laminate veneers are a conservative treatment of unaesthetic anterior teeth. The continued development of dental ceramics offers clinicians many options for creating highly aesthetic and functional porcelain veneers. This evolution of materials, ceramics, and adhesive systems permits improvement of the aesthetic of the smile and the self-esteem of the patient. Clinicians should understand the latest ceramic materials in order to be able to recommend them and their applications and techniques, and to ensure the success of the clinical case. The current literature was reviewed to search for the most important parameters determining the long-term success, correct application, and clinical limitations of porcelain veneers. PMID:23674920

Pini, Núbia Pavesi; Aguiar, Flávio Henrique Baggio; Lima, Débora Alves Nunes Leite; Lovadino, José Roberto; Terada, Raquel Sano Suga; Pascotto, Renata Corrêa

2012-01-01

163

Advanced coding techniques for few mode transmission systems.  

PubMed

We experimentally verify the advantage of employing advanced coding schemes such as space-time coding and 4 dimensional modulation formats to enhance the transmission performance of a 3-mode transmission system. The performance gain of space-time block codes for extending the optical signal-to-noise ratio tolerance in multiple-input multiple-output optical coherent spatial division multiplexing transmission systems with respect to single-mode transmission performance are evaluated. By exploiting the spatial diversity that few-mode-fibers offer, with respect to single mode fiber back-to-back performance, significant OSNR gains of 3.2, 4.1, 4.9, and 6.8 dB at the hard-decision forward error correcting limit are demonstrated for DP-QPSK 8, 16 and 32 QAM, respectively. Furthermore, by employing 4D constellations, 6 × 28Gbaud 128 set partitioned quadrature amplitude modulation is shown to outperform conventional 8 QAM transmission performance, whilst carrying an additional 0.5 bit/symbol. PMID:25835899

Okonkwo, Chigo; van Uden, Roy; Chen, Haoshuo; de Waardt, Huug; Koonen, Ton

2015-01-26

164

Recent advances in techniques for tsetse-fly control*  

PubMed Central

With the advent of modern persistent insecticides, it has become possible to utilize some of the knowledge that has accumulated on the ecology and bionomics of Glossina and to devise more effective techniques for the control and eventual extermination of these species. The present article, based on experience of the tsetse fly problem in Northern Nigeria, points out that the disadvantages of control techniques—heavy expenditure of money and manpower and undue damage to the biosystem—can now largely be overcome by basing the application of insecticides on knowledge of the habits of the particular species of Glossina in a particular environment. Two factors are essential to the success of a control project: the proper selection of sites for spraying (the concept of restricted application) and the degree of persistence of the insecticide used. Reinfestation from within or outside the project area must also be taken into account. These and other aspects are discussed in relation to experience gained from a successful extermination project carried out in the Sudan vegetation zone and from present control activities in the Northern Guinea vegetation zone. PMID:5301739

MacLennan, K. J. R.

1967-01-01

165

Advances in polymer optical devices and waveguide fabrication techniques  

NASA Astrophysics Data System (ADS)

We report progress in the development of polymer waveguides and devices for photonic applications in three areas: non-photolithographic techniques for polymer waveguide fabrication, bistability in laterally-coupled polymer microring resonators, and ultrafast photoconductive switches fabricated from semiconducting polymers. The non-photolithographic techniques for waveguide fabrication under development include laser milling with an excimer laser and programmable automatic dispensing of multimode polymer waveguides using an Essemtech automatic dispenser. Asymmetric diffraction gratings fabricated using phase masks and the interference of two excimer laser beams have exhibited concentration of optical power into the 1st diffraction order. Polymer micro-ring resonators laterally coupled to a bus line were fabricated by lithography from benzocyclobutene with radii as small as 10 ?m and free spectral ranges on the order of 20 nm. These devices exhibit bistability in the frequency domain which can arise from thermal or nonlinear optical changes in refractive index and that may have application for all-optical switching. Metal-polymer-metal switches fabricated with interdigitated electrodes in an inverted structure exhibited fast transient photoconductive pulsewidths under 20 ps in response to femtosecond pump laser pulses, but the measurement was bandwidth limited by the oscilloscope. Here we report pump-probe measurements that indicate carrier lifetimes on the order of 2 ps.

Herman, Warren N.; Chen, Wei-Yen; Kim, Younggu; Hutchinson, Glenn; Cao, Wei Lou; Leng, Yongzhang; Yun, Victor; Liang, Hongye; Peng, Yi-Hsing; Du, Min; Lucas, Lisa; Ho, Ping-Tong; Goldhar, Julius; Lee, Chi H.

2004-10-01

166

Advances in proteomic techniques for biomarker discovery in COPD.  

PubMed

Chronic obstructive pulmonary disease (COPD) is a disorder characterized by chronic inflammation of the lung with airflow obstruction and progressive deterioration of pulmonary function. The need to discover and validate biomarkers as prognostic tools of development and progression of the disease has received further support with the advent of proteomic techniques. Liquid chromatography-mass spectrometry (LC/MS) and gel electrophoresis-mass spectrometry (2-DE/MS) have been applied to investigate the proteome of a number of lung-origin samples, including sputum, bronchoalveolar lavage fluid, exhaled-breath condensate, cells and biopsies from COPD patients. In particular, 2-DE and MS are the main proteomic approaches with 2-DE presenting the major approach for quantitative proteomics. The molecules identified as potential biomarkers of COPD may represent a preliminary step for better comprehension of the mechanisms involved in the onset/progression of the disease. PMID:21162654

Casado, Begoña; Luisetti, Maurizio; Iadarola, Paolo

2011-01-01

167

Advanced fabrication techniques for hydrogen-cooled engine structures  

NASA Technical Reports Server (NTRS)

Described is a program for development of coolant passage geometries, material systems, and joining processes that will produce long-life hydrogen-cooled structures for scramjet applications. Tests were performed to establish basic material properties, and samples constructed and evaluated to substantiate fabrication processes and inspection techniques. Results of the study show that the basic goal of increasing the life of hydrogen-cooled structures two orders of magnitude relative to that of the Hypersonic Research Engine can be reached with available means. Estimated life is 19000 cycles for the channels and 16000 cycles for pin-fin coolant passage configurations using Nickel 201. Additional research is required to establish the fatigue characteristics of dissimilar-metal coolant passages (Nickel 201/Inconel 718) and to investigate the embrittling effects of the hydrogen coolant.

Buchmann, O. A.; Arefian, V. V.; Warren, H. A.; Vuigner, A. A.; Pohlman, M. J.

1985-01-01

168

Recent advances in the molecular biology of metazoan polyamine transport  

PubMed Central

Very limited molecular knowledge exists about the identity and protein components of the ubiquitous polyamine transporters found in animal cells. However, a number of reports have been published over the last 5 years on potential candidates for metazoan polyamine permeases. We review the available evidence on these putative polyamine permeases, as well as establish a useful «identikit picture» of the general polyamine transport system, based on its properties as found in a wide spectrum of mammalian cells. Any molecular candidate encoding a putative «general» polyamine permease should fit that provided portrait. The current models proposed for the mechanism of polyamine internalization in mammalian cells are also briefly reviewed. PMID:21814785

Casero, R. A.; Soulet, D.

2013-01-01

169

Advanced Process Monitoring Techniques for Safeguarding Reprocessing Facilities  

SciTech Connect

The International Atomic Energy Agency (IAEA) has established international safeguards standards for fissionable material at spent fuel reprocessing plants to ensure that significant quantities of weapons-grade nuclear material are not diverted from these facilities. For large throughput nuclear facilities, it is difficult to satisfy the IAEA safeguards accountancy goal for detection of abrupt diversion. Currently, methods to verify material control and accountancy (MC&A) at these facilities require time-consuming and resource-intensive destructive assay (DA). Leveraging new on-line non destructive assay (NDA) process monitoring techniques in conjunction with the traditional and highly precise DA methods may provide an additional measure to nuclear material accountancy which would potentially result in a more timely, cost-effective and resource efficient means for safeguards verification at such facilities. By monitoring process control measurements (e.g. flowrates, temperatures, or concentrations of reagents, products or wastes), abnormal plant operations can be detected. Pacific Northwest National Laboratory (PNNL) is developing on-line NDA process monitoring technologies, including both the Multi-Isotope Process (MIP) Monitor and a spectroscopy-based monitoring system, to potentially reduce the time and resource burden associated with current techniques. The MIP Monitor uses gamma spectroscopy and multivariate analysis to identify off-normal conditions in process streams. The spectroscopic monitor continuously measures chemical compositions of the process streams including actinide metal ions (U, Pu, Np), selected fission products, and major cold flowsheet chemicals using UV-Vis, Near IR and Raman spectroscopy. This paper will provide an overview of our methods and report our on-going efforts to develop and demonstrate the technologies.

Orton, Christopher R.; Bryan, Samuel A.; Schwantes, Jon M.; Levitskaia, Tatiana G.; Fraga, Carlos G.; Peper, Shane M.

2010-11-30

170

Recent advances in yeast molecular biology: recombinant DNA. [Lead abstract  

SciTech Connect

Separate abstracts were prepared for the 25 papers presented at a workshop focusing on chromosomal structure, gene regulation, recombination, DNA repair, and cell type control, that have been obtained by experimental approaches incorporating the new technologies of yeast DNA transformation, molecular cloning, and DNA sequence analysis. (KRM)

Not Available

1982-09-01

171

Advances in molecular genetics and pathology of cerebrovascular disorders  

Microsoft Academic Search

Progress in molecular genetics has enabled the dissection of several autosomal dominantly inherited forms of cerebrovascular disorders. Mutations in diverse genes might induce pathological changes in intracranial vessels, resulting in cerebral haemorrhages and ischaemic strokes. Such pathologies, however, might also result from systemic vascular disease caused by mutations or polymorphisms in genes that regulate cardiovascular physiology, blood coagulation, lipid metabolism

Raj N. Kalaria

2001-01-01

172

Analysis of leading edge and trailing edge cover glass samples before and after treatment with advanced satellite contamination removal techniques  

NASA Technical Reports Server (NTRS)

Two samples from Long Duration Exposure Facility (LDEF) experiment M0003-4 were analyzed for molecular and particulate contamination prior to and following treatment with advanced satellite contamination removal techniques (CO2 gas/solid jet spray and oxygen ion beam). The pre- and post-cleaning measurements and analyses are presented. The jet spray removed particulates in seconds. The low energy reactive oxygen ion beam removed 5,000 A of photo polymerized organic hydrocarbon contamination in less than 1 hour. Spectroscopic analytical techniques were applied to the analysis of cleaning efficiency including: Fourier transform infrared, Auger, x ray photoemissions, energy dispersive x ray, and ultraviolet/visible. The results of this work suggest that the contamination studied here was due to spacecraft self-contamination enhanced by atomic oxygen plasma dynamics and solar UV radiation. These results also suggest the efficacy for the jet spray and ion beam contamination control technologies for spacecraft optical surfaces.

Hotaling, S. P.

1993-01-01

173

Recent advances in the surface forces apparatus (SFA) technique  

NASA Astrophysics Data System (ADS)

The surface forces apparatus (SFA) has been used for many years to measure the physical forces between surfaces, such as van der Waals (including Casimir) and electrostatic forces in vapors and liquids, adhesion and capillary forces, forces due to surface and liquid structure (e.g. solvation and hydration forces), polymer, steric and hydrophobic interactions, bio-specific interactions as well as friction and lubrication forces. Here we describe recent developments in the SFA technique, specifically the SFA 2000, its simplicity of operation and its extension into new areas of measurement of both static and dynamic forces as well as both normal and lateral (shear and friction) forces. The main reason for the greater simplicity of the SFA 2000 is that it operates on one central simple-cantilever spring to generate both coarse and fine motions over a total range of seven orders of magnitude (from millimeters to ångstroms). In addition, the SFA 2000 is more spacious and modulated so that new attachments and extra parts can easily be fitted for performing more extended types of experiments (e.g. extended strain friction experiments and higher rate dynamic experiments) as well as traditionally non-SFA type experiments (e.g. scanning probe microscopy and atomic force microscopy) and for studying different types of systems.

Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K.; Zeng, H.

2010-03-01

174

Advances in Reverberation Mapping of Quasars: Techniques, Experiments, and Implications  

NASA Astrophysics Data System (ADS)

Reverberation mapping is the only method capable of directly measuring the mass of supermassive black holes in galaxies outside the local universe. In addition, it has the potential to act as a cosmological distance probe to sources spanning 0 < z &;lt; 4. This method is applicable to broad line active galaxies, or quasars, by taking advantage of the light travel time delay between variability signals observed from the central black hole accretion disk continuum emission and from the photoionized line-emitting gas in the vicinity of the central source. This shifts the observational requirements from spatial dependence to temporal dependence in order to resolve the central structure. So far, reverberation mapping experiments have primarily been carried out locally (z < 0.3), but I will discuss how several new experiments are targeting more distant sources and/or using more time efficient methods to apply this technique to quasars with a broader range of observed spectral characteristics and across cosmological scales. I will also discuss how the resulting measurements have the potential to impact our understanding of cosmology and dark energy.

Denney, Kelly

2014-01-01

175

Advances in Current Rating Techniques for Flexible Printed Circuits  

NASA Technical Reports Server (NTRS)

Twist Capsule Assemblies are power transfer devices commonly used in spacecraft mechanisms that require electrical signals to be passed across a rotating interface. Flexible printed circuits (flex tapes, see Figure 2) are used to carry the electrical signals in these devices. Determining the current rating for a given trace (conductor) size can be challenging. Because of the thermal conditions present in this environment the most appropriate approach is to assume that the only means by which heat is removed from the trace is thru the conductor itself, so that when the flex tape is long the temperature rise in the trace can be extreme. While this technique represents a worst-case thermal situation that yields conservative current ratings, this conservatism may lead to overly cautious designs when not all traces are used at their full rated capacity. A better understanding of how individual traces behave when they are not all in use is the goal of this research. In the testing done in support of this paper, a representative flex tape used for a flight Solar Array Drive Assembly (SADA) application was tested by energizing individual traces (conductors in the tape) in a vacuum chamber and the temperatures of the tape measured using both fine-gauge thermocouples and infrared thermographic imaging. We find that traditional derating schemes used for bundles of wires do not apply for the configuration tested. We also determine that single active traces located in the center of a flex tape operate at lower temperatures than those on the outside edges.

Hayes, Ron

2014-01-01

176

Advances in low energy neutral atom imaging techniques  

SciTech Connect

Recently proposed low energy neutral atom (LENA) imaging techniques use a collisional process to convert the low energy neutrals into ions before detection. At low energies, collisional processes limit the angular resolution and conversion efficiencies of these devices. However, if the intense ultraviolet light background can be suppressed, direct LENA detection is possible. We present results from a series of experiments designed to develop a novel filtering structure based on free-standing transmission gratings. If the grating period is sufficiently small, free standing transmission gratings can be employed to substantially polarize ultraviolet (UV) light in the wavelength range 300 [Angstrom] to 1500 [Angstrom]. If a second grating is placed behind the first grating with its axis of polarization oriented at a right angle to the first's, a substantial attenuation of UV radiation is achievable. ne neutrals will pass through the remaining open area of two gratings and be detected without UV background complications. We have obtained nominal 2000 [Angstrom] period (1000 [Angstrom] bars with 1000 [Angstrom] slits) free standing, gold transmission gratings and measured their UV and atomic transmission characteristics. The geometric factor of a LENA imager based on this technology is comparable to that of other proposed LENA imagers. In addition, this of imager does not distort the neutral trajectories, allowing for high angular resolution.

Scime, E.E.; Funsten, H.O.; McComas, D.J.; Moore, K.R. (Los Alamos National Lab., NM (United States)); Gruntman, M. (University of Southern California, Los Angeles, CA (United States). Space Sciences Center)

1993-01-01

177

New advances in molecular approaches to head and neck squamous cell carcinoma  

PubMed Central

Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world. Despite advances in combined modality therapy, poor outcomes continue to be observed in the form of locoregional recurrence, metastasis, and development of second primary tumors. Because tumors vary in their molecular and genetic etiology and because often times there is already deregulation at the molecular level in otherwise histopathologically normal tissue, risk stratification using clinical and pathologic criteria alone has proved to be inadequate. In this article, the reader will gain an appreciation for the current advances in biomarker discovery via advanced technology and data interpretation in microarray analysis and proteomics. In addition, other molecular targets, aside from EGFR, are discussed in the context of their promising role in predicting recurrence, response to therapy, survival and overall prognosis. PMID:21178766

Sahu, Nivedita; Grandis, Jennifer R.

2011-01-01

178

Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology (External Review Draft)  

EPA Science Inventory

EPA is releasing a draft report "Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational, and Systems Biology" that explores how new molecular, computational and systems biology data and approaches (together called "NexGen") could better info...

179

CELLULAR, BIOCHEMICAL, AND MOLECULAR TECHNIQUES IN DEVELOPMENTAL TOXICOLOGY  

EPA Science Inventory

Cellular, molecular and biochemical approaches vastly expand the possibilities for revealing the underlying mechanisms of developmental toxicity. The increasing interest in embryonic development as a model system for the study of gene expression has resulted in a cornucopia of i...

180

Molecular targeted therapy in the treatment of advanced stage non-small cell lung cancer (NSCLC).  

PubMed

Historically, patients with advanced stage non-small cell lung cancer (NSCLC) were treated with chemotherapy alone, but a therapeutic plateau has been reached. Advances in the understanding of molecular genetics have led to the recognition of multiple molecularly distinct subsets of NSCLC. This in turn has led to the development of rationally directed molecular targeted therapy, leading to improved clinical outcomes. Tumour genotyping for EGFR mutations and ALK rearrangement has meant chemotherapy is no longer given automatically as first-line treatment but reserved for when patients do not have a 'druggable' driver oncogene. In this review, we will address the current status of clinically relevant driver mutations and emerging new molecular subsets in lung adenocarcinoma and squamous cell carcinoma, and the role of targeted therapy and mechanisms of acquired resistance to targeted therapy. PMID:25689095

Barr Kumarakulasinghe, Nesaretnam; Zanwijk, Nico van; Soo, Ross A

2015-04-01

181

Cocoa phytochemicals: recent advances in molecular mechanisms on health.  

PubMed

Recent reports on cocoa are appealing in that a food commonly consumed for pure pleasure might also bring tangible benefits for human health. Cocoa consumption is correlated with reduced health risks of cardiovascular diseases, hypertension, atherosclerosis, and cancer, and the health-promoting effects of cocoa are mediated by cocoa-driven phytochemicals. Cocoa is rich in procyanidins, theobromine, (-)-epicatechin, catechins, and caffeine. Among the phytochemicals present in consumed cocoa, theobromine is most available in human plasma, followed by caffeine, (-)-epicatechin, catechin, and procyanidins. It has been reported that cocoa phytochemicals specifically modulate or interact with specific molecular targets linked to the pathogenesis of chronic human diseases, including cardiovascular diseases, cancer, neurodegenerative diseases, obesity, diabetes, and skin aging. This review summarizes comprehensive recent findings on the beneficial actions of cocoa-driven phytochemicals in molecular mechanisms of human health. PMID:24580540

Kim, Jiyoung; Kim, Jaekyoon; Shim, Jaesung; Lee, Chang Yong; Lee, Ki Won; Lee, Hyong Joo

2014-01-01

182

POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy's program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 45 months beginning September 30, 1994. This report discusses technical progress made during the quarter from January 1 ? March 31, 1998.

B. K. Karekh; D. Tao; J. G. Groppo

1998-08-28

183

Advances in molecular and cellular therapies for hearing loss.  

PubMed

Development of effective therapeutics for hearing loss has proven to be a slow and difficult process, evidenced by the lack of restorative medicines and technologies currently available to the otolaryngologist. In large part this is attributable to the limited regenerative potential in cochlear cells and the secondary degeneration of the cochlear architecture that commonly follows sensorineural hearing impairment. Therapeutic advances have been made using animal models, particularly in regeneration and remodeling of spiral ganglion neurons, which retract and die following hair cell loss. Natural regeneration in avian and reptilian systems provides hope that replacement of hair cells is achievable in humans. The most exciting recent advancements in this field have been made in the relatively new areas of cellular replacement and gene therapy. In this review we discuss recent developments in gene- and cell-based therapy for hearing loss, including detailed analysis of therapeutic mechanisms such as RNA interference and stem cell transplantation, as well as in utero delivery to the mammalian inner ear. We explore the advantages and limitations associated with the use of these strategies for inner ear restoration. PMID:18223547

Hildebrand, Michael S; Newton, Stephen S; Gubbels, Samuel P; Sheffield, Abraham M; Kochhar, Amit; de Silva, Michelle G; Dahl, Hans-Henrik M; Rose, Scott D; Behlke, Mark A; Smith, Richard J H

2008-02-01

184

Molecular alignment and orientation with a hybrid Raman scattering technique  

NASA Astrophysics Data System (ADS)

We demonstrate a scheme for the preparation of molecular alignment and angular momentum orientation using a hybrid combination of two limits of Raman scattering. First a weak, impulsive pump pulse initializes the system via the nonresonant dynamic Stark effect. Then, having overcome the influence of the vacuum fluctuations, an amplification pulse selectively enhances the initial coherences by transient stimulated Raman scattering, generating alignment and angular momentum orientation of molecular hydrogen. The amplitude and phase of the resulting coherent dynamics are experimentally probed, indicating an amplification factor of 4.5. An analytic theory is developed to model the dynamics.

Bustard, Philip J.; Lausten, R.; Sussman, Benjamin J.

2012-11-01

185

[Molecular-target therapy for advanced malignant melanoma].  

PubMed

Malignant melanoma is insensitive to chemotherapy, and standard therapy for metastatic melanoma has been dacarbazine for years. Molecular abnormalities of malignant melanoma, mainly of MAP kinase signals such as BRAF mutation, have been clarified, and molecular target therapy for melanoma has been developed recently. Vemurafenib, an inhibitor for mutated BRAF, has shown its efficacy for the first time, with response rate of more than 50%, and an overall improvement in survival compared with dacarbazine in a phase III study. Skin toxicities including squamous cell carcinoma, are the most severe adverse events. Another BRAF inhibitor, dabrafenib, and a MEK inhibitor, trametinib, have shown excellent efficacy in clinical studies. Melanoma also has high immunogenicity, and cytokines or cell immunotherapy have shown some efficacy. Recently, the importance of immune checkpoints which adjust T-cell activation, such as the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), -B7 or the programmed cell death protein-1(PD1)-PD1 ligand(PDL1), have been clarified. Targeting those immune checkpoints is expected to be effective for enhancing tumor immunity. CTLA-4 antibody ipilimumab has been reported to improve overall survival in two phase III studies. Major adverse events were autoimmune response such as colitis, eruption, liver dysfunction and endocrineopathies. Antibodies to PD1 or PDL1 have shown a higher response rate than those of ipilimumab, and seem to accompany fewer autoimmune responses in phase I studies. These two types of targeting therapy are expected to be standard therapies for melanoma. PMID:23306915

Takahashi, Shunji

2013-01-01

186

Clinical management of advanced gastric cancer: The role of new molecular drugs  

PubMed Central

Gastric cancer is the fourth most common malignant neoplasm and the second leading cause of death for cancer in Western countries with more than 20000 new cases yearly diagnosed in the United States. Surgery represents the main approach for this disease but, notwithstanding the advances in surgical techniques, we observed a minimal improvement in terms of overall survival with a significant increasing of relapsing disease rates. Despite the development of new drugs has significantly improved the effectiveness of chemotherapy, the prognosis of patients with unresectable or metastatic gastric adenocarcinoma remains poor. Recently, several molecular target agents have been investigated; in particular, trastuzumab represents the first target molecule showing improvements in overall survival in human epithelial growth factor 2-positive gastric cancer patients. New molecules targeting vascular epithelial growth factor, mammalian target of rapamycin, and anti hepatocyte growth factor-c-Met pathway are also under investigation, with interesting results. Anyway, it seems necessary to select more accurately the population to treat with new agents by the identification of new biomarkers in order to optimize the results. In this paper we review the actual “scenario” of targeted treatments, also focusing on the new agents in development for gastric cancer and gastro-esophageal carcinoma, discussing their efficacy and potential applications in clinical practice. PMID:25356019

De Vita, Ferdinando; Di Martino, Natale; Fabozzi, Alessio; Laterza, Maria Maddalena; Ventriglia, Jole; Savastano, Beatrice; Petrillo, Angelica; Gambardella, Valentina; Sforza, Vincenzo; Marano, Luigi; Auricchio, Annamaria; Galizia, Gennaro; Ciardiello, Fortunato; Orditura, Michele

2014-01-01

187

Clinical management of advanced gastric cancer: the role of new molecular drugs.  

PubMed

Gastric cancer is the fourth most common malignant neoplasm and the second leading cause of death for cancer in Western countries with more than 20000 new cases yearly diagnosed in the United States. Surgery represents the main approach for this disease but, notwithstanding the advances in surgical techniques, we observed a minimal improvement in terms of overall survival with a significant increasing of relapsing disease rates. Despite the development of new drugs has significantly improved the effectiveness of chemotherapy, the prognosis of patients with unresectable or metastatic gastric adenocarcinoma remains poor. Recently, several molecular target agents have been investigated; in particular, trastuzumab represents the first target molecule showing improvements in overall survival in human epithelial growth factor 2-positive gastric cancer patients. New molecules targeting vascular epithelial growth factor, mammalian target of rapamycin, and anti hepatocyte growth factor-c-Met pathway are also under investigation, with interesting results. Anyway, it seems necessary to select more accurately the population to treat with new agents by the identification of new biomarkers in order to optimize the results. In this paper we review the actual "scenario" of targeted treatments, also focusing on the new agents in development for gastric cancer and gastro-esophageal carcinoma, discussing their efficacy and potential applications in clinical practice. PMID:25356019

De Vita, Ferdinando; Di Martino, Natale; Fabozzi, Alessio; Laterza, Maria Maddalena; Ventriglia, Jole; Savastano, Beatrice; Petrillo, Angelica; Gambardella, Valentina; Sforza, Vincenzo; Marano, Luigi; Auricchio, Annamaria; Galizia, Gennaro; Ciardiello, Fortunato; Orditura, Michele

2014-10-28

188

Molecular photovoltaic structures for optical activation of excitable cells: current advances and perspectives.  

PubMed

Current neural stimulation devices for the treatment of sensory and motor disorders are based on electrical stimulation. Using this technique, neural activity is triggered by electrical stimuli applied through electrodes in contact with the cells. Due to physical constraints of the electrodes the spatial control of stimulation is limited, which in some cases generates unwanted side effects. In addition, adverse tissue reactions occur after long term contact with the electrodes. A potential solution is the application of methods based on light instead of electrical energy, in which the electrical stimulator and the electrode are replaced by a light source and an optical fiber. Although optical stimulation approaches that allow spatially selective, highly specific and contact-free control of the neural activity have been developed in recent years, their implementation requires genetic manipulation, limiting the perspectives for clinical applications. A molecular photovoltaic structure potentially able to mediate light-induced cellular responses without involving genetic modification is the photosynthetic pigment-protein complex Photosystem I (PSI). In this work, the recent advances on the application of PSI reaction centers for optical control of cellular activity are presented. Perspectives of application of PSI reaction centers in the development of future methods for clinical neural stimulation are also presented. PMID:21097166

Pennisi, Cristian P

2010-01-01

189

Application of Molecular Diagnostic Techniques for Viral Testing  

PubMed Central

Nucleic acid amplification techniques are commonly used currently to diagnose viral diseases and manage patients with this kind of illnesses. These techniques have had a rapid but unconventional route of development during the last 30 years, with the discovery and introduction of several assays in clinical diagnosis. The increase in the number of commercially available methods has facilitated the use of this technology in the majority of laboratories worldwide. This technology has reduced the use of some other techniques such as viral culture based methods and serological assays in the clinical virology laboratory. Moreover, nucleic acid amplification techniques are now the methods of reference and also the most useful assays for the diagnosis in several diseases. The introduction of these techniques and their automation provides new opportunities for the clinical laboratory to affect patient care. The main objectives in performing nucleic acid tests in this field are to provide timely results useful for high-quality patient care at a reasonable cost, because rapid results are associated with improvements in patients care. The use of amplification techniques such as polymerase chain reaction, real-time polymerase chain reaction or nucleic acid sequence-based amplification for virus detection, genotyping and quantification have some advantages like high sensitivity and reproducibility, as well as a broad dynamic range. This review is an up-to-date of the main nucleic acid techniques and their clinical applications, and special challenges and opportunities that these techniques currently provide for the clinical virology laboratory. PMID:23248732

Cobo, Fernando

2012-01-01

190

Pushing CT and MR Imaging to the Molecular Level for Studying the “Omics”: Current Challenges and Advancements  

PubMed Central

During the past decade, medical imaging has made the transition from anatomical imaging to functional and even molecular imaging. Such transition provides a great opportunity to begin the integration of imaging data and various levels of biological data. In particular, the integration of imaging data and multiomics data such as genomics, metabolomics, proteomics, and pharmacogenomics may open new avenues for predictive, preventive, and personalized medicine. However, to promote imaging-omics integration, the practical challenge of imaging techniques should be addressed. In this paper, we describe key challenges in two imaging techniques: computed tomography (CT) and magnetic resonance imaging (MRI) and then review existing technological advancements. Despite the fact that CT and MRI have different principles of image formation, both imaging techniques can provide high-resolution anatomical images while playing a more and more important role in providing molecular information. Such imaging techniques that enable single modality to image both the detailed anatomy and function of tissues and organs of the body will be beneficial in the imaging-omics field. PMID:24738056

Huang, Hsuan-Ming; Shih, Yi-Yu

2014-01-01

191

Application of Molecular Techniques to the Study of Hospital Infection  

PubMed Central

Nosocomial infections are an important source of morbidity and mortality in hospital settings, afflicting an estimated 2 million patients in United States each year. This number represents up to 5% of hospitalized patients and results in an estimated 88,000 deaths and 4.5 billion dollars in excess health care costs. Increasingly, hospital-acquired infections with multidrug-resistant pathogens represent a major problem in patients. Understanding pathogen relatedness is essential for determining the epidemiology of nosocomial infections and aiding in the design of rational pathogen control methods. The role of pathogen typing is to determine whether epidemiologically related isolates are also genetically related. To determine molecular relatedness of isolates for epidemiologic investigation, new technologies based on DNA, or molecular analysis, are methods of choice. These DNA-based molecular methodologies include pulsed-field gel electrophoresis (PFGE), PCR-based typing methods, and multilocus sequence analysis. Establishing clonality of pathogens can aid in the identification of the source (environmental or personnel) of organisms, distinguish infectious from noninfectious strains, and distinguish relapse from reinfection. The integration of molecular typing with conventional hospital epidemiologic surveillance has been proven to be cost-effective due to the associated reduction in the number of nosocomial infections. Cost-effectiveness is maximized through the collaboration of the laboratory, through epidemiologic typing, and the infection control department during epidemiologic investigations. PMID:16847083

Singh, Aparajita; Goering, Richard V.; Simjee, Shabbir; Foley, Steven L.; Zervos, Marcus J.

