Sample records for advanced navigation information

  1. Developing Navigation Competencies to Care for Older Rural Adults with Advanced Illness.

    PubMed

    Duggleby, Wendy; Robinson, Carole A; Kaasalainen, Sharon; Pesut, Barbara; Nekolaichuk, Cheryl; MacLeod, Roderick; Keating, Norah C; Santos Salas, Anna; Hallstrom, Lars K; Fraser, Kimberly D; Williams, Allison; Struthers-Montford, Kelly; Swindle, Jennifer

    2016-06-01

    Navigators help rural older adults with advanced illness and their families connect to needed resources, information, and people to improve their quality of life. This article describes the process used to engage experts - in rural aging, rural palliative care, and navigation - as well as rural community stakeholders to develop a conceptual definition of navigation and delineate navigation competencies for the care of this population. A discussion paper on the important considerations for navigation in this population was developed followed by a four-phased Delphi process with 30 expert panel members. Study results culminated in five general navigation competencies for health care providers caring for older rural persons and their families at end of life: provide patient/family screening; advocate for the patient/family; facilitate community connections; coordinate access to services and resources; and promote active engagement. Specific competencies were also developed. These competencies provide the foundation for research and curriculum development in navigation.

  2. Advanced Navigation Strategies For Asteroid Sample Return Missions

    NASA Technical Reports Server (NTRS)

    Getzandanner, K.; Bauman, J.; Williams, B.; Carpenter, J.

    2010-01-01

    Flyby and rendezvous missions to asteroids have been accomplished using navigation techniques derived from experience gained in planetary exploration. This paper presents analysis of advanced navigation techniques required to meet unique challenges for precision navigation to acquire a sample from an asteroid and return it to Earth. These techniques rely on tracking data types such as spacecraft-based laser ranging and optical landmark tracking in addition to the traditional Earth-based Deep Space Network radio metric tracking. A systematic study of navigation strategy, including the navigation event timeline and reduction in spacecraft-asteroid relative errors, has been performed using simulation and covariance analysis on a representative mission.

  3. Advance (Advanced Driver and Vehicle Advisory Navigation ConcEpt) Project: Insights and Achievements Compendium

    DOT National Transportation Integrated Search

    1996-10-23

    ADVANCE (Advanced Driver and Vehicle Advisory Navigation ConcEpt) was a public/private partnership developed by the Federal Highway Administration (FHWA), the Illinois Department of Transportation (IDOT), the University of Illinois at Chicago and Nor...

  4. Advanced Endoscopic Navigation: Surgical Big Data, Methodology, and Applications.

    PubMed

    Luo, Xiongbiao; Mori, Kensaku; Peters, Terry M

    2018-06-04

    Interventional endoscopy (e.g., bronchoscopy, colonoscopy, laparoscopy, cystoscopy) is a widely performed procedure that involves either diagnosis of suspicious lesions or guidance for minimally invasive surgery in a variety of organs within the body cavity. Endoscopy may also be used to guide the introduction of certain items (e.g., stents) into the body. Endoscopic navigation systems seek to integrate big data with multimodal information (e.g., computed tomography, magnetic resonance images, endoscopic video sequences, ultrasound images, external trackers) relative to the patient's anatomy, control the movement of medical endoscopes and surgical tools, and guide the surgeon's actions during endoscopic interventions. Nevertheless, it remains challenging to realize the next generation of context-aware navigated endoscopy. This review presents a broad survey of various aspects of endoscopic navigation, particularly with respect to the development of endoscopic navigation techniques. First, we investigate big data with multimodal information involved in endoscopic navigation. Next, we focus on numerous methodologies used for endoscopic navigation. We then review different endoscopic procedures in clinical applications. Finally, we discuss novel techniques and promising directions for the development of endoscopic navigation.

  5. Advanced Navigation Strategies for an Asteroid Sample Return Mission

    NASA Technical Reports Server (NTRS)

    Bauman, J.; Getzandanner, K.; Williams, B.; Williams, K.

    2011-01-01

    The proximity operations phases of a sample return mission to an asteroid have been analyzed using advanced navigation techniques derived from experience gained in planetary exploration. These techniques rely on tracking types such as Earth-based radio metric Doppler and ranging, spacecraft-based ranging, and optical navigation using images of landmarks on the asteroid surface. Navigation strategies for the orbital phases leading up to sample collection, the touch down for collecting the sample, and the post sample collection phase at the asteroid are included. Options for successfully executing the phases are studied using covariance analysis and Monte Carlo simulations of an example mission to the near Earth asteroid 4660 Nereus. Two landing options were studied including trajectories with either one or two bums from orbit to the surface. Additionally, a comparison of post-sample collection strategies is presented. These strategies include remaining in orbit about the asteroid or standing-off a given distance until departure to Earth.

  6. Fractal dimension and the navigational information provided by natural scenes.

    PubMed

    Shamsyeh Zahedi, Moosarreza; Zeil, Jochen

    2018-01-01

    Recent work on virtual reality navigation in humans has suggested that navigational success is inversely correlated with the fractal dimension (FD) of artificial scenes. Here we investigate the generality of this claim by analysing the relationship between the fractal dimension of natural insect navigation environments and a quantitative measure of the navigational information content of natural scenes. We show that the fractal dimension of natural scenes is in general inversely proportional to the information they provide to navigating agents on heading direction as measured by the rotational image difference function (rotIDF). The rotIDF determines the precision and accuracy with which the orientation of a reference image can be recovered or maintained and the range over which a gradient descent in image differences will find the minimum of the rotIDF, that is the reference orientation. However, scenes with similar fractal dimension can differ significantly in the depth of the rotIDF, because FD does not discriminate between the orientations of edges, while the rotIDF is mainly affected by edge orientation parallel to the axis of rotation. We present a new equation for the rotIDF relating navigational information to quantifiable image properties such as contrast to show (1) that for any given scene the maximum value of the rotIDF (its depth) is proportional to pixel variance and (2) that FD is inversely proportional to pixel variance. This contrast dependence, together with scene differences in orientation statistics, explains why there is no strict relationship between FD and navigational information. Our experimental data and their numerical analysis corroborate these results.

  7. The Relationships between Navigational Patterns and Informational Processing Styles of Hypermedia Users.

    ERIC Educational Resources Information Center

    Lee, Mi Jar; Harvey, Francis A.

    This study investigated the relationships between hypermedia users' information processing styles and navigational patterns. Three aspects of navigational patterns were investigated: navigational depth patterns that reveal how comprehensively users access; navigational path patterns that display what sequences users follow; and navigational method…

  8. PATIENT NAVIGATION MODERATES EMOTION AND INFORMATION DEMANDS OF CANCER TREATMENT: A QUALITATIVE ANALYSIS

    PubMed Central

    Rousseau, Sally J.; Humiston, Sharon G.; Yosha, Amy; Winters, Paul C.; Loader, Starlene; Luong, Vi; Schwartzbauer, Bonnie; Fiscella, Kevin

    2014-01-01

    Purpose Patient navigation is increasingly employed to guide patients through cancer treatment. We assessed the elements of navigation that promoted patients’ involvement in treatment among patients with breast and colorectal cancer that participated in a navigation study. Methods We conducted qualitative analysis of 28 audiotaped and transcribed semi-structured interviews of navigated and un-navigated cancer patients. Results Themes included feeling emotionally and cognitively overwhelmed and desire for a strong patient-navigator partnership. Both participants who were navigated and those who were not felt that navigation did or could help address their emotional, informational, and communicational needs. The benefits of logistical support were cited less often. Conclusions Findings underscore the salience of personal relationships between patients and navigators in meeting patients’ emotional and informational needs. PMID:24890503

  9. Patient navigation moderates emotion and information demands of cancer treatment: a qualitative analysis.

    PubMed

    Rousseau, Sally J; Humiston, Sharon G; Yosha, Amy; Winters, Paul C; Loader, Starlene; Luong, Vi; Schwartzbauer, Bonnie; Fiscella, Kevin

    2014-12-01

    Patient navigation is increasingly employed to guide patients through cancer treatment. We assessed the elements of navigation that promoted patients' involvement in treatment among patients with breast and colorectal cancer that participated in a navigation study. We conducted qualitative analysis of 28 audiotaped and transcribed semi-structured interviews of navigated and unnavigated cancer patients. Themes included feeling emotionally and cognitively overwhelmed and desire for a strong patient-navigator partnership. Both participants who were navigated and those who were not felt that navigation did or could help address their emotional, informational, and communicational needs. The benefits of logistical support were cited less often. Findings underscore the salience of personal relationships between patients and navigators in meeting patients' emotional and informational needs.

  10. Issues in symbol design for electronic displays of navigation information

    DOT National Transportation Integrated Search

    2004-10-24

    An increasing number of electronic displays, ranging from small hand-held displays for general aviation to installed displays for air transport, are showing navigation information, such as symbols representing navigational aids. The wide range of dis...

  11. Fusion of navigational data in River Information Services

    NASA Astrophysics Data System (ADS)

    Kazimierski, W.

    2009-04-01

    . Their main advantage over AIS is total independence from tracked target's facilities. For example, wrong indications of ship's GPS would affect AIS accuracy, but wouldn't have any impact on values estimated by radar. In addition to this in many times update rate for AIS data is longer than for radar. Thus, it can be noticed, that efficient tracking system introduced in RIS shall use both AIS receivers (based on satellite derived positions), and independent radar and camera sensors. This will however cause determining at least two different set of information about positions and movement parameters of targets. Doubled or multiplied vectors for single target are unacceptable, due to safety of navigation and traffic management. Hence the need of data fusion in RIS is obvious. The main goal is to develop unambiguous, clear and reliable information about ships' position and movement for all users in the system. Data fusion itself is not a new problem in maritime navigation. There are systems of Integrated Bridge on sea-going ships, which use information coming out from different sources. However the possibilities of integration of navigational information in the aspect of inland navigation, especially in River Information Services, still needs to be thoroughly surveyed. It is quite useful for simplifying the deduction, to introduce two data fusion levels. First of them is being done on board of the vessel. Its aim is to integrate all information coming from different sensors in the so called Integrated Navigational System. The other task of this fusion is to estimate reliable information about other objects based on AIS and radar. The second level is the integration of AIS, radar and closed-circuit television (CCTV) carried out in coastal station in order to determine Tactical and Strategic Traffic Image. The navigational information in RIS itself can be divided into two main groups. The first one is called static data and contains al basic information related to ship itself

  12. Implementation and Impact of Patient Lay Navigator-Led Advance Care Planning Conversations.

    PubMed

    Rocque, Gabrielle B; Dionne-Odom, J Nicholas; Sylvia Huang, Chao-Hui; Niranjan, Soumya J; Williams, Courtney P; Jackson, Bradford E; Halilova, Karina I; Kenzik, Kelly M; Bevis, Kerri S; Wallace, Audrey S; Lisovicz, Nedra; Taylor, Richard A; Pisu, Maria; Partridge, Edward E; Butler, Thomas W; Briggs, Linda A; Kvale, Elizabeth A

    2017-04-01

    Advance care planning (ACP) improves alignment between patient preferences for life-sustaining treatment and care received at end of life (EOL). To evaluate implementation of lay navigator-led ACP. A convergent, parallel mixed-methods design was used to evaluate implementation of navigator-led ACP across 12 cancer centers. Data collection included 1) electronic navigation records, 2) navigator surveys (n = 45), 3) claims-based patient outcomes (n = 820), and 4) semistructured navigator interviews (n = 26). Outcomes of interest included 1) the number of ACP conversations completed, 2) navigator self-efficacy, 3) patient resource utilization, hospice use, and chemotherapy at EOL, and 4) navigator-perceived barriers and facilitators to ACP. From June 1, 2014 to December 31, 2015, 50 navigators completed Respecting Choices ® First Steps ACP Facilitator training. Navigators approached 18% of patients (1319/8704); 481 completed; 472 in process; 366 declined. Navigators were more likely to approach African American patients than Caucasian patients (20% vs. 14%, P < 0.001). Significant increases in ACP self-efficacy were observed after training. The mean score for feeling prepared to conduct ACP conversations increased from 5.6/10 to 7.5/10 (P < 0.001). In comparison with patients declining ACP participation (n = 171), decedents in their final 30 days of life who engaged in ACP (n = 437) had fewer hospitalizations (46% vs. 56%, P = 0.02). Key facilitators of successful implementation included physician buy-in, patient readiness, and prior ACP experience; barriers included space limitations, identifying the "right" time to start conversations, and personal discomfort discussing EOL. A navigator-led ACP program was feasible and may be associated with lower rates of resource utilization near EOL. Copyright © 2017 American Academy of Hospice and Palliative Medicine. All rights reserved.

  13. Air Navigation. Flying Training. AFM 51-40. NAVAIR 00-80V-49.

    ERIC Educational Resources Information Center

    Air Training Command, Randolph AFB, TX.

    This manual provides information on all phases of air navigation for navigators and student navigators in training. It develops the art of navigation from the simplest concepts to the most advanced procedures and techniques. The text contains explanations on how to measure, map, and chart the earth; how to use basic instruments to obtain…

  14. Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.

  15. Evaluation of a novel Conjunctive Exploratory Navigation Interface for consumer health information: a crowdsourced comparative study.

    PubMed

    Cui, Licong; Carter, Rebecca; Zhang, Guo-Qiang

    2014-02-10

    Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (P<.001). Wilcoxon signed-rank test (one

  16. Advanced information processing system: Hosting of advanced guidance, navigation and control algorithms on AIPS using ASTER

    NASA Technical Reports Server (NTRS)

    Brenner, Richard; Lala, Jaynarayan H.; Nagle, Gail A.; Schor, Andrei; Turkovich, John

    1994-01-01

    This program demonstrated the integration of a number of technologies that can increase the availability and reliability of launch vehicles while lowering costs. Availability is increased with an advanced guidance algorithm that adapts trajectories in real-time. Reliability is increased with fault-tolerant computers and communication protocols. Costs are reduced by automatically generating code and documentation. This program was realized through the cooperative efforts of academia, industry, and government. The NASA-LaRC coordinated the effort, while Draper performed the integration. Georgia Institute of Technology supplied a weak Hamiltonian finite element method for optimal control problems. Martin Marietta used MATLAB to apply this method to a launch vehicle (FENOC). Draper supplied the fault-tolerant computing and software automation technology. The fault-tolerant technology includes sequential and parallel fault-tolerant processors (FTP & FTPP) and authentication protocols (AP) for communication. Fault-tolerant technology was incrementally incorporated. Development culminated with a heterogeneous network of workstations and fault-tolerant computers using AP. Draper's software automation system, ASTER, was used to specify a static guidance system based on FENOC, navigation, flight control (GN&C), models, and the interface to a user interface for mission control. ASTER generated Ada code for GN&C and C code for models. An algebraic transform engine (ATE) was developed to automatically translate MATLAB scripts into ASTER.

  17. Recent Advances in Image Assisted Neurosurgical Procedures: Improved Navigational Accuracy and Patient Safety

    ScienceCinema

    Olivi, Alessandro, M.D.

    2017-12-09

    Neurosurgical procedures require precise planning and intraoperative support. Recent advances in image guided technology have provided neurosurgeons with improved navigational support for more effective and safer procedures. A number of exemplary cases will be presented.

  18. Design and Development of the WVU Advanced Technology Satellite for Optical Navigation

    NASA Astrophysics Data System (ADS)

    Straub, Miranda

    In order to meet the demands of future space missions, it is beneficial for spacecraft to have the capability to support autonomous navigation. This is true for both crewed and uncrewed vehicles. For crewed vehicles, autonomous navigation would allow the crew to safely navigate home in the event of a communication system failure. For uncrewed missions, autonomous navigation reduces the demand on ground-based infrastructure and could allow for more flexible operation. One promising technique for achieving these goals is through optical navigation. To this end, the present work considers how camera images of the Earth's surface could enable autonomous navigation of a satellite in low Earth orbit. Specifically, this study will investigate the use of coastlines and other natural land-water boundaries for navigation. Observed coastlines can be matched to a pre-existing coastline database in order to determine the location of the spacecraft. This paper examines how such measurements may be processed in an on-board extended Kalman filter (EKF) to provide completely autonomous estimates of the spacecraft state throughout the duration of the mission. In addition, future work includes implementing this work on a CubeSat mission within the WVU Applied Space Exploration Lab (ASEL). The mission titled WVU Advanced Technology Satellite for Optical Navigation (WATSON) will provide students with an opportunity to experience the life cycle of a spacecraft from design through operation while hopefully meeting the primary and secondary goals defined for mission success. The spacecraft design process, although simplified by CubeSat standards, will be discussed in this thesis as well as the current results of laboratory testing with the CubeSat model in the ASEL.

  19. Conceptual Design of a Communication-Based Deep Space Navigation Network

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan J.; Chuang, C. H.

    2012-01-01

    As the need grows for increased autonomy and position knowledge accuracy to support missions beyond Earth orbit, engineers must push and develop more advanced navigation sensors and systems that operate independent of Earth-based analysis and processing. Several spacecraft are approaching this problem using inter-spacecraft radiometric tracking and onboard autonomous optical navigation methods. This paper proposes an alternative implementation to aid in spacecraft position fixing. The proposed method Network-Based Navigation technique takes advantage of the communication data being sent between spacecraft and between spacecraft and ground control to embed navigation information. The navigation system uses these packets to provide navigation estimates to an onboard navigation filter to augment traditional ground-based radiometric tracking techniques. As opposed to using digital signal measurements to capture inherent information of the transmitted signal itself, this method relies on the embedded navigation packet headers to calculate a navigation estimate. This method is heavily dependent on clock accuracy and the initial results show the promising performance of a notional system.

  20. From Objects to Landmarks: The Function of Visual Location Information in Spatial Navigation

    PubMed Central

    Chan, Edgar; Baumann, Oliver; Bellgrove, Mark A.; Mattingley, Jason B.

    2012-01-01

    Landmarks play an important role in guiding navigational behavior. A host of studies in the last 15 years has demonstrated that environmental objects can act as landmarks for navigation in different ways. In this review, we propose a parsimonious four-part taxonomy for conceptualizing object location information during navigation. We begin by outlining object properties that appear to be important for a landmark to attain salience. We then systematically examine the different functions of objects as navigational landmarks based on previous behavioral and neuroanatomical findings in rodents and humans. Evidence is presented showing that single environmental objects can function as navigational beacons, or act as associative or orientation cues. In addition, we argue that extended surfaces or boundaries can act as landmarks by providing a frame of reference for encoding spatial information. The present review provides a concise taxonomy of the use of visual objects as landmarks in navigation and should serve as a useful reference for future research into landmark-based spatial navigation. PMID:22969737

  1. Evaluation of a Novel Conjunctive Exploratory Navigation Interface for Consumer Health Information: A Crowdsourced Comparative Study

    PubMed Central

    Cui, Licong; Carter, Rebecca

    2014-01-01

    Background Numerous consumer health information websites have been developed to provide consumers access to health information. However, lookup search is insufficient for consumers to take full advantage of these rich public information resources. Exploratory search is considered a promising complementary mechanism, but its efficacy has never before been rigorously evaluated for consumer health information retrieval interfaces. Objective This study aims to (1) introduce a novel Conjunctive Exploratory Navigation Interface (CENI) for supporting effective consumer health information retrieval and navigation, and (2) evaluate the effectiveness of CENI through a search-interface comparative evaluation using crowdsourcing with Amazon Mechanical Turk (AMT). Methods We collected over 60,000 consumer health questions from NetWellness, one of the first consumer health websites to provide high-quality health information. We designed and developed a novel conjunctive exploratory navigation interface to explore NetWellness health questions with health topics as dynamic and searchable menus. To investigate the effectiveness of CENI, we developed a second interface with keyword-based search only. A crowdsourcing comparative study was carefully designed to compare three search modes of interest: (A) the topic-navigation-based CENI, (B) the keyword-based lookup interface, and (C) either the most commonly available lookup search interface with Google, or the resident advanced search offered by NetWellness. To compare the effectiveness of the three search modes, 9 search tasks were designed with relevant health questions from NetWellness. Each task included a rating of difficulty level and questions for validating the quality of answers. Ninety anonymous and unique AMT workers were recruited as participants. Results Repeated-measures ANOVA analysis of the data showed the search modes A, B, and C had statistically significant differences among their levels of difficulty (P<.001

  2. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia.

    PubMed

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F; Musen, Mark A

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks.

  3. Using ontologies to model human navigation behavior in information networks: A study based on Wikipedia

    PubMed Central

    Lamprecht, Daniel; Strohmaier, Markus; Helic, Denis; Nyulas, Csongor; Tudorache, Tania; Noy, Natalya F.; Musen, Mark A.

    2015-01-01

    The need to examine the behavior of different user groups is a fundamental requirement when building information systems. In this paper, we present Ontology-based Decentralized Search (OBDS), a novel method to model the navigation behavior of users equipped with different types of background knowledge. Ontology-based Decentralized Search combines decentralized search, an established method for navigation in social networks, and ontologies to model navigation behavior in information networks. The method uses ontologies as an explicit representation of background knowledge to inform the navigation process and guide it towards navigation targets. By using different ontologies, users equipped with different types of background knowledge can be represented. We demonstrate our method using four biomedical ontologies and their associated Wikipedia articles. We compare our simulation results with base line approaches and with results obtained from a user study. We find that our method produces click paths that have properties similar to those originating from human navigators. The results suggest that our method can be used to model human navigation behavior in systems that are based on information networks, such as Wikipedia. This paper makes the following contributions: (i) To the best of our knowledge, this is the first work to demonstrate the utility of ontologies in modeling human navigation and (ii) it yields new insights and understanding about the mechanisms of human navigation in information networks. PMID:26568745

  4. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes.

    PubMed

    Murray, Trevor; Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its 'catchment area') has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the 'catchment volumes' within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots.

  5. Quantifying navigational information: The catchment volumes of panoramic snapshots in outdoor scenes

    PubMed Central

    Zeil, Jochen

    2017-01-01

    Panoramic views of natural environments provide visually navigating animals with two kinds of information: they define locations because image differences increase smoothly with distance from a reference location and they provide compass information, because image differences increase smoothly with rotation away from a reference orientation. The range over which a given reference image can provide navigational guidance (its ‘catchment area’) has to date been quantified from the perspective of walking animals by determining how image differences develop across the ground plane of natural habitats. However, to understand the information available to flying animals there is a need to characterize the ‘catchment volumes’ within which panoramic snapshots can provide navigational guidance. We used recently developed camera-based methods for constructing 3D models of natural environments and rendered panoramic views at defined locations within these models with the aim of mapping navigational information in three dimensions. We find that in relatively open woodland habitats, catchment volumes are surprisingly large extending for metres depending on the sensitivity of the viewer to image differences. The size and the shape of catchment volumes depend on the distance of visual features in the environment. Catchment volumes are smaller for reference images close to the ground and become larger for reference images at some distance from the ground and in more open environments. Interestingly, catchment volumes become smaller when only above horizon views are used and also when views include a 1 km distant panorama. We discuss the current limitations of mapping navigational information in natural environments and the relevance of our findings for our understanding of visual navigation in animals and autonomous robots. PMID:29088300

  6. Lost in transportation: Information measures and cognitive limits in multilayer navigation.

    PubMed

    Gallotti, Riccardo; Porter, Mason A; Barthelemy, Marc

    2016-02-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world's 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the "Dunbar number," which represents a limit to the size of an individual's friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially.

  7. Lost in transportation: Information measures and cognitive limits in multilayer navigation

    PubMed Central

    Gallotti, Riccardo; Porter, Mason A.; Barthelemy, Marc

    2016-01-01

    Cities and their transportation systems become increasingly complex and multimodal as they grow, and it is natural to wonder whether it is possible to quantitatively characterize our difficulty navigating in them and whether such navigation exceeds our cognitive limits. A transition between different search strategies for navigating in metropolitan maps has been observed for large, complex metropolitan networks. This evidence suggests the existence of a limit associated with cognitive overload and caused by a large amount of information that needs to be processed. In this light, we analyzed the world’s 15 largest metropolitan networks and estimated the information limit for determining a trip in a transportation system to be on the order of 8 bits. Similar to the “Dunbar number,” which represents a limit to the size of an individual’s friendship circle, our cognitive limit suggests that maps should not consist of more than 250 connection points to be easily readable. We also show that including connections with other transportation modes dramatically increases the information needed to navigate in multilayer transportation networks. In large cities such as New York, Paris, and Tokyo, more than 80% of the trips are above the 8-bit limit. Multimodal transportation systems in large cities have thus already exceeded human cognitive limits and, consequently, the traditional view of navigation in cities has to be revised substantially. PMID:26989769

  8. Seeking Information Online: The Influence of Menu Type, Navigation Path Complexity and Spatial Ability on Information Gathering Tasks

    ERIC Educational Resources Information Center

    Puerta Melguizo, Mari Carmen; Vidya, Uti; van Oostendorp, Herre

    2012-01-01

    We studied the effects of menu type, navigation path complexity and spatial ability on information retrieval performance and web disorientation or lostness. Two innovative aspects were included: (a) navigation path relevance and (b) information gathering tasks. As expected we found that, when measuring aspects directly related to navigation…

  9. Lay Patient Navigators' Perspectives of Barriers, Facilitators and Training Needs in Initiating Advance Care Planning Conversations With Older Patients With Cancer.

    PubMed

    Niranjan, Soumya J; Huang, Chao-Hui S; Dionne-Odom, J Nicholas; Halilova, Karina I; Pisu, Maria; Drentea, Patricia; Kvale, Elizabeth A; Bevis, Kerri S; Butler, Thomas W; Partridge, Edward E; Rocque, Gabrielle B

    2018-04-01

    Respecting Choices is an evidence-based model of facilitating advance care planning (ACP) conversations between health-care professionals and patients. However, the effectiveness of whether lay patient navigators can successfully initiate Respecting Choices ACP conversations is unknown. As part of a large demonstration project (Patient Care Connect [PCC]), a cohort of lay patient navigators underwent Respecting Choices training and were tasked to initiate ACP conversations with Medicare beneficiaries diagnosed with cancer. This article explores PCC lay navigators' perceived barriers and facilitators in initiating Respecting Choices ACP conversations with older patients with cancer in order to inform implementation enhancements to lay navigator-facilitated ACP. Twenty-six lay navigators from 11 PCC cancer centers in 4 states (Alabama, George, Tennessee, and Florida) completed in-depth, one-on-one semistructured interviews between June 2015 and August 2015. Data were analyzed using a thematic analysis approach. This evaluation identifies 3 levels-patient, lay navigator, and organizational factors in addition to training needs that influence ACP implementation. Key facilitators included physician buy-in, patient readiness, and navigators' prior experience with end-of-life decision-making. Lay navigators' perceived challenges to initiating ACP conversations included timing of the conversation and social and personal taboos about discussing dying. Our results suggest that further training and health system support are needed for lay navigators playing a vital role in improving the implementation of ACP among older patients with cancer. The lived expertise of lay navigators along with flexible longitudinal relationships with patients and caregivers may uniquely position this workforce to promote ACP.

  10. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. © 2014 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  11. Visual navigation in insects: coupling of egocentric and geocentric information

    PubMed

    Wehner; Michel; Antonsen

    1996-01-01

    Social hymenopterans such as bees and ants are central-place foragers; they regularly depart from and return to fixed positions in their environment. In returning to the starting point of their foraging excursion or to any other point, they could resort to two fundamentally different ways of navigation by using either egocentric or geocentric systems of reference. In the first case, they would rely on information continuously collected en route (path integration, dead reckoning), i.e. integrate all angles steered and all distances covered into a mean home vector. In the second case, they are expected, at least by some authors, to use a map-based system of navigation, i.e. to obtain positional information by virtue of the spatial position they occupy within a larger environmental framework. In bees and ants, path integration employing a skylight compass is the predominant mechanism of navigation, but geocentred landmark-based information is used as well. This information is obtained while the animal is dead-reckoning and, hence, added to the vector course. For example, the image of the horizon skyline surrounding the nest entrance is retinotopically stored while the animal approaches the goal along its vector course. As shown in desert ants (genus Cataglyphis), there is neither interocular nor intraocular transfer of landmark information. Furthermore, this retinotopically fixed, and hence egocentred, neural snapshot is linked to an external (geocentred) system of reference. In this way, geocentred information might more and more complement and potentially even supersede the egocentred information provided by the path-integration system. In competition experiments, however, Cataglyphis never frees itself of its homeward-bound vector - its safety-line, so to speak - by which it is always linked to home. Vector information can also be transferred to a longer-lasting (higher-order) memory. There is no need to invoke the concept of the mental analogue of a topographic

  12. The Taxiway Navigation and Situation Awareness (T-NASA) System

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Sridhar, Banavar (Technical Monitor)

    1997-01-01

    The goal of NASA's Terminal Area Productivity (TAP) Low-Visibility Landing and Surface Operations (LVLASO) subelement is to improve the efficiency of airport surface operations for commercial aircraft operating in weather conditions to Category IIIB while maintaining a high degree of safety. Currently, surface operations are one of the least technologically sophisticated components of the air transport system, being conducted in the 1990's with the same basic technology as in the 1930's. Pilots are given little or no explicit information about their current position, and routing information is limited to ATC communications and airport charts. In TAP/LVLASO, advanced technologies such as satellite navigation systems, digital data communications, advanced information presentation technology, and ground surveillance systems will be integrated into flight deck displays to enable expeditious and safe traffic movement on the airport surface. The cockpit display suite is called the T-NASA (Taxiway Navigation and Situation Awareness) System. This system has three integrated components: 1) Moving Map track-up airport surface display with own-ship, traffic and graphical route guidance 2) Scene-Linked Symbology - route/taxi information virtually projected via a Head-up Display (HUD) onto the forward scene; and, 3) 3-D Audio Ground Collision Avoidance and Navigation system - spatially-localized auditory traffic and navigation alerts. In the current paper, the design philosophy of the T-NASA system will be presented, and the T-NASA system display components described.

  13. Determining the Navigational Aids Use on the Internet: The Information Technologies Teacher Candidates' Case

    ERIC Educational Resources Information Center

    Kuzu, Abdullah; Firat, Mehmet

    2010-01-01

    The Internet users who fail to cope with navigation may generally face various problems such as disorientation, distraction, low motivation and abandonment of information retrieval. Therefore, navigational aids are frequently used in today's Web browsers and Web sites to help users navigate on the Internet. However, it is asserted that…

  14. Steering intermediate courses: desert ants combine information from various navigational routines.

    PubMed

    Wehner, Rüdiger; Hoinville, Thierry; Cruse, Holk; Cheng, Ken

    2016-07-01

    A number of systems of navigation have been studied in some detail in insects. These include path integration, a system that keeps track of the straight-line distance and direction travelled on the current trip, the use of panoramic landmarks and scenery for orientation, and systematic searching. A traditional view is that only one navigational system is in operation at any one time, with different systems running in sequence depending on the context and conditions. We review selected data suggesting that often, different navigational cues (e.g., compass cues) and different systems of navigation are in operation simultaneously in desert ant navigation. The evidence suggests that all systems operate in parallel forming a heterarchical network. External and internal conditions determine the weights to be accorded to each cue and system. We also show that a model of independent modules feeding into a central summating device, the Navinet model, can in principle account for such data. No central executive processor is necessary aside from a weighted summation of the different cues and systems. Such a heterarchy of parallel systems all in operation represents a new view of insect navigation that has already been expressed informally by some authors.

  15. Autonomous Navigation for Autonomous Underwater Vehicles Based on Information Filters and Active Sensing

    PubMed Central

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM. PMID:22346682

  16. Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing.

    PubMed

    He, Bo; Zhang, Hongjin; Li, Chao; Zhang, Shujing; Liang, Yan; Yan, Tianhong

    2011-01-01

    This paper addresses an autonomous navigation method for the autonomous underwater vehicle (AUV) C-Ranger applying information-filter-based simultaneous localization and mapping (SLAM), and its sea trial experiments in Tuandao Bay (Shangdong Province, P.R. China). Weak links in the information matrix in an extended information filter (EIF) can be pruned to achieve an efficient approach-sparse EIF algorithm (SEIF-SLAM). All the basic update formulae can be implemented in constant time irrespective of the size of the map; hence the computational complexity is significantly reduced. The mechanical scanning imaging sonar is chosen as the active sensing device for the underwater vehicle, and a compensation method based on feedback of the AUV pose is presented to overcome distortion of the acoustic images due to the vehicle motion. In order to verify the feasibility of the navigation methods proposed for the C-Ranger, a sea trial was conducted in Tuandao Bay. Experimental results and analysis show that the proposed navigation approach based on SEIF-SLAM improves the accuracy of the navigation compared with conventional method; moreover the algorithm has a low computational cost when compared with EKF-SLAM.

  17. Brain connectivity during encoding and retrieval of spatial information: individual differences in navigation skills.

    PubMed

    Sharma, Greeshma; Gramann, Klaus; Chandra, Sushil; Singh, Vijander; Mittal, Alok Prakash

    2017-09-01

    Emerging evidence suggests that the variations in the ability to navigate through any real or virtual environment are accompanied by distinct underlying cortical activations in multiple regions of the brain. These activations may appear due to the use of different frame of reference (FOR) for representing an environment. The present study investigated the brain dynamics in the good and bad navigators using Graph Theoretical analysis applied to low-density electroencephalography (EEG) data. Individual navigation skills were rated according to the performance in a virtual reality (VR)-based navigation task and the effect of navigator's proclivity towards a particular FOR on the navigation performance was explored. Participants were introduced to a novel virtual environment that they learned from a first-person or an aerial perspective and were subsequently assessed on the basis of efficiency with which they learnt and recalled. The graph theoretical parameters, path length (PL), global efficiency (GE), and clustering coefficient (CC) were computed for the functional connectivity network in the theta and alpha frequency bands. During acquisition of the spatial information, good navigators were distinguished by a lower degree of dispersion in the functional connectivity compared to the bad navigators. Within the groups of good and bad navigators, better performers were characterised by the formation of multiple hubs at various sites and the percentage of connectivity or small world index. The proclivity towards a specific FOR during exploration of a new environment was not found to have any bearing on the spatial learning. These findings may have wider implications for how the functional connectivity in the good and bad navigators differs during spatial information acquisition and retrieval in the domains of rescue operations and defence systems.

  18. Advanced Integration of WiFi and Inertial Navigation Systems for Indoor Mobile Positioning

    NASA Astrophysics Data System (ADS)

    Evennou, Frédéric; Marx, François

    2006-12-01

    This paper presents an aided dead-reckoning navigation structure and signal processing algorithms for self localization of an autonomous mobile device by fusing pedestrian dead reckoning and WiFi signal strength measurements. WiFi and inertial navigation systems (INS) are used for positioning and attitude determination in a wide range of applications. Over the last few years, a number of low-cost inertial sensors have become available. Although they exhibit large errors, WiFi measurements can be used to correct the drift weakening the navigation based on this technology. On the other hand, INS sensors can interact with the WiFi positioning system as they provide high-accuracy real-time navigation. A structure based on a Kalman filter and a particle filter is proposed. It fuses the heterogeneous information coming from those two independent technologies. Finally, the benefits of the proposed architecture are evaluated and compared with the pure WiFi and INS positioning systems.

  19. The effects of age, spatial ability, and navigational information on navigational performance

    DOT National Transportation Integrated Search

    1995-12-01

    The purpose of the study reported here was to examine whether age and spatial ability are factors that influence a driver?s ability to navigate and to use navigational displays. These factors were examined because previous research suggests that spat...

  20. Advanced information society(2)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Our modern life is full of information and information infiltrates into our daily life. Networking of the telecommunication is extended to society, company, and individual level. Although we have just entered the advanced information society, business world and our daily life have been steadily transformed by the advancement of information network. This advancement of information brings a big influence on economy, and will play they the main role in the expansion of domestic demands. This paper tries to view the image of coming advanced information society, focusing on the transforming businessman's life and the situation of our daily life, which became wealthy by the spread of daily life information and the visual information by satellite system, in the development of the intelligent city.

  1. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-01-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  2. Deep space telecommunications, navigation, and information management - Support of the Space Exploration Initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    1990-10-01

    The principal challenges in providing effective deep space navigation, telecommunications, and information management architectures and designs for Mars exploration support are presented. The fundamental objectives are to provide the mission with the means to monitor and control mission elements, obtain science, navigation, and engineering data, compute state vectors and navigate, and to move these data efficiently and automatically between mission nodes for timely analysis and decision making. New requirements are summarized, and related issues and challenges including the robust connectivity for manned and robotic links, are identified. Enabling strategies are discussed, and candidate architectures and driving technologies are described.

  3. The Aging Navigational System.

    PubMed

    Lester, Adam W; Moffat, Scott D; Wiener, Jan M; Barnes, Carol A; Wolbers, Thomas

    2017-08-30

    The discovery of neuronal systems dedicated to computing spatial information, composed of functionally distinct cell types such as place and grid cells, combined with an extensive body of human-based behavioral and neuroimaging research has provided us with a detailed understanding of the brain's navigation circuit. In this review, we discuss emerging evidence from rodents, non-human primates, and humans that demonstrates how cognitive aging affects the navigational computations supported by these systems. Critically, we show 1) that navigational deficits cannot solely be explained by general deficits in learning and memory, 2) that there is no uniform decline across different navigational computations, and 3) that navigational deficits might be sensitive markers for impending pathological decline. Following an introduction to the mechanisms underlying spatial navigation and how they relate to general processes of learning and memory, the review discusses how aging affects the perception and integration of spatial information, the creation and storage of memory traces for spatial information, and the use of spatial information during navigational behavior. The closing section highlights the clinical potential of behavioral and neural markers of spatial navigation, with a particular emphasis on neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A navigation system for the visually impaired using colored navigation lines and RFID tags.

    PubMed

    Seto, First Tatsuya

    2009-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane senses the colored navigation line, and the system informs the visually impaired that he/she is walking along the navigation line by vibration. The color recognition system is controlled by a one-chip microprocessor and this system can discriminate 6 colored navigation lines. RFID tags and a receiver for these tags are used in the map information system. The RFID tags and the RFID tag receiver are also installed on a white cane. The receiver receives tag information and notifies map information to the user by mp3 formatted pre-recorded voice. Three normal subjects who were blindfolded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the map information system was good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  5. Benefits assessment of advanced public transportation systems (APTS)

    DOT National Transportation Integrated Search

    1996-07-01

    This report documents work performed under FTA's Advance Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techno...

  6. GPS free navigation inspired by insects through monocular camera and inertial sensors

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Liu, J. G.; Cao, H.; Huang, Y.

    2015-12-01

    Navigation without GPS and other knowledge of environment have been studied for many decades. Advance technology have made sensors more compact and subtle that can be easily integrated into micro and hand-hold device. Recently researchers found that bee and fruit fly have an effectively and efficiently navigation mechanism through optical flow information and process only with their miniature brain. We present a navigation system inspired by the study of insects through a calibrated camera and other inertial sensors. The system utilizes SLAM theory and can be worked in many GPS denied environment. Simulation and experimental results are presented for validation and quantification.

  7. Deep space telecommunications, navigation, and information management. Support of the space exploration initiative

    NASA Astrophysics Data System (ADS)

    Hall, Justin R.; Hastrup, Rolf C.

    The United States Space Exploration Initiative (SEI) calls for the charting of a new and evolving manned course to the Moon, Mars, and beyond. This paper discusses key challenges in providing effective deep space telecommunications, navigation, and information management (TNIM) architectures and designs for Mars exploration support. The fundamental objectives are to provide the mission with means to monitor and control mission elements, acquire engineering, science, and navigation data, compute state vectors and navigate, and move these data efficiently and automatically between mission nodes for timely analysis and decision-making. Although these objectives do not depart, fundamentally, from those evolved over the past 30 years in supporting deep space robotic exploration, there are several new issues. This paper focuses on summarizing new requirements, identifying related issues and challenges, responding with concepts and strategies which are enabling, and, finally, describing candidate architectures, and driving technologies. The design challenges include the attainment of: 1) manageable interfaces in a large distributed system, 2) highly unattended operations for in-situ Mars telecommunications and navigation functions, 3) robust connectivity for manned and robotic links, 4) information management for efficient and reliable interchange of data between mission nodes, and 5) an adequate Mars-Earth data rate.

  8. Lunar rover navigation concepts

    NASA Astrophysics Data System (ADS)

    Burke, James D.

    1993-01-01

    With regard to the navigation of mobile lunar vehicles on the surface, candidate techniques are reviewed and progress of simulations and experiments made up to now are described. Progress that can be made through precursor investigations on Earth is considered. In the early seventies the problem was examined in a series of relevant tests made in the California desert. Meanwhile, Apollo rovers made short exploratory sorties and robotic Lunokhods traveled over modest distances on the Moon. In these early missions some of the required methods were demonstrated. The navigation problem for a lunar traverse can be viewed in three parts: to determine the starting point with enough accuracy to enable the desired mission; to determine the event sequence required to reach the site of each traverse objective; and to redetermine actual positions enroute. The navigator's first tool is a map made from overhead imagery. The Moon was almost completely photographed at moderate resolution by spacecraft launched in the sixties, but that data set provides imprecise topographic and selenodetic information. Therefore, more advanced orbital missions are now proposed as part of a resumed lunar exploration program. With the mapping coverage expected from such orbiters, it will be possible to use a combination of visual landmark navigation and external radio and optical references (Earth and Sun) to achieve accurate surface navigation almost everywhere on the near side of the Moon. On the far side and in permanently dark polar areas, there are interesting exploration targets where additional techniques will have to be used.

  9. Advanced public transportation system deployment in the United States

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...

  10. Core areas of practice and associated competencies for nurses working as professional cancer navigators.

    PubMed

    Cook, Sandra; Fillion, Lise; Fitch, Margaret; Veillette, Anne-Marie; Matheson, Tanya; Aubin, Michèle; de Serres, Marie; Doll, Richard; Rainville, François

    2013-01-01

    Fillion et al. (2012) recently designed a conceptual framework for professional cancer navigators describing key functions of professional cancer navigation. Building on this framework, this study defines the core areas of practice and associated competencies for professional cancer navigators. The methods used in this study included: literature review, mapping of navigation functions against practice standards and competencies, and validation of this mapping process with professional navigators, their managers and nursing experts and comparison of roles in similar navigation programs. Associated competencies were linked to the three identified core areas of practice, which are: 1) providing information and education, 2) providing emotional and supportive care, and 3) facilitating coordination and continuity of care. Cancer navigators are in a key position to improve patient and family empowerment and continuity of care. This is an important step for advancing the role of oncology nurses in navigator positions and identifying areas for further research.

  11. A Leapfrog Navigation System

    NASA Astrophysics Data System (ADS)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  12. A locally-blazed ant trail achieves efficient collective navigation despite limited information

    PubMed Central

    Fonio, Ehud; Heyman, Yael; Boczkowski, Lucas; Gelblum, Aviram; Kosowski, Adrian; Korman, Amos; Feinerman, Ofer

    2016-01-01

    Any organism faces sensory and cognitive limitations which may result in maladaptive decisions. Such limitations are prominent in the context of groups where the relevant information at the individual level may not coincide with collective requirements. Here, we study the navigational decisions exhibited by Paratrechina longicornis ants as they cooperatively transport a large food item. These decisions hinge on the perception of individuals which often restricts them from providing the group with reliable directional information. We find that, to achieve efficient navigation despite partial and even misleading information, these ants employ a locally-blazed trail. This trail significantly deviates from the classical notion of an ant trail: First, instead of systematically marking the full path, ants mark short segments originating at the load. Second, the carrying team constantly loses the guiding trail. We experimentally and theoretically show that the locally-blazed trail optimally and robustly exploits useful knowledge while avoiding the pitfalls of misleading information. DOI: http://dx.doi.org/10.7554/eLife.20185.001 PMID:27815944

  13. Telecommunications, navigation and information management concept overview for the Space Exploration Initiative program

    NASA Technical Reports Server (NTRS)

    Bell, Jerome A.; Stephens, Elaine; Barton, Gregg

    1991-01-01

    An overview is provided of the Space Exploration Initiative (SEI) concepts for telecommunications, information systems, and navigation (TISN), and engineering and architecture issues are discussed. The SEI program data system is reviewed to identify mission TISN interfaces, and reference TISN concepts are described for nominal, degraded, and mission-critical data services. The infrastructures reviewed include telecommunications for robotics support, autonomous navigation without earth-based support, and information networks for tracking and data acquisition. Four options for TISN support architectures are examined which relate to unique SEI exploration strategies. Detailed support estimates are given for: (1) a manned stay on Mars; (2) permanent lunar and Martian settlements; short-duration missions; and (4) systematic exploration of the moon and Mars.

  14. Advanced public transportation systems : the state of the art

    DOT National Transportation Integrated Search

    1991-03-01

    This report documents one of the early initiatives of UMTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communi...