2006-01-01

192

The Use of Molecular Techniques at Hazardous Waste Sites  

EPA Science Inventory

It is clear that typical protocols used for soil analysis would certainly fail to adequately interrogate ground-water treatment systems unless they were substantially modified. The modifications found necessary to compensate for the low biomass include molecular tools and techniq...

193

Optimized biasing technique for high-speed digital circuits with advanced CMOS nanotechnology  

Microsoft Academic Search

This paper presents a biasing optimization technique for high-speed digital circuits design with advanced CMOS nanotechnology. Modern CMOS nanotechnology introduces several new problems in high-speed circuits design. As the fastest signal frequency components approach the peak transition frequency of the MOSFET, which depends heavily on the biasing voltage, the optimized biasing techniques become very important in high-speed circuits. Many trade-offs

Bo Wang; Dianyong Chen; Bangli Liang; Tad Kwasniewski

2008-01-01

194

Application of Advanced Magnetic Resonance Imaging Techniques in Evaluation of the Lower Extremity  

PubMed Central

Synopsis This article reviews current magnetic resonance imaging techniques for imaging the lower extremity, focusing on imaging of the knee, ankle, and hip joints. Recent advancements in MRI include imaging at 7 Tesla, using multiple receiver channels, T2* imaging, and metal suppression techniques, allowing more detailed visualization of complex anatomy, evaluation of morphological changes within articular cartilage, and imaging around orthopedic hardware. PMID:23622097

Braun, Hillary J.; Dragoo, Jason L.; Hargreaves, Brian A.; Levenston, Marc E.; Gold, Garry E.

2012-01-01

195

Advances in the molecular understanding of biological zinc transport.  

PubMed

Between 5 and 10% of all proteins of a given organism are estimated to require zinc for function, and hence zinc is essential for almost any given metabolic process. It is therefore of great interest to understand major players and mechanisms that ensure the tight and correct control of zinc distribution and speciation in organisms and their individual cells. Significant progress has been made in recent years regarding 3-dimensional structures and modes of action of zinc sensor proteins, membrane-bound zinc transporters for cellular and sub-cellular uptake and efflux, as well as intracellular binding proteins. This feature article highlights advances in structures, zinc-binding sites and thermodynamics of proteins that are involved in zinc homeostasis and trafficking, including developments in understanding the metal selectivity of proteins. PMID:25627157

Blindauer, Claudia A

2015-03-01

196

Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine  

PubMed Central

We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine. PMID:19021311

Sevick-Muraca, Eva M.; Rasmussen, John C.

2010-01-01

197

2010NatureAmerica,Inc.Allrightsreserved. nature structural & molecular biology advance online publication  

E-print Network

©2010NatureAmerica,Inc.Allrightsreserved. nature structural & molecular biology advance online in protein degradation, cell signaling, intracellular traf- ficking and the DNA-damage response1,2. Ubiquitin. Notably, the type of ubiquitin linkage deter- mines the functional outcome of the modification1. The best

Komander, David

198

2013NatureAmerica,Inc.Allrightsreserved. nature structural & molecular biology advance online publication  

E-print Network

is in the ability of Ub to form eight structurally and functionally distinct polymers, in which the C terminus indirectly linked to DNA repair processes as the BRCA1­BARD1 Ub ligase complex has been reported to assemble©2013NatureAmerica,Inc.Allrightsreserved. nature structural & molecular biology advance online

Komander, David

199

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular Interactions  

E-print Network

Chemistry 685 (CHE 685) Advanced Organic Chemistry: Organic Reaction Mechanisms and Molecular and physical chemistry Course description and rationale CHE685 is a graduate-level organic chemistry course. These two courses focus on physical organic chemistry, which deals with the structure and reactivity

Mather, Patrick T.

200

Recent Advances in Methamphetamine Neurotoxicity Mechanisms and Its Molecular Pathophysiology  

PubMed Central

Methamphetamine (METH) is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.

Yu, Shaobin; Zhu, Ling; Shen, Qiang; Bai, Xue; Di, Xuhui

2015-01-01

201

Modulation/demodulation techniques for satellite communications. Part 2: Advanced techniques. The linear channel  

NASA Technical Reports Server (NTRS)

A theory is presented for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the linear satellite channel. The underlying principle used is the development of receiver structures based on the maximum-likelihood decision rule. The application of the performance prediction tools, e.g., channel cutoff rate and bit error probability transfer function bounds to these modulation/demodulation techniques.

Omura, J. K.; Simon, M. K.

1982-01-01

202

Advanced Diffusion-Weighted Magnetic Resonance Imaging Techniques of the Human Spinal Cord  

PubMed Central

Unlike those of the brain, advances in diffusion-weighted imaging (DWI) of the human spinal cord have been challenged by the more complicated and inhomogeneous anatomy of the spine, the differences in magnetic susceptibility between adjacent air and fluid-filled structures and the surrounding soft tissues, and the inherent limitations of the initially used echo-planar imaging techniques used to image the spine. Interval advances in DWI techniques for imaging the human spinal cord, with the specific aims of improving the diagnostic quality of the images, and the simultaneous reduction in unwanted artifacts have resulted in higher-quality images that are now able to more accurately portray the complicated underlying anatomy and depict pathologic abnormality with improved sensitivity and specificity. Diffusion tensor imaging (DTI) has benefited from the advances in DWI techniques, as DWI images form the foundation for all tractography and DTI. This review provides a synopsis of the many recent advances in DWI of the human spinal cord, as well as some of the more common clinical uses for these techniques, including DTI and tractography. PMID:22158130

Andre, Jalal B.; Bammer, Roland

2012-01-01

203

Real-time application of advanced three-dimensional graphic techniques for research aircraft simulation  

NASA Technical Reports Server (NTRS)

Visual aids are valuable assets to engineers for design, demonstration, and evaluation. Discussed here are a variety of advanced three-dimensional graphic techniques used to enhance the displays of test aircraft dynamics. The new software's capabilities are examined and possible future uses are considered.

Davis, Steven B.

1990-01-01

204

Advanced Signal Processing Techniques for Fault Detection and Diagnosis in a Wind Turbine  

E-print Network

Advanced Signal Processing Techniques for Fault Detection and Diagnosis in a Wind Turbine Induction rotor bars and bearing damages. Index Terms--Wind turbines, motor current signature analy- sis, time factors, such as wind speed and acoustic noise, wind parks are being mainly constructed offshore. Studies

Paris-Sud XI, Université de

205

A review of present techniques and methodological advances in analyzing 234  

E-print Network

for a variety of transport processes in aquatic systems. Its use as a tracer of oceanic export via sinkingA review of present techniques and methodological advances in analyzing 234 Th in aquatic systems are recommendations on calibration procedures and the production of standard reference materials as well as a flow

Buesseler, Ken

206

Photogrammetric Geo-Referencing Ayman F. HabibAdvanced Photogrammetric Techniques  

E-print Network

Photogrammetric Geo-Referencing Chapter 3 Ayman F. HabibAdvanced Photogrammetric Techniques 1 #12;Overview · Introduction G R f i Alt ti· Geo-Referencing Alternatives: ­ Indirect geo-referencing Integrated Sensor Orientation (ISO)­ Integrated Sensor Orientation (ISO) ­ Direct geo-referencing · Direct Geo

Habib, Ayman

207

Development of Advanced Techniques for Direct-Drive Absolute EOS Measurements  

Microsoft Academic Search

This project investigates advanced EOS experimental techniques, relevant to measurements such as those suggested for the proposed Trident-upgrade laser facility at Los Alamos. Experiments, which recently began at Nova, are focused towards simultaneous direct-drive Beryllium absolute principal Hugoniot (PH), and zero pressure release isentropes measurements. Be is the chosen EOS sample, since it is an important ICF material with particular

G. R. Bennett; R. E. Chrien; J. M. Wallace; G. W. Collins

1997-01-01

208

Molecular techniques for the investigation of meningococcal disease epidemiology  

Microsoft Academic Search

Meningococcal disease remains a major cause of childhood morbidity and mortality world wide and no comprehensive vaccine is\\u000a available against the causative organism, Neisseria meningitidis. Molecular studies of the diversity of this bacterium have provided a number of key insights into its biology, which have\\u000a implications for control of meningococcal disease. These have included the identification of hyperinvasive lineages and

Martin C. J. Maiden; Matthias Frosch

2001-01-01

209

Multifunctional nanomaterials for advanced molecular imaging and cancer therapy  

NASA Astrophysics Data System (ADS)

Nanotechnology offers tremendous potential for use in biomedical applications, including cancer and stem cell imaging, disease diagnosis and drug delivery. The development of nanosystems has aided in understanding the molecular mechanisms of many diseases and permitted the controlled nanoscale manipulation of biological phenomena. In recent years, many studies have focused on the use of several kinds of nanomaterials for cancer and stem cell imaging and also for the delivery of anticancer therapeutics to tumor cells. However, the proper diagnosis and treatment of aggressive tumors such as brain and breast cancer requires highly sensitive diagnostic agents, in addition to the ability to deliver multiple therapeutics using a single platform to the target cells. Addressing these challenges, novel multifunctional nanomaterial-based platforms that incorporate multiple therapeutic and diagnostic agents, with superior molecular imaging and targeting capabilities, has been presented in this work. The initial part of this work presents the development of novel nanomaterials with superior optical properties for efficiently delivering soluble cues such as small interfering RNA (siRNA) into brain cancer cells with minimal toxicity. Specifically, this section details the development of non-toxic quantums dots for the imaging and delivery of siRNA into brain cancer and mesenchymal stem cells, with the hope of using these quantum dots as multiplexed imaging and delivery vehicles. The use of these quantum dots could overcome the toxicity issues associated with the use of conventional quantum dots, enabled the imaging of brain cancer and stem cells with high efficiency and allowed for the delivery of siRNA to knockdown the target oncogene in brain cancer cells. The latter part of this thesis details the development of nanomaterial-based drug delivery platforms for the co-delivery of multiple anticancer drugs to brain tumor cells. In particular, this part of the thesis focuses on the synthesis and use of a biodegradable dendritic polypeptide-based nanocarrier for the delivery of multiple anticancer drugs and siRNA to brain tumor cells. The co-delivery of important anticancer agents using a single platform was shown to increase the efficacy of the drugs manyfold, ensuring the cancer cell-specific delivery and minimizing dose limiting toxicities of the individual drugs. This would be of immense importance when used in vivo.

Subramaniam, Prasad

210

Advanced Molecular Probes for Sequence-Specific DNA Recognition  

NASA Astrophysics Data System (ADS)

DNA detection can be achieved using the Watson-Crick base pairing with oligonucleotides or oligonucleotide analogs, followed by generation of a physical or chemical signal coupled with a transducer device. The nature of the probe is an essential feature which determines the performances of the sensing device. Many synthetic processes are presently available for "molecular engineering" of DNA probes, enabling label-free and PCR-free detection to be performed. Furthermore, many DNA analogs with improved performances are available and are under development; locked nucleic acids (LNA), peptide nucleic acids (PNA) and their analogs, morpholino oligonucleotides (MO) and other modified probes have shown improved properties of affinity and selectivity in target recognition compared to those of simple DNA probes. The performances of these probes in sensing devices, and the requirements for detection of unamplified DNA will be discussed in this chapter. Chemistry and architectures for conjugation of probes to reporter units, surfaces and nanostructures will also be discussed. Examples of probes used in ultrasensitive detection of unamplified DNA are listed.

Bertucci, Alessandro; Manicardi, Alex; Corradini, Roberto

211

The Congenital Muscular Dystrophies: Recent Advances and Molecular Insights  

PubMed Central

Over the past decade, molecular understanding of the congenital muscular dystrophies (CMDs) has greatly expanded. The diseases can be classified into 3 major groups based on the affected genes and the location of their expressed protein: abnormalities of extracellular matrix proteins (LAMA2, COL6A1, COL6A2, COL6A3), abnormalities of membrane receptors for the extracellular matrix (fukutin, POMGnT1, POMT1, POMT2, FKRP, LARGE, and ITGA7), and abnormal endoplasmic reticulum protein (SEPN1). The diseases begin in the perinatal period or shortly thereafter. A specific diagnosis can be challenging because the muscle pathology is usually not distinctive. Immunostaining of muscle using a battery of antibodies can help define a disorder that will need confirmation by gene testing. In muscle diseases with overlapping pathological features, such as CMD, careful attention to the clinical clues (e.g., family history, central nervous system features) can help guide the battery of immunostains necessary to target an unequivocal diagnosis. PMID:17163796

Mendell, Jerry R.; Boué, Daniel R.; Martin, Paul T.

2010-01-01

212

Diagnosis of dissolved organic matter removal by GAC treatment in biologically treated papermill effluents using advanced organic characterisation techniques.  

PubMed

Granular activated carbon (GAC) exhaustion rates on pulp and paper effluent from South East Australia were found to be a factor of three higher (3.62cf. 1.47kgm(-3)) on Kraft mills compared to mills using Thermomechanical pulping supplemented by Recycled Fibre (TMP/RCF). Biological waste treatment at both mills resulted in a final effluent COD of 240mgL(-1). The dissolved organic carbon (DOC) was only 1.2 times higher in the Kraft effluent (70 vs. 58mgL(-1)), however, GAC treatment of Kraft and TMP/RCF effluent was largely different on the DOC persisted after biological treatment. The molecular mass (636 vs. 534gmol(-1)) and aromaticity (5.35 vs. 4.67Lmg(-1)m(-1)) of humic substances (HS) were slightly higher in the Kraft effluent. The HS aromaticity was decreased by a factor of 1.0Lmg(-1)m(-1) in both Kraft and TMP/RCF effluent. The molecular mass of the Kraft effluent increased by 50gmol(-1) while the molecular mass of the TMP/RCF effluent was essentially unchanged after GAC treatment; the DOC removal efficiency of the GAC on Kraft effluent was biased towards the low molecular weight humic compounds. The rapid adsorption of this fraction, coupled with the slightly higher aromaticity of the humic components resulted in early breakthrough on the Kraft effluent. Fluorescence excitation-emission matrix analysis of the each GAC treated effluent indicated that the refractory components were higher molecular weight humics on the Kraft effluent and protein-like compounds on the TMP/RCF effluent. Although the GAC exhaustion rates are too high for an effective DOC removal option for biologically treated pulp and paper mill effluents, the study indicates that advanced organic characterisation techniques can be used to diagnose GAC performance on complex effluents with comparable bulk DOC and COD loads. PMID:22209320

Antony, Alice; Bassendeh, Mojgan; Richardson, Desmond; Aquilina, Simon; Hodgkinson, Andrew; Law, Ian; Leslie, Greg

2012-02-01

213

Modulation/demodulation techniques for satellite communications. Part 3: Advanced techniques. The nonlinear channel  

NASA Technical Reports Server (NTRS)

A theory for deducing and predicting the performance of transmitter/receivers for bandwidth efficient modulations suitable for use on the nonlinear satellite channel is presented. The underlying principle used throughout is the development of receiver structures based on the maximum likelihood decision rule and aproximations to it. The bit error probability transfer function bounds developed in great detail in Part 4 is applied to these modulation/demodulation techniques. The effects of the various degrees of receiver mismatch are considered both theoretically and by numerous illustrative examples.

Omura, J. K.; Simon, M. K.

1982-01-01

214

The development of optical microscopy techniques for the advancement of single-particle studies  

SciTech Connect

Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called “non-blinking” quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

Marchuk, Kyle

2013-05-15

215

The development of optical microscopy techniques for the advancement of single-particle studies  

NASA Astrophysics Data System (ADS)

Single particle orientation and rotational tracking (SPORT) has recently become a powerful optical microscopy tool that can expose many molecular motions. Unfortunately, there is not yet a single microscopy technique that can decipher all particle motions in all environmental conditions, thus there are limitations to current technologies. Within, the two powerful microscopy tools of total internal reflection and interferometry are advanced to determine the position, orientation, and optical properties of metallic nanoparticles in a variety of environments. Total internal reflection is an optical phenomenon that has been applied to microscopy to produce either fluorescent or scattered light. The non-invasive far-field imaging technique is coupled with a near-field illumination scheme that allows for better axial resolution than confocal microscopy and epi-fluorescence microscopy. By controlling the incident illumination angle using total internal reflection fluorescence (TIRF) microscopy, a new type of imaging probe called "non-blinking" quantum dots (NBQDs) were super-localized in the axial direction to sub-10-nm precision. These particles were also used to study the rotational motion of microtubules being propelled by the motor protein kinesin across the substrate surface. The same instrument was modified to function under total internal reflection scattering (TIRS) microscopy to study metallic anisotropic nanoparticles and their dynamic interactions with synthetic lipid bilayers. Utilizing two illumination lasers with opposite polarization directions at wavelengths corresponding to the short and long axis surface plasmon resonance (SPR) of the nanoparticles, both the in-plane and out-of-plane movements of many particles could be tracked simultaneously. When combined with Gaussian point spread function (PSF) fitting for particle super-localization, the binding status and rotational movement could be resolved without degeneracy. TIRS microscopy was also used to find the 3D orientation of stationary metallic anisotropic nanoparticles utilizing only long-axis SPR enhancement. The polarization direction of the illuminating light was rotated causing the relative intensity of p-polarized and s-polarized light within the evanescent field to change. The interaction of the evanescent field with the particles is dependent on the orientation of the particle producing an intensity curve. This curve and the in-plane angle can be compared with simulations to accurately determine the 3D orientation. Differential interference contrast (DIC) microscopy is another non-invasive far-field technique based upon interferometry that does not rely on staining or other contrast enhancing techniques. In addition, high numerical aperture condensers and objectives can be used to give a very narrow depth of field allowing for the optical tomography of samples, which makes it an ideal candidate to study biological systems. DIC microscopy has also proven itself in determining the orientation of gold nanorods in both engineered environments and within cells. Many types of nanoparticles and nanostructures have been synthesized using lithographic techniques on silicon wafer substrates. Traditionally, reflective mode DIC microscopes have been developed and applied to the topographical study of reflective substrates and the imaging of chips on silicon wafers. Herein, a laser-illuminated reflected-mode DIC was developed for studying nanoparticles on reflective surfaces.

Marchuk, Kyle

216

Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy  

DOEpatents

A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth.

Brennan, Thomas M. (Albuquerque, NM); Hammons, B. Eugene (Tijeras, NM); Tsao, Jeffrey Y. (Albuquerque, NM)

1992-01-01

217

Reflection mass spectrometry technique for monitoring and controlling composition during molecular beam epitaxy  

DOEpatents

A method for on-line accurate monitoring and precise control of molecular beam epitaxial growth of Groups III-III-V or Groups III-V-V layers in an advanced semiconductor device incorporates reflection mass spectrometry. The reflection mass spectrometry is responsive to intentional perturbations in molecular fluxes incident on a substrate by accurately measuring the molecular fluxes reflected from the substrate. The reflected flux is extremely sensitive to the state of the growing surface and the measurements obtained enable control of newly forming surfaces that are dynamically changing as a result of growth. 3 figs.

Brennan, T.M.; Hammons, B.E.; Tsao, J.Y.

1992-12-15

218

Biochemistry and Molecular Biology Techniques for Person Characterization  

ERIC Educational Resources Information Center

Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…

Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen

2008-01-01

219

Advanced techniques for determining long term compatibility of materials with propellants  

NASA Technical Reports Server (NTRS)

The search for advanced measurement techniques for determining long term compatibility of materials with propellants was conducted in several parts. A comprehensive survey of the existing measurement and testing technology for determining material-propellant interactions was performed. Selections were made from those existing techniques which were determined could meet or be made to meet the requirements. Areas of refinement or changes were recommended for improvement of others. Investigations were also performed to determine the feasibility and advantages of developing and using new techniques to achieve significant improvements over existing ones. The most interesting demonstration was that of the new technique, the volatile metal chelate analysis. Rivaling the neutron activation analysis in terms of sensitivity and specificity, the volatile metal chelate technique was fully demonstrated.

Green, R. L.

1972-01-01

220

Chronic phase advance alters circadian physiological rhythms and peripheral molecular clocks.  

PubMed

Shifting the onset of light, acutely or chronically, can profoundly affect responses to infection, tumor progression, development of metabolic disease, and mortality in mammals. To date, the majority of phase-shifting studies have focused on acute exposure to a shift in the timing of the light cycle, whereas the consequences of chronic phase shifts alone on molecular rhythms in peripheral tissues such as skeletal muscle have not been studied. In this study, we tested the effect of chronic phase advance on the molecular clock mechanism in two phenotypically different skeletal muscles. The phase advance protocol (CPA) involved 6-h phase advances (earlier light onset) every 4 days for 8 wk. Analysis of the molecular clock, via bioluminescence recording, in the soleus and flexor digitorum brevis (FDB) muscles and lung demonstrated that CPA advanced the phase of the rhythm when studied immediately after CPA. However, if the mice were placed into free-running conditions (DD) for 2 wk after CPA, the molecular clock was not phase shifted in the two muscles but was still shifted in the lung. Wheel running behavior remained rhythmic in CPA mice; however, the endogenous period length of the free-running rhythm was significantly shorter than that of control mice. Core body temperature, cage activity, and heart rate remained rhythmic throughout the experiment, although the onset of the rhythms was significantly delayed with CPA. These results provide clues that lifestyles associated with chronic environmental desynchrony, such as shift work, can have disruptive effects on the molecular clock mechanism in peripheral tissues, including both types of skeletal muscle. Whether this can contribute, long term, to increased incidence of insulin resistance/metabolic disease requires further study. PMID:23703115

Wolff, Gretchen; Duncan, Marilyn J; Esser, Karyn A

2013-08-01

221

Panel 4: Recent Advances in Otitis Media in Molecular Biology, Biochemistry, Genetics, and Animal Models  

PubMed Central

Background Otitis media (OM) is the most common childhood bacterial infection and also the leading cause of conductive hearing loss in children. Currently, there is an urgent need for developing novel therapeutic agents for treating OM based on full understanding of molecular pathogenesis in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Objective To provide a state-of-the-art review concerning recent advances in OM in the areas of molecular biology, biochemistry, genetics, and animal model studies and to discuss the future directions of OM studies in these areas. Data Sources and Review Methods A structured search of the current literature (since June 2007). The authors searched PubMed for published literature in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. Results Over the past 4 years, significant progress has been made in the areas of molecular biology, biochemistry, genetics, and animal model studies in OM. These studies brought new insights into our understanding of the molecular and biochemical mechanisms underlying the molecular pathogenesis of OM and helped identify novel therapeutic targets for OM. Conclusions and Implications for Practice Our understanding of the molecular pathogenesis of OM has been significantly advanced, particularly in the areas of inflammation, innate immunity, mucus overproduction, mucosal hyperplasia, middle ear and inner ear interaction, genetics, genome sequencing, and animal model studies. Although these studies are still in their experimental stages, they help identify new potential therapeutic targets. Future preclinical and clinical studies will help to translate these exciting experimental research findings into clinical applications. PMID:23536532

Li, Jian-Dong; Hermansson, Ann; Ryan, Allen F.; Bakaletz, Lauren O.; Brown, Steve D.; Cheeseman, Michael T.; Juhn, Steven K.; Jung, Timothy T. K.; Lim, David J.; Lim, Jae Hyang; Lin, Jizhen; Moon, Sung-Kyun; Post, J. Christopher

2014-01-01

222

Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.  

PubMed

A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

Uchida, Masafumi

2014-04-01

223

Improved Molecular Technique for the Differentiation of Neotropical Anopheline Species  

PubMed Central

We evaluated a PCR-RFLP of the ribosomal internal transcribed spacer 2 region (ITS2) to distinguish species of Anopheles commonly reported in the Amazon and validated this method using reared F1 offspring. The following species of Anopheles were used for molecular analysis: An. (Nys.) benarrochi, An. (Nys.) darlingi, An. (Nys.) nuneztovari, An. (Nys.) konderi, An. (Nys.) rangeli, and An. (Nys.) triannulatus sensu lato (s.l.). In addition, three species of the subgenus Anopheles, An. (Ano.) forattini, An. (Ano.) mattogrossensis, and An. (Ano.) peryassui were included for testing. Each of the nine species tested yielded diagnostic banding patterns. The PCR-RFLP method was successful in identifying all life stages including exuviae with small fractions of the sample. The assay is rapid and can be applied as an unbiased confirmatory method for identification of morphologic variants, disputed samples, imperfectly preserved specimens, and life stages from which taxonomic keys do not allow for definitive species determination. PMID:18337348

Matson, Ryan; Rios, Carlos Tong; Chavez, Cesar Banda; Gilman, Robert H.; Florin, David; Sifuentes, Victor Lopez; Greffa, Roldan Cardenas; Yori, Pablo Peñataro; Fernandez, Roberto; Portocarrero, Daniel Velasquez; Vinetz, Joseph M.; Kosek, Margaret

2008-01-01

224

Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy  

PubMed Central

Molecular imaging is an emerging field that integrates advanced imaging technology with cellular and molecular biology. It can realize noninvasive and real time visualization, measurement of physiological or pathological process in the living organism at the cellular and molecular level, providing an effective method of information acquiring for diagnosis, therapy, and drug development and evaluating treatment of efficacy. Molecular imaging requires high resolution and high sensitive instruments and specific imaging agents that link the imaging signal with molecular event. Recently, the application of new emerging chemical technology and nanotechnology has stimulated the development of imaging agents. Nanoparticles modified with small molecule, peptide, antibody, and aptamer have been extensively applied for preclinical studies. Therapeutic drug or gene is incorporated into nanoparticles to construct multifunctional imaging agents which allow for theranostic applications. In this review, we will discuss the characteristics of molecular imaging, the novel imaging agent including targeted imaging agent and multifunctional imaging agent, as well as cite some examples of their application in molecular imaging and therapy. PMID:24689058

Chen, Zhi-Yi; Wang, Yi-Xiang; Lin, Yan; Zhang, Jin-Shan; Yang, Feng; Zhou, Qiu-Lan; Liao, Yang-Ying

2014-01-01

225

Frontofacial osteotomies, advancement, and remodeling by distraction: an extended application of the technique.  

PubMed

The purpose of this clinical report is to present the distraction technique for advancement of the frontofacial skeleton as a unit. Our 14-year-old patient was diagnosed with Carpenter's syndrome and kleblattschädel deformity at birth. At other centers the patient underwent corrective surgeries, including repeated fronto-orbital advancement in an attempt to correct the residual deformity. This has resulted in bony malunion and recurrent deformity, and it has left the patient with no available donor sites for harvesting of bone graft. The patient had class III malocclusion, severe midfacial and frontal deficiency, and relative turricephaly. We performed frontofacial osteotomies and placement of the distraction devices. Distraction of 20 mm was accomplished, correcting the exophthalmos and midface retrusion and producing class I dental occlusion. We conclude that distraction is an optional surgical method that can be applied in selected cases for advancement of the entire frontofacial skeleton. PMID:9482056

Talisman, R; Hemmy, D C; Denny, A D

1997-07-01

226

Detecting Molecular Properties by Various Laser-Based Techniques  

SciTech Connect

Four different laser-based techniques were applied to study physical and chemical characteristics of biomolecules and dye molecules. These techniques are liole burning spectroscopy, single molecule spectroscopy, time-resolved coherent anti-Stokes Raman spectroscopy and laser-induced fluorescence microscopy. Results from hole burning and single molecule spectroscopy suggested that two antenna states (C708 & C714) of photosystem I from cyanobacterium Synechocystis PCC 6803 are connected by effective energy transfer and the corresponding energy transfer time is {approx}6 ps. In addition, results from hole burning spectroscopy indicated that the chlorophyll dimer of the C714 state has a large distribution of the dimer geometry. Direct observation of vibrational peaks and evolution of coumarin 153 in the electronic excited state was demonstrated by using the fs/ps CARS, a variation of time-resolved coherent anti-Stokes Raman spectroscopy. In three different solvents, methanol, acetonitrile, and butanol, a vibration peak related to the stretch of the carbonyl group exhibits different relaxation dynamics. Laser-induced fluorescence microscopy, along with the biomimetic containers-liposomes, allows the measurement of the enzymatic activity of individual alkaline phosphatase from bovine intestinal mucosa without potential interferences from glass surfaces. The result showed a wide distribution of the enzyme reactivity. Protein structural variation is one of the major reasons that are responsible for this highly heterogeneous behavior.

Tse-Ming Hsin

2007-08-03

227

Flaw Detection for Composite Materials Improved by Advanced Thermal Image Reconstruction Techniques  

NASA Technical Reports Server (NTRS)

The development of advanced composite materials for use in space and propulsion components has seen considerable growth over the past few years. In addition to improvements that have been made in material properties and processing techniques, similar growth must be seen in the development of methods for the detection of flaws, either generated in service or during manufacturing. Thermal imaging techniques have proven to be successful for the nondestructive evaluation (NDE) of composite materials, but their detection capabilities decrease as flaw depth increases. The purpose of this research is to investigate advanced thermal imaging methods and thermal image processing technologies to increase the maximum depth below surface that a flaw can be detected and improve the contrast between flawed regions and sound regions.

Martin, Richard E.; Gyekenyesi, Andrew L.

2003-01-01

228

POC-Scale Testing of an Advanced Fine Coal Dewatering Equipment/Technique.  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 mm) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20% level moisture will be an important step in the successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from April 1 - June 30, 1997.

Tao, D.; Groppo, J.G.; Parekh, B.K.

1997-12-31

229

POC-scale testing of an advanced fine coal dewatering equipment/technique  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 pm) clean coal. Economical dewatering of an ultra-fine clean-coal product to a 20% level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20% or lower moisture using either conventional or advanced dewatering techniques. The cost-sharing contract effort is for 36 months beginning September 30, 1994. This report discusses technical progress made during the quarter from July 1 - September 30, 1997.

NONE

1998-09-01

230

Unified Instrumentation: Examining the Simultaneous Application of Advanced Measurement Techniques for Increased Wind Tunnel Testing Capability  

NASA Technical Reports Server (NTRS)

A Unified Instrumentation Test examining the combined application of Pressure Sensitive Paint, Projection Moire Interferometry, Digital Particle Image Velocimetry, Doppler Global Velocimetry, and Acoustic Microphone Array has been conducted at the NASA Langley Research Center. The fundamental purposes of conducting the test were to: (a) identify and solve compatibility issues among the techniques that would inhibit their simultaneous application in a wind tunnel, and (b) demonstrate that simultaneous use of advanced instrumentation techniques is feasible for increasing tunnel efficiency and identifying control surface actuation / aerodynamic reaction phenomena. This paper provides summary descriptions of each measurement technique used during the Unified Instrumentation Test, their implementation for testing in a unified fashion, and example results identifying areas of instrument compatibility and incompatibility. Conclusions are drawn regarding the conditions under which the measurement techniques can be operated simultaneously on a non-interference basis. Finally, areas requiring improvement for successfully applying unified instrumentation in future wind tunnel tests are addressed.

Fleming, Gary A. (Editor); Bartram, Scott M.; Humphreys, William M., Jr.; Jenkins, Luther N.; Jordan, Jeffrey D.; Lee, Joseph W.; Leighty, Bradley D.; Meyers, James F.; South, Bruce W.; Cavone, Angelo A.; Ingram, JoAnne L.