  15. Autonomous Navigation Above the GNSS Constellations and Beyond: GPS Navigation for the Magnetospheric Multiscale Mission and SEXTANT Pulsar Navigation Demonstration

    NASA Technical Reports Server (NTRS)

    Winternitz, Luke

    2017-01-01

    This talk will describe two first-of-their-kind technology demonstrations attached to ongoing NASA science missions, both of which aim to extend the range of autonomous spacecraft navigation far from the Earth. First, we will describe the onboard GPS navigation system for the Magnetospheric Multiscale (MMS) mission which is currently operating in elliptic orbits reaching nearly halfway to the Moon. The MMS navigation system is a key outgrowth of a larger effort at NASA Goddard Space Flight Center to advance high-altitude Global Navigation Satellite System (GNSS) navigation on multiple fronts, including developing Global Positioning System receivers and onboard navigation software, running simulation studies, and leading efforts to characterize and protect signals at high-altitude in the so-called GNSS Space-Service Volume (SSV). In the second part of the talk, we will describe the Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) mission that aims to make the first in-space demonstration of X-ray pulsar navigation (XNAV). SEXTANT is attached to the NASA astrophysics mission Neutron-star Interior Composition ExploreR (NICER) whose International Space Station mounted X-ray telescope is investigating the fundamental physics of extremes in gravity, material density, and electromagnetic fields found in neutron stars, and whose instrument provides a nearly ideal navigation sensor for XNAV.

  16. Modified Navigation Instructions for Spatial Navigation Assistance Systems Lead to Incidental Spatial Learning

    PubMed Central

    Gramann, Klaus; Hoepner, Paul; Karrer-Gauss, Katja

    2017-01-01

    Spatial cognitive skills deteriorate with the increasing use of automated GPS navigation and a general decrease in the ability to orient in space might have further impact on independence, autonomy, and quality of life. In the present study we investigate whether modified navigation instructions support incidental spatial knowledge acquisition. A virtual driving environment was used to examine the impact of modified navigation instructions on spatial learning while using a GPS navigation assistance system. Participants navigated through a simulated urban and suburban environment, using navigation support to reach their destination. Driving performance as well as spatial learning was thereby assessed. Three navigation instruction conditions were tested: (i) a control group that was provided with classical navigation instructions at decision points, and two other groups that received navigation instructions at decision points including either (ii) additional irrelevant information about landmarks or (iii) additional personally relevant information (i.e., individual preferences regarding food, hobbies, etc.), associated with landmarks. Driving performance revealed no differences between navigation instructions. Significant improvements were observed in both modified navigation instruction conditions on three different measures of spatial learning and memory: subsequent navigation of the initial route without navigation assistance, landmark recognition, and sketch map drawing. Future navigation assistance systems could incorporate modified instructions to promote incidental spatial learning and to foster more general spatial cognitive abilities. Such systems might extend mobility across the lifespan. PMID:28243219

  17. Waves at Navigation Structures

    DTIC Science & Technology

    2014-10-27

    upgrades the Coastal Modeling System’s (CMS) wave model CMS-Wave, a phase-averaged spectral wave model, and BOUSS-2D, a Boussinesq -type nonlinear wave...nearshore wave processes in practical applications. These capabilities facilitate optimization of innovative infrastructure for navigation systems to...navigation systems . The advanced models develop probabilistic engineering design estimates for rehabilitation of coastal structures to evaluate the

  18. Benefits assessment of advanced public transportation system technologies, update 2000

    DOT National Transportation Integrated Search

    This report was performed under the Federal Transit Administration's (FTA) Advanced Public Transportation Systems (APTS) Program. This program focuses on the development and demonstration of innovative advanced navigation, information and communicati...

  19. Preliminary navigation accuracy analysis for the TDRSS Onboard Navigation System (TONS) experiment on EP/EUVE

    NASA Technical Reports Server (NTRS)

    Gramling, C. J.; Long, A. C.; Lee, T.; Ottenstein, N. A.; Samii, M. V.

    1991-01-01

    A Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) is currently being developed by NASA to provide a high accuracy autonomous navigation capability for users of TDRSS and its successor, the Advanced TDRSS (ATDRSS). The fully autonomous user onboard navigation system will support orbit determination, time determination, and frequency determination, based on observation of a continuously available, unscheduled navigation beacon signal. A TONS experiment will be performed in conjunction with the Explorer Platform (EP) Extreme Ultraviolet Explorer (EUVE) mission to flight quality TONS Block 1. An overview is presented of TONS and a preliminary analysis of the navigation accuracy anticipated for the TONS experiment. Descriptions of the TONS experiment and the associated navigation objectives, as well as a description of the onboard navigation algorithms, are provided. The accuracy of the selected algorithms is evaluated based on the processing of realistic simulated TDRSS one way forward link Doppler measurements. The analysis process is discussed and the associated navigation accuracy results are presented.

  20. The ADVANCE project : formal evaluation of the targeted deployment. Volume 2

    DOT National Transportation Integrated Search

    1997-01-01

    This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...

  1. The ADVANCE project : formal evaluation of the targeted deployment. Volume 1

    DOT National Transportation Integrated Search

    1997-01-01

    The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an in-vehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-ti...

  2. SURVIVORSHIP NAVIGATION OUTCOME MEASURES: A report from the ACS Patient Navigation Working Group on Survivorship Navigation

    PubMed Central

    Pratt-Chapman, Mandi; Simon, Melissa A.; Patterson, Angela; Risendal, Betsy C.; Patierno, Steven

    2013-01-01

    Survivorship navigation is a relatively new concept in the field of patient navigation, but an important one. This paper highlights the essential functions of the survivorship navigator and defines core outcomes and measures for navigation in the survivorship period. Barriers to access to care experienced by patients during active cancer treatment can continue into the post-treatment period, affecting quality follow-up care for survivors. These barriers to care can be particularly acute for non-English speakers, immigrants, the uninsured, the underinsured and other vulnerable populations. The survivorship navigator can help reduce barriers and facilitate access to survivorship care and services through communication and information exchange for patients. Survivorship navigation may improve appropriate health care utilization through education and care coordination, potentially improving health outcomes and quality of life of survivors while reducing cost to the health care system. Survivorship navigators can also educate survivors on how to improve their overall wellness, thereby directly impacting the health of a growing population of cancer survivors. PMID:21780092

  3. Advanced public transportation systems : the state of the art update 2000

    DOT National Transportation Integrated Search

    2000-12-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, communication, information, computer...

  4. Improved navigation by combining VOR/DME information with air or inertial data

    NASA Technical Reports Server (NTRS)

    Bobick, J. C.; Bryson, A. E., Jr.

    1972-01-01

    The improvement was determined in navigational accuracy obtainable by combining VOR/DME information (from one or two stations) with air data (airspeed and heading) or with data from an inertial navigation system (INS) by means of a maximum-likelihood filter. It was found that the addition of air data to the information from one VOR/DME station reduces the RMS position error by a factor of about 2, whereas the addition of inertial data from a low-quality INS reduces the RMS position error by a factor of about 3. The use of information from two VOR/DME stations with air or inertial data yields large factors of improvement in RMS position accuracy over the use of a single VOR/DME station, roughly 15 to 20 for the air-data case and 25 to 35 for the inertial-data case. As far as position accuracy is concerned, at most one VOR station need be used. When continuously updating an INS with VOR/DME information, the use of a high-quality INS (0.01 deg/hr gyro drift) instead of a low-quality INS (1.0 deg/hr gyro drift) does not substantially improve position accuracy.

  5. Terrain matching image pre-process and its format transform in autonomous underwater navigation

    NASA Astrophysics Data System (ADS)

    Cao, Xuejun; Zhang, Feizhou; Yang, Dongkai; Yang, Bogang

    2007-06-01

    Underwater passive navigation technology is one of the important development orientations in the field of modern navigation. With the advantage of high self-determination, stealth at sea, anti-jamming and high precision, passive navigation is completely meet with actual navigation requirements. Therefore passive navigation has become a specific navigating method for underwater vehicles. The scientists and researchers in the navigating field paid more attention to it. The underwater passive navigation can provide accurate navigation information with main Inertial Navigation System (INS) for a long period, such as location and speed. Along with the development of micro-electronics technology, the navigation of AUV is given priority to INS assisted with other navigation methods, such as terrain matching navigation. It can provide navigation ability for a long period, correct the errors of INS and make AUV not emerge from the seabed termly. With terrain matching navigation technique, in the assistance of digital charts and ocean geographical characteristics sensors, we carry through underwater image matching assistant navigation to obtain the higher location precision, therefore it is content with the requirement of underwater, long-term, high precision and all-weather of the navigation system for Autonomous Underwater Vehicles. Tertian-assistant navigation (TAN) is directly dependent on the image information (map information) in the navigating field to assist the primary navigation system according to the path appointed in advance. In TAN, a factor coordinative important with the system operation is precision and practicability of the storable images and the database which produce the image data. If the data used for characteristics are not suitable, the system navigation precision will be low. Comparing with terrain matching assistant navigation system, image matching navigation system is a kind of high precision and low cost assistant navigation system, and its

  6. Advanced public transportation systems: the state of the art, update '92

    DOT National Transportation Integrated Search

    1992-03-01

    This report documents one of the components of FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication t...

  7. Advanced public transportation systems : the state of the art, update '94

    DOT National Transportation Integrated Search

    1994-01-01

    This report documents one of the components of FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication t...

  8. Advanced public transportation systems : the state of the art update of 1998

    DOT National Transportation Integrated Search

    1998-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, computer, and communica...

  9. Advanced Public Transportation Systems Deployment in the United States. Update, January 1999

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...

  10. Advanced public transportation systems deployment in the United States : update, January 1999

    DOT National Transportation Integrated Search

    1999-01-01

    This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advances navigation, information, and communication techn...

  11. Autonomous Navigation Using Celestial Objects

    NASA Technical Reports Server (NTRS)

    Folta, David; Gramling, Cheryl; Leung, Dominic; Belur, Sheela; Long, Anne

    1999-01-01

    In the twenty-first century, National Aeronautics and Space Administration (NASA) Enterprises envision frequent low-cost missions to explore the solar system, observe the universe, and study our planet. Satellite autonomy is a key technology required to reduce satellite operating costs. The Guidance, Navigation, and Control Center (GNCC) at the Goddard Space Flight Center (GSFC) currently sponsors several initiatives associated with the development of advanced spacecraft systems to provide autonomous navigation and control. Autonomous navigation has the potential both to increase spacecraft navigation system performance and to reduce total mission cost. By eliminating the need for routine ground-based orbit determination and special tracking services, autonomous navigation can streamline spacecraft ground systems. Autonomous navigation products can be included in the science telemetry and forwarded directly to the scientific investigators. In addition, autonomous navigation products are available onboard to enable other autonomous capabilities, such as attitude control, maneuver planning and orbit control, and communications signal acquisition. Autonomous navigation is required to support advanced mission concepts such as satellite formation flying. GNCC has successfully developed high-accuracy autonomous navigation systems for near-Earth spacecraft using NASA's space and ground communications systems and the Global Positioning System (GPS). Recently, GNCC has expanded its autonomous navigation initiative to include satellite orbits that are beyond the regime in which use of GPS is possible. Currently, GNCC is assessing the feasibility of using standard spacecraft attitude sensors and communication components to provide autonomous navigation for missions including: libration point, gravity assist, high-Earth, and interplanetary orbits. The concept being evaluated uses a combination of star, Sun, and Earth sensor measurements along with forward-link Doppler

  12. Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment

    PubMed Central

    Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé

    2015-01-01

    Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments. PMID:27019593

  13. Tactile-Foot Stimulation Can Assist the Navigation of People with Visual Impairment.

    PubMed

    Velázquez, Ramiro; Pissaloux, Edwige; Lay-Ekuakille, Aimé

    2015-01-01

    Background. Tactile interfaces that stimulate the plantar surface with vibrations could represent a step forward toward the development of wearable, inconspicuous, unobtrusive, and inexpensive assistive devices for people with visual impairments. Objective. To study how people understand information through their feet and to maximize the capabilities of tactile-foot perception for assisting human navigation. Methods. Based on the physiology of the plantar surface, three prototypes of electronic tactile interfaces for the foot have been developed. With important technological improvements between them, all three prototypes essentially consist of a set of vibrating actuators embedded in a foam shoe-insole. Perceptual experiments involving direction recognition and real-time navigation in space were conducted with a total of 60 voluntary subjects. Results. The developed prototypes demonstrated that they are capable of transmitting tactile information that is easy and fast to understand. Average direction recognition rates were 76%, 88.3%, and 94.2% for subjects wearing the first, second, and third prototype, respectively. Exhibiting significant advances in tactile-foot stimulation, the third prototype was evaluated in navigation tasks. Results show that subjects were capable of following directional instructions useful for navigating spaces. Conclusion. Footwear providing tactile stimulation can be considered for assisting the navigation of people with visual impairments.

  14. The course correction implementation of the inertial navigation system based on the information from the aircraft satellite navigation system before take-off

    NASA Astrophysics Data System (ADS)

    Markelov, V.; Shukalov, A.; Zharinov, I.; Kostishin, M.; Kniga, I.

    2016-04-01

    The use of the correction course option before aircraft take-off after inertial navigation system (INS) inaccurate alignment based on the platform attitude-and-heading reference system in azimuth is considered in the paper. A course correction is performed based on the track angle defined by the information received from the satellite navigation system (SNS). The course correction includes a calculated track error definition during ground taxiing along straight sections before take-off with its input in the onboard digital computational system like amendment for using in the current flight. The track error calculation is performed by the statistical evaluation of the track angle comparison defined by the SNS information with the current course measured by INS for a given number of measurements on the realizable time interval. The course correction testing results and recommendation application are given in the paper. The course correction based on the information from SNS can be used for improving accuracy characteristics for determining an aircraft path after making accelerated INS preparation concerning inaccurate initial azimuth alignment.

  15. 76 FR 63934 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-14

    ... the Road, navigation regulations and equipment, routing measures, marine information, diving safety... Road, navigation regulations and equipment, routing measures, marine information, diving safety, and... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0204] Navigation Safety Advisory...

  16. The JPL roadmap for Deep Space navigation

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Abraham, Douglas S.; Berry, David; Bhaskaran, Shyam; Cesarone, Robert J.; Wood, Lincoln

    2006-01-01

    This paper reviews the tentative set of deep space missions that will be supported by NASA's Deep Space Mission System in the next twenty-five years, and extracts the driving set of navigation capabilities that these missions will require. There will be many challenges including the support of new mission navigation approaches such as formation flying and rendezvous in deep space, low-energy and low-thrust orbit transfers, precise landing and ascent vehicles, and autonomous navigation. Innovative strategies and approaches will be needed to develop and field advanced navigation capabilities.

  17. Computer-assisted navigation in orthopedic surgery.

    PubMed

    Mavrogenis, Andreas F; Savvidou, Olga D; Mimidis, George; Papanastasiou, John; Koulalis, Dimitrios; Demertzis, Nikolaos; Papagelopoulos, Panayiotis J

    2013-08-01

    Computer-assisted navigation has a role in some orthopedic procedures. It allows the surgeons to obtain real-time feedback and offers the potential to decrease intra-operative errors and optimize the surgical result. Computer-assisted navigation systems can be active or passive. Active navigation systems can either perform surgical tasks or prohibit the surgeon from moving past a predefined zone. Passive navigation systems provide intraoperative information, which is displayed on a monitor, but the surgeon is free to make any decisions he or she deems necessary. This article reviews the available types of computer-assisted navigation, summarizes the clinical applications and reviews the results of related series using navigation, and informs surgeons of the disadvantages and pitfalls of computer-assisted navigation in orthopedic surgery. Copyright 2013, SLACK Incorporated.

  18. Advanced information society(5)

    NASA Astrophysics Data System (ADS)

    Tanizawa, Ippei

    Based on the advancement of information network technology information communication forms informationalized society giving significant impact on business activities and life style in it. The information network has been backed up technologically by development of computer technology and has got great contribution by enhanced computer technology and communication equipments. Information is transferred by digital and analog methods. Technical development which has brought out multifunctioned modems of communication equipments in analog mode, and construction of advanced information communication network which has come out by joint work of computer and communication under digital technique, are described. The trend in institutional matter and standardization of electrical communication is also described showing some examples of value-added network (VAN).

  19. Lunar Navigation Determination System - LaNDS

    NASA Technical Reports Server (NTRS)

    Quinn, David; Talabac, Stephen

    2012-01-01

    A portable comprehensive navigational system has been developed that both robotic and human explorers can use to determine their location, attitude, and heading anywhere on the lunar surface independent of external infrastructure (needs no Lunar satellite network, line of sight to the Sun or Earth, etc.). The system combines robust processing power with an extensive topographical database to create a real-time atlas (GIS Geospatial Information System) that is able to autonomously control and monitor both single unmanned rovers and fleets of rovers, as well as science payload stations. The system includes provisions for teleoperation and tele-presence. The system accepts (but does not require) inputs from a wide range of sensors. A means was needed to establish a location when the search is taken deep in a crater (looking for water ice) and out of view of Earth or any other references. A star camera can be employed to determine the user's attitude in menial space and stellar map in body space. A local nadir reference (e.g., an accelerometer that orients the nadir vector in body space) can be used in conjunction with a digital ephemeris and gravity model of the Moon to isolate the latitude, longitude, and azimuth of the user on the surface. That information can be used in conjunction with a Lunar GIS and advanced navigation planning algorithms to aid astronauts (or other assets) to navigate on the Lunar surface.

  20. Robot navigation research at CESAR (Center for Engineering Systems Advanced Research)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.; de Saussure, G.; Pin, F.G.

    1989-01-01

    A considerable amount of work has been reported on the problem of robot navigation in known static terrains. Algorithms have been proposed and implemented to search for an optimum path to the goal, taking into account the finite size and shape of the robot. Not as much work has been reported on robot navigation in unknown, unstructured, or dynamic environments. A robot navigating in an unknown environment must explore with its sensors, construct an abstract representation of its global environment to plan a path to the goal, and update or revise its plan based on accumulated data obtained and processedmore » in real-time. The core of the navigation program for the CESAR robots is a production system developed on the expert-system-shell CLIPS which runs on an NCUBE hypercube on board the robot. The production system can call on C-compiled navigation procedures. The production rules can read the sensor data and address the robot's effectors. This architecture was found efficient and flexible for the development and testing of the navigation algorithms; however, in order to process intelligently unexpected emergencies, it was found necessary to be able to control the production system through externally generated asynchronous data. This led to the design of a new asynchronous production system, APS, which is now being developed on the robot. This paper will review some of the navigation algorithms developed and tested at CESAR and will discuss the need for the new APS and how it is being integrated into the robot architecture. 18 refs., 3 figs., 1 tab.« less

  1. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study

    PubMed Central

    Ehinger, Benedikt V.; Fischer, Petra; Gert, Anna L.; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation. PMID:24616681

  2. Kinesthetic and vestibular information modulate alpha activity during spatial navigation: a mobile EEG study.

    PubMed

    Ehinger, Benedikt V; Fischer, Petra; Gert, Anna L; Kaufhold, Lilli; Weber, Felix; Pipa, Gordon; König, Peter

    2014-01-01

    In everyday life, spatial navigation involving locomotion provides congruent visual, vestibular, and kinesthetic information that need to be integrated. Yet, previous studies on human brain activity during navigation focus on stationary setups, neglecting vestibular and kinesthetic feedback. The aim of our work is to uncover the influence of those sensory modalities on cortical processing. We developed a fully immersive virtual reality setup combined with high-density mobile electroencephalography (EEG). Participants traversed one leg of a triangle, turned on the spot, continued along the second leg, and finally indicated the location of their starting position. Vestibular and kinesthetic information was provided either in combination, as isolated sources of information, or not at all within a 2 × 2 full factorial intra-subjects design. EEG data were processed by clustering independent components, and time-frequency spectrograms were calculated. In parietal, occipital, and temporal clusters, we detected alpha suppression during the turning movement, which is associated with a heightened demand of visuo-attentional processing and closely resembles results reported in previous stationary studies. This decrease is present in all conditions and therefore seems to generalize to more natural settings. Yet, in incongruent conditions, when different sensory modalities did not match, the decrease is significantly stronger. Additionally, in more anterior areas we found that providing only vestibular but no kinesthetic information results in alpha increase. These observations demonstrate that stationary experiments omit important aspects of sensory feedback. Therefore, it is important to develop more natural experimental settings in order to capture a more complete picture of neural correlates of spatial navigation.

  3. Advanced information society(7)

    NASA Astrophysics Data System (ADS)

    Chiba, Toshihiro

    Various threats are hiding in advanced informationalized society. As we see car accident problems in motorization society light aspects necessarily accompy shady ones. Under the changing circumstances of advanced informationalization added values of information has become much higher. It causes computer crime, hacker, computer virus to come to the surface. In addition it can be said that infringement of intellectual property and privacy are threats brought by advanced information. Against these threats legal, institutional and insurance measures have been progressed, and newly security industry has been established. However, they are not adequate individually or totally. The future vision should be clarified, and countermeasures according to the visions have to be considered.

  4. Characterizing Navigation in Interactive Learning Environments

    ERIC Educational Resources Information Center

    Liang, Hai-Ning; Sedig, Kamran

    2009-01-01

    Interactive learning environments (ILEs) are increasingly used to support and enhance instruction and learning experiences. ILEs maintain and display information, allowing learners to interact with this information. One important method of interacting with information is navigation. Often, learners are required to navigate through the information…

  5. Collective navigation of complex networks: Participatory greedy routing.

    PubMed

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  6. Here's an idea: ask the users! Young people's views on navigation, design and content of a health information website.

    PubMed

    Franck, Linda S; Noble, Genevieve

    2007-12-01

    Use of the internet to provide health information to young people is a relatively recent development. Few studies have explored young people's views on how they use internet health websites. This study investigated the navigation, design and content preferences of young people using the Children First for Health (CFfH) website. Young people from five secondary schools completed an internet site navigation exercise, website evaluation questionnaire and participated in informal discussions. Of the participants, 45 percent visited the website section aimed at older adolescents within their first two clicks, regardless of their age. There were conflicting preferences for design and strong preference for gender-specific information on topics such as appearance, relationships, fitness and sexual health. The findings indicate the importance of gaining young people's views to ensure that health information websites meet the needs of their intended audience. Cooperation from schools can facilitate the process of gaining young people's views on internet website navigation, design and content.

  7. Towards ontology-driven navigation of the lipid bibliosphere.

    PubMed

    Baker, Christopher Jo; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to the results of text mining

  8. Effect of physical workload and modality of information presentation on pattern recognition and navigation task performance by high-fit young males.

    PubMed

    Zahabi, Maryam; Zhang, Wenjuan; Pankok, Carl; Lau, Mei Ying; Shirley, James; Kaber, David

    2017-11-01

    Many occupations require both physical exertion and cognitive task performance. Knowledge of any interaction between physical demands and modalities of cognitive task information presentation can provide a basis for optimising performance. This study examined the effect of physical exertion and modality of information presentation on pattern recognition and navigation-related information processing. Results indicated males of equivalent high fitness, between the ages of 18 and 34, rely more on visual cues vs auditory or haptic for pattern recognition when exertion level is high. We found that navigation response time was shorter under low and medium exertion levels as compared to high intensity. Navigation accuracy was lower under high level exertion compared to medium and low levels. In general, findings indicated that use of the haptic modality for cognitive task cueing decreased accuracy in pattern recognition responses. Practitioner Summary: An examination was conducted on the effect of physical exertion and information presentation modality in pattern recognition and navigation. In occupations requiring information presentation to workers, who are simultaneously performing a physical task, the visual modality appears most effective under high level exertion while haptic cueing degrades performance.

  9. Film in the Advanced Composition Classroom: A Tapestry of Style

    ERIC Educational Resources Information Center

    Durst, Pearce

    2015-01-01

    This article advances film as worthy of rhetorical inquiry and deserving of more sustained attention in the advanced composition classroom. The first section identifies various approaches to the "language" of film, which can be adopted to navigate the technical, rhetorical, and cultural concerns needed to compose informed multimodal…

  10. Building a Navigation System to Reduce Cancer Disparities in Urban Black Older Adults

    PubMed Central

    Bone, Lee; Edington, Kristen; Rosenberg, Jessica; Wenzel, Jennifer; Garza, Mary A.; Klein, Catherine; Schmitt, Lisa; Ford, Jean G.

    2014-01-01

    Background Although cancer outcomes have improved in recent decades, substantial disparities by race, ethnicity, income and education persist. Increasingly, patient navigation services are demonstrating success in improving cancer detection, treatment and care and in reducing cancer health disparities. To advance progress in developing patient navigation programs, extensive descriptions of each component of the program must be made available to researchers and health service providers. Objective To describe the components of a patient navigation program designed to improve cancer screening based on informed decision-making on cancer screening and cancer treatment services among predominantly Black older adults in Baltimore City. Methods A community-academic participatory approach was used to develop a patient navigation program in Baltimore, Maryland. The components of the patient navigation system included the development of a community academic (advisory) committee (CAC); recruitment and selection of community health workers (CHWs)/navigators and supervisory staff; initial training and continuing education of the CHWs/navigators; and evaluation of CHWs/navigators. The study was approved by the Johns Hopkins Bloomberg School of Public Health Institutional Review Board. Conclusions The incorporation of community-based participatory research (CPBR) principles into each facet of this patient navigation program facilitated the attainment of the intervention’s objectives. This patient navigation program successfully delivered cancer navigation services to 1302 urban Black older adults. Appropriately recruited, selected and trained CHWs monitored by an experienced supervisor and investigators are the key elements in a patient navigation program. This model has the potential to be adapted by research and health service providers. PMID:23793252

  11. Autonomous Deep-Space Optical Navigation Project

    NASA Technical Reports Server (NTRS)

    D'Souza, Christopher

    2014-01-01

    This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.

  12. 7 CFR 29.68 - Advance information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Advance information. 29.68 Section 29.68 Agriculture... INSPECTION Regulations Permissive Inspection § 29.68 Advance information. Upon the request of an applicant.... Information relative to grade or other determinations contained or to be contained in a certificate shall not...

  13. Freight Advanced Traveler Information System (FRATIS) – Dallas-Fort Worth (DFW) prototype : final report.

    DOT National Transportation Integrated Search

    2015-05-01

    This is the Final Report for the FRATIS Dallas-Fort Worth DFW prototype system. The FRATIS prototype in DFW consisted of the following components: optimization algorithm, terminal wait time, route specific navigation/traffic/weather, and advanced not...

  14. An innovative information fusion method with adaptive Kalman filter for integrated INS/GPS navigation of autonomous vehicles

    NASA Astrophysics Data System (ADS)

    Liu, Yahui; Fan, Xiaoqian; Lv, Chen; Wu, Jian; Li, Liang; Ding, Dawei

    2018-02-01

    Information fusion method of INS/GPS navigation system based on filtering technology is a research focus at present. In order to improve the precision of navigation information, a navigation technology based on Adaptive Kalman Filter with attenuation factor is proposed to restrain noise in this paper. The algorithm continuously updates the measurement noise variance and processes noise variance of the system by collecting the estimated and measured values, and this method can suppress white noise. Because a measured value closer to the current time would more accurately reflect the characteristics of the noise, an attenuation factor is introduced to increase the weight of the current value, in order to deal with the noise variance caused by environment disturbance. To validate the effectiveness of the proposed algorithm, a series of road tests are carried out in urban environment. The GPS and IMU data of the experiments were collected and processed by dSPACE and MATLAB/Simulink. Based on the test results, the accuracy of the proposed algorithm is 20% higher than that of a traditional Adaptive Kalman Filter. It also shows that the precision of the integrated navigation can be improved due to the reduction of the influence of environment noise.

  15. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter

    PubMed Central

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-01-01

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method. PMID:28165369

  16. Performance Enhancement of a USV INS/CNS/DVL Integration Navigation System Based on an Adaptive Information Sharing Factor Federated Filter.

    PubMed

    Wang, Qiuying; Cui, Xufei; Li, Yibing; Ye, Fang

    2017-02-03

    To improve the ability of autonomous navigation for Unmanned Surface Vehicles (USVs), multi-sensor integrated navigation based on Inertial Navigation System (INS), Celestial Navigation System (CNS) and Doppler Velocity Log (DVL) is proposed. The CNS position and the DVL velocity are introduced as the reference information to correct the INS divergence error. The autonomy of the integrated system based on INS/CNS/DVL is much better compared with the integration based on INS/GNSS alone. However, the accuracy of DVL velocity and CNS position are decreased by the measurement noise of DVL and bad weather, respectively. Hence, the INS divergence error cannot be estimated and corrected by the reference information. To resolve the problem, the Adaptive Information Sharing Factor Federated Filter (AISFF) is introduced to fuse data. The information sharing factor of the Federated Filter is adaptively adjusted to maintaining multiple component solutions usable as back-ups, which can improve the reliability of overall system. The effectiveness of this approach is demonstrated by simulation and experiment, the results show that for the INS/CNS/DVL integrated system, when the DVL velocity accuracy is decreased and the CNS cannot work under bad weather conditions, the INS/CNS/DVL integrated system can operate stably based on the AISFF method.

  17. Dynamic Transportation Navigation

    NASA Astrophysics Data System (ADS)

    Meng, Xiaofeng; Chen, Jidong

    Miniaturization of computing devices, and advances in wireless communication and sensor technology are some of the forces that are propagating computing from the stationary desktop to the mobile outdoors. Some important classes of new applications that will be enabled by this revolutionary development include intelligent traffic management, location-based services, tourist services, mobile electronic commerce, and digital battlefield. Some existing application classes that will benefit from the development include transportation and air traffic control, weather forecasting, emergency response, mobile resource management, and mobile workforce. Location management, i.e., the management of transient location information, is an enabling technology for all these applications. In this chapter, we present the applications of moving objects management and their functionalities, in particular, the application of dynamic traffic navigation, which is a challenge due to the highly variable traffic state and the requirement of fast, on-line computations.

  18. Instrument-mounted displays for reducing cognitive load during surgical navigation.

    PubMed

    Herrlich, Marc; Tavakol, Parnian; Black, David; Wenig, Dirk; Rieder, Christian; Malaka, Rainer; Kikinis, Ron

    2017-09-01

    Surgical navigation systems rely on a monitor placed in the operating room to relay information. Optimal monitor placement can be challenging in crowded rooms, and it is often not possible to place the monitor directly beside the situs. The operator must split attention between the navigation system and the situs. We present an approach for needle-based interventions to provide navigational feedback directly on the instrument and close to the situs by mounting a small display onto the needle. By mounting a small and lightweight smartwatch display directly onto the instrument, we are able to provide navigational guidance close to the situs and directly in the operator's field of view, thereby reducing the need to switch the focus of view between the situs and the navigation system. We devise a specific variant of the established crosshair metaphor suitable for the very limited screen space. We conduct an empirical user study comparing our approach to using a monitor and a combination of both. Results from the empirical user study show significant benefits for cognitive load, user preference, and general usability for the instrument-mounted display, while achieving the same level of performance in terms of time and accuracy compared to using a monitor. We successfully demonstrate the feasibility of our approach and potential benefits. With ongoing technological advancements, instrument-mounted displays might complement standard monitor setups for surgical navigation in order to lower cognitive demands and for improved usability of such systems.

  19. Information Structure and Practice as Facilitators of Deaf Users' Navigation in Textual Websites

    ERIC Educational Resources Information Center

    Fajardo, I.; Canas, J. J.; Salmeron, L.; Abascal, J.

    2009-01-01

    Deaf users might find it difficult to navigate through websites with textual content which, for many of them, constitutes the written representation of a non-native oral language. With the aim of testing how the information structure could compensate for this difficulty, 27 prelingual deaf users of sign language were asked to search a set of…

  20. A greedy-navigator approach to navigable city plans

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2013-01-01

    We use a set of four theoretical navigability indices for street maps to investigate the shape of the resulting street networks, if they are grown by optimizing these indices. The indices compare the performance of simulated navigators (having a partial information about the surroundings, like humans in many real situations) to the performance of optimally navigating individuals. We show that our simple greedy shortcut construction strategy generates the emerging structures that are different from real road network, but not inconceivable. The resulting city plans, for all navigation indices, share common qualitative properties such as the tendency for triangular blocks to appear, while the more quantitative features, such as degree distributions and clustering, are characteristically different depending on the type of metrics and routing strategies. We show that it is the type of metrics used which determines the overall shapes characterized by structural heterogeneity, but the routing schemes contribute to more subtle details of locality, which is more emphasized in case of unrestricted connections when the edge crossing is allowed.

  1. Relative Navigation of Formation Flying Satellites

    NASA Technical Reports Server (NTRS)

    Long, Anne; Kelbel, David; Lee, Taesul; Leung, Dominic; Carpenter, Russell; Gramling, Cheryl; Bauer, Frank (Technical Monitor)

    2002-01-01

    The Guidance, Navigation, and Control Center (GNCC) at Goddard Space Flight Center (GSFC) has successfully developed high-accuracy autonomous satellite navigation systems using the National Aeronautics and Space Administration's (NASA's) space and ground communications systems and the Global Positioning System (GPS). In addition, an autonomous navigation system that uses celestial object sensor measurements is currently under development and has been successfully tested using real Sun and Earth horizon measurements.The GNCC has developed advanced spacecraft systems that provide autonomous navigation and control of formation flyers in near-Earth, high-Earth, and libration point orbits. To support this effort, the GNCC is assessing the relative navigation accuracy achievable for proposed formations using GPS, intersatellite crosslink, ground-to-satellite Doppler, and celestial object sensor measurements. This paper evaluates the performance of these relative navigation approaches for three proposed missions with two or more vehicles maintaining relatively tight formations. High-fidelity simulations were performed to quantify the absolute and relative navigation accuracy as a function of navigation algorithm and measurement type. Realistically-simulated measurements were processed using the extended Kalman filter implemented in the GPS Enhanced Inboard Navigation System (GEONS) flight software developed by GSFC GNCC. Solutions obtained by simultaneously estimating all satellites in the formation were compared with the results obtained using a simpler approach based on differencing independently estimated state vectors.

  2. Patients' experiences with navigation for cancer care.

    PubMed

    Carroll, Jennifer K; Humiston, Sharon G; Meldrum, Sean C; Salamone, Charcy M; Jean-Pierre, Pascal; Epstein, Ronald M; Fiscella, Kevin

    2010-08-01

    We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  3. Patients' Experiences with Navigation for Cancer Care

    PubMed Central

    Carroll, Jennifer K.; Humiston, Sharon G.; Meldrum, Sean C.; Salamone, Charcy M.; Jean-Pierre, Pascal; Epstein, Ronald M.; Fiscella, Kevin

    2010-01-01

    Objective We examined how navigation, defined as the assessment and alleviation of barriers to adequate health care, influences patients' perspectives on the quality of their cancer care. Methods We conducted post-study patient interviews from a randomized controlled trial (usual care vs. patient navigation services) from cancer diagnosis through treatment completion. Patients were recruited from 11 primary care, hospital and community oncology practices in New York. We interviewed patients about their expectations and experience of patient navigation or, for non-navigated patients, other sources of assistance. Results Thirty-five patients newly diagnosed with breast or colorectal cancer. Valued aspects of navigation included emotional support, assistance with information needs and problem-solving, and logistical coordination of cancer care. Unmet cancer care needs expressed by patients randomized to usual care consisted of lack of assistance or support with childcare, household responsibilities, coordination of care, and emotional support. Conclusion Cancer patients value navigation. Instrumental benefits were the most important expectations for navigation from navigated and non-navigated patients. Navigated patients received emotional support and assistance with information needs, problem-solving, and logistical aspects of cancer care coordination. Practice Implications Navigation services may help improve cancer care outcomes important to patients by addressing fragmented, confusing, uncoordinated, or inefficient care. PMID:20006459

  4. How do field of view and resolution affect the information content of panoramic scenes for visual navigation? A computational investigation.

    PubMed

    Wystrach, Antoine; Dewar, Alex; Philippides, Andrew; Graham, Paul

    2016-02-01

    The visual systems of animals have to provide information to guide behaviour and the informational requirements of an animal's behavioural repertoire are often reflected in its sensory system. For insects, this is often evident in the optical array of the compound eye. One behaviour that insects share with many animals is the use of learnt visual information for navigation. As ants are expert visual navigators it may be that their vision is optimised for navigation. Here we take a computational approach in asking how the details of the optical array influence the informational content of scenes used in simple view matching strategies for orientation. We find that robust orientation is best achieved with low-resolution visual information and a large field of view, similar to the optical properties seen for many ant species. A lower resolution allows for a trade-off between specificity and generalisation for stored views. Additionally, our simulations show that orientation performance increases if different portions of the visual field are considered as discrete visual sensors, each giving an independent directional estimate. This suggests that ants might benefit by processing information from their two eyes independently.

  5. A real-time algorithm for integrating differential satellite and inertial navigation information during helicopter approach. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Hoang, TY

    1994-01-01

    A real-time, high-rate precision navigation Kalman filter algorithm is developed and analyzed. This Navigation algorithm blends various navigation data collected during terminal area approach of an instrumented helicopter. Navigation data collected include helicopter position and velocity from a global position system in differential mode (DGPS) as well as helicopter velocity and attitude from an inertial navigation system (INS). The goal of the Navigation algorithm is to increase the DGPS accuracy while producing navigational data at the 64 Hertz INS update rate. It is important to note that while the data was post flight processed, the Navigation algorithm was designed for real-time analysis. The design of the Navigation algorithm resulted in a nine-state Kalman filter. The Kalman filter's state matrix contains position, velocity, and velocity bias components. The filter updates positional readings with DGPS position, INS velocity, and velocity bias information. In addition, the filter incorporates a sporadic data rejection scheme. This relatively simple model met and exceeded the ten meter absolute positional requirement. The Navigation algorithm results were compared with truth data derived from a laser tracker. The helicopter flight profile included terminal glideslope angles of 3, 6, and 9 degrees. Two flight segments extracted during each terminal approach were used to evaluate the Navigation algorithm. The first segment recorded small dynamic maneuver in the lateral plane while motion in the vertical plane was recorded by the second segment. The longitudinal, lateral, and vertical averaged positional accuracies for all three glideslope approaches are as follows (mean plus or minus two standard deviations in meters): longitudinal (-0.03 plus or minus 1.41), lateral (-1.29 plus or minus 2.36), and vertical (-0.76 plus or minus 2.05).

  6. 7 CFR 56.58 - Advance information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Advance information. 56.58 Section 56.58 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... EGGS Grading of Shell Eggs Grading Certificates § 56.58 Advance information. Upon request of an...

  7. 7 CFR 70.93 - Advance information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Advance information. 70.93 Section 70.93 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Advance information. Upon request of an applicant, all or part of the contents of any grading certificate...

  8. 7 CFR 58.21 - Advance information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Advance information. 58.21 Section 58.21 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... Grading Service § 58.21 Advance information. Upon request of an applicant, all or part of the contents of...

  9. Multi-topic assignment for exploratory navigation of consumer health information in NetWellness using formal concept analysis.

    PubMed

    Cui, Licong; Xu, Rong; Luo, Zhihui; Wentz, Susan; Scarberry, Kyle; Zhang, Guo-Qiang

    2014-08-03

    Finding quality consumer health information online can effectively bring important public health benefits to the general population. It can empower people with timely and current knowledge for managing their health and promoting wellbeing. Despite a popular belief that search engines such as Google can solve all information access problems, recent studies show that using search engines and simple search terms is not sufficient. Our objective is to provide an approach to organizing consumer health information for navigational exploration, complementing keyword-based direct search. Multi-topic assignment to health information, such as online questions, is a fundamental step for navigational exploration. We introduce a new multi-topic assignment method combining semantic annotation using UMLS concepts (CUIs) and Formal Concept Analysis (FCA). Each question was tagged with CUIs identified by MetaMap. The CUIs were filtered with term-frequency and a new term-strength index to construct a CUI-question context. The CUI-question context and a topic-subject context were used for multi-topic assignment, resulting in a topic-question context. The topic-question context was then directly used for constructing a prototype navigational exploration interface. Experimental evaluation was performed on the task of automatic multi-topic assignment of 99 predefined topics for about 60,000 consumer health questions from NetWellness. Using example-based metrics, suitable for multi-topic assignment problems, our method achieved a precision of 0.849, recall of 0.774, and F₁ measure of 0.782, using a reference standard of 278 questions with manually assigned topics. Compared to NetWellness' original topic assignment, a 36.5% increase in recall is achieved with virtually no sacrifice in precision. Enhancing the recall of multi-topic assignment without sacrificing precision is a prerequisite for achieving the benefits of navigational exploration. Our new multi-topic assignment method

  10. Multi-topic assignment for exploratory navigation of consumer health information in NetWellness using formal concept analysis

    PubMed Central

    2014-01-01

    Background Finding quality consumer health information online can effectively bring important public health benefits to the general population. It can empower people with timely and current knowledge for managing their health and promoting wellbeing. Despite a popular belief that search engines such as Google can solve all information access problems, recent studies show that using search engines and simple search terms is not sufficient. Our objective is to provide an approach to organizing consumer health information for navigational exploration, complementing keyword-based direct search. Multi-topic assignment to health information, such as online questions, is a fundamental step for navigational exploration. Methods We introduce a new multi-topic assignment method combining semantic annotation using UMLS concepts (CUIs) and Formal Concept Analysis (FCA). Each question was tagged with CUIs identified by MetaMap. The CUIs were filtered with term-frequency and a new term-strength index to construct a CUI-question context. The CUI-question context and a topic-subject context were used for multi-topic assignment, resulting in a topic-question context. The topic-question context was then directly used for constructing a prototype navigational exploration interface. Results Experimental evaluation was performed on the task of automatic multi-topic assignment of 99 predefined topics for about 60,000 consumer health questions from NetWellness. Using example-based metrics, suitable for multi-topic assignment problems, our method achieved a precision of 0.849, recall of 0.774, and F1 measure of 0.782, using a reference standard of 278 questions with manually assigned topics. Compared to NetWellness’ original topic assignment, a 36.5% increase in recall is achieved with virtually no sacrifice in precision. Conclusion Enhancing the recall of multi-topic assignment without sacrificing precision is a prerequisite for achieving the benefits of navigational exploration. Our

  11. Measuring the impact of enhanced kinship navigator services for informal kinship caregivers using an experimental design.

    PubMed

    Feldman, Leonard H; Fertig, Amanda

    2013-01-01

    While relative care may offer significant benefits to kin children as compared to non-relative foster care, informal kinship caregivers often experience various hardships and needs without the resources of the child welfare system to aid them. They may benefit from services provided by an expanded kinship navigator program. This study, using an experimental design, adds to knowledge about the characteristics and needs of kinship caregivers and the impact of enhanced navigator services. The relative effect of this more intensive intervention was mixed. Caregivers had many of their expressed needs met. Yet, the enhanced services group did not demonstrate: an increase in perceived social support; reduction in caregiver stress; or improvement in child behavior compared to the families receiving brief, traditional navigator services. Little difference was found in post intervention involvement in the child welfare system. Further enhancements to the model are suggested.

  12. 77 FR 67658 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... the Road, navigation regulations and equipment, routing measures, marine information, diving safety... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2012-0212] Navigation Safety Advisory... Navigation Safety Advisory Council (NAVSAC) will meet on November 28 and 29, 2012 in Tampa, Florida, to...

  13. 78 FR 68077 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0194] Navigation Safety Advisory.... SUMMARY: The Navigation Safety Advisory Council (NAVSAC) will meet December 3-4, 2013, in Portsmouth... Rules of the Road; navigation regulations and equipment; routing measures; marine information; diving...

  14. 78 FR 18615 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2013-0194] Navigation Safety Advisory.... SUMMARY: The Navigation Safety Advisory Council (NAVSAC) will meet April 10-11, 2013, in Arlington... Rules of the Road; navigation regulations and equipment; routing measures; marine information; diving...

  15. 76 FR 21772 - Navigation Safety Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ..., routing measures, marine information, diving safety, and aids to navigation systems. Agenda The NAVSAC... discussion of autonomous unmanned vessels and discuss their implications for the Inland Navigation Rules. A... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-0204] Navigation Safety Advisory...

  16. Navigation in large information spaces represented as hypertext: A review of the literature

    NASA Technical Reports Server (NTRS)

    Brown, Marcus

    1990-01-01

    The problem addressed is the failure of information-space navigation tools when the space grows to large. The basic goal is to provide the power of the hypertext interface in such a way as to be most easily comprehensible to the user. It was determined that the optimal structure for information is an overlapping, simplified hierarchy. The hierarchical structure should be made obvious to the user, and many of the non-hierarchical links in the information space should either by eliminated, or should be de-emphasized so that the novice user is not confused by them. Only one of the hierarchies should be very simple.