2002-01-01

231

An example of requirements for Advanced Subsonic Civil Transport (ASCT) flight control system using structured techniques  

NASA Technical Reports Server (NTRS)

The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.

Mclees, Robert E.; Cohen, Gerald C.

1991-01-01

232

Combined preputial advancement and phallopexy as a revision technique for treating paraphimosis in a dog.  

PubMed

A 7-year-old neutered male Jack Russell terrier-cross was presented for signs of recurrent paraphimosis, despite previous surgical enlargement of the preputial ostium. Revision surgery was performed using a combination of preputial advancement and phallopexy, which resulted in complete and permanent coverage of the glans penis by the prepuce, and at 1 year postoperatively, no recurrence of paraphimosis had been observed. The combined techniques allow preservation of the normal penile anatomy, are relatively simple to perform and provide a cosmetic result. We recommend this combination for the treatment of paraphimosis in the dog, particularly when other techniques have failed. PMID:25348145

Wasik, S M; Wallace, A M

2014-11-01

233

The investigation of advanced remote sensing techniques for the measurement of aerosol characteristics  

NASA Technical Reports Server (NTRS)

Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.

Deepak, A.; Becher, J.

1979-01-01

234

Advanced digital modulation: Communication techniques and monolithic GaAs technology  

NASA Astrophysics Data System (ADS)

Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

1983-07-01

235

Advanced digital modulation: Communication techniques and monolithic GaAs technology  

NASA Technical Reports Server (NTRS)

Communications theory and practice are merged with state-of-the-art technology in IC fabrication, especially monolithic GaAs technology, to examine the general feasibility of a number of advanced technology digital transmission systems. Satellite-channel models with (1) superior throughput, perhaps 2 Gbps; (2) attractive weight and cost; and (3) high RF power and spectrum efficiency are discussed. Transmission techniques possessing reasonably simple architectures capable of monolithic fabrication at high speeds were surveyed. This included a review of amplitude/phase shift keying (APSK) techniques and the continuous-phase-modulation (CPM) methods, of which MSK represents the simplest case.

Wilson, S. G.; Oliver, J. D., Jr.; Kot, R. C.; Richards, C. R.

1983-01-01

236

Study of advanced techniques for determining the long term performance of components  

NASA Technical Reports Server (NTRS)

The application of existing and new technology to the problem of determining the long-term performance capability of liquid rocket propulsion feed systems is discussed. The long term performance of metal to metal valve seats in a liquid propellant fuel system is stressed. The approaches taken in conducting the analysis are: (1) advancing the technology of characterizing components through the development of new or more sensitive techniques and (2) improving the understanding of the physical of degradation.

1973-01-01

237

Integrating Organic Matter Structure with Ecosystem Function using Advanced Analytical Chemistry Techniques  

NASA Astrophysics Data System (ADS)

Microorganisms are the primary transformers of organic matter in terrestrial and aquatic ecosystems. The structure of organic matter controls its bioavailability and researchers have long sought to link the chemical characteristics of the organic matter pool to its lability. To date this effort has been primarily attempted using low resolution descriptive characteristics (e.g. organic matter content, carbon to nitrogen ratio, aromaticity, etc .). However, recent progress in linking these two important ecosystem components has been advanced using advanced high resolution tools (e.g. nuclear magnetic resonance (NMR) spectroscopy, and mass spectroscopy (MS)-based techniques). A series of experiments will be presented that highlight the application of high resolution techniques in a variety of terrestrial and aquatic ecosystems with the focus on how these data explicitly provide the foundation for integrating organic matter structure into our concept of ecosystem function. The talk will highlight results from a series of experiments including: an MS-based metabolomics and fluorescence excitation emission matrix approach evaluating seasonal and vegetation based changes in dissolved organic matter (DOM) composition from arctic soils; Fourier transform ion cyclotron resonance (FTICR) MS and MS metabolomics analysis of DOM from three lakes in an alpine watershed; and the transformation of 13C labeled glucose track with NMR during a rewetting experiment from Colorado grassland soils. These data will be synthesized to illustrate how the application of advanced analytical techniques provides novel insight into our understanding of organic matter processing in a wide range of ecosystems.

Boot, C. M.

2012-12-01

238

POC-scale testing of an advanced fine coal dewatering equipment/technique  

SciTech Connect

Froth flotation technique is an effective and efficient process for recovering of ultra-fine (minus 74 {mu}m) clean coal. Economical dewatering of an ultra-fine clean coal product to a 20 percent level moisture will be an important step in successful implementation of the advanced cleaning processes. This project is a step in the Department of Energy`s program to show that ultra-clean coal could be effectively dewatered to 20 percent or lower moisture using either conventional or advanced dewatering techniques. As the contract title suggests, the main focus of the program is on proof-of-concept testing of a dewatering technique for a fine clean coal product. The coal industry is reluctant to use the advanced fine coal recovery technology due to the non-availability of an economical dewatering process. in fact, in a recent survey conducted by U.S. DOE and Battelle, dewatering of fine clean coal was identified as the number one priority for the coal industry. This project will attempt to demonstrate an efficient and economic fine clean coal slurry dewatering process.

Groppo, J.G.; Parekh, B.K. [Univ. of Kentucky, Lexington, KY (United States); Rawls, P. [Department of Energy, Pittsburgh, PA (United States)

1995-11-01

239

ADVANCING THE FUNDAMENTAL UNDERSTANDING AND SCALE-UP OF TRISO FUEL COATERS VIA ADVANCED MEASUREMENT AND COMPUTATIONAL TECHNIQUES  

SciTech Connect

Tri-isotropic (TRISO) fuel particle coating is critical for the future use of nuclear energy produced byadvanced gas reactors (AGRs). The fuel kernels are coated using chemical vapor deposition in a spouted fluidized bed. The challenges encountered in operating TRISO fuel coaters are due to the fact that in modern AGRs, such as High Temperature Gas Reactors (HTGRs), the acceptable level of defective/failed coated particles is essentially zero. This specification requires processes that produce coated spherical particles with even coatings having extremely low defect fractions. Unfortunately, the scale-up and design of the current processes and coaters have been based on empirical approaches and are operated as?black boxes. Hence, a voluminous amount of experimental development and trial and error work has been conducted. It has been clearly demonstrated that the quality of the coating applied to the fuel kernels is impacted by the hydrodynamics, solids flow field, and flow regime characteristics of the spouted bed coaters, which themselves are influenced by design parameters and operating variables. Further complicating the outlook for future fuel-coating technology and nuclear energy production is the fact that a variety of new concepts will involve fuel kernels of different sizes and with compositions of different densities. Therefore, without a fundamental understanding the underlying phenomena of the spouted bed TRISO coater, a significant amount of effort is required for production of each type of particle with a significant risk of not meeting the specifications. This difficulty will significantly and negatively impact the applications of AGRs for power generation and cause further challenges to them as an alternative source of commercial energy production. Accordingly, the proposed work seeks to overcome such hurdles and advance the scale-up, design, and performance of TRISO fuel particle spouted bed coaters. The overall objectives of the proposed work are to advance the fundamental understanding of the hydrodynamics by systematically investigating the effect of design and operating variables, to evaluate the reported dimensionless groups as scaling factors, and to establish a reliable scale-up methodology for the TRISO fuel particle spouted bed coaters based on hydrodynamic similarity via advanced measurement and computational techniques. An additional objective is to develop an on-line non-invasive measurement technique based on gamma ray densitometry (i.e. Nuclear Gauge Densitometry) that can be installed and used for coater process monitoring to ensure proper performance and operation and to facilitate the developed scale-up methodology. To achieve the objectives set for the project, the work will use optical probes and gamma ray computed tomography (CT) (for the measurements of solids/voidage holdup cross-sectional distribution and radial profiles along the bed height, spouted diameter, and fountain height) and radioactive particle tracking (RPT) (for the measurements of the 3D solids flow field, velocity, turbulent parameters, circulation time, solids lagrangian trajectories, and many other of spouted bed related hydrodynamic parameters). In addition, gas dynamic measurement techniques and pressure transducers will be utilized to complement the obtained information. The measurements obtained by these techniques will be used as benchmark data to evaluate and validate the computational fluid dynamic (CFD) models (two fluid model or discrete particle model) and their closures. The validated CFD models and closures will be used to facilitate the developed methodology for scale-up, design and hydrodynamic similarity. Successful execution of this work and the proposed tasks will advance the fundamental understanding of the coater flow field and quantify it for proper and safe design, scale-up, and performance. Such achievements will overcome the barriers to AGR applications and will help assure that the US maintains nuclear energy as a feasible option to meet the nationÃ?Â?Ã?Â?Ã

Biswas, Pratim; Al-Dahhan, Muthanna

2012-11-01

240

An Improved Technique for Measurement of Cold HI in Molecular Cloud Cores  

E-print Network

The presence of atomic gas mixed with molecular species in a "molecular" cloud may significantly affect its chemistry, the excitation of some species, and can serve as probe of the cloud's evolution. Cold neutral atomic hydrogen (HI) in molecular clouds is revealed by its self absorption of background galactic HI 21-cm emission. The properties of this gas can be investigated quantitatively through observation of HI Narrow Self-Absorption (HINSA). In this paper, we present a new technique for measuring atomic gas physical parameters from HINSA observations that utilizes molecular tracers to guide the HINSA extraction. This technique offers a significant improvement in the precision with which HI column densities can be determined over previous methods, and it opens several new avenues of study of relevance to the field of star formation.

Marko Krco; Paul F. Goldsmith; Robert L. Brown; Di Li

2008-08-21

241

Accelerated Testing Methodology in Constant Stress-Rate Testing for Advanced Structural Ceramics: A Preloading Technique  

NASA Technical Reports Server (NTRS)

Preloading technique was used as a means of an accelerated testing methodology in constant stress-rate (dynamic fatigue) testing for two different brittle materials. The theory developed previously for fatigue strength as a function of preload was further verified through extensive constant stress-rate testing for glass-ceramic and CRT glass in room temperature distilled water. The preloading technique was also used in this study to identify the prevailing failure mechanisms at elevated temperatures, particularly at lower test rates in which a series of mechanisms would be associated simultaneously with material failure, resulting in significant strength increase or decrease. Two different advanced ceramics including SiC whisker-reinforced composite silicon nitride and 96 wt% alumina were used at elevated temperatures. It was found that the preloading technique can be used as an additional tool to pinpoint the dominant failure mechanism that is associated with such a phenomenon of considerable strength increase or decrease.

Choi, Sung R.; Gyekenyesi, John P.; Huebert, Dean; Bartlett, Allen; Choi, Han-Ho

2001-01-01

242

Impact of advanced microstructural characterization techniques on modeling and analysis of radiation damage  

SciTech Connect

The evolution of radiation-induced alterations of dimensional and mechanical properties has been shown to be a direct and often predictable consequence of radiation-induced microstructural changes. Recent advances in understanding of the nature and role of each microstructural component in determining the property of interest has led to a reappraisal of the type and priority of data needed for further model development. This paper presents an overview of the types of modeling and analysis activities in progress, the insights that prompted these activities, and specific examples of successful and ongoing efforts. A review is presented of some problem areas that in the authors' opinion are not yet receiving sufficient attention and which may benefit from the application of advanced techniques of microstructural characterization. Guidelines based on experience gained in previous studies are also provided for acquisition of data in a form most applicable to modeling needs.

Garner, F.A.; Odette, G.R.

1980-01-01

243

Application of Advanced Atomic Force Microscopy Techniques to Study Quantum Dots and Bio-materials  

NASA Astrophysics Data System (ADS)

In recent years, there has been an increase in research towards micro- and nanoscale devices as they have proliferated into diverse areas of scientific exploration. Many of the general fields of study that have greatly affected the advancement of these devices includes the investigation of their properties. The sensitivity of Atomic Force Microscopy (AFM) allows detecting charges up to the single electron value in quantum dots in ambient conditions, the measurement of steric forces on the surface of the human cell brush, determination of cell mechanics, magnetic forces, and other important properties. Utilizing AFM methods, the fast screening of quantum dot efficiency and the differences between cancer, normal (healthy) and precancer (immortalized) human cells has been investigated. The current research using AFM techniques can help to identify biophysical differences of cancer cells to advance our understanding of the resistance of the cells against the existing medicine.

Guz, Nataliia

244

System engineering techniques for establishing balanced design and performance guidelines for the advanced telerobotic testbed  

NASA Technical Reports Server (NTRS)

Novel system engineering techniques have been developed and applied to establishing structured design and performance objectives for the Telerobotics Testbed that reduce technical risk while still allowing the testbed to demonstrate an advancement in state-of-the-art robotic technologies. To estblish the appropriate tradeoff structure and balance of technology performance against technical risk, an analytical data base was developed which drew on: (1) automation/robot-technology availability projections, (2) typical or potential application mission task sets, (3) performance simulations, (4) project schedule constraints, and (5) project funding constraints. Design tradeoffs and configuration/performance iterations were conducted by comparing feasible technology/task set configurations against schedule/budget constraints as well as original program target technology objectives. The final system configuration, task set, and technology set reflected a balanced advancement in state-of-the-art robotic technologies, while meeting programmatic objectives and schedule/cost constraints.

Zimmerman, W. F.; Matijevic, J. R.

1987-01-01

245

Tracking in molecular bioimaging  

Microsoft Academic Search

This paper aims to simulate the application of more advanced computer vision techniques to tracking in biological molecular imaging by surveying the literature and sketching the current state of affairs in the field for a signal and image processing audience. After describing the basic principles of visualizing molecular dynamics in living cells and giving some examples of biological molecular dynamics

Erik Meijering; Ihor Smal; Gaudenz Danuser

2006-01-01

246

Molecular and Therapeutic Advances in the Diagnosis and Management of Malignant Pheochromocytomas and Paragangliomas  

PubMed Central

Pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare catecholamine-secreting tumors derived from chromaffin cells originating in the neural crest. These tumors represent a significant diagnostic and therapeutic challenge because the diagnosis of malignancy is frequently made in retrospect by the development of metastatic or recurrent disease. Complete surgical resection offers the only potential for cure; however, recurrence can occur even after apparently successful resection of the primary tumor. The prognosis for malignant disease is poor because traditional treatment modalities have been limited. The last decade has witnessed exciting discoveries in the study of PCCs and PGLs; advances in molecular genetics have uncovered hereditary and germline mutations of at least 10 genes that contribute to the development of these tumors, and increasing knowledge of genotype-phenotype interactions has facilitated more accurate determination of malignant potential. Elucidating the molecular mechanisms responsible for malignant transformation in these tumors has opened avenues of investigation into targeted therapeutics that show promising results. There have also been significant advances in functional and radiological imaging and in the surgical approach to adrenalectomy, which remains the mainstay of treatment for PCC. In this review, we discuss the currently available diagnostic and therapeutic options for patients with malignant PCCs and PGLs and detail the molecular rationale and clinical evidence for novel and emerging diagnostic and therapeutic strategies. PMID:23576482

Lowery, Aoife J.; Walsh, Siun; McDermott, Enda W.

2013-01-01

247

Molecular Technique to Reduce PCR Bias for Deeper Understanding of Microbial Diversity  

NASA Technical Reports Server (NTRS)

Current planetary protection policies require that spacecraft targeted to sensitive solar system bodies be assembled and readied for launch in controlled cleanroom environments. A better understanding of the distribution and frequency at which high-risk contaminant microbes are encountered on spacecraft surfaces would significantly aid in assessing the threat of forward contamination. However, despite a growing understanding of the diverse microbial populations present in cleanrooms, less abundant microbial populations are probably not adequately taken into account due to technological limitations. This novel approach encompasses a wide spectrum of microbial species and will represent the true picture of spacecraft cleanroom-associated microbial diversity. All of the current microbial diversity assessment techniques are based on an initial PCR amplification step. However, a number of factors are known to bias PCR amplification and jeopardize the true representation of bacterial diversity. PCR amplification of a minor template appears to be suppressed by the amplification of a more abundant template. It is widely acknowledged among environmental molecular microbiologists that genetic biosignatures identified from an environment only represent the most dominant populations. The technological bottleneck overlooks the presence of the less abundant minority population and may underestimate their role in the ecosystem maintenance. DNA intercalating agents such as propidium monoazide (PMA) covalently bind with DNA molecules upon photolysis using visible light, and make it unavailable for DNA polymerase enzyme during polymerase chain reaction (PCR). Environmental DNA samples will be treated with suboptimum PMA concentration, enough to intercalate with 90 99% of the total DNA. The probability of PMA binding with DNA from abundant bacterial species will be much higher than binding with DNA from less abundant species. This will increase the relative DNA concentration of previously "shadowed" less abundant species available for PCR amplification. These PCR products obtained with and without PMA treatment will then be subjected to downstream diversity analyses such as sequencing and DNA microarray. It is expected that PMA-coupled PCR will amplify the "minority population" and help in understanding microbial diversity spectrum of an environmental sample at a much deeper level. This new protocol aims to overcome the major potential biases faced when analyzing microbial 16S rRNA gene diversity. This study will lead to a technological advancement and a commercial product that will aid microbial ecologists in understanding microbial diversity from various environmental niches. Implementation of this technique may lead to discoveries of novel microbes and their functions in sustenance of the ecosystem.

Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.

2012-01-01

248

Molecular techniques for the identification and detection of microorganisms relevant for the food industry  

Microsoft Academic Search

The research described in this thesis concerns the development and application in food microbiology of molecular identification and detection techniques based on 16S rRNA sequences. The technologies developed were applied to study the microbial ecology of two groups of bacteria, namely starter cultures and sporeforming spoilage bacteria, that are of importance to the food industry and in particular the dairy

N. Klijn

1996-01-01

249

A new molecular technique for identifying field collections of zebra mussel (Dreissena  

E-print Network

NOTES A new molecular technique for identifying field collections of zebra mussel (Dreissena species of bivalves, the zebra mussel (Dreissena polymorpha) and the quagga mussel (Dreissena bugensis to the Kawartha Lake system. No zebra mussel larvae were found in either Lake Erie or Lake Ontario

Baird, Robin W.

250

Advances in treatment techniques: arc-based and other intensity modulated therapies.  

PubMed

Treatment planning and radiation delivery techniques have advanced significantly during the past 2 decades. The development of the multileaf collimator has changed the scope of radiotherapy. The dynamic conformal arc technique emerged from traditional cone-based conformal arc therapies, which aim to improve target dose uniformity and reduce normal tissue doses. With dynamic conformal arc, the multileaf collimator aperture is shaped dynamically to conform to the target. With the advent of intensity-modulated radiotherapy (IMRT), the concept of arc therapy in combination with IMRT has enabled better-quality dose distributions and more efficient delivery. Helical tomotherapy has been developed to treat targets sequentially by modulating the beam intensity in each "slice" of the patient. Helical tomotherapy offers improved dose distributions for complicated treatments, such as whole-body radiation. Intensity-modulated arc therapy has been studied to modulate fluences in a cone beam rather than fan beam geometry to improve delivery efficiency. This article reviews arc-based IMRT, intensity-modulated arc therapy, and helical tomotherapy techniques. We compare the dosimetric results reported in the literature for each technique in various treatment sites. We also review the application of these techniques in specialized clinical procedures including total marrow irradiation, simultaneous treatment of multiple brain metastases, dose painting, simultaneous integrated boost, and stereotactic radiosurgery. PMID:21610470

Jin, Jian-Yue; Wen, Ning; Ren, Lei; Glide-Hurst, Carri; Chetty, Indrin J

2011-01-01

251

Advances in gas-mediated electron beam-induced etching and related material processing techniques  

NASA Astrophysics Data System (ADS)

Electron beam-induced etching (EBIE) has traditionally been used for top-down, direct-write, chemical dry etching, and iterative editing of materials. The present article reviews recent advances in EBIE modeling and emerging applications, with an emphasis on use cases in which the approaches that have conventionally been used to realize EBIE are instead used for material analysis, surface functionalization, or bottom-up growth of nanostructured materials. Such applications are used to highlight the shortcomings of existing quantitative EBIE models and to identify physicochemical phenomena that must be accounted for in order to enable full exploitation and predictive modeling of EBIE and related electron beam fabrication techniques.

Toth, Milos

2014-12-01

252

Effects of Molecular Structure in Macroscopic Mechanical Properties of an Advanced Polymer (LARC(sup TM)-SI)  

NASA Technical Reports Server (NTRS)

Mechanical testing of an advanced polymer resin with known variations in molecular weight was performed over a range of temperatures below the glass transition temperature. The elastic properties, inelastic elongation behavior, and notched tensile strength all as a function of molecular weight and test temperature were determined. It was shown that notched tensile strength is a strong function of both temperature and molecular weight, whereas stiffness is only a strong function of temperature.

Nicholson, Lee M.; Hinkley, Jeffrey A.; Whitley, Karen S.; Gates, Thomas S.

2004-01-01

253

Advancing IM-CW Lidar Modulation Techniques for ASCENDS CO2 Column Measurements from Space  

NASA Astrophysics Data System (ADS)

Global atmospheric carbon dioxide (CO2) measurements through the Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) decadal survey recommended space mission are critical for improving our understanding of CO2 sources and sinks. IM-CW (Intensity Modulated Continuous Wave) lidar techniques are investigated as a means of facilitating CO2 measurements from space to meet the ASCENDS science requirements. In previous laboratory and flight experiments we have successfully used linear swept frequency modulation to discriminate surface lidar returns from intermediate aerosol and cloud contamination. Furthermore, high accuracy and precision ranging to the surface as well as to the top of intermediate clouds, which is a requirement for the inversion of the CO2 column mixing ratio from the instrument optical depth measurements, has been demonstrated with the linear swept frequency modulation technique. We are concurrently investigating advanced techniques to help improve the auto-correlation properties of the transmitted waveform implemented through physical hardware to make cloud rejection more robust in special restricted scenarios. Several different modulation techniques are compared including orthogonal linear swept, orthogonal non-linear swept, time shifted PN, sine wave modulated PN, and sine wave pulsed PN. Different PN code techniques are presented that are appropriate for different types of lidar hardware, including our current ASCENDS IM-CW concept space hardware. These techniques have excellent auto-correlation properties without sidelobes while possessing a finite bandwidth (by way of a new cyclic digital filter), which will reduce bias error in the presence of multiple scatterers. Our analyses show that the studied modulation techniques can increase the accuracy of CO2 column measurements from space.

Campbell, J. F.; Lin, B.; Nehrir, A. R.; Harrison, F. W.; Chen, S.; Obland, M. D.

2013-12-01

254

Advanced 3D-Sonographic Imaging as a Precise Technique to Evaluate Tumor Volume  

PubMed Central

Determination of tumor volume in subcutaneously inoculated xenograft models is a standard procedure for clinical and preclinical evaluation of tumor response to treatment. Practitioners frequently use a hands-on caliper method in conjunction with a simplified formula to assess tumor volume. Non-invasive and more precise techniques as investigation by MR or (?)CT exist but come with various adverse effects in terms of radiation, complex setup or elevated cost of investigations. Therefore, we propose an advanced three-dimensional sonographic imaging technique to determine small tumor volumes in xenografts with high precision and minimized observer variability. We present a study on xenograft carcinoma tumors from which volumes and shapes were calculated with the standard caliper method as well as with a clinically available three-dimensional ultrasound scanner and subsequent processing software. Statistical analysis reveals the suitability of this non-invasive approach for the purpose of a quick and precise calculation of tumor volume in small rodents. PMID:25500076

Pflanzer, R.; Hofmann, M.; Shelke, A.; Habib, A.; Derwich, W.; Schmitz-Rixen, T.; Bernd, A.; Kaufmann, R.; Bereiter-Hahn, J.

2014-01-01

255

Advanced optical tweezers for the study of cellular and molecular biomechanics.  

PubMed

Optical tweezers are an important tool for studying cellular and molecular biomechanics. We present a robust optical tweezers device with advanced features including: multiple optical traps, acousto-optic trap steering, and back focal plane interferometry position detection. We integrate these features into an upright microscope, with no compromise to its capabilities (differential interference contrast microscopy, fluorescence microscopy, etc.). Acousto-optic deflectors (AODs) steer each beam and can create multiple time-shared traps. Position detection, force calibrations and AOD performance are presented. The system can detect subnanometer displacements and forces below 0.1 pN. PMID:12617534

Brouhard, Gary J; Schek, Henry T; Hunt, Alan J

2003-01-01

256

Recent Advances and New Techniques in Visualization of Ultra-short Relativistic Electron Bunches  

SciTech Connect

Ultrashort electron bunches with rms length of {approx} 1 femtosecond (fs) can be used to generate ultrashort x-ray pulses in FELs that may open up many new regimes in ultrafast sciences. It is also envisioned that ultrashort electron bunches may excite {approx}TeV/m wake fields for plasma wake field acceleration and high field physics studies. Recent success of using 20 pC electron beam to drive an x-ray FEL at LCLS has stimulated world-wide interests in using low charge beam (1 {approx} 20 pC) to generate ultrashort x-ray pulses (0.1 fs {approx} 10 fs) in FELs. Accurate measurement of the length (preferably the temporal profile) of the ultrashort electron bunch is essential for understanding the physics associated with the bunch compression and transportation. However, the shorter and shorter electron bunch greatly challenges the present beam diagnostic methods. In this paper we review the recent advances in the measurement of ultra-short electron bunches. We will focus on several techniques and their variants that provide the state-of-the-art temporal resolution. Methods to further improve the resolution of these techniques and the promise to break the 1 fs time barrier is discussed. We review recent advances in the measurement of ultrashort relativistic electron bunches. We will focus on several techniques and their variants that are capable of breaking the femtosecond time barrier in measurements of ultrashort bunches. Techniques for measuring beam longitudinal phase space as well as the x-ray pulse shape in an x-ray FEL are also discussed.

Xiang, Dao; /SLAC

2012-06-05

257

Individual Particle Analysis of Ambient PM 2.5 Using Advanced Electron Microscopy Techniques  

SciTech Connect

The overall goal of this project was to demonstrate a combination of advanced electron microscopy techniques that can be effectively used to identify and characterize individual particles and their sources. Specific techniques to be used include high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), STEM energy dispersive X-ray spectrometry (EDX), and energy-filtered TEM (EFTEM). A series of ambient PM{sub 2.5} samples were collected in communities in southwestern Detroit, MI (close to multiple combustion sources) and Steubenville, OH (close to several coal fired utility boilers). High-resolution TEM (HRTEM) -imaging showed a series of nano-metal particles including transition metals and elemental composition of individual particles in detail. Submicron and nano-particles with Al, Fe, Ti, Ca, U, V, Cr, Si, Ba, Mn, Ni, K and S were observed and characterized from the samples. Among the identified nano-particles, combinations of Al, Fe, Si, Ca and Ti nano-particles embedded in carbonaceous particles were observed most frequently. These particles showed very similar characteristics of ultrafine coal fly ash particles that were previously reported. By utilizing HAADF-STEM, STEM-EDX, and EF-TEM, this investigation was able to gain information on the size, morphology, structure, and elemental composition of individual nano-particles collected in Detroit and Steubenville. The results showed that the contributions of local combustion sources - including coal fired utilities - to ultrafine particle levels were significant. Although this combination of advanced electron microscopy techniques by itself can not identify source categories, these techniques can be utilized as complementary analytical tools that are capable of providing detailed information on individual particles.

Gerald J. Keeler; Masako Morishita

2006-12-31

258

Management of metastatic malignant thymoma with advanced radiation and chemotherapy techniques: report of a rare case.  

PubMed

Malignant thymomas are rare epithelial neoplasms of the anterior superior mediastinum that are typically invasive in nature and have a higher risk of relapse that may ultimately lead to death. Here we report a case of an advanced malignant thymoma that was successfully treated with neoadjuvant chemotherapy followed by surgical resection and subsequently with advanced and novel radiation therapy techniques. A 65-year-old male was diagnosed with a stage IV malignant thymoma with multiple metastatic lesions involving the left peripheral lung and pericardium. Initial neoadjuvant chemotherapy with a cisplatin-based regimen resulted in a partial response allowing the inoperable tumor to become operable. Following surgical resection of the residual disease, the tumor recurred within a year. The patient then underwent a course of targeted three-dimensional intensity modulated radiation therapy (IMRT) and image-guided radiation therapy (IGRT). Five years after radiation therapy, the localized soft tissue thickening at the left upper lung anterior pleural space had resolved. Seven years after radiation therapy the tumor mass had completely resolved. No recurrences were seen and the patient is well even 8 years after IMRT/IGRT with a favorable outcome. Chemotherapy with targeted three-dimensional IMRT/IGRT should be considered the primary modality for the management of advanced malignant thymoma patients. PMID:25778007

D'Andrea, Mark A; Reddy, G Kesava

2015-12-01

259

Advanced grazing-incidence techniques for modern soft-matter materials analysis  

PubMed Central

The complex nano-morphology of modern soft-matter materials is successfully probed with advanced grazing-incidence techniques. Based on grazing-incidence small- and wide-angle X-ray and neutron scattering (GISAXS, GIWAXS, GISANS and GIWANS), new possibilities arise which are discussed with selected examples. Due to instrumental progress, highly interesting possibilities for local structure analysis in this material class arise from the use of micro- and nanometer-sized X-ray beams in micro- or nanofocused GISAXS and GIWAXS experiments. The feasibility of very short data acquisition times down to milliseconds creates exciting possibilities for in situ and in operando GISAXS and GIWAXS studies. Tuning the energy of GISAXS and GIWAXS in the soft X-ray regime and in time-of flight GISANS allows the tailoring of contrast conditions and thereby the probing of more complex morphologies. In addition, recent progress in software packages, useful for data analysis for advanced grazing-incidence techniques, is discussed. PMID:25610632

Hexemer, Alexander; Müller-Buschbaum, Peter

2015-01-01

260

Data requirements for advancing techniques to predict dredge-induced sediment and contaminant releases -- A review  

SciTech Connect

In many areas of the world, contaminated sediments are being considered a major factor in the redistribution of toxic chemicals in the environment. While removal of contaminated sediments from the aquatic environment is often the preferred alternative for reducing the potential impacts of contaminated sediment, regulatory agencies and the public often express concern about contaminant releases during dredging operations. The US Army Corps of Engineers continues to develop techniques for making a priori estimates of the sediment resuspension rates and contaminant releases during hydraulic and mechanical dredging activities. However, appropriate field data to verify and refine these techniques for a wide range of conditions are currently limited. Data needs include physical and operational characteristics of the dredge, waterway characteristics, sediment characteristics, sediment contaminant data, and water quality data collected during the dredging activity. This paper discusses key parameters required to improve the current predictive techniques and outlines the type of monitoring program needed to improve the comparability of the techniques to measured releases. The recommended monitoring program is derived from experiences with previous monitoring efforts. Planners of future dredging demonstrations are encouraged to collect similar data in order to advance the state of the art for predicting sediment and contaminant releases associated with dredging.

Averett, D.E. [Army Corps of Engineers, Vicksburg, MS (United States). Waterways Experiment Station

1995-12-31

261

Advanced techniques for array processing. Final report, 1 Mar 89-30 Apr 91  

SciTech Connect

Array processing technology is expected to be a key element in communication systems designed for the crowded and hostile environment of the future battlefield. While advanced array processing techniques have been under development for some time, their practical use has been very limited. This project addressed some of the issues which need to be resolved for a successful transition of these promising techniques from theory into practice. The main problem which was studied was that of finding the directions of multiple co-channel transmitters from measurements collected by an antenna array. Two key issues related to high-resolution direction finding were addressed: effects of system calibration errors, and effects of correlation between the received signals due to multipath propagation. A number of useful theoretical performance analysis results were derived, and computationally efficient direction estimation algorithms were developed. These results include: self-calibration techniques for antenna arrays, sensitivity analysis for high-resolution direction finding, extensions of the root-MUSIC algorithm to arbitrary arrays and to arrays with polarization diversity, and new techniques for direction finding in the presence of multipath based on array interpolation. (Author)

Friedlander, B.

1991-05-30

262

Biotechnology Apprenticeship for Secondary-Level Students: Teaching Advanced Cell Culture Techniques for Research  

PubMed Central

The purpose of this article is to discuss small-group apprenticeships (SGAs) as a method to instruct cell culture techniques to high school participants. The study aimed to teach cell culture practices and to introduce advanced imaging techniques to solve various biomedical engineering problems. Participants designed and completed experiments using both flow cytometry and laser scanning cytometry during the 1-month summer apprenticeship. In addition to effectively and efficiently teaching cell biology laboratory techniques, this course design provided an opportunity for research training, career exploration, and mentoring. Students participated in active research projects, working with a skilled interdisciplinary team of researchers in a large research institution with access to state-of-the-art instrumentation. The instructors, composed of graduate students, laboratory managers, and principal investigators, worked well together to present a real and worthwhile research experience. The students enjoyed learning cell culture techniques while contributing to active research projects. The institution's researchers were equally enthusiastic to instruct and serve as mentors. In this article, we clarify and illuminate the value of small-group laboratory apprenticeships to the institution and the students by presenting the results and experiences of seven middle and high school participants and their instructors. PMID:12587031

Lewis, Jennifer R.; Kotur, Mark S.; Butt, Omar; Kulcarni, Sumant; Riley, Alyssa A.; Ferrell, Nick; Sullivan, Kathryn D.; Ferrari, Mauro

2002-01-01

263

Study of solid oxide fuel cell interconnects, protective coatings and advanced physical vapor deposition techniques  

NASA Astrophysics Data System (ADS)

High energy conversion efficiency, decreased environmentally-sensitive emissions and fuel flexibility have attracted increasing attention toward solid oxide fuel cell (SOFC) systems for stationary, transportation and portable power generation. Critical durability and cost issues, however, continue to impede wide-spread deployment. Many intermediate temperature (600-800°C) planar SOFC systems employ metallic alloy interconnect components, which physically connect individual fuel cells into electric series, facilitate gas distribution to appropriate SOFC electrode chambers (fuel/anode and oxidant[air]/cathode) and provide SOFC stack mechanical support. These demanding multifunctional requirements challenge commercially-available and inexpensive metallic alloys due to corrosion and related effects. Many ongoing investigations are aimed at enabling inexpensive metallic alloys (via bulk and/or surface modifications) as SOFC interconnects (SOFC(IC)s). In this study, two advanced physical vapor deposition (PVD) techniques: large area filtered vacuum arc deposition (LAFAD), and filtered arc plasma-assisted electron beam PVD (FA-EBPVD) were used to deposit a wide-variety of protective nanocomposite (amorphous/nanocrystalline) ceramic thin-film (<5microm) coatings on commercial and specialty stainless steels with different surface finishes. Both bare and coated steel specimens were subjected to SOFC(IC)-relevant exposures and evaluated using complimentary surface analysis techniques. Significant improvements were observed under simulated SOFC(IC) exposures with many coated specimens at ˜800°C relative to uncoated specimens: stable surface morphology; low area specific resistance (ASR <100mO·cm 2 >1,000 hours); and, dramatically reduced Cr volatility (>30-fold). Analyses and discussions of SOFC(IC) corrosion, advanced PVD processes and protective coating behavior are intended to advance understanding and accelerate the development of durable and commercially-viable SOFC systems.

Gannon, Paul Edward

264

Molecular Techniques for Detection, Species Differentiation, and Phylogenetic Analysis of Microsporidia  

PubMed Central

Microsporidia are obligate intracellular protozoan parasites that infect a broad range of vertebrates and invertebrates. These parasites are now recognized as one of the most common pathogens in human immunodeficiency virus-infected patients. For most patients with infectious diseases, microbiological isolation and identification techniques offer the most rapid and specific determination of the etiologic agent. This is not a suitable procedure for microsporidia, which are obligate intracellular parasites requiring cell culture systems for growth. Therefore, the diagnosis of microsporidiosis currently depends on morphological demonstration of the organisms themselves. Although the diagnosis of microsporidiosis and identification of microsporidia by light microscopy have greatly improved during the last few years, species differentiation by these techniques is usually impossible and transmission electron microscopy may be necessary. Immunfluorescent-staining techniques have been developed for species differentiation of microsporidia, but the antibodies used in these procedures are available only at research laboratories at present. During the last 10 years, the detection of infectious disease agents has begun to include the use of nucleic acid-based technologies. Diagnosis of infection caused by parasitic organisms is the last field of clinical microbiology to incorporate these techniques and molecular techniques (e.g., PCR and hybridization assays) have recently been developed for the detection, species differentiation, and phylogenetic analysis of microsporidia. In this paper we review human microsporidial infections and describe and discuss these newly developed molecular techniques. PMID:10194459

Franzen, Caspar; Müller, Andreas

1999-01-01

265

A general and efficient cantilever functionalization technique for AFM molecular recognition studies.  

PubMed

Atomic force microscopy (AFM) is a versatile technique for the investigation of noncovalent molecular associations between ligand-substrate pairs. Surface modification of silicon nitride AFM cantilevers is most commonly achieved using organic trialkoxysilanes. However, susceptibility of the Si?O bond to hydrolysis and formation of polymeric aggregates diminishes attractiveness of this method for AFM studies. Attachment techniques that facilitate immobilization of a wide variety of organic and biological molecules via the stable Si?C bond on silicon nitride cantilevers would be of great value to the field of molecular recognition force spectroscopy. Here, we report (1) the formation of stable, highly oriented monolayers on the tip of silicon nitride cantilevers and (2) demonstrate their utility in the investigation of noncovalent protein-ligand interactions using molecular recognition force spectroscopy. The monolayers are formed through hydrosilylation of hydrogen-terminated silicon nitride AFM probes using a protected ?-amino-?-alkene. This approach facilitates the subsequent conjugation of biomolecules. The resulting biomolecules are bound to the tip by a strong Si?C bond, completely uniform with regard to both epitope density and substrate orientation, and highly suitable for force microscopy studies. We show that this attachment technique can be used to measure the unbinding profiles of tip-immobilized lactose and surface-immobilized galectin-3. Overall, the proposed technique is general, operationally simple, and can be expanded to anchor a wide variety of epitopes to a silicon nitride cantilever using a stable Si?C bond. PMID:22806495

Bowers, Carleen M; Carlson, David A; Shestopalov, Alexander A; Clark, Robert L; Toone, Eric J

2012-10-01

266

Workshop on Magnetotactic Bacteria 9-11 June 2008, Balatonfred, Hungary Advanced electron microscopy techniques for studying  

E-print Network

Workshop on Magnetotactic Bacteria 9-11 June 2008, Balatonfüred, Hungary Advanced electron microscopy techniques for studying magnetosomes in magnetotactic bacteria Rafal E. Dunin-Borkowski1 , Takeshi) in air-dried cells of magnetotactic bacteria. These techniques have provided a wealth of information

Dunin-Borkowski, Rafal E.

267

Advancing Molecular-Guided Surgery through probe development and testing in a moderate cost evaluation pipeline  

PubMed Central

Molecular guided oncology surgery has the potential to transform the way decisions about resection are done, and can be critically important in areas such as neurosurgery where the margins of tumor relative to critical normal tissues are not readily apparent from visual or palpable guidance. Yet there are major financial barriers to advancing agents into clinical trials with commercial backing. We observe that development of these agents in the standard biological therapeutic paradigm is not viable, due to the high up front financial investment needed and the limitations in the revenue models of contrast agents for imaging. The hypothesized solution to this problem is to develop small molecular biologicals tagged with an established fluorescent reporter, through the chemical agent approval pathway, targeting a phase 0 trials initially, such that the initial startup phase can be completely funded by a single NIH grant. In this way, fast trials can be completed to de-risk the development pipeline, and advance the idea of fluorescence-guided surgery (FGS) reporters into human testing. As with biological therapies the potential successes of each agent are still moderate, but this process will allow the field to advance in a more stable and productive manner, rather than relying upon isolated molecules developed at high cost and risk. The pathway proposed and tested here uses peptide synthesis of an epidermal growth factor receptor (EGFR)-binding Affibody molecules, uniquely conjugated to IRDye 800CW, developed and tested in academic and industrial laboratories with well-established records for GMP production, fill & finish, toxicity testing, and early phase clinical trials with image guidance.

Pogue, Brian W; Paulsen, Keith D; Hull, Sally M.; Samkoe, Kimberly S.; Gunn, Jason; Hoopes, Jack; Roberts, David W.; Strong, Theresa V.; Draney, Daniel; Feldwisch, Joachim

2015-01-01

268

Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors  

SciTech Connect

According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1–20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ?0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

Lebedev, G. V., E-mail: lgv2004@mail.ru; Petrov, V. V. [National Research Center Kurchatov Institute (Russian Federation); Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A. [Dukhov VNIIA (Russian Federation)

2014-12-15

269

Measurements of the subcriticality using advanced technique of shooting source during operation of NPP reactors  

NASA Astrophysics Data System (ADS)

According to the rules of nuclear safety, the measurements of the subcriticality of reactors should be carried out in the process of performing nuclear hazardous operations. An advanced technique of shooting source of neutrons is proposed to meet this requirement. As such a source, a pulsed neutron source (PNS) is used. In order to realize this technique, it is recommended to enable a PNS with a frequency of 1-20 Hz. The PNS is stopped after achieving a steady-state (on average) number of neutrons in the reactor volume. The change in the number of neutrons in the reactor volume is measured in time with an interval of discreteness of ˜0.1 s. The results of these measurements with the application of a system of point-kinetics equations are used in order to calculate the sought subcriticality. The basic idea of the proposed technique used to measure the subcriticality is elaborated in a series of experiments on the Kvant assembly. The conditions which should be implemented in order to obtain a positive result of measurements are formulated. A block diagram of the basic version of the experimental setup is presented, whose main element is a pulsed neutron generator.

Lebedev, G. V.; Petrov, V. V.; Bobylyov, V. T.; Butov, R. I.; Zhukov, A. M.; Sladkov, A. A.

2014-12-01

270

Layered OFDMA and Its Radio Access Techniques for LTE-Advanced  

NASA Astrophysics Data System (ADS)

This paper proposes applying the Layered Orthogonal Frequency Division Multiple Access (OFDMA) radio access scheme and its radio access techniques to LTE (Long-Term Evolution)-Advanced to satisfy its system requirements, which are much stricter than those of the Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA) and UMTS Terrestrial Radio Access Network (UTRAN). Layered OFDMA comprises layered transmission bandwidth assignment (bandwidth is assigned to match the required data rate), a layered control signaling structure, and support for layered environments for both the downlink and uplink. Especially in the uplink, an adaptive multi-access scheme with hybrid single-carrier and multicarrier based radio access is applied. Layered OFDMA radio access will support all the functionalities specified in Release 8 LTE and later enhancements. Key radio access techniques such as fast inter-cell radio resource management that takes advantage of remote radio equipment (RRE) so as to realize inter-cell orthogonality, multi-antenna transmission with more antennas, and coverage enhancing techniques are used to achieve a high level of capacity and cell-edge spectrum efficiency.

Tanno, Motohiro; Kishiyama, Yoshihisa; Taoka, Hidekazu; Miki, Nobuhiko; Higuchi, Kenichi; Sawahashi, Mamoru

271

Predictive molecular markers in metastases to the central nervous system: recent advances and future avenues.  

PubMed

Metastases to the central nervous system (CNS) are common in several cancer types. For most primary tumors that commonly metastasize to the CNS, molecular biomarker analyses are recommended in the clinical setting for selection of appropriate targeted therapies. Therapeutic efficacy of some of these agents has been documented in patients with brain metastases, and molecular testing of CNS metastases should be considered in the clinical setting. Here, we summarize the clinically relevant biomarker tests that should be considered in neurosurgical specimens based on the current recommendations of the European Society of Medical Oncology (ESMO) or the National Comprehensive Cancer Network (NCCN) for the most relevant primary tumor types: lung cancer (EGFR mutations, ALK rearrangement, BRAF mutations), breast cancer (HER2 amplification, steroid receptor overexpression), melanoma (BRAF mutations), and colorectal cancer (RAS mutations). Furthermore, we discuss emerging therapeutic targets including novel oncogenic alterations (ROS1 rearrangements, FGFR1 amplifications, CMET amplifications, and others) and molecular features of the tumor microenvironment (including immune-checkpoint molecules such as CTLA4 and PD-1/PD-L1). We also discuss the potential role of advanced biomarker tests such as next-generation sequencing and "liquid biopsies" for patients with CNS metastases. PMID:25287912

Berghoff, Anna Sophie; Bartsch, Rupert; Wöhrer, Adelheid; Streubel, Berthold; Birner, Peter; Kros, Johan M; Brastianos, Priscilla K; von Deimling, Andreas; Preusser, Matthias

2014-12-01

272

Biosynthesis of Polyunsaturated Fatty Acids in Marine Invertebrates: Recent Advances in Molecular Mechanisms  

PubMed Central

Virtually all polyunsaturated fatty acids (PUFA) originate from primary producers but can be modified by bioconversions as they pass up the food chain in a process termed trophic upgrading. Therefore, although the main primary producers of PUFA in the marine environment are microalgae, higher trophic levels have metabolic pathways that can produce novel and unique PUFA. However, little is known about the pathways of PUFA biosynthesis and metabolism in the levels between primary producers and fish that are largely filled by invertebrates. It has become increasingly apparent that, in addition to trophic upgrading, de novo synthesis of PUFA is possible in some lower animals. The unequivocal identification of PUFA biosynthetic pathways in many invertebrates is complicated by the presence of other organisms within them. These organisms include bacteria and algae with PUFA biosynthesis pathways, and range from intestinal flora to symbiotic relationships that can involve PUFA translocation to host organisms. This emphasizes the importance of studying biosynthetic pathways at a molecular level, and the continual expansion of genomic resources and advances in molecular analysis is facilitating this. The present paper highlights recent research into the molecular and biochemical mechanisms of PUFA biosynthesis in marine invertebrates, particularly focusing on cephalopod molluscs. PMID:24152561

Monroig, Óscar; Tocher, Douglas R.; Navarro, Juan C.

2013-01-01

273

Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials  

NASA Astrophysics Data System (ADS)

Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular glasses. The side-chain dendronized polymers are, due to the structural complexity, self-constrained systems. Our thermomechanical investigations identified that a local relaxation mode associated to the NLO side-chain is the critical design parameter in yielding high mobility to the active element. Relaxation processes of the self-assembling molecular glasses are discussed from a thermodynamic perspective involving both enthalpic and entropic contributions, considering the very special nature of interactions for the NLO molecular glasses, i.e., the formation and dissociation of phenyl/perfluorophenyl quadrupol pairs.

Gray, Tomoko O.

274

Application of Molecular Techniques to the Elucidation of the Microbial Community Structure of Antique Paintings  

Microsoft Academic Search

This paper uses molecular techniques to describe the microstructure and microbiological communities of sixteenth century artwork\\u000a and their relationships. The microbiological populations, analysed by denaturing gradient gel electrophoresis (DGGE), were\\u000a highly influenced by the chemical composition of the pictorial layers detected by energy-dispersive X-ray analysis. DGGE revealed\\u000a that the diversity of microbial communities was lower in pictorial layers composed of

Antonio Santos; Alejandro Cerrada; Silvia García; Margarita San Andrés; Concepción Abrusci; Domingo Marquina

2009-01-01

275

STAR-LITE (Safe Techniques Advance Research - Laboratory Interactive Training Environment)  

NSDL National Science Digital Library

The National Institutes of Health, Division of Occupational Health and Safety (DOHS) developed a laboratory safety training program called STAR-LITE (Safe Techniques Advance Research – Laboratory Interactive Training Environment.) STAR-LITE is an interactive computer-based laboratory safety training program for high school students and undergraduate university students. The program incorporates common features seen in today’s video games, i.e., selection of an individualized character; first-person views; and three-dimensional graphics. The method of instruction integrates visualization of consequences, e.g., slips/trips/falls, inhalation of chemical hazards, spills of biohazardous liquids, development of critical-thinking proficiencies, and application of problem-solving skills.

Janus Research Group

276

Advances in the transient dc photocurrent technique for excited state dipole moment measurements  

SciTech Connect

Recent advances in the transient dc photocurrent technique for measuring excited state dipole moments, developed in our group, are discussed. A variety of approaches with detailed analyses of their advantages and disadvantages including cell design, circuit construction tricks, the data acquisition procedure, calibration, and the theoretical treatment of different conditions, are presented. Sensitivity, time resolution limitations, and newly developed features, such as the signal{close_quote}s dependence on light polarization as well as charge separation at interfaces are outlined. Dipole moments of a few molecules (diphenylcyclopropenone, bianthryl, dimethylaminonitrostilbene, Coumarin 153, and fluoroprobe) suitable for calibration purpose are reported{emdash}some of them for the first time. {copyright} {ital 1998 American Institute of Physics.}

Smirnov, S.N.; Braun, C.L. [Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755 (United States)] [Department of Chemistry, Dartmouth College, 6128 Burke Laboratory, Hanover, New Hampshire 03755 (United States)

1998-08-01

277

Efficient Boolean and multi-input flow techniques for advanced mask data processing  

NASA Astrophysics Data System (ADS)

Mask data preparation (MDP) typically involves multiple flows, sometimes consisting of many steps to ensure that the data is properly written on the mask. This may include multiple inputs, transformations (scaling, orientation, etc.), and processing (layer extraction, sizing, Boolean operations, data filtering). Many MDP techniques currently in practice require multiple passes through the input data and/or multiple file I/O steps to achieve these goals. This paper details an approach which efficiently process the data, resulting in minimal I/O and greatly improved turnaround times (TAT). This approach takes advanced processing algorithms and adapts them to produce efficient and reliable data flow. In tandem with this processing flow, an internal jobdeck mapping approach, transparent to the user, allows an essentially unlimited number of pattern inputs to be handled in a single pass, resulting in increased flexibility and ease of use. Transformations and processing operations are critical to MDP. Transformations such as scaling, reverse tone and orientation, along with processing including sizing, Boolean operations and data filtering are key parts of this. These techniques are often employed in sequence and/or in parallel in a complex functional chain. While transformations typically are done "up front" when the data is input, processing is less straightforward, involving multiple reads and writes to handle the more intricate functionality and also the collection of input patterns which may be required to produce the data that comprises a single mask. The approach detailed in this paper consists of two complementary techniques: efficient MDP flow and jobdeck mapping. Efficient MDP flow is achieved by pipelining the output of each step to the input of the subsequent step. Rather than writing the output of a particular processing step to file and then reading it in to the following step, the pipelining or chaining of the steps results in an efficient flow with minimal file I/O. The efficient MDP flow is enhanced by a technique called jobdeck mapping which allows in essence an unlimited number of pattern inputs by taking each transformed pattern and including it in an input jobdeck. Making use of established jobdeck handling capabilities, the user-selected input pattern/transformation combinations are mapped to an input jobdeck which is processed by the advanced flow, allowing great flexibility and user control of the process.

Salazar, Daniel; Moore, Bill; Valadez, John

2012-11-01

278

PREFACE: 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011)  

NASA Astrophysics Data System (ADS)

ACAT2011 This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 14th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2011) which took place on 5-7 September 2011 at Brunel University, UK. The workshop series, which began in 1990 in Lyon, France, brings together computer science researchers and practitioners, and researchers from particle physics and related fields in order to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. It is a forum for the exchange of ideas among the fields, exploring and promoting cutting-edge computing, data analysis and theoretical calculation techniques in fundamental physics research. This year's edition of the workshop brought together over 100 participants from all over the world. 14 invited speakers presented key topics on computing ecosystems, cloud computing, multivariate data analysis, symbolic and automatic theoretical calculations as well as computing and data analysis challenges in astrophysics, bioinformatics and musicology. Over 80 other talks and posters presented state-of-the art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. Panel and round table discussions on data management and multivariate data analysis uncovered new ideas and collaboration opportunities in the respective areas. This edition of ACAT was generously sponsored by the Science and Technology Facility Council (STFC), the Institute for Particle Physics Phenomenology (IPPP) at Durham University, Brookhaven National Laboratory in the USA and Dell. We would like to thank all the participants of the workshop for the high level of their scientific contributions and for the enthusiastic participation in all its activities which were, ultimately, the key factors in the success of the workshop. Further information on ACAT 2011 can be found at http://acat2011.cern.ch Dr Liliana Teodorescu Brunel University ACATgroup The PDF also contains details of the workshop's committees and sponsors.

Teodorescu, Liliana; Britton, David; Glover, Nigel; Heinrich, Gudrun; Lauret, Jérôme; Naumann, Axel; Speer, Thomas; Teixeira-Dias, Pedro

2012-06-01

279

Advancing the education in molecular diagnostics: the IFCC-Initiative "Clinical Molecular Biology Curriculum" (C-CMBC); a ten-year experience.  

PubMed

Molecular techniques are becoming commonplace in the diagnostic laboratory. Their applications influence all major phases of laboratory medicine including predisposition/genetic risk, primary diagnosis, therapy stratification and prognosis. Readily available laboratory hardware and wetware (i.e. consumables and reagents) foster rapid dissemination to countries that are just establishing molecular testing programs. Appropriate skill levels extending beyond the technical procedure are required for analytical and diagnostic proficiency that is mandatory in molecular genetic testing. An international committee (C-CMBC) of the International Federation for Clinical Chemistry (IFCC) was established to disseminate skills in molecular genetic testing in member countries embarking on the respective techniques. We report the ten-year experience with different teaching and workshop formats for beginners in molecular diagnostics. PMID:24815033

Lianidou, Evi; Ahmad-Nejad, Parviz; Ferreira-Gonzalez, Andrea; Izuhara, Kenji; Cremonesi, Laura; Schroeder, Maria-Eugenia; Richter, Karin; Ferrari, Maurizio; Neumaier, Michael

2014-09-25

280

Recent advances on techniques and theories of feedforward networks with supervised learning  

NASA Astrophysics Data System (ADS)

The rediscovery and popularization of the back propagation training technique for multilayer perceptrons as well as the invention of the Boltzmann Machine learning algorithm has given a new boost to the study of supervised learning networks. In recent years, besides the widely spread applications and the various further improvements of the classical back propagation technique, many new supervised learning models, techniques as well as theories, have also been proposed in a vast number of publications. This paper tries to give a rather systematical review on the recent advances on supervised learning techniques and theories for static feedforward networks. We summarize a great number of developments into four aspects: (1) Various improvements and variants made on the classical back propagation techniques for multilayer (static) perceptron nets, for speeding up training, avoiding local minima, increasing the generalization ability, as well as for many other interesting purposes. (2) A number of other learning methods for training multilayer (static) perceptron, such as derivative estimation by perturbation, direct weight update by perturbation, genetic algorithms, recursive least square estimate and extended Kalman filter, linear programming, the policy of fixing one layer while updating another, constructing networks by converting decision tree classifiers, and others. (3) Various other feedforward models which are also able to implement function approximation, probability density estimation and classification, including various models of basis function expansion (e.g., radial basis functions, restricted coulomb energy, multivariate adaptive regression splines, trigonometric and polynomial bases, projection pursuit, basis function tree, and may others), and several other supervised learning models. (4) Models with complex structures, e.g., modular architecture, hierarchy architecture, and others. (5) A number of theoretical issues involving the universal approximation of continuous functions, best approximation ability, learnability, capability, generalization ability, and the relations between these abilities to the number of layers in a network, the number of the neurons needed, hidden neurons, as well as the number of training samples. Altogether, we try to give a global picture of the present state of supervised learning techniques and theories for training static feedforward networks.

Xu, Lei; Klasa, Stan

1992-07-01

281

Advancements in sensing and perception using structured lighting techniques :an LDRD final report.  

SciTech Connect

This report summarizes the analytical and experimental efforts for the Laboratory Directed Research and Development (LDRD) project entitled ''Advancements in Sensing and Perception using Structured Lighting Techniques''. There is an ever-increasing need for robust, autonomous ground vehicles for counterterrorism and defense missions. Although there has been nearly 30 years of government-sponsored research, it is undisputed that significant advancements in sensing and perception are necessary. We developed an innovative, advanced sensing technology for national security missions serving the Department of Energy, the Department of Defense, and other government agencies. The principal goal of this project was to develop an eye-safe, robust, low-cost, lightweight, 3D structured lighting sensor for use in broad daylight outdoor applications. The market for this technology is wide open due to the unavailability of such a sensor. Currently available laser scanners are slow, bulky and heavy, expensive, fragile, short-range, sensitive to vibration (highly problematic for moving platforms), and unreliable for outdoor use in bright sunlight conditions. Eye-safety issues are a primary concern for currently available laser-based sensors. Passive, stereo-imaging sensors are available for 3D sensing but suffer from several limitations : computationally intensive, require a lighted environment (natural or man-made light source), and don't work for many scenes or regions lacking texture or with ambiguous texture. Our approach leveraged from the advanced capabilities of modern CCD camera technology and Center 6600's expertise in 3D world modeling, mapping, and analysis, using structured lighting. We have a diverse customer base for indoor mapping applications and this research extends our current technology's lifecycle and opens a new market base for outdoor 3D mapping. Applications include precision mapping, autonomous navigation, dexterous manipulation, surveillance and reconnaissance, part inspection, geometric modeling, laser-based 3D volumetric imaging, simultaneous localization and mapping (SLAM), aiding first responders, and supporting soldiers with helmet-mounted LADAR for 3D mapping in urban-environment scenarios. The technology developed in this LDRD overcomes the limitations of current laser-based 3D sensors and contributes to the realization of intelligent machine systems reducing manpower need.

Novick, David Keith; Padilla, Denise D.; Davidson, Patrick A. Jr. (.; .); Carlson, Jeffrey J.

2005-09-01

282

Study of surface displacement near Itoiz reservoir, Navarra, Spain, using an advanced DInSAR technique  

NASA Astrophysics Data System (ADS)

The Itoiz reservoir, located in Navarra, northern Spain, is a newly constructed gravity dam that stores the water from the Irati and the Urrobi rivers. The dam has a total height of 121 m, a total length of 525 m and a maximum water storage volume of 410 hm3. The aim of this work is to study the surface displacement field during the impoundment of the Itoiz water reservoir. Satellite Radar Interferometry (InSAR) has been proven to be a useful and powerful tool in tectonic areas for surveying subtle surface deformations over several years related to geodynamic phenomena. An advanced DInSAR observation technique, Coherent Pixel Technique (CPT), has been applied to study the existence of deformation in the dam area in order to obtain mean velocities and time series of deformation. We have used in our study ERS and ENVISAT ascending and descending radar images for the period 1992-2008. The results has been compared with theoretical results obtained using an analytical model.

Fernandez, J.; Arjona, A.; Prieto, J. F.; Santoyo, M. A.; Seco, A.; Monells, D.; Pallero, J. L.; Prieto, E.; Luzón, F.; Mallorquí, J. J.

2009-12-01

283

Advanced system identification techniques for wind turbine structures with special emphasis on modal parameters  

SciTech Connect

The goal of this research is to develop advanced system identification techniques that can be used to accurately measure the frequency response functions of a wind-turbine structure immersed in wind noise. To allow for accurate identification, the authors have developed a special test signal called the Pseudo-Random Binary Sequence (PRBS). The Matlab program that generates this signal allows the user to interactively tailor its parameters for the frequency range of interest based on the response of the wind turbine under test. By controlling NREL`s Mobile Hydraulic Shaker System, which is attached to the wind turbine structure, the PRBS signal produces the wide-band excitation necessary to perform system identification in the presence of wind noise. The techniques presented here will enable researchers to obtain modal parameters from an operating wind turbine, including frequencies, damping coefficients, and mode shapes. More importantly, the algorithms they have developed and tested (so far using input-output data from a simulated structure) permit state-space representation of the system under test, particularly the modal state space representation. This is the only system description that reveals the internal behavior the system, such as the interaction between the physical parameters, and which, in contrast to transfer functions, is valid for non-zero initial conditions.

Bialasiewicz, J.T.

1995-06-01

284

Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments  

SciTech Connect

An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

Lumpkin, A.H.

1992-01-01

285

Comments on advanced, time-resolved imaging techniques for free-electron laser (FEL) experiments  

SciTech Connect

An extensive set of time-resolved imaging experiments has been performed on rf-linac driven free-electron lasers (FELs) over the past few years. These experiments have addressed both micropulse and macropulse timescales on both the charged-particle beam and the wiggler/undulator outputs (spontaneous emission and lasing). A brief review of first measurements on photoinjecter micropulse elongation, submacropulse phase slew in drive lasers, submacropulse wavelength shifts in lasers, etc. is presented. This is followed by discussions of new measurements of 35-MeV electron beam micropulse bunch length (<10 ps) using optical transition radiation, some of the first single bend synchrotron radiation beam profile measurements at gamma <80, and comments on the low-jitter synchroscan streak camera tuner. These techniques will be further developed on the 200-650 MeV linac test stand at the Advanced Photon Source (APS) in the next few years. Such techniques should be adaptable to many of the present FEL designs and to some aspects of the next generation of light sources.

Lumpkin, A.H.

1992-11-01

286

Recoil separators for radiative capture using radioactive ion beams. Recent advances and detection techniques  

NASA Astrophysics Data System (ADS)

Radiative capture reactions involving the fusion of hydrogen or helium are ubiquitous in the stellar history of the universe, and are some of the most important reactions in the processes that govern nucleosynthesis and energy generation in both static and explosive scenarios. However, radiative capture reactions pose some of the most difficult experimental challenges due to extremely small cross sections. With the advent of recoil separators and techniques in inverse kinematics, it is now possible to measure radiative capture reactions on very short-lived radioactive nuclei, and in the presence of high experimental backgrounds. In this paper we review the experimental needs for making measurements of astrophysical importance on radiative capture reactions. We also review some of the important historical advances in the field of recoil separators as well as describe current techniques and performance milestones, including descriptions of some of the separators most recently working at radioactive ion beam facilities, such as DRAGON at TRIUMF and the DRS at the Holifield Radioactive Ion Beam Facility. We will also summarize some of the scientific highlight measurements at the RIB facilities.