  17. Towards ontology-driven navigation of the lipid bibliosphere

    PubMed Central

    Baker, Christopher JO; Kanagasabai, Rajaraman; Ang, Wee Tiong; Veeramani, Anitha; Low, Hong-Sang; Wenk, Markus R

    2008-01-01

    Background The indexing of scientific literature and content is a relevant and contemporary requirement within life science information systems. Navigating information available in legacy formats continues to be a challenge both in enterprise and academic domains. The emergence of semantic web technologies and their fusion with artificial intelligence techniques has provided a new toolkit with which to address these data integration challenges. In the emerging field of lipidomics such navigation challenges are barriers to the translation of scientific results into actionable knowledge, critical to the treatment of diseases such as Alzheimer's syndrome, Mycobacterium infections and cancer. Results We present a literature-driven workflow involving document delivery and natural language processing steps generating tagged sentences containing lipid, protein and disease names, which are instantiated to custom designed lipid ontology. We describe the design challenges in capturing lipid nomenclature, the mandate of the ontology and its role as query model in the navigation of the lipid bibliosphere. We illustrate the extent of the description logic-based A-box query capability provided by the instantiated ontology using a graphical query composer to query sentences describing lipid-protein and lipid-disease correlations. Conclusion As scientists accept the need to readjust the manner in which we search for information and derive knowledge we illustrate a system that can constrain the literature explosion and knowledge navigation problems. Specifically we have focussed on solving this challenge for lipidomics researchers who have to deal with the lack of standardized vocabulary, differing classification schemes, and a wide array of synonyms before being able to derive scientific insights. The use of the OWL-DL variant of the Web Ontology Language (OWL) and description logic reasoning is pivotal in this regard, providing the lipid scientist with advanced query access to

  18. Autonomous Relative Navigation for Formation-Flying Satellites Using GPS

    NASA Technical Reports Server (NTRS)

    Gramling, Cheryl; Carpenter, J. Russell; Long, Anne; Kelbel, David; Lee, Taesul

    2000-01-01

    The Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for a formation of four eccentric, medium-altitude Earth-orbiting satellites using Global Positioning System (GPS) Standard Positioning Service (SPS) and "GPS-like " intersatellite measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that an autonomous relative navigation position accuracy of 1meter root-mean-square can be achieved by differencing high-accuracy filtered solutions if only measurements from common GPS space vehicles are used in the independently estimated solutions.

  19. Cognitive Navigation: Toward a Biological Basis for Instructional Design.

    ERIC Educational Resources Information Center

    Tripp, Steven

    2001-01-01

    Discusses cognitive navigation, cognitive maps and online learning, and the role of the hippocampus in navigation. Topics include brain research in animal and human studies; types of memory; human navigation, including land navigation and information navigation; instructional strategies; tree maps of curriculum structure; cognitive complexity; and…

  20. Designing and evaluating symbols for electronic displays of navigation information : symbol stereotypes and symbol-feature rules

    DOT National Transportation Integrated Search

    2005-09-30

    There is currently no common symbology standard for the electronic display of navigation information. The wide range of display technology and the different functions these displays support makes it difficult to design symbols that are easily recogni...

  1. Sea turtles: navigating with magnetism.

    PubMed

    Lohmann, Kenneth J

    2007-02-06

    Young sea turtles use the Earth's magnetic field as a source of navigational information during their epic transoceanic migrations and while homing. A new study using satellite telemetry has now demonstrated for the first time that adult turtles also navigate using the Earth's magnetic field.

  2. Electromagnetic navigation diagnostic bronchoscopy for small peripheral lung lesions.

    PubMed

    Makris, D; Scherpereel, A; Leroy, S; Bouchindhomme, B; Faivre, J-B; Remy, J; Ramon, P; Marquette, C-H

    2007-06-01

    The present study prospectively evaluated the diagnostic yield and safety of electromagnetic navigation-guided bronchoscopy biopsy, for small peripheral lung lesions in patients where standard techniques were nondiagnostic. The study was conducted in a tertiary medical centre on 40 consecutive patients considered unsuitable for straightforward surgery or computed tomography (CT)-guided transthoracic needle aspiration biopsy, due to comorbidities. The lung lesion diameter was mean+/-sem 23.5+/-1.5 mm and the depth from the visceral-costal pleura was 14.9+/-2 mm. Navigation was facilitated by an electromagnetic tracking system which could detect a position sensor incorporated into a flexible catheter advanced through a bronchoscope. Information obtained during bronchoscopy was superimposed on previously acquired CT data. Divergence between CT data and data obtained during bronchoscopy was calculated by the system's software as a measure of navigational accuracy. All but one of the target lesions was reached and the overall diagnostic yield was 62.5% (25-40). Diagnostic yield was significantly affected by CT-to-body divergence; yield was 77.2% when estimated divergence was navigation-guided bronchoscopy has the potential to improve the diagnostic yield of transbronchial biopsies without additional fluoroscopic guidance, and may be useful in the early diagnosis of lung cancer, particularly in nonoperable patients.

  3. Advancing Navigation, Timing, and Science with the Deep Space Atomic Clock

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Seubert, Jill; Bell, Julia

    2014-01-01

    NASA's Deep Space Atomic Clock mission is developing a small, highly stable mercury ion atomic clock with an Allan deviation of at most 1e-14 at one day, and with current estimates near 3e-15. This stability enables one-way radiometric tracking data with accuracy equivalent to and, in certain conditions, better than current two-way deep space tracking data; allowing a shift to a more efficient and flexible one-way deep space navigation architecture. DSAC-enabled one-way tracking will benefit navigation and radio science by increasing the quantity and quality of tracking data. Additionally, DSAC would be a key component to fully-autonomous onboard radio navigation useful for time-sensitive situations. Potential deep space applications of DSAC are presented, including orbit determination of a Mars orbiter and gravity science on a Europa flyby mission.

  4. 9 CFR 592.390 - Advance information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Advance information. 592.390 Section 592.390 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking Products § 592.390 Advance information. Upon request of an applican...

  5. 9 CFR 592.390 - Advance information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Advance information. 592.390 Section 592.390 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking Products § 592.390 Advance information. Upon request of an applican...

  6. 9 CFR 592.390 - Advance information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Advance information. 592.390 Section 592.390 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking Products § 592.390 Advance information. Upon request of an applican...

  7. 9 CFR 592.390 - Advance information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 2 2011-01-01 2011-01-01 false Advance information. 592.390 Section 592.390 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking Products § 592.390 Advance information. Upon request of an applican...

  8. Navigation concepts for MR image-guided interventions.

    PubMed

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  9. Unraveling the neural basis of insect navigation.

    PubMed

    Heinze, Stanley

    2017-12-01

    One of the defining features of animals is their ability to navigate their environment. Using behavioral experiments this topic has been under intense investigation for nearly a century. In insects, this work has largely focused on the remarkable homing abilities of ants and bees. More recently, the neural basis of navigation shifted into the focus of attention. Starting with revealing the neurons that process the sensory signals used for navigation, in particular polarized skylight, migratory locusts became the key species for delineating navigation-relevant regions of the insect brain. Over the last years, this work was used as a basis for research in the fruit fly Drosophila and extraordinary progress has been made in illuminating the neural underpinnings of navigational processes. With increasingly detailed understanding of navigation circuits, we can begin to ask whether there is a fundamentally shared concept underlying all navigation behavior across insects. This review highlights recent advances and puts them into the context of the behavioral work on ants and bees, as well as the circuits involved in polarized-light processing. A region of the insect brain called the central complex emerges as the common substrate for guiding navigation and its highly organized neuroarchitecture provides a framework for future investigations potentially suited to explain all insect navigation behavior at the level of identified neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Unified Simulation and Analysis Framework for Deep Space Navigation Design

    NASA Technical Reports Server (NTRS)

    Anzalone, Evan; Chuang, Jason; Olsen, Carrie

    2013-01-01

    As the technology that enables advanced deep space autonomous navigation continues to develop and the requirements for such capability continues to grow, there is a clear need for a modular expandable simulation framework. This tool's purpose is to address multiple measurement and information sources in order to capture system capability. This is needed to analyze the capability of competing navigation systems as well as to develop system requirements, in order to determine its effect on the sizing of the integrated vehicle. The development for such a framework is built upon Model-Based Systems Engineering techniques to capture the architecture of the navigation system and possible state measurements and observations to feed into the simulation implementation structure. These models also allow a common environment for the capture of an increasingly complex operational architecture, involving multiple spacecraft, ground stations, and communication networks. In order to address these architectural developments, a framework of agent-based modules is implemented to capture the independent operations of individual spacecraft as well as the network interactions amongst spacecraft. This paper describes the development of this framework, and the modeling processes used to capture a deep space navigation system. Additionally, a sample implementation describing a concept of network-based navigation utilizing digitally transmitted data packets is described in detail. This developed package shows the capability of the modeling framework, including its modularity, analysis capabilities, and its unification back to the overall system requirements and definition.

  11. Real-time adaptive off-road vehicle navigation and terrain classification

    NASA Astrophysics Data System (ADS)

    Muller, Urs A.; Jackel, Lawrence D.; LeCun, Yann; Flepp, Beat

    2013-05-01

    We are developing a complete, self-contained autonomous navigation system for mobile robots that learns quickly, uses commodity components, and has the added benefit of emitting no radiation signature. It builds on the au­tonomous navigation technology developed by Net-Scale and New York University during the Defense Advanced Research Projects Agency (DARPA) Learning Applied to Ground Robots (LAGR) program and takes advantage of recent scientific advancements achieved during the DARPA Deep Learning program. In this paper we will present our approach and algorithms, show results from our vision system, discuss lessons learned from the past, and present our plans for further advancing vehicle autonomy.

  12. Indoor navigation by image recognition

    NASA Astrophysics Data System (ADS)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  13. Relative navigation for spacecraft formation flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-1) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross-link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  14. Relative Navigation for Spacecraft Formation Flying

    NASA Technical Reports Server (NTRS)

    Hartman, Kate R.; Gramling, Cheryl J.; Lee, Taesul; Kelbel, David A.; Long, Anne C.

    1998-01-01

    The Goddard Space Flight Center Guidance, Navigation, and Control Center (GNCC) is currently developing and implementing advanced satellite systems to provide autonomous control of formation flyers. The initial formation maintenance capability will be flight-demonstrated on the Earth-Orbiter-1 (EO-l) satellite, which is planned under the National Aeronautics and Space Administration New Millennium Program to be a coflight with the Landsat-7 (L-7) satellite. Formation flying imposes relative navigation accuracy requirements in addition to the orbit accuracy requirements for the individual satellites. In the case of EO-1 and L-7, the two satellites are in nearly coplanar orbits, with a small difference in the longitude of the ascending node to compensate for the Earth's rotation. The GNCC has performed trajectory error analysis for the relative navigation of the EO-1/L-7 formation, as well as for a more advanced tracking configuration using cross- link satellite communications. This paper discusses the orbit determination and prediction accuracy achievable for EO-1 and L-7 under various tracking and orbit determination scenarios and discusses the expected relative separation errors in their formation flying configuration.

  15. Paediatric patient navigation models of care in Canada: An environmental scan.

    PubMed

    Luke, Alison; Doucet, Shelley; Azar, Rima

    2018-05-01

    (1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.

  16. Evaluation of Relative Navigation Algorithms for Formation-Flying Satellites

    NASA Technical Reports Server (NTRS)

    Kelbel, David; Lee, Taesul; Long, Anne; Carpenter, J. Russell; Gramling, Cheryl

    2001-01-01

    Goddard Space Flight Center is currently developing advanced spacecraft systems to provide autonomous navigation and control of formation flyers. This paper discusses autonomous relative navigation performance for formations in eccentric, medium, and high-altitude Earth orbits using Global Positioning System (GPS) Standard Positioning Service (SPS) and intersatellite range measurements. The performance of several candidate relative navigation approaches is evaluated. These analyses indicate that the relative navigation accuracy is primarily a function of the frequency of acquisition and tracking of the GPS signals. A relative navigation position accuracy of 0.5 meters root-mean-square (RMS) can be achieved for formations in medium-attitude eccentric orbits that can continuously track at least one GPS signal. A relative navigation position accuracy of better than 75 meters RMS can be achieved for formations in high-altitude eccentric orbits that have sparse tracking of the GPS signals. The addition of round-trip intersatellite range measurements can significantly improve relative navigation accuracy for formations with sparse tracking of the GPS signals.

  17. Navigating the Seas of Policy.

    ERIC Educational Resources Information Center

    Cunningham, Stephanie; Kennedy, Steve; McAlonan, Susan; Hotchkiss, Heather

    As the sun, moon, and stars helped sea captains to navigate, policy (defined as a formalized idea to encourage change) indicates general direction and speed but does not establish a specific approach to achieve implementation. Formal and informal policies have advantages and disadvantages. These are steps in navigating policy formation: identify…

  18. Image navigation and registration performance assessment tool set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Astrophysics Data System (ADS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-05-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99. 73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  19. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  20. Spatial navigation by congenitally blind individuals.

    PubMed

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  1. Exploitation of Semantic Building Model in Indoor Navigation Systems

    NASA Astrophysics Data System (ADS)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication

  2. SLS Model Based Design: A Navigation Perspective

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  3. Determining navigability of terrain using point cloud data.

    PubMed

    Cockrell, Stephanie; Lee, Gregory; Newman, Wyatt

    2013-06-01

    This paper presents an algorithm to identify features of the navigation surface in front of a wheeled robot. Recent advances in mobile robotics have brought about the development of smart wheelchairs to assist disabled people, allowing them to be more independent. These robots have a human occupant and operate in real environments where they must be able to detect hazards like holes, stairs, or obstacles. Furthermore, to ensure safe navigation, wheelchairs often need to locate and navigate on ramps. The algorithm is implemented on data from a Kinect and can effectively identify these features, increasing occupant safety and allowing for a smoother ride.

  4. Autonomous RPRV Navigation, Guidance and Control

    NASA Technical Reports Server (NTRS)

    Johnston, Donald E.; Myers, Thomas T.; Zellner, John W.

    1983-01-01

    Dryden Flight Research Center has the responsibility for flight testing of advanced remotely piloted research vehicles (RPRV) to explore highly maneuverable aircraft technology, and to test advanced structural concepts, and related aeronautical technologies which can yield important research results with significant cost benefits. The primary purpose is to provide the preliminary design of an upgraded automatic approach and landing control system and flight director display to improve landing performance and reduce pilot workload. A secondary purpose is to determine the feasibility of an onboard autonomous navigation, orbit, and landing capability for safe vehicle recovery in the event of loss of telemetry uplink communication with the vehicles. The current RPRV approach and landing method, the proposed automatic and manual approach and autoland system, and an autonomous navigation, orbit, and landing system concept which is based on existing operational technology are described.

  5. Demonstration of new data types for use in interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Ondrasik, V. J.; Chao, C. C.; Winn, F. B.; Yip, K. B.; Acton, C. H.; Reinbold, S. J.

    1974-01-01

    Mariner 10 was the first mission which contained many elements of the advanced navigation system which will be used in the late 1970's and 1980's. Preliminary navigation demonstrated were conducted using S/X charged particle calibrations, simultaneous Doppler data, nearly simultaneous range data, and bright object/star imaging data. The results of these demonstrations are very encouraging and a navigation system based upon these data types should be an order of magnitude better than the current system.

  6. Advanced information society (10)

    NASA Astrophysics Data System (ADS)

    Masuyama, Keiichi

    Informationalization in Japan has spread among various fields of industrial and social life in wide and depth by drastic advancement in technology and networking. Looking at the change in industrial structure as well as international trend in information the Japanese Government regards the role of information and communication technology as infrastructure to be important, and is under the way of constructing various measures with ministries and agencies concerned with them. This paper describes how administrative agencies involved in information and communication such as Ministry of Postal Services, Ministry of International Trade and Industry cope with informationalization, and mentions future direction in information policies.

  7. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  8. Pregnant women's navigation of information on everyday household chemicals: phthalates as a case study.

    PubMed

    Ashley, Justin M; Hodgson, Alexandra; Sharma, Sapna; Nisker, Jeff

    2015-11-25

    Current developments in science and the media have now placed pregnant women in a precarious situation as they are charged with the responsibility to navigate through information sources to make the best decisions for her pregnancy. Yet little is known regarding how pregnant women want to receive and use health information in general, let alone information regarding the uncertain risks to pregnancy in everyday household products such as phthalates found in cosmetics and canned food liners. Using phthalates as an example, this study investigated how pregnant women obtain, evaluate, and act on information regarding their pregnancy. Pregnant women were recruited using pamphlets and posters distributed in prenatal clinics, prenatal fairs and physician offices in Southwestern Ontario Canada. Research participants were engaged in 20 to 40 min semi-structured interviews regarding their use of information sources in pregnancy, particularly regarding phthalates in cosmetics and canned food liners. Interviews were transcribed verbatim and analyzed using constructivist grounded theory techniques supported by NVivo 9™ software. Theoretical sufficiency was reached after 23 pregnant women were interviewed and their transcripts analyzed. Three overlapping themes resulted from the co-constructed analysis: I-Strength of Information Sources; II-Value Modifiers; and III-Deciding to Control Exposure. The research participants reported receiving information from a wide range of sources that they perceived varying in strength or believability. They then described the strategies employed to increase the validity of the message in order to avoid risk exposure. Pregnant women preferred a strong source of information such as physician, government but frequently used weak sources such as the internet or the opinions of friends. A model was developed from the relationship between themes that describes how pregnant women navigate the multiple sources of information available to them. Our

  9. Navigational Support in Lifelong Learning: Enhancing Effectiveness through Indirect Social Navigation

    ERIC Educational Resources Information Center

    Janssen, Jose; van den Berg, Bert; Tattersall, Colin; Hummel, Hans; Koper, Rob

    2007-01-01

    Efficient and effective lifelong learning requires that learners can make well informed choices from a vast amount of learning opportunities. This article proposes to support learners by drawing on principles of self-organization and indirect social navigation; by analysing choices made by learners who went before and feeding this information back…

  10. Navigational Strategies and Their Neural Correlates

    PubMed Central

    Deshmukh, Sachin S.

    2018-01-01

    Animals depend on navigation to find food, water, mate(s), shelter, etc. Different species use diverse strategies that utilise forms of motion- and location-related information derived from the environment to navigate to their goals and back. We start by describing behavioural studies undertaken to unearth different strategies used in navigation. Then we move on to outline what we know about the brain area most associated with spatial navigation, namely the hippocampal formation. While doing so, we first briefly explain the anatomical connections in the area and then proceed to describe the neural correlates that are considered to play a role in navigation. We conclude by looking at how the strategies might interact and complement each other in certain contexts. PMID:29657367

  11. Improving Navigation information for the Rotterdam Harbour access through a 3D Model and HF radar

    NASA Astrophysics Data System (ADS)

    Schroevers, Marinus

    2015-04-01

    The Port of Rotterdam is one of the largest harbours in the world and a gateway to Europe. For the access to Rotterdam harbour, information on hydrodynamic and meteorological conditions is of vital importance for safe and swift navigation. This information focuses on the deep navigation channel in the shallow foreshore, which accommodates large seagoing vessels. Due to a large seaward extension of the Port of Rotterdam area in 2011, current patterns have changed. A re-evaluation of the information needed, showed a need for an improved accuracy of the cross channel currents and swell, and an extended forecast horizon. To obtain this, new information system was designed based on a three dimensional hydrodynamic model which produces a 72 hour forecast. Furthermore, the system will assimilate HF radars surface current to optimize the short term forecast. The project has started in 2013 by specifying data needed from the HF radar. At the same time (temporary) buoys were deployed to monitor vertical current profiles. The HF radar will be operational in July 2015, while the model development starts beginning 2015. A pre operational version of the system is presently planned for the end of 2016. A full operational version which assimilates the HF radar data is planned for 2017.

  12. How the structure of Wikipedia articles influences user navigation.

    PubMed

    Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus

    2017-01-02

    In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable.

  13. How the structure of Wikipedia articles influences user navigation

    NASA Astrophysics Data System (ADS)

    Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus

    2017-01-01

    In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable.

  14. How the structure of Wikipedia articles influences user navigation

    PubMed Central

    Lamprecht, Daniel; Lerman, Kristina; Helic, Denis; Strohmaier, Markus

    2017-01-01

    In this work we study how people navigate the information network of Wikipedia and investigate (i) free-form navigation by studying all clicks within the English Wikipedia over an entire month and (ii) goal-directed Wikipedia navigation by analyzing wikigames, where users are challenged to retrieve articles by following links. To study how the organization of Wikipedia articles in terms of layout and links affects navigation behavior, we first investigate the characteristics of the structural organization and of hyperlinks in Wikipedia and then evaluate link selection models based on article structure and other potential influences in navigation, such as the generality of an article's topic. In free-form Wikipedia navigation, covering all Wikipedia usage scenarios, we find that click choices can be best modeled by a bias towards article structure, such as a tendency to click links located in the lead section. For the goal-directed navigation of wikigames, our findings confirm the zoom-out and the homing-in phases identified by previous work, where users are guided by generality at first and textual similarity to the target later. However, our interpretation of the link selection models accentuates that article structure is the best explanation for the navigation paths in all except these initial and final stages. Overall, we find evidence that users more frequently click on links that are located close to the top of an article. The structure of Wikipedia articles, which places links to more general concepts near the top, supports navigation by allowing users to quickly find the better-connected articles that facilitate navigation. Our results highlight the importance of article structure and link position in Wikipedia navigation and suggest that better organization of information can help make information networks more navigable. PMID:28670171

  15. Investigation of new techniques for aircraft navigation using the omega navigation

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.

    1978-01-01

    An OMEGA navigation receiver with a microprocessor as the computational component was investigated. A version of the INTEL 4004 microprocessor macroassembler suitable for use on the CDC-6600 system and development of a FORTRAN IV simulator program for the microprocessor was developed. Supporting studies included development and evaluation of navigation algorithms to generate relative position information from OMEGA VLF phase measurements. Simulation studies were used to evaluate assumptions made in developing a navigation equation in OMEGA Line of Position (LOP) coordinates. Included in the navigation algorithms was a procedure for calculating a position in latitude/longitude given an OMEGA LOP fix. Implementation of a digital phase locked loop (DPLL) was evaluated on the basic of phase response characteristics over a range of input phase variations. Included also is an analytical evaluation on the basis of error probability of an algorithm for automatic time synchronization of the receiver to the OMEGA broadcast format. The use of actual OMEGA phase data and published propagation prediction corrections to determine phase velocity estimates was discussed.

  16. Scalability of Findability: Decentralized Search and Retrieval in Large Information Networks

    ERIC Educational Resources Information Center

    Ke, Weimao

    2010-01-01

    Amid the rapid growth of information today is the increasing challenge for people to survive and navigate its magnitude. Dynamics and heterogeneity of large information spaces such as the Web challenge information retrieval in these environments. Collection of information in advance and centralization of IR operations are hardly possible because…

  17. Vision-Aided Context-Aware Framework for Personal Navigation Services

    NASA Astrophysics Data System (ADS)

    Saeedi, S.; Moussa, A.; El-Sheimy, N., , Dr.

    2012-07-01

    The ubiquity of mobile devices (such as smartphones and tablet-PCs) has encouraged the use of location-based services (LBS) that are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate personal navigation system (PNS) in different situations of a mobile user. In this paper, we propose a method of personal navigation for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, stationary, driving, and etc.) and the mobile device orientation and placement with respect to the user. After detecting the context information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The method is based on the integration of the relative user's motion (changes of velocity and heading angle) estimation based on the video image matching and absolute position information provided by GPS. A Kalman filter (KF) has been used to improve the navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities of this method for outdoor personal navigation systems.

  18. Netscape Communicator 4.5. Volume II: Beyond the Basics. Advanced Searches, Multimedia, and Composing a Web Page.

    ERIC Educational Resources Information Center

    Gallo, Gail; Wichowski, Chester P.

    This second of two guides on Netscape Communicator 4.5 contains six lessons on advanced searches, multimedia, and composing a World Wide Web page. Lesson 1 is a review of the Navigator window, toolbars, and menus. Lesson 2 covers AltaVista's advanced search tips, searching for information excluding certain text, and advanced and nested Boolean…

  19. The Neural Basis of Long-Distance Navigation in Birds.

    PubMed

    Mouritsen, Henrik; Heyers, Dominik; Güntürkün, Onur

    2016-01-01

    Migratory birds can navigate over tens of thousands of kilometers with an accuracy unobtainable for human navigators. To do so, they use their brains. In this review, we address how birds sense navigation- and orientation-relevant cues and where in their brains each individual cue is processed. When little is currently known, we make educated predictions as to which brain regions could be involved. We ask where and how multisensory navigational information is integrated and suggest that the hippocampus could interact with structures that represent maps and compass information to compute and constantly control navigational goals and directions. We also suggest that the caudolateral nidopallium could be involved in weighing conflicting pieces of information against each other, making decisions, and helping the animal respond to unexpected situations. Considering the gaps in current knowledge, some of our suggestions may be wrong. However, our main aim is to stimulate further research in this fascinating field.

  20. Optical surgical navigation system causes pulse oximeter malfunction.

    PubMed

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  1. Analysis of navigation performance for the Earth Observing System (EOS) using the TDRSS Onboard Navigation System (TONS)

    NASA Technical Reports Server (NTRS)

    Elrod, B.; Kapoor, A.; Folta, David C.; Liu, K.

    1991-01-01

    Use of the Tracking and Data Relay Satellite System (TDRSS) Onboard Navigation System (TONS) was proposed as an alternative to the Global Positioning System (GPS) for supporting the Earth Observing System (EOS) mission. The results are presented of EOS navigation performance evaluation with respect to TONS based orbit, time, and frequency determination (OD/TD/FD). Two TONS modes are considered: one uses scheduled TDRSS forward link service to derive one way Doppler tracking data for OD/FD support (TONS-I); the other uses an unscheduled navigation beacon service (proposed for Advanced TDRSS) to obtain pseudorange and Doppler data for OD/TD/FD support (TONS-II). Key objectives of the analysis were to evaluate nominal performance and potential sensitivities, such as suboptimal tracking geometry, tracking contact scheduling, and modeling parameter selection. OD/TD/FD performance predictions are presented based on covariance and simulation analyses. EOS navigation scenarios and the contributions of principal error sources impacting performance are also described. The results indicate that a TONS mode can be configured to meet current and proposed EOS position accuracy requirements of 100 and 50 m, respectively.

  2. A Strapdown Interial Navigation System/Beidou/Doppler Velocity Log Integrated Navigation Algorithm Based on a Cubature Kalman Filter

    PubMed Central

    Gao, Wei; Zhang, Ya; Wang, Jianguo

    2014-01-01

    The integrated navigation system with strapdown inertial navigation system (SINS), Beidou (BD) receiver and Doppler velocity log (DVL) can be used in marine applications owing to the fact that the redundant and complementary information from different sensors can markedly improve the system accuracy. However, the existence of multisensor asynchrony will introduce errors into the system. In order to deal with the problem, conventionally the sampling interval is subdivided, which increases the computational complexity. In this paper, an innovative integrated navigation algorithm based on a Cubature Kalman filter (CKF) is proposed correspondingly. A nonlinear system model and observation model for the SINS/BD/DVL integrated system are established to more accurately describe the system. By taking multi-sensor asynchronization into account, a new sampling principle is proposed to make the best use of each sensor's information. Further, CKF is introduced in this new algorithm to enable the improvement of the filtering accuracy. The performance of this new algorithm has been examined through numerical simulations. The results have shown that the positional error can be effectively reduced with the new integrated navigation algorithm. Compared with the traditional algorithm based on EKF, the accuracy of the SINS/BD/DVL integrated navigation system is improved, making the proposed nonlinear integrated navigation algorithm feasible and efficient. PMID:24434842

  3. The magnetic sense and its use in long-distance navigation by animals.

    PubMed

    Walker, Michael M; Dennis, Todd E; Kirschvink, Joseph L

    2002-12-01

    True navigation by animals is likely to depend on events occurring in the individual cells that detect magnetic fields. Minimum thresholds of detection, perception and 'interpretation' of magnetic field stimuli must be met if animals are to use a magnetic sense to navigate. Recent technological advances in animal tracking devices now make it possible to test predictions from models of navigation based on the use of variations in magnetic intensity.

  4. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    NASA Technical Reports Server (NTRS)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  5. Knowledge brokers, companions, and navigators: a qualitative examination of informal caregivers’ roles in medical tourism

    PubMed Central

    2013-01-01

    Introduction Many studies examining the phenomena of medical tourism have identified health equity issues associated with this global health services practice. However, there is a notable lack of attention in this existing research to the informal care provided by the friends and family members who typically accompany medical tourists abroad. To date, researchers have not examined the care roles filled by informal caregivers travelling with medical tourists. In this article, we fill this gap by examining these informal caregivers and the roles they take on towards supporting medical tourists’ health and wellbeing. Methods We conducted 21 interviews with International Patient Coordinators (IPCs) working at medical tourism hospitals across ten countries. IPCs work closely with informal caregivers as providers of non-medical personal assistance, and can therefore offer broad insight on caregiver roles. The interviews were coded and analyzed thematically. Results Three roles emerged: knowledge broker, companion, and navigator. As knowledge brokers, caregivers facilitate the transfer of information between the medical tourist and formal health care providers as well as other staff members at medical tourism facilities. The companion role involves providing medical tourists with physical and emotional care. Meanwhile, responsibilities associated with handling documents and coordinating often complex journeys are part of the navigation role. Conclusions This is the first study to examine informal caregiving roles in medical tourism. Many of the roles identified are similar to those of conventional informal caregivers while others are specific to the transnational context. We conclude that these roles make informal caregivers an integral part of the larger phenomenon of medical tourism. We further contend that examining the roles taken on by a heretofore-unconsidered medical tourism stakeholder group sheds valuable insight into how this industry operates and that such

  6. Knowledge brokers, companions, and navigators: a qualitative examination of informal caregivers' roles in medical tourism.

    PubMed

    Casey, Victoria; Crooks, Valorie A; Snyder, Jeremy; Turner, Leigh

    2013-12-01

    Many studies examining the phenomena of medical tourism have identified health equity issues associated with this global health services practice. However, there is a notable lack of attention in this existing research to the informal care provided by the friends and family members who typically accompany medical tourists abroad. To date, researchers have not examined the care roles filled by informal caregivers travelling with medical tourists. In this article, we fill this gap by examining these informal caregivers and the roles they take on towards supporting medical tourists' health and wellbeing. We conducted 21 interviews with International Patient Coordinators (IPCs) working at medical tourism hospitals across ten countries. IPCs work closely with informal caregivers as providers of non-medical personal assistance, and can therefore offer broad insight on caregiver roles. The interviews were coded and analyzed thematically. Three roles emerged: knowledge broker, companion, and navigator. As knowledge brokers, caregivers facilitate the transfer of information between the medical tourist and formal health care providers as well as other staff members at medical tourism facilities. The companion role involves providing medical tourists with physical and emotional care. Meanwhile, responsibilities associated with handling documents and coordinating often complex journeys are part of the navigation role. This is the first study to examine informal caregiving roles in medical tourism. Many of the roles identified are similar to those of conventional informal caregivers while others are specific to the transnational context. We conclude that these roles make informal caregivers an integral part of the larger phenomenon of medical tourism. We further contend that examining the roles taken on by a heretofore-unconsidered medical tourism stakeholder group sheds valuable insight into how this industry operates and that such knowledge is necessary in order to respond to

  7. A navigation system for the visually impaired an intelligent white cane.

    PubMed

    Fukasawa, A Jin; Magatani, Kazusihge

    2012-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. Our developed instrument consists of a navigation system and a map information system. These systems are installed on a white cane. Our navigation system can follow a colored navigation line that is set on the floor. In this system, a color sensor installed on the tip of a white cane, this sensor senses a color of navigation line and the system informs the visually impaired that he/she is walking along the navigation line by vibration. This color recognition system is controlled by a one-chip microprocessor. RFID tags and a receiver for these tags are used in the map information system. RFID tags are set on the colored navigation line. An antenna for RFID tags and a tag receiver are also installed on a white cane. The receiver receives the area information as a tag-number and notifies map information to the user by mp3 formatted pre-recorded voice. And now, we developed the direction identification technique. Using this technique, we can detect a user's walking direction. A triaxiality acceleration sensor is used in this system. Three normal subjects who were blindfolded with an eye mask were tested with our developed navigation system. All of them were able to walk along the navigation line perfectly. We think that the performance of the system is good. Therefore, our system will be extremely valuable in supporting the activities of the visually impaired.

  8. Celestial Navigation in the 21st Century

    NASA Astrophysics Data System (ADS)

    Kaplan, George H.

    2014-05-01

    Despite the ubiquity of GPS receivers in modern life for both timekeeping and geolocation, other forms of navigation remain important because of the weakness of the GPS signals (and those from similar sat-nav systems) and the ease with which they can be jammed. GPS jammers are available for sale on the Internet. The defense and civil aviation communities are particularly concerned about “GPS denial”, whether intentional or accidental, during critical operations.Automated star trackers for navigation have been available since the 1950s. Modern compact observing systems, operating in the far-red and near-IR bands, can detect useful numbers of stars even in the daytime at sea level. A capability to measure the directions of stars relative to some local set of coordinate axes is advantageous for many types of vehicles, whether on the ground, at sea, in the air, or in space, because it provides a direct connection to the inertial reference system represented by current star catalogs. Such a capability can yield precise absolute orientation information not available in any other way. Automated celestial observing systems can be effectively coupled to inertial navigation systems (INS), providing “truth” data for constraining the drift in the INS navigation solution, even if stellar observations are not continuously available due to weather. However, obtaining precise latitude and longitude from stellar observations alone, on a moving platform, remains a challenge, because it requires a determination of the direction to the center of the Earth, i.e., the gravity vertical. General relativity tells us that on-board (“lab”) measurements cannot separate the acceleration of gravity from the acceleration of the platform. Various schemes for overcoming this fundamental problem have been used in the past, at low accuracy, and better ones have been proposed for modern applications. This paper will review some recent developments in this rapidly advancing field.

  9. The sensory ecology of ocean navigation.

    PubMed

    Lohmann, Kenneth J; Lohmann, Catherine M F; Endres, Courtney S

    2008-06-01

    How animals guide themselves across vast expanses of open ocean, sometimes to specific geographic areas, has remained an enduring mystery of behavioral biology. In this review we briefly contrast underwater oceanic navigation with terrestrial navigation and summarize the advantages and constraints of different approaches used to analyze animal navigation in the sea. In addition, we highlight studies and techniques that have begun to unravel the sensory cues that underlie navigation in sea turtles, salmon and other ocean migrants. Environmental signals of importance include geomagnetic, chemical and hydrodynamic cues, perhaps supplemented in some cases by celestial cues or other sources of information that remain to be discovered. An interesting similarity between sea turtles and salmon is that both have been hypothesized to complete long-distance reproductive migrations using navigational systems composed of two different suites of mechanisms that function sequentially over different spatial scales. The basic organization of navigation in these two groups of animals may be functionally similar, and perhaps also representative of other long-distance ocean navigators.

  10. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation.

    PubMed

    Fiore, Vincenzo G; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features

  11. In silico Interrogation of Insect Central Complex Suggests Computational Roles for the Ellipsoid Body in Spatial Navigation

    PubMed Central

    Fiore, Vincenzo G.; Kottler, Benjamin; Gu, Xiaosi; Hirth, Frank

    2017-01-01

    The central complex in the insect brain is a composite of midline neuropils involved in processing sensory cues and mediating behavioral outputs to orchestrate spatial navigation. Despite recent advances, however, the neural mechanisms underlying sensory integration and motor action selections have remained largely elusive. In particular, it is not yet understood how the central complex exploits sensory inputs to realize motor functions associated with spatial navigation. Here we report an in silico interrogation of central complex-mediated spatial navigation with a special emphasis on the ellipsoid body. Based on known connectivity and function, we developed a computational model to test how the local connectome of the central complex can mediate sensorimotor integration to guide different forms of behavioral outputs. Our simulations show integration of multiple sensory sources can be effectively performed in the ellipsoid body. This processed information is used to trigger continuous sequences of action selections resulting in self-motion, obstacle avoidance and the navigation of simulated environments of varying complexity. The motor responses to perceived sensory stimuli can be stored in the neural structure of the central complex to simulate navigation relying on a collective of guidance cues, akin to sensory-driven innate or habitual behaviors. By comparing behaviors under different conditions of accessible sources of input information, we show the simulated insect computes visual inputs and body posture to estimate its position in space. Finally, we tested whether the local connectome of the central complex might also allow the flexibility required to recall an intentional behavioral sequence, among different courses of actions. Our simulations suggest that the central complex can encode combined representations of motor and spatial information to pursue a goal and thus successfully guide orientation behavior. Together, the observed computational features

  12. 33 CFR 117.40 - Advance notice for drawbridge opening.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the advanced notice for the drawbridge will be added to subpart B of this part. [USCG-2001-10881... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Advance notice for drawbridge... SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS General Requirements § 117.40 Advance notice for...

  13. JPL basic research review. [research and advanced development

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Current status, projected goals, and results of 49 research and advanced development programs at the Jet Propulsion Laboratory are reported in abstract form. Areas of investigation include: aerodynamics and fluid mechanics, applied mathematics and computer sciences, environment protection, materials science, propulsion, electric and solar power, guidance and navigation, communication and information sciences, general physics, and chemistry.

  14. Dr Google and the consumer: a qualitative study exploring the navigational needs and online health information-seeking behaviors of consumers with chronic health conditions.

    PubMed

    Lee, Kenneth; Hoti, Kreshnik; Hughes, Jeffery David; Emmerton, Lynne

    2014-12-02

    The abundance of health information available online provides consumers with greater access to information pertinent to the management of health conditions. This is particularly important given an increasing drive for consumer-focused health care models globally, especially in the management of chronic health conditions, and in recognition of challenges faced by lay consumers with finding, understanding, and acting on health information sourced online. There is a paucity of literature exploring the navigational needs of consumers with regards to accessing online health information. Further, existing interventions appear to be didactic in nature, and it is unclear whether such interventions appeal to consumers' needs. Our goal was to explore the navigational needs of consumers with chronic health conditions in finding online health information within the broader context of consumers' online health information-seeking behaviors. Potential barriers to online navigation were also identified. Semistructured interviews were conducted with adult consumers who reported using the Internet for health information and had at least one chronic health condition. Participants were recruited from nine metropolitan community pharmacies within Western Australia, as well as through various media channels. Interviews were audio-recorded, transcribed verbatim, and then imported into QSR NVivo 10. Two established approaches to thematic analysis were adopted. First, a data-driven approach was used to minimize potential bias in analysis and improve construct and criterion validity. A theory-driven approach was subsequently used to confirm themes identified by the former approach and to ensure identified themes were relevant to the objectives. Two levels of analysis were conducted for both data-driven and theory-driven approaches: manifest-level analysis, whereby face-value themes were identified, and latent-level analysis, whereby underlying concepts were identified. We conducted 17

  15. Robot navigation research using the HERMIES mobile robot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnett, D.L.

    1989-01-01

    In recent years robot navigation has attracted much attention from researchers around the world. Not only are theoretical studies being simulated on sophisticated computers, but many mobile robots are now used as test vehicles for these theoretical studies. Various algorithms have been perfected for navigation in a known static environment; but navigation in an unknown and dynamic environment poses a much more challenging problem for researchers. Many different methodologies have been developed for autonomous robot navigation, but each methodology is usually restricted to a particular type of environment. One important research focus of the Center for Engineering Systems Advanced researchmore » (CESAR) at Oak Ridge National Laboratory, is autonomous navigation in unknown and dynamic environments using the series of HERMIES mobile robots. The research uses an expert system for high-level planning interfaced with C-coded routines for implementing the plans, and for quick processing of data requested by the expert system. In using this approach, the navigation is not restricted to one methodology since the expert system can activate a rule module for the methodology best suited for the current situation. Rule modules can be added the rule base as they are developed and tested. Modules are being developed or enhanced for navigating from a map, searching for a target, exploring, artificial potential-field navigation, navigation using edge-detection, etc. This paper will report on the various rule modules and methods of navigation in use, or under development at CESAR, using the HERMIES-IIB robot as a testbed. 13 refs., 5 figs., 1 tab.« less

  16. Breast cancer navigation and patient satisfaction: exploring a community-based patient navigation model in a rural setting.

    PubMed

    Hook, Ann; Ware, Laurie; Siler, Bobbie; Packard, Abbot

    2012-07-01

    To explore patient satisfaction among newly diagnosed patients with breast cancer in a rural community setting using a nurse navigation model. Nonexperimental, descriptive study. Large, multispecialty physician outpatient clinic serving about 150 newly diagnosed patients with breast cancer annually at the time of the study. 103 patients using nurse navigation services during a two-year period. A researcher-developed 14-item survey tool using a Likert-type scale was mailed to about 300 navigated patients. Nurse navigation and patient satisfaction. The majority of participants (n = 73, 72%) selected "strongly agree" in each survey statement when questioned about the benefits of nurse navigation. Patients receiving nurse navigation for breast cancer are highly satisfied with the services offered in this setting. Findings from this study offer insight regarding the effectiveness of an individualized supportive care approach to nurses and providers of oncology care. That information can be used to guide the implementation of future nurse navigation programs, determine effective methods of guiding patients through the cancer experience, and aid in promoting the highest standard of oncology care.

  17. BOREAS Level-0 C-130 Navigation Data

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Newcomer, Jeffrey A.; Domingues, Roseanne; Hall, Forrest G. (Editor)

    2000-01-01

    The level-0 C-130 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions over the BOReal Ecosystem-Atmosphere Study (BOREAS) study areas. Various portions of the navigation data were collected at 1, 10, and 30 Hz. The level-0 C-130 navigation data collected for BOREAS in 1994 were improved over previous years in that the C-130 onboard navigation system was upgraded to output inertial navigation parameters every 1/30th of a second (i.e., 30 Hz). This upgrade was encouraged by users of the aircraft scanner data with the hope of improving the relative geometric positioning of the collected images.

  18. Design and testing of a multi-sensor pedestrian location and navigation platform.

    PubMed

    Morrison, Aiden; Renaudin, Valérie; Bancroft, Jared B; Lachapelle, Gérard

    2012-01-01

    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided.

  19. Use and Protection of GPS Sidelobe Signals for Enhanced Navigation Performance in High Earth Orbit

    NASA Technical Reports Server (NTRS)

    Parker, Joel J. K.; Valdez, Jennifer E.; Bauer, Frank H.; Moreau, Michael C.

    2016-01-01

    The application of the Global Positioning System (GPS) for navigation of spacecraft in High and Geosynchronous Earth Orbit (HEO/GEO) has crossed a threshold and is now being employed in operational missions. Utilizing advanced GPS receivers optimized for these missions, space users have made extensive use of the sidelobe transmissions from the GPS satellites to realize navigation performance that far exceeds that predicted by pre-launch simulations. Unfortunately, the official specification for the GPS Space Service Volume (SSV), developed in 2006, assumes that only signals emanating from the main beam of the GPS transmit antenna are useful for navigation, which greatly under-estimates the number of signals available for navigation purposes. As a result, future high-altitude space users may be vulnerable to any GPS design changes that suppress the sidelobe transmissions, beginning with Block III space vehicles (SVs) 11-32. This paper presents proposed changes to the GPS system SSV requirements, as informed by data from recent experiments in the SSV and new mission applications that are enabled by GPS navigation in HEO/GEO regimes. The NASA/NOAA GOES-R series satellites are highlighted as an example of a mission that relies on this currently-unspecified GPS system performance to meet mission requirements.

  20. 9 CFR 592.390 - Advance information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Advance information. 592.390 Section 592.390 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE EGG PRODUCTS INSPECTION VOLUNTARY INSPECTION OF EGG PRODUCTS Identifying and Marking Products § 592.390 Advance...

  1. Evaluation of mobility impacts of advanced information systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeta, S.; Poonuru, K.; Sinha, K.

    2000-06-01

    Advanced technologies under the aegis of advanced traveler information systems and advanced traffic management systems are being employed to address the debilitating traffic congestion problem. Broadly identified under the label intelligent transportation systems (ITS), they focus on enhancing the efficiency of the existing roadway utilization. Though ITS has transitioned from the conceptual framework stage to the operational test phase that analyzes real-world feasibility, studies that systematically quantify the multidimensional real-world impacts of these technologies in terms of mobility, safety, and air quality, are lacking. This paper proposes a simulation-based framework to address the mobility impacts of these technologies through themore » provision of information to travelers. The information provision technologies are labeled as advanced information systems (AIS), and include pretrip information, en route information, variable message signs, and combinations thereof. The primary focus of the paper is to evaluate alternative AIS technologies using the heavily traveled Borman Expressway corridor in northwestern Indiana as a case study. Simulation results provide insights into the mobility impacts of AIS technologies, and contrast the effectiveness of alternative information provision sources and strategies.« less

  2. TDRSS Onboard Navigation System (TONS) experiment for the Explorer Platform (EP)

    NASA Astrophysics Data System (ADS)

    Gramling, C. J.; Hornstein, R. S.; Long, A. C.; Samii, M. V.; Elrod, B. D.