Ruiz, Chris; Greife, Uwe; Hager, Ulrike

2014-06-01

287

Advanced Modeling Techniques to Study Anthropogenic Influences on Atmospheric Chemical Budgets  

NASA Technical Reports Server (NTRS)

This research work is a collaborative effort between research groups at MCNC and the University of North Carolina at Chapel Hill. The overall objective of this research is to improve the level of understanding of the processes that determine the budgets of chemically and radiatively active compounds in the atmosphere through development and application of advanced methods for calculating the chemical change in atmospheric models. The research performed during the second year of this project focused on four major aspects: (1) The continued development and refinement of multiscale modeling techniques to address the issue of the disparate scales of the physico-chemical processes that govern the fate of atmospheric pollutants; (2) Development and application of analysis methods utilizing process and mass balance techniques to increase the interpretive powers of atmospheric models and to aid in complementary analysis of model predictions and observations; (3) Development of meteorological and emission inputs for initial application of the chemistry/transport model over the north Atlantic region; and, (4) The continued development and implementation of a totally new adaptive chemistry representation that changes the details of what is represented as the underlying conditions change.

Mathur, Rohit

1997-01-01

288

Advancement of polarizable force field and its use for molecular modeling and design.  

PubMed

The most important requirement of biomolecular modeling is to deal with electrostatic energies. The electrostatic polarizability is an important part of electrostatic interaction for simulation systems. However, AMBER, CHARMM, OPLS, GROMOS, MMFF force fields etc. used in the past mostly apply fixed atomic center point charge to describe electrostatic energies, and are not sufficient for considering the influence of the electrostatic polarization. The emergence of polarizable force fields has solved this problem. In recent years, quickly developed polarizable force fields have involved a lot of fields. The chapter relating to polarizable force fields spread over several aspects. Firstly, we reviewed the history of the classical force fields and compared with polarizable force fields to elucidate the advancements of polarizable force fields. Secondly, it is introduced that the application of polarizable force fields to small molecules and biological macromolecules simulation, including molecular design. Finally, a brief development trend and perspective is given on rapidly growing polarizable force fields. PMID:25387957

Xu, Peijun; Wang, Jinguang; Xu, Yong; Chu, Huiying; Liu, Jiahui; Zhao, Meixia; Zhang, Depeng; Mao, Yingchen; Li, Beibei; Ding, Yang; Li, Guohui

2015-01-01

289

Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence  

NASA Technical Reports Server (NTRS)

Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

2005-01-01

290

The Synergy Between Total Scattering and Advanced Simulation Techniques: Quantifying Geopolymer Gel Evolution  

SciTech Connect

With the ever increasing demands for technologically advanced structural materials, together with emerging environmental consciousness due to climate change, geopolymer cement is fast becoming a viable alternative to traditional cements due to proven mechanical engineering characteristics and the reduction in CO2 emitted (approximately 80% less CO2 emitted compared to ordinary Portland cement). Nevertheless, much remains unknown regarding the kinetics of the molecular changes responsible for nanostructural evolution during the geopolymerization process. Here, in-situ total scattering measurements in the form of X-ray pair distribution function (PDF) analysis are used to quantify the extent of reaction of metakaolin/slag alkali-activated geopolymer binders, including the effects of various activators (alkali hydroxide/silicate) on the kinetics of the geopolymerization reaction. Restricting quantification of the kinetics to the initial ten hours of reaction does not enable elucidation of the true extent of the reaction, but using X-ray PDF data obtained after 128 days of reaction enables more accurate determination of the initial extent of reaction. The synergies between the in-situ X-ray PDF data and simulations conducted by multiscale density functional theory-based coarse-grained Monte Carlo analysis are outlined, particularly with regard to the potential for the X-ray data to provide a time scale for kinetic analysis of the extent of reaction obtained from the multiscale simulation methodology.

White, Claire [Los Alamos National Laboratory; Bloomer, Breaunnah E. [Los Alamos National Laboratory; Provis, John L. [The University of Melbourne; Henson, Neil J. [Los Alamos National Laboratory; Page, Katharine L. [Los Alamos National Laboratory

2012-05-16

291

Studies of signaling domains in model and biological membranes through advanced imaging techniques: final report.  

SciTech Connect

Cellular membranes have complex lipid and protein structures that are laterally organized for optimized molecular recognition and signal transduction processes. Knowledge of nanometer-scale lateral organization and its function is of great importance in the analysis of receptor-based signaling. In model membranes, we studied in detail the chemical and physical factors which result in lateral organization of lipids and lipid-mediated protein sequestration into signaling domains. In biological membranes, we mapped the location and follow the dynamic activity of specific membrane proteins involved in the immunological response of mast cells. These studies were enabled by our development of advanced imaging methods that provided both high spatial resolution and sensitivity to dynamical processes. Our technical approach was to combine the high sensitivity and time resolution of fluorescence imaging with the high lateral resolution of atomic force microscopy (AFM). Simultaneous fluorescence and AFM imaging allows correlation of the distribution and dynamic activity of specific biomolecules via fluorescence labeling with complete topographic information of the membrane. Overall, our unique imaging capabilities enabled us to examine membrane structure and function with much greater detail than was previously possible and thus provide a better understanding of cellular signaling.

Oliver, Janet (University of New Mexico School of Medicine, Albuquerque, NM); Pfeiffer, Janet (New Mexico School of Medicine, Albuquerque, NM); Wilson, Bridget (University of New Mexico School of Medicine, Albuquerque, NM); Burns, Alan Richard

2006-10-01

292

Advances in Resistive Pulse Sensors: Devices bridging the void between molecular and microscopic detection  

PubMed Central

Since the first reported use of a biological ion channel to detect differences in single stranded genomic base pairs in 1996, a renaissance in nanoscale resistive pulse sensors has ensued. This resurgence of a technique originally outlined and commercialized over fifty years ago has largely been driven by advances in nanoscaled fabrication, and ultimately, the prospect of a rapid and inexpensive means for genomic sequencing as well as other macromolecular characterization. In this pursuit, the potential application of these devices to characterize additional properties such as the size, shape, charge, and concentration of nanoscaled materials (10 – 900 nm) has been largely overlooked. Advances in nanotechnology and biotechnology are driving the need for simple yet sensitive individual object readout devices such as resistive pulse sensors. This review will examine the recent progress in pore-based sensing in the nanoscale range. A detailed analysis of three new types of pore sensors – in-series, parallel, and size-tunable pores – has been included. These pores offer improved measurement sensitivity over a wider particle size range. The fundamental physical chemistry of these techniques, which is still evolving, will be reviewed. PMID:22034585

Kozak, Darby; Anderson, Will; Vogel, Robert; Trau, Matt

2011-01-01

293

PREFACE: 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013)  

NASA Astrophysics Data System (ADS)

This volume of Journal of Physics: Conference Series is dedicated to scientific contributions presented at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT 2013) which took place on 16-21 May 2013 at the Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China. The workshop series brings together computer science researchers and practitioners, and researchers from particle physics and related fields to explore and confront the boundaries of computing and of automatic data analysis and theoretical calculation techniques. This year's edition of the workshop brought together over 120 participants from all over the world. 18 invited speakers presented key topics on the universe in computer, Computing in Earth Sciences, multivariate data analysis, automated computation in Quantum Field Theory as well as computing and data analysis challenges in many fields. Over 70 other talks and posters presented state-of-the-art developments in the areas of the workshop's three tracks: Computing Technologies, Data Analysis Algorithms and Tools, and Computational Techniques in Theoretical Physics. The round table discussions on open-source, knowledge sharing and scientific collaboration stimulate us to think over the issue in the respective areas. ACAT 2013 was generously sponsored by the Chinese Academy of Sciences (CAS), National Natural Science Foundation of China (NFSC), Brookhaven National Laboratory in the USA (BNL), Peking University (PKU), Theoretical Physics Cernter for Science facilities of CAS (TPCSF-CAS) and Sugon. We would like to thank all the participants for their scientific contributions and for the en- thusiastic participation in all its activities of the workshop. Further information on ACAT 2013 can be found at http://acat2013.ihep.ac.cn. Professor Jianxiong Wang Institute of High Energy Physics Chinese Academy of Science Details of committees and sponsors are available in the PDF

Wang, Jianxiong

2014-06-01

294

A multiscale modeling technique for bridging molecular dynamics with finite element method  

SciTech Connect

In computational mechanics, molecular dynamics (MD) and finite element (FE) analysis are well developed and most popular on nanoscale and macroscale analysis, respectively. MD can very well simulate the atomistic behavior, but cannot simulate macroscale length and time due to computational limits. FE can very well simulate continuum mechanics (CM) problems, but has the limitation of the lack of atomistic level degrees of freedom. Multiscale modeling is an expedient methodology with a potential to connect different levels of modeling such as quantum mechanics, molecular dynamics, and continuum mechanics. This study proposes a new multiscale modeling technique to couple MD with FE. The proposed method relies on weighted average momentum principle. A wave propagation example has been used to illustrate the challenges in coupling MD with FE and to verify the proposed technique. Furthermore, 2-Dimensional problem has also been used to demonstrate how this method would translate into real world applications. -- Highlights: •A weighted averaging momentum method is introduced for bridging molecular dynamics (MD) with finite element (FE) method. •The proposed method shows excellent coupling results in 1-D and 2-D examples. •The proposed method successfully reduces the spurious wave reflection at the border of MD and FE regions. •Big advantages of the proposed method are simplicity and inexpensive computational cost of multiscale analysis.

Lee, Yongchang, E-mail: yl83@buffalo.edu; Basaran, Cemal

2013-11-15

295

Tracking down sulphate-reducing microorganisms by molecular and isotope-labelling techniques  

NASA Astrophysics Data System (ADS)

Sulphate-reducing microorganisms (SRM) are of great ecological importance for carbon compound degradation and sulphur cycling in many anoxic ecosystems, including marine sediments, peatlands, and oil reservoirs. However, the activity of SRM can result in oil souring and pipeline corrosion and thus is also an economic burden for the oil industry. Molecular diversity surveys based on rRNA genes and dsrAB, genes that encode major subunits of the dissimilatory sulfite reductase, indicate that our view of the natural diversity of SRM (as we know it from cultivation) is far from being complete. This enormous phylogenetic diversity complicates unbiased identification and quantification of SRM by molecular methods such as fluorescence in situ hybridization, real-time PCR or DNA microarrays. Combining these 16S rRNA and dsrAB-based molecular methods with substrate-mediated isotope labelling techniques is a potential solution for identification and functional characterization of yet uncultivated SRM. Using SRM in peatlands as an example, the problems and opportunities of these techniques for diagnosing and monitoring SRM in the environment will be discussed in this talk.

Loy, Alexander

2010-05-01

296

Advances in the field of high?molecular?weight polycyclic aromatic hydrocarbon biodegradation by bacteria  

PubMed Central

Summary Interest in understanding prokaryotic biotransformation of high?molecular?weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in?depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR?1. New metabolites derived from prokaryotic biodegradation of four? and five?ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation. PMID:21255317

Kanaly, Robert A.; Harayama, Shigeaki

2010-01-01

297

Advanced contrast nanoagents for photoacoustic molecular imaging, cytometry, blood test and photothermal theranostics†  

PubMed Central

Various nanoparticles have raised significant interest over the past decades for their unique physical and optical properties and biological utilities. Here we summarize the vast applications of advanced nanoparticles with a focus on carbon nanotube (CNT)-based or CNT-catalyzed contrast agents for photoacoustic (PA) imaging, cytometry and theranostics applications based on the photothermal (PT) effect. We briefly review the safety and potential toxicity of the PA/PT contrast nanoagents, while showing how the physical properties as well as multiple biological coatings change their toxicity profiles and contrasts. We provide general guidelines needed for the validation of a new molecular imaging agent in living subjects, and exemplify these guidelines with single-walled CNTs targeted to ?v?3, an integrin associated with tumor angiogenesis, and golden carbon nanotubes targeted to LYVE-1, endothelial lymphatic receptors. An extensive review of the potential applications of advanced contrast agents is provided, including imaging of static targets such as tumor angiogenesis receptors, in vivo cytometry of dynamic targets such as circulating tumor cells and nanoparticles in blood, lymph, bones and plants, methods to enhance the PA and PT effects with transient and stationary bubble conjugates, PT/PA Raman imaging and multispectral histology. Finally, theranostic applications are reviewed, including the nanophotothermolysis of individual tumor cells and bacteria with clustered nanoparticles, nanothrombolysis of blood clots, detection and purging metastasis in sentinel lymph nodes, spectral hole burning and multiplex therapy with ultrasharp rainbow nanoparticles. PMID:22025336

de la Zerda, Adam; Kim, Jin-Woo; Galanzha, Ekaterina I.; Gambhir, Sanjiv S.; Zharov, Vladimir P.

2013-01-01

298

BLAP-Tags, TUBEs and DUB-Chips: Combined Novel Technologies will Advance Molecular Epithelial Physiology  

PubMed Central

The field of ubiquitylation and deubiquitylation of proteins in molecular physiology is growing at a rapid rate. Our understanding of molecular physiology of these processes may become limited by the advancement of technologies that scientists can employ. Therefore, it is important to approach physiological questions of ubiquitylation and deubiquitylation of proteins from a multiple methodological direction. Indeed, the role of ubiquitylation and deubiquitylation of proteins in cellular function has been implicated in the pathophysiology of human diseases including cancer, viral diseases, and neurodegenerative disorders. There are many modulators (activators and inhibitors) of ubiquitylation and deubiquitylation. Therefore, the link is being able to rapidly assess potential modulators of ubiquitylation and deubiquitylation and determine which specific modulators play a role(s) within a particular physiological setting. After the specific modulators have been identified, further experimentation is required to assess the downstream use as potential clinical targets for a particular disease. The first step is to identify the specific modulators. This perspective highlights a multi-prong technologies approach that uses three novel technologies (BLAP-tagged proteins, TUBES, and DUB-Chips) that can rapidly identify a number of potential candidates that modulate ubiquitylation and deubiquitylation of cellular proteins. PMID:22615701

Hamilton, Kirk L.

2012-01-01

299

Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow  

NASA Technical Reports Server (NTRS)

High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and photogrammetry (for model attitude and deformation measurement) are excluded to limit the scope of this report. Other physical probes such as heat flux gauges, total temperature probes are also excluded. We further exclude measurement techniques that require particle seeding though particle based methods may still be useful in many high speed flow applications. This manuscript details some of the more widely used molecular-based measurement techniques for studying transition and turbulence: laser-induced fluorescence (LIF), Rayleigh and Raman Scattering and coherent anti-Stokes Raman scattering (CARS). These techniques are emphasized, in part, because of the prior experience of the authors. Additional molecular based techniques are described, albeit in less detail. Where possible, an effort is made to compare the relative advantages and disadvantages of the various measurement techniques, although these comparisons can be subjective views of the authors. Finally, the manuscript concludes by evaluating the different measurement techniques in view of the precision requirements described in this chapter. Additional requirements and considerations are discussed to assist with choosing an optical measurement technique for a given application.

Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

2013-01-01

300

The binding affinity of phthalate plasticizers-protein revealed by spectroscopic techniques and molecular modeling.  

PubMed

Phthalate plasticizers have been subjected to close scrutiny and evidences of their toxicity and other negative environmental impacts have arisen as a result of their use in food in some countries. Once entering human body, plasticizers could affect the conformation of human serum albumin and protein function. The interaction between two phthalate plasticizers and human serum albumin was investigated by multispectroscopic techniques and molecular modeling. The alteration in protein conformational stability was determined by fluorescence quenching data. The thermodynamic parameters indicated that the hydrophobic interactions played a major role in the process. In addition, the alterations of HSA secondary structure in the presence of phthalate plasticizers were investigated. Molecular modeling and displacement experiments showed that phthalate plasticizers situated within subdomain IIA (site I) of HSA. Furthermore, the binding distances for the plasticizers-HSA system were provided by the efficiency of fluorescence resonance energy transfer. PMID:24994562

Yue, Yuanyuan; Liu, Jianming; Liu, Ren; Sun, Yangyang; Li, Xiaoge; Fan, Jing

2014-09-01

301

A technique for mass spectrometer measurements of atomic and molecular oxygen in the lower thermosphere  

NASA Technical Reports Server (NTRS)

A neutral mass spectrometer with a quasi-open ion source was flown on each of the Atmosphere Explorer (AE) C, D, and E satellites. The three instruments provided an opportunity to study the effects of different source insert materials on the source surface chemistry. It was found that, after a period of conditioning in space, the recombination coefficient of atomic oxygen on gold appears to be substantially lower than it is on Nichrome V. The lower recombination coefficient on gold allows the spectrometer to directly measure a significant fraction of the incident atomic oxygen, making it possible to distinguish between ambient O and O2. Equations are developed to calculate the atomic and molecular oxygen densities. Preliminary measurements of molecular oxygen densities obtained by this technique agree well with measurements taken in the fly-through mode of operation.

Kayser, D. C.; Potter, W. E.

1978-01-01

302

Penicillium marneffei infection and recent advances in the epidemiology and molecular biology aspects.  

PubMed

Penicillium marneffei infection is an important emerging public health problem, especially among patients infected with human immunodeficiency virus in the areas of endemicity in southeast Asia, India, and China. Within these regions, P. marneffei infection is regarded as an AIDS-defining illness, and the severity of the disease depends on the immunological status of the infected individual. Early diagnosis by serologic and molecular assay-based methods have been developed and are proving to be important in diagnosing infection. The occurrence of natural reservoirs and the molecular epidemiology of P. marneffei have been studied; however, the natural history and mode of transmission of the organism remain unclear. Soil exposure, especially during the rainy season, has been suggested to be a critical risk factor. Using a highly discriminatory molecular technique, multilocus microsatellite typing, to characterize this fungus, several isolates from bamboo rats and humans were shown to share identical multilocus genotypes. These data suggest either that transmission of P. marneffei may occur from rodents to humans or that rodents and humans are coinfected from common environmental sources. These putative natural cycles of P. marneffei infection need further investigation. Studies on the fungal genetics of P. marneffei have been focused on the characterization of genetic determinants that may play important roles in asexual development, mycelial-to-yeast phase transition, and the expression of antigenic determinants. Molecular studies have identified several genes involved in germination, hyphal development, conidiogenesis, and yeast cell polarity. A number of functionally important genes, such as the malate synthase- and catalase-peroxidase protein-encoding genes, have been identified as being upregulated in the yeast phase. Future investigations pertaining to the roles of these genes in host-fungus interactions may provide the key knowledge to understanding the pathogenicity of P. marneffei. PMID:16418525

Vanittanakom, Nongnuch; Cooper, Chester R; Fisher, Matthew C; Sirisanthana, Thira

2006-01-01

303

75 FR 81643 - In the Matter of Certain Semiconductor Products Made by Advanced Lithography Techniques and...  

Federal Register 2010, 2011, 2012, 2013, 2014

...337-TA-729] In the Matter of Certain Semiconductor Products Made by Advanced Lithography...States after importation of certain semiconductor products made by advanced lithography...complaint named two respondents: Taiwan Semiconductor Manufacturing, Co., Ltd....

2010-12-28

304

Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy  

SciTech Connect

Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

Yoon, Myonggeun, E-mail: radioyoon@gmail.com [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of); Shin, Dong Ho [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of); Kim, Jinsung [Department of Radiation Oncology, Samsung Medical Center, Seoul (Korea, Republic of); Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young [Proton Therapy Center, National Cancer Center, Goyang (Korea, Republic of); Park, Hyeon-Jin; Park, Byung Kiu [Pediatric Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang (Korea, Republic of); Shin, Sang Hoon [Neuro-Oncology Clinic, Center for Specific Organs Cancer, National Cancer Center, Goyang (Korea, Republic of)

2011-11-01

305

Advances in turbulent mixing techniques to study microsecond protein folding reactions  

PubMed Central

Recent experimental and computational advances in the protein folding arena have shown that the readout of the one-dimensional sequence information into three-dimensional structure begins within the first few microseconds of folding. The initiation of refolding reactions has been achieved by several means, including temperature jumps, flash photolysis, pressure jumps and rapid mixing methods. One of the most commonly used means of initiating refolding of chemically-denatured proteins is by turbulent flow mixing with refolding dilution buffer, where greater than 99% mixing efficiency has been achieved within 10’s of microseconds. Successful interfacing of turbulent flow mixers with complementary detection methods, including time-resolved Fluorescence Spectroscopy (trFL), Förster Resonance Energy Transfer (FRET), Circular Dichroism (CD), Small-Angle X-ray Scattering (SAXS), Hydrogen Exchange (HX) followed by Mass Spectrometry (MS) and Nuclear Magnetic Resonance Spectroscopy (NMR), Infrared Spectroscopy (IR), and Fourier Transform IR Spectroscopy (FTIR), has made this technique very attractive for monitoring various aspects of structure formation during folding. Although continuous-flow (CF) mixing devices interfaced with trFL detection have a dead time of only 30 µs, burst-phases have been detected in this time scale during folding of peptides and of large proteins (e.g., CheY and TIM barrels). Furthermore, a major limitation of CF mixing technique has been the requirement of large quantities of sample. In this brief communication, we will discuss the recent flurry of activity in micromachining and microfluidics, guided by computational simulations, that are likely to lead to dramatic improvements in time resolution and sample consumption for CF mixers over the next few years. PMID:23868289

Kathuria, Sagar V.; Chan, Alexander; Graceffa, Rita; Nobrega, R. Paul; Matthews, C. Robert; Irving, Thomas C.; Perot, Blair; Bilsel, Osman

2013-01-01

306

Application of Energy Integration Techniques to the Design of Advanced Life Support Systems  

NASA Technical Reports Server (NTRS)

Exchanging heat between hot and cold streams within an advanced life support system can save energy. This savings will reduce the equivalent system mass (ESM) of the system. Different system configurations are examined under steady-state conditions for various percentages of food growth and waste treatment. The scenarios investigated represent possible design options for a Mars reference mission. Reference mission definitions are drawn from the ALSS Modeling and Analysis Reference Missions Document, which includes definitions for space station evolution, Mars landers, and a Mars base. For each scenario, streams requiring heating or cooling are identified and characterized by mass flow, supply and target temperatures and heat capacities. The Pinch Technique is applied to identify good matches for energy exchange between the hot and cold streams and to calculate the minimum external heating and cooling requirements for the system. For each pair of hot and cold streams that are matched, there will be a reduction in the amount of external heating and cooling required, and the original heating and cooling equipment will be replaced with a heat exchanger. The net cost savings can be either positive or negative for each stream pairing, and the priority for implementing each pairing can be ranked according to its potential cost savings. Using the Pinch technique, a complete system heat exchange network is developed and heat exchangers are sized to allow for calculation of ESM. The energy-integrated design typically has a lower total ESM than the original design with no energy integration. A comparison of ESM savings in each of the scenarios is made to direct future Pinch Analysis efforts.

Levri, Julie; Finn, Cory

2000-01-01

307

Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques  

USGS Publications Warehouse

Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

Ammer, F.K.; Wood, P.B.; McPherson, R.J.

2008-01-01

308

Advances in conservation endocrinology: the application of molecular approaches to the conservation of endangered species.  

PubMed

Among the numerous societal benefits of comparative endocrinology is the application of our collective knowledge of hormone signaling towards the conservation of threatened and endangered species - conservation endocrinology. For several decades endocrinologists have used longitudinal hormone profiles to monitor reproductive status in a multitude of species. Knowledge of reproductive status among individuals has been used to assist in the management of captive and free-ranging populations. More recently, researchers have begun utilizing molecular and cell-based techniques to gain a more complete understanding of hormone signaling in wildlife species, and to identify potential causes of disrupted hormone signaling. In this review we examine various in vitro approaches we have used to compare estrogen receptor binding and activation by endogenous hormones and phytoestrogens in two species of rhinoceros; southern white and greater one-horned. We have found many of these techniques valuable and practical in species where access to research subjects and/or tissues is limited due to their conservation status. From cell-free, competitive binding assays to full-length receptor activation assays; each technique has strengths and weaknesses related to cost, sensitivity, complexity of the protocols, and relevance to in vivo signaling. We then present a novel approach, in which receptor activation assays are performed in primary cell lines derived from the species of interest, to minimize the artifacts of traditional heterologous expression systems. Finally, we speculate on the promise of next generation sequencing and transcriptome profiling as tools for characterizing hormone signaling in threatened and endangered species. PMID:24613137

Tubbs, Christopher; McDonough, Caitlin E; Felton, Rachel; Milnes, Matthew R

2014-07-01

309

The novel quantitative technique for assessment of gait symmetry using advanced statistical learning algorithm.  

PubMed

The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis. PMID:25705672

Wu, Jianning; Wu, Bin

2015-01-01

310

The Novel Quantitative Technique for Assessment of Gait Symmetry Using Advanced Statistical Learning Algorithm  

PubMed Central

The accurate identification of gait asymmetry is very beneficial to the assessment of at-risk gait in the clinical applications. This paper investigated the application of classification method based on statistical learning algorithm to quantify gait symmetry based on the assumption that the degree of intrinsic change in dynamical system of gait is associated with the different statistical distributions between gait variables from left-right side of lower limbs; that is, the discrimination of small difference of similarity between lower limbs is considered the reorganization of their different probability distribution. The kinetic gait data of 60 participants were recorded using a strain gauge force platform during normal walking. The classification method is designed based on advanced statistical learning algorithm such as support vector machine algorithm for binary classification and is adopted to quantitatively evaluate gait symmetry. The experiment results showed that the proposed method could capture more intrinsic dynamic information hidden in gait variables and recognize the right-left gait patterns with superior generalization performance. Moreover, our proposed techniques could identify the small significant difference between lower limbs when compared to the traditional symmetry index method for gait. The proposed algorithm would become an effective tool for early identification of the elderly gait asymmetry in the clinical diagnosis. PMID:25705672

Wu, Jianning; Wu, Bin

2015-01-01

311

Analysis of deformation patterns through advanced DINSAR techniques in Istanbul megacity  

NASA Astrophysics Data System (ADS)

As result of the Turkey's economic growth and heavy migration processes from rural areas, Istanbul has experienced a high urbanization rate, with severe impacts on the environment in terms of natural resources pressure, land-cover changes and uncontrolled sprawl. As a consequence, the city became extremely vulnerable to natural and man-made hazards, inducing ground deformation phenomena that threaten buildings and infrastructures and often cause significant socio-economic losses. Therefore, the detection and monitoring of such deformation patterns is of primary importance for hazard and risk assessment as well as for the design and implementation of effective mitigation strategies. Aim of this work is to analyze the spatial distribution and temporal evolution of deformations affecting the Istanbul metropolitan area, by exploiting advanced Differential SAR Interferometry (DInSAR) techniques. In particular, we apply the Small BAseline Subset (SBAS) approach to a dataset of 43 TerraSAR-X images acquired, between November 2010 and June 2012, along descending orbits with an 11-day revisit time and a 3 m × 3 m spatial resolution. The SBAS processing allowed us to remotely detect and monitor subsidence patterns over all the urban area as well as to provide detailed information at the scale of the single building. Such SBAS measurements, effectively integrated with ground-based monitoring data and thematic maps, allows to explore the relationship between the detected deformation phenomena and urbanization, contributing to improve the urban planning and management.

Balik Sanli, F.; Calò, F.; Abdikan, S.; Pepe, A.; Gorum, T.

2014-09-01

312

Advanced techniques and painless procedures for nonlinear contact analysis and forming simulation via implicit FEM  

NASA Astrophysics Data System (ADS)

Nonlinear contact analysis including forming simulation via finite element methods has a crucial and practical application in many engineering fields. However, because of high nonlinearity, nonlinear contact analysis still remains as an extremely challenging obstacle for many industrial applications. The implicit finite element scheme is generally more accurate than the explicit finite element scheme, but it has a known challenge of convergence because of complex geometries, large relative motion and rapid contact state change. It might be thought as a very painful process to diagnose the convergence issue of nonlinear contact. Most complicated contact models have a great many contact surfaces, and it is hard work to well define the contact pairs using the common contact definition methods, which either result in hundreds of contact pairs or are time-consuming. This paper presents the advanced techniques of nonlinear contact analysis and forming simulation via the implicit finite element scheme and the penalty method. The calculation of the default automatic contact stiffness is addressed. Furthermore, this paper presents the idea of selection groups to help easily and efficiently define contact pairs for complicated contact analysis, and the corresponding implementation and usage are discussed. Lastly, typical nonlinear contact models and forming models with nonlinear material models are shown in the paper to demonstrate the key presented method and technologies.

Zhuang, Shoubing

2013-05-01

313

APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM  

EPA Science Inventory

We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

314

Advanced Digital Image Processing Technique for the samples processed in microgravity environment Maneel Bharadwaj, University of Idaho, SURF 2009 Fellow  

E-print Network

Advanced Digital Image Processing Technique for the samples processed in microgravity environment manually using a protractor as described by German [1] . The Interactive Data Language (IDL) software was used to generate the automated detection of triple points for automatic measurement of 2D dihedral

Li, Mo

315

A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering  

Microsoft Academic Search

The purpose of this review paper is to present the techniques, advances, problems and likely future developments in numerical modelling for rock mechanics. Such modelling is essential for studying the fundamental processes occurring in rocks and for rock engineering design. The review begins by explaining the special nature of rock masses and the consequential difficulties when attempting to model their

L. Jing

2003-01-01

316

Recent applications of boxed molecular dynamics: a simple multiscale technique for atomistic simulations  

PubMed Central

In this paper, we briefly review the boxed molecular dynamics (BXD) method which allows analysis of thermodynamics and kinetics in complicated molecular systems. BXD is a multiscale technique, in which thermodynamics and long-time dynamics are recovered from a set of short-time simulations. In this paper, we review previous applications of BXD to peptide cyclization, solution phase organic reaction dynamics and desorption of ions from self-assembled monolayers (SAMs). We also report preliminary results of simulations of diamond etching mechanisms and protein unfolding in atomic force microscopy experiments. The latter demonstrate a correlation between the protein's structural motifs and its potential of mean force. Simulations of these processes by standard molecular dynamics (MD) is typically not possible, because the experimental time scales are very long. However, BXD yields well-converged and physically meaningful results. Compared with other methods of accelerated MD, our BXD approach is very simple; it is easy to implement, and it provides an integrated approach for simultaneously obtaining both thermodynamics and kinetics. It also provides a strategy for obtaining statistically meaningful dynamical results in regions of configuration space that standard MD approaches would visit only very rarely. PMID:24982247

Booth, Jonathan; Vazquez, Saulo; Martinez-Nunez, Emilio; Marks, Alison; Rodgers, Jeff; Glowacki, David R.; Shalashilin, Dmitrii V.

2014-01-01

317

An Intensive Hands-on Course Designed to Teach Molecular Biology Techniques to Physiology Graduate Students  

NSDL National Science Digital Library

To address a growing need to make research trainees in physiology comfortable with the tools of molecular biology, we have developed a laboratory-intensive course designed for graduate students. This course is offered to a small group of students over a three-week period and is organized such that comprehensive background lectures are coupled with extensive hands-on experience. The course is divided into seven modules, each organized by a faculty member who has particular expertise in the area covered by that module. The modules focus on basic methods such as cDNA subcloning, sequencing, gene transfer, polymerase chain reaction, and protein and RNA expression analysis. Each module begins with a lecture that introduces the technique in detail by providing a historical perspective, describing both the uses and limitations of that technique, and comparing the method with others that yield similar information. Most of the lectures are followed by a laboratory session during which students follow protocols that were carefully designed to avoid pitfalls. Throughout these laboratory sessions, students are given an appreciation of the importance of proper technique and accuracy. Communication among the students, faculty, and the assistant coordinator is focused on when and why each procedure would be used, the importance of each step in the procedure, and approaches to troubleshooting. The course ends with an exam that is designed to test the studentsÂ? general understanding of each module and their ability to apply the various techniques to physiological questions.

Dr. Andrea D. Weston (University of Western Ontario Department of Physiology)

2002-03-01

318

Microfluidic derivatisation technique for determination of gaseous molecular iodine with GC-MS.  

PubMed

Gaseous molecular iodine (I2) is an important source of reactive iodine in the marine atmosphere, but the sources of I2 are not well understood due to the lack of an easily accessible, sensitive and robust technique for analysis. In this study a microfluidic derivatisation technique combined with GC-MS has been developed to measure gaseous I2. Good linearity in the range of 0.2-416ppb and low detection limits varying from 6 to 25ppt for different derivatisation reagents have been achieved, which is a substantial improvement in sensitivity compared with the spectrophotometric method (detection limit of 1.20ppb) in our previous study [L.J. Carpenter, S.M. MacDonald, M.D. Shaw, R. Kumar, R.W. Saunders, R. Parthipan, J. Wilson, J.M.C. Plane, Nature Geoscience, 6 (2013) 108-111]. The microfluidic technique was employed to quantify I2 produced from the heterogeneous reactions of potassium iodide solution and ozone. Good agreement was observed between the results of the microfluidic technique and the simulation of a coupled surface water-air kinetic model in the amount of I2 produced on the ozonolysis of iodide solutions. PMID:25770627

Pang, Xiaobing; Carpenter, Lucy J; Lewis, Alastair C

2015-05-01

319

Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques.  

PubMed

The bacterial community associated with black band disease (BBD) of the scleractinian corals Diploria strigosa, Montastrea annularis and Colpophyllia natans was examined using culture-independent techniques. Two complementary molecular screening techniques of 16S rDNA genes [amplified 16S ribosomal DNA restriction analysis (ARDRA) of clone libraries and denaturing gradient gel electrophoresis (DGGE)] were used to give a comprehensive characterization of the community. Findings support previous studies indicating low bacterial abundance and diversity associated with healthy corals. A single cyanobacterial ribotype was present in all the diseased samples, but this was not the same as that identified from Phormidium corallyticum culture isolated from BBD. The study confirms the presence of Desulfovibrio spp. and sulphate-reducing bacteria that have previously been associated with the BBD consortium. However, the species varied between diseased coral samples. We found no evidence of bacteria from terrestrial, freshwater or human sources in any of the samples. We report the presence of previously unrecognized potential pathogens [a Cytophaga sp. and an alpha-proteobacterium identified as the aetiological agent of juvenile oyster disease (JOD)] that were consistently present in all the diseased coral samples. The molecular biological approach described here gives an increasingly comprehensive and more precise picture of the bacterial population associated with BBD. To understand the pathogenesis of BBD, our attention should be focused on the pervasive ribotypes identified in this study (the Cyanobacterium sp., the Cytophaga sp. and the JOD pathogen). PMID:12123476

Cooney, Rory P; Pantos, Olga; Le Tissier, Martin D A; Barer, Michael R; O'Donnell, Anthony G; Bythell, John C

2002-07-01

320

Molecular techniques for the detection of granary weevil (Sitophilus granarius L.) in wheat and flour.  

PubMed

The granary weevil (Sitophilus granarius L.) is a stored grain pest that causes major economic losses. It reduces the quantity and quality of the grain by its feeding and excretion. Sequences of S. granarius mitochondrial cytochrome oxidase subunits genes mtCOI and mtCOII were analysed and compared with mtCOI/II sequences available in GenBank. The analysed genes displayed a high level of homology between corresponding subunits. Attempts were undertaken to develop detection methods for contamination by S. granarius in wheat and wheat flour based on the molecular biology techniques: standard and real-time polymerase chain reaction (PCR) with a TaqMan molecular probe. (TaqMan probes are dual-labelled hydrolysis probes) Specific primers designed based on available sequences for mtCOI and mtCOII genes were applied and optimal reaction conditions established. The specificity of both methods was studied by using a species closely related to S. granarius: S. oryzae and S. zeamais. It is shown that the sensitivity threshold was very high - we were able to detect the equivalent of one beetle per 100 kg of flour when the real-time PCR with TaqMan probe method was applied to model samples. The primer sets used turned out to be species specific, and the technique was rapid, reliable and very sensitive. PMID:18608514

Obrepalska-Steplowska, A; Nowaczyk, K; Holysz, M; Gawlak, M; Nawrot, J

2008-10-01

321

78 FR 59927 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Molecular, Computational, and Systems Biology [External Review Draft] AGENCY: Environmental...Molecular, Computational, and Systems Biology [External Review Draft]'' (EPA...Molecular, Computational, and Systems Biology [External Review Draft]'' is...

2013-09-30

322

78 FR 68058 - Next Generation Risk Assessment: Incorporation of Recent Advances in Molecular, Computational...  

Federal Register 2010, 2011, 2012, 2013, 2014

...Molecular, Computational, and Systems Biology [External Review Draft] AGENCY: Environmental...Molecular, Computational, and Systems Biology [External Review Draft]'' (EPA...molecular, computational, and systems biology data can better inform risk...

2013-11-13

323

Techniques Optimized for Reducing Instabilities in Advanced Nickel-Base Superalloys for Turbine Blades  

NASA Technical Reports Server (NTRS)

The High-Speed Research (HSR) Airfoil Alloy program developed fourth-generation single-crystal superalloys with up to an 85 F increase in creep rupture capability over current production airfoil alloys. Recent results have been generated at the NASA Glenn Research Center on these fourth-generation alloys, but in coated form, for subsonic turbine blade applications under NASA's Ultra-Efficient Engine Technology (UEET) Program. One goal for UEET is to optimize the airfoil alloy/thermal barrier coating system for 3100 F turbine inlet temperatures. The state-of-the art turbine blade airfoil system consists of a superalloy single crystal that provides the basic mechanical performance of the airfoil. A thermal barrier coating is used to reduce the temperature of the base superalloy, and a bondcoat is deposited between the base material and the thermal barrier coating. The bondcoat improves the oxidation and corrosion resistance of the base superalloy and improves the spallation resistance of the thermal barrier coating. A commercial platinum aluminide bondcoat was applied to the HSR-developed alloys, and a diffusion zone developed as a result of interaction between the bondcoat and the superalloy. Optimized strength is obtained for superalloys when the refractory element content is high and the limits of microstructural stability are approached or exceeded slightly. For fourthgeneration alloys, instability leads to the formation of topologically close packed (TCP) phases, which form internally in the superalloy, and a secondary reaction zone (SRZ), which forms under the diffusion zone. There was a concern that excessive quantities of either TCP or SRZ might decrease the mechanical properties of the superalloy, with SRZ thought to be particularly detrimental and its formation unpredictable. Thus, an SRZreduction effort was initiated in the NASA UEET Program so that methods developed during the HSR project could be optimized further to reduce or eliminate the SRZ. An SRZ is a three-phase constituent composed of TCP and stringers of gamma phase in a matrix of gamma prime. An incoherent grain boundary separates the SRZ from the gammagamma prime microstructure of the superalloy. The SRZ is believed to form as a result of local chemistry changes in the superalloy due to the application of the diffusion aluminide bondcoat. Locally high surface stresses also appear to promote the formation of the SRZ. Thus, techniques that change the local alloy chemistry or reduce surface stresses have been examined for their effectiveness in reducing SRZ. These SRZ-reduction steps are performed on the test specimen or the turbine blade before the bondcoat is applied. Stressrelief heat treatments developed at NASA Glenn have been demonstrated to reduce significantly the amount of SRZ that develops during subsequent high-temperature exposures. Stress-relief heat treatments reduce surface stresses by recrystallizing a thin surface layer of the superalloy. However, in alloys with very high propensities to form SRZ, stress relief heat treatments alone do not eliminate SRZ entirely. Thus, techniques that modify the local chemistry under the bondcoat have been emphasized and optimized successfully at Glenn. One such technique is carburization, which changes the local chemistry by forming submicron carbides near the surface of the superalloy. Detailed characterizations have demonstrated that the depth and uniform distribution of these carbides are enhanced when a stress relief treatment and an appropriate surface preparation are employed in advance of the carburization treatment. Even in alloys that have the propensity to develop a continuous SRZ layer beneath the diffusion zone, the SRZ has been completely eliminated or reduced to low, manageable levels when this combination of techniques is utilized. Now that the techniques to mitigate SRZ have been established at Glenn, TCP phase formation is being emphasized in ongoing work under the UEET Program. The limitsf stability of the fourth-generation alloys with respect to TCP phase formation are currently bei

MacKay, Rebecca A.; Locci, Ivan E.; Garg, anita; Ritzert, Frank J.

2002-01-01

324

Strategic steps for advanced molecular imaging with magnetic resonance-based diagnostic modalities.  

PubMed

With the rapidly-expanding sophistication in our understanding of cancer cell biology, molecular imaging offers a critical bridge to oncology. Molecular imaging through magnetic resonance spectroscopy (MRS) can provide information about many metabolites at the same time. Since MRS entails no ionizing radiation, repeated monitoring, including screening can be performed. However, MRS via the fast Fourier transform (FFT) has poor resolution and signal-to-noise ratio (SNR). Moreover, subjective and non-unique (ambiguous) fittings of FFT spectra cannot provide reliable quantification of clinical usefulness. In sharp contrast, objective and unique (unambiguous) signal processing by the fast Padé transform (FPT) can increase resolution and retrieve the true quantitative metabolic information. To illustrate, we apply the FPT to in vitro MRS data as encoded from malignant ovarian cyst fluid and perform detailed analysis. This problem area is particularly in need of timely diagnostics by more advanced modalities, such as high-resolution MRS, since conventional methods usually detect ovarian cancers at late stages with poor prognosis, whereas at an early stage the prognosis is excellent. The reliability and robustness of the FPT is assessed for time signals contaminated with varying noise levels. In the presence of higher background noise, all physical metabolites were unequivocally identified and their concentrations precisely extracted, using small fractions of the total signal length. Via the "signal-noise separation" concept alongside the "stability test", all non-physical information was binned, such that fully denoised spectra were generated. These results imply that a reformulation of data acquisition is needed, as guided by the FPT in MRS, since a small number of short transient time signals can provide high resolution and good SNR. This would enhance the diagnostic accuracy of MRS and shorten examination times, thereby improving efficiency and cost-effectiveness of this high throughput cancer diagnostic modality. Such advantages could be particularly important for more effective ovarian cancer detection, as well as more broadly for improved diagnostics and treatment within oncology. PMID:24354757

Belkic, Dž; Belkic, K

2015-02-01

325

Experimental investigations of micro-scale flow and heat transfer phenomena by using molecular tagging techniques  

NASA Astrophysics Data System (ADS)

Recent progress made in the development of novel molecule-based flow diagnostic techniques, including molecular tagging velocimetry (MTV) and lifetime-based molecular tagging thermometry (MTT), to achieve simultaneous measurements of multiple important flow variables for micro-flows and micro-scale heat transfer studies is reported in this study. The focus of the work described here is the particular class of molecular tagging tracers that relies on phosphorescence. Instead of using tiny particles, especially designed phosphorescent molecules, which can be turned into long-lasting glowing marks upon excitation by photons of appropriate wavelength, are used as tracers for both flow velocity and temperature measurements. A pulsed laser is used to 'tag' the tracer molecules in the regions of interest, and the tagged molecules are imaged at two successive times within the photoluminescence lifetime of the tracer molecules. The measured Lagrangian displacement of the tagged molecules provides the estimate of the fluid velocity. The simultaneous temperature measurement is achieved by taking advantage of the temperature dependence of phosphorescence lifetime, which is estimated from the intensity ratio of the tagged molecules in the acquired two phosphorescence images. The implementation and application of the molecular tagging approach for micro-scale thermal flow studies are demonstrated by two examples. The first example is to conduct simultaneous flow velocity and temperature measurements inside a microchannel to quantify the transient behavior of electroosmotic flow (EOF) to elucidate underlying physics associated with the effects of Joule heating on electrokinematically driven flows. The second example is to examine the time evolution of the unsteady heat transfer and phase changing process inside micro-sized, icing water droplets, which is pertinent to the ice formation and accretion processes as water droplets impinge onto cold wind turbine blades.

Hu, Hui; Jin, Zheyan; Nocera, Daniel; Lum, Chee; Koochesfahani, Manoochehr

2010-08-01

326

A Research Project-Based and Self-Determined Teaching System of Molecular Biology Techniques for Undergraduates  

ERIC Educational Resources Information Center

Molecular biology techniques play a very important role in understanding the biological activity. Students who major in biology should know not only how to perform experiments, but also the reasons for performing them. Having the concept of conducting research by integrating various techniques is especially important. This paper introduces a…

Zhang, Shuping

2008-01-01

327

Landslide detection and long-term monitoring in urban area by means of advanced interferometric techniques  

NASA Astrophysics Data System (ADS)

This work aims at illustrating the potential of advanced interferometric techniques for detection and long-term monitoring of landslide ground deformations at local scale. Space-born InSAR (Synthetic Aperture Radar Interferometry) has been successfully exploited in recent years to measure ground deformations associated to processes with slow kinematics, such as landslides, tectonic motions, subsidence or volcanic activity, thanks to both the standard single-interferogram approach (centimeter accuracy) and advanced time-series analyses of long temporal radar satellite data stacks (millimeter accuracy), such as Persistent Scatterers Interferometry (PSI) techniques. In order to get a complete overview and an in-depth knowledge of an investigated landslide, InSAR satellite measures can support conventional in situ data. This methodology allows studying the spatial pattern and the temporal evolution of ground deformations, improving the spatial coverage and overcoming issues related to installation of ground-based instrumentation and data acquisition in unstable areas. Here we describe the application of the above-mentioned methodology on the test area of Agrigento, Sicily (Italy), affected by hydrogeological risk. The town is located in Southern Sicily, at edge of the Apennine-Maghrebian thrust belt, on the Plio-Pleistocene and Miocene sediments of the Gela Nappe. Ground instabilities affect the urban area and involve the infrastructures of its NW side, such as the Cathedral, the Seminary and many private buildings. An integration between InSAR analyses and conventional field investigations (e.g. structural damages and fractures surveys) was therefore carried out, to support Regional Civil Protection authorities for emergency management and risk mitigation. The results of InSAR analysis highlighted a general stability of the whole urban area between 1992 and 2007. However, very high deformation rates (up to 10-12 mm/y) were identified in 1992-2000 in the W slope of the town, within the crown and the main scarp area of the Addolorata landslide (occurred in July 1966), and thus was highlighted that the phenomenon was still active. The time-series analysis performed in the NW area of the town, also allowed measuring acceleration (up to 13 mm/y) of the deformation rates near the main Cathedral, starting from August 2006 and persisting until the end of the monitoring period (2007). The new information about the state of activity of these landslides were discussed with the Civil Protection authorities to plan further field investigations and structural surveys to be carried out in the areas at higher risk. The analysis on Agrigento confirmed the capabilities of this integrated approach for detection of ground deformations, long-term monitoring of landslides and, finally, management and mitigation of hydrogeological risk in urban area at local scale.

Cigna, Francesca; Del Ventisette, Chiara; Liguori, Vincenzo; Casagli, Nicola

2010-05-01

328

Molecular Advances Leading to Treatment Implications for Fragile X Premutation Carriers  

PubMed Central

Fragile X syndrome (FXS) is the most common single gene cause of intellectual disability and it is characterized by a CGG expansion of more than 200 repeats in the FMR1 gene, leading to methylation of the promoter and gene silencing. The fragile X premutation, characterized by a 55 to 200 CGG repeat expansion, causes health problems and developmental difficulties in some, but not all, carriers. The premutation causes primary ovarian insufficiency in approximately 20% of females, psychiatric problems (including depression and/or anxiety) in approximately 50% of carriers and a neurodegenerative disorder, the fragile X-associated tremor ataxia syndrome (FXTAS), in approximately 40% of males and 16% of females later in life. Recent clinical studies in premutation carriers have expanded the health problems that may be seen. Advances in the molecular pathogenesis of the premutation have shown significant mitochondrial dysfunction and oxidative stress in neurons which may be amenable to treatment. Here we review the clinical problems of carriers and treatment recommendations. PMID:25436181

Polussa, Jonathan; Schneider, Andrea; Hagerman, Randi

2014-01-01

329

Recent advances in Hodgkin lymphoma: interim PET and molecular-targeted therapy.  

PubMed

Hodgkin lymphoma is a highly curative lymphoid malignancy, but some patients relapse or experience adverse events from treatment. Therefore, prognostic markers are needed to allow a more patient-tailored approach to treatment. The positive-predictive value of interim positron emission tomography for progression-free survival was reported as 81%, and the negative-predictive value was reported as 97%. Interim positron emission tomography might identify high-risk patients who would benefit from more intensive treatment regimens as well as identify low-risk patients in whom even the standard treatment regimen might be a form of overtreatment. Indeed, major clinical study groups have conducted risk-adapted treatment protocols based on interim positron emission tomography. The Japan Clinical Oncology Group is also planning a Phase II trial of this concept for advanced Hodgkin lymphoma. These trials are now ongoing, but the data of them are expected soon. Molecular-targeted therapy is another important approach to improve outcomes for these patients. Brentuximab vedotin is an antibody-drug conjugate that targets CD30 on Hodgkin cells and has excellent efficacy when used as monotherapy. The combination of brentuximab vedotin and standard chemotherapies are being investigated in randomized Phase III trials. These approaches might lead to a paradigm shift in the treatment of Hodgkin lymphoma. PMID:25489004

Nagai, Hirokazu

2015-02-01

330

Utilizing advanced polymerization techniques for simplifying polymer grafting from silica colloidal crystal substrates  

NASA Astrophysics Data System (ADS)

Polyacrylamide has been well established as a biocompatible material when Polyacrylamide gel electrophoresis (PAGE) came into existence in the 1960s. Under aqueous buffer conditions it becomes non-adsorptive to proteins and due to its molecular level pore forming nature could be used in size based biomolecule separations. Since then considerable research has been done to explore the non-adsorptive nature of polyacrylamide on a platform or substrate. Attempts were made to grow polyacrylamide chains from silica as a substrate which can then be used in various protein separation techniques. Based on an ionic polymerization method which was used for gel casting in PAGE, polymers were grown on silica gel. Though considerable thickness could be achieved, polymerization was not just confined to the surface. Therefore a rigid polymer brush layer could not be achieved. Atom transfer radical polymerization (ATRP) method showed the solution to this problem. Polymer brush layers with acceptable thickness could now be achieved for growing polyacrylamide from silica gel. Yet it still suffered from several disadvantages such as the need of an inert atmosphere for polymerization and limited thickness. Many developments have taken place in the past decade which led to improvements in substrate and polymerization methods. This research used non porous sub-micron silica as the substrate and AGET ATRP (Activator generated electron transfer atom transfer radical polymerization) for surface grafting polyacrylamide. Non porous submicron silica has been shown to be a better stationary phase substrate for protein separations than conventional substrates. AGET ATRP enables polymerization to be performed under ambient conditions and in water based solutions which gives thicknesses much higher than conventional ATRP. Data from various analytical techniques showed that within the experimental range the polymerization is linear and has decent control. This means silica nanoparticles coated with polyacrylamide of varying thickness can be produced by varying the reaction time. Linear polymerization kinetics was studied using IR spectroscopy, elemental analysis, ellipsometry, GPC etc. All of them closely agree with each other. Attempts were made to expand the applicability of this novel way of material synthesis. HILIC is known as a premium separation mode for polar analytes. Glycoproteins form an important class of analytes which need better separation columns. Polyacrylamide coated nonporous colloidal silica is shown here to be a better column packing material. Combined results show that AGET ATRP can be a better and simpler alternative to ATRP for grafting polyacrylamide onto silica based substrates. Future efforts can possibly lead to the expansion of the applicability of this method for making materials for many other separation methods.

Yerneni, Charu K.

331

Flow Injection Techniques in Aquatic Environmental Analysis: Recent Applications and Technological Advances  

Microsoft Academic Search

This article critically examines the application of flow injection (FI) technology in aquatic environmental analysis. A survey of the important advances in FI technology in the past 5 years (2000–2004) is presented along with critical technological design factors and development issues including automation, preconcentration, speciation, and advanced detection methodologies. Modern environmental applications are also discussed and future perspectives on the

Weihong Xu; Richard C. Sandford; Paul J. Worsfold; Alexandra Carlton; Grady Hanrahan

2005-01-01

332

Probing the interaction of anthraquinone with DNA by spectroscopy, molecular modeling and cancer cell imaging technique.  

PubMed

A new anthraquinone derivative, (E)-2-(1-(4,5-dihydroxy-6-(hydroxymethyl)-tetrahydro-2H-pyran-2-yloxyimino)ethyl)-1,4-dihydroxyanthracene-9,10-dione (AODGlc), was synthesized and its binding properties towards DNA were explored under physiological conditions by fluorescence spectroscopy, DNA melting as well as docking techniques. The experimental results revealed that AODGlc could bind to calf thymus DNA (ctDNA) through intercalation between DNA base pairs. The values of thermodynamic parameters at different temperatures including ?G, ?H, and ?S and the molecular modeling study implied that hydrophobic interactions and hydrogen bonds were the main interactions in the AODGlc-ctDNA system. Cervical cancer cells (HepG2 cells) were used in cell viability assay and cell imaging experiment. AODGlc could interact with HepG2 cells and kill HepG2 cells under high concentration with nice curative effect, indicating its potential bioapplication in the future. PMID:25834985

Yang, Lei; Fu, Zheng; Niu, Xiaoqing; Zhang, Guisheng; Cui, Fengling; Zhou, Chunwu

2015-05-25

333

Electrical characterization of ensemble of GaN nanowires grown by the molecular beam epitaxy technique  

SciTech Connect

High quality Schottky contacts are formed on GaN nanowires (NWs) structures grown by the molecular beam epitaxy technique on Si(111) substrate. The current-voltage characteristics show the rectification ratio of about 10{sup 3} and the leakage current of about 10{sup ?4} A/cm{sup 2} at room temperature. From the capacitance-voltage measurements the free carrier concentration in GaN NWs is determined as about 10{sup 16} cm{sup ?3}. Two deep levels (H200 and E280) are found in the structures containing GaN NWs. H200 is attributed to an extended defect located at the interface between the substrate and SiN{sub x} or near the sidewalls at the bottom of the NWs whereas E280 is tentatively assigned to a gallium-vacancy- or nitrogen interstitials-related defect.

Kolkovsky, Vl. [Technische Universität Dresden, 01062 Dresden (Germany)] [Technische Universität Dresden, 01062 Dresden (Germany); Zytkiewicz, Z. R.; Sobanska, M.; Klosek, K. [Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32-46, 02-668 Warsaw (Poland)] [Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32-46, 02-668 Warsaw (Poland)

2013-08-26

334

Congenital candidiasis: confirmation of mother-neonate transmission using molecular analysis techniques.  

PubMed

We describe a case of congenital acquired candidiasis in a preterm female delivered through Caesarean section due to the premature rupture of the amniotic membrane. The neonate presented with suspected chorioamnionitis and erythematous desquamative skin. Candida albicans was isolated from the placenta, mouth, groin, and periumbilical lesions. The infant developed candidemia due to Candida albicans and the same yeast was also isolated from a catheter. Culture inoculated with swabs from the mouth and vagina of the mother yielded C. albicans and C. krusei. All C. albicans isolates from the mother and the neonate were visually indistinguishable by molecular typing techniques which included chromosomal karyotyping and restriction endonuclease analysis followed by pulsed-field gel electrophoresis. These findings allowed the clinical condition to be confirmed as congenital acquisition of candidiasis in this case. PMID:19306215

Tiraboschi, Iris Carla Niveyro; Niveyro, Carla; Mandarano, Ana Maria; Messer, Shawn A; Bogdanowicz, Elizabeth; Kurlat, Isabel; Lasala, María Beatriz

2010-02-01

335

Advances and challenges in the molecular biology and treatment of glioblastoma—is there any hope for the future?  

PubMed Central

Malignant gliomas, such as glioblastoma multiforme (GBM), present some of the greatest challenges in the management of cancer patients worldwide. Even with aggressive surgical resections and recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal and quality of life is poor. Although new molecular pathways crucial to the biology and invasive ability of GBM are coming to light, translation of basic science achievements into clinical practice is slow. Optimal management requires a multidisciplinary approach and knowledge of potential complications arising from both disease and treatment. To help illustrate “where we are going” with GBM, we here include a detailed depiction of the molecular alterations underlying this fatal disease, as well as intensive research over the past two decades that has led to considerable advances in the understanding of basic GBM biology, pathogenesis and therapeutic approaches. PMID:25705639

Veliz, Ignacio; Loo, Yong; Castillo, Omar; Karachaliou, Niki; Nigro, Olga

2015-01-01

336

Inquiry-Based Learning: Inflammation as a Model to Teach Molecular Techniques for Assessing Gene Expression†  

PubMed Central

This laboratory module simulates the process used by working scientists to ask and answer a question of biological interest. Instructors facilitate acquisition of knowledge using a comprehensive, inquiry-based approach in which students learn theory, hypothesis development, experimental design, and data interpretation and presentation. Using inflammation in macrophages as a model system, students perform a series of molecular biology techniques to address the biological question: “Does stimulus ‘X’ induce inflammation?” To ask this question, macrophage cells are treated with putative inflammatory mediators and then assayed for evidence of inflammatory response. Students become familiar with their assigned mediator and the relationship between their mediator and inflammation by conducting literature searches, then using this information to generate hypotheses which address the effect of their mediator on induction of inflammation. The cellular and molecular approaches used to test their hypotheses include transfection and luciferase reporter assay, immunoblot, fluorescence microscopy, enzyme-linked immunosorbent assay, and quantitative PCR. Quantitative and qualitative reasoning skills are developed through data analysis and demonstrated by successful completion of post-lab worksheets and the generation and oral presentation of a scientific poster. Learning objective assessment relies on four instruments: pre-lab quizzes, post-lab worksheets, poster presentation, and posttest. Within three cohorts (n = 85) more than 95% of our students successfully achieved the learning objectives. PMID:24358382

Gunn, Kathryn E.; McCauslin, Christine Seitz; Staiger, Jennifer; Pirone, Dana M.

2013-01-01

337

Development of Pressure Sensitive Molecular Film as a Measurement Technique for Micro-Flows  

NASA Astrophysics Data System (ADS)

The pressure-sensitive paint (PSP) has potential as a diagnostic tool for pressure measurement in the high Knudsen number regime because it works as a so-called "molecular sensor." However, there are few reports concerning application of the PSP to micro devices, because the conventional PSP is too thick owing to the use of polymer binder. In our previous work, we have adopted Langmuir-Blodgett (LB) technique to fabricate pressure sensitive molecular films (PSMFs) using Pd(II) Mesoporphyrin IX (PdMP). The PSMF based on PdMP has pressure sensitivity only at low pressure range (below 3 kPa). In this study, we have constructed PSMF composed of Pt(II) Mesoporphyrin IX (PtMP) to be applied to pressure measurement near atmospheric pressure. The pressure sensitivity of PSMF based on PtMP has been tested, and it is clarified that the PSMF of PtMP has equivalent pressure sensitivity of polymer PSP. Moreover, we have applied PSMF to measurement of pressure distribution of micro-channel gas flow, showing its usefulness.

Matsuda, Y.; Mori, H.; Sakazaki, Y.; Uchida, T.; Suzuki, S.; Yamaguchi, H.; Niimi, T.

2008-12-01

338

Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects.  

PubMed

As a result of their unpredictable ability to adapt to varying environmental conditions, microorganisms inhabit different types of biological niches on Earth. Owing to the key role of microorganisms in many biogeochemical processes, trends in modern microbiology emphasize the need to know and understand the structure and function of complex microbial communities. This is particularly important if the strategy relates to microbial communities that cause biodeterioration of materials that constitute our cultural heritage. Until recently, the detection and identification of microorganisms inhabiting objects of cultural value was based only on cultivation-dependent methods. In spite of many advantages, these methods provide limited information because they identify only viable organisms capable of growth under standard laboratory conditions. However, in order to carry out proper conservation and renovation, it is necessary to know the complete composition of microbial communities and their activity. This paper presents and characterizes modern techniques such as genetic fingerprinting and clone library construction for the assessment of microbial diversity based on molecular biology. Molecular methods represent a favourable alternative to culture-dependent methods and make it possible to assess the biodiversity of microorganisms inhabiting technical materials and cultural heritage objects. PMID:24927237

Otlewska, Anna; Adamiak, Justyna; Gutarowska, Beata

2014-01-01

339

Advances in molecular techniques for the detection and quantification of genetically modified organisms  

Microsoft Academic Search

Progress in genetic engineering has led to the introduction of genetically modified organisms (GMOs) whose genomes have been\\u000a altered by the integration of a novel sequence conferring a new trait. To allow consumers an informed choice, many countries\\u000a require food products to be labeled if the GMO content exceeds a certain threshold. Consequently, the development of analytical\\u000a methods for GMO

Dimitrios S. Elenis; Despina P. Kalogianni; Kyriaki Glynou; Penelope C. Ioannou; Theodore K. Christopoulos

2008-01-01

340

Advances in analytical techniques for polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like PCBs  

PubMed Central

Analytical techniques for the determination of polychorinated dibenzo-p-dioxins (PCDD), polychlorinated dibenzofurans (PCDF) and dioxin-like PCBs (DLPCB) are reviewed. The focus of the review is on recent advances in methodology and analytical procedures. The paper also reviews toxicology, the development of toxic equivalent factors (TEF) and the determination of toxic equivalent quantity (TEQ) values. Sources, occurrence and temporal trends of PCDD/PCDF are summarized to provide examples of levels and concentration ranges for the methods and techniques reviewed. PMID:16794816

Clement, Ray E.; Okey, Allan B.; Marvin, Chris H.

2006-01-01

341

Primary repair of advanced obstetric anal sphincter tears: should it be performed by the overlapping sphincteroplasty technique?  

Microsoft Academic Search

Advanced obstetric anal sphincter tears are often associated with a high incidence of fecal and flatus incontinence. We aimed\\u000a to assess the clinical outcome of these repairs when done by the overlapping sphincteroplasty technique with reconstruction\\u000a of the internal anal sphincter and perineum. Between August 2005 and December 2006, all grades 3 and 4 obstetric anal sphincter\\u000a tears in our

Yoram Abramov; Beni Feiner; Thalma Rosen; Motti Bardichev; Eli Gutterman; Arie Lissak; Ron Auslander

2008-01-01

342

The Kinetochore Moves Ahead: Contributions of Molecular and Genetic Techniques to Our Understanding of Mitosis  

NSDL National Science Digital Library

Cell division is necessary to the building of a soma from the single-celled zygote during development, as well as the sine qua non, in the form of meiosis, for the evolutionary success of species. Here we review recent progress in our understanding of a key player, the kinetochore, in these processes. The kinetochore is both the anchor to the mitotic spindle for chromosomes at division and the motor for distribution of chromosomal units to daughter cells. In addition, the kinetochore plays a key role in the molecular checkpoints of cell-cycle progression. Although the nucleation of the kinetochore at a chromosomal site is under epigenetic control, the underlying base sequence of the DNA at the centromere is not critical: The assembly of the kinetochore occurs at exactly the same place on the same chromosomes at every division cycle. We discuss recent advances in our understanding of how the kinetochore is organized and assembled, as well as how it contributes to critical cell-cycle checkpoints and to chromosome movement.