    A TDRSS Onboard Navigation System (TONS) is currently being developed by NASA to provide a high-accuracy autonomous spacecraft navigation capability for users of TDRSS and its successor, the Advanced TDRSS. A TONS experiment will be performed in conjunction with the Explorer Platform (EP)/EUV Explorer mission to flight-qualify TONS Block I. This paper presents an overview of TDRSS on-board navigation goals and plans and the technical objectives of the TONS experiment. The operations concept of the experiment is described, including the characteristics of the ultrastable oscillator, the Doppler extractor, the signal-acquisition process, the TONS ground-support system, and the navigation flight software. A description of the on-board navigation algorithms and the rationale for their selection is also presented.

  3. The development of a white cane which navigates the visually impaired.

    PubMed

    Shiizu, Yuriko; Hirahara, Yoshiaki; Yanashima, Kenji; Magatani, Kazushige

    2007-01-01

    In this paper, we describe about a developed navigation system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines, RFID tags and an intelligent white cane. In our system, some colored marking tapes are set on along the walking route. These lines are called navigation line. And also RFID tags are set on this line at each landmark point. The intelligent white cane can sense a color of navigation line and receive tag information. By vibration of white cane, the system informs the visually impaired that he/she is walking along the navigation line. At the landmark point, the system also notifies area information to him/her by pre-recorded voice. Ten normal subjects who were blind folded with an eye mask were tested with this system. All of them were able to walk along the navigation line. The performance of the area information system was good. Therefore, we have concluded that our system will be extremely valuable in supporting the activities of the visually impaired.

  4. Proceedings of the Sixth Integrated Communications, Navigation and Surveillance (ICNS) Conference & Workshop 2006

    NASA Technical Reports Server (NTRS)

    Ponchak, Denise (Compiler)

    2006-01-01

    The Integrated Communications, Navigation and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event s goals are to understand current efforts and recent results in near- and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  5. Proceedings of the Fourth Integrated Communications, Navigation, and Surveillance (ICNS) Conference and Workshop

    NASA Technical Reports Server (NTRS)

    Fujikawa, Gene (Compiler)

    2004-01-01

    The Integrated Communications, Navigational and Surveillance (ICNS) Technologies Conference and Workshop provides a forum for Government, industry, and academic communities performing research and technology development for advanced digital communications, navigation, and surveillance security systems and associated applications supporting the national and global air transportation systems. The event's goals are to understand current efforts and recent results in near-and far-term research and technology demonstration; identify integrated digital communications, navigation and surveillance research requirements necessary for a safe, high-capacity, advanced air transportation system; foster collaboration and coordination among all stakeholders; and discuss critical issues and develop recommendations to achieve the future integrated CNS vision for the national and global air transportation system.

  6. Navigator Accuracy Requirements for Prospective Motion Correction

    PubMed Central

    Maclaren, Julian; Speck, Oliver; Stucht, Daniel; Schulze, Peter; Hennig, Jürgen; Zaitsev, Maxim

    2010-01-01

    Prospective motion correction in MR imaging is becoming increasingly popular to prevent the image artefacts that result from subject motion. Navigator information is used to update the position of the imaging volume before every spin excitation so that lines of acquired k-space data are consistent. Errors in the navigator information, however, result in residual errors in each k-space line. This paper presents an analysis linking noise in the tracking system to the power of the resulting image artefacts. An expression is formulated for the required navigator accuracy based on the properties of the imaged object and the desired resolution. Analytical results are compared with computer simulations and experimental data. PMID:19918892

  7. Enhancing Navigation Skills through Audio Gaming.

    PubMed

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2010-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks.

  8. Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    NASA Technical Reports Server (NTRS)

    DeLuccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24 hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24 hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  9. Navigation domain representation for interactive multiview imaging.

    PubMed

    Maugey, Thomas; Daribo, Ismael; Cheung, Gene; Frossard, Pascal

    2013-09-01

    Enabling users to interactively navigate through different viewpoints of a static scene is a new interesting functionality in 3D streaming systems. While it opens exciting perspectives toward rich multimedia applications, it requires the design of novel representations and coding techniques to solve the new challenges imposed by the interactive navigation. In particular, the encoder must prepare a priori a compressed media stream that is flexible enough to enable the free selection of multiview navigation paths by different streaming media clients. Interactivity clearly brings new design constraints: the encoder is unaware of the exact decoding process, while the decoder has to reconstruct information from incomplete subsets of data since the server generally cannot transmit images for all possible viewpoints due to resource constrains. In this paper, we propose a novel multiview data representation that permits us to satisfy bandwidth and storage constraints in an interactive multiview streaming system. In particular, we partition the multiview navigation domain into segments, each of which is described by a reference image (color and depth data) and some auxiliary information. The auxiliary information enables the client to recreate any viewpoint in the navigation segment via view synthesis. The decoder is then able to navigate freely in the segment without further data request to the server; it requests additional data only when it moves to a different segment. We discuss the benefits of this novel representation in interactive navigation systems and further propose a method to optimize the partitioning of the navigation domain into independent segments, under bandwidth and storage constraints. Experimental results confirm the potential of the proposed representation; namely, our system leads to similar compression performance as classical inter-view coding, while it provides the high level of flexibility that is required for interactive streaming. Because of

  10. Magnetic navigation and catheter ablation of right atrial ectopic tachycardia in the presence of a hemi-azygos continuation: a magnetic navigation case using 3D electroanatomical mapping.

    PubMed

    Ernst, Sabine; Chun, Julian K R; Koektuerk, Buelent; Kuck, Karl-Heinz

    2009-01-01

    We report on a 63-year-old female patient in whom an electrophysiologic study discovered a hemi-azygos continuation. Using the magnetic navigation system, remote-controlled ablation was performed in conjunction with the 3D electroanatomical mapping system. Failing the attempt to advance a diagnostic catheter from the femoral vein, a diagnostic catheter was advanced via the left subclavian vein into the coronary sinus. The soft magnetic catheter was positioned in the right atrium via the hemi-azygos vein, and 3D mapping demonstrated an ectopic atrial tachycardia. Successful ablation was performed entirely remote controlled. Fluoroscopy time was only 7.1 minutes, of which 45 seconds were required during remote navigation. Remote-controlled catheter ablation using magnetic navigation in conjunction with the electroanatomical mapping system proved to be a valuable tool to perform successful ablation in the presence of a hemi-azygos continuation.

  11. Field evaluation of a wearable multimodal soldier navigation system.

    PubMed

    Aaltonen, Iina; Laarni, Jari

    2017-09-01

    Challenging environments pose difficulties for terrain navigation, and therefore wearable and multimodal navigation systems have been proposed to overcome these difficulties. Few such navigation systems, however, have been evaluated in field conditions. We evaluated how a multimodal system can aid in navigating in a forest in the context of a military exercise. The system included a head-mounted display, headphones, and a tactile vibrating vest. Visual, auditory, and tactile modalities were tested and evaluated using unimodal, bimodal, and trimodal conditions. Questionnaires, interviews and observations were used to evaluate the advantages and disadvantages of each modality and their multimodal use. The guidance was considered easy to interpret and helpful in navigation. Simplicity of the displayed information was required, which was partially conflicting with the request for having both distance and directional information available. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Optical Navigation Image of Ganymede

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's Galileo spacecraft, now in orbit around Jupiter, returned this optical navigation image June 3, 1996, showing that the spacecraft is accurately targeted for its first flyby of the giant moon Ganymede on June 27. The missing data in the frame is the result of a special editing feature recently added to the spacecraft's computer to transmit navigation images more quickly. This is first in a series of optical navigation frames, highly edited onboard the spacecraft, that will be used to fine-tune the spacecraft's trajectory as Galileo approaches Ganymede. The image, used for navigation purposes only, is the product of new computer processing capabilities on the spacecraft that allow Galileo to send back only the information required to show the spacecraft is properly targeted and that Ganymede is where navigators calculate it to be. 'This navigation image is totally different from the pictures we'll be taking for scientific study of Ganymede when we get close to it later this month,' said Galileo Project Scientist Dr. Torrence Johnson. On June 27, Galileo will fly just 844 kilometers (524 miles) above Ganymede and return the most detailed, full-frame, high-resolution images and other measurements of the satellite ever obtained. Icy Ganymede is the largest moon in the solar system and three-quarters the size of Mars. It is one of the four large Jovian moons that are special targets of study for the Galileo mission. Of the more than 5 million bits contained in a single image, Galileo performed on-board editing to send back a mere 24,000 bits containing the essential information needed to assure proper targeting. Only the light-to-dark transitions of the crescent Ganymede and reference star locations were transmitted to Earth. The navigation image was taken from a distance of 9.8 million kilometers (6.1 million miles). On June 27th, the spacecraft will be 10,000 times closer to Ganymede.

  13. Two-dimensional laser Doppler velocimeter and its integrated navigation with a strapdown inertial navigation system.

    PubMed

    Wang, Qi; Gao, Chunfeng; Zhou, Jian; Wei, Guo; Nie, Xiaoming; Long, Xingwu

    2018-05-01

    In the field of land navigation, a laser Doppler velocimeter (LDV) can be used to provide the velocity of a vehicle for an integrated navigation system with a strapdown inertial navigation system. In order to suppress the influence of vehicle jolts on a one-dimensional (1D) LDV, this paper designs a split-reuse two-dimensional (2D) LDV. The velocimeter is made up of two 1D velocimeter probes that are mirror-mounted. By the different effects of the vertical vibration on the two probes, the velocimeter can calculate the forward velocity and the vertical velocity of a vehicle. The results of the vehicle-integrated navigation experiments show that the 2D LDV not only can actually suppress the influence of vehicle jolts and greatly improve the navigation positioning accuracy, but also can give high-precision altitude information. The maximum horizontal position errors of the two experiments are 2.6 m and 3.2 m in 1.9 h, and the maximum altitude errors are 0.24 m and 0.22 m, respectively.

  14. Visual map and instruction-based bicycle navigation: a comparison of effects on behaviour.

    PubMed

    de Waard, Dick; Westerhuis, Frank; Joling, Danielle; Weiland, Stella; Stadtbäumer, Ronja; Kaltofen, Leonie

    2017-09-01

    Cycling with a classic paper map was compared with navigating with a moving map displayed on a smartphone, and with auditory, and visual turn-by-turn route guidance. Spatial skills were found to be related to navigation performance, however only when navigating from a paper or electronic map, not with turn-by-turn (instruction based) navigation. While navigating, 25% of the time cyclists fixated at the devices that present visual information. Navigating from a paper map required most mental effort and both young and older cyclists preferred electronic over paper map navigation. In particular a turn-by-turn dedicated guidance device was favoured. Visual maps are in particular useful for cyclists with higher spatial skills. Turn-by-turn information is used by all cyclists, and it is useful to make these directions available in all devices. Practitioner Summary: Electronic navigation devices are preferred over a paper map. People with lower spatial skills benefit most from turn-by-turn guidance information, presented either auditory or on a dedicated device. People with higher spatial skills perform well with all devices. It is advised to keep in mind that all users benefit from turn-by-turn information when developing a navigation device for cyclists.

  15. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    NASA Astrophysics Data System (ADS)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  16. Regionalized Lunar South Pole Surface Navigation System Analysis

    NASA Technical Reports Server (NTRS)

    Welch, Bryan W.

    2008-01-01

    Apollo missions utilized Earth-based assets for navigation because the landings took place at lunar locations in constant view from the Earth. The new exploration campaign to the lunar south pole region will have limited Earth visibility, but the extent to which a navigation system comprised solely of Earth-based tracking stations will provide adequate navigation solutions in this region is unknown. This report presents a dilution-of-precision (DoP)-based, stationary surface navigation analysis of the performance of multiple lunar satellite constellations, Earth-based deep space network assets, and combinations thereof. Results show that kinematic and integrated solutions cannot be provided by the Earth-based deep space network stations. Also, the stationary surface navigation system needs to be operated either as a two-way navigation system or as a one-way navigation system with local terrain information, while the position solution is integrated over a short duration of time with navigation signals being provided by a lunar satellite constellation.

  17. Advanced information processing system

    NASA Technical Reports Server (NTRS)

    Lala, J. H.

    1984-01-01

    Design and performance details of the advanced information processing system (AIPS) for fault and damage tolerant data processing on aircraft and spacecraft are presented. AIPS comprises several computers distributed throughout the vehicle and linked by a damage tolerant data bus. Most I/O functions are available to all the computers, which run in a TDMA mode. Each computer performs separate specific tasks in normal operation and assumes other tasks in degraded modes. Redundant software assures that all fault monitoring, logging and reporting are automated, together with control functions. Redundant duplex links and damage-spread limitation provide the fault tolerance. Details of an advanced design of a laboratory-scale proof-of-concept system are described, including functional operations.

  18. Enhancing Navigation Skills through Audio Gaming

    PubMed Central

    Sánchez, Jaime; Sáenz, Mauricio; Pascual-Leone, Alvaro; Merabet, Lotfi

    2014-01-01

    We present the design, development and initial cognitive evaluation of an Audio-based Environment Simulator (AbES). This software allows a blind user to navigate through a virtual representation of a real space for the purposes of training orientation and mobility skills. Our findings indicate that users feel satisfied and self-confident when interacting with the audio-based interface, and the embedded sounds allow them to correctly orient themselves and navigate within the virtual world. Furthermore, users are able to transfer spatial information acquired through virtual interactions into real world navigation and problem solving tasks. PMID:25505796

  19. The Rockefeller University Navigation Program: A Structured Multidisciplinary Protocol Development and Educational Program to Advance Translational Research

    PubMed Central

    Kost, Rhonda G.; Dowd, Kathleen A.; Hurley, Arlene M.; Rainer, Tyler‐Lauren; Coller, Barry S.

    2014-01-01

    Abstract The development of translational clinical research protocols is complex. To assist investigators, we developed a structured supportive guidance process (Navigation) to expedite protocol development to the standards of good clinical practice (GCP), focusing on research ethics and integrity. Navigation consists of experienced research coordinators leading investigators through a concerted multistep protocol development process from concept initiation to submission of the final protocol. To assess the effectiveness of Navigation, we collect data on the experience of investigators, the intensity of support required for protocol development, IRB review outcomes, and protocol start and completion dates. One hundred forty‐four protocols underwent Navigation and achieved IRB approval since the program began in 2007, including 37 led by trainee investigators, 26 led by MDs, 9 by MD/PhDs, 57 by PhDs, and 12 by investigators with other credentials (e.g., RN, MPH). In every year, more than 50% of Navigated protocols were approved by the IRB within 30 days. For trainees who had more than one protocol navigated, the intensity of Navigation support required decreased over time. Navigation can increase access to translational studies for basic scientists, facilitate GCP training for investigators, and accelerate development and approval of protocols of high ethical and scientific quality. PMID:24405608

  20. Navigability Potential of Washington Rivers and Streams Determined with Hydraulic Geometry and a Geographic Information System

    USGS Publications Warehouse

    Magirl, Christopher S.; Olsen, Theresa D.

    2009-01-01

    Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.

  1. Wikipedia Entries as a Source of CAR Navigation Landmarks

    NASA Astrophysics Data System (ADS)

    Binski, N.; Zhang, L.; Dalyot, S.

    2016-06-01

    Car navigation system devices provide today with an easy and simple solution to the basic concept of reaching a destination. Although these systems usually achieve this goal, they still deliver a limited and poor sequence of instructions that do not consider the human nature of using landmarks during wayfinding. This research paper addresses the concept of enriching navigation route instructions by adding supplementary route information in the form of landmarks. We aim at using a contributed source of landmarks information, which is easy to access, available, show high update rate, and have a large scale of information. For this, Wikipedia was chosen, since it represents the world's largest free encyclopaedia that includes information about many spatial entities. A survey and classification of available landmarks is implemented, coupled with ranking algorithms based on the entries' categories and attributes. These are aimed at retrieving the most relevant landmark information required that are valuable for the enrichment of a specific navigation route. The paper will present this methodology, together with examples and results, showing the feasibility of using this concept and its potential of enriching navigation processes.

  2. Laboratory complex for simulation of navigation signals of pseudosatellites

    NASA Astrophysics Data System (ADS)

    Ratushniak, V. N.; Gladyshev, A. B.; Sokolovskiy, A. V.; Mikhov, E. D.

    2018-05-01

    In the article, features of the organization, structure and questions of formation of navigation signals of pseudosatellites of the short - range navigation system based on the hardware-software complex National Instruments are considered. A software model that performs the formation and management of a pseudo-random sequence of a navigation signal and the formation and management of the format transmitted pseudosatellite navigation information is presented. The variant of constructing the transmitting equipment of the pseudosatellite base stations is provided.

  3. Analysis of key technologies in geomagnetic navigation

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoming; Zhao, Yan

    2008-10-01

    Because of the costly price and the error accumulation of high precise Inertial Navigation Systems (INS) and the vulnerability of Global Navigation Satellite Systems (GNSS), the geomagnetic navigation technology, a passive autonomous navigation method, is paid attention again. Geomagnetic field is a natural spatial physical field, and is a function of position and time in near earth space. The navigation technology based on geomagnetic field is researched in a wide range of commercial and military applications. This paper presents the main features and the state-of-the-art of Geomagnetic Navigation System (GMNS). Geomagnetic field models and reference maps are described. Obtaining, modeling and updating accurate Anomaly Magnetic Field information is an important step for high precision geomagnetic navigation. In addition, the errors of geomagnetic measurement using strapdown magnetometers are analyzed. The precise geomagnetic data is obtained by means of magnetometer calibration and vehicle magnetic field compensation. According to the measurement data and reference map or model of geomagnetic field, the vehicle's position and attitude can be obtained using matching algorithm or state-estimating method. The tendency of geomagnetic navigation in near future is introduced at the end of this paper.

  4. 33 CFR 115.70 - Advance approval of bridges.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Advance approval of bridges. 115... BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.70 Advance approval of bridges. (a) The General Bridge Act of 1946 requires the approval of the location and plans of bridges prior...

  5. 33 CFR 115.70 - Advance approval of bridges.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Advance approval of bridges. 115... BRIDGES BRIDGE LOCATIONS AND CLEARANCES; ADMINISTRATIVE PROCEDURES § 115.70 Advance approval of bridges. (a) The General Bridge Act of 1946 requires the approval of the location and plans of bridges prior...

  6. Lay navigator model for impacting cancer health disparities.

    PubMed

    Meade, Cathy D; Wells, Kristen J; Arevalo, Mariana; Calcano, Ercilia R; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G

    2014-09-01

    This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were the following: (1) use of bilingual lay navigators with familiarity of communities they served; (2) provision of training, education, and supportive activities; (3) multidisciplinary clinical oversight that factored in caseload intensity; and (4) well-developed partnerships with community clinics and social service entities. Deconstruction of healthcare system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex healthcare systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum.

  7. Lay Navigator Model for Impacting Cancer Health Disparities

    PubMed Central

    Meade, Cathy D.; Wells, Kristen J.; Arevalo, Mariana; Calcano, Ercilia R.; Rivera, Marlene; Sarmiento, Yolanda; Freeman, Harold P; Roetzheim, Richard G.

    2014-01-01

    This paper recounts experiences, challenges, and lessons learned when implementing a lay patient navigator program to improve cancer care among medically underserved patients who presented in a primary care clinic with a breast or colorectal cancer abnormality. The program employed five lay navigators to navigate 588 patients. Central programmatic elements were: 1) use of bilingual lay navigators with familiarity of communities they served; 2) provision of training, education and supportive activities; 3) multidisciplinary clinical oversight that factored in caseload intensity; and 4) well-developed partnerships with community clinics and social service entities. Deconstruction of health care system information was fundamental to navigation processes. We conclude that a lay model of navigation is well suited to assist patients through complex health care systems; however, a stepped care model that includes both lay and professional navigation may be optimal to help patients across the entire continuum. PMID:24683043

  8. The attribution of success when using navigation aids.

    PubMed

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors.

  9. Preface: BeiDou Navigation Satellite System (BDS)/GNSS+: New developments and emerging applications

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen

    2017-12-01

    The China's BeiDou Navigation Satellite System (BDS) has been developed and operated well with over 25 launched satellites in 2017, including fifteen Medium Earth orbit (MEO) satellites, five geostationary Earth orbit (GEO) satellites and five inclined geosynchronous orbit (IGSO) satellites. Together with the United States' GPS, European Union's Galileo and Russia's GLONASS as well as other regional augmentation systems, e.g., Indian Regional Navigation Satellite System (IRNSS) and Japan Quasi-Zenith Satellite System (QZSS), more emerging applications of multi-Global Navigation Satellite Systems (GNSS) will be exploited and realized in the coming years. The papers in this issue of Advances in Space Research present new advances in the system, techniques and emerging applications of BDS/GNSS+. These papers were from an open call and a special call for participants at the 8th China Satellite Navigation Conference (CSNC 2017) held on May 23-25, 2017, Shanghai, China. This conference series provides a good platform for academic and technique exchanges as well as collaboration in satellite navigation. CSNC 2017 was well attend with more than 3000 participants and over 800 papers in 12 sessions.

  10. An evaluation of unisensory and multisensory adaptive flight-path navigation displays

    NASA Astrophysics Data System (ADS)

    Moroney, Brian W.

    1999-11-01

    The present study assessed the use of unimodal (auditory or visual) and multimodal (audio-visual) adaptive interfaces to aid military pilots in the performance of a precision-navigation flight task when they were confronted with additional information-processing loads. A standard navigation interface was supplemented by adaptive interfaces consisting of either a head-up display based flight director, a 3D virtual audio interface, or a combination of the two. The adaptive interfaces provided information about how to return to the pathway when off course. Using an advanced flight simulator, pilots attempted two navigation scenarios: (A) maintain proper course under normal flight conditions and (B) return to course after their aircraft's position has been perturbed. Pilots flew in the presence or absence of an additional information-processing task presented in either the visual or auditory modality. The additional information-processing tasks were equated in terms of perceived mental workload as indexed by the NASA-TLX. Twelve experienced military pilots (11 men and 1 woman), naive to the purpose of the experiment, participated in the study. They were recruited from Wright-Patterson Air Force Base and had a mean of 2812 hrs. of flight experience. Four navigational interface configurations, the standard visual navigation interface alone (SV), SV plus adaptive visual, SV plus adaptive auditory, and SV plus adaptive visual-auditory composite were combined factorially with three concurrent tasks (CT), the no CT, the visual CT, and the auditory CT, a completely repeated measures design. The adaptive navigation displays were activated whenever the aircraft was more than 450 ft off course. In the normal flight scenario, the adaptive interfaces did not bolster navigation performance in comparison to the standard interface. It is conceivable that the pilots performed quite adequately using the familiar generic interface under normal flight conditions and hence showed no added

  11. Cameras Improve Navigation for Pilots, Drivers

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Advanced Scientific Concepts Inc. (ASC), of Santa Barbara, California, received SBIR awards and other funding from the Jet Propulsion Laboratory, Johnson Space Center, and Langley Research Center to develop and refine its 3D flash LIDAR technologies for space applications. Today, ASC's NASA-derived technology is sold to assist with collision avoidance, navigation, and object tracking.

  12. Patient Navigation to Improve Cancer Screening in Underserved Populations: Reported Experiences, Opportunities, and Challenges.

    PubMed

    Neal, Chrishanae D; Weaver, Davis T; Raphel, Tiana J; Lietz, Anna P; Flores, Efren J; Percac-Lima, Sanja; Knudsen, Amy B; Pandharipande, Pari V

    2018-04-20

    Our goal is to define patient navigation for an imaging audience, present a focused selection of published experiences with navigation programs for breast and colorectal cancer screening, and expose principal barriers to the success of such programs. Despite numerous advances in the early detection of cancers, many patients still present with advanced disease. A disproportionate number are low-income minority patients who experience worse health outcomes than their white or more financially stable counterparts. Patient navigation, which aims to assist the medically underserved by overcoming specific barriers to care, may represent one solution to narrowing disparities. Related research suggests that in general, patient navigation programs that have addressed breast or colorectal cancer screening have been successful in improving screening rates and timeliness of follow-up care. However, although beneficial, navigation is expensive and may present an unmanageable financial burden for many health care centers. To overcome this challenge, navigation efforts will likely need to target those patients that are most likely to benefit. Further research to identify such patients will be critically important for improving the sustainability of navigation programs, and, in turn, for realizing the benefits of such programs in reducing cancer disparities. Copyright © 2018. Published by Elsevier Inc.

  13. Exploring Maps with Greedy Navigators

    NASA Astrophysics Data System (ADS)

    Lee, Sang Hoon; Holme, Petter

    2012-03-01

    During the last decade of network research focusing on structural and dynamical properties of networks, the role of network users has been more or less underestimated from the bird’s-eye view of global perspective. In this era of global positioning system equipped smartphones, however, a user’s ability to access local geometric information and find efficient pathways on networks plays a crucial role, rather than the globally optimal pathways. We present a simple greedy spatial navigation strategy as a probe to explore spatial networks. These greedy navigators use directional information in every move they take, without being trapped in a dead end based on their memory about previous routes. We suggest that the centralities measures have to be modified to incorporate the navigators’ behavior, and present the intriguing effect of navigators’ greediness where removing some edges may actually enhance the routing efficiency, which is reminiscent of Braess’s paradox. In addition, using samples of road structures in large cities around the world, it is shown that the navigability measure we define reflects unique structural properties, which are not easy to predict from other topological characteristics. In this respect, we believe that our routing scheme significantly moves the routing problem on networks one step closer to reality, incorporating the inevitable incompleteness of navigators’ information.

  14. Airborne gravimetry, altimetry, and GPS navigation errors

    NASA Technical Reports Server (NTRS)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  15. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    PubMed Central

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-01-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347–1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe. PMID:27721393

  16. Navigable rivers facilitated the spread and recurrence of plague in pre-industrial Europe

    NASA Astrophysics Data System (ADS)

    Yue, Ricci P. H.; Lee, Harry F.; Wu, Connor Y. H.

    2016-10-01

    Infectious diseases have become a rising challenge to mankind in a globalizing world. Yet, little is known about the inland transmission of infectious diseases in history. In this study, we based on the spatio-temporal information of 5559 plague (Yersinia pestis) outbreaks in Europe and its neighboring regions in AD1347-1760 to statistically examine the connection between navigable rivers and plague outbreak. Our results showed that 95.5% of plague happened within 10 km proximity of navigable rivers. Besides, the count of plague outbreak was positively correlated with the width of river and negatively correlated with the distance between city and river. This association remained robust in different regression model specifications. An increase of 100 m in the width of river and a shortening of 1 km distance between city and river resulted in 9 and 0.96 more plague outbreaks in our study period, respectively. Such relationship shows a declining trend over our study period due to the expansion of city and technological advancement in overland transportation. This study elucidates the key role of navigable river in the dissemination of plague in historical Europe.

  17. Solar-based navigation for robotic explorers

    NASA Astrophysics Data System (ADS)

    Shillcutt, Kimberly Jo

    2000-12-01

    This thesis introduces the application of solar position and shadowing information to robotic exploration. Power is a critical resource for robots with remote, long-term missions, so this research focuses on the power generation capabilities of robotic explorers during navigational tasks, in addition to power consumption. Solar power is primarily considered, with the possibility of wind power also contemplated. Information about the environment, including the solar ephemeris, terrain features, time of day, and surface location, is incorporated into a planning structure, allowing robots to accurately predict shadowing and thus potential costs and gains during navigational tasks. By evaluating its potential to generate and expend power, a robot can extend its lifetime and accomplishments. The primary tasks studied are coverage patterns, with a variety of plans developed for this research. The use of sun, terrain and temporal information also enables new capabilities of identifying and following sun-synchronous and sun-seeking paths. Digital elevation maps are combined with an ephemeris algorithm to calculate the altitude and azimuth of the sun from surface locations, and to identify and map shadows. Solar navigation path simulators use this information to perform searches through two-dimensional space, while considering temporal changes. Step by step simulations of coverage patterns also incorporate time in addition to location. Evaluations of solar and wind power generation, power consumption, area coverage, area overlap, and time are generated for sets of coverage patterns, with on-board environmental information linked to the simulations. This research is implemented on the Nomad robot for the Robotic Antarctic Meteorite Search. Simulators have been developed for coverage pattern tests, as well as for sun-synchronous and sun-seeking path searches. Results of field work and simulations are reported and analyzed, with demonstrated improvements in efficiency

  18. Navigation.

    PubMed

    Wiltschko, Roswitha

    2017-07-01

    Experiments with migrating birds displaced during autumn migration outside their normal migration corridor reveal two different navigational strategies: adult migrants compensate for the displacement, and head towards their traditional wintering areas, whereas young first-time migrants continue in their migratory direction. Young birds are guided to their still unknown goal by a genetically coded migration program that indicates duration and direction(s) of the migratory flight by controlling the amount of migratory restlessness and the compass course(s) with respect to the geomagnetic field and celestial rotation. Adult migrants that have already wintered and are familiar with the goal area approach the goal by true navigation, specifically heading towards it and changing their course correspondingly after displacement. During their first journey, young birds experience the distribution of potential navigational factors en route and in their winter home, which allows them to truly navigate on their next migrations. The navigational factors used appear to include magnetic intensity as a component in their multi-modal navigational 'map'; olfactory input is also involved, even if it is not yet entirely clear in what way. The mechanisms of migratory birds for true navigation over long distances appear to be in principle similar to those discussed for by homing pigeons.

  19. Volunteer navigation partnerships: Piloting a compassionate community approach to early palliative care.

    PubMed

    Pesut, Barbara; Duggleby, Wendy; Warner, Grace; Fassbender, Konrad; Antifeau, Elisabeth; Hooper, Brenda; Greig, Madeleine; Sullivan, Kelli

    2017-07-03

    A compassionate community approach to palliative care provides important rationale for building community-based hospice volunteer capacity. In this project, we piloted one such capacity-building model in which volunteers and a nurse partnered to provide navigation support beginning in the early palliative phase for adults living in community. The goal was to improve quality of life by developing independence, engagement, and community connections. Volunteers received navigation training through a three-day workshop and then conducted in-home visits with clients living with advanced chronic illness over one year. A nurse navigator provided education and mentorship. Mixed method evaluation data was collected from clients, volunteer navigators, the nurse navigator, and other stakeholders. Seven volunteers were partnered with 18 clients. Over the one-year pilot, the volunteer navigators conducted visits in home or by phone every two to three weeks. Volunteers were skilled and resourceful in building connections and facilitating engagement. Although it took time to learn the navigator role, volunteers felt well-prepared and found the role satisfying and meaningful. Clients and family rated the service as highly important to their care because of how the volunteer helped to make the difficult experiences of aging and advanced chronic illness more livable. Significant benefits cited by clients were making good decisions for both now and in the future; having a surrogate social safety net; supporting engagement with life; and ultimately, transforming the experience of living with illness. Overall the program was perceived to be well-designed by stakeholders and meeting an important need in the community. Sustainability, however, was a concern expressed by both clients and volunteers. Volunteers providing supportive navigation services during the early phase of palliative care is a feasible way to foster a compassionate community approach to care for an aging population

  20. The attribution of success when using navigation aids

    PubMed Central

    Brown, Michael; Houghton, Robert; Sharples, Sarah; Morley, Jeremy

    2015-01-01

    Attitudes towards geographic information technology is a seldom explored research area that can be explained with reference to established theories of attribution. This article reports on a study of how the attribution of success and failure in pedestrian navigation varies with level of automation, degree of success and locus of control. A total of 113 participants took part in a survey exploring reflections on personal experiences and vignettes describing fictional navigation experiences. A complex relationship was discovered in which success tends to be attributed to skill and failure to the navigation aid when participants describe their own experiences. A reversed pattern of results was found when discussing the navigation of others. It was also found that navigation success and failure are associated with personal skill to a greater extent when using paper maps, as compared with web-based routing engines or satellite navigation systems. Practitioner Summary: This article explores the influences on the attribution of success and failure when using navigation aids. A survey was performed exploring interpretations of navigation experiences. Level of success, self or other as navigator and type of navigation aid used are all found to influence the attribution of outcomes to internal or external factors. PMID:25384842

  1. Potentials of Advanced Database Technology for Military Information Systems

    DTIC Science & Technology

    2001-04-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP010866 TITLE: Potentials of Advanced Database Technology for Military... Technology for Military Information Systems Sunil Choennia Ben Bruggemanb a National Aerospace Laboratory, NLR, P.O. Box 90502, 1006 BM Amsterdam...application of advanced information tech- nology, including database technology , as underpin- actions X and Y as dangerous or not? ning is

  2. Angles-only navigation for autonomous orbital rendezvous

    NASA Astrophysics Data System (ADS)

    Woffinden, David C.

    The proposed thesis of this dissertation has both a practical element and theoretical component which aim to answer key questions related to the use of angles-only navigation for autonomous orbital rendezvous. The first and fundamental principle to this work argues that an angles-only navigation filter can determine the relative position and orientation (pose) between two spacecraft to perform the necessary maneuvers and close proximity operations for autonomous orbital rendezvous. Second, the implementation of angles-only navigation for on-orbit applications is looked upon with skeptical eyes because of its perceived limitation of determining the relative range between two vehicles. This assumed, yet little understood subtlety can be formally characterized with a closed-form analytical observability criteria which specifies the necessary and sufficient conditions for determining the relative position and velocity with only angular measurements. With a mathematical expression of the observability criteria, it can be used to (1) identify the orbital rendezvous trajectories and maneuvers that ensure the relative position and velocity are observable for angles-only navigation, (2) quantify the degree or level of observability and (3) compute optimal maneuvers that maximize observability. In summary, the objective of this dissertation is to provide both a practical and theoretical foundation for the advancement of autonomous orbital rendezvous through the use of angles-only navigation.

  3. Celestial Navigation in the USA, Fiji, and Tunisia

    NASA Astrophysics Data System (ADS)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  4. Inertial navigation sensor integrated obstacle detection system

    NASA Technical Reports Server (NTRS)

    Bhanu, Bir (Inventor); Roberts, Barry A. (Inventor)

    1992-01-01

    A system that incorporates inertial sensor information into optical flow computations to detect obstacles and to provide alternative navigational paths free from obstacles. The system is a maximally passive obstacle detection system that makes selective use of an active sensor. The active detection typically utilizes a laser. Passive sensor suite includes binocular stereo, motion stereo and variable fields-of-view. Optical flow computations involve extraction, derotation and matching of interest points from sequential frames of imagery, for range interpolation of the sensed scene, which in turn provides obstacle information for purposes of safe navigation.

  5. Vision-Aided Inertial Navigation

    NASA Technical Reports Server (NTRS)

    Roumeliotis, Stergios I. (Inventor); Mourikis, Anastasios I. (Inventor)

    2017-01-01

    This document discloses, among other things, a system and method for implementing an algorithm to determine pose, velocity, acceleration or other navigation information using feature tracking data. The algorithm has computational complexity that is linear with the number of features tracked.

  6. Patient navigation in breast cancer: a systematic review.

    PubMed

    Robinson-White, Stephanie; Conroy, Brenna; Slavish, Kathleen H; Rosenzweig, Margaret

    2010-01-01

    The role of the patient navigator in cancer care and specifically in breast cancer care has grown to incorporate many titles and functions. To better evaluate the outcomes of patient navigation in breast cancer care, a comprehensive review of empiric literature detailing the efficacy of breast cancer navigation on breast cancer outcomes (screening, diagnosis, treatment, and participation in clinical research) was performed. Published articles were reviewed if published in the scientific literature between January 1990 and April 2009. Searches were conducted using PubMed and Ovid databases. Search terms included MeSH (Medical Subject Headings) terms, "patient navigator," "navigation," "breast cancer," and "adherence." Data-based literature indicates that the role of patient navigation is diverse with multiple roles and targeted populations. Navigation across many aspects of the breast cancer disease trajectory improves adherence to breast cancer care. The empiric review found that navigation interventions have been more commonly applied in breast cancer screening and early diagnosis than for adherence to treatment. There is evidence supporting the role of patient navigation in breast cancer to improve many aspects of breast cancer care. Data describing the role of patient navigation in breast cancer will assist in better defining future direction for the breast navigation role. Ongoing research will better inform issues related to role definition, integration into clinical breast cancer care, impact on quality of life, cost-effectiveness, and sustainability.

  7. 7 CFR 54.1016 - Advance information concerning service rendered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54..., Processing, and Packaging of Livestock and Poultry Products § 54.1016 Advance information concerning service... applicant under the regulations, or other notification concerning the determination of compliance of...

  8. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    NASA Astrophysics Data System (ADS)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  9. PandaEPL: a library for programming spatial navigation experiments.

    PubMed

    Solway, Alec; Miller, Jonathan F; Kahana, Michael J

    2013-12-01

    Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment.

  10. Advanced radiology information system.

    PubMed

    Kolovou, L; Vatousi, M; Lymperopoulos, D; Koukias, M

    2005-01-01

    The innovative features of an advanced Radiology Information System (RIS) are presented in this paper. The interoperability of RIS with the other Intra-hospital Information Systems that interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms [1]. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol's specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The same mechanism allows the secure and HL7-compatible interactions with the Hospital Information System (HIS) too. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS). The whole structure ensures the automation of the every-day procedures that the ;medical protocol' specifies and provides its services through a friendly and easy to manage graphical user interface.

  11. Multi-aircraft dynamics, navigation and operation

    NASA Astrophysics Data System (ADS)

    Houck, Sharon Wester

    Air traffic control stands on the brink of a revolution. Fifty years from now, we will look back and marvel that we ever flew by radio beacons and radar alone, much as we now marvel that early aviation pioneers flew by chronometer and compass alone. The microprocessor, satellite navigation systems, and air-to-air data links are the technical keys to this revolution. Many airports are near or at capacity now for at least portions of the day, making it clear that major increases in airport capacity will be required in order to support the projected growth in air traffic. This can be accomplished by adding airports, adding runways at existing airports, or increasing the capacity of the existing runways. Technology that allows use of ultra closely spaced (750 ft to 2500 ft) parallel approaches would greatly reduce the environmental impact of airport capacity increases. This research tackles the problem of multi aircraft dynamics, navigation, and operation, specifically in the terminal area, and presents new findings on how ultra closely spaced parallel approaches may be accomplished. The underlying approach considers how multiple aircraft are flown in visual conditions, where spacing criteria is much less stringent, and then uses this data to study the critical parameters for collision avoidance during an ultra closely spaced parallel approach. Also included is experimental and analytical investigations on advanced guidance systems that are critical components of precision approaches. Together, these investigations form a novel approach to the design and analysis of parallel approaches for runways spaced less than 2500 ft apart. This research has concluded that it is technically feasible to reduce the required runway spacing during simultaneous instrument approaches to less than the current minimum of 3400 ft with the use of advanced navigation systems while maintaining the currently accepted levels of safety. On a smooth day with both pilots flying a tunnel

  12. Interplanetary approach optical navigation with applications

    NASA Technical Reports Server (NTRS)

    Jerath, N.

    1978-01-01

    The use of optical data from onboard television cameras for the navigation of interplanetary spacecraft during the planet approach phase is investigated. Three optical data types were studied: the planet limb with auxiliary celestial references, the satellite-star, and the planet-star two-camera methods. Analysis and modelling issues related to the nature and information content of the optical methods were examined. Dynamic and measurement system modelling, data sequence design, measurement extraction, model estimation and orbit determination, as relating optical navigation, are discussed, and the various error sources were analyzed. The methodology developed was applied to the Mariner 9 and the Viking Mars missions. Navigation accuracies were evaluated at the control and knowledge points, with particular emphasis devoted to the combined use of radio and optical data. A parametric probability analysis technique was developed to evaluate navigation performance as a function of system reliabilities.

  13. Hippocampus and Retrosplenial Cortex Combine Path Integration Signals for Successful Navigation

    PubMed Central

    Erdem, Uğur M.; Ross, Robert S.; Brown, Thackery I.; Hasselmo, Michael E.; Stern, Chantal E.

    2013-01-01

    The current study used fMRI in humans to examine goal-directed navigation in an open field environment. We designed a task that required participants to encode survey-level spatial information and subsequently navigate to a goal location in either first person, third person, or survey perspectives. Critically, no distinguishing landmarks or goal location markers were present in the environment, thereby requiring participants to rely on path integration mechanisms for successful navigation. We focused our analysis on mechanisms related to navigation and mechanisms tracking linear distance to the goal location. Successful navigation required translation of encoded survey-level map information for orientation and implementation of a planned route to the goal. Our results demonstrate that successful first and third person navigation trials recruited the anterior hippocampus more than trials when the goal location was not successfully reached. When examining only successful trials, the retrosplenial and posterior parietal cortices were recruited for goal-directed navigation in both first person and third person perspectives. Unique to first person perspective navigation, the hippocampus was recruited to path integrate self-motion cues with location computations toward the goal location. Last, our results demonstrate that the hippocampus supports goal-directed navigation by actively tracking proximity to the goal throughout navigation. When using path integration mechanisms in first person and third person perspective navigation, the posterior hippocampus was more strongly recruited as participants approach the goal. These findings provide critical insight into the neural mechanisms by which we are able to use map-level representations of our environment to reach our navigational goals. PMID:24305826

  14. Navigation Performance of Global Navigation Satellite Systems in the Space Service Volume

    NASA Technical Reports Server (NTRS)

    Force, Dale A.

    2013-01-01

    GPS has been used for spacecraft navigation for many years center dot In support of this, the US has committed that future GPS satellites will continue to provide signals in the Space Service Volume center dot NASA is working with international agencies to obtain similar commitments from other providers center dot In support of this effort, I simulated multi-constellation navigation in the Space Service Volume In this presentation, I extend the work to examine the navigational benefits and drawbacks of the new constellations center dot A major benefit is the reduced geometric dilution of precision (GDOP). I show that there is a substantial reduction in GDOP by using all of the GNSS constellations center dot The increased number of GNSS satellites broadcasting does produce mutual interference, raising the noise floor. A near/far signal problem can also occur where a nearby satellite drowns out satellites that are far away. - In these simulations, no major effect was observed Typically, the use of multi-constellation GNSS navigation improves GDOP by a factor of two or more over GPS alone center dot In addition, at the higher altitudes, four satellite solutions can be obtained much more often center dot This show the value of having commitments to provide signals in the Space Service Volume Besides a commitment to provide a minimum signal in the Space Service Volume, detailed signal gain information is useful for mission planning center dot Knowledge of group and phase delay over the pattern would also reduce the navigational uncertainty

  15. A study of navigation in virtual space

    NASA Technical Reports Server (NTRS)

    Darken, Rudy; Sibert, John L.; Shumaker, Randy

    1994-01-01

    In the physical world, man has developed efficient methods for navigation and orientation. These methods are dependent on the high-fidelity stimuli presented by the environment. When placed in a virtual world which cannot offer stimuli of the same quality due to computing constraints and immature technology, tasks requiring the maintenance of position and orientation knowledge become laborious. In this paper, we present a representative set of techniques based on principles of navigation derived from real world analogs including human and avian navigation behavior and cartography. A preliminary classification of virtual worlds is presented based on the size of the world, the density of objects in the world, and the level of activity taking place in the world. We also summarize an informal study we performed to determine how the tools influenced the subjects' navigation strategies and behavior. We conclude that principles extracted from real world navigation aids such as maps can be seen to apply in virtual environments.

  16. Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems

    DTIC Science & Technology

    2010-03-01

    improve its performance. In all of these cases, because information from two or more different navigation systems feeds into a navigation solution...GRAVITY GRADIOMETRY AND MAP MATCHING: AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS THESIS...M06 GRAVITY GRADIOMETRY AND MAP MATCHING: AN AID TO AIRCRAFT INERTIAL NAVIGATION SYSTEMS THESIS Presented to the Faculty Department of

  17. Backtracking behaviour in lost ants: an additional strategy in their navigational toolkit

    PubMed Central

    Wystrach, Antoine; Schwarz, Sebastian; Baniel, Alice; Cheng, Ken

    2013-01-01

    Ants use multiple sources of information to navigate, but do not integrate all this information into a unified representation of the world. Rather, the available information appears to serve three distinct main navigational systems: path integration, systematic search and the use of learnt information—mainly via vision. Here, we report on an additional behaviour that suggests a supplemental system in the ant's navigational toolkit: ‘backtracking’. Homing ants, having almost reached their nest but, suddenly displaced to unfamiliar areas, did not show the characteristic undirected headings of systematic searches. Instead, these ants backtracked in the compass direction opposite to the path that they had just travelled. The ecological function of this behaviour is clear as we show it increases the chances of returning to familiar terrain. Importantly, the mechanistic implications of this behaviour stress an extra level of cognitive complexity in ant navigation. Our results imply: (i) the presence of a type of ‘memory of the current trip’ allowing lost ants to take into account the familiar view recently experienced, and (ii) direct sharing of information across different navigational systems. We propose a revised architecture of the ant's navigational toolkit illustrating how the different systems may interact to produce adaptive behaviours. PMID:23966644

  18. 7 CFR 54.15 - Advance information concerning service rendered.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Advance information concerning service rendered. 54.15... Service § 54.15 Advance information concerning service rendered. Upon request of any applicant, all or any... concerning the determination of class, grade, other quality, or compliance of products for such applicant may...