Mary Kathrine Johnson (Mississippi State University; Department of Biological Sciences)

2009-12-01

343

Advanced imaging techniques II: using a compound microscope for photographing point-mount specimens  

Technology Transfer Automated Retrieval System (TEKTRAN)

Digital imaging technology has revolutionized the practice photographing insects for scientific study. Herein described are lighting and mounting techniques designed for imaging micro Hymenoptera. Techniques described here are applicable to all small insects, as well as other invertebrates. The ke...

344

New AFM Techniques for Investigating Molecular Growth Mechanisms of Protein Crystals  

NASA Technical Reports Server (NTRS)

Atomic Force Microscopy (AFM) has emerged as a powerful technique for investigating protein crystal growth. Earlier AFM studies were among the first to demonstrate that these crystals grew by dislocation and 2D nucleation growth mechanisms [1]. These investigations were restricted to the micron range where only surface features, such as dislocation hillocks and 2D islands are visible. Most AFM instruments can scan at higher resolutions and have the potential to resolve individual protein molecules at nanometer ranges. Such scans are essential for determining the molecular packing arrangements on crystal faces and for probing the growth process at the molecular level. However, at this resolution the AFM tip influences the image produced, with the resulting image being a convolution of the tip shape and the surface morphology [2]. In most studies this problem is resolved by deconvoluting the image to obtain the true surface morphology. Although deconvolution routines work reasonably well for simple one- dimensional shapes, for complex surfaces this approach does not produce accurate results. In this study we devised a new approach which takes advantage of the precise molecular order of crystal surfaces, combined with the knowledge of individual molecular shapes from the crystallographic data of the protein and the AFM tip shape. This information is used to construct expected theoretical AFM images by convoluting the tip shape with the constructed crystal surface shape for a given surface packing arrangement. By comparing the images from actual AFM scans with the constructed ones for different possible surface packing arrangements, the correct packing arrangement can be conclusively determined. This approach was used in this study to determine the correct one from two possible packing arrangements on (I 10) faces of tetragonal lysozyme crystals. Another novel AFM technique was also devised to measure the dimension of individual growth units of the crystal faces. Measuring these units was not attempted before and most studies have assumed that the growth unit consisted of individual protein molecules. The linescan mode of AFM instruments allows the crystal surface to be scanned along a single line. By scanning across a growth step an image showing the motion of the step is obtained. Normally such an image shows a straight line for continuous and constant step velocity. In this study by increasing the scan rate and by decreasing the step velocity (by decreasing the supersaturation), we were able to capture images of individual growth events, shown by jump discontinuities in the step line. By suitable integration of the image the growth unit dimension in the scanned direction can be obtained. Since multiple units can be involved in the growth process it is necessary to collect a statistically relevant sample before drawing conclusions about the growth mechanism. This technique was successfully employed to obtain the dimensions of growth units for the (110) face, showing that they consisted of various aggregates corresponding to the 43 helices in the crystal structure.

Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

1998-01-01

345

Low-mass molecular dynamics simulation: a simple and generic technique to enhance configurational sampling.  

PubMed

CLN025 is one of the smallest fast-folding proteins. Until now it has not been reported that CLN025 can autonomously fold to its native conformation in a classical, all-atom, and isothermal-isobaric molecular dynamics (MD) simulation. This article reports the autonomous and repeated folding of CLN025 from a fully extended backbone conformation to its native conformation in explicit solvent in multiple 500-ns MD simulations at 277K and 1atm with the first folding event occurring as early as 66.1ns. These simulations were accomplished by using AMBER forcefield derivatives with atomic masses reduced by 10-fold on Apple Mac Pros. By contrast, no folding event was observed when the simulations were repeated using the original AMBER forcefields of FF12SB and FF14SB. The results demonstrate that low-mass MD simulation is a simple and generic technique to enhance configurational sampling. This technique may propel autonomous folding of a wide range of miniature proteins in classical, all-atom, and isothermal-isobaric MD simulations performed on commodity computers-an important step forward in quantitative biology. PMID:25181342

Pang, Yuan-Ping

2014-09-26

346

Advances in molecular imaging of atherosclerosis and myocardial infarction: shedding new light on in vivo cardiovascular biology  

PubMed Central

Molecular imaging of the cardiovascular system heavily relies on the development of new imaging probes and technologies to facilitate visualization of biological processes underlying or preceding disease. Molecular imaging is a highly active research discipline that has seen tremendous growth over the past decade. It has broadened our understanding of oncologic, neurologic, and cardiovascular diseases by providing new insights into the in vivo biology of disease progression and therapeutic interventions. As it allows for the longitudinal evaluation of biological processes, it is ideally suited for monitoring treatment response. In this review, we will concentrate on the major accomplishments and advances in the field of molecular imaging of atherosclerosis and myocardial infarction with a special focus on magnetic resonance imaging. PMID:23064836

Andia, Marcelo E.; Shah, Ajay M.; Botnar, René M.

2012-01-01

347

Advanced in situ Spectroscopic Techniques And Their Applications In Environmental Biogeochemistry: Introduction To The Special Section  

EPA Science Inventory

Understanding the molecular-scale complexities and interplay of chemical and biological processes of contaminants at solid, liquid, and gas interfaces is a fundamental and crucial element to enhance our understanding of anthropogenic environmental impacts. The ability to describ...

348

Visceral Leishmaniasis: Advancements in Vaccine Development via Classical and Molecular Approaches  

PubMed Central

Visceral leishmaniasis (VL) or kala-azar, a vector-borne protozoan disease, shows endemicity in larger areas of the tropical, subtropical and the Mediterranean countries. WHO report suggested that an annual incidence of VL is nearly 200,000 to 400,000 cases, resulting in 20,000 to 30,000 deaths per year. Treatment with available anti-leishmanial drugs are not cost effective, with varied efficacies and higher relapse rate, which poses a major challenge to current kala-azar control program in Indian subcontinent. Therefore, a vaccine against VL is imperative and knowing the fact that recovered individuals developed lifelong immunity against re-infection, it is feasible. Vaccine development program, though time taking, has recently gained momentum with the emergence of omic era, i.e., from genomics to immunomics. Classical as well as molecular methodologies have been overtaken with alternative strategies wherein proteomics based knowledge combined with computational techniques (immunoinformatics) speed up the identification and detailed characterization of new antigens for potential vaccine candidates. This may eventually help in the designing of polyvalent synthetic and recombinant chimeric vaccines as an effective intervention measures to control the disease in endemic areas. This review focuses on such newer approaches being utilized for vaccine development against VL. PMID:25202307

Joshi, Sumit; Rawat, Keerti; Yadav, Narendra Kumar; Kumar, Vikash; Siddiqi, Mohammad Imran; Dube, Anuradha

2014-01-01

349

Pulmonary adenocarcinoma: implications of the recent advances in molecular biology, treatment and the IASLC/ATS/ERS classification.  

PubMed

A decade ago, lung cancer could conveniently be classified into two broad categories-either the small cell lung carcinoma (SCLC), or the non-small cell lung carcinoma (NSCLC), mainly to assist in further treatment related decision making. However, the understanding regarding the eligibility of adenocarcinoma histology for treatments with agents such as pemetrexed and bevacizumab made it a necessity for NSCLC to be classified into more specific sub-groups. Then, the availability of molecular targeted therapy with oral tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib not only further emphasized the need for accurate sub-classification of lung cancer, but also heralded the important role of molecular profiling of lung adenocarcinomas. Given the remarkable advances in molecular biology, oncology and radiology, a need for felt for a revised classification for lung adenocarcinoma, since the existing World Health Organization (WHO) classification of lung cancer, published in the year 2004 was mainly a pathological system of classification. Thus, there was a combined effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS) and the European Respiratory Society (ERS) with an effort to inculcate newly established perspectives from clinical, molecular and radiological aspects in evolving a modern classification for lung adenocarcinomas. This review provides a summary of the recent advances in molecular biology and molecular targeted therapy with respect to lung adenocarcinoma. Also, a brief summation of the salient recommendations provided in the IASLC/ATS/ERS classification of lung adenocarcinomas is provided. Lastly, a discussion regarding the future prospects with lung adenocarcinoma is included. PMID:25349702

Revannasiddaiah, Swaroop; Thakur, Priyanka; Bhardwaj, Bhaskar; Susheela, Sridhar Papaiah; Madabhavi, Irappa

2014-10-01

350

Pulmonary adenocarcinoma: implications of the recent advances in molecular biology, treatment and the IASLC/ATS/ERS classification  

PubMed Central

A decade ago, lung cancer could conveniently be classified into two broad categories—either the small cell lung carcinoma (SCLC), or the non-small cell lung carcinoma (NSCLC), mainly to assist in further treatment related decision making. However, the understanding regarding the eligibility of adenocarcinoma histology for treatments with agents such as pemetrexed and bevacizumab made it a necessity for NSCLC to be classified into more specific sub-groups. Then, the availability of molecular targeted therapy with oral tyrosine kinase inhibitors (TKIs) such as gefitinib and erlotinib not only further emphasized the need for accurate sub-classification of lung cancer, but also heralded the important role of molecular profiling of lung adenocarcinomas. Given the remarkable advances in molecular biology, oncology and radiology, a need for felt for a revised classification for lung adenocarcinoma, since the existing World Health Organization (WHO) classification of lung cancer, published in the year 2004 was mainly a pathological system of classification. Thus, there was a combined effort by the International Association for the Study of Lung Cancer (IASLC), the American Thoracic Society (ATS) and the European Respiratory Society (ERS) with an effort to inculcate newly established perspectives from clinical, molecular and radiological aspects in evolving a modern classification for lung adenocarcinomas. This review provides a summary of the recent advances in molecular biology and molecular targeted therapy with respect to lung adenocarcinoma. Also, a brief summation of the salient recommendations provided in the IASLC/ATS/ERS classification of lung adenocarcinomas is provided. Lastly, a discussion regarding the future prospects with lung adenocarcinoma is included. PMID:25349702

Thakur, Priyanka; Bhardwaj, Bhaskar; Susheela, Sridhar Papaiah; Madabhavi, Irappa

2014-01-01

351

[The use of molecular cytogenetic and cytogenetic techniques for the diagnosis of Prader-Willi and Angelman syndrome].  

PubMed

We examined 30 patients with a presumptive diagnosis of Prader-Willi and Angelman syndromes. In four patients, 15q11.2-q13 deletions were identified by cytogenetic techniques. The FISH method was used to study eight patients, in five of them microdeletions were also confirmed. High-resolution comparative genomic hybridization (CGH) and comparative genomic hybridization using DNA microarrays (array CGH) allowed to find 15q11.2-q13 deletions in five patients. These cases demonstrate the need for high-resolution post-genomic technologies (array CGH - molecular karyotyping) in the combination with classical cytogenetic and molecular cytogenetic techniques. PMID:24637817

Iourov, I Y; Vorsanova, S G; Kurinnaaya, O S; Kolotii, A D; Demidova, I A; Kravets, V S; Yurov, Yu B

2014-01-01

352

Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel  

NASA Astrophysics Data System (ADS)

Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (<800 °C). With the upgrade and development of advanced power reactors, however, enhancing the nucleate boiling rate and its upper limit, Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface coatings by comparing the measurements with those for a plain vessel without coatings. An overall enhancement in nucleate boiling rates and CHF limits up to 100% were observed. Moreover, combination of data from quenching experiments and steady-state experiments produced new sets of boiling curves, which covered both the nucleate and transient boiling regimes with much greater accuracy. Beside the experimental work, a theoretical CHF model has also been developed by considering the vapor dynamics and the boiling-induced two-phase motions in three separate regions adjacent to the heating surface. The CHF model is capable of predicting the performance of micro-porous coatings with given particle diameter, porosity, media permeability and thickness. It is found that the present CHF model agrees favorably with the experimental data. Effects of an enhanced vessel/insulation structure on the local nucleate boiling rate and CHF limit have also been investigated experimentally. It is observed that the local two-phase flow quantities such as the local void fraction, quality, mean vapor velocity, mean liquid velocity, and mean vapor and liquid mass flow rates could have great impact on the local surface heat flux as boiling of water takes place on the vessel surface. An upward co-current two-phase flow model has been developed to predict the local two-phase flow behavior for different flow channel geometries, which are set by the design of insulation structures. It is found from the two-phase flow visualization experiments and the two-phase flow model calculations that the enhanced vessel/insulation structure greatly improved the steam venting process at the minimum gap location compared to the performance of thermal insulation structures without enhancement. Moveover, depending on the angular location, steady-state boiling experiments with the enhanced insulation design showed an enhancement of 1.8 to 3.0 times in the local critical h

Yang, Jun

353

Adaptations of advanced safety and reliability techniques to petroleum and other industries  

NASA Technical Reports Server (NTRS)

The underlying philosophy of the general approach to failure reduction and control is presented. Safety and reliability management techniques developed in the industries which have participated in the U.S. space and defense programs are described along with adaptations to nonaerospace activities. The examples given illustrate the scope of applicability of these techniques. It is indicated that any activity treated as a 'system' is a potential user of aerospace safety and reliability management techniques.

Purser, P. E.

1974-01-01

354

Qualitative Comparative Analysis (QCA) and related techniques: recent advances and challenges  

Microsoft Academic Search

Following a seminal volume by (1987), a set of systematic comparative case analysis techniques has been developing at a steady pace. During the last few years\\u000a especially, the main initial technique, Qualitative Comparative Analysis (QCA), has been complemented by other related techniques.\\u000a The purpose of this contribution is to critically assess some main recent developments in this field.

Benoît Rihoux

355

New views of the human NK cell immunological synapse: recent advances enabled by super- and high-resolution imaging techniques.  

PubMed

Imaging technology has undergone rapid growth with the development of super resolution microscopy, which enables resolution below the diffraction barrier of light (~200 nm). In addition, new techniques for single molecule imaging are being added to the cell biologist's arsenal. Immunologists have exploited these techniques to advance understanding of NK biology, particularly that of the immune synapse. The immune synapse's relatively small size and complex architecture combined with its exquisitely controlled signaling milieu have made it a challenge to visualize. In this review we highlight and discuss new insights into NK cell immune synapse formation and regulation revealed by cutting edge imaging techniques, including super-resolution microscopy, high-resolution total internal reflection microscopy, and Förster resonance energy transfer. PMID:23316204

Mace, Emily M; Orange, Jordan S

2012-01-01

356

A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device  

NASA Astrophysics Data System (ADS)

A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and ?-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology.

Lambropoulos, Nicholas A.; Reimers, Jeffrey R.; Crossley, Maxwell J.; Hush, Noel S.; Silverbrook, Kia

2013-12-01

357

A multiscale simulation technique for molecular electronics: design of a directed self-assembled molecular n-bit shift register memory device.  

PubMed

A general method useful in molecular electronics design is developed that integrates modelling on the nano-scale (using quantum-chemical software) and on the micro-scale (using finite-element methods). It is applied to the design of an n-bit shift register memory that could conceivably be built using accessible technologies. To achieve this, the entire complex structure of the device would be built to atomic precision using feedback-controlled lithography to provide atomic-level control of silicon devices, controlled wet-chemical synthesis of molecular insulating pillars above the silicon, and controlled wet-chemical self-assembly of modular molecular devices to these pillars that connect to external metal electrodes (leads). The shift register consists of n connected cells that read data from an input electrode, pass it sequentially between the cells under the control of two external clock electrodes, and deliver it finally to an output device. The proposed cells are trimeric oligoporphyrin units whose internal states are manipulated to provide functionality, covalently connected to other cells via dipeptide linkages. Signals from the clock electrodes are conveyed by oligoporphyrin molecular wires, and ?-oxo porphyrin insulating columns are used as the supporting pillars. The developed multiscale modelling technique is applied to determine the characteristics of this molecular device, with in particular utilization of the inverted region for molecular electron-transfer processes shown to facilitate latching and control using exceptionally low energy costs per logic operation compared to standard CMOS shift register technology. PMID:24270608

Lambropoulos, Nicholas A; Reimers, Jeffrey R; Crossley, Maxwell J; Hush, Noel S; Silverbrook, Kia

2013-12-20

358

Experimental and molecular docking studies on DNA binding interaction of adefovir dipivoxil: Advances toward treatment of hepatitis B virus infections  

NASA Astrophysics Data System (ADS)

The toxic interaction of adefovir dipivoxil with calf thymus DNA (CT-DNA) was investigated in vitro under simulated physiological conditions by multi-spectroscopic techniques and molecular modeling study. The fluorescence spectroscopy and UV absorption spectroscopy indicated drug interacted with CT-DNA in a groove binding mode. The binding constant of UV-visible and the number of binding sites were 3.33 ± 0.2 × 104 L mol-1and 0.99, respectively. The fluorimetric studies showed that the reaction between the drug and CT-DNA is exothermic (?H = 34.4 kJ mol-1; ?S = 184.32 J mol-1 K-1). Circular dichroism spectroscopy (CD) was employed to measure the conformational change of CT-DNA in the presence of adefovir dipivoxil, which verified the groove binding mode. Furthermore, the drug induces detectable changes in its viscosity. The molecular modeling results illustrated that adefovir strongly binds to groove of DNA by relative binding energy of docked structure -16.83 kJ mol-1. This combination of multiple spectroscopic techniques and molecular modeling methods can be widely used in the investigation on the toxic interaction of small molecular pollutants and drugs with bio macromolecules, which contributes to clarify the molecular mechanism of toxicity or side effect in vivo.

Shahabadi, Nahid; Falsafi, Monireh

359

Oncoplastic technique in breast conservative surgery for locally advanced breast cancer.  

PubMed

Locally advanced breast cancer (LABC) should be taken into decision making when planning breast conservative surgery, but this procedure should be done on the principle of oncologic safety in order to achieve negative surgical margin and maintain aesthetic result. This procedure should be offered as the choice of treatment in selected patients. PMID:25083490

Chirappapha, Prakasit; Kongdan, Youwanush; Vassanasiri, Wichai; Ratchaworapong, Kampol; Sukarayothin, Thongchai; Supsamutchai, Chairat; Klaiklern, Phatarachate; Leesombatpaiboon, Monchai; Hamza, Alaa; Zurrida, Stefano

2014-02-01

360

Oncoplastic technique in breast conservative surgery for locally advanced breast cancer  

PubMed Central

Locally advanced breast cancer (LABC) should be taken into decision making when planning breast conservative surgery, but this procedure should be done on the principle of oncologic safety in order to achieve negative surgical margin and maintain aesthetic result. This procedure should be offered as the choice of treatment in selected patients. PMID:25083490

Kongdan, Youwanush; Vassanasiri, Wichai; Ratchaworapong, Kampol; Sukarayothin, Thongchai; Supsamutchai, Chairat; Klaiklern, Phatarachate; Leesombatpaiboon, Monchai; Hamza, Alaa; Zurrida, Stefano

2014-01-01

361

ADVANCED SENSING AND CONTROL TECHNIQUES TO FACILITATE SEMI-AUTONOMOUS DECOMMISSIONING  

EPA Science Inventory

This research is intended to advance the technology of semiautonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is proposed. This cell is supported and enhan...

362

Antenna Advancement Techniques and Integration of RFID Electronics on Organic Substrates for UHF RFID Applications in  

E-print Network

requirements and advanced approaches for improved performance UHF radio frequency identification (RFID) tags-printed tag on paper substrate is realized for ultra-low- cost mass production. RFID with sensor integration implementations has recently increased tremendously due to the requirements of automatic identification in various

Tentzeris, Manos

363

Advances in the Application of Machine Learning Techniques in Drug Discovery, Design and Development  

E-print Network

, with products of human genome project helping to reveal many new disease targets to which drug treatments might of genes potentially involved in disease, treatment and toxicity [Butte, 2002]. Similar advancements conventional observational data in epidemiology, clinical trial treatment response and early safety studies

Fernandez, Thomas

364

FINAL REPORT. ADVANCED SENSING AND CONTROL TECHNIQUES TO FACILITATE SEMI-AUTONOMOUS DECOMMISSIONING  

EPA Science Inventory

This research is intended to advance the technology of semi-autonomous teleoperated robotics as applied to Decontamination and Decommissioning (D&D) tasks. Specifically, research leading to a prototype dual-manipulator mobile work cell is underway. This cell is supported and enha...

365

Urban planning advanced analytic techniques and the human role: a challenge or a complement  

Microsoft Academic Search

The leap that was taken by analytic tools used in urban planning and urban design has formed a tremendous difference between the past and the present times in their capabilities, efficiencies, and possibilities. Rather than the manual manipulation of spatial and non-spatial data, advanced tools with their digital approach in handling various types of data make a great difference in

Yasser El-Sayed Fouda

2004-01-01

366

Copyright 1997, American Institute of Aeronautics and Astronautics, Inc. Recent Advances in Detonation Techniques  

E-print Network

, Ronkonkoma, New York 11779 Detonations can be used to generate a high-pressure gas of high acoustic speed to a performance comparison between these two modes, com- parisons with other high-performance techniques in Detonation Techniques for High-Enthalpy Facilities Frank K. Lu,* Donald R. Wilson,f W. Scott Stuessy

Texas at Arlington, University of

367

Recent Advance of Hydride Generation–Analytical Atomic Spectrometry: Part I—Technique Development  

Microsoft Academic Search

Hydride generation is the most popular and widely used chemical vapor generation technique and is interesting to analytical chemists as an effective sample introduction method, especially for elemental determination and speciation analysis by analytical atomic spectrometry. The present review provides a literature survey on the hydride generation technique coupled to analytical atomic spectrometry during the past several years, covering the

Zhou Long; Yamin Luo; Chengbin Zheng; Pengchi Deng; Xiandeng Hou

2012-01-01

368

Oral fluid nanosensor test (OFNASET) with advanced electrochemical-based molecular analysis platform.  

PubMed

High-impact diseases, including cancer, cardiovascular disease, and neurological disease, are challenging to diagnose without supplementing clinical evaluation with laboratory testing. Even with laboratory tools, definitive diagnosis often remains elusive. The lack of three crucial elements presents a road block to achieving the potential of clinical diagnostic tests: (1) definitive disease-associated protein and genetic markers, (2) easy and inexpensive sampling methods with minimal discomfort for the subject, and (3) an accurate and quantitative diagnostic platform. Our aim is to develop and validate a solution for requirement (3) and also to develop a portable system. Requirements (1) and (2) will be addressed through the utilization of novel and highly specific oral cancer saliva proteomic and genomic biomarkers and the use of saliva as the biofluid of choice, respectively. The Oral Fluid NanoSensor Test (OFNASET) technology platform combines cutting-edge technologies, such as self-assembled monolayers (SAM), bionanotechnology, cyclic enzymatic amplification, and microfluidics, with several well-established techniques including microinjection molding, hybridization-based detection, and molecular purification. The intended use of the OFNASET is for the point of care multiplex detection of salivary biomarkers for oral cancer. We have demonstrated that the combination of two salivary proteomic biomarkers (thioredoxin and IL-8) and four salivary mRNA biomarkers (SAT, ODZ, IL-8, and IL-1b) can detect oral cancer with high specificity and sensitivity. Our preliminary studies have shown compelling results. We sequentially delivered a serial dilution of IL-8 antigen, probe solution, wash, enzyme solution, wash, and mediator solution to sensor reaction chambers housed in a prototype cartridge and demonstrated strong signal separation at 50 pg/mL above a negative control. PMID:17435145

Gau, Vincent; Wong, David

2007-03-01

369

Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques.  

PubMed

The Cabo Rojo Solar Salterns located on the southwest coast of Puerto Rico are composed of two main ecosystems (i.e., salt ponds and microbial mats). Even though these locations are characterized by high solar radiation (mean light intensity of 39 mol photons m-2d-1) they harbour a diverse microscopic life. We used morphological and molecular techniques to identify a series of halotolerant fungi. A total of 183 isolates and 36 species were cultured in this study. From the water from the salt ponds, 86 isolates of 26 species were cultured. The halotolerant fungi isolated from water were: Cladosporium cladosporioides, nine Aspergillus sp., five Penicillium sp. and the black yeast Hortaea werneckii. A distinctive isolate with a blue mycelium was cultured from the salt ponds, representing a new species of Periconia based on morphology and rDNA analysis. Forty-four isolates from eight species were cultured from the sediments around the salt ponds. Most of the sediment isolates formed only sterile mycelium, while several were Chaetomium globosum. A total of 53 isolates from 16 species were isolated from the three layers of the microbial mats, of which Aspergillus niger was the most frequent isolate. Phospholipid fatty acid profiles generated from the different layers of the microbial mats indicated that the uppermost layers of the mats contained fungal biomarker, 18:2w6. This fatty acid decreased with depth, the highest concentration was observed in the green upper layer and it disappeared in the black bottom anoxic layer. This correlates with the isolation of fungi using the serial dilution technique. This is the first study that documents the presence of fungi in microbial mats. PMID:16904880

Cantrell, Sharon A; Casillas-Martínez, Lilliam; Molina, Marirosa

2006-08-01

370

INTRODUCTIONS TO MOLECULAR TECHNIQUES IN PEDIATRIC RESEARCH TRAINING: BASIC PRINCIPLES OF GENE REGULATION AND EXPRESSION ANALYSES  

Technology Transfer Automated Retrieval System (TEKTRAN)

Cell and molecular biology have revolutionized our understanding of the aberrant physiology underlying the mechanisms of human disease. Subspecialty training in pediatrics requires a comprehensive understanding of the molecular methodologies involved in the current diagnosis and treatment of human d...

371

Assessment of the quality of dna extracted by two techniques from Mycobacterium tuberculosis for fast molecular identification and genotyping  

PubMed Central

We report a comparative study of two DNA extraction techniques, thermolysis and chemical lysis (CTAB), for molecular identification and genotyping of M. tuberculosis. Forty DNA samples were subjected to PCR and the results demonstrated that with thermolysis it is possible to obtain useful data that enables fast identification and genotyping. PMID:24031692

Miyata, Marcelo; Santos, Adolfo Carlos Barreto; Mendes, Natália Helena; Cunha, Eunice Atsuko; de Melo, Fernando Augusto Fiúza; Leite, Clarice Queico Fujimura

2011-01-01

372

A new technique for electromagnetic characterization of spherical dust molecular cloud equilibrium structure  

NASA Astrophysics Data System (ADS)

We propose a new technique after the modified Lane-Emden equation to explore the electromagnetic properties of spherically symmetric dust molecular cloud (DMC) in field-free hydroelectrostatic equilibrium. Its subsequent characterization on the Jeans scale is made analytically and numerically. The lowest order cloud surface boundary (CSB) by the electric field maximization, E?0.15T/e?J=4.85×10-7 V m, lies at a radial distance ? = 3.50?J = 1.08 × 109 m. The basic physics of the CSB formation is explored. It is interestingly observed that the CSB is biased with electrostatic potential ? ? -0.34T/e (=-340 V) due to plasma boundary wall interaction, and plasma sheath-sheath coupling processes because sheath exists with each dust grain in plasma background. The net CSB charge comes out as Q ? -6.83 × 10-1 C. The major results are found to be in qualitative agreement with the existing models. Main conclusions of astrophysical importance and future applicability are briefly presented.

Karmakar, P. K.

2012-01-01

373

Characterization of water octamer, nanomer, decamer, and iodide{endash}water interactions using molecular dynamics techniques  

SciTech Connect

The lowest minimum-energy structures for the water octamer, nanomer, and decamer and the hydration of iodide were characterized using molecular dynamics techniques and polarizable potential models of Dang and Chang [J. Chem. Phys. {bold 106}, 8149 (1997)]. The calculations predicted the two lowest-energy cubic isomers, D{sub 2d} and S{sub 4}, for the water octamer. The lowest minimum-energy structures for the nanomer and decamer were derived from the octamer by insertion of one and two water molecules, respectively, into the cubic isomers. Our potential models provided an excellent description of the hydration of iodide in water clusters and in solution at room temperature. At 0 K, the lowest energy-minimum structures predicted by our calculations are in excellent agreement with the available optimized structures obtained from accurate electronic structure theory calculations for similar systems. In all cases, the surface states are dominant and the polarizability plays an important role in the hydration of iodide in water clusters at 0 K. {copyright} {ital 1999 American Institute of Physics.}

Dang, L.X. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)] [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

1999-01-01

374

A nano-orthogonal cutting model based on a modified molecular dynamics technique  

NASA Astrophysics Data System (ADS)

A proposed method based on combining the concepts of shape functions of the finite element method (FEM) and a molecular dynamics (MD) technique was developed to evaluate the chip formation and strain and stress distribution in the cutting of single-crystal copper by a nano-scale mechanism. The displacement components for the atom in any temporary situation during the nano-scale cutting could be found. In this paper, the atom is regarded as a node and the lattice is regarded as an element. Using the atom displacements calculated by the MD program and combining the concepts of shape functions of FEM we calculate the equivalent strain for material deformation in the atomic-scale cutting mechanism. The equivalent stress was derived from the equivalent strain from the corresponding flow stress-strain curve, whereas the flow stress-strain curve was obtained from the regression of the stress-strain curve of a nano-copper thin film tension test simulation. In addition, the chip atoms within the diamond space were moved along the tool surface using a mathematical method. Also, this study introduced a new concept: 'a combined Morse potential function and rigid tool space restrictions criterion as the chip separation criterion' for the nano-scale cutting model.

Lin, Zone-Ching; Huang, Jen-Ching

2004-05-01

375

Debridement arthroplasty for advanced primary osteoarthritis of the elbow. Results of a new technique used for 29 elbows.  

PubMed

We report the technique and results of a new method of debridement arthroplasty for advanced primary osteoarthritis of the elbow. Triceps and the periosteum of the olecranon are reflected towards the ulnar side and the joint is opened by dividing the radial collateral ligament. Osteophytes are removed, the olecranon and coronoid fossae are deepened and the fibrosed anterior joint capsule is excised. The degenerative changes are always more advanced on the radial side, with erosion of the capitellum, and it is usually necessary to remodel the head of the radius. In 29 elbows reviewed at a mean of 64 months, the average gain of range of motion was 34 degrees, with good pain relief and improved grip in most patients. Two elbows required reoperation but there were no other serious complications. PMID:8027156

Tsuge, K; Mizuseki, T

1994-07-01

376

Optimization of thermomechanical processes for the functional gradation of polymers by means of advanced empirical modeling techniques  

NASA Astrophysics Data System (ADS)

I In this paper, an optimization procedure for complex manufacturing processes is presented. The procedure is based on advanced empirical modeling techniques and will be presented in two parts. The first part comprises the selection and generation of the empirical surrogate models. The process organization and the design of experiments are taken into account. In order to analyze and optimize the processes based on the empirical models, advanced methods and tools are presented in the second part. These tools include visualization methods and a sensitivity and robustness analysis. Moreover, the obtained surrogate models are used for a model-based multi-objective optimization in order to explore the gradation potential of the processes. The procedure is applied to two thermo-mechanical processes for the functional gradation of polymers - a monoxiale stretching of polycarbonate films and a compression moulding process for polypropylene sheets.

Biermann, D.; Hess, S.; Ries, A.; Wagner, T.; Wibbeke, A.

2014-05-01

377

Molecular imaging in the eye  

Microsoft Academic Search

Molecular imaging plays an increasingly powerful role in elucidating pathophysiological pathways, in advancing drug discovery and in deciphering developmental processes. Multiple modalities, including optical imaging, ultrasound, nuclear imaging, computed tomography and various techniques of MRI are now being used to obtain fundamental new insights at the cellular and molecular level, both in basic research, using animal models and in clinical

Nicole Eter

2010-01-01

378

External Magnetic Field Reduction Techniques for the Advanced Stirling Radioisotope Generator  

NASA Technical Reports Server (NTRS)

Linear alternators coupled to high efficiency Stirling engines are strong candidates for thermal-to-electric power conversion in space. However, the magnetic field emissions, both AC and DC, of these permanent magnet excited alternators can interfere with sensitive instrumentation onboard a spacecraft. Effective methods to mitigate the AC and DC electromagnetic interference (EMI) from solenoidal type linear alternators (like that used in the Advanced Stirling Convertor) have been developed for potential use in the Advanced Stirling Radioisotope Generator. The methods developed avoid the complexity and extra mass inherent in data extraction from multiple sensors or the use of shielding. This paper discusses these methods, and also provides experimental data obtained during breadboard testing of both AC and DC external magnetic field devices.

Niedra, Janis M.; Geng, Steven M.

2013-01-01

379

Molecular printing  

PubMed Central

Molecular printing techniques, which involve the direct transfer of molecules to a substrate with submicrometre resolution, have been extensively developed over the past decade and have enabled many applications. Arrays of features on this scale have been used to direct materials assembly, in nanoelectronics, and as tools for genetic analysis and disease detection. The past decade has witnessed the maturation of molecular printing led by two synergistic technologies: dip-pen nanolithography and soft lithography. Both are characterized by material and substrate flexibility, but dip-pen nanolithography has unlimited pattern design whereas soft lithography has limited pattern flexibility but is low in cost and has high throughput. Advances in DPN tip arrays and inking methods have increased the throughput and enabled applications such as multiplexed arrays. A new approach to molecular printing, polymer-pen lithography, achieves low-cost, high-throughput and pattern flexibility. This Perspective discusses the evolution and future directions of molecular printing. PMID:21378889

Braunschweig, Adam B.; Huo, Fengwei; Mirkin, Chad A.

2014-01-01

380

New techniques for the design of advanced ultrasonic transducers for wire bonding  

Microsoft Academic Search

A new high-frequency ultrasonic transducer, in particular for the application wire-bonding, has been conceived, designed, prototyped, and tested. In the design phase an advanced approach was used and established. The method is based on the two basic principles of modularity and iteration. The transducer is decomposed in its elementary components. For each component an initial draft is obtained with finite-elements-method

Lorenzo Parrini

2003-01-01

381

Advanced techniques for the storage and use of very large, heterogeneous spatial databases  

NASA Technical Reports Server (NTRS)

Progress is reported in the development of a prototype knowledge-based geographic information system. The overall purpose of this project is to investigate and demonstrate the use of advanced methods in order to greatly improve the capabilities of geographic information system technology in the handling of large, multi-source collections of spatial data in an efficient manner, and to make these collections of data more accessible and usable for the Earth scientist.

Peuquet, Donna J.

1987-01-01

382

Integration of Micro Patterning Techniques into Volatile Functional Materials and Advanced Devices  

E-print Network

Novel micro patterning techniques have been developed for the patterning of volatile functional materials which cannot be conducted by conventional photolithography. First, in order to create micro patterns of volatile materials (such as bio...

Hong, Jung M.

2010-07-14

383

Single-walled carbon nanotube transistors fabricated by advanced alignment techniques utilizing CVD growth and dielectrophoresis  

Microsoft Academic Search

Single-walled carbon nanotube field effect transistors (SWNT-FETs) are fabricated by two different alignment techniques. The first technique is based on direct synthesis of an aligned SWNTs array on quartz wafer using chemical vapor deposition. The transistor with three SWNTs and atomic layer deposited (ALD) Al2O3 gate oxide shows a contact resistance of 280K?, a maximum on-current of ?7?A, and a

S. Kim; Y. Xuan; P. D. Ye; Saeed Mohammadi; S. W. Lee

2008-01-01

384

An overview on in situ micronization technique – An emerging novel concept in advanced drug delivery  

PubMed Central

The use of drug powders containing micronized drug particles has been increasing in several pharmaceutical dosage forms to overcome the dissolution and bioavailability problems. Most of the newly developed drugs are poorly water soluble which limits dissolution rate and bioavailability. The dissolution rate can be enhanced by micronization of the drug particles. The properties of the micronized drug substance such as particle size, size distribution, shape, surface properties, and agglomeration behaviour and powder flow are affected by the type of micronization technique used. Mechanical communition, spray drying and supercritical fluid (SCF) technology are the most commonly employed techniques for production of micronized drug particles but the characteristics of the resulting drug product cannot be controlled using these techniques. Hence, a newer technique called in situ micronization is developed in order to overcome the limitations associated with the other techniques. This review summarizes the existing knowledge on in situ micronization techniques. The properties of the resulting drug substance obtained by in situ micronization were also compared. PMID:25161371

Vandana, K.R.; Prasanna Raju, Y.; Harini Chowdary, V.; Sushma, M.; Vijay Kumar, N.

2013-01-01

385

Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation.  

PubMed

The pollution of soil and water with xenobiotics is widespread in the environment and is creating major health problems. The utilization of microorganisms to clean up xenobiotics from a polluted environment represents a potential solution to such environmental problems. Recent developments in molecular-biology-based techniques have led to rapid and accurate strategies for monitoring, discovery and identification of novel bacteria and their catabolic genes involved in the degradation of xenobiotics. Application of these techniques to bioremediation has also improved our understanding of the composition, phylogeny, and physiology of metabolically active members of the microbial community in the environment. This review provides an overview of recent developments in molecular-biology-based techniques and their application in bioremediation of xenobiotics. PMID:12382041

Widada, J; Nojiri, H; Omori, T

2002-10-01

386

Irradiation with X-rays phase-advances the molecular clockwork in liver, adrenal gland and pancreas.  

PubMed

The circadian clock of man and mammals shows a hierarchic organization. The master clock, located in the suprachiasmatic nuclei (SCN), controls peripheral oscillators distributed throughout the body. Rhythm generation depends on molecular clockworks based on transcriptional/translational interaction of clock genes. Numerous studies have shown that the clockwork in peripheral oscillators is capable to maintain circadian rhythms for several cycles in vitro, i.e. in the absence of signals from the SCN. The aim of the present study is to analyze the effects of irradiation with X-rays on the clockwork of liver, adrenal and pancreas. To this end organotypic slice cultures of liver (OLSC) and organotypic explant cultures of adrenal glands (OAEC) and pancreas (OPEC) were prepared from transgenic mPer2(luc) mice which express luciferase under the control of the promoter of an important clock gene, Per2, and allow to study the dynamics of the molecular clockwork by bioluminometry. The preparations were cultured in a membrane-based liquid-air interface culturing system and irradiated with X-rays at doses of 10?Gy and 50?Gy or left untreated. Bioluminometric real-time recordings show a stable oscillation of all OLSC, OAEC and OPEC for up to 12 days in vitro. Oscillations persist after irradiation with X-rays. However, a dose of 50?Gy caused a phase advance in the rhythm of the OLSC by 5?h, in the OPEC by 7?h and in the OAEC by 6?h. Our study shows that X-rays affect the molecular clockwork in liver, pancreas and adrenal leading to phase advances. Our results confirm and extend previous studies showing a phase-advancing effect of X-rays at the level of the whole animal and single cells. PMID:25140390

Müller, Mareike Hildegard; Rödel, Franz; Rüb, Udo; Korf, Horst-Werner

2015-02-01

387

Joint IAMAS/IAHS Symposium J1 on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere  

NASA Technical Reports Server (NTRS)

Seventy papers were presented at the two-and-a-half-day Symposium on Global Monitoring and Advanced Observing Techniques in the Atmosphere and Hydrosphere. The symposium was jointly organized by the International Association of Meteorology and Atmospheric Sciences (IAMAS) and the International Association of Hydrological Sciences (IAHS). Global observing systems are receiving increased attention in connection with such problems as monitoring global climate change. The symposium included papers on observational requirements; measurement methodologies; descriptions of available datasets; results of analysis of observational data; plans for future observing systems, including the Global Climate Observing System (GCOS) and the Global Ocean Observing System (GOOS); and the programs and plans of the space agencies.

Ohring, G.; Aoki, T.; Halpern D.; Henderson-Sellers, A.; Charlock, T.; Joseph, J.; Labitzke, K.; Raschke, E.; Smith, W.

1994-01-01

388

Advanced latency reduction technique to avoid jitters in MPEG-1 layer 3 streaming over slow link PPP in IPv6  

NASA Astrophysics Data System (ADS)

This paper describes advanced latency reduction architecture to serve MPEG-1 layer 3 (MP3) sound stream over low bit rate links with IPv6 PPP and its experimentation. Our new technique totally manages late frames and delay jitters in conjunction with rate adjustable stream service in application and jitter control mechanism in data link layer. We have implemented a new IPv6 PPP and rate control scheme experimentally under BSD Unix to fit slow links. We have also measured performance to decide QoS parameters carefully so it will be suitable for use in the real world.

Kitagawa, Kazuhiro; Funato, Daichi; Okada, Shunichiro; Kohiyama, Kenji; Saito, Nobuo

1999-11-01

389

Rotational reorientation dynamics of polar dye molecular probes by picosecond laser spectroscopic technique  

NASA Astrophysics Data System (ADS)

Fluorescence lifetimes and rotational reorientation times for four structurally similar dye molecules—three monocations: cresyl violet, nile blue, and oxazine 720 and one neutral but polar: nile red—have been measured by picosecond time-resolved fluorescence depolarization spectroscopy using the single-photon counting technique, in a number of solvents, which included a wide range of alcohols, other hydrogen-bonding liquids, and a few aprotic liquids. The rotational reorientation of the dye probes (assumed to be oblate ellipsoids) are sought to be explained in terms of the Stokes-Einstein-Debye theory and dielectric friction. The individual contributions to the rotational friction due to the above two factors were calculated using reasonable values for the molecular volume and dipole moment of the solute. The rotational behavior of all the four dyes in amides and aprotic solvents is reasonably well explained in terms of the simple stick hydrodynamic model with the ``molecular volume'' obtained by using the measured rotational reorientation time in water. On the other hand, in order to describe the rotational reorientation dynamics of all the dye molecules in n-alcohols, it is necessary to include the friction contribution due to the dielectric properties of the solvent. It appears that a change in boundary condition, something intermediate between stick and slip or close to slip, is required to satisfactorily explain the rotational reorientation times of the dye molecules in polyalcohols like ethylene glycol and glycerol. Investigation of the rotational behavior of all the four dyes as a function of viscosity by varying the temperature has been carried out in three solvents: 1-heptanol, 1-undecanol, and ethylene glycol. While the rotational reorientation times had a good linear ?/T dependence, it was found that at a particular macroscopic viscosity value the rotational reorientation times obtained by the solvent variation and temperature variation are different. From the temperature variation study it was found that there is a satisfactory agreement between the solvent viscosity activation energy and the activation energy obtained for the reorientation rate of the dye probe molecules.

Dutt, G. B.; Doraiswamy, S.; Periasamy, N.; Venkataraman, B.

1990-12-01

390

POC-SCALE TESTING OF AN ADVANCED FINE COAL DEWATERING EQUIPMENT/TECHNIQUE  

SciTech Connect

Dewatering of ultra-fine (minus 150 {micro}m) coal slurry to less than 20% moisture is difficult using the conventional dewatering techniques. The main objective of the project was to evaluate a novel surface modification technique, which utilizes the synergistic effect of metal ions and surfactants in combination for the dewatering of ultra-fine clean-coal slurries using various dewatering techniques on a proof-of-concept (POC) scale of 0.5 to 2 tons per hour. The addition of conventional reagents and the application of coal surface modification technique were evaluated using vacuum filtration, hyperbaric (pressure) filtration, ceramic plate filtration and screen-bowl centrifuge techniques. The laboratory and pilot-scale dewatering studies were conducted using the fine-size, clean-coal slurry produced in the column flotation circuit at the Powell Mountain Coal Company, St. Charles, VA. The pilot-scale studies were conducted at the Mayflower preparation plant in St. Charles, VA. The program consisted of nine tasks, namely, Task 1--Project Work Planning, Task 2--Laboratory Testing, Task 3--Engineering Design, Task 4--Procurement and Fabrication, Task 5--Installation and Shakedown, Task 6--System Operation, Task 7--Process Evaluation, Task 8--Equipment Removal, and Task 9--Reporting.

X.H. Wang; J. Wiseman; D.J. Sung; D. McLean; William Peters; Jim Mullins; John Hugh; G. Evans; Vince Hamilton; Kenneth Robinette; Tim Krim; Michael Fleet

1999-08-01

391

Advances in the use of the RNA interference technique in Hemiptera.  

PubMed

RNA interference (RNAi) suppresses the expression of target genes by post-transcriptional regulation. Because double-stranded RNA (dsRNA) mediated gene silencing is a conserved mechanism in many eukaryotes, RNAi has become a valuable tool for unveiling gene function in many model insects. Recent research has also shown that RNAi can also be effective in the downregulation of target genes in Hemiptera. In this review, we discuss the use of the RNAi technique in gene functional analysis in hemipterans, highlighting the methods of dsRNA uptake by these insects and discuss the knock-down efficiency of these techniques. Although the RNAi technique has disadvantages, our primary goal here is to determine whether it can be exploited further in the discovery of new gene functions, and as a pest control strategy, in some important Hemipteran pests. PMID:23955823

Li, Jie; Wang, Xiao-Ping; Wang, Man-Qun; Ma, Wei-Hua; Hua, Hong-Xia

2013-02-01

392

Advanced Analytical Techniques for the Measurement of Nanomaterials in Food and Agricultural Samples: A Review  

PubMed Central

Abstract Nanotechnology offers substantial prospects for the development of state-of-the-art products and applications for agriculture, water treatment, and food industry. Profuse use of nanoproducts will bring potential benefits to farmers, the food industry, and consumers, equally. However, after end-user applications, these products and residues will find their way into the environment. Therefore, discharged nanomaterials (NMs) need to be identified and quantified to determine their ecotoxicity and the levels of exposure. Detection and characterization of NMs and their residues in the environment, particularly in food and agricultural products, have been limited, as no single technique or method is suitable to identify and quantify NMs. In this review, we have discussed the available literature concerning detection, characterization, and measurement techniques for NMs in food and agricultural matrices, which include chromatography, flow field fractionation, electron microscopy, light scattering, and autofluorescence techniques, among others. PMID:23483065

Bandyopadhyay, Susmita; Peralta-Videa, Jose R.; Gardea-Torresdey, Jorge L.

2013-01-01

393

Advanced analysis technique for the evaluation of linear alternators and linear motors  

NASA Technical Reports Server (NTRS)

A method for the mathematical analysis of linear alternator and linear motor devices and designs is described, and an example of its use is included. The technique seeks to surpass other methods of analysis by including more rigorous treatment of phenomena normally omitted or coarsely approximated such as eddy braking, non-linear material properties, and power losses generated within structures surrounding the device. The technique is broadly applicable to linear alternators and linear motors involving iron yoke structures and moving permanent magnets. The technique involves the application of Amperian current equivalents to the modeling of the moving permanent magnet components within a finite element formulation. The resulting steady state and transient mode field solutions can simultaneously account for the moving and static field sources within and around the device.

Holliday, Jeffrey C.

1995-01-01

394

Advanced, time-resolved imaging techniques for electron-beam characterizations  

SciTech Connect

Several unique time-resolved imaging techniques have been developed to address radio frequency (RF)-linac generated electron beams and the free-electron lasers (FEL) driven by such systems. The time structures of these beams involve a series of micropulses with 10 to 15-ps duration, separated by tens of nanoseconds. Mechanisms to convert the e-beam information to optical radiation include optical transition radiation (OTR), Cherenkov radiation, spontaneous emission radiation (SER), and the FEL mechanism itself. The use of gated, intensified television cameras and synchroscan and dual-sweep streak cameras to time-resolve these signals has greatly enhanced the power of these techniques. A brief review of the less familiar conversion mechanisms and electro-optic techniques is followed by a series of specific experimental examples from the RF linac FEL facilities at Los Alamos and Boeing (Seattle, WA). 23 refs., 35 figs., 3 tabs.

Lumpkin, A.H.

1990-01-01

395

Advanced microprocessor based power protection system using artificial neural network techniques  

SciTech Connect

This paper describes an intelligent embedded microprocessor based system for fault classification in power system protection system using advanced 32-bit microprocessor technology. The paper demonstrates the development of protective relay to provide overcurrent protection schemes for fault detection. It also describes a method for power fault classification in three-phase system based on the use of neural network technology. The proposed design is implemented and tested on a single line three phase power system in power laboratory. Both the hardware and software development are described in detail.

Chen, Z.; Kalam, A.; Zayegh, A. [Victoria Univ. of Technology, Melbourne , Victoria (Australia). Save Energy Research Group

1995-12-31

396

Advanced computer techniques for inverse modeling of electric current in cardiac tissue  

SciTech Connect

For many years, ECG`s and vector cardiograms have been the tools of choice for non-invasive diagnosis of cardiac conduction problems, such as found in reentrant tachycardia or Wolff-Parkinson-White (WPW) syndrome. Through skillful analysis of these skin-surface measurements of cardiac generated electric currents, a physician can deduce the general location of heart conduction irregularities. Using a combination of high-fidelity geometry modeling, advanced mathematical algorithms and massively parallel computing, Sandia`s approach would provide much more accurate information and thus allow the physician to pinpoint the source of an arrhythmia or abnormal conduction pathway.

Hutchinson, S.A.; Romero, L.A.; Diegert, C.F.

1996-08-01

397

Principles and techniques in the design of ADMS+. [advanced data-base management system  

NASA Technical Reports Server (NTRS)

'ADMS+/-' is an advanced data base management system whose architecture integrates the ADSM+ mainframe data base system with a large number of work station data base systems, designated ADMS-; no communications exist between these work stations. The use of this system radically decreases the response time of locally processed queries, since the work station runs in a single-user mode, and no dynamic security checking is required for the downloaded portion of the data base. The deferred update strategy used reduces overhead due to update synchronization in message traffic.

Roussopoulos, Nick; Kang, Hyunchul

1986-01-01

398

Advanced atomic force microscopy techniques for characterizing the properties of cellulosic nanomaterials  

NASA Astrophysics Data System (ADS)

The measurement of nanomechanical properties is of great interest to science and industry. Key to progress in this area is the development of new techniques and analysis methods to identify, measure, and quantify these properties. In this dissertation, new data analysis methods and experimental techniques for measuring nanomechanical properties with the atomic force microscope (AFM) are considered. These techniques are then applied to the study of cellulose nanoparticles, an abundant, plant derived nanomaterial. Quantifying uncertainty is a prerequisite for the manufacture of reliable nano-engineered materials and products. However, rigorous uncertainty quantification is rarely applied for material property measurements with the AFM. A framework is presented to ascribe uncertainty to local nanomechanical properties of any nanoparticle or surface measured with the AFM by taking into account the main uncertainty sources inherent in such measurements. This method is demonstrated by quantifying uncertainty in force displacement AFM based measurements of the transverse elastic modulus of tunicate cellulose nanocrystals. Next, a more comprehensive study of different types of cellulose nanoparticles is undertaken with contact resonance (CR) AFM. CR-AFM is a dynamic AFM technique that exploits the resonance frequency of the AFM cantilever while it is permanent contact with the sample surface to predict nanomechanical properties. This technique offers improved measurement sensitivity over static AFM methods for some material systems. The effects of cellulose source material and processing technique on the properties of cellulose nanoparticles are compared. Finally, dynamic AFM cantilever vibration shapes are studied. Many AFM modes exploit the dynamic response of a cantilever in permanent contact with a sample to extract local material properties. A common challenge to these modes is that they assume a certain shape of cantilever vibration, which is not accessible in standard AFM measurements. A method is presented to measure these vibrational shapes. This method is then used to study CR-AFM, providing unique insight into CR-AFM modeling and experiments. The methodologies discussed in this dissertation provide improved capability to measure nanomechanical properties with the AFM.

Wagner, Ryan Bradley

399

Interactive association between biopolymers and biofunctions in carinata seeds as energy feedstock and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation: current advanced molecular spectroscopic investigations.  

PubMed

Recent advances in biofuel and bio-oil processing technology require huge supplies of energy feedstocks for processing. Very recently, new carinata seeds have been developed as energy feedstocks for biofuel and bio-oil production. The processing results in a large amount of coproducts, which are carinata meal. To date, there is no systematic study on interactive association between biopolymers and biofunctions in carinata seed as energy feedstocks for biofuel and bioethanol processing and their processing coproducts (carinata meal). Molecular spectroscopy with synchrotron and globar sources is a rapid and noninvasive analytical technique and is able to investigate molecular structure conformation in relation to biopolymer functions and bioavailability. However, to date, these techniques are seldom used in biofuel and bioethanol processing in other research laboratories. This paper aims to provide research progress and updates with molecular spectroscopy on the energy feedstock (carinata seed) and coproducts (carinata meal) from biofuel and bioethanol processing and show how to use these molecular techniques to study the interactive association between biopolymers and biofunctions in the energy feedstocks and their coproducts (carinata meal) from biofuel and bio-oil processing before and after biodegradation. PMID:24773576

Yu, Peiqiang; Xin, Hangshu; Ban, Yajing; Zhang, Xuewei

2014-05-01

400

POC-scale testing of an advanced fine coal dewatering equipment/technique. Quarterly progress report, July - September 1996  

SciTech Connect

The advanced fine-coal cleaning techniques such as column flotation, recovers a low-ash ultra-fine size clean-coal product. However, economical dewatering of the clean coal product to less than 20 percent moisture using conventional technology is difficult. This research program objective is to evaluate a novel coal surface modification technique developed at the University of Kentucky Center for Applied Energy Research in conjunction with conventional and advanced dewatering technique at a pilot scale. The study which is in progress is being conducted at the Powell Mountain Coal Company`s Mayflower preparation plant located in St. Charles, VA. During this quarter laboratory dewatering studies were conducted using a 4-in diameter laboratory chemical centrifuge. The baseline data provided a filter cake with about 32% moisture. Addition of 0.3 kg/t of a cationic surfactant lowered the moisture to 29%. Addition of anionic and non-ionic surfactant was not effective in reducing the filter cake moisture content. In the pilot scale studies, a comparison was conducted between the high pressure and vacuum dewatering techniques. The base line data with high pressure and vacuum filtration provided filter cakes with 23.6% and 27.8% moisture, respectively. Addition of 20 g/t of cationic flocculent provided 21% filter cake moisture using the high pressure filter. A 15% moisture filter cake was obtained using 1.5 kg/t of non-ionic surfactant. Vacuum filter provided about 23% to 25% moisture product with additional reagents. The high pressure filter processed about 3 to 4 times more solids compared to vacuum filter.

Tao, D.; Groppo, J.G.; Parekh, B.K.

1996-10-01

401

Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique  

PubMed Central

Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996

2014-01-01

402

Progress in ceramic-metal joining and metallization - An overview of techniques and recent advances  

Microsoft Academic Search

The various techiques used for joining ceramics and metals and for metallization of ceramics are discussed, and the procedures involved in each of these processes are described with special attention given to the most important aspects. The techniques discussed include the sintered metal powder process, metal powder-glass frit, active metal brazing, glass bonding\\/nonmetal fusion, gas metal eutectic, pressed diffusion, vapor

Victor A. Greenhut

1991-01-01

403

Advanced SuperDARN meteor wind observations based on raw time series analysis technique  

NASA Astrophysics Data System (ADS)

The meteor observation technique based on SuperDARN raw time series analysis has been upgraded. This technique extracts meteor information as biproducts and does not degrade the quality of normal SuperDARN operations. In the upgrade the radar operating system (RADOPS) has been modified so that it can oversample every 15 km during the normal operations, which have a range resolution of 45 km. As an alternative method for better range determination a frequency domain interferometry (FDI) capability was also coded in RADOPS, where the operating radio frequency can be changed every pulse sequence. Test observations were conducted using the CUTLASS Iceland East and Finland radars, where oversampling and FDI operation (two frequencies separated by 3 kHz) were simultaneously carried out. Meteor ranges obtained in both ranging techniques agreed very well. The ranges were then combined with the interferometer data to estimate meteor echo reflection heights. Although there were still some ambiguities in the arrival angles of echoes because of the rather long antenna spacing of the interferometers, the heights and arrival angles of most of meteor echoes were more accurately determined than previously. Wind velocities were successfully estimated over the height range of 84 to 110 km. The FDI technique developed here can be further applied to the common SuperDARN operation, and study of fine horizontal structures of F region plasma irregularities is expected in the future.

Tsutsumi, M.; Yukimatu, A. S.; Holdsworth, D. A.; Lester, M.

2009-04-01

404

Recent Advance of Hydride Generation-Analytical Atomic Spectrometry: Part I-Technique Development  

Microsoft Academic Search

Hydride generation is the most popular and widely used chemical vapor generation, which is always interesting to analytical chemists as an effective sample introduction method, especially for elemental determination and speciation analysis by analytical atomic spectrometry. The present review provides a literature survey on the hydride generation technique coupled to analytical atomic spectrometry during the past several years, covering the

Zhou Long; Yamin Luo; Chengbin Zheng; Pengchi Deng; Xiandeng Hou

2012-01-01

405

ADVANCED NUMERICAL TECHNIQUES IN ROCK SLOPE STABILITY ANALYSIS - APPLICATIONS AND LIMITATIONS  

Microsoft Academic Search

Stability analyses are routinely performed in order to assess the safe and functional design of an excavated slope (e.g. open pit mining, road cuts, etc.), and\\/or the equilibrium conditions of a natural slope. The analysis technique chosen depends on both site conditions and the potential mode of failure, with careful consideration being given to the varying strengths, weaknesses and limitations

Doug Stead; John Coggan

406

Advance development of a technique for characterizing the thermomechanical properties of thermally stable polymers  

NASA Technical Reports Server (NTRS)

The torsional braid experiment has been interfaced with a centralized hierarchical computing system for data acquisition and data processing. Such a system, when matched by the appropriate upgrading of the monitoring techniques, provides high resolution thermomechanical spectra of rigidity and damping, and their derivatives with respect to temperature.

Gillham, J. K.; Stadnicki, S. J.; Hazony, Y.

1974-01-01

407

ADVANCES IN OPTICALLY PUMPED He4 MAGNETOMETERS : RESONANCE AND NONRESONANCE TECHNIQUES  

E-print Network

to the observed magnetic field are presented in this paper. The orientation dependence of the amplitude and frequency of the magnetic resonance signal observed by optical techniques has been measured. These results are theoretically interpreted by taking into account the contribution of the indi- vidual magnetic resonances

Boyer, Edmond

408

Recent Advances in Computational Techniques for Simulation of Flow in Porous Media  

E-print Network

high performance computers. New issues on finite element techniques and pseudo­spectral methods­dimensions. Porous media flow simulations of such large models can only be accomplished with high performance computing. However, fast computers are not sufficient for such detailed simulations. There is also the need

Coutinho, Alvaro L. G. A.

409

An advanced test technique to quantify thermomechanical fatigue damage accumulation in composite materials  

NASA Technical Reports Server (NTRS)

A mechanical test technique was developed to assist in quantifying the accumulation of damage in composite materials during thermomechanical fatigue (TMF) cycling. This was accomplished by incorporating definitive elastic mechanical property measurements into an ongoing load-controlled TMF test without disturbing the test specimen or significantly altering the test conditions. The technique allows two fundamental composite properties consisting of the isothermal elastic static moduli and the macroscopic coefficient of thermal expansion (CTE) to be measured and collected as functions of the TMF cycles. The specific implementation was incorporated into the commonly employed idealized in-phase and out-of-phase TMF cycles. However, the techniques discussed could be easily implemented into any form of load-controlled TMF mission cycle. By quantifying the degradations of these properties, tremendous insights are gained concerning the progression of macroscopic composite damage and often times the progression of damage within a given constituent. This information should also be useful for the characterization and essential for the verification of analytical damage modeling methodologies. Several examples utilizing this test technique are given for three different fiber lay-ups of titanium metal matrix composites.

Castelli, Michael G.

1993-01-01

410

Carbon dioxide capture and separation techniques for advanced power generation point sources  

SciTech Connect

The capture/separation step for carbon dioxide (CO2) from large-point sources is a critical one with respect to the technical feasibility and cost of the overall carbon sequestration scenario. For large-point sources, such as those found in power generation, the carbon dioxide capture techniques being investigated by the in-house research area of the National Energy Technology Laboratory possess the potential for improved efficiency and costs as compared to more conventional technologies. The investigated techniques can have wide applications, but the research has focused on capture/separation of carbon dioxide from flue gas (postcombustion from fossil fuel-fired combustors) and from fuel gas (precombustion, such as integrated gasification combined cycle – IGCC). With respect to fuel gas applications, novel concepts are being developed in wet scrubbing with physical absorption; chemical absorption with solid sorbents; and separation by membranes. In one concept, a wet scrubbing technique is being investigated that uses a physical solvent process to remove CO2 from fuel gas of an IGCC system at elevated temperature and pressure. The need to define an ideal solvent has led to the study of the solubility and mass transfer properties of various solvents. Fabrication techniques and mechanistic studies for hybrid membranes separating CO2 from the fuel gas produced by coal gasification are also being performed. Membranes that consist of CO2-philic silanes incorporated into an alumina support or ionic liquids encapsulated into a polymeric substrate have been investigated for permeability and selectivity. An overview of two novel techniques is presented along with a research progress status of each technology.

Pennline, H.W.; Luebke, D.R.; Morsi, B.I.; Heintz, Y.J.; Jones, K.L.; Ilconich, J.B.

2006-09-01

411

Microprobing the Molecular Spatial Distribution and Structural Architecture of Feed-type Sorghum Seed Tissue (Sorghum Bicolor L.) using the Synchrotron Radiation Infrared Microspectroscopy Technique  

SciTech Connect

Sorghum seed (Sorghum bicolor L.) has unique degradation and fermentation behaviours compared with other cereal grains such as wheat, barley and corn. This may be related to its cell and cell-wall architecture. The advanced synchrotron radiation infrared microspectroscopy (SR-IMS) technique enables the study of cell or living cell biochemistry within cellular dimensions. The objective of this study was to use the SR-IMS imaging technique to microprobe molecular spatial distribution and cell architecture of the sorghum seed tissue comprehensively. High-density mapping was carried out using SR-IMS on beamline U2B at the National Synchrotron Light Source (Brookhaven National Laboratory, NY, USA). Molecular