  19. Development of a GPS/INS/MAG navigation system and waypoint navigator for a VTOL UAV

    NASA Astrophysics Data System (ADS)

    Meister, Oliver; Mönikes, Ralf; Wendel, Jan; Frietsch, Natalie; Schlaile, Christian; Trommer, Gert F.

    2007-04-01

    Unmanned aerial vehicles (UAV) can be used for versatile surveillance and reconnaissance missions. If a UAV is capable of flying automatically on a predefined path the range of possible applications is widened significantly. This paper addresses the development of the integrated GPS/INS/MAG navigation system and a waypoint navigator for a small vertical take-off and landing (VTOL) unmanned four-rotor helicopter with a take-off weight below 1 kg. The core of the navigation system consists of low cost inertial sensors which are continuously aided with GPS, magnetometer compass, and a barometric height information. Due to the fact, that the yaw angle becomes unobservable during hovering flight, the integration with a magnetic compass is mandatory. This integration must be robust with respect to errors caused by the terrestrial magnetic field deviation and interferences from surrounding electronic devices as well as ferrite metals. The described integration concept with a Kalman filter overcomes the problem that erroneous magnetic measurements yield to an attitude error in the roll and pitch axis. The algorithm provides long-term stable navigation information even during GPS outages which is mandatory for the flight control of the UAV. In the second part of the paper the guidance algorithms are discussed in detail. These algorithms allow the UAV to operate in a semi-autonomous mode position hold as well an complete autonomous waypoint mode. In the position hold mode the helicopter maintains its position regardless of wind disturbances which ease the pilot job during hold-and-stare missions. The autonomous waypoint navigator enable the flight outside the range of vision and beyond the range of the radio link. Flight test results of the implemented modes of operation are shown.

  20. Characterizing the Processes for Navigating Internet Health Information Using Real-Time Observations: A Mixed-Methods Approach.

    PubMed

    Perez, Susan L; Paterniti, Debora A; Wilson, Machelle; Bell, Robert A; Chan, Man Shan; Villareal, Chloe C; Nguyen, Hien Huy; Kravitz, Richard L

    2015-07-20

    Little is known about the processes people use to find health-related information on the Internet or the individual characteristics that shape selection of information-seeking approaches. Our aim was to describe the processes by which users navigate the Internet for information about a hypothetical acute illness and to identify individual characteristics predictive of their information-seeking strategies. Study participants were recruited from public settings and agencies. Interested individuals were screened for eligibility using an online questionnaire. Participants listened to one of two clinical scenarios—consistent with influenza or bacterial meningitis—and then conducted an Internet search. Screen-capture video software captured Internet search mouse clicks and keystrokes. Each step of the search was coded as hypothesis testing (etiology), evidence gathering (symptoms), or action/treatment seeking (behavior). The coded steps were used to form a step-by-step pattern of each participant's information-seeking process. A total of 78 Internet health information seekers ranging from 21-35 years of age and who experienced barriers to accessing health care services participated. We identified 27 unique patterns of information seeking, which were grouped into four overarching classifications based on the number of steps taken during the search, whether a pattern consisted of developing a hypothesis and exploring symptoms before ending the search or searching an action/treatment, and whether a pattern ended with action/treatment seeking. Applying dual-processing theory, we categorized the four overarching pattern classifications as either System 1 (41%, 32/78), unconscious, rapid, automatic, and high capacity processing; or System 2 (59%, 46/78), conscious, slow, and deliberative processing. Using multivariate regression, we found that System 2 processing was associated with higher education and younger age. We identified and classified two approaches to processing

  1. Characterizing the Processes for Navigating Internet Health Information Using Real-Time Observations: A Mixed-Methods Approach

    PubMed Central

    Paterniti, Debora A; Wilson, Machelle; Bell, Robert A; Chan, Man Shan; Villareal, Chloe C; Nguyen, Hien Huy; Kravitz, Richard L

    2015-01-01

    Background Little is known about the processes people use to find health-related information on the Internet or the individual characteristics that shape selection of information-seeking approaches. Objective Our aim was to describe the processes by which users navigate the Internet for information about a hypothetical acute illness and to identify individual characteristics predictive of their information-seeking strategies. Methods Study participants were recruited from public settings and agencies. Interested individuals were screened for eligibility using an online questionnaire. Participants listened to one of two clinical scenarios—consistent with influenza or bacterial meningitis—and then conducted an Internet search. Screen-capture video software captured Internet search mouse clicks and keystrokes. Each step of the search was coded as hypothesis testing (etiology), evidence gathering (symptoms), or action/treatment seeking (behavior). The coded steps were used to form a step-by-step pattern of each participant’s information-seeking process. A total of 78 Internet health information seekers ranging from 21-35 years of age and who experienced barriers to accessing health care services participated. Results We identified 27 unique patterns of information seeking, which were grouped into four overarching classifications based on the number of steps taken during the search, whether a pattern consisted of developing a hypothesis and exploring symptoms before ending the search or searching an action/treatment, and whether a pattern ended with action/treatment seeking. Applying dual-processing theory, we categorized the four overarching pattern classifications as either System 1 (41%, 32/78), unconscious, rapid, automatic, and high capacity processing; or System 2 (59%, 46/78), conscious, slow, and deliberative processing. Using multivariate regression, we found that System 2 processing was associated with higher education and younger age. Conclusions We

  2. Songlines and navigation in Wardaman and other Australian Aboriginal cultures

    NASA Astrophysics Data System (ADS)

    Norris, Ray P.; Harney, Bill Yidumdum

    2014-07-01

    We discuss the songlines and navigation of the Wardaman people, and place them in context by comparing them with corresponding practices in other Aboriginal Australian language groups, using previously-unpublished information and also information drawn from the literature. Songlines are effectively oral maps of the landscape, enabling the transmission of oral navigational skills in cultures that do not have a written language. In many cases, songlines on the Earth are mirrored by songlines in the sky, enabling the sky to be used as a navigational tool, both by using it as a compass and by using it as a mnemonic.

  3. Integrity Analysis of Real-Time Ppp Technique with Igs-Rts Service for Maritime Navigation

    NASA Astrophysics Data System (ADS)

    El-Diasty, M.

    2017-10-01

    Open sea and inland waterways are the most widely used mode for transporting goods worldwide. It is the International Maritime Organization (IMO) that defines the requirements for position fixing equipment for a worldwide radio-navigation system, in terms of accuracy, integrity, continuity, availability and coverage for the various phases of navigation. Satellite positioning systems can contribute to meet these requirements, as well as optimize marine transportation. Marine navigation usually consists of three major phases identified as Ocean/Coastal/Port approach/Inland waterway, in port navigation and automatic docking with alert limit ranges from 25 m to 0.25 m. GPS positioning is widely used for many applications and is currently recognized by IMO for a future maritime navigation. With the advancement in autonomous GPS positioning techniques such as Precise Point Positioning (PPP) and with the advent of new real-time GNSS correction services such as IGS-Real-Time-Service (RTS), it is necessary to investigate the integrity of the PPP-based positioning technique along with IGS-RTS service in terms of availability and reliability for safe navigation in maritime application. This paper monitors the integrity of an autonomous real-time PPP-based GPS positioning system using the IGS real-time service (RTS) for maritime applications that require minimum availability of integrity of 99.8 % to fulfil the IMO integrity standards. To examine the integrity of the real-time IGS-RTS PPP-based technique for maritime applications, kinematic data from a dual frequency GPS receiver is collected onboard a vessel and investigated with the real-time IGS-RTS PPP-based GPS positioning technique. It is shown that the availability of integrity of the real-time IGS-RTS PPP-based GPS solution is 100 % for all navigation phases and therefore fulfil the IMO integrity standards (99.8 % availability) immediately (after 1 second), after 2 minutes and after

  4. 46 CFR 35.20-1 - Notice to mariners; aids to navigation-T/OCLB.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... that vessels navigating oceans and coastwise and Great Lakes water shall have available in the... changes in aids to navigation and other marine information affecting the safety of navigation on oceans... Agency, National Ocean Service, and the U.S. Coast Guard. They include changes in aids to navigation and...

  5. Advanced information processing system for advanced launch system: Avionics architecture synthesis

    NASA Technical Reports Server (NTRS)

    Lala, Jaynarayan H.; Harper, Richard E.; Jaskowiak, Kenneth R.; Rosch, Gene; Alger, Linda S.; Schor, Andrei L.

    1991-01-01

    The Advanced Information Processing System (AIPS) is a fault-tolerant distributed computer system architecture that was developed to meet the real time computational needs of advanced aerospace vehicles. One such vehicle is the Advanced Launch System (ALS) being developed jointly by NASA and the Department of Defense to launch heavy payloads into low earth orbit at one tenth the cost (per pound of payload) of the current launch vehicles. An avionics architecture that utilizes the AIPS hardware and software building blocks was synthesized for ALS. The AIPS for ALS architecture synthesis process starting with the ALS mission requirements and ending with an analysis of the candidate ALS avionics architecture is described.

  6. Linked Autonomous Interplanetary Satellite Orbit Navigation

    NASA Technical Reports Server (NTRS)

    Parker, Jeffrey S.; Anderson, Rodney L.; Born, George H.; Leonard, Jason M.; McGranaghan, Ryan M.; Fujimoto, Kohei

    2013-01-01

    A navigation technology known as LiAISON (Linked Autonomous Interplanetary Satellite Orbit Navigation) has been known to produce very impressive navigation results for scenarios involving two or more cooperative satellites near the Moon, such that at least one satellite must be in an orbit significantly perturbed by the Earth, such as a lunar halo orbit. The two (or more) satellites track each other using satellite-to-satellite range and/or range-rate measurements. These relative measurements yield absolute orbit navigation when one of the satellites is in a lunar halo orbit, or the like. The geometry between a lunar halo orbiter and a GEO satellite continuously changes, which dramatically improves the information content of a satellite-to-satellite tracking signal. The geometrical variations include significant out-of-plane shifts, as well as inplane shifts. Further, the GEO satellite is almost continuously in view of a lunar halo orbiter. High-fidelity simulations demonstrate that LiAISON technology improves the navigation of GEO orbiters by an order of magnitude, relative to standard ground tracking. If a GEO satellite is navigated using LiAISON- only tracking measurements, its position is typically known to better than 10 meters. If LiAISON measurements are combined with simple radiometric ground observations, then the satellite s position is typically known to better than 3 meters, which is substantially better than the current state of GEO navigation. There are two features of LiAISON that are novel and advantageous compared with conventional satellite navigation. First, ordinary satellite-to-satellite tracking data only provides relative navigation of each satellite. The novelty is the placement of one navigation satellite in an orbit that is significantly perturbed by both the Earth and the Moon. A navigation satellite can track other satellites elsewhere in the Earth-Moon system and acquire knowledge about both satellites absolute positions and velocities

  7. Navigational Efficiency of Nocturnal Myrmecia Ants Suffers at Low Light Levels

    PubMed Central

    Narendra, Ajay; Reid, Samuel F.; Raderschall, Chloé A.

    2013-01-01

    Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available. PMID:23484052

  8. Advanced parking information system evaluation report

    DOT National Transportation Integrated Search

    1997-01-01

    This report documents the evaluation analysis and results of the operational test. The evaluation assesses the impact/effect of the advance parking information system on the motoring public, parking facility operators, roadway system operations, and ...

  9. Cancer Patient Navigator Tasks across the Cancer Care Continuum

    PubMed Central

    Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.

    2011-01-01

    Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178

  10. Metropolitan transportation management center : a case study : Georgia NaviGAtor : accurate and timely information to navigate Georgia roads

    DOT National Transportation Integrated Search

    1999-10-01

    The following case study provides a snapshot of Atlanta's NaviGAtor transportation management center. It follows the outline provided in the companion document, Metropolitan Transportation Management Center Concepts of Operation - A Cross Cutting Stu...

  11. The cerebellum: a new key structure in the navigation system

    PubMed Central

    Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure

    2013-01-01

    Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515

  12. Autonomous satellite navigation with the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Fuchs, A. J.; Wooden, W. H., II; Long, A. C.

    1977-01-01

    This paper discusses the potential of using the Global Positioning System (GPS) to provide autonomous navigation capability to NASA satellites in the 1980 era. Some of the driving forces motivating autonomous navigation are presented. These include such factors as advances in attitude control systems, onboard science annotation, and onboard gridding of imaging data. Simulation results which demonstrate baseline orbit determination accuracies using GPS data on Seasat, Landsat-D, and the Solar Maximum Mission are presented. Emphasis is placed on identifying error sources such as GPS time, GPS ephemeris, user timing biases, and user orbit dynamics, and in a parametric sense on evaluating their contribution to the orbit determination accuracies.

  13. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  14. 14 CFR 121.389 - Flight navigator and specialized navigation equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight navigator and specialized navigation equipment. 121.389 Section 121.389 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....389 Flight navigator and specialized navigation equipment. (a) No certificate holder may operate an...

  15. PATIENT NAVIGATION

    PubMed Central

    Wells, Kristen J.; Battaglia, Tracy A.; Dudley, Donald J.; Garcia, Roland; Greene, Amanda; Calhoun, Elizabeth; Mandelblatt, Jeanne S.; Paskett, Electra D.; Raich, Peter C.

    2008-01-01

    Background First implemented in 1990, patient navigation interventions are emerging as an approach to reduce cancer disparities. However, there is lack of consensus about how patient navigation is defined, what patient navigators do, and what their qualifications should be. Little is known about the efficacy and cost effectiveness of patient navigation. Methods We conducted a qualitative synthesis of published literature on cancer patient navigation. Using the keywords “navigator” or “navigation” and “cancer,” we identified 45 articles from Pubmed and reference searches that were published or in press through October 2007. 16 provided data on efficacy of navigation in improving timeliness and receipt of cancer screening, diagnostic follow-up care, and treatment. Patient navigation services are defined and differentiated from other outreach services. Results Overall there is evidence for some degree of efficacy for patient navigation in increasing participation in cancer screening and adherence to diagnostic follow-up care following an abnormality, with increases in screening ranging from 10.8% to 17.1% and increases in adherence to diagnostic follow-up care ranging from 21% to 29.2%, when compared to control patients. There is less evidence regarding efficacy of patient navigation in reducing either late stage cancer diagnosis or delays in initiation of cancer treatment or improving outcomes during cancer survivorship. There were methodological limitations in most studies, such as lack of control groups, small sample sizes, and contamination with other interventions. Conclusions Although cancer-related patient navigation interventions are being increasingly adopted across the U.S. and Canada, further research is necessary to evaluate their efficacy and cost-effectiveness in improving cancer care. PMID:18780320

  16. [First clinical experience with extended planning and navigation in an interventional MRI unit].

    PubMed

    Moche, M; Schmitgen, A; Schneider, J P; Bublat, M; Schulz, T; Voerkel, C; Trantakis, C; Bennek, J; Kahn, T; Busse, H

    2004-07-01

    To present an advanced concept for patient-based navigation and to report on our first clinical experience with interventions in the cranium, of soft-tissue structures (breast, liver) and in the musculoskeletal system. A PC-based navigation system was integrated into an existing interventional MRI environment. Intraoperatively acquired 3D data were used for interventional planning. The information content of these reference data was increased by integration of additional image modalities (e. g., fMRI, CT) and by color display of areas with early contrast media enhancement. Within 18 months, the system was used in 123 patients undergoing interventions in different anatomic regions (brain: 64, paranasal sinus: 9, breast: 20, liver: 17, bone: 9, muscle: 4). The mean duration of 64 brain interventions was compared with that of 36 procedures using the scanner's standard navigation. In contrast with the continuous scanning mode of the MR system (0.25 fps), the higher quality as well as the real time display (4 fps) of the MR images reconstructed from the 3D reference data allowed adequate hand-eye coordination. With our system, patient movement and tissue shifts could be immediately detected intraoperatively, and, in contrast to the standard procedure, navigation safely resumed after updating the reference data. The navigation system was characterized by good stability, efficient system integration and easy usability. Despite additional working steps still to be optimized, the duration of the image-guided brain tumor resections was not significantly longer. The presented system combines the advantage of intraoperative MRI with established visualization, planning, and real time capabilities of neuronavigation and can be efficiently applied in a broad range of non-neurosurgical interventions.

  17. Area navigation and required navigation performance procedures and depictions

    DOT National Transportation Integrated Search

    2012-09-30

    Area navigation (RNAV) and required navigation performance (RNP) procedures are fundamental to the implementation of a performance based navigation (PBN) system, which is a key enabling technology for the Next Generation Air Transportation System (Ne...

  18. Vision for navigation: What can we learn from ants?

    PubMed

    Graham, Paul; Philippides, Andrew

    2017-09-01

    The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insect-level performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware. We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Cooperative interactions between hippocampal and striatal systems support flexible navigation

    PubMed Central

    Brown, Thackery I; Ross, Robert S; Tobyne, Sean M; Stern, Chantal E

    2012-01-01

    Research in animals and humans has demonstrated that the hippocampus is critical for retrieving distinct representations of overlapping sequences of information. There is recent evidence that the caudate nucleus and orbitofrontal cortex are also involved in disambiguation of overlapping spatial representations. The hippocampus and caudate are functionally distinct regions, but both have anatomical links with the orbitofrontal cortex. The present study used an fMRI-based functional connectivity analysis in humans to examine the functional relationship between the hippocampus, caudate, and orbitofrontal cortex when participants use contextual information to navigate well-learned spatial routes which share common elements. Participants were trained outside the scanner to navigate virtual mazes from a first-person perspective. Overlapping condition mazes began and ended at distinct locations, but converged in the middle to share some hallways with another maze. Non-overlapping condition mazes did not share any hallways with any other maze. Successful navigation through the overlapping hallways required contextual information identifying the current navigational route to guide the appropriate response for a given trial. Results revealed greater functional connectivity between the hippocampus, caudate, and orbitofrontal cortex for overlapping mazes compared to non-overlapping mazes. The current findings suggest that the hippocampus and caudate interact with prefrontal structures cooperatively for successful contextually-dependent navigation. PMID:22266411

  20. 75 FR 49408 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Bridges

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Conforming Amendments, Bridges AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: This rule makes non... technical corrections to Coast Guard bridge and navigable waters regulations. This rule will have no... announces or gathers public opinion or other information regarding bridge matters, nor will it change the...

  1. 76 FR 8628 - Safe, Efficient Use and Preservation of the Navigable Airspace; OMB Approval of Information...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...-25002; Amendment No. 77-13] RIN 2120-AH31 Safe, Efficient Use and Preservation of the Navigable Airspace... on July 21, 2010, entitled Safe, Efficient Use and Preservation of the Navigable Airspace. DATES: The..., 2010, the final rule entitled Safe, Efficient Use and Preservation of the Navigable Airspace, was...

  2. Sextant X-Ray Pulsar Navigation Demonstration: Initial On-Orbit Results

    NASA Technical Reports Server (NTRS)

    Mitchell, Jason W.; Winternitz, Luke M.; Hassouneh, Munther A.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wolff, Michael T.; Kerr, Matthew; Wood, Kent S.; hide

    2018-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a technology demonstration enhancement to the Neutron-star Interior Composition Explorer (NICER) mission. SEXTANT will be a first demonstration of in-space, autonomous, X-ray pulsar navigation (XNAV). Navigating using millisecond X-ray pulsars which could provide a GPS-like navigation capability available throughout our Solar System and beyond. NICER is a NASA Astrophysics Explorer Mission of Opportunity to the International Space Station that was launched and installed in June of 2017. During NICER's nominal 18-month base mission, SEXTANT will perform a number of experiments to demonstrate XNAV and advance the technology on a number of fronts. In this work, we review the SEXTANT, its goals, and present early results from SEXTANT experiments conducted in the first six months of operation. With these results, SEXTANT has made significant progress toward meeting its primary and secondary mission goals. We also describe the SEXTANT flight operations, calibration activities, and initial results.

  3. Development of a chronic kidney disease patient navigator program.

    PubMed

    Jolly, Stacey E; Navaneethan, Sankar D; Schold, Jesse D; Arrigain, Susana; Konig, Victoria; Burrucker, Yvette K; Hyland, Jennifer; Dann, Priscilla; Tucky, Barbara H; Sharp, John W; Nally, Joseph V

    2015-05-03

    Chronic Kidney Disease (CKD) is a public health problem and there is a scarcity of type 2 CKD translational research that incorporates educational tools. Patient navigators have been shown to be effective at reducing disparities and improving outcomes in the oncology field. We describe the creation of a CKD Patient Navigator program designed to help coordinate care, address system-barriers, and educate/motivate patients. The conceptual framework for the CKD Patient Navigator Program is rooted in the Chronic Care Model that has a main goal of high-quality chronic disease management. Our established multidisciplinary CKD research team enlisted new members from information technology and data management to help create the program. It encompassed three phases: hiring, training, and implementation. For hiring, we wanted a non-medical or lay person with a college degree that possessed strong interpersonal skills and experience in a service-orientated field. For training, there were three key areas: general patient navigator training, CKD education, and electronic health record (EHR) training. For implementation, we defined barriers of care and created EHR templates for which pertinent study data could be extracted. We have hired two CKD patient navigators who will be responsible for navigating CKD patients enrolled in a clinical trial. They have undergone training in general patient navigation, specific CKD education through directed readings and clinical shadowing, as well as EHR and other patient related privacy and research training. The need for novel approaches like our CKD patient navigator program designed to impact CKD care is vital and should utilize team-based care and health information technology given the changing landscape of our health systems.

  4. PandaEPL: A library for programming spatial navigation experiments

    PubMed Central

    Solway, Alec; Miller, Jonathan F.

    2013-01-01

    Recent advances in neuroimaging and neural recording techniques have enabled researchers to make significant progress in understanding the neural mechanisms underlying human spatial navigation. Because these techniques generally require participants to remain stationary, computer-generated virtual environments are used. We introduce PandaEPL, a programming library for the Python language designed to simplify the creation of computer-controlled spatial-navigation experiments. PandaEPL is built on top of Panda3D, a modern open-source game engine. It allows users to construct three-dimensional environments that participants can navigate from a first-person perspective. Sound playback and recording and also joystick support are provided through the use of additional optional libraries. PandaEPL also handles many tasks common to all cognitive experiments, including managing configuration files, logging all internal and participant-generated events, and keeping track of the experiment state. We describe how PandaEPL compares with other software for building spatial-navigation experiments and walk the reader through the process of creating a fully functional experiment. PMID:23549683

  5. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    PubMed

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  6. Electromagnetic tracking of flexible robotic catheters enables "assisted navigation" and brings automation to endovascular navigation in an in vitro study.

    PubMed

    Schwein, Adeline; Kramer, Benjamin; Chinnadurai, Ponraj; Virmani, Neha; Walker, Sean; O'Malley, Marcia; Lumsden, Alan B; Bismuth, Jean

    2018-04-01

    Combining three-dimensional (3D) catheter control with electromagnetic (EM) tracking-based navigation significantly reduced fluoroscopy time and improved robotic catheter movement quality in a previous in vitro pilot study. The aim of this study was to expound on previous results and to expand the value of EM tracking with a novel feature, assistednavigation, allowing automatic catheter orientation and semiautomatic vessel cannulation. Eighteen users navigated a robotic catheter in an aortic aneurysm phantom using an EM guidewire and a modified 9F robotic catheter with EM sensors at the tip of both leader and sheath. All users cannulated two targets, the left renal artery and posterior gate, using four visualization modes: (1) Standard fluoroscopy (control). (2) 2D biplane fluoroscopy showing real-time virtual catheter localization and orientation from EM tracking. (3) 2D biplane fluoroscopy with novel EM assisted navigation allowing the user to define the target vessel. The robotic catheter orients itself automatically toward the target; the user then only needs to advance the guidewire following this predefined optimized path to catheterize the vessel. Then, while advancing the catheter over the wire, the assisted navigation automatically modifies catheter bending and rotation in order to ensure smooth progression, avoiding loss of wire access. (4) Virtual 3D representation of the phantom showing real-time virtual catheter localization and orientation. Standard fluoroscopy was always available; cannulation and fluoroscopy times were noted for every mode and target cannulation. Quality of catheter movement was assessed by measuring the number of submovements of the catheter using the 3D coordinates of the EM sensors. A t-test was used to compare the standard fluoroscopy mode against EM tracking modes. EM tracking significantly reduced the mean fluoroscopy time (P < .001) and the number of submovements (P < .02) for both cannulation tasks. For the posterior gate

  7. Establishing Common Cost Measures to Evaluate the Economic Value of Patient Navigation Programs

    PubMed Central

    Whitley, Elizabeth; Valverde, Patricia; Wells, Kristen; Williams, Loretta; Teschner, Taylor; Shih, Ya-Chen Tina

    2011-01-01

    Background Patient navigation is an intervention aimed at reducing barriers to healthcare for underserved populations as a means to reduce cancer health disparities. Despite the proliferation of patient navigation programs across the United States, information related to the economic impact and sustainability of these programs is lacking. Method Following a review of the relevant literature, the Health Services Research (HSR) cost workgroup of the American Cancer Society National Patient Navigator Leadership Summit met to examine cost data relevant to assessing the economic impact of patient navigation and to propose common cost metrics. Results Recognizing that resources available for data collection, management and analysis vary, five categories of core and optional cost measures were identified related to patient navigator programs, including, program costs, human capital costs, direct medical costs, direct non-medical costs and indirect costs. Conclusion(s) Information demonstrating economic as well as clinical value is necessary to make decisions about sustainability of patient navigation programs. Adoption of these common cost metrics are recommended to promote understanding of the economic impact of patient navigation and comparability across diverse patient navigation programs. PMID:21780096

  8. An Agent-Based Model for Navigation Simulation in a Heterogeneous Environment

    ERIC Educational Resources Information Center

    Shanklin, Teresa A.

    2012-01-01

    Complex navigation (e.g. indoor and outdoor environments) can be studied as a system-of-systems problem. The model is made up of disparate systems that can aid a user in navigating from one location to another, utilizing whatever sensor system or information is available. By using intelligent navigation sensors and techniques (e.g. RFID, Wifi,…

  9. Insect navigation: do ants live in the now?

    PubMed

    Graham, Paul; Mangan, Michael

    2015-03-01

    Visual navigation is a critical behaviour for many animals, and it has been particularly well studied in ants. Decades of ant navigation research have uncovered many ways in which efficient navigation can be implemented in small brains. For example, ants show us how visual information can drive navigation via procedural rather than map-like instructions. Two recent behavioural observations highlight interesting adaptive ways in which ants implement visual guidance. Firstly, it has been shown that the systematic nest searches of ants can be biased by recent experience of familiar scenes. Secondly, ants have been observed to show temporary periods of confusion when asked to repeat a route segment, even if that route segment is very familiar. Taken together, these results indicate that the navigational decisions of ants take into account their recent experiences as well as the currently perceived environment. © 2015. Published by The Company of Biologists Ltd.

  10. Magnetic Navigation in Sea Turtles: Insights from Secular Variation

    NASA Astrophysics Data System (ADS)

    Putman, N. F.; Lohmann, K.

    2011-12-01

    Sea turtles are iconic migrants that posses a sensitive magnetic-sense that guides their long-distance movements in a variety of contexts. In the first few hours after hatching turtles use the magnetic field to maintain an offshore compass heading to reach deeper water, out of the reach of nearshore predators. Young turtles engage in directed swimming in response to regional magnetic fields that exist along their transoceanic migratory path. Older turtles also use magnetic information to relocate foraging sites and islands used for nesting after displacement. Numerous hypotheses have been put forth to explain how magnetic information functions in these movements, however, there is little consensus among animal navigation researchers. A particular vexing issue is how magnetic navigation can function under the constraints of the constant, gradual shifting of the earth's magnetic field (secular variation). Here, I present a framework based on models of recent geomagnetic secular variation to explore several navigational mechanisms proposed for sea turtles. I show that while examination of secular variation likely falsifies some hypothetical navigational strategies, it provides key insights into the selective pressures that could maintain other navigational mechanisms. Moreover, examination of secular variation's influence on the navigational precision in reproductive migrations of sea turtles offers compelling explanations for the population structure along sea turtle nesting beaches as well as spatiotemporal variation in nesting turtle abundance.

  11. Vector navigation in desert ants, Cataglyphis fortis: celestial compass cues are essential for the proper use of distance information.

    PubMed

    Sommer, Stefan; Wehner, Rüdiger

    2005-10-01

    Foraging desert ants navigate primarily by path integration. They continually update homing direction and distance by employing a celestial compass and an odometer. Here we address the question of whether information about travel distance is correctly used in the absence of directional information. By using linear channels that were partly covered to exclude celestial compass cues, we were able to test the distance component of the path-integration process while suppressing the directional information. Our results suggest that the path integrator cannot process the distance information accumulated by the odometer while ants are deprived of celestial compass information. Hence, during path integration directional cues are a prerequisite for the proper use of travel-distance information by ants.

  12. Sex differences in virtual navigation influenced by scale and navigation experience.

    PubMed

    Padilla, Lace M; Creem-Regehr, Sarah H; Stefanucci, Jeanine K; Cashdan, Elizabeth A

    2017-04-01

    The Morris water maze is a spatial abilities test adapted from the animal spatial cognition literature and has been studied in the context of sex differences in humans. This is because its standard design, which manipulates proximal (close) and distal (far) cues, applies to human navigation. However, virtual Morris water mazes test navigation skills on a scale that is vastly smaller than natural human navigation. Many researchers have argued that navigating in large and small scales is fundamentally different, and small-scale navigation might not simulate natural human navigation. Other work has suggested that navigation experience could influence spatial skills. To address the question of how individual differences influence navigational abilities in differently scaled environments, we employed both a large- (146.4 m in diameter) and a traditional- (36.6 m in diameter) scaled virtual Morris water maze along with a novel measure of navigation experience (lifetime mobility). We found sex differences on the small maze in the distal cue condition only, but in both cue-conditions on the large maze. Also, individual differences in navigation experience modulated navigation performance on the virtual water maze, showing that higher mobility was related to better performance with proximal cues for only females on the small maze, but for both males and females on the large maze.

  13. Automatic Recognition of Indoor Navigation Elements from Kinect Point Clouds

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Kang, Z.

    2017-09-01

    This paper realizes automatically the navigating elements defined by indoorGML data standard - door, stairway and wall. The data used is indoor 3D point cloud collected by Kinect v2 launched in 2011 through the means of ORB-SLAM. By contrast, it is cheaper and more convenient than lidar, but the point clouds also have the problem of noise, registration error and large data volume. Hence, we adopt a shape descriptor - histogram of distances between two randomly chosen points, proposed by Osada and merges with other descriptor - in conjunction with random forest classifier to recognize the navigation elements (door, stairway and wall) from Kinect point clouds. This research acquires navigation elements and their 3-d location information from each single data frame through segmentation of point clouds, boundary extraction, feature calculation and classification. Finally, this paper utilizes the acquired navigation elements and their information to generate the state data of the indoor navigation module automatically. The experimental results demonstrate a high recognition accuracy of the proposed method.

  14. Development of STOLAND, a versatile navigation, guidance and control system

    NASA Technical Reports Server (NTRS)

    Young, L. S.; Hansen, Q. M.; Rouse, W. E.; Osder, S. S.

    1972-01-01

    STOLAND has been developed to perform navigation, guidance, control, and flight management experiments in advanced V/STOL aircraft. The experiments have broad requirements and have dictated that STOLAND be capable of providing performance that would be realistic and equivalent to a wide range of current and future avionics systems. An integrated digital concept using modern avionics components was selected as the simplest approach to maximizing versatility and growth potential. Unique flexibility has been obtained by use of a single, general-purpose digital computer for all navigation, guidance, control, and displays computation.

  15. Applicability of Deep-Learning Technology for Relative Object-Based Navigation

    DTIC Science & Technology

    2017-09-01

    burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing...possible selections for navigating an unmanned ground vehicle (UGV) is through real- time visual odometry. To navigate in such an environment, the UGV...UGV) is through real- time visual odometry. To navigate in such an environment, the UGV needs to be able to detect, identify, and relate the static

  16. Examining care navigation: librarian participation in a team-based approach?

    PubMed

    Nix, A Tyler; Huber, Jeffrey T; Shapiro, Robert M; Pfeifle, Andrea

    2016-04-01

    This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample's responsibilities and skill sets. Coordination of patient care and a bachelor's degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  17. Construct and face validity of a virtual reality-based camera navigation curriculum.

    PubMed

    Shetty, Shohan; Panait, Lucian; Baranoski, Jacob; Dudrick, Stanley J; Bell, Robert L; Roberts, Kurt E; Duffy, Andrew J

    2012-10-01

    Camera handling and navigation are essential skills in laparoscopic surgery. Surgeons rely on camera operators, usually the least experienced members of the team, for visualization of the operative field. Essential skills for camera operators include maintaining orientation, an effective horizon, appropriate zoom control, and a clean lens. Virtual reality (VR) simulation may be a useful adjunct to developing camera skills in a novice population. No standardized VR-based camera navigation curriculum is currently available. We developed and implemented a novel curriculum on the LapSim VR simulator platform for our residents and students. We hypothesize that our curriculum will demonstrate construct and face validity in our trainee population, distinguishing levels of laparoscopic experience as part of a realistic training curriculum. Overall, 41 participants with various levels of laparoscopic training completed the curriculum. Participants included medical students, surgical residents (Postgraduate Years 1-5), fellows, and attendings. We stratified subjects into three groups (novice, intermediate, and advanced) based on previous laparoscopic experience. We assessed face validity with a questionnaire. The proficiency-based curriculum consists of three modules: camera navigation, coordination, and target visualization using 0° and 30° laparoscopes. Metrics include time, target misses, drift, path length, and tissue contact. We analyzed data using analysis of variance and Student's t-test. We noted significant differences in repetitions required to complete the curriculum: 41.8 for novices, 21.2 for intermediates, and 11.7 for the advanced group (P < 0.05). In the individual modules, coordination required 13.3 attempts for novices, 4.2 for intermediates, and 1.7 for the advanced group (P < 0.05). Target visualization required 19.3 attempts for novices, 13.2 for intermediates, and 8.2 for the advanced group (P < 0.05). Participants believe that training improves

  18. Interplanetary navigation

    NASA Technical Reports Server (NTRS)

    Stuart, J. R.

    1984-01-01

    The evolution of NASA's planetary navigation techniques is traced, and radiometric and optical data types are described. Doppler navigation; the Deep Space Network; differenced two-way range techniques; differential very long base interferometry; and optical navigation are treated. The Doppler system enables a spacecraft in cruise at high absolute declination to be located within a total angular uncertainty of 1/4 microrad. The two-station range measurement provides a 1 microrad backup at low declinations. Optical data locate the spacecraft relative to the target to an angular accuracy of 5 microrad. Earth-based radio navigation and its less accurate but target-relative counterpart, optical navigation, thus form complementary measurement sources, which provide a powerful sensory system to produce high-precision orbit estimates.

  19. Gender differences in navigational memory: pilots vs. nonpilots.

    PubMed

    Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico

    2015-02-01

    The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.

  20. Remote controlled robot assisted cardiac navigation: feasibility assessment and validation in a porcine model.

    PubMed

    Ganji, Yusof; Janabi-Sharifi, Farrokh; Cheema, Asim N

    2011-12-01

    Despite the recent advances in catheter design and technology, intra-cardiac navigation during electrophysiology procedures remains challenging. Incorporation of imaging along with magnetic or robotic guidance may improve navigation accuracy and procedural safety. In the present study, the in vivo performance of a novel remote controlled Robot Assisted Cardiac Navigation System (RACN) was evaluated in a porcine model. The navigation catheter and target sensor were advanced to the right atrium using fluoroscopic and intra-cardiac echo guidance. The target sensor was positioned at three target locations in the right atrium (RA) and the navigation task was completed by an experienced physician using both manual and RACN guidance. The navigation time, final distance between the catheter tip and target sensor, and variability in final catheter tip position were determined and compared for manual and RACN guided navigation. The experiments were completed in three animals and five measurements recorded for each target location. The mean distance (mm) between catheter tip and target sensor at the end of the navigation task was significantly less using RACN guidance compared with manual navigation (5.02 ± 0.31 vs. 9.66 ± 2.88, p = 0.050 for high RA, 9.19 ± 1.13 vs. 13.0 ± 1.00, p = 0.011 for low RA and 6.77 ± 0.59 vs. 15.66 ± 2.51, p = 0.003 for tricuspid valve annulus). The average time (s) needed to complete the navigation task was significantly longer by RACN guided navigation compared with manual navigation (43.31 ± 18.19 vs. 13.54 ± 1.36, p = 0.047 for high RA, 43.71 ± 11.93 vs. 22.71 ± 3.79, p = 0.043 for low RA and 37.84 ± 3.71 vs. 16.13 ± 4.92, p = 0.003 for tricuspid valve annulus. RACN guided navigation resulted in greater consistency in performance compared with manual navigation as evidenced by lower variability in final distance measurements (0.41 vs. 0.99 mm, p = 0

  1. Optimal multiguidance integration in insect navigation.

    PubMed

    Hoinville, Thierry; Wehner, Rüdiger

    2018-03-13

    In the last decades, desert ants have become model organisms for the study of insect navigation. In finding their way, they use two major navigational routines: path integration using a celestial compass and landmark guidance based on sets of panoramic views of the terrestrial environment. It has been claimed that this information would enable the insect to acquire and use a centralized cognitive map of its foraging terrain. Here, we present a decentralized architecture, in which the concurrently operating path integration and landmark guidance routines contribute optimally to the directions to be steered, with "optimal" meaning maximizing the certainty (reliability) of the combined information. At any one time during its journey, the animal computes a path integration (global) vector and landmark guidance (local) vector, in which the length of each vector is proportional to the certainty of the individual estimates. Hence, these vectors represent the limited knowledge that the navigator has at any one place about the direction of the goal. The sum of the global and local vectors indicates the navigator's optimal directional estimate. Wherever applied, this decentralized model architecture is sufficient to simulate the results of quite a number of diverse cue-conflict experiments, which have recently been performed in various behavioral contexts by different authors in both desert ants and honeybees. They include even those experiments that have deliberately been designed by former authors to strengthen the evidence for a metric cognitive map in bees.

  2. CNAV: A Unique Approach to a Web-Based College Information Navigator at Gettysburg College.

    ERIC Educational Resources Information Center

    Martys, Michael; Redman, Don; Huff, Alice; Czar, Dave; Mullane, Pat; Bennett, Joseph; Getty, Robert

    In 1997, Gettysburg College (Pennsylvania) deployed the CNAV (College Navigation) Web tool to allow the students' and the entire college community the ability to better navigate through its college's curricular, co-curricular, and extracurricular offerings. CNAV is unique because, rather than treating the Web as a series of static pages, it treats…

  3. Flight assessment of a data-link-based navigation-guidance concept

    NASA Technical Reports Server (NTRS)

    Abbott, T. S.

    1983-01-01

    With the proposed introduction of a data-link provision into the Air-Traffic-control (ATC) system, the capability will exist to supplement the ground-air, voice (radio) link with digital, data-link information. Additionally, ATC computers could provide, via the data link guidance and navigation information to the pilot which could then be presented in much the same manner as conventional navigation information. The primary objective of this study was to assess the feasibility and acceptability of using 4-sec and 12-sec information updating to drive conventional cockpit-navigation-instrument formats for path-tracking guidance. A flight test, consisting of 19 tracking tasks, was conducted and, through the use of pilot questionnaires and performance data, the following results were obtained. From a performance standpoint, the 4-sec and 12-sec updating led to a slight degradation in path-tracking performance, relative to continuous updating. From the pilot's viewpoint, the 12-sec data interval was suitable for long path segments (greater than 2 min of flight time), but it was difficult to use on shorter segments because of higher work load and insufficient stabilization time. Overall, it was determined that the utilization of noncontinuous data for navigation was both feasible and acceptable for the prescribed task.

  4. Metrics for evaluating patient navigation during cancer diagnosis and treatment: crafting a policy-relevant research agenda for patient navigation in cancer care.

    PubMed

    Guadagnolo, B Ashleigh; Dohan, Daniel; Raich, Peter

    2011-08-01

    Racial and ethnic minorities as well as other vulnerable populations experience disparate cancer-related health outcomes. Patient navigation is an emerging health care delivery innovation that offers promise in improving quality of cancer care delivery to these patients who experience unique health-access barriers. Metrics are needed to evaluate whether patient navigation can improve quality of care delivery, health outcomes, and overall value in health care during diagnosis and treatment of cancer. Information regarding the current state of the science examining patient navigation interventions was gathered via search of the published scientific literature. A focus group of providers, patient navigators, and health-policy experts was convened as part of the Patient Navigation Leadership Summit sponsored by the American Cancer Society. Key metrics were identified for assessing the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation data exist for all stages of cancer care; however, the literature is more robust for its implementation during prevention, screening, and early diagnostic workup of cancer. Relatively fewer data are reported for outcomes and efficacy of patient navigation during cancer treatment. Metrics are proposed for a policy-relevant research agenda to evaluate the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation is understudied with respect to its use in cancer diagnosis and treatment. Core metrics are defined to evaluate its efficacy in improving outcomes and mitigating health-access barriers. Copyright © 2011 American Cancer Society.

  5. Metrics for evaluating patient navigation during cancer diagnosis and treatment: crafting a policy-relevant research agenda for patient navigation in cancer care

    PubMed Central

    Guadagnolo, B. Ashleigh; Dohan, Daniel; Raich, Peter

    2016-01-01

    Background Racial and ethnic minorities as well as other vulnerable populations experience disparate cancer-related health outcomes. Patient navigation is an emerging health care delivery innovation that offers promise in improving quality of cancer care delivery to these patients who experience unique health access barriers. Metrics are needed to evaluate whether patient navigation can improve quality of care delivery, health outcomes, and overall value in health care during diagnosis and treatment of cancer. Methods Information regarding the current state of the science examining patient navigation interventions was gathered via search of the published scientific literature. A focus group of providers, patient navigators, and health policy experts was convened as part of the Patient Navigation Leadership Summit sponsored by the American Cancer Society. Key metrics were identified for assessing the efficacy of patient navigation in cancer diagnosis and treatment. Results Patient navigation data exists for all stages of cancer care; however, the literature is more robust for its implementation during prevention, screening, and early diagnostic work-up of cancer. Relatively fewer data are reported for outcomes and efficacy of patient navigation during cancer treatment. Metrics are proposed for a policy-relevant research agenda to evaluate the efficacy of patient navigation in cancer diagnosis and treatment. Conclusions Patient navigation is understudied with respect to its use in cancer diagnosis and treatment. Core metrics are defined to evaluate its efficacy in improving outcomes and mitigating health access barriers. PMID:21780091

  6. ARTSN: An Automated Real-Time Spacecraft Navigation System

    NASA Technical Reports Server (NTRS)

    Burkhart, P. Daniel; Pollmeier, Vincent M.

    1996-01-01

    As part of the Deep Space Network (DSN) advanced technology program an effort is underway to design a filter to automate the deep space navigation process.The automated real-time spacecraft navigation (ARTSN) filter task is based on a prototype consisting of a FORTRAN77 package operating on an HP-9000/700 workstation running HP-UX 9.05. This will be converted to C, and maintained as the operational version. The processing tasks required are: (1) read a measurement, (2) integrate the spacecraft state to the current measurement time, (3) compute the observable based on the integrated state, and (4) incorporate the measurement information into the state using an extended Kalman filter. This filter processes radiometric data collected by the DSN. The dynamic (force) models currently include point mass gravitational terms for all planets, the Sun and Moon, solar radiation pressure, finite maneuvers, and attitude maintenance activity modeled quadratically. In addition, observable errors due to troposphere are included. Further data types, force and observable models will be ncluded to enhance the accuracy of the models and the capability of the package. The heart of the ARSTSN is a currently available continuous-discrete extended Kalman filter. Simulated data used to test the implementation at various stages of development and the results from processing actual mission data are presented.

  7. 78 FR 52941 - Cooperative Research and Development Agreement: Next Generation Arctic Navigational Safety...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-27

    ... Development Agreement: Next Generation Arctic Navigational Safety Information System AGENCY: Coast Guard, DHS... technology approach to the ``Next Generation Arctic Maritime Navigational Safety Information System,'' which... their voyage risks, as they transit the remote and hostile waters of the U.S. Arctic Exclusive Economic...

  8. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Howard, Richard T.; Hallmark, Dean S.

    2007-01-01

    Testing of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary of test results from sensor confidence tests and system performance testing.

  9. Effects of Optical Artifacts in a Laser-Based Spacecraft Navigation Sensor

    NASA Technical Reports Server (NTRS)

    LeCroy, Jerry E.; Hallmark, Dean S.; Howard, Richard T.

    2007-01-01

    Testing Of the Advanced Video Guidance Sensor (AVGS) used for proximity operations navigation on the Orbital Express ASTRO spacecraft exposed several unanticipated imaging system artifacts and aberrations that required correction, to meet critical navigation performance requirements. Mitigation actions are described for a number of system error sources, including lens aberration, optical train misalignment, laser speckle, target image defects, and detector nonlinearity/noise characteristics. Sensor test requirements and protocols are described, along with a summary ,of test results from sensor confidence tests and system performance testing.

  10. A full 3D-navigation system in a suitcase.

    PubMed

    Freysinger, W; Truppe, M J; Gunkel, A R; Thumfart, W F

    2001-01-01

    To reduce the impact of contemporary 3D-navigation systems on the environment of typical otorhinolaryngologic operating rooms, we demonstrate that a transfer of navigation software to modern high-power notebook computers is feasible and results in a practicable way to provide positional information to a surgeon intraoperatively. The ARTMA Virtual Patient System has been implemented on a Macintosh PowerBook G3 and, in connection with the Polhemus FASTRAK digitizer, provides intraoperative positional information during endoscopic endonasal surgery. Satisfactory intraoperative navigation has been realized in two- and three-dimensional medical image data sets (i.e., X-ray, ultrasound images, CT, and MR) and live video. This proof-of-concept study demonstrates that acceptable ergonomics and excellent performance of the system can be achieved with contemporary high-end notebook computers. Copyright 2001 Wiley-Liss, Inc.

  11. CellLineNavigator: a workbench for cancer cell line analysis

    PubMed Central

    Krupp, Markus; Itzel, Timo; Maass, Thorsten; Hildebrandt, Andreas; Galle, Peter R.; Teufel, Andreas

    2013-01-01

    The CellLineNavigator database, freely available at http://www.medicalgenomics.org/celllinenavigator, is a web-based workbench for large scale comparisons of a large collection of diverse cell lines. It aims to support experimental design in the fields of genomics, systems biology and translational biomedical research. Currently, this compendium holds genome wide expression profiles of 317 different cancer cell lines, categorized into 57 different pathological states and 28 individual tissues. To enlarge the scope of CellLineNavigator, the database was furthermore closely linked to commonly used bioinformatics databases and knowledge repositories. To ensure easy data access and search ability, a simple data and an intuitive querying interface were implemented. It allows the user to explore and filter gene expression, focusing on pathological or physiological conditions. For a more complex search, the advanced query interface may be used to query for (i) differentially expressed genes; (ii) pathological or physiological conditions; or (iii) gene names or functional attributes, such as Kyoto Encyclopaedia of Genes and Genomes pathway maps. These queries may also be combined. Finally, CellLineNavigator allows additional advanced analysis of differentially regulated genes by a direct link to the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioinformatics Resources. PMID:23118487

  12. Energy Navigation: Simulation Evaluation and Benefit Analysis

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2011-01-01

    This paper presents results from two simulation studies investigating the use of advanced flight-deck-based energy navigation (ENAV) and conventional transport-category vertical navigation (VNAV) for conducting a descent through a busy terminal area, using Continuous Descent Arrival (CDA) procedures. This research was part of the Low Noise Flight Procedures (LNFP) element within the Quiet Aircraft Technology (QAT) Project, and the subsequent Airspace Super Density Operations (ASDO) research focus area of the Airspace Project. A piloted simulation study addressed development of flight guidance, and supporting pilot and Air Traffic Control (ATC) procedures for high density terminal operations. The procedures and charts were designed to be easy to understand, and to make it easy for the crew to make changes via the Flight Management Computer Control-Display Unit (FMC-CDU) to accommodate changes from ATC.

  13. Visual Odometry for Autonomous Deep-Space Navigation

    NASA Technical Reports Server (NTRS)

    Robinson, Shane; Pedrotty, Sam

    2016-01-01

    Visual Odometry fills two critical needs shared by all future exploration architectures considered by NASA: Autonomous Rendezvous and Docking (AR&D), and autonomous navigation during loss of comm. To do this, a camera is combined with cutting-edge algorithms (called Visual Odometry) into a unit that provides accurate relative pose between the camera and the object in the imagery. Recent simulation analyses have demonstrated the ability of this new technology to reliably, accurately, and quickly compute a relative pose. This project advances this technology by both preparing the system to process flight imagery and creating an activity to capture said imagery. This technology can provide a pioneering optical navigation platform capable of supporting a wide variety of future missions scenarios: deep space rendezvous, asteroid exploration, loss-of-comm.

  14. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  15. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    NASA Astrophysics Data System (ADS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-07-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  16. Area navigation implementation for a microcomputer-based LORAN-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    Engineering performed to make LORAN-C a more useful and practical navigation system for general aviation is described. Development of new software, and implementation of this software on a (MOS6502) microcomputer to provide high quality practical area navigation information directly to the pilot and considered. Flight tests were performed specifically to examine the efficacy of this new software. Final results were exceptionally good and clearly demonstrate the merits of this new LORAN-C area navigation system.

  17. Preliminary description of the area navigation software for a microcomputer-based Loran-C receiver

    NASA Technical Reports Server (NTRS)

    Oguri, F.

    1983-01-01

    The development of new software implementation of this software on a microcomputer (MOS 6502) to provide high quality navigation information is described. This software development provides Area/Route Navigation (RNAV) information from Time Differences (TDs) in raw form using an elliptical Earth model and a spherical model. The software is prepared for the microcomputer based Loran-C receiver. To compute navigation infomation, a (MOS 6502) microcomputer and a mathematical chip (AM 9511A) were combined with the Loran-C receiver. Final data reveals that this software does indeed provide accurate information with reasonable execution times.

  18. Spectral Resolution and Coverage Impact on Advanced Sounder Information Content

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Liu, Xu; Zhou, Daniel K.; Smith, William L.

    2010-01-01

    Advanced satellite sensors are tasked with improving global measurements of the Earth s atmosphere, clouds, and surface to enable enhancements in weather prediction, climate monitoring capability, and environmental change detection. Achieving such measurement improvements requires instrument system advancements. This presentation focuses on the impact of spectral resolution and coverage changes on remote sensing system information content, with a specific emphasis on thermodynamic state and trace species variables obtainable from advanced atmospheric sounders such as the Infrared Atmospheric Sounding Interferometer (IASI) and Cross-track Infrared Sounder (CrIS) systems on the MetOp and NPP/NPOESS series of satellites. Key words: remote sensing, advanced sounders, information content, IASI, CrIS

  19. Space shuttle navigation analysis. Volume 2: Baseline system navigation

    NASA Technical Reports Server (NTRS)

    Jones, H. L.; Luders, G.; Matchett, G. A.; Rains, R. G.

    1980-01-01

    Studies related to the baseline navigation system for the orbiter are presented. The baseline navigation system studies include a covariance analysis of the Inertial Measurement Unit calibration and alignment procedures, postflight IMU error recovery for the approach and landing phases, on-orbit calibration of IMU instrument biases, and a covariance analysis of entry and prelaunch navigation system performance.

  20. Communicating Navigation Data Inside the Cassini-Huygens Project: Visualizations and Tools

    NASA Technical Reports Server (NTRS)

    Wagner, Sean V.; Gist, Emily M.; Goodson, Troy D.; Hahn, Yungsun; Stumpf, Paul W.; Williams, Powtawche N.

    2008-01-01

    The Cassini-Huygens Saturn tour poses an interesting navigation challenge. From July 2004 through June 2008, the Cassini orbiter performed 112 of 161 planned maneuvers. This demanding schedule, where maneuvers are often separated by just a few days, motivated the development of maneuver design/analysis automation software tools. Besides generating maneuver designs and presentations, these tools are the mechanism to producing other types of navigation information; information used to facilitate operational decisions on such issues as maneuver cancellation and alternate maneuver strategies. This paper will discuss the navigation data that are communicated inside the Cassini-Huygens Project, as well as the maneuver software tools behind the processing of the data.

  1. 7 CFR 29.68 - Advance information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Advance information. 29.68 Section 29.68 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... part of the contents of such certificate may be tel- egraphed or telephoned to him as his expense...

  2. 7 CFR 29.68 - Advance information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Advance information. 29.68 Section 29.68 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... part of the contents of such certificate may be tel- egraphed or telephoned to him as his expense...

  3. 7 CFR 29.68 - Advance information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Advance information. 29.68 Section 29.68 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... part of the contents of such certificate may be tel- egraphed or telephoned to him as his expense...

  4. 7 CFR 29.68 - Advance information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Advance information. 29.68 Section 29.68 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... part of the contents of such certificate may be tel- egraphed or telephoned to him as his expense...

  5. Aeronautic Instruments. Section VI : Aerial Navigation and Navigating Instruments

    NASA Technical Reports Server (NTRS)

    Eaton, H N

    1923-01-01

    This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.

  6. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    PubMed

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  7. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database

    PubMed Central

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-01

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m. PMID:26828496

  8. Integrating Terrain Maps Into a Reactive Navigation Strategy

    NASA Technical Reports Server (NTRS)

    Howard, Ayanna; Werger, Barry; Seraji, Homayoun

    2006-01-01

    An improved method of processing information for autonomous navigation of a robotic vehicle across rough terrain involves the integration of terrain maps into a reactive navigation strategy. Somewhat more precisely, the method involves the incorporation, into navigation logic, of data equivalent to regional traversability maps. The terrain characteristic is mapped using a fuzzy-logic representation of the difficulty of traversing the terrain. The method is robust in that it integrates a global path-planning strategy with sensor-based regional and local navigation strategies to ensure a high probability of success in reaching a destination and avoiding obstacles along the way. The sensor-based strategies use cameras aboard the vehicle to observe the regional terrain, defined as the area of the terrain that covers the immediate vicinity near the vehicle to a specified distance a few meters away.

  9. From Resource-Adaptive Navigation Assistance to Augmented Cognition

    NASA Astrophysics Data System (ADS)

    Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg

    In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.

  10. A Novel Navigation Paradigm for XML Repositories.

    ERIC Educational Resources Information Center

    Azagury, Alain; Factor, Michael E.; Maarek, Yoelle S.; Mandler, Benny

    2002-01-01

    Discusses data exchange over the Internet and describes the architecture and implementation of an XML document repository that promotes a navigation paradigm for XML documents based on content and context. Topics include information retrieval and semistructured documents; and file systems as information storage infrastructure, particularly XMLFS.…

  11. An indoor navigation system for the visually impaired.

    PubMed

    Guerrero, Luis A; Vasquez, Francisco; Ochoa, Sergio F

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment.

  12. An Indoor Navigation System for the Visually Impaired

    PubMed Central

    Guerrero, Luis A.; Vasquez, Francisco; Ochoa, Sergio F.

    2012-01-01

    Navigation in indoor environments is highly challenging for the severely visually impaired, particularly in spaces visited for the first time. Several solutions have been proposed to deal with this challenge. Although some of them have shown to be useful in real scenarios, they involve an important deployment effort or use artifacts that are not natural for blind users. This paper presents an indoor navigation system that was designed taking into consideration usability as the quality requirement to be maximized. This solution enables one to identify the position of a person and calculates the velocity and direction of his movements. Using this information, the system determines the user's trajectory, locates possible obstacles in that route, and offers navigation information to the user. The solution has been evaluated using two experimental scenarios. Although the results are still not enough to provide strong conclusions, they indicate that the system is suitable to guide visually impaired people through an unknown built environment. PMID:22969398

  13. Precision Time Protocol-Based Trilateration for Planetary Navigation

    NASA Technical Reports Server (NTRS)

    Murdock, Ron

    2015-01-01

    Progeny Systems Corporation has developed a high-fidelity, field-scalable, non-Global Positioning System (GPS) navigation system that offers precision localization over communications channels. The system is bidirectional, providing position information to both base and mobile units. It is the first-ever wireless use of the Institute of Electrical and Electronics Engineers (IEEE) Precision Time Protocol (PTP) in a bidirectional trilateration navigation system. The innovation provides a precise and reliable navigation capability to support traverse-path planning systems and other mapping applications, and it establishes a core infrastructure for long-term lunar and planetary occupation. Mature technologies are integrated to provide navigation capability and to support data and voice communications on the same network. On Earth, the innovation is particularly well suited for use in unmanned aerial vehicles (UAVs), as it offers a non-GPS precision navigation and location service for use in GPS-denied environments. Its bidirectional capability provides real-time location data to the UAV operator and to the UAV. This approach optimizes assisted GPS techniques and can be used to determine the presence of GPS degradation, spoofing, or jamming.

  14. True navigation and magnetic maps in spiny lobsters.

    PubMed

    Boles, Larry C; Lohmann, Kenneth J

    2003-01-02

    Animals are capable of true navigation if, after displacement to a location where they have never been, they can determine their position relative to a goal without relying on familiar surroundings, cues that emanate from the destination, or information collected during the outward journey. So far, only a few animals, all vertebrates, have been shown to possess true navigation. Those few invertebrates that have been carefully studied return to target areas using path integration, landmark recognition, compass orientation and other mechanisms that cannot compensate for displacements into unfamiliar territory. Here we report, however, that the spiny lobster Panulirus argus oriented reliably towards a capture site when displaced 12-37 km to unfamiliar locations, even when deprived of all known orientation cues en route. Little is known about how lobsters and other animals determine position during true navigation. To test the hypothesis that lobsters derive positional information from the Earth's magnetic field, lobsters were exposed to fields replicating those that exist at specific locations in their environment. Lobsters tested in a field north of the capture site oriented themselves southwards, whereas those tested in a field south of the capture site oriented themselves northwards. These results imply that true navigation in spiny lobsters, and perhaps in other animals, is based on a magnetic map sense.

  15. Data mining for personal navigation

    NASA Astrophysics Data System (ADS)

    Hariharan, Gurushyam; Franti, Pasi; Mehta, Sandeep

    2002-03-01

    Relevance is the key in defining what data is to be extracted from the Internet. Traditionally, relevance has been defined mainly by keywords and user profiles. In this paper we discuss a fairly untouched dimension to relevance: location. Any navigational information sought by a user at large on earth is evidently governed by his location. We believe that task oriented data mining of the web amalgamated with location information is the key to providing relevant information for personal navigation. We explore the existential hurdles and propose novel approaches to tackle them. We also present naive, task-oriented data mining based approaches and their implementations in Java, to extract location based information. Ad-hoc pairing of data with coordinates (x, y) is very rare on the web. But if the same co-ordinates are converted to a logical address (state/city/street), a wide spectrum of location-based information base opens up. Hence, given the coordinates (x, y) on the earth, the scheme points to the logical address of the user. Location based information could either be picked up from fixed and known service providers (e.g. Yellow Pages) or from any arbitrary website on the Web. Once the web servers providing information relevant to the logical address are located, task oriented data mining is performed over these sites keeping in mind what information is interesting to the contemporary user. After all this, a simple data stream is provided to the user with information scaled to his convenience. The scheme has been implemented for cities of Finland.

  16. INL Autonomous Navigation System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2005-03-30

    The INL Autonomous Navigation System provides instructions for autonomously navigating a robot. The system permits high-speed autonomous navigation including obstacle avoidance, waypoing navigation and path planning in both indoor and outdoor environments.

  17. Navigable windows of the Northwest Passage

    NASA Astrophysics Data System (ADS)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  18. The Role of Intelligent Agents in Advanced Information Systems

    NASA Technical Reports Server (NTRS)

    Kerschberg, Larry

    1999-01-01

    In this presentation we review the current ongoing research within George Mason University's (GMU) Center for Information Systems Integration and Evolution (CISE). We define characteristics of advanced information systems, discuss a family of agents for such systems, and show how GMU's Domain modeling tools and techniques can be used to define a product line Architecture for configuring NASA missions. These concepts can be used to define Advanced Engineering Environments such as those envisioned for NASA's new initiative for intelligent design and synthesis environments.

  19. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  20. 33 CFR 207.185 - Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation. 207.185 Section 207.185 Navigation and... § 207.185 Taylors Bayou, Tex., Beaumont Navigation District Lock; use, administration, and navigation...

  1. The intelligent user interface for NASA's advanced information management systems

    NASA Technical Reports Server (NTRS)

    Campbell, William J.; Short, Nicholas, Jr.; Rolofs, Larry H.; Wattawa, Scott L.

    1987-01-01

    NASA has initiated the Intelligent Data Management Project to design and develop advanced information management systems. The project's primary goal is to formulate, design and develop advanced information systems that are capable of supporting the agency's future space research and operational information management needs. The first effort of the project was the development of a prototype Intelligent User Interface to an operational scientific database, using expert systems and natural language processing technologies. An overview of Intelligent User Interface formulation and development is given.

  2. Autonomous navigation system based on GPS and magnetometer data

    NASA Technical Reports Server (NTRS)

    Julie, Thienel K. (Inventor); Richard, Harman R. (Inventor); Bar-Itzhack, Itzhack Y. (Inventor)

    2004-01-01

    This invention is drawn to an autonomous navigation system using Global Positioning System (GPS) and magnetometers for low Earth orbit satellites. As a magnetometer is reliable and always provides information on spacecraft attitude, rate, and orbit, the magnetometer-GPS configuration solves GPS initialization problem, decreasing the convergence time for navigation estimate and improving the overall accuracy. Eventually the magnetometer-GPS configuration enables the system to avoid costly and inherently less reliable gyro for rate estimation. Being autonomous, this invention would provide for black-box spacecraft navigation, producing attitude, orbit, and rate estimates without any ground input with high accuracy and reliability.

  3. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    NASA Astrophysics Data System (ADS)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  4. Science on the Web: Secondary School Students' Navigation Patterns and Preferred Pages' Characteristics

    ERIC Educational Resources Information Center

    Dimopoulos, Kostas; Asimakopoulos, Apostolos

    2010-01-01

    This study aims to explore navigation patterns and preferred pages' characteristics of ten secondary school students searching the web for information about cloning. The students navigated the Web for as long as they wished in a context of minimum support of teaching staff. Their navigation patterns were analyzed using audit trail data software.…

  5. SLS Navigation Model-Based Design Approach

    NASA Technical Reports Server (NTRS)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  6. Navigable networks as Nash equilibria of navigation games.

    PubMed

    Gulyás, András; Bíró, József J; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-07-03

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network.

  7. Apollo Onboard Navigation Techniques

    NASA Technical Reports Server (NTRS)

    Interbartolo, Michael

    2009-01-01

    This viewgraph presentation reviews basic navigation concepts, describes coordinate systems and identifies attitude determination techniques including Primary Guidance, Navigation and Control System (PGNCS) IMU management and Command and Service Module Stabilization and Control System/Lunar Module (LM) Abort Guidance System (AGS) attitude management. The presentation also identifies state vector determination techniques, including PGNCS coasting flight navigation, PGNCS powered flight navigation and LM AGS navigation.

  8. Orion Optical Navigation for Loss of Communication Lunar Return Contingencies

    NASA Technical Reports Server (NTRS)

    Getchius, Joel; Hanak, Chad; Kubitschek, Daniel G.

    2010-01-01

    The Orion Crew Exploration Vehicle (CEV) will replace the Space Shuttle and serve as the next-generation spaceship to carry humans back to the Moon for the first time since the Apollo program. For nominal lunar mission operations, the Mission Control Navigation team will utilize radiometric measurements to determine the position and velocity of Orion and uplink state information to support Lunar return. However, in the loss of communications contingency return scenario, Orion must safely return the crew to the Earth's surface. The navigation design solution for this loss of communications scenario is optical navigation consisting of lunar landmark tracking in low lunar orbit and star- horizon angular measurements coupled with apparent planetary diameter for Earth return trajectories. This paper describes the optical measurement errors and the navigation filter that will process those measurements to support navigation for safe crew return.

  9. High accuracy navigation information estimation for inertial system using the multi-model EKF fusing adams explicit formula applied to underwater gliders.

    PubMed

    Huang, Haoqian; Chen, Xiyuan; Zhang, Bo; Wang, Jian

    2017-01-01

    The underwater navigation system, mainly consisting of MEMS inertial sensors, is a key technology for the wide application of underwater gliders and plays an important role in achieving high accuracy navigation and positioning for a long time of period. However, the navigation errors will accumulate over time because of the inherent errors of inertial sensors, especially for MEMS grade IMU (Inertial Measurement Unit) generally used in gliders. The dead reckoning module is added to compensate the errors. In the complicated underwater environment, the performance of MEMS sensors is degraded sharply and the errors will become much larger. It is difficult to establish the accurate and fixed error model for the inertial sensor. Therefore, it is very hard to improve the accuracy of navigation information calculated by sensors. In order to solve the problem mentioned, the more suitable filter which integrates the multi-model method with an EKF approach can be designed according to different error models to give the optimal estimation for the state. The key parameters of error models can be used to determine the corresponding filter. The Adams explicit formula which has an advantage of high precision prediction is simultaneously fused into the above filter to achieve the much more improvement in attitudes estimation accuracy. The proposed algorithm has been proved through theory analyses and has been tested by both vehicle experiments and lake trials. Results show that the proposed method has better accuracy and effectiveness in terms of attitudes estimation compared with other methods mentioned in the paper for inertial navigation applied to underwater gliders. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  10. 33 CFR 52.43 - Requests for further information; submissions of classified, privileged, and sensitive information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Requests for further information; submissions of classified, privileged, and sensitive information. 52.43 Section 52.43 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY PERSONNEL BOARD FOR CORRECTION OF MILITARY RECORDS OF THE COAST GUARD Submissions by...

  11. Navigation - Project CAPE Teaching Module.

    ERIC Educational Resources Information Center

    Caldwell, Nadine; May, Charlaron

    Ten lessons are included in this interdisciplinary unit on navigation, designed to supplement fifth and sixth grade social studies and science curricula. Each lesson includes: (1) lesson concepts; (2) competency goals; (3) objectives; (4) materials; (5) list of key vocabulary words; (6) background information; (7) teacher preparation; (8) list of…

  12. Does intraoperative navigation improve the accuracy of mandibular angle osteotomy: Comparison between augmented reality navigation, individualised templates and free-hand techniques.

    PubMed

    Zhu, Ming; Liu, Fei; Zhou, Chaozheng; Lin, Li; Zhang, Yan; Chai, Gang; Xie, Le; Qi, Fazhi; Li, Qingfeng

    2018-04-11

    Augmented reality (AR)-based navigation surgery has evolved to be an advanced assisted technology. The aim of this study is to manifest the accuracy of AR navigation for the intraoperative mandibular angle osteotomy by comparing the navigation with other interventional techniques. A retrospective study was conducted with 93 post-surgical patients with mandibular angle hypertrophy admitted at our plastic and reconstructive surgery department between September 2011 and June 2016. Thirty-one patients received osteotomy conducted using a navigation system based on augmented reality (AR group), 28 patients received osteotomy conducted using individualised templates (IT group) and the remaining 34 patients received osteotomy performed by free hand (free-hand group). The post-operative computed tomography (CT) images were reviewed and analysed by comparing with pre-surgical planning generated by three-dimensional (3D) software. The preparation time, cutting time, whole operating time and discrepancy in osteotomy lines were measured. The preparation time was much shorter for the free-hand group than that for the AR group and the IT group (P < 0.01). However, no significant difference in the whole operating time was observed among the three groups (P > 0.05). In addition, the discrepancy in osteotomy lines was lower for the AR group and in the IT group than for the free-hand group (P < 0.01). The navigation system based on AR has a higher accuracy, more reliability and better user friendliness for some particular clinical procedures than for other techniques, which has a promising clinical prospect. Copyright © 2018. Published by Elsevier Ltd.

  13. Freight advanced traveler information system : functional requirements.

    DOT National Transportation Integrated Search

    2012-08-01

    This report describes the System Requirement Specifications (SyRS) for a Freight Advanced Traveler Information System (FRATIS). The SyRS is based on user needs described in the FRATIS Concept of Operations (ConOps), which cover the essential function...

  14. Advanced information processing system for advanced launch system: Hardware technology survey and projections

    NASA Technical Reports Server (NTRS)

    Cole, Richard

    1991-01-01

    The major goals of this effort are as follows: (1) to examine technology insertion options to optimize Advanced Information Processing System (AIPS) performance in the Advanced Launch System (ALS) environment; (2) to examine the AIPS concepts to ensure that valuable new technologies are not excluded from the AIPS/ALS implementations; (3) to examine advanced microprocessors applicable to AIPS/ALS, (4) to examine radiation hardening technologies applicable to AIPS/ALS; (5) to reach conclusions on AIPS hardware building blocks implementation technologies; and (6) reach conclusions on appropriate architectural improvements. The hardware building blocks are the Fault-Tolerant Processor, the Input/Output Sequencers (IOS), and the Intercomputer Interface Sequencers (ICIS).

  15. Runway Detection From Map, Video and Aircraft Navigational Data

    DTIC Science & Technology

    2016-03-01

    FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA by Jose R. Espinosa Gloria March 2016 Thesis Advisor: Roberto Cristi Co-Advisor: Oleg...COVERED Master’s thesis 4. TITLE AND SUBTITLE RUNWAY DETECTION FROM MAP, VIDEO AND AIRCRAFT NAVIGATIONAL DATA 5. FUNDING NUMBERS 6. AUTHOR...Mexican Navy, unmanned aerial vehicles (UAV) have been equipped with daylight and infrared cameras. Processing the video information obtained from these

  16. 46 CFR 167.65-45 - Notice to mariners; aids to navigation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... do so is evidence of neglect of duty. It is desirable that nautical school ships navigating oceans... and other marine information affecting the safety of navigation on oceans and coastwise and the Great... coverage) are prepared jointly by the National Geospatial-Intelligence Agency, National Ocean Service, and...

  17. Conducting Nursing Research to Advance and Inform Health Policy.

    PubMed

    Ellenbecker, Carol Hall; Edward, Jean

    2016-11-01

    The primary roles of nurse scientists in conducting health policy research are to increase knowledge in the discipline and provide evidence for informing and advancing health policies with the goal of improving the health outcomes of society. Health policy research informs, characterizes, explains, or tests hypotheses by employing a variety of research designs. Health policy research focuses on improving the access to care, the quality and cost of care, and the efficiency with which care is delivered. In this article, we explain how nurses might envision their research in a policy process framework, describe research designs that nurse researchers might use to inform and advance health policies, and provide examples of research conducted by nurse researchers to explicate key concepts in the policy process framework. Health policies are well informed and advanced when nurse researchers have a good understanding of the political process. The policy process framework provides a context for improving the focus and design of research and better explicating the connection between research evidence and policy. Nurses should focus their research on addressing problems of importance that are on the healthcare agenda, work with interdisciplinary teams of researchers, synthesize, and widely disseminate results.

  18. A Bionic Camera-Based Polarization Navigation Sensor

    PubMed Central

    Wang, Daobin; Liang, Huawei; Zhu, Hui; Zhang, Shuai

    2014-01-01

    Navigation and positioning technology is closely related to our routine life activities, from travel to aerospace. Recently it has been found that Cataglyphis (a kind of desert ant) is able to detect the polarization direction of skylight and navigate according to this information. This paper presents a real-time bionic camera-based polarization navigation sensor. This sensor has two work modes: one is a single-point measurement mode and the other is a multi-point measurement mode. An indoor calibration experiment of the sensor has been done under a beam of standard polarized light. The experiment results show that after noise reduction the accuracy of the sensor can reach up to 0.3256°. It is also compared with GPS and INS (Inertial Navigation System) in the single-point measurement mode through an outdoor experiment. Through time compensation and location compensation, the sensor can be a useful alternative to GPS and INS. In addition, the sensor also can measure the polarization distribution pattern when it works in multi-point measurement mode. PMID:25051029

  19. Navigation Architecture For A Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space-based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts.

  20. Advanced information processing system: The Army Fault-Tolerant Architecture detailed design overview

    NASA Technical Reports Server (NTRS)

    Harper, Richard E.; Babikyan, Carol A.; Butler, Bryan P.; Clasen, Robert J.; Harris, Chris H.; Lala, Jaynarayan H.; Masotto, Thomas K.; Nagle, Gail A.; Prizant, Mark J.; Treadwell, Steven

    1994-01-01

    The Army Avionics Research and Development Activity (AVRADA) is pursuing programs that would enable effective and efficient management of large amounts of situational data that occurs during tactical rotorcraft missions. The Computer Aided Low Altitude Night Helicopter Flight Program has identified automated Terrain Following/Terrain Avoidance, Nap of the Earth (TF/TA, NOE) operation as key enabling technology for advanced tactical rotorcraft to enhance mission survivability and mission effectiveness. The processing of critical information at low altitudes with short reaction times is life-critical and mission-critical necessitating an ultra-reliable/high throughput computing platform for dependable service for flight control, fusion of sensor data, route planning, near-field/far-field navigation, and obstacle avoidance operations. To address these needs the Army Fault Tolerant Architecture (AFTA) is being designed and developed. This computer system is based upon the Fault Tolerant Parallel Processor (FTPP) developed by Charles Stark Draper Labs (CSDL). AFTA is hard real-time, Byzantine, fault-tolerant parallel processor which is programmed in the ADA language. This document describes the results of the Detailed Design (Phase 2 and 3 of a 3-year project) of the AFTA development. This document contains detailed descriptions of the program objectives, the TF/TA NOE application requirements, architecture, hardware design, operating systems design, systems performance measurements and analytical models.

  1. Current Role of Computer Navigation in Total Knee Arthroplasty.

    PubMed

    Jones, Christopher W; Jerabek, Seth A

    2018-01-31

    Computer-assisted surgical (CAS) navigation has been developed with the aim of improving the accuracy and precision of total knee arthroplasty (TKA) component positioning and therefore overall limb alignment. The historical goal of knee arthroplasty has been to restore the mechanical alignment of the lower limb by aligning the femoral and tibial components perpendicular to the mechanical axis of the femur and tibia. Despite over 4 decades of TKA component development and nearly 2 decades of interest in CAS, the fundamental question remains; does the alignment goal and/or the method of achieving that goal affect the outcome of the TKA in terms of patient-reported outcome measures and/or overall survivorship? The quest for reliable and reproducible achievement of the intraoperative alignment goal has been the primary motivator for the introduction, development, and refinement of CAS navigation. Numerous proprietary systems now exist, and rapid technological advancements in computer processing power are stimulating further development of robotic surgical systems. Three categories of CAS can be defined: image-based large-console navigation; imageless large-console navigation, and more recently, accelerometer-based handheld navigation systems have been developed. A review of the current literature demonstrates that there are enough well-designed studies to conclude that both large-console CAS and handheld navigation systems improve the accuracy and precision of component alignment in TKA. However, missing from the evidence base, other than the subgroup analysis provided by the Australian Orthopaedic Association National Joint Replacement Registry, are any conclusive demonstrations of a clinical superiority in terms of improved patient-reported outcome measures and/or decreased cumulative revision rates in the long term. Few authors would argue that accuracy of alignment is a goal to ignore; therefore, in the absence of clinical evidence, many of the arguments against

  2. 78 FR 68861 - Certain Navigation Products, Including GPS Devices, Navigation and Display Systems, Radar Systems...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Devices, Navigation and Display Systems, Radar Systems, Navigational Aids, Mapping Systems and Related... navigation products, including GPS devices, navigation and display systems, radar systems, navigational aids..., radar systems, navigational aids, mapping systems and related software by reason of infringement of one...

  3. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle (STV)

    NASA Technical Reports Server (NTRS)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. Wayne

    1991-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  4. The Production and Archiving of Navigation and Ancillary Data for the Galileo Mission

    NASA Technical Reports Server (NTRS)

    Miller, J.; Clarke, T.

    1994-01-01

    The Galileo Mission to Jupiter is using the SPICE formats developed by the Navigation and Ancillary Information Facility, a node of the Planetary Data System, to archive its navigation and ancillary data.

  5. BOREAS Level-0 ER-2 Navigation Data

    NASA Technical Reports Server (NTRS)

    Strub, Richard; Dominguez, Roseanne; Newcomer, Jeffrey A.; Hall, Forrest G. (Editor)

    2000-01-01

    The BOREAS Staff Science effort covered those activities that were BOREAS community-level activities or required uniform data collection procedures across sites and time. These activities included the acquisition, processing, and archiving of aircraft navigation/attitude data to complement the digital image data. The level-0 ER-2 navigation data files contain aircraft attitude and position information acquired during the digital image and photographic data collection missions. Temporally, the data were acquired from April to September 1994. Data were recorded at intervals of 5 seconds. The data are stored in tabular ASCII files.

  6. Navigational Guidance and Ablation Planning Tools for Interventional Radiology.

    PubMed

    Sánchez, Yadiel; Anvari, Arash; Samir, Anthony E; Arellano, Ronald S; Prabhakar, Anand M; Uppot, Raul N

    Image-guided biopsy and ablation relies on successful identification and targeting of lesions. Currently, image-guided procedures are routinely performed under ultrasound, fluoroscopy, magnetic resonance imaging, or computed tomography (CT) guidance. However, these modalities have their limitations including inadequate visibility of the lesion, lesion or organ or patient motion, compatibility of instruments in an magnetic resonance imaging field, and, for CT and fluoroscopy cases, radiation exposure. Recent advances in technology have resulted in the development of a new generation of navigational guidance tools that can aid in targeting lesions for biopsy or ablations. These navigational guidance tools have evolved from simple hand-held trajectory guidance tools, to electronic needle visualization, to image fusion, to the development of a body global positioning system, to growth in cone-beam CT, and to ablation volume planning. These navigational systems are promising technologies that not only have the potential to improve lesion targeting (thereby increasing diagnostic yield of a biopsy or increasing success of tumor ablation) but also have the potential to decrease radiation exposure to the patient and staff, decrease procedure time, decrease the sedation requirements, and improve patient safety. The purpose of this article is to describe the challenges in current standard image-guided techniques, provide a definition and overview for these next-generation navigational devices, and describe the current limitations of these, still evolving, next-generation navigational guidance tools. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  8. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  9. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  10. 33 CFR 207.275 - McClellan-Kerr Arkansas River navigation system: use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.275... be reported to the nearest lock and the appropriate U.S. Coast Guard Office. The report shall include.... The lockmaster shall be kept informed of the progress being made in bringing the barges under control...

  11. Navigable networks as Nash equilibria of navigation games

    PubMed Central

    Gulyás, András; Bíró, József J.; Kőrösi, Attila; Rétvári, Gábor; Krioukov, Dmitri

    2015-01-01

    Common sense suggests that networks are not random mazes of purposeless connections, but that these connections are organized so that networks can perform their functions well. One function common to many networks is targeted transport or navigation. Here, using game theory, we show that minimalistic networks designed to maximize the navigation efficiency at minimal cost share basic structural properties with real networks. These idealistic networks are Nash equilibria of a network construction game whose purpose is to find an optimal trade-off between the network cost and navigability. We show that these skeletons are present in the Internet, metabolic, English word, US airport, Hungarian road networks, and in a structural network of the human brain. The knowledge of these skeletons allows one to identify the minimal number of edges, by altering which one can efficiently improve or paralyse navigation in the network. PMID:26138277

  12. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Gregory; Menrad, Robert; Hudiburg, John; Boroson, Don; Robinson, Bryan; Cornwell, Donald

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) proposed an architectural concept and technologies that evolve to enable space science and exploration missions out to the 2040 timeframe. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network with new technologies to provide a global communication and navigation network that provides communication and navigation services to a wide range of space users in the near Earth domain. The technologies included High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology. This paper describes the key technologies and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  13. UGV navigation in wireless sensor and actuator network environments

    NASA Astrophysics Data System (ADS)

    Zhang, Guyu; Li, Jianfeng; Duncan, Christian A.; Kanno, Jinko; Selmic, Rastko R.

    2012-06-01

    We consider a navigation problem in a distributed, self-organized and coordinate-free Wireless Sensor and Ac- tuator Network (WSAN). We rst present navigation algorithms that are veried using simulation results. Con- sidering more than one destination and multiple mobile Unmanned Ground Vehicles (UGVs), we introduce a distributed solution to the Multi-UGV, Multi-Destination navigation problem. The objective of the solution to this problem is to eciently allocate UGVs to dierent destinations and carry out navigation in the network en- vironment that minimizes total travel distance. The main contribution of this paper is to develop a solution that does not attempt to localize either the UGVs or the sensor and actuator nodes. Other than some connectivity as- sumptions about the communication graph, we consider that no prior information about the WSAN is available. The solution presented here is distributed, and the UGV navigation is solely based on feedback from neigh- boring sensor and actuator nodes. One special case discussed in the paper, the Single-UGV, Multi-Destination navigation problem, is essentially equivalent to the well-known and dicult Traveling Salesman Problem (TSP). Simulation results are presented that illustrate the navigation distance traveled through the network. We also introduce an experimental testbed for the realization of coordinate-free and localization-free UGV navigation. We use the Cricket platform as the sensor and actuator network and a Pioneer 3-DX robot as the UGV. The experiments illustrate the UGV navigation in a coordinate-free WSAN environment where the UGV successfully arrives at the assigned destinations.

  14. Tele-auscultation support system with mixed reality navigation.

    PubMed

    Hori, Kenta; Uchida, Yusuke; Kan, Tsukasa; Minami, Maya; Naito, Chisako; Kuroda, Tomohiro; Takahashi, Hideya; Ando, Masahiko; Kawamura, Takashi; Kume, Naoto; Okamoto, Kazuya; Takemura, Tadamasa; Yoshihara, Hiroyuki

    2013-01-01

    The aim of this research is to develop an information support system for tele-auscultation. In auscultation, a doctor requires to understand condition of applying a stethoscope, in addition to auscultatory sounds. The proposed system includes intuitive navigation system of stethoscope operation, in addition to conventional audio streaming system of auscultatory sounds and conventional video conferencing system for telecommunication. Mixed reality technology is applied for intuitive navigation of the stethoscope. Information, such as position, contact condition and breath, is overlaid on a view of the patient's chest. The contact condition of the stethoscope is measured by e-textile contact sensors. The breath is measured by a band type breath sensor. In a simulated tele-auscultation experiment, the stethoscope with the contact sensors and the breath sensor were evaluated. The results show that the presentation of the contact condition was not understandable enough for navigating the stethoscope handling. The time series of the breath phases was usable for the remote doctor to understand the breath condition of the patient.

  15. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  16. Amblypygids: Model Organisms for the Study of Arthropod Navigation Mechanisms in Complex Environments?

    PubMed Central

    Wiegmann, Daniel D.; Hebets, Eileen A.; Gronenberg, Wulfila; Graving, Jacob M.; Bingman, Verner P.

    2016-01-01

    Navigation is an ideal behavioral model for the study of sensory system integration and the neural substrates associated with complex behavior. For this broader purpose, however, it may be profitable to develop new model systems that are both tractable and sufficiently complex to ensure that information derived from a single sensory modality and path integration are inadequate to locate a goal. Here, we discuss some recent discoveries related to navigation by amblypygids, nocturnal arachnids that inhabit the tropics and sub-tropics. Nocturnal displacement experiments under the cover of a tropical rainforest reveal that these animals possess navigational abilities that are reminiscent, albeit on a smaller spatial scale, of true-navigating vertebrates. Specialized legs, called antenniform legs, which possess hundreds of olfactory and tactile sensory hairs, and vision appear to be involved. These animals also have enormous mushroom bodies, higher-order brain regions that, in insects, integrate contextual cues and may be involved in spatial memory. In amblypygids, the complexity of a nocturnal rainforest may impose navigational challenges that favor the integration of information derived from multimodal cues. Moreover, the movement of these animals is easily studied in the laboratory and putative neural integration sites of sensory information can be manipulated. Thus, amblypygids could serve as model organisms for the discovery of neural substrates associated with a unique and potentially sophisticated navigational capability. The diversity of habitats in which amblypygids are found also offers an opportunity for comparative studies of sensory integration and ecological selection pressures on navigation mechanisms. PMID:27014008

  17. Patient Navigation from the Paired Perspectives of Cancer Patients and Navigators: A Qualitative Analysis

    PubMed Central

    Yosha, Amanat M.; Carroll, Jennifer K.; Hendren, Samantha; Salamone, Charcy M.; Sanders, Mechelle; Fiscella, Kevin; Epstein, Ronald M.

    2011-01-01

    Objective Patient navigation for cancer care assesses and alleviates barriers to health care services. We examined paired perspectives of cancer patients and their navigators to examine the process of patient navigation. We explored the strengths, limitations, and our own lessons learned about adopting the novel methodology of multiperspective analysis. Methods As part of a larger RCT, patients and navigators were interviewed separately. We reviewed interviews with 18 patient-navigator dyads. Dyad summaries were created that explicitly incorporated both patient and navigator perspectives. Emerging themes and verbatim quotations were reflected in the summaries. Results Paired perspectives were valuable in identifying struggles that arose during navigation. These were represented as imbalanced investment and relational amelioration. Patients and navigators had general consensus about important patient needs for cancer care, but characterized these needs differently. Conclusion Our experience with multiperspective analysis revealed a methodology that delivers novel relational findings, but is best conducted de novo rather than as part of a larger study. Practice Implications Multiperspective analysis should be more widely adopted with clear aims and analytic strategy that strengthen the ability to reveal relational dynamics. Navigation training programs should anticipate navigator struggles and provide navigators with tools to manage them. PMID:21255958

  18. Autonomous satellite navigation using starlight refraction angle measurements

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Wang, Longhua; Bai, Xinbei; Fang, Jiancheng

    2013-05-01

    An on-board autonomous navigation capability is required to reduce the operation costs and enhance the navigation performance of future satellites. Autonomous navigation by stellar refraction is a type of autonomous celestial navigation method that uses high-accuracy star sensors instead of Earth sensors to provide information regarding Earth's horizon. In previous studies, the refraction apparent height has typically been used for such navigation. However, the apparent height cannot be measured directly by a star sensor and can only be calculated by the refraction angle and an atmospheric refraction model. Therefore, additional errors are introduced by the uncertainty and nonlinearity of atmospheric refraction models, which result in reduced navigation accuracy and reliability. A new navigation method based on the direct measurement of the refraction angle is proposed to solve this problem. Techniques for the determination of the refraction angle are introduced, and a measurement model for the refraction angle is established. The method is tested and validated by simulations. When the starlight refraction height ranges from 20 to 50 km, a positioning accuracy of better than 100 m can be achieved for a low-Earth-orbit (LEO) satellite using the refraction angle, while the positioning accuracy of the traditional method using the apparent height is worse than 500 m under the same conditions. Furthermore, an analysis of the factors that affect navigation accuracy, including the measurement accuracy of the refraction angle, the number of visible refracted stars per orbit and the installation azimuth of star sensor, is presented. This method is highly recommended for small satellites in particular, as no additional hardware besides two star sensors is required.

  19. Radio/FADS/IMU integrated navigation for Mars entry

    NASA Astrophysics Data System (ADS)

    Jiang, Xiuqiang; Li, Shuang; Huang, Xiangyu

    2018-03-01

    Supposing future orbiting and landing collaborative exploration mission as the potential project background, this paper addresses the issue of Mars entry integrated navigation using radio beacon, flush air data sensing system (FADS), and inertial measurement unit (IMU). The range and Doppler information sensed from an orbiting radio beacon, the dynamic pressure and heating data sensed from flush air data sensing system, and acceleration and attitude angular rate outputs from an inertial measurement unit are integrated in an unscented Kalman filter to perform state estimation and suppress the system and measurement noise. Computer simulations show that the proposed integrated navigation scheme can enhance the navigation accuracy, which enables precise entry guidance for the given Mars orbiting and landing collaborative exploration mission.

  20. The Evolution of Deep Space Navigation: 1989-1999

    NASA Technical Reports Server (NTRS)

    Wood, Lincoln J.

    2008-01-01

    The exploration of the planets of the solar system using robotic vehicles has been underway since the early 1960s. During this time the navigational capabilities employed have increased greatly in accuracy, as required by the scientific objectives of the missions and as enabled by improvements in technology. This paper is the second in a chronological sequence dealing with the evolution of deep space navigation. The time interval covered extends from the 1989 launch of the Magellan spacecraft to Venus through a multiplicity of planetary exploration activities in 1999. The paper focuses on the observational techniques that have been used to obtain navigational information, propellant-efficient means for modifying spacecraft trajectories, and the computational methods that have been employed, tracing their evolution through a dozen planetary missions.

  1. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  2. Assistive obstacle detection and navigation devices for vision-impaired users.

    PubMed

    Ong, S K; Zhang, J; Nee, A Y C

    2013-09-01

    Quality of life for the visually impaired is an urgent worldwide issue that needs to be addressed. Obstacle detection is one of the most important navigation tasks for the visually impaired. In this research, a novel range sensor placement scheme is proposed in this paper for the development of obstacle detection devices. Based on this scheme, two prototypes have been developed targeting at different user groups. This paper discusses the design issues, functional modules and the evaluation tests carried out for both prototypes. Implications for Rehabilitation Visual impairment problem is becoming more severe due to the worldwide ageing population. Individuals with visual impairment require assistance from assistive devices in daily navigation tasks. Traditional assistive devices that assist navigation may have certain drawbacks, such as the limited sensing range of a white cane. Obstacle detection devices applying the range sensor technology can identify road conditions with a higher sensing range to notify the users of potential dangers in advance.

  3. Health literacy: a study of internet-based information on advance directives.

    PubMed

    Stuart, Peter

    2017-11-28

    The aim of this study was to evaluate the quality and value of web-based information on advance directives. Internet-based information on advance directives was selected because, if it is inaccurate or difficult to understand, patients risk making decisions about their care that may not be followed in practice. Two validated health information evaluation tools, the Suitability Assessment of Materials and DISCERN, and a focus group were used to assess credibility, user orientation and effectiveness. Only one of the 34 internet-based information items on advance directives reviewed fulfilled the study criteria and 30% of the sites were classed as unreadable. In terms of learning and informing, 79% of the sites were considered unsuitable. Using health literacy tools to evaluate internet-based health information highlights that often it is not at a functional literacy level and neither informs nor empowers users to make independent and valid healthcare decisions. ©2017 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  4. Structure and navigation for electronic publishing

    NASA Astrophysics Data System (ADS)

    Tillinghast, John; Beretta, Giordano B.

    1998-01-01

    The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.

  5. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements.

    PubMed

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-04-09

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology.

  6. A SINS/SRS/GNS Autonomous Integrated Navigation System Based on Spectral Redshift Velocity Measurements

    PubMed Central

    Wei, Wenhui; Gao, Zhaohui; Gao, Shesheng; Jia, Ke

    2018-01-01

    In order to meet the requirements of autonomy and reliability for the navigation system, combined with the method of measuring speed by using the spectral redshift information of the natural celestial bodies, a new scheme, consisting of Strapdown Inertial Navigation System (SINS)/Spectral Redshift (SRS)/Geomagnetic Navigation System (GNS), is designed for autonomous integrated navigation systems. The principle of this SINS/SRS/GNS autonomous integrated navigation system is explored, and the corresponding mathematical model is established. Furthermore, a robust adaptive central difference particle filtering algorithm is proposed for this autonomous integrated navigation system. The simulation experiments are conducted and the results show that the designed SINS/SRS/GNS autonomous integrated navigation system possesses good autonomy, strong robustness and high reliability, thus providing a new solution for autonomous navigation technology. PMID:29642549

  7. Intelligent navigation to improve obstetrical sonography.

    PubMed

    Yeo, Lami; Romero, Roberto

    2016-04-01

    'Manual navigation' by the operator is the standard method used to obtain information from two-dimensional and volumetric sonography. Two-dimensional sonography is highly operator dependent and requires extensive training and expertise to assess fetal anatomy properly. Most of the sonographic examination time is devoted to acquisition of images, while 'retrieval' and display of diagnostic planes occurs rapidly (essentially instantaneously). In contrast, volumetric sonography has a rapid acquisition phase, but the retrieval and display of relevant diagnostic planes is often time-consuming, tedious and challenging. We propose the term 'intelligent navigation' to refer to a new method of interrogation of a volume dataset whereby identification and selection of key anatomical landmarks allow the system to: 1) generate a geometrical reconstruction of the organ of interest; and 2) automatically navigate, find, extract and display specific diagnostic planes. This is accomplished using operator-independent algorithms that are both predictable and adaptive. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) is a tool that allows operator-independent sonographic navigation and exploration of the surrounding structures in previously identified diagnostic planes. The advantage of intelligent (over manual) navigation in volumetric sonography is the short time required for both acquisition and retrieval and display of diagnostic planes. Intelligent navigation technology automatically realigns the volume, and reorients and standardizes the anatomical position, so that the fetus and the diagnostic planes are consistently displayed in the same manner each time, regardless of the fetal position or the initial orientation. Automatic labeling of anatomical structures, subject orientation and each of the diagnostic planes is also possible. Intelligent navigation technology can operate on conventional computers, and is not dependent on specific ultrasound platforms or on the

  8. Presenting hazard warning information to drivers using an advanced traveler information system

    DOT National Transportation Integrated Search

    1997-02-01

    Although Advanced Traveler Information System (ATIS) devices have the potential to improve travel safety, efficiency, and comfort, they represent a new frontier in ground transportation. In order to realize this potential, they must be designed in a ...

  9. Bio-Inspired Polarized Skylight-Based Navigation Sensors: A Review

    PubMed Central

    Karman, Salmah B.; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2012-01-01

    Animal senses cover a broad range of signal types and signal bandwidths and have inspired various sensors and bioinstrumentation devices for biological and medical applications. Insects, such as desert ants and honeybees, for example, utilize polarized skylight pattern-based information in their navigation activities. They reliably return to their nests and hives from places many kilometers away. The insect navigation system involves the dorsal rim area in their compound eyes and the corresponding polarization sensitive neurons in the brain. The dorsal rim area is equipped with photoreceptors, which have orthogonally arranged small hair-like structures termed microvilli. These are the specialized sensors for the detection of polarized skylight patterns (e-vector orientation). Various research groups have been working on the development of novel navigation systems inspired by polarized skylight-based navigation in animals. Their major contributions are critically reviewed. One focus of current research activities is on imitating the integration path mechanism in desert ants. The potential for simple, high performance miniaturized bioinstrumentation that can assist people in navigation will be explored. PMID:23202158

  10. Bio-inspired polarized skylight-based navigation sensors: a review.

    PubMed

    Karman, Salmah B; Diah, S Zaleha M; Gebeshuber, Ille C

    2012-10-24

    Animal senses cover a broad range of signal types and signal bandwidths and have inspired various sensors and bioinstrumentation devices for biological and medical applications. Insects, such as desert ants and honeybees, for example, utilize polarized skylight pattern-based information in their navigation activities. They reliably return to their nests and hives from places many kilometers away. The insect navigation system involves the dorsal rim area in their compound eyes and the corresponding polarization sensitive neurons in the brain. The dorsal rim area is equipped with photoreceptors, which have orthogonally arranged small hair-like structures termed microvilli. These are the specialized sensors for the detection of polarized skylight patterns (e-vector orientation). Various research groups have been working on the development of novel navigation systems inspired by polarized skylight-based navigation in animals. Their major contributions are critically reviewed. One focus of current research activities is on imitating the integration path mechanism in desert ants. The potential for simple, high performance miniaturized bioinstrumentation that can assist people in navigation will be explored.

  11. Spatial Navigation and the Central Complex: Sensory Acquisition, Orientation, and Motor Control

    PubMed Central

    Varga, Adrienn G.; Kathman, Nicholas D.; Martin, Joshua P.; Guo, Peiyuan; Ritzmann, Roy E.

    2017-01-01

    Cockroaches are scavengers that forage through dark, maze-like environments. Like other foraging animals, for instance rats, they must continually asses their situation to keep track of targets and negotiate barriers. While navigating a complex environment, all animals need to integrate sensory information in order to produce appropriate motor commands. The integrated sensory cues can be used to provide the animal with an environmental and contextual reference frame for the behavior. To successfully reach a goal location, navigational cues continuously derived from sensory inputs have to be utilized in the spatial guidance of motor commands. The sensory processes, contextual and spatial mechanisms, and motor outputs contributing to navigation have been heavily studied in rats. In contrast, many insect studies focused on the sensory and/or motor components of navigation, and our knowledge of the abstract representation of environmental context and spatial information in the insect brain is relatively limited. Recent reports from several laboratories have explored the role of the central complex (CX), a sensorimotor region of the insect brain, in navigational processes by recording the activity of CX neurons in freely-moving insects and in more constrained, experimenter-controlled situations. The results of these studies indicate that the CX participates in processing the temporal and spatial components of sensory cues, and utilizes these cues in creating an internal representation of orientation and context, while also directing motor control. Although these studies led to a better understanding of the CX's role in insect navigation, there are still major voids in the literature regarding the underlying mechanisms and brain regions involved in spatial navigation. The main goal of this review is to place the above listed findings in the wider context of animal navigation by providing an overview of the neural mechanisms of navigation in rats and summarizing and

  12. Navigation programs, are they helpful for perioperative care with thyroid cancer patients?

    PubMed

    Park, K A; Oh, Y J; Kim, K M; Eum, S Y; Cho, M H; Son, Y H; Park, S H; Woo, K M; Lee, Y S; Kim, S; Chang, H-S; Park, C S

    2017-07-01

    The purpose of this study was to develop and evaluate a navigation program for patients with thyroid cancer. The navigation program was developed following an analysis of the unmet needs of patients who underwent surgery for thyroid cancer. Ninety-nine patients in the control group received usual care, and 95 in the navigation group were managed with a navigation program during the perioperative period. The effectiveness of the navigation program was assessed by administering a questionnaire to both groups. Overall satisfaction scores were significantly higher in the navigation than in the control group (p = .025), as were satisfaction scores on the continuity of information (p < .001), the continuity of management (p = .002), the continuity of relationships with healthcare providers (p<.001), and patient empowerment (p < .001). The newly developed navigation program for patients with thyroid cancer was effective in raising satisfaction levels and in actively managing the disease during the perioperative period. © 2016 John Wiley & Sons Ltd.

  13. Learning to navigate the healthcare system in a new country: a qualitative study.

    PubMed

    Straiton, Melanie L; Myhre, Sonja

    2017-12-01

    Learning to navigate a healthcare system in a new country is a barrier to health care. Understanding more about the specific navigation challenges immigrants experience may be the first step towards improving health information and thus access to care. This study considers the challenges that Thai and Filipino immigrant women encounter when learning to navigate the Norwegian primary healthcare system and the strategies they use. A qualitative interview study using thematic analysis. Norway. Fifteen Thai and 15 Filipino immigrant women over the age of 18 who had been living in Norway at least one year. The women took time to understand the role of the general practitioner and some were unaware of their right to an interpreter during consultations. In addition to reliance on family members and friends in their social networks, voluntary and cultural organisations provided valuable tips and advice on how to navigate the Norwegian health system. While some women actively engaged in learning more about the system, they noted a lack of information available in multiple languages. Informal sources play an important role in learning about the health care system. Formal information should be available in different languages in order to better empower immigrant women.

  14. Bank erosion of navigation canals in the western and central Gulf of Mexico

    USGS Publications Warehouse

    Thatcher, Cindy A.; Hartley, Stephen B.; Wilson, Scott A.

    2011-01-01

    Erosion of navigation canal banks is a direct cause of land loss, but there has been little quantitative analysis to determine why certain major canals exhibit faster widening rates (indicative of erosion) than others in the coastal zones of Texas, Louisiana, Mississippi, and Alabama. We hypothesize that navigation canals exhibit varying rates of erosion based on soil properties of the embankment substrate, vegetation type, geologic region (derived from digital versions of state geologic maps), and the presence or absence of canal bank armaments (that is, rock rip-rap, concrete bulkheads, or other shoreline protection structures). The first objective of this project was to map the shoreline position and substrate along both banks of the navigation canals, which were digitized from 3 different time periods of aerial photography spanning the years of 1978/79 to 2005/06. The second objective was to quantify the erosion rates of the navigation canals in the study area and to determine whether differences in erosion rates are related to embankment substrate, vegetation type, geologic region, or soil type. To measure changes in shoreline position over time, transects spaced at 50-m (164-ft) intervals were intersected with shorelines from all three time periods, and an annual rate of change was calculated for each transect. Mean annual rates of shoreline change ranged from 1.75 m/year (5.74 ft/year) on the west side of the Atchafalaya River, La., where there was shoreline advancement or canal narrowing, to -3.29 m/year (-10.79 ft/year) on the south side of the Theodore Ship Channel, Ala., where there was shoreline retreat or erosion. Statistical analysis indicated that there were significant differences in shoreline retreat rates according to geologic region and marsh vegetation type, and a weak relationship with soil organic content. This information can be used to better estimate future land loss rates associated with navigation canals and to prioritize the location of

  15. 77 FR 43083 - Federal Acquisition Regulation; Information Collection; Advance Payments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...; Information Collection; Advance Payments AGENCIES: Department of Defense (DOD), General Services... Paperwork Reduction Act, the Regulatory Secretariat will be submitting to the Office of Management and... requirement concerning advance payments. Public comments are particularly invited on: Whether this collection...

  16. Magnetic navigation in ultrasound-guided interventional radiology procedures.

    PubMed

    Xu, H-X; Lu, M-D; Liu, L-N; Guo, L-H

    2012-05-01

    To evaluate the usefulness of magnetic navigation in ultrasound (US)-guided interventional procedures. Thirty-seven patients who were scheduled for US-guided interventional procedures (20 liver cancer ablation procedures and 17 other procedures) were included. Magnetic navigation with three-dimensional (3D) computed tomography (CT), magnetic resonance imaging (MRI), 3D US, and position-marking magnetic navigation were used for guidance. The influence on clinical outcome was also evaluated. Magnetic navigation facilitated applicator placement in 15 of 20 ablation procedures for liver cancer in which multiple ablations were performed; enhanced guidance in two small liver cancers invisible on conventional US but visible at CT or MRI; and depicted the residual viable tumour after transcatheter arterial chemoembolization for liver cancer in one procedure. In four of 17 other interventional procedures, position-marking magnetic navigation increased the visualization of the needle tip. Magnetic navigation was beneficial in 11 (55%) of 20 ablation procedures; increased confidence but did not change management in five (25%); added some information but did not change management in two (10%); and made no change in two (10%). In the other 17 interventional procedures, the corresponding numbers were 1 (5.9%), 2 (11.7%), 7 (41.2%), and 7 (41.2%), respectively (p=0.002). Magnetic navigation in US-guided interventional procedure provides solutions in some difficult cases in which conventional US guidance is not suitable. It is especially useful in complicated interventional procedures such as ablation for liver cancer. Copyright © 2011 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  17. APTS : advanced public transportation systems program : technical assistance brief

    DOT National Transportation Integrated Search

    1993-01-01

    Advanced Public Transportation Systems, or APTS, are advanced navigation and communication technologies applied to all aspects of public transportation system operations. APTS provides the technology for transportation agencies to make timely transit...

  18. Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape.

    PubMed

    Buckley, Matthew G; Smith, Alastair D; Haselgrove, Mark

    2014-03-01

    An influential theory of spatial navigation states that the boundary shape of an environment is preferentially encoded over and above other spatial cues, such that it is impervious to interference from alternative sources of information. We explored this claim with 3 intradimensional-extradimensional shift experiments, designed to examine the interaction of landmark and geometric features of the environment in a virtual navigation task. In Experiments 1 and 2, participants were first required to find a hidden goal using information provided by the shape of the arena or landmarks integrated into the arena boundary (Experiment 1) or within the arena itself (Experiment 2). Participants were then transferred to a different-shaped arena that contained novel landmarks and were again required to find a hidden goal. In both experiments, participants who were navigating on the basis of cues that were from the same dimension that was previously relevant (intradimensional shift) learned to find the goal significantly faster than participants who were navigating on the basis of cues that were from a dimension that was previously irrelevant (extradimensional shift). This suggests that shape information does not hold special status when learning about an environment. Experiment 3 replicated Experiment 2 and also assessed participants' recognition of the global shape of the navigated arenas. Recognition was attenuated when landmarks were relevant to navigation throughout the experiment. The results of these experiments are discussed in terms of associative and non-associative theories of spatial learning.

  19. Navigation integrity monitoring and obstacle detection for enhanced-vision systems

    NASA Astrophysics Data System (ADS)

    Korn, Bernd; Doehler, Hans-Ullrich; Hecker, Peter

    2001-08-01

    Typically, Enhanced Vision (EV) systems consist of two main parts, sensor vision and synthetic vision. Synthetic vision usually generates a virtual out-the-window view using databases and accurate navigation data, e. g. provided by differential GPS (DGPS). The reliability of the synthetic vision highly depends on both, the accuracy of the used database and the integrity of the navigation data. But especially in GPS based systems, the integrity of the navigation can't be guaranteed. Furthermore, only objects that are stored in the database can be displayed to the pilot. Consequently, unexpected obstacles are invisible and this might cause severe problems. Therefore, additional information has to be extracted from sensor data to overcome these problems. In particular, the sensor data analysis has to identify obstacles and has to monitor the integrity of databases and navigation. Furthermore, if a lack of integrity arises, navigation data, e.g. the relative position of runway and aircraft, has to be extracted directly from the sensor data. The main contribution of this paper is about the realization of these three sensor data analysis tasks within our EV system, which uses the HiVision 35 GHz MMW radar of EADS, Ulm as the primary EV sensor. For the integrity monitoring, objects extracted from radar images are registered with both database objects and objects (e. g. other aircrafts) transmitted via data link. This results in a classification into known and unknown radar image objects and consequently, in a validation of the integrity of database and navigation. Furthermore, special runway structures are searched for in the radar image where they should appear. The outcome of this runway check contributes to the integrity analysis, too. Concurrent to this investigation a radar image based navigation is performed without using neither precision navigation nor detailed database information to determine the aircraft's position relative to the runway. The performance of our

  20. Gaze-informed, task-situated representation of space in primate hippocampus during virtual navigation

    PubMed Central

    Wirth, Sylvia; Baraduc, Pierre; Planté, Aurélie; Pinède, Serge; Duhamel, Jean-René

    2017-01-01

    To elucidate how gaze informs the construction of mental space during wayfinding in visual species like primates, we jointly examined navigation behavior, visual exploration, and hippocampal activity as macaque monkeys searched a virtual reality maze for a reward. Cells sensitive to place also responded to one or more variables like head direction, point of gaze, or task context. Many cells fired at the sight (and in anticipation) of a single landmark in a viewpoint- or task-dependent manner, simultaneously encoding the animal’s logical situation within a set of actions leading to the goal. Overall, hippocampal activity was best fit by a fine-grained state space comprising current position, view, and action contexts. Our findings indicate that counterparts of rodent place cells in primates embody multidimensional, task-situated knowledge pertaining to the target of gaze, therein supporting self-awareness in the construction of space. PMID:28241007

  1. Investigation on navigation patterns of inertial/celestial integrated systems

    NASA Astrophysics Data System (ADS)

    Luo, Dacheng; Liu, Yan; Liu, Zhiguo; Jiao, Wei; Wang, Qiuyan

    2014-11-01

    It is known that Strapdown Inertial Navigation System (SINS), Global Navigation Satellite System (GNSS) and Celestial Navigation System (CNS) can complement each other's advantages. The SINS/CNS integrated system, which has the characteristics of strong autonomy, high accuracy and good anti-jamming, is widely used in military and civilian applications. Similar to SINS/GNSS integrated system, the SINS/CNS integrated system can also be divided into three kinds according to the difference of integrating depth, i.e., loosely coupled pattern, tightly coupled pattern and deeply coupled pattern. In this paper, the principle and characteristics of each pattern of SINS/CNS system are analyzed. Based on the comparison of these patterns, a novel deeply coupled SINS/CNS integrated navigation scheme is proposed. The innovation of this scheme is that a new star pattern matching method aided by SINS information is put forward. Thus the complementary features of these two subsystems are reflected.

  2. Electromagnetic navigational bronchoscopy and robotic-assisted thoracic surgery.

    PubMed

    Christie, Sara

    2014-06-01

    With the use of electromagnetic navigational bronchoscopy and robotics, lung lesions can be diagnosed and resected during one surgical procedure. Global positioning system technology allows surgeons to identify and mark a thoracic tumor, and then robotics technology allows them to perform minimally invasive resection and cancer staging procedures. Nurses on the perioperative robotics team must consider the logistics of providing safe and competent care when performing combined procedures during one surgical encounter. Instrumentation, OR organization and room setup, and patient positioning are important factors to consider to complete the procedure systematically and efficiently. This revolutionary concept of combining navigational bronchoscopy with robotics requires a team of dedicated nurses to facilitate the sequence of events essential for providing optimal patient outcomes in highly advanced surgical procedures. Copyright © 2014 AORN, Inc. Published by Elsevier Inc. All rights reserved.

  3. Evaluation of the Terminal Sequencing and Spacing System for Performance Based Navigation Arrivals

    NASA Technical Reports Server (NTRS)

    Thipphavong, Jane; Jung, Jaewoo; Swenson, Harry N.; Martin, Lynne; Lin, Melody; Nguyen, Jimmy

    2013-01-01

    NASA has developed the Terminal Sequencing and Spacing (TSS) system, a suite of advanced arrival management technologies combining timebased scheduling and controller precision spacing tools. TSS is a ground-based controller automation tool that facilitates sequencing and merging arrivals that have both current standard ATC routes and terminal Performance-Based Navigation (PBN) routes, especially during highly congested demand periods. In collaboration with the FAA and MITRE's Center for Advanced Aviation System Development (CAASD), TSS system performance was evaluated in human-in-the-loop (HITL) simulations with currently active controllers as participants. Traffic scenarios had mixed Area Navigation (RNAV) and Required Navigation Performance (RNP) equipage, where the more advanced RNP-equipped aircraft had preferential treatment with a shorter approach option. Simulation results indicate the TSS system achieved benefits by enabling PBN, while maintaining high throughput rates-10% above baseline demand levels. Flight path predictability improved, where path deviation was reduced by 2 NM on average and variance in the downwind leg length was 75% less. Arrivals flew more fuel-efficient descents for longer, spending an average of 39 seconds less in step-down level altitude segments. Self-reported controller workload was reduced, with statistically significant differences at the p less than 0.01 level. The RNP-equipped arrivals were also able to more frequently capitalize on the benefits of being "Best-Equipped, Best- Served" (BEBS), where less vectoring was needed and nearly all RNP approaches were conducted without interruption.

  4. Image processing and applications based on visualizing navigation service

    NASA Astrophysics Data System (ADS)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  5. Advanced Information Processing System (AIPS)

    NASA Technical Reports Server (NTRS)

    Pitts, Felix L.

    1993-01-01

    Advanced Information Processing System (AIPS) is a computer systems philosophy, a set of validated hardware building blocks, and a set of validated services as embodied in system software. The goal of AIPS is to provide the knowledgebase which will allow achievement of validated fault-tolerant distributed computer system architectures, suitable for a broad range of applications, having failure probability requirements of 10E-9 at 10 hours. A background and description is given followed by program accomplishments, the current focus, applications, technology transfer, FY92 accomplishments, and funding.

  6. Local navigation and fuzzy control realization for autonomous guided vehicle

    NASA Astrophysics Data System (ADS)

    El-Konyaly, El-Sayed H.; Saraya, Sabry F.; Shehata, Raef S.

    1996-10-01

    This paper addresses the problem of local navigation for an autonomous guided vehicle (AGV) in a structured environment that contains static and dynamic obstacles. Information about the environment is obtained via a CCD camera. The problem is formulated as a dynamic feedback control problem in which speed and steering decisions are made on the fly while the AGV is moving. A decision element (DE) that uses local information is proposed. The DE guides the vehicle in the environment by producing appropriate navigation decisions. Dynamic models of a three-wheeled vehicle for driving and steering mechanisms are derived. The interaction between them is performed via the local feedback DE. A controller, based on fuzzy logic, is designed to drive the vehicle safely in an intelligent and human-like manner. The effectiveness of the navigation and control strategies in driving the AGV is illustrated and evaluated.

  7. Combining path integration and remembered landmarks when navigating without vision.

    PubMed

    Kalia, Amy A; Schrater, Paul R; Legge, Gordon E

    2013-01-01

    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information.

  8. Combining Path Integration and Remembered Landmarks When Navigating without Vision

    PubMed Central

    Kalia, Amy A.; Schrater, Paul R.; Legge, Gordon E.

    2013-01-01

    This study investigated the interaction between remembered landmark and path integration strategies for estimating current location when walking in an environment without vision. We asked whether observers navigating without vision only rely on path integration information to judge their location, or whether remembered landmarks also influence judgments. Participants estimated their location in a hallway after viewing a target (remembered landmark cue) and then walking blindfolded to the same or a conflicting location (path integration cue). We found that participants averaged remembered landmark and path integration information when they judged that both sources provided congruent information about location, which resulted in more precise estimates compared to estimates made with only path integration. In conclusion, humans integrate remembered landmarks and path integration in a gated fashion, dependent on the congruency of the information. Humans can flexibly combine information about remembered landmarks with path integration cues while navigating without visual information. PMID:24039742

  9. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Advance notice of transfer. 156...

  10. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Advance notice of transfer. 156...

  11. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Advance notice of transfer. 156...

  12. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Advance notice of transfer. 156...

  13. 33 CFR 156.118 - Advance notice of transfer.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... COTP of the time and place of each transfer operation at least 4 hours before it begins for facilities... the time and place of each transfer operation, as specified by the COTP, at least 4 hours before it... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Advance notice of transfer. 156...

  14. Freight advanced traveler information system : concept of operations.

    DOT National Transportation Integrated Search

    2012-08-01

    This report describes a Concept of Operations (ConOps) for a Freight Advanced Traveler Information System (FRATIS). The ConOps describes the goals, functions, key concepts, user classes, high-level architecture, operational scenarios, operational pol...

  15. Motion-guided attention promotes adaptive communications during social navigation.

    PubMed

    Lemasson, B H; Anderson, J J; Goodwin, R A

    2013-03-07

    Animals are capable of enhanced decision making through cooperation, whereby accurate decisions can occur quickly through decentralized consensus. These interactions often depend upon reliable social cues, which can result in highly coordinated activities in uncertain environments. Yet information within a crowd may be lost in translation, generating confusion and enhancing individual risk. As quantitative data detailing animal social interactions accumulate, the mechanisms enabling individuals to rapidly and accurately process competing social cues remain unresolved. Here, we model how motion-guided attention influences the exchange of visual information during social navigation. We also compare the performance of this mechanism to the hypothesis that robust social coordination requires individuals to numerically limit their attention to a set of n-nearest neighbours. While we find that such numerically limited attention does not generate robust social navigation across ecological contexts, several notable qualities arise from selective attention to motion cues. First, individuals can instantly become a local information hub when startled into action, without requiring changes in neighbour attention level. Second, individuals can circumvent speed-accuracy trade-offs by tuning their motion thresholds. In turn, these properties enable groups to collectively dampen or amplify social information. Lastly, the minority required to sway a group's short-term directional decisions can change substantially with social context. Our findings suggest that motion-guided attention is a fundamental and efficient mechanism underlying collaborative decision making during social navigation.

  16. Research on the error model of airborne celestial/inertial integrated navigation system

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoqiang; Deng, Xiaoguo; Yang, Xiaoxu; Dong, Qiang

    2015-02-01

    Celestial navigation subsystem of airborne celestial/inertial integrated navigation system periodically correct the positioning error and heading drift of the inertial navigation system, by which the inertial navigation system can greatly improve the accuracy of long-endurance navigation. Thus the navigation accuracy of airborne celestial navigation subsystem directly decides the accuracy of the integrated navigation system if it works for long time. By building the mathematical model of the airborne celestial navigation system based on the inertial navigation system, using the method of linear coordinate transformation, we establish the error transfer equation for the positioning algorithm of airborne celestial system. Based on these we built the positioning error model of the celestial navigation. And then, based on the positioning error model we analyze and simulate the positioning error which are caused by the error of the star tracking platform with the MATLAB software. Finally, the positioning error model is verified by the information of the star obtained from the optical measurement device in range and the device whose location are known. The analysis and simulation results show that the level accuracy and north accuracy of tracking platform are important factors that limit airborne celestial navigation systems to improve the positioning accuracy, and the positioning error have an approximate linear relationship with the level error and north error of tracking platform. The error of the verification results are in 1000m, which shows that the model is correct.

  17. 33 CFR 187.107 - What information must be made available to assist law enforcement officials and what information...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false What information must be made available to assist law enforcement officials and what information may be made available? 187.107 Section 187.107 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) BOATING SAFETY VESSEL IDENTIFICATION SYSTEM...

  18. Providing Advanced and Real-Time Travel/Traffic Information to Tourists

    DOT National Transportation Integrated Search

    1998-10-01

    Advanced traveler information systems (ATIS) analyze and communicate information that can enhance travel efficiency, alleviate congestion, and increase safety. In Texas, tourists (i.e., tripmakers unacquainted with the state) constitute an important ...

  19. Satellite Imagery Assisted Road-Based Visual Navigation System

    NASA Astrophysics Data System (ADS)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  20. Submarine harbor navigation using image data

    NASA Astrophysics Data System (ADS)

    Stubberud, Stephen C.; Kramer, Kathleen A.

    2017-01-01

    The process of ingress and egress of a United States Navy submarine is a human-intensive process that takes numerous individuals to monitor locations and for hazards. Sailors pass vocal information to bridge where it is processed manually. There is interest in using video imaging of the periscope view to more automatically provide navigation within harbors and other points of ingress and egress. In this paper, video-based navigation is examined as a target-tracking problem. While some image-processing methods claim to provide range information, the moving platform problem and weather concerns, such as fog, reduce the effectiveness of these range estimates. The video-navigation problem then becomes an angle-only tracking problem. Angle-only tracking is known to be fraught with difficulties, due to the fact that the unobservable space is not the null space. When using a Kalman filter estimator to perform the tracking, significant errors arise which could endanger the submarine. This work analyzes the performance of the Kalman filter when angle-only measurements are used to provide the target tracks. This paper addresses estimation unobservability and the minimal set of requirements that are needed to address it in this complex but real-world problem. Three major issues are addressed: the knowledge of navigation beacons/landmarks' locations, the minimal number of these beacons needed to maintain the course, and update rates of the angles of the landmarks as the periscope rotates and landmarks become obscured due to blockage and weather. The goal is to address the problem of navigation to and from the docks, while maintaining the traversing of the harbor channel based on maritime rules relying solely on the image-based data. The minimal number of beacons will be considered. For this effort, the image correlation from frame to frame is assumed to be achieved perfectly. Variation in the update rates and the dropping of data due to rotation and obscuration is considered

  1. Relative optical navigation around small bodies via Extreme Learning Machine

    NASA Astrophysics Data System (ADS)

    Law, Andrew M.

    To perform close proximity operations under a low-gravity environment, relative and absolute positions are vital information to the maneuver. Hence navigation is inseparably integrated in space travel. Extreme Learning Machine (ELM) is presented as an optical navigation method around small celestial bodies. Optical Navigation uses visual observation instruments such as a camera to acquire useful data and determine spacecraft position. The required input data for operation is merely a single image strip and a nadir image. ELM is a machine learning Single Layer feed-Forward Network (SLFN), a type of neural network (NN). The algorithm is developed on the predicate that input weights and biases can be randomly assigned and does not require back-propagation. The learned model is the output layer weights which are used to calculate a prediction. Together, Extreme Learning Machine Optical Navigation (ELM OpNav) utilizes optical images and ELM algorithm to train the machine to navigate around a target body. In this thesis the asteroid, Vesta, is the designated celestial body. The trained ELMs estimate the position of the spacecraft during operation with a single data set. The results show the approach is promising and potentially suitable for on-board navigation.

  2. Navigation and Robotics in Spinal Surgery: Where Are We Now?

    PubMed

    Overley, Samuel C; Cho, Samuel K; Mehta, Ankit I; Arnold, Paul M

    2017-03-01

    Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery. Copyright © 2016 by the Congress of Neurological Surgeons.

  3. Computer-aided navigation in dental implantology: 7 years of clinical experience.

    PubMed

    Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne

    2004-03-01

    This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.

  4. Evolution of natural agents: preservation, advance, and emergence of functional information.

    PubMed

    Sharov, Alexei A

    2016-04-01

    Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents.

  5. Evolution of natural agents: preservation, advance, and emergence of functional information

    PubMed Central

    Sharov, Alexei A.

    2016-01-01

    Biological evolution is often viewed narrowly as a change of morphology or allele frequency in a sequence of generations. Here I pursue an alternative informational concept of evolution, as preservation, advance, and emergence of functional information in natural agents. Functional information is a network of signs (e.g., memory, transient messengers, and external signs) that are used by agents to preserve and regulate their functions. Functional information is preserved in evolution via complex interplay of copying and construction processes: the digital components are copied, whereas interpreting subagents together with scaffolds, tools, and resources, are constructed. Some of these processes are simple and invariant, whereas others are complex and contextual. Advance of functional information includes improvement and modification of already existing functions. Although the genome information may change passively and randomly, the interpretation is active and guided by the logic of agent behavior and embryonic development. Emergence of new functions is based on the reinterpretation of already existing information, when old tools, resources, and control algorithms are adopted for novel functions. Evolution of functional information progressed from protosemiosis, where signs correspond directly to actions, to eusemiosis, where agents associate signs with objects. Language is the most advanced form of eusemiosis, where the knowledge of objects and models is communicated between agents. PMID:27525048

  6. DNA Compass: a secure, client-side site for navigating personal genetic information

    PubMed Central

    Curnin, Charles; Gordon, Assaf; Erlich, Yaniv

    2017-01-01

    Abstract Motivation: Millions of individuals have access to raw genomic data using direct-to-consumer companies. The advent of large-scale sequencing projects, such as the Precision Medicine Initiative, will further increase the number of individuals with access to their own genomic information. However, querying genomic data requires a computer terminal and computational skill to analyze the data—an impediment for the general public. Results: DNA Compass is a website designed to empower the public by enabling simple navigation of personal genomic data. Users can query the status of their genomic variants for over 1658 markers or tens of millions of documented single nucleotide polymorphisms (SNPs). DNA Compass presents the relevant genotypes of the user side-by-side with explanatory scientific resources. The genotype data never leaves the user’s computer, a feature that provides improved security and performance. More than 12 000 unique users, mainly from the general genetic genealogy community, have already used DNA Compass, demonstrating its utility. Availability and Implementation: DNA Compass is freely available on https://compass.dna.land. Contact: yaniv@cs.columbia.edu PMID:28334237

  7. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  8. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  9. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  10. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  11. 33 CFR 157.47 - Information for master.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 2 2012-07-01 2012-07-01 false Information for master. 157.47 Section 157.47 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED... Vessel Operation § 157.47 Information for master. A master or person in charge of a new vessel shall...

  12. Extraction of user's navigation commands from upper body force interaction in walker assisted gait.

    PubMed

    Frizera Neto, Anselmo; Gallego, Juan A; Rocon, Eduardo; Pons, José L; Ceres, Ramón

    2010-08-05

    The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 +/- 0.358).10(-2) kgf) and delay ((1.897 +/- 0.3697).10(1)ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

  13. True navigation in migrating gulls requires intact olfactory nerves.

    PubMed

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-11-24

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.

  14. Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow.

    PubMed

    Markl, Michael; Harloff, Andreas; Bley, Thorsten A; Zaitsev, Maxim; Jung, Bernd; Weigang, Ernst; Langer, Mathias; Hennig, Jürgen; Frydrychowicz, Alex

    2007-04-01

    To evaluate an improved image acquisition and data-processing strategy for assessing aortic vascular geometry and 3D blood flow at 3T. In a study with five normal volunteers and seven patients with known aortic pathology, prospectively ECG-gated cine three-dimensional (3D) MR velocity mapping with improved navigator gating, real-time adaptive k-space ordering and dynamic adjustment of the navigator acceptance criteria was performed. In addition to morphological information and three-directional blood flow velocities, phase-contrast (PC)-MRA images were derived from the same data set, which permitted 3D isosurface rendering of vascular boundaries in combination with visualization of blood-flow patterns. Analysis of navigator performance and image quality revealed improved scan efficiencies of 63.6%+/-10.5% and temporal resolution (<50 msec) compared to previous implementations. Semiquantitative evaluation of image quality by three independent observers demonstrated excellent general image appearance with moderate blurring and minor ghosting artifacts. Results from volunteer and patient examinations illustrate the potential of the improved image acquisition and data-processing strategy for identifying normal and pathological blood-flow characteristics. Navigator-gated time-resolved 3D MR velocity mapping at 3T in combination with advanced data processing is a powerful tool for performing detailed assessments of global and local blood-flow characteristics in the aorta to describe or exclude vascular alterations. Copyright (c) 2007 Wiley-Liss, Inc.

  15. Improved artificial bee colony algorithm based gravity matching navigation method.

    PubMed

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  16. Anisotropy of Human Horizontal and Vertical Navigation in Real Space: Behavioral and PET Correlates.

    PubMed

    Zwergal, Andreas; Schöberl, Florian; Xiong, Guoming; Pradhan, Cauchy; Covic, Aleksandar; Werner, Philipp; Trapp, Christoph; Bartenstein, Peter; la Fougère, Christian; Jahn, Klaus; Dieterich, Marianne; Brandt, Thomas

    2016-10-17

    Spatial orientation was tested during a horizontal and vertical real navigation task in humans. Video tracking of eye movements was used to analyse the behavioral strategy and combined with simultaneous measurements of brain activation and metabolism ([18F]-FDG-PET). Spatial navigation performance was significantly better during horizontal navigation. Horizontal navigation was predominantly visually and landmark-guided. PET measurements indicated that glucose metabolism increased in the right hippocampus, bilateral retrosplenial cortex, and pontine tegmentum during horizontal navigation. In contrast, vertical navigation was less reliant on visual and landmark information. In PET, vertical navigation activated the bilateral hippocampus and insula. Direct comparison revealed a relative activation in the pontine tegmentum and visual cortical areas during horizontal navigation and in the flocculus, insula, and anterior cingulate cortex during vertical navigation. In conclusion, these data indicate a functional anisotropy of human 3D-navigation in favor of the horizontal plane. There are common brain areas for both forms of navigation (hippocampus) as well as unique areas such as the retrosplenial cortex, visual cortex (horizontal navigation), flocculus, and vestibular multisensory cortex (vertical navigation). Visually guided landmark recognition seems to be more important for horizontal navigation, while distance estimation based on vestibular input might be more relevant for vertical navigation. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  17. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.

    2009-12-10

    On April 15, 2008, the Department of Energy (DOE) issued a Funding Opportunity Announcement for Advanced Water Power Projects which included a Topic Area for Marine and Hydrokinetic Renewable Energy Market Acceleration Projects. Within this Topic Area, DOE identified potential navigational impacts of marine and hydrokinetic renewable energy technologies and measures to prevent adverse impacts on navigation as a sub-topic area. DOE defines marine and hydrokinetic technologies as those capable of utilizing one or more of the following resource categories for energy generation: ocean waves; tides or ocean currents; free flowing water in rivers or streams; and energy generation frommore » the differentials in ocean temperature. PCCI was awarded Cooperative Agreement DE-FC36-08GO18177 from the DOE to identify the potential navigational impacts and mitigation measures for marine hydrokinetic technologies, as summarized herein. The contract also required cooperation with the U.S. Coast Guard (USCG) and two recipients of awards (Pacific Energy Ventures and reVision) in a sub-topic area to develop a protocol to identify streamlined, best-siting practices. Over the period of this contract, PCCI and our sub-consultants, David Basco, Ph.D., and Neil Rondorf of Science Applications International Corporation, met with USCG headquarters personnel, with U.S. Army Corps of Engineers headquarters and regional personnel, with U.S. Navy regional personnel and other ocean users in order to develop an understanding of existing practices for the identification of navigational impacts that might occur during construction, operation, maintenance, and decommissioning. At these same meetings, “standard” and potential mitigation measures were discussed so that guidance could be prepared for project developers. Concurrently, PCCI reviewed navigation guidance published by the USCG and international community. This report summarizes the results of this effort, provides guidance in the form

  18. 33 CFR 401.79 - Advance notice of arrival, vessels requiring inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., vessels requiring inspection. 401.79 Section 401.79 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY... Reports § 401.79 Advance notice of arrival, vessels requiring inspection. Every vessel shall provide at... reinspection of the ship is required. [70 FR 12973, Mar. 17, 2005] ...

  19. Development of voice navigation system for the visually impaired by using IC tags.

    PubMed

    Takatori, Norihiko; Nojima, Kengo; Matsumoto, Masashi; Yanashima, Kenji; Magatani, Kazushige

    2006-01-01

    There are about 300,000 visually impaired persons in Japan. Most of them are old persons and, cannot become skillful in using a white cane, even if they make effort to learn how to use a white cane. Therefore, some guiding system that supports the independent activities of the visually impaired are required. In this paper, we will describe about a developed white cane system that supports the independent walking of the visually impaired in the indoor space. This system is composed of colored navigation lines that include IC tags and an intelligent white cane that has a navigation computer. In our system colored navigation lines that are put on the floor of the target space from the start point to the destination and IC tags that are set at the landmark point are used for indication of the route to the destination. The white cane has a color sensor, an IC tag transceiver and a computer system that includes a voice processor. This white cane senses the navigation line that has target color by a color sensor. When a color sensor finds the target color, the white cane informs a white cane user that he/she is on the navigation line by vibration. So, only following this vibration, the user can reach the destination. However, at some landmark points, guidance is necessary. At these points, an IC tag is set under the navigation line. The cane makes communication with the tag and informs the user about the land mark pint by pre recorded voice. Ten normal subjects who were blindfolded were tested with our developed system. All of them could walk along navigation line. And the IC tag information system worked well. Therefore, we have concluded that our system will be a very valuable one to support activities of the visually impaired.

  20. Freight Advanced Traveler Information System (FRATIS) impact assessment.

    DOT National Transportation Integrated Search

    2016-01-01

    This report is an independent assessment of three prototype Freight Advanced Traveler Information System (FRATIS) tests at Los Angeles, Dallas/Fort Worth, and South Florida. The FRATIS technologies deployed at one or two drayage companies in each tes...

  1. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays.

    PubMed

    Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian

    2018-03-30

    To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  2. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    PubMed Central

    Yan, Zheping; Wang, Lu; Wang, Tongda; Yang, Zewen; Chen, Tao; Xu, Jian

    2018-01-01

    To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs) in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS) in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL) acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF) is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region. PMID:29601537

  3. Technological Advances and Information Education 1982-2007: Some Perspectives

    ERIC Educational Resources Information Center

    Guy, Fred

    2007-01-01

    The paper considers technological advances in relation to information education over the 25 years of existence of the journal, "Education for Information." Some key developments before 1980 such as the appearance of MARC and library co-operatives are mentioned along with key post-1980 developments including networking, the World Wide…

  4. Flight Test Results from the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (CANDOS)

    NASA Technical Reports Server (NTRS)

    Rush, John; Israel, David; Harlacher, Marc; Haas, Lin

    2003-01-01

    The Low Power Transceiver (LPT) is an advanced signal processing platform that offers a configurable and reprogrammable capability for supporting communications, navigation and sensor functions for mission applications ranging from spacecraft TT&C and autonomous orbit determination to sophisticated networks that use crosslinks to support communications and real-time relative navigation for formation flying. The LPT is the result of extensive collaborative research under NASNGSFC s Advanced Technology Program and ITT Industries internal research and development efforts. Its modular, multi-channel design currently enables transmitting and receiving communication signals on L- or S-band frequencies and processing GPS L-band signals for precision navigation. The LPT flew as a part of the GSFC Hitchhiker payload named Fast Reaction Experiments Enabling Science Technology And Research (FREESTAR) on-board Space Shuttle Columbia s final mission. The experiment demonstrated functionality in GPS-based navigation and orbit determination, NASA STDN Ground Network communications, space relay communications via the NASA TDRSS, on-orbit reconfiguration of the software radio, the use of the Internet Protocol (IP) for TT&C, and communication concepts for space based range safety. All data from the experiment was recovered and, as a result, all primary and secondary objectives of the experiment were successful. This paper presents the results of the LPTs maiden space flight as a part of STS- 107.

  5. Parkinson's Disease: The Newest Advances

    MedlinePlus

    Skip Navigation Bar Home Current Issue Past Issues Parkinson's Disease: The Newest Advances Past Issues / Summer 2006 Table ... number of genes that cause or contribute to Parkinson's disease (PD), as well as potential environmental risk factors. ...

  6. Distributed Ship Navigation Control System Based on Dual Network

    NASA Astrophysics Data System (ADS)

    Yao, Ying; Lv, Wu

    2017-10-01

    Navigation system is very important for ship’s normal running. There are a lot of devices and sensors in the navigation system to guarantee ship’s regular work. In the past, these devices and sensors were usually connected via CAN bus for high performance and reliability. However, as the development of related devices and sensors, the navigation system also needs the ability of high information throughput and remote data sharing. To meet these new requirements, we propose the communication method based on dual network which contains CAN bus and industrial Ethernet. Also, we import multiple distributed control terminals with cooperative strategy based on the idea of synchronizing the status by multicasting UDP message contained operation timestamp to make the system more efficient and reliable.

  7. Advanced Respiratory Motion Compensation for Coronary MR Angiography

    PubMed Central

    Henningsson, Markus; Botnar, Rene M.

    2013-01-01

    Despite technical advances, respiratory motion remains a major impediment in a substantial amount of patients undergoing coronary magnetic resonance angiography (CMRA). Traditionally, respiratory motion compensation has been performed with a one-dimensional respiratory navigator positioned on the right hemi-diaphragm, using a motion model to estimate and correct for the bulk respiratory motion of the heart. Recent technical advancements has allowed for direct respiratory motion estimation of the heart, with improved motion compensation performance. Some of these new methods, particularly using image-based navigators or respiratory binning, allow for more advanced motion correction which enables CMRA data acquisition throughout most or all of the respiratory cycle, thereby significantly reducing scan time. This review describes the three components typically involved in most motion compensation strategies for CMRA, including respiratory motion estimation, gating and correction, and how these processes can be utilized to perform advanced respiratory motion compensation. PMID:23708271

  8. National positioning, navigation, and timing architecture : implementation plan.

    DOT National Transportation Integrated Search

    2010-04-01

    The Assistant Secretary of Defense for Networks and Information Integration (ASD/NII) and the : Under Secretary of Transportation for Policy (UST/P) sponsored a National Positioning, : Navigation, and Timing (PNT) Architecture Study to provide mor...

  9. Patient Navigation Preferences for Adolescent and Young Adult Cancer Services by Distance to Treatment Location.

    PubMed

    Warner, Echo L; Fowler, Brynn; Pannier, Samantha T; Salmon, Sara K; Fair, Douglas; Spraker-Perlman, Holly; Yancey, Jeffrey; Randall, R Lor; Kirchhoff, Anne C

    2018-05-03

    To describe how distance to treatment location influences patient navigation preferences for adolescent and young adult (AYA) cancer patients and survivors. This study is part of a statewide needs assessment to inform the development of an AYA cancer patient and survivor navigation program. Participants were recruited from outpatient oncology clinics in Utah. Eligible participants had been diagnosed with cancer between ages 15-39 and had completed at least 1 month of treatment. Participants completed a semi-structured interview on preferences for patient navigation. Summary statistics of demographic and cancer characteristics were generated. Thematic content analysis was used to describe navigation preferences among participants classified as distance (≥20 miles) and local (<20 miles), to explain differences in their needs based on distance from their treatment center. The top three patient navigation needs were general information, financial, and emotional support. More local patients were interested in patient navigation services (95.2%) compared to distance participants (77.8%). Fewer local (38.1%) than distance participants (61.1%) reported challenges getting to appointments, and distance patients needed specific financial support to support their travel (e.g., fuel, lodging). Both local and distance patients desired to connect with a navigator in person before using another form of communication and wanted to connect with a patient navigator at the time of initial diagnosis. Distance from treatment center is an important patient navigation consideration for AYA cancer patients and survivors. After initially connecting with AYAs in person, patient navigators can provide resources remotely to help reduce travel burden.

  10. Advanced Traveler Information Systems (ATIS) 2.0 Precursor System: Final Report

    DOT National Transportation Integrated Search

    2018-03-01

    Advanced Traveler Information Systems (ATIS) have experienced significant growth since their initial inception in the 1990s. Technologies have continued to evolve at a rapid pace, enabling the integration of advanced solutions for traveler informatio...

  11. Navigable points estimation for mobile robots using binary image skeletonization

    NASA Astrophysics Data System (ADS)

    Martinez S., Fernando; Jacinto G., Edwar; Montiel A., Holman

    2017-02-01

    This paper describes the use of image skeletonization for the estimation of all the navigable points, inside a scene of mobile robots navigation. Those points are used for computing a valid navigation path, using standard methods. The main idea is to find the middle and the extreme points of the obstacles in the scene, taking into account the robot size, and create a map of navigable points, in order to reduce the amount of information for the planning algorithm. Those points are located by means of the skeletonization of a binary image of the obstacles and the scene background, along with some other digital image processing algorithms. The proposed algorithm automatically gives a variable number of navigable points per obstacle, depending on the complexity of its shape. As well as, the way how the algorithm can change some of their parameters in order to change the final number of the resultant key points is shown. The results shown here were obtained applying different kinds of digital image processing algorithms on static scenes.

  12. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation

    PubMed Central

    Broumandan, Ali; Lachapelle, Gérard

    2018-01-01

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated. PMID:29695064

  13. Spoofing Detection Using GNSS/INS/Odometer Coupling for Vehicular Navigation.

    PubMed

    Broumandan, Ali; Lachapelle, Gérard

    2018-04-24

    Location information is one of the most vital information required to achieve intelligent and context-aware capability for various applications such as driverless cars. However, related security and privacy threats are a major holdback. With increasing focus on using Global Navigation Satellite Systems (GNSS) for autonomous navigation and related applications, it is important to provide robust navigation solutions, yet signal spoofing for illegal or covert transportation and misleading receiver timing is increasing and now frequent. Hence, detection and mitigation of spoofing attacks has become an important topic. Several contributions on spoofing detection have been made, focusing on different layers of a GNSS receiver. This paper focuses on spoofing detection utilizing self-contained sensors, namely inertial measurement units (IMUs) and vehicle odometer outputs. A spoofing detection approach based on a consistency check between GNSS and IMU/odometer mechanization is proposed. To detect a spoofing attack, the method analyses GNSS and IMU/odometer measurements independently during a pre-selected observation window and cross checks the solutions provided by GNSS and inertial navigation solution (INS)/odometer mechanization. The performance of the proposed method is verified in real vehicular environments. Mean spoofing detection time and detection performance in terms of receiver operation characteristics (ROC) in sub-urban and dense urban environments are evaluated.

  14. Selection of radio sources for Venus balloon-Pathfinder Delta-DOR navigation at 1.7 GHz

    NASA Technical Reports Server (NTRS)

    Liewer, K. M

    1986-01-01

    In order to increase the success rate of the Delta-DOR (Delta-Differential One-way Range) VLBI navigational support for the French-Soviet Venus Balloon and Halley Pathfinder projects, forty-four extragalactic radio sources were observed in advance of these projects to determine which were suitable for use as reference sources. Of these forty-four radio sources taken from the existing JPL radio source catalogue, thirty-six were determined to be of sufficient strength for use in Delta-DOR VLBI navigation.

  15. Pilot stereotypes for navigation symbols on electronic displays

    DOT National Transportation Integrated Search

    2006-09-20

    There is currently no common symbology standard for the : electronic display of navigation information. The wide : range of display technologies and the different functions : these displays support make it difficult to design symbols : that are easil...

  16. Cost-Effectiveness of Patient Navigation to Increase Adherence with Screening Colonoscopy Among Minority Individuals

    PubMed Central

    Ladabaum, Uri; Mannalithara, Ajitha; Jandorf, Lina; Itzkowitz, Steven H.

    2015-01-01

    Background Colorectal cancer (CRC) screening is underutilized by minority populations. Patient navigation increases adherence with screening colonoscopy. We estimated the cost-effectiveness of navigation for screening colonoscopy from the perspective of a payer seeking to improve population health. Methods We informed our validated model of CRC screening with inputs from navigation studies in New York City (population 43% African American, 49% Hispanic, 4% White, 4% Other; base case screening 40% without and 65% with navigation, navigation costs $29/colonoscopy completer, $21/non-completer, $3/non-navigated). We compared: 1) navigation vs. no navigation for one-time screening colonoscopy in unscreened persons age ≥50; 2) programs of colonoscopy with vs. without navigation, vs. fecal occult blood testing (FOBT) or immunochemical testing (FIT) for ages 50-80. Results In the base case: 1) one-time navigation gained quality-adjusted life-years (QALYs) and decreased costs; 2) longitudinal navigation cost $9,800/QALY gained vs. no navigation, and assuming comparable uptake rates, it cost $118,700/QALY gained vs. FOBT, but was less effective and more costly than FIT. Results were most dependent on screening participation rates and navigation costs: 1) assuming a 5% increase in screening uptake with navigation and navigation cost of $150/completer, one-time navigation cost $26,400/QALY gained; 2) longitudinal navigation with 75% colonoscopy uptake cost <$25,000/QALY gained vs. FIT when FIT uptake was <50%. Probabilistic sensitivity analyses did not alter the conclusions. Conclusions Navigation for screening colonoscopy appears to be cost-effective, and one-time navigation may be cost-saving. In emerging healthcare models that reward outcomes, payers should consider covering the costs of navigation for screening colonoscopy. PMID:25492455

  17. Space shuttle navigation analysis. Volume 1: GPS aided navigation

    NASA Technical Reports Server (NTRS)

    Matchett, G. A.; Vogel, M. A.; Macdonald, T. J.

    1980-01-01

    Analytical studies related to space shuttle navigation are presented. Studies related to the addition of NAVSTAR Global Positioning System user equipment to the shuttle avionics suite are presented. The GPS studies center about navigation accuracy covariance analyses for both developmental and operational phases of GPS, as well as for various orbiter mission phases.

  18. Indoor Navigation from Point Clouds: 3d Modelling and Obstacle Detection

    NASA Astrophysics Data System (ADS)

    Díaz-Vilariño, L.; Boguslawski, P.; Khoshelham, K.; Lorenzo, H.; Mahdjoubi, L.

    2016-06-01

    In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.

  19. Study on UKF based federal integrated navigation for high dynamic aviation

    NASA Astrophysics Data System (ADS)

    Zhao, Gang; Shao, Wei; Chen, Kai; Yan, Jie

    2011-08-01

    High dynamic aircraft is a very attractive new generation vehicles, in which provides near space aviation with large flight envelope both speed and altitude, for example the hypersonic vehicles. The complex flight environments for high dynamic vehicles require high accuracy and stability navigation scheme. Since the conventional Strapdown Inertial Navigation System (SINS) and Global Position System (GPS) federal integrated scheme based on EKF (Extended Kalman Filter) is invalidation in GPS single blackout situation because of high speed flight, a new high precision and stability integrated navigation approach is presented in this paper, in which the SINS, GPS and Celestial Navigation System (CNS) is combined as a federal information fusion configuration based on nonlinear Unscented Kalman Filter (UKF) algorithm. Firstly, the new integrated system state error is modeled. According to this error model, the SINS system is used as the navigation solution mathematic platform. The SINS combine with GPS constitute one error estimation filter subsystem based on UKF to obtain local optimal estimation, and the SINS combine with CNS constitute another error estimation subsystem. A non-reset federated configuration filter based on partial information is proposed to fuse two local optimal estimations to get global optimal error estimation, and the global optimal estimation is used to correct the SINS navigation solution. The χ 2 fault detection method is used to detect the subsystem fault, and the fault subsystem is isolation through fault interval to protect system away from the divergence. The integrated system takes advantages of SINS, GPS and CNS to an immense improvement for high accuracy and reliably high dynamic navigation application. Simulation result shows that federated fusion of using GPS and CNS to revise SINS solution is reasonable and availably with good estimation performance, which are satisfied with the demands of high dynamic flight navigation. The UKF is

  20. Coordinating sensing and local navigation

    NASA Technical Reports Server (NTRS)

    Slack, Marc G.

    1991-01-01

    Based on Navigation Templates (or NaTs), this work presents a new paradigm for local navigation which addresses the noisy and uncertain nature of sensor data. Rather than creating a new navigation plan each time the robot's perception of the world changes, the technique incorporates perceptual changes directly into the existing navigation plan. In this way, the robot's navigation plan is quickly and continuously modified, resulting in actions that remain coordinated with its changing perception of the world.

  1. GIS Based Application of Advanced Traveler Information System in India

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Singh, V.

    2012-02-01

    Developed countries like USA, Canada, Japan, UK, Australia and Germany have adopted advanced traveler information technologies expeditiously in comparison to developing countries. But, unlike developed countries, developing countries face considerable financial and framework constraints. Moreover local traffic, roadway, signalization, demographic, topological and social conditions in developing countries are quite different from those in developed countries. In this paper, a comprehensive framework comprising of system architecture, development methodology and salient features of a developed Advanced Traveler Information System (ATIS) for metropolitan cities in developing countries has been discussed. Development of proposed system is based on integration of two well known information technologies viz. Geographic Information Systems (GIS) and World Wide Web (WWW). Combination of these technologies can be utilized to develop an integrated ATIS that targets different types of travelers like private vehicle owners, transit users and casual outside visitors.

  2. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE...), will report the channel conditions promptly, using standard tabular forms, to: Director, Defense... operations in important channels in tidal waters—either in progress and not already reported, or soon to be...

  3. Exploiting Measurement Uncertainty Estimation in Evaluation of GOES-R ABI Image Navigation Accuracy Using Image Registration Techniques

    NASA Technical Reports Server (NTRS)

    Haas, Evan; DeLuccia, Frank

    2016-01-01

    In evaluating GOES-R Advanced Baseline Imager (ABI) image navigation quality, upsampled sub-images of ABI images are translated against downsampled Landsat 8 images of localized, high contrast earth scenes to determine the translations in the East-West and North-South directions that provide maximum correlation. The native Landsat resolution is much finer than that of ABI, and Landsat navigation accuracy is much better than ABI required navigation accuracy and expected performance. Therefore, Landsat images are considered to provide ground truth for comparison with ABI images, and the translations of ABI sub-images that produce maximum correlation with Landsat localized images are interpreted as ABI navigation errors. The measured local navigation errors from registration of numerous sub-images with the Landsat images are averaged to provide a statistically reliable measurement of the overall navigation error of the ABI image. The dispersion of the local navigation errors is also of great interest, since ABI navigation requirements are specified as bounds on the 99.73rd percentile of the magnitudes of per pixel navigation errors. However, the measurement uncertainty inherent in the use of image registration techniques tends to broaden the dispersion in measured local navigation errors, masking the true navigation performance of the ABI system. We have devised a novel and simple method for estimating the magnitude of the measurement uncertainty in registration error for any pair of images of the same earth scene. We use these measurement uncertainty estimates to filter out the higher quality measurements of local navigation error for inclusion in statistics. In so doing, we substantially reduce the dispersion in measured local navigation errors, thereby better approximating the true navigation performance of the ABI system.

  4. Pigeon Navigation: Different Routes Lead to Frankfurt

    PubMed Central

    Schiffner, Ingo; Wiltschko, Roswitha

    2014-01-01

    Background Tracks of pigeons homing to the Frankfurt loft revealed an odd phenomenon: whereas birds returning from the North approach their loft more or less directly in a broad front, pigeons returning from the South choose, from 25 km from home onward, either of two corridors, a direct one and one with a considerable detour to the West. This implies differences in the navigational process. Methodology/Principle Findings Pigeons released at sites at the beginning of the westerly corridor and in this corridor behave just like pigeons returning from farther south, deviating to the west before turning towards their loft. Birds released at sites within the straight corridors, in contrast, take more or less straight routes. The analysis of the short-term correlation dimension, a quantity reflecting the complexity of the system and with it, the number of factors involved in the navigational process, reveals that it is significantly larger in pigeons choosing the westerly corridor than in the birds flying straight - 3.03 vs. 2.85. The difference is small, however, suggesting a different interpretation of the same factors, with some birds apparently preferring particular factors over others. Conclusions The specific regional distribution of the factors which pigeons use to determine their home course seems to provide ambiguous information in the area 25 km south of the loft, resulting in the two corridors. Pigeons appear to navigate by deriving their routes directly from the locally available navigational factors which they interpret in an individual way. The fractal nature of the correlation dimensions indicates that the navigation process of pigeons is chaotic-deterministic; published tracks of migratory birds suggest that this may apply to avian navigation in general. PMID:25391144

  5. Overcoming urban GPS navigation challenges through the use of MEMS inertial sensors and proper verification of navigation system performance

    NASA Astrophysics Data System (ADS)

    Vinande, Eric T.

    This research proposes several means to overcome challenges in the urban environment to ground vehicle global positioning system (GPS) receiver navigation performance through the integration of external sensor information. The effects of narrowband radio frequency interference and signal attenuation, both common in the urban environment, are examined with respect to receiver signal tracking processes. Low-cost microelectromechanical systems (MEMS) inertial sensors, suitable for the consumer market, are the focus of receiver augmentation as they provide an independent measure of motion and are independent of vehicle systems. A method for estimating the mounting angles of an inertial sensor cluster utilizing typical urban driving maneuvers is developed and is able to provide angular measurements within two degrees of truth. The integration of GPS and MEMS inertial sensors is developed utilizing a full state navigation filter. Appropriate statistical methods are developed to evaluate the urban environment navigation improvement due to the addition of MEMS inertial sensors. A receiver evaluation metric that combines accuracy, availability, and maximum error measurements is presented and evaluated over several drive tests. Following a description of proper drive test techniques, record and playback systems are evaluated as the optimal way of testing multiple receivers and/or integrated navigation systems in the urban environment as they simplify vehicle testing requirements.

  6. Improved Artificial Bee Colony Algorithm Based Gravity Matching Navigation Method

    PubMed Central

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-01-01

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position. PMID:25046019

  7. Use of Assisted Photogrammetry for Indoor and Outdoor Navigation Purposes

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Cazzaniga, N. E.; Pinto, L.

    2015-05-01

    Nowadays, devices and applications that require navigation solutions are continuously growing. For instance, consider the increasing demand of mapping information or the development of applications based on users' location. In some case it could be sufficient an approximate solution (e.g. at room level), but in the large amount of cases a better solution is required. The navigation problem has been solved from a long time using Global Navigation Satellite System (GNSS). However, it can be unless in obstructed areas, such as in urban areas or inside buildings. An interesting low cost solution is photogrammetry, assisted using additional information to scale the photogrammetric problem and recovering a solution also in critical situation for image-based methods (e.g. poor textured surfaces). In this paper, the use of assisted photogrammetry has been tested for both outdoor and indoor scenarios. Outdoor navigation problem has been faced developing a positioning system with Ground Control Points extracted from urban maps as constrain and tie points automatically extracted from the images acquired during the survey. The proposed approach has been tested under different scenarios, recovering the followed trajectory with an accuracy of 0.20 m. For indoor navigation a solution has been thought to integrate the data delivered by Microsoft Kinect, by identifying interesting features on the RGB images and re-projecting them on the point clouds generated from the delivered depth maps. Then, these points have been used to estimate the rotation matrix between subsequent point clouds and, consequently, to recover the trajectory with few centimeters of error.

  8. Science Benefits of Onboard Spacecraft Navigation

    NASA Technical Reports Server (NTRS)

    Cangahuala, Al; Bhaskaran, Shyam; Owen, Bill

    2012-01-01

    Primitive bodies (asteroids and comets), which have remained relatively unaltered since their formation, are important targets for scientific missions that seek to understand the evolution of the solar system. Often the first step is to fly by these bodies with robotic spacecraft. The key to maximizing data returns from these flybys is to determine the spacecraft trajectory relative to the target body-in short, navigate the spacecraft- with sufficient accuracy so that the target is guaranteed to be in the instruments' field of view. The most powerful navigation data in these scenarios are images taken by the spacecraft of the target against a known star field (onboard astrometry). Traditionally, the relative trajectory of the spacecraft must be estimated hours to days in advance using images collected by the spacecraft. This is because of (1)!the long round-trip light times between the spacecraft and the Earth and (2)!the time needed to downlink and process navigation data on the ground, make decisions based on the result, and build and uplink instrument pointing sequences from the results. The light time and processing time compromise navigation accuracy considerably, because there is not enough time to use more accurate data collected closer to the target-such data are more accurate because the angular capability of the onboard astrometry is essentially constant as the distance to the target decreases, resulting in better "plane-of- sky" knowledge of the target. Excellent examples of these timing limitations are high-speed comet encounters. Comets are difficult to observe up close; their orbits often limit scientists to brief, rapid flybys, and their coma further restricts viewers from seeing the nucleus in any detail, unless they can view the nucleus at close range. Comet nuclei details are typically discernable for much shorter durations than the roundtrip light time to Earth, so robotic spacecraft must be able to perform onboard navigation. This onboard

  9. Navigating Power and Politics: Women of Color Senior Leaders in Academe

    ERIC Educational Resources Information Center

    Huang, Belinda Jung-Lee

    2012-01-01

    The purpose of this study was to understand how women of color who are at the senior level of academe continue to advance while navigating and maneuvering through power and politics encountered in the organizational system. Although we know that there are few women of color at the senior level of administration, this qualitative study provided…

  10. A Knowledge Navigation Method for the Domain of Customers' Services of Mobile Communication Corporations in China

    NASA Astrophysics Data System (ADS)

    Wu, Jiangning; Wang, Xiaohuan

    Rapidly increasing amount of mobile phone users and types of services leads to a great accumulation of complaining information. How to use this information to enhance the quality of customers' services is a big issue at present. To handle this kind of problem, the paper presents an approach to construct a domain knowledge map for navigating the explicit and tacit knowledge in two ways: building the Topic Map-based explicit knowledge navigation model, which includes domain TM construction, a semantic topic expansion algorithm and VSM-based similarity calculation; building Social Network Analysis-based tacit knowledge navigation model, which includes a multi-relational expert navigation algorithm and the criterions to evaluate the performance of expert networks. In doing so, both the customer managers and operators in call centers can find the appropriate knowledge and experts quickly and exactly. The experimental results show that the above method is very powerful for knowledge navigation.

  11. Impact of Patient Navigation on Timely Cancer Care: The Patient Navigation Research Program

    PubMed Central

    Battaglia, Tracy A.; Calhoun, Elizabeth; Darnell, Julie S.; Dudley, Donald J.; Fiscella, Kevin; Hare, Martha L.; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M.; Patierno, Steven R.; Raich, Peter C.; Roetzheim, Richard G.; Simon, Melissa; Snyder, Frederick R.; Warren-Mears, Victoria; Whitley, Elizabeth M.; Winters, Paul; Young, Gregory S.; Paskett, Electra D.

    2014-01-01

    Background Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. Methods The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. Results The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Conclusions Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. PMID:24938303

  12. The navigation of homing pigeons: Do they use sun Navigation?

    NASA Technical Reports Server (NTRS)

    Walcott, C.

    1972-01-01

    Experiments to determine the dependence of homing pigeons on the sun as a navigational cue are discussed. Various methods were employed to interrupt the circadian rhythms of the pigeons prior to release. It was determined that the sun may serve as a compass, but that topographic features are more important for navigation. The effects of a magnetic field produced by electric equipment carried by the bird were also investigated. It was concluded that magnetic fields may have a small effect on the homing ability. The exact nature of the homing pigeon's navigational ability is still unknown after years of elaborate experimentation.

  13. Navigation Architecture for a Space Mobile Network

    NASA Technical Reports Server (NTRS)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  14. Prefrontal-hippocampal interactions for spatial navigation.

    PubMed

    Ito, Hiroshi T

    2018-04-01

    Animals have the ability to navigate to a desired location by making use of information about environmental landmarks and their own movements. While decades of neuroscience research have identified neurons in the hippocampus and parahippocampal structures that represent an animal's position in space, it is still largely unclear how an animal can choose the next movement direction to reach a desired goal. As the goal destination is typically located somewhere outside of the range of sensory perception, the animal is required to rely on the internal metric of space to estimate the direction and distance of the destination to plan a next action. Therefore, the hippocampal spatial map should interact with action-planning systems in other cortical regions. In accordance with this idea, several recent studies have indicated the importance of functional interactions between the hippocampus and the prefrontal cortex for goal-directed navigation. In this paper, I will review these studies and discuss how an animal can estimate its future positions correspond to a next movement. Investigation of the navigation problem may further provide general insights into internal models of the brain for action planning. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  15. Optimal motion planning using navigation measure

    NASA Astrophysics Data System (ADS)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  16. Systems analysis for ground-based optical navigation

    NASA Technical Reports Server (NTRS)

    Null, G. W.; Owen, W. M., Jr.; Synnott, S. P.

    1992-01-01

    Deep-space telecommunications systems will eventually operate at visible or near-infrared regions to provide increased information return from interplanetary spacecraft. This would require an onboard laser transponder in place of (or in addition to) the usual microwave transponder, as well as a network of ground-based and/or space-based optical observing stations. This article examines the expected navigation systems to meet these requirements. Special emphasis is given to optical astrometric (angular) measurements of stars, solar system target bodies, and (when available) laser-bearing spacecraft, since these observations can potentially provide the locations of both spacecraft and target bodies. The role of astrometry in the navigation system and the development options for astrometric observing systems are also discussed.

  17. Flow Navigation by Smart Microswimmers via Reinforcement Learning

    NASA Astrophysics Data System (ADS)

    Colabrese, Simona; Gustavsson, Kristian; Celani, Antonio; Biferale, Luca

    2017-04-01

    Smart active particles can acquire some limited knowledge of the fluid environment from simple mechanical cues and exert a control on their preferred steering direction. Their goal is to learn the best way to navigate by exploiting the underlying flow whenever possible. As an example, we focus our attention on smart gravitactic swimmers. These are active particles whose task is to reach the highest altitude within some time horizon, given the constraints enforced by fluid mechanics. By means of numerical experiments, we show that swimmers indeed learn nearly optimal strategies just by experience. A reinforcement learning algorithm allows particles to learn effective strategies even in difficult situations when, in the absence of control, they would end up being trapped by flow structures. These strategies are highly nontrivial and cannot be easily guessed in advance. This Letter illustrates the potential of reinforcement learning algorithms to model adaptive behavior in complex flows and paves the way towards the engineering of smart microswimmers that solve difficult navigation problems.

  18. Context-Aided Sensor Fusion for Enhanced Urban Navigation

    PubMed Central

    Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María

    2012-01-01

    The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments. PMID:23223080

  19. Context-aided sensor fusion for enhanced urban navigation.

    PubMed

    Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María

    2012-12-06

     The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments.

  20. True navigation in migrating gulls requires intact olfactory nerves

    PubMed Central

    Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A.; Huttunen, Markku J.; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf

    2015-01-01

    During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351

  1. Using the Deep Space Atomic Clock for Navigation and Science.

    PubMed

    Ely, Todd A; Burt, Eric A; Prestage, John D; Seubert, Jill M; Tjoelker, Robert L

    2018-06-01

    Routine use of one-way radiometric tracking for deep space navigation and radio science is not possible today because spacecraft frequency and time references that use state-of-the-art ultrastable oscillators introduce errors from their intrinsic drift and instability on timescales past 100 s. The Deep Space Atomic Clock (DSAC), currently under development as a NASA Technology Demonstration Mission, is an advanced prototype of a space-flight suitable, mercury-ion atomic clock that can provide an unprecedented frequency and time stability in a space-qualified clock. Indeed, the ground-based results of the DSAC space demonstration unit have already achieved an Allan deviation of at one day; space performance on this order will enable the use of one-way radiometric signals for deep space navigation and radio science.

  2. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    NASA Astrophysics Data System (ADS)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  3. 42 CFR 422.128 - Information on advance directives.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... (ii) The MA organization's written policies respecting the implementation of those rights, including a... 42 Public Health 3 2010-10-01 2010-10-01 false Information on advance directives. 422.128 Section 422.128 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN...

  4. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  5. 33 CFR 207.169 - Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and navigation. 207.169 Section 207.169 Navigation... REGULATIONS § 207.169 Oklawaha River, navigation lock and dam at Moss Bluff, Fla.; use, administration, and...

  6. Impact of patient navigation on timely cancer care: the Patient Navigation Research Program.

    PubMed

    Freund, Karen M; Battaglia, Tracy A; Calhoun, Elizabeth; Darnell, Julie S; Dudley, Donald J; Fiscella, Kevin; Hare, Martha L; LaVerda, Nancy; Lee, Ji-Hyun; Levine, Paul; Murray, David M; Patierno, Steven R; Raich, Peter C; Roetzheim, Richard G; Simon, Melissa; Snyder, Frederick R; Warren-Mears, Victoria; Whitley, Elizabeth M; Winters, Paul; Young, Gregory S; Paskett, Electra D

    2014-06-01

    Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. The real-world navigator

    NASA Technical Reports Server (NTRS)

    Balabanovic, Marko; Becker, Craig; Morse, Sarah K.; Nourbakhsh, Illah R.

    1994-01-01

    The success of every mobile robot application hinges on the ability to navigate robustly in the real world. The problem of robust navigation is separable from the challenges faced by any particular robot application. We offer the Real-World Navigator as a solution architecture that includes a path planner, a map-based localizer, and a motion control loop that combines reactive avoidance modules with deliberate goal-based motion. Our architecture achieves a high degree of reliability by maintaining and reasoning about an explicit description of positional uncertainty. We provide two implementations of real-world robot systems that incorporate the Real-World Navigator. The Vagabond Project culminated in a robot that successfully navigated a portion of the Stanford University campus. The Scimmer project developed successful entries for the AIAA 1993 Robotics Competition, placing first in one of the two contests entered.

  8. Patterns of task and network actions performed by navigators to facilitate cancer care.

    PubMed

    Clark, Jack A; Parker, Victoria A; Battaglia, Tracy A; Freund, Karen M

    2014-01-01

    Patient navigation is a widely implemented intervention to facilitate access to care and reduce disparities in cancer care, but the activities of navigators are not well characterized. The aim of this study is to describe what patient navigators actually do and explore patterns of activity that clarify the roles they perform in facilitating cancer care. We conducted field observations of nine patient navigation programs operating in diverse health settings of the national patient navigation research program, including 34 patient navigators, each observed an average of four times. Trained observers used a structured observation protocol to code as they recorded navigator actions and write qualitative field notes capturing all activities in 15-minute intervals during observations ranging from 2 to 7 hours; yielding a total of 133 observations. Rates of coded activity were analyzed using numerical cluster analysis of identified patterns, informed by qualitative analysis of field notes. Six distinct patterns of navigator activity were identified, which differed most relative to how much time navigators spent directly interacting with patients and how much time they spent dealing with medical records and documentation tasks. Navigator actions reveal a complex set of roles in which navigators both provide the direct help to patients denoted by their title and also carry out a variety of actions that function to keep the health system operating smoothly. Working to navigate patients through complex health services entails working to repair the persistent challenges of health services that can render them inhospitable to patients. The organizations that deploy navigators might learn from navigators' efforts and explore alternative approaches, structures, or systems of care in addressing both the barriers patients face and the complex solutions navigators create in helping patients.

  9. 76 FR 24837 - Regulated Navigation Area; Columbus Day Weekend, Biscayne Bay, Miami, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... establishing an RNA, as described in paragraph 34(g) of the Instruction. We seek any comments or information... regulated navigation area (RNA) on Biscayne Bay in Miami, Florida. The RNA would be enforced annually on the... Rickenbacker Causeway Bridge. All vessels within the RNA would be: Required to transit the regulated navigation...

  10. Assurance Technology Challenges of Advanced Space Systems

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    2004-01-01

    The initiative to explore space and extend a human presence across our solar system to revisit the moon and Mars post enormous technological challenges to the nation's space agency and aerospace industry. Key areas of technology development needs to enable the endeavor include advanced materials, structures and mechanisms; micro/nano sensors and detectors; power generation, storage and management; advanced thermal and cryogenic control; guidance, navigation and control; command and data handling; advanced propulsion; advanced communication; on-board processing; advanced information technology systems; modular and reconfigurable systems; precision formation flying; solar sails; distributed observing systems; space robotics; and etc. Quality assurance concerns such as functional performance, structural integrity, radiation tolerance, health monitoring, diagnosis, maintenance, calibration, and initialization can affect the performance of systems and subsystems. It is thus imperative to employ innovative nondestructive evaluation methodologies to ensure quality and integrity of advanced space systems. Advancements in integrated multi-functional sensor systems, autonomous inspection approaches, distributed embedded sensors, roaming inspectors, and shape adaptive sensors are sought. Concepts in computational models for signal processing and data interpretation to establish quantitative characterization and event determination are also of interest. Prospective evaluation technologies include ultrasonics, laser ultrasonics, optics and fiber optics, shearography, video optics and metrology, thermography, electromagnetics, acoustic emission, x-ray, data management, biomimetics, and nano-scale sensing approaches for structural health monitoring.

  11. Advancing an Information Model for Environmental Observations

    NASA Astrophysics Data System (ADS)

    Horsburgh, J. S.; Aufdenkampe, A. K.; Hooper, R. P.; Lehnert, K. A.; Schreuders, K.; Tarboton, D. G.; Valentine, D. W.; Zaslavsky, I.

    2011-12-01

    have been modified to support data management for the Critical Zone Observatories (CZOs). This paper will present limitations of the existing information model used by the CUAHSI HIS that have been uncovered through its deployment and use, as well as new advances to the information model, including: better representation of both in situ observations from field sensors and observations derived from environmental samples, extensibility in attributes used to describe observations, and observation provenance. These advances have been developed by the HIS team and the broader scientific community and will enable the information model to accommodate and better describe wider classes of environmental observations and to better meet the needs of the hydrologic science and CZO communities.

  12. 33 CFR 279.7 - Information collection and preliminary analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Information collection and preliminary analysis. 279.7 Section 279.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE RESOURCE USE: ESTABLISHMENT OF OBJECTIVES § 279.7 Information...

  13. 33 CFR 279.7 - Information collection and preliminary analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Information collection and preliminary analysis. 279.7 Section 279.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE RESOURCE USE: ESTABLISHMENT OF OBJECTIVES § 279.7 Information...

  14. 33 CFR 279.7 - Information collection and preliminary analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Information collection and preliminary analysis. 279.7 Section 279.7 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE RESOURCE USE: ESTABLISHMENT OF OBJECTIVES § 279.7 Information...

  15. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  16. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  17. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  18. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  19. 33 CFR 8.7 - Information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Information. 8.7 Section 8.7... GUARD RESERVE § 8.7 Information. (a) Information concerning the Coast Guard Reserve may be obtained from Commandant (CG-13), 2100 2nd St. SW., Stop 7801, Washington, DC 20593-7801. (b) Information and requirements...

  20. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are

  1. Distributed Information Fusion through Advanced Multi-Agent Control

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015

  2. Distributed Information Fusion through Advanced Multi-Agent Control

    DTIC Science & Technology

    2016-09-09

    AFRL-AFOSR-JP-TR-2016-0080 Distributed Information Fusion through Advanced Multi-Agent Control Adrian Bishop NATIONAL ICT AUSTRALIA LIMITED Final...TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) NATIONAL ICT AUSTRALIA LIMITED L 5 13 GARDEN ST EVELEIGH, 2015

  3. Racial and Ethnic Differences in Patient Navigation: Results from the Patient Navigation Research Program

    PubMed Central

    Ko, Naomi Y; Snyder, Frederick R; Raich, Peter C; Paskett, Electra D.; Dudley, Donald; Lee, Ji-Hyun; Levine, Paul H.; Freund, Karen M

    2016-01-01

    Purpose Patient navigation was developed to address barriers to timely care and reduce cancer disparities. This study explores navigation and racial and ethnic differences in time to diagnostic resolution of a cancer screening abnormality. Patients and Methods We conducted an analysis of the multi-site Patient Navigation Research Program. Participants with an abnormal cancer screening test were allocated to either navigation or control. Unadjusted median time to resolution was calculated for each racial and ethnic group by navigation and control. Multivariable Cox proportional hazards models were fit, adjusting for sex, age, cancer abnormality type, and health insurance, stratifying by center of care. Results Among a sample of 7,514 participants, 29% were Non-Hispanic White, 43% Hispanic, and 28% Black. In the control group Blacks had a longer median time to diagnostic resolution (108 days) than Non-Hispanic Whites (65 days) or Hispanics (68 days) (p< .0001). In the navigated groups, Blacks had a reduction in median time to diagnostic resolution (97 days) (p <.0001). In the multivariable models, among controls, Black race was associated with increased delay to diagnostic resolution (HR=0.77; 95% CI: 0.69, 0.84) compared to the Non-Hispanic Whites, which was reduced in the navigated arm (HR=0.85; 95% CI: 0.77, 0.94). Conclusion Patient navigation had its greatest impact for Black patients who had the greatest delays in care. PMID:27227342

  4. The use of x-ray pulsar-based navigation method for interplanetary flight

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Guo, Xingcan; Yang, Yong

    2009-07-01

    As interplanetary missions are increasingly complex, the existing unique mature interplanetary navigation method mainly based on radiometric tracking techniques of Deep Space Network can not meet the rising demands of autonomous real-time navigation. This paper studied the applications for interplanetary flights of a new navigation technology under rapid development-the X-ray pulsar-based navigation for spacecraft (XPNAV), and valued its performance with a computer simulation. The XPNAV is an excellent autonomous real-time navigation method, and can provide comprehensive navigation information, including position, velocity, attitude, attitude rate and time. In the paper the fundamental principles and time transformation of the XPNAV were analyzed, and then the Delta-correction XPNAV blending the vehicles' trajectory dynamics with the pulse time-of-arrival differences at nominal and estimated spacecraft locations within an Unscented Kalman Filter (UKF) was discussed with a background mission of Mars Pathfinder during the heliocentric transferring orbit. The XPNAV has an intractable problem of integer pulse phase cycle ambiguities similar to the GPS carrier phase navigation. This article innovatively proposed the non-ambiguity assumption approach based on an analysis of the search space array method to resolve pulse phase cycle ambiguities between the nominal position and estimated position of the spacecraft. The simulation results show that the search space array method are computationally intensive and require long processing time when the position errors are large, and the non-ambiguity assumption method can solve ambiguity problem quickly and reliably. It is deemed that autonomous real-time integrated navigation system of the XPNAV blending with DSN, celestial navigation, inertial navigation and so on will be the development direction of interplanetary flight navigation system in the future.

  5. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  6. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  7. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  8. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  9. 33 CFR 62.33 - Information and regulatory marks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Information and regulatory marks. 62.33 Section 62.33 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION UNITED STATES AIDS TO NAVIGATION SYSTEM The U.S. Aids to Navigation System § 62.33...

  10. Present Practice of Using Nautical Depth to Manage Navigation Channels in the Presence of Fluid Mud

    DTIC Science & Technology

    2017-05-01

    material surfaces cannot be interpreted reliably unless other correlating information is developed. Surveying of fluid mud properties. At some locations...depth to manage navigation channels and ports requires a mud property that determines a navigability criteria, a practical method for surveying that...for managing navigation channels, (3) issues related to conducting hydrographic surveying in waterways with fluid mud bottoms, (4) the newest

  11. Enabling Communication and Navigation Technologies for Future Near Earth Science Missions

    NASA Technical Reports Server (NTRS)

    Israel, David J.; Heckler, Greg; Menrad, Robert J.; Hudiburg, John J.; Boroson, Don M.; Robinson, Bryan S.; Cornwell, Donald M.

    2016-01-01

    In 2015, the Earth Regimes Network Evolution Study (ERNESt) Team proposed a fundamentally new architectural concept, with enabling technologies, that defines an evolutionary pathway out to the 2040 timeframe in which an increasing user community comprised of more diverse space science and exploration missions can be supported. The architectural concept evolves the current instantiations of the Near Earth Network and Space Network through implementation of select technologies resulting in a global communication and navigation network that provides communication and navigation services to a wide range of space users in the Near Earth regime, defined as an Earth-centered sphere with radius of 2M Km. The enabling technologies include: High Rate Optical Communications, Optical Multiple Access (OMA), Delay Tolerant Networking (DTN), User Initiated Services (UIS), and advanced Position, Navigation, and Timing technology (PNT). This paper describes this new architecture, the key technologies that enable it and their current technology readiness levels. Examples of science missions that could be enabled by the technologies and the projected operational benefits of the architecture concept to missions are also described.

  12. Texas ports and navigation districts : overview.

    DOT National Transportation Integrated Search

    2017-01-01

    The first Navigation District was established in 1909, and there are now 24 Navigation Districts statewide.1 Navigation districts generally provide for the construction and improvement of waterways in Texas for the purpose of navigation. The creation...

  13. Navigation studies based on the ubiquitous positioning technologies

    NASA Astrophysics Data System (ADS)

    Ye, Lei; Mi, Weijie; Wang, Defeng

    2007-11-01

    This paper summarized the nowadays positioning technologies, such as absolute positioning methods and relative positioning methods, indoor positioning and outdoor positioning, active positioning and passive positioning. Global Navigation Satellite System (GNSS) technologies were introduced as the omnipresent out-door positioning technologies, including GPS, GLONASS, Galileo and BD-1/2. After analysis of the shortcomings of GNSS, indoor positioning technologies were discussed and compared, including A-GPS, Cellular network, Infrared, Electromagnetism, Computer Vision Cognition, Embedded Pressure Sensor, Ultrasonic, RFID (Radio Frequency IDentification), Bluetooth, WLAN etc.. Then the concept and characteristics of Ubiquitous Positioning was proposed. After the ubiquitous positioning technologies contrast and selection followed by system engineering methodology, a navigation system model based on Incorporate Indoor-Outdoor Positioning Solution was proposed. And this model was simulated in the Galileo Demonstration for World Expo Shanghai project. In the conclusion, the prospects of ubiquitous positioning based navigation were shown, especially to satisfy the public location information acquiring requirement.

  14. Culturally targeted patient navigation for increasing african americans' adherence to screening colonoscopy: a randomized clinical trial.

    PubMed

    Jandorf, Lina; Braschi, Caitlyn; Ernstoff, Elizabeth; Wong, Carrie R; Thelemaque, Linda; Winkel, Gary; Thompson, Hayley S; Redd, William H; Itzkowitz, Steven H

    2013-09-01

    Patient navigation has been an effective intervention to increase cancer screening rates. This study focuses on predicting outcomes of screening colonoscopy for colorectal cancer among African Americans using different patient navigation formats. In a randomized clinical trial, patients more than 50 years of age without significant comorbidities were randomized into three navigation groups: peer-patient navigation (n = 181), pro-patient navigation (n = 123), and standard (n = 46). Pro-patient navigations were health care professionals who conducted culturally targeted navigation, whereas peer-patient navigations were community members trained in patient navigation who also discussed their personal experiences with screening colonoscopy. Two assessments gathered sociodemographic, medical, and intrapersonal information. Screening colonoscopy completion rate was 75.7% across all groups with no significant differences in completion between the three study arms. Annual income more than $10,000 was an independent predictor of screening colonoscopy adherence. Unexpectedly, low social influence also predicted screening colonoscopy completion. In an urban African American population, patient navigation was effective in increasing screening colonoscopy rates to 15% above the national average, regardless of patient navigation type or content. Because patient navigation successfully increases colonoscopy adherence, cultural targeting may not be necessary in some populations.

  15. Shuttle unified navigation filter, revision 1

    NASA Technical Reports Server (NTRS)

    Muller, E. S., Jr.

    1973-01-01

    Equations designed to meet the navigation requirements of the separate shuttle mission phases are presented in a series of reports entitled, Space Shuttle GN and C Equation Document. The development of these equations is based on performance studies carried out for each particular mission phase. Although navigation equations have been documented separately for each mission phase, a single unified navigation filter design is embodied in these separate designs. The purpose of this document is to present the shuttle navigation equations in a form in which they would most likely be coded-as the single unified navigation filter used in each mission phase. This document will then serve as a single general reference for the navigation equations replacing each of the individual mission phase navigation documents (which may still be used as a description of a particular navigation phase).

  16. Real-time Imaging Orientation Determination System to Verify Imaging Polarization Navigation Algorithm

    PubMed Central

    Lu, Hao; Zhao, Kaichun; Wang, Xiaochu; You, Zheng; Huang, Kaoli

    2016-01-01

    Bio-inspired imaging polarization navigation which can provide navigation information and is capable of sensing polarization information has advantages of high-precision and anti-interference over polarization navigation sensors that use photodiodes. Although all types of imaging polarimeters exist, they may not qualify for the research on the imaging polarization navigation algorithm. To verify the algorithm, a real-time imaging orientation determination system was designed and implemented. Essential calibration procedures for the type of system that contained camera parameter calibration and the inconsistency of complementary metal oxide semiconductor calibration were discussed, designed, and implemented. Calibration results were used to undistort and rectify the multi-camera system. An orientation determination experiment was conducted. The results indicated that the system could acquire and compute the polarized skylight images throughout the calibrations and resolve orientation by the algorithm to verify in real-time. An orientation determination algorithm based on image processing was tested on the system. The performance and properties of the algorithm were evaluated. The rate of the algorithm was over 1 Hz, the error was over 0.313°, and the population standard deviation was 0.148° without any data filter. PMID:26805851

  17. Advanced public transportation systems deployment in the United States : year 2002 update

    DOT National Transportation Integrated Search

    2003-06-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  18. Advanced public transportation systems deployment in the United States : year 2000 update

    DOT National Transportation Integrated Search

    2002-05-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  19. Advanced public transportation systems deployment in the United States : year 2004 update

    DOT National Transportation Integrated Search

    2005-06-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...

  20. Advanced Public Transportation Systems Deployment in the United States, Year 2000, Update

    DOT National Transportation Integrated Search

    2002-05-01

    This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